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Behavioral models of human operators engaged in complex, time-critical high-risk domains, such as
those typical in Human Supervisory Control (HSC) settings, are of great value because of the high cost of
operator failure. We propose that Hidden Semi-Markov Models (HSMMs) can be employed to model
behaviors of operators in HSC settings where there is some intermittent human interaction with a
system via a set of external controls. While regular Hidden Markov Models (HMMs) can be used to
model operator behavior, HSMMs are particularly suited to time-critical supervisory control domains
due to their explicit representation of state duration. Using HSMMs, we demonstrate in an unmanned
vehicle supervisory control environment that such models can accurately predict future operator
behavior both in terms of states and durations.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Formally, Human Supervisory Control, or HSC, is the process
by which one or more human operators intermittently interact
with a computer, receiving feedback from and providing
commands to a controlled process or task environment, which
is connected to that computer (Sheridan, 1992). Because the
computer allows operators and tasks to be decoupled both in
time and space, operators in HSC settings often work under time-
pressure and in high risk environments. Furthermore, this work is
primarily cognitive and procedural, i.e., other than the occasional
button press or lever engagement, most work happens via
internal information processing that follows a set of pre-defined
steps. Typical HSC domains include military command and con-
trol, air traffic control, railway systems and process control
including the operation of nuclear power plants. Because HSC
systems are often mission and/or life-critical, operator failure
could lead to disastrous outcomes (Leveson, 1986).

Unmanned Vehicles Systems (UVSs) form a representative
application of time-pressured and mission-critical human super-
visory control. Within this domain, a significant amount of
resources and research has been devoted to leveraging automa-
tion in order to shift the current operating paradigm in which
multiple operators control a single unmanned vehicle to one in
which a single operator could control multiple vehicles (Dixon
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and Wickens, 2003; Mitchell and Cummings, 2005). This radical
change in paradigm represents a challenge both for operators and
systems designers (Ollero and Maza, 2007). The control of multi-
ple UVSs compounds the potential for operator cognitive overload
while simultaneously increasing the potential consequences of
operator failure. Thus, constant monitoring of the operator
behavior is critical for proper system behavior. That task is
usually assigned to supervisors who typically rely on expert
knowledge and experience to detect anomalous conditions.
Because continuously monitoring the behavior of multiple opera-
tors while providing high-level guidance is a demanding task for
the supervisor, the ability to automatically recognize the likely
onset of an operator’s off-nominal behavior, as defined by a
deviation from an expected behavioral pattern determined by
procedures, has immense practical value as potential serious
accidents could be avoided.

By leveraging recent advances in processing power and
machine learning algorithms, models of operator behaviors can
be learned from data and are thus capable of monitoring opera-
tors controlling one or more UVSs. Thus, automation can support
the performance monitoring task by generating an alert to a
supervisor if the deviation from the expected behavior of the
operators under his or her supervision exceeds a given threshold.
This paper describes a stochastic modeling technique developed
to detect and predict such deviations from expected behavior,
validated through human-in-the-loop experimental data. In
contrast with previously published research, we show that the
proposed modeling approach can accurately predict not only
future types of operator behaviors, but also their length of
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duration, as an important characteristic in time-critical HSC
contexts.

2. Background

In general, given a training set of known behavioral patterns,
there are two alternatives to detect anomalous behaviors: (1)
show that the observed pattern is similar to a known adversary
pattern or (2) show that the observed pattern is dissimilar to a
known normal pattern (Singh et al.,, 1996). The first option is
impractical because it is, in general, difficult to generate an
exhaustive list of adversary patterns in applications characterized
by a large number of degrees of freedom such as HSC settings.
In contrast, because HSC environments are procedure-based,
predictive models of human behavior embody the known normal
patterns and can therefore be used to detect and predict anom-
alous behaviors. In addition to providing anomaly detection
capability, most predictive models also comprise a descriptive
component. Thus, within the context of HSC behaviors, the real-
time use of predictive models can support the performance
monitoring task of a team supervisor by generating alerts when
anomalous situations are predicted. These same models can also
be analyzed off-line and provide a better understanding in the
typical behavior of operators.

There exists a wide range of computational modeling techni-
ques, which can be divided into three main categories: symbolic
models, architecture-based models and statistical models.
The first two classes of model tend to be deductive (i.e., use of a
top-down methodology relying on predefined theories) whereas
statistical models tend to be inductive (i.e., a bottom-up approach
and data driven).

Symbolic modeling techniques represent different mental
objects using variables and rules. The most commonly used
decision support tools relying on such methods are expert
systems (Endsley, 1987). This methodology, however, suffers
from its strict reliance on rules that must be correctly elicited
from a Subject Matter Expert (SME) a priori. This problem of
knowledge elicitation is both time consuming and may introduce
the bias of a given SME in the system. In contrast, architecture-
based models make use of theoretical frameworks aimed at
replicating cognitive processes, and therefore serve as blueprints
for intelligent agents. GOMS (Wayne et al., 1992) and ACT-R
(Anderson, 1993), are two such cognitive frameworks. The prac-
tical use of ACT-R is limited because of sophisticated cognitive
task modeling required to fit the framework. GOMS is similarly
limited because it assumes that all users behave deterministically
and follow the same human processor model, which narrowly
limits use to expert behaviors. Thus, the main shortcoming of
both symbolic and architecture-based methods lies in their use of
a priori definition of rules or cognitive processes. Eliciting such
rules or cognitive processes is problematic in HSC settings
because of the complexity of the decisions, as well as uncertainty
in the environment. Moreover, such approaches are inherently
brittle as they cannot be used to describe or predict anomalous,
never-before-seen events. In contrast, statistical models make use
of an inductive, data-driven approach in the sense that they rely
on the exploitation of the statistical patterns exhibited in the
human behavior data stream in order to describe and predict
possible future actions.

The alternative approach to symbolic and architecture-based
models is applying statistical learning techniques to human
behaviors, relying on the idea that human actions can be appro-
priately modeled by serial processes because humans can solve
only one complex problem at a time (Welford, 1952; Broadbent,
1958). Therefore, pattern recognition techniques have been used

to model human behaviors ranging from large-scale populations
patterns (Pentland, 2008) to detailed small-scale cognitive pro-
cesses (Griffiths et al., 2008). Such applications have included
computer system intrusion detection (Terran, 1999), ship naviga-
tion (Gardenier, 1981) or car driving (Pentland and Liu, 1999). Yet,
little work employs such techniques in the HSC context, even
though the correctness of operator behavior in such settings is
often mission and life-critical. Statistical learning techniques can
be beneficial in the HSC domain because, in contrast with
qualitative models, they provide a formal, quantitative basis for
describing human behavior patterns and for predicting future
actions. This is especially true for HSC application because the
procedures provide structure to the behavior of an operator
thereby facilitating the emergence of behavioral patterns that
can be exploited by the statistical models.

One popular statistical learning tool, hidden Markov models,
has been used to investigate human cognition through behavioral
patterns in rule-based continuous control tasks such as driving
(Pentland and Liu, 1999) or space shuttle landing (Hayashi et al.,
2005). More recently, HMMs have also been shown capable of
modeling and predicting knowledge-based tasks such as super-
visory control behaviors of Unmanned Vehicle (UVs) operators
(Boussemart and Cummings, 2008). The structure of the HMM
is particularly suitable for inferring underlying, hidden cognitive
processes from the patterns of visible events extracted from
human behavior, especially in unsupervised training contexts
(Boussemart et al., 2009). These behavioral patterns correspond
to statistically linked clusters of observable events, which we
call operator states. For example, the set of actions required to
change the path of a vehicle - such as vehicle selection and
waypoint manipulation - tend to occur concomitantly and could
be clustered in an operator state linked with replanning. The
learned model thus synthesizes operator behavioral patterns
through the definition of a number of such operator states
along with the probabilities of going from one operator state to
another.

Classical HMMs, however, have a structural shortcoming in
that they cannot explicitly take the timing of state transitions into
account. In HSC settings, timing is often a critical consideration,
since correct actions taken even 1s late can cause problems,
e.g., and air traffic controller waving off an aircraft 1 s too late can
be disastrous. Thus, the lack of timing information can lead to
flawed, less precise models. It is precisely this shortcoming that
this paper explores through the use of hidden semi-Markov
models, a version of HMMs capable of explicitly modeling
the timing of state transitions for HSC behaviors. The next
section outlines the computational aspects of HMMs and their
structural shortcoming is addressed by presenting the HSMMs
methodology.

3. Methodology
3.1. Hidden Markov models

Hidden Markov models were popularized by a seminal paper
by Rabiner and Juang (1986). They consist of stochastic Markov
chains based around a set of hidden states that cannot be directly
observed. Each hidden state generates an observable symbol
according to a specific emission function. Although the sequence
of hidden states cannot be observed directly, the probability of
being in a specific state can be inferred from the sequence
of observed symbols. Transition functions describe the dynamics
of the hidden state space. There are two types of probability
parameters in HMMs: state transition probabilities and observ-
able symbol output probabilities. Given a finite sequence of
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Fig. 1. A 3-state hidden Markov model.

hidden states, all the possible transition probabilities and symbol
output probabilities can be multiplied at each transition to
calculate the overall likelihood of all the output symbols pro-
duced in the transition path up to that point. Summing all such
transition paths, one can then compute the likelihood that the
sequence was generated by the HMM.

Adopting the classic notation from Rabiner and Juang (1986),
let N be the number of states S={S,5,, ..., Sy} in the HMM and M
be the number of observation symbols V={V1,V5, ..., Vj} (i.e. the
dictionary size). Let S! denote the property of being in state i at
time t. The state transition probability from state i to state j is
A={a;} where aisz(S;“,Sf);i,j:l,...,N. The symbol output
probability function in state i is B={b;(c)}, where bj(c)=P(V,|S;).
The initial probability of being in state i at time t=0 is w={m;},
where 7; = P(S9).

The model parameters must be valid probabilities and thus
satisfy the constraints

N M N .
Zai]-: 1,ij((_')= 1,27’5]' = 1,V_]
i ¢ J
a;; = 0,bj(c) > 0,7; >0 (1)

Thus, an HMM is formally defined as the tuple, H = {S,V,A,B,x}.
Fig. 1 illustrates the HMM concept by showing a graphical
representation of a 3-state model, where the set of hidden states’
{51,52,53} transition probabilities are defined as a set of a;’s. Each
state has a probability density function of emitting a specific
observation.

An HMM respects the first order Markov assumption if the
transition from the current state to the next state only depends on
the current state.

3.1.1. HMM algorithms

HMM algorithms embed three functions: model evaluation,
most likely state path and model learning. The first function is
evaluation, i.e. the probability that a given sequence is produced
by the model. This probability of a given sequence of data given
the model is useful because, according to the Bayes’ rule, it is a
proxy for the probability of the model given the data presented.
We can thus compare different models and choose the most likely
one by solving the evaluation problem with the forward/
backward dynamic programming algorithm. Finally, the HMM
parameters must be learned given a fixed data set, and the most
commonly used algorithm is a form of Expectation—-Maximi-
zation (EM) called the Baum-Welch algorithm. The goal of the
Baum-Welch algorithm is to maximize the posterior likelihood of
the observed sequence O° for a given HMM. More formally,
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Fig. 2. A 3-state hidden semi-Markov model.

Baum-Welch computes the optimal model H* such that
H* = argmaxy <HP(OS; H)) )
S

Expectation maximization hypothesizes an initial, arbitrary set
of model parameters. These model parameters are then used to
estimate a possible state sequence Sps = {s, ..., sk} via the Viterbi
algorithm. This is the expectation or E-step of the EM algorithm.
The model parameters are then re-estimated given the state
labels Sps. This constitutes the maximization step (or M-step) of
the learning algorithm. Through this iterative EM procedure, it
can be proven that the Baum-Welch algorithm converges to a
local optimum (Baum and Petrie, 1966).

3.2. Hidden semi-Markov models

One of the shortcomings of classical HMMs is that they do not
provide a way to explicitly deal with state durations. In classical
HMMs, the probability of staying in a given state has to be
geometrically distributed according to the state self-transition
probability. Indeed, the probability of staying in state i for j
iterations is (a;). Assuming a geometric state duration distribu-
tion may not be valid in all contexts, and could be problematic in
HSC domains which often dictate that operators perform actions
in time-pressured scenarios. Hidden Semi-Markov Models
(HSMMs, also known as explicit duration hidden Markov models)
address this specific issue (Rabiner, 1989; Guedon, 2003).

Structurally, a HSMM is similar to an HMM in that it is
composed of an embedded Markov chain (usually first order)
that represents the transitions between the hidden states {S.}.
In addition, an HSMM incorporates a discrete state occupancy
distribution representing the time spent in non-absorbing states.
The set of such distributions is noted D={d;(u)} and represents
the probability of staying u units of time in state j.

Fig. 2 shows a 3-state hidden semi-Markov model including
the duration distributions dj(u) for all states. Formally, the
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duration distribution probability is defined as follows:
dijw) =P(SpLur 1Sy =0, u=2[SH L)), u=1,, M
3

Where M; is an upper bound to the time spent in state j. In
contrast to the HMM, there can be no transition of the form a;; in
an HSMM as demonstrated in Fig. 2. Furthermore, the conditional
independence between the past and the future in HSMMs only
holds when the process evolves from one state to another, while
this property holds at each time step for HMMs. This distinction
denotes the relaxation of the Markov assumption to a semi-
Markov regime.

3.2.1. HSMM algorithms

Similarly to HMMs, the forward/backward algorithm is a
central estimation mechanism for HSMMs. However, the addition
of the duration probability makes the algorithm more complex
than for HMMs. Guedon (2003) proposes a possible derivation of
the forward/backward algorithm adapted to HSMMs.

The ability of HSMMs to extract information from timing data
comes at the expense of model complexity since HSMMs typically
need a significantly higher number of parameters than regular
HMMs. This has implications both in terms of the amount of data
needed to train models, as well as for model generalizability.
As can be expected, learning HSMMs is significantly more dif-
ficult than learning HMMs. The first issue is generalizability
(i.e. regularization) in that HSMMs contain significantly more
parameters than HMMs with identical numbers of hidden states,
and are therefore more prone to overfit the training data (Guedon,
2003). An n-state HMM with a d-sized dictionary has n+n?+dn
number of parameters (d > n usually). A similar HSMM with a
maximum state duration M, has n-+n?+dn+nM, parameters
(M;>d>n usually). For practical models (i.e. with relatively
small n), the dominant factors become the size of the dictionary
d and the maximum state duration M,.

In contrast with the size of the dictionary, the maximum state
duration can be traded off against time resolution granularity
because it is computed in terms of time-steps. Obtaining fine
grained time-resolution (i.e. multiple time-steps per second) can
become expensive if some states could have long durations.
The higher number of parameters means that achieving a parsi-
monious and generalizable model is difficult and requires more
training data, often a problem in small sample HSC settings.
Additionally, from a purely computational perspective, learning
the model can be impractical. Looking at the cost of a forward/
backward pass, a n-state HMM with a d-sized dictionary will
typically have a run-time of O(n?d). In contrast, the same run-
time for an HSMM with a maximum state duration M, will be
O(n?dM?) (Mitchell et al., 1999).

The solution to both of these problems, i.e. model general-
izability and computational complexity, lies in reducing the
number of parameters that need to be learned. As shown earlier,
a significant proportion of the number of parameters in an HSMM
is devoted to defining a set of fully non-parametric duration
distributions. One way to reduce the number of parameters in the
model is to use parameterized distributions, such as Gaussian
mixture models, in order to describe the duration probabilities
(Marin et al., 2005). This reduction promotes model general-
izability and reduces the computation load at the cost of imposing
additional constraints on the expression of the duration prob-
ability distribution function.

3.2.2. Duration distributions as Gaussian mixture models
Gaussian Mixture Models (GMMs) are defined as a weighted
sum of independent normal distributions. The GMM definition of

the state duration is as follows:

M (—(u—p)?)/202
e ]
di(u) = P ——m=—— 4)
! kZ::I a 2Tl:ajzk

Where M, is the number of modes in the GMM and ¢;, represents
the weighting parameter of the kth Gaussian in state j, which has
a mean p and a standard deviation oj,. The GMMs parameters,
i.e. ¢ 1y and o, can be learned by a process of expectation
maximization identical to the one used for the other parameters
of the HSMM. For a GMM with a single mode, the solution can be
computed by taking the partial derivative of the following func-
tion and setting it to 0 (Marin et al., 2005). For GMMs with more
than one mode, the derivation of the re-estimation equations
remains similar to the single mode case, with the additional
requirement of computing the appropriate weight parameter ¢;.
The full derivation of the GMM re-estimation equations can be
found in (Boussemart, 2011).

While requiring fewer parameters, parametric functions such
as GMMs impose additional constraints on the possible distribu-
tion of the duration probability functions. In HSC settings, this
assumption is reasonable because the time it takes for a human to
perform a specific task can generally be accurately fit by specific
distributions, such as Gaussian, Gamma or Beta (Law and Kelton,
2000). Using parameterized duration distributions may not be
warranted in all settings however, so the number of parameters
used should be calibrated to the quantity and quality of the
available training data so as to minimize the risk of overfitting.

In summary, the structure of HMMs constrains the expression
of the state duration to a geometric distribution, which may not
reflect the time pressure inherent in many supervisory control
settings. In contrast, HSMMs are capable of explicitly modeling
state durations, which allow for more flexible models. The state
duration distributions may be expressed non-parametrically at
the cost of significantly increasing the number of parameters that
need to be learned, which may impair the generalizability of the
model. A solution is to use parameterized state duration distribu-
tions. In this work, we use mixtures of Gaussian models to
address this issue. Thus, HSMMs are more complex than HMMs
but are capable of providing information (i.e., state duration)
that HMMs cannot. Because HSC contexts are often inherently
time critical, state duration information is important because it
provides a basis for estimating not only what the next most likely
actions are, but also when they are most likely to take place. In
the following section, we present experimental data used to
compare HMMs to non-parametric HSMMs, as well as parametric
HSMM s in an HSC setting.

4. Experimental data

As a representative case, we focus on Unmanned Vehicle (UV)
systems where a single operator controls multiple heterogeneous
unmanned vehicles. This context is characteristic of expected
future military operations (DoD, 2007), and highlights the
system-level importance of monitoring the behaviors of an opera-
tor in charge of a larger number of highly automated resources.
This representation is generalizable to any supervisory control
task where a human operator is supervising high levels of
automation distributed across a number of complex tasks.

Data used to develop the HMM and HSMM of a UV human
supervisory control system was obtained from a previous experi-
ment (Nehme et al., 2008). While the goal of the original
experiment was to validate a discrete event simulation model of
an operator controlling multiple heterogeneous unmanned vehi-
cles, the recorded user interface interactions represent a rich
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corpus of supervisory control behavior which can be used as a
training set for comparing HMMs, non-parametric HSMMs and
parametric HSMMs.

In the experiment, a single human operator controlled a team
of UVs composed of unmanned air and underwater vehicles
(UAVs and UUVs). The user interface is shown in Fig. 3.

In this interface, the UVs perform surveillance tasks with the
ultimate goal of locating specific objects of interest in urban
coastal and inland settings. UAVs can be of two types: one that
provides high level sensor coverage (High Altitude Long Endur-
ance or HALE), while the other provides more low-level target
surveillance and video gathering (Medium Altitude Long Endur-
ance or MALE). In contrast, all UUVs are all of the same type, with
a similar goal of searching for targets of interest. Thus, the single
operator controls a heterogeneous team of UVs which may consist
of up to three different types of platforms.

In this simulation, the HALE performs a target designation task
(simulating some off-board identification process). Once desig-
nated, operators use either the MALEs or UUVs to perform a visual
target acquisition task, which consists of looking for a particular
item in an image by panning and zooming the camera view. Once
a target is visually identified, an automated planner chooses the
next target assignment, creating possibly sub-optimal target
assignments that the human operator can correct. Furthermore,
threat areas appear dynamically on the map, and entering such an
area could damage the UV, so the operator can optimize the path
of the UVs by assigning a different goal to a UV or by adding
waypoints to a UV path in order to avoid threat areas.

Participants maximized their score by (1) avoiding dynamic threat
areas, (2) completing as many of the visual tasks correctly, (3) taking
advantage of re-planning when possible to minimize vehicle travel
times between targets and (4) ensuring a vehicle was always assigned
to a target whenever possible. Training was done through an
interactive tutorial and an open-ended practice session. Final scores
corresponded to the total number of targets correctly identified. All
data were recorded to an online database. The data of interest for this
paper consisted of user interactions with the interface in the manner
of clicks, such as operator UV selections on the map or on the left
sidebar, waypoint operations (add, move, delete), goal changes and
the start and end of visual tasks, as seen in Fig. 3.

£ RESCHU VER 1.0.0 (user : yves)

Visual Task
Panel

Message
Panel

UV List

Time Line

4.1. Applying hidden Markov models to human supervisory
controller behavior

Determining the user behavior parameters of HMMs and HSMMs
requires training the model on the observed behavioral data. The raw
behavioral data, which consists of the logged user interface events
described above, cannot be used directly by the learning algorithms,
and must be pre-processed. Fig. 4 shows the overall process, which
consists of a grammatical and a statistical phase. The grammatical
phase translates the low level observed user interactions into
abstract events, which then form the basis of the observable state
space for the statistical phase. In this phase, the model learning
algorithms are used in order to obtain the model parameters.

The first step of the process consists of parsing low-level input
information (such as mouse clicks on a screen) into abstract
events according to a set of grammatical rules. The role of the
grammar is thus to abstract low level user interface interactions
into a set of meaningful tasks that can both be learned by the
algorithm, as well as interpreted by a human modeler. Thus, the
grammar represents feature extraction which reduces the size of
the state space. It also defines the scope of the observable space
usable by the machine learning process (Eads et al., 2005).

For application to HSC settings, we propose that the grammar
should take the form of a 2D space where the rows defines a set of
operands (i.e. entities that are acted on) while the columns deline-
ates a set of operations (i.e. what is being performed). A set of
operations can be established through a general task analysis
(Kirwan and Ainsworth, 1992) or a more specialized Cognitive Task
Analysis (CTA) (Schraagen et al., 2000). This orthogonal representa-
tion of the state space is essentially a generic ontology that
represents type of objects and their relations. In the application,
the user interactions were first categorized by operands, i.e. the type

Abstract

i ’ events
Low Level Gr tical
Input

3

Statistical

Fig. 4. Combined grammatical and statistical approach infers future behavior
from a stream of current behavior.

Threat Area

Target

Underwater
uv

Medium
Altitude Air
uv

High
Altitude Air
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Fig. 3. The experimental user interface.
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Table 1
The HMM/HSMM grammar.

All UVs - - - - - -

Underwater UV - - - - - -

MALE - - - - - -

HALE - - - - - -

UV type/mode Select sidebar Select map Waypoint edit Waypoint add/del Goal Visual task/engage
of UV under control (All UVs, UUVs, MALEs or HALEs) and define the 240000
rows of Table 1. Then, the interactions with each of the UV types —=— | GMM HSMM "
were separated into different operations in Table 1 while selection 220000 1 -+ 2 GMM HSMM o
on either the sidebar or on the map, waypoint manipulation 200000 - —4= 3 GMMHSMM AT b
(addition, deletion and modification), goal changes and finally, the ® — = HSMM -
visual task engagement. These different operations define the g 180000 1
columns in Table 1. The table of operands and operations represent 8 160000
all possible user interactions with the system. =

The second step of the process is the statistical learning phase 140000

which attempted to model either the state (HMM) or the state
and time-sequenced (HSMM) data. During this phase, the max- 120000 1
imum likelihood estimates of the HMM and HSMM parameters 100000

are computed. In this experiment, we used 49 data traces of an
individual user’s 10 min long trials, resulting in a total of 3420
data points for the HMM model, and 54,368 data points for the
HSMM models. Since no more than two events ever happened in
the same second, we used a time resolution of 500 ms per time
step in the HSMM algorithm.

The maximum duration for the longest task, i.e. the visual search,
was 45 s, soM;=90. We used a 3-fold cross-validation by training
the algorithm on 46 subjects, keeping 3 subjects as a test set. The
training was stopped when the likelihood of the cross-validated
sequences started to decrease, which indicated that the model
overfit the training data. Furthermore, because the EM algorithm
is akin to a gradient search, it is susceptible to local optima (MacKay,
2004). The procedure outlined above must be repeated a large
number of times with different initial values parameters of the
HSMM in order to avoid such local optima, while keeping track of
the most-likely model obtained in the process. To this end, we
performed 10,000 iterations of this procedure for each of the model
sizes (i.e. number of hidden states). In the next section, we present
the results of the comparison between the HMMs, non-parametric
HSMMs and parametric HSMMs.

5. Results and discussion

The HSMM model learning methodology described earlier was
applied to the RESCHU data set, and both non-parametric and
parametric models were learned. The parametric models used
Gaussian mixture models with up to 3 modes' in order to express
the state duration probability function. Similar to HMMs, several
HSMMs need to be learned and the best one can be chosen
through the process of model selection.

One common method to compare models of different sizes is
the Bayesian Information Criterion (BIC) (Burnham and Anderson,
2002), which regularizes the model by balancing model fit and
model complexity. The BIC allows the comparison of different
models, in particular with different number of hidden states,
trained on the same underlying data. More specifically, the BIC
penalizes the likelihood L(H)of the model H by a complexity
factor proportional to the number of parameters P in the model

! A maximum of 3 modes for the GMM-HSMM was chosen because hidden
states in HMMs and HSMMs typically represent less than 3 different modes of
operation.

Number of Hidden States

Fig. 5. BIC scores (lower is better) for the HSMMs and GMM-HSMM of
different sizes.

and the number of training observations K. Thus, a lower BIC
score is better.

BIC = —2log(L(H))+ Plog(K) 5)

The results in Fig. 5 show that the BIC scores of the non-
parametric HSMMs (from 2 to 10 hidden states) are higher than
that of any GMM-HSMM, regardless of the model size. The poorer
scores of the non-parametric HSMM are due to the large number
of parameters needed to specify every point in the distribution of
the durations.

In contrast, the GMM-HSMMs, regardless of the number of
modes used to specify their duration distribution, have fewer
parameters and their BIC scores indicate that they are likely to
generalize better than their non-parametric counterparts. Within
the group of GMM-HSMMs, we see a similar trend where the
simpler models tend to have a better BIC score. Thus for the
RESCHU data, the BIC metric indicates that a 5-state HSMM with a
1-mode GMM used to define the duration distribution that
provides the best HSMM model for this particular UV application,
and that requiring full specification of all the parameters of the
duration time distribution can be detrimental to model general-
izability. However, using a parametric function to specify this
distribution also imposes an additional assumption with regards
to the form of the duration time expression. This may not be
appropriate in applications that require highly specific time
distributions, i.e., very tight tolerances for user interactions.

While the BIC of the 5-state 1-mode GMM-HSMM is the
lowest of all HSMMs with a score of BIC=109,775 (Fig. 5), the
best HMM model trained on the same data set, built around
8 hidden states (see Boussemart (2011) for more details), is an
order of magnitude lower (BIC=13,420). Although the BICs
cannot be compared directly due to the rescaling of the training
data with the HSMM time resolution, the results suggest that the
less complex HMMs are likely to generalize better to unseen data
than HSMMs. HMMs, however, are not capable of using and
providing timing information data, which are often critical in
HSC settings. Thus, whether to use HMMs or HSMMs presents a
trade space between external validity and model fit.
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5.1. Description of the 5-state 1-mode GMM-HSMM model

Fig. 6 presents an overview of the selected model, highlighting
the different hidden states while graphically showing the state
transition probability matrix. The 5 hidden states of the selected
GMM-HSMM along with the state transition probabilities A={a;}
are presented. All the transitions with less than 5% probability
have been removed for legibility purposes; all states are other-
wise fully connected. Note that because HSMMs explicitly model
state durations, there are no self-transitions for the hidden states.
The hidden states are also labeled according to their emission
functions over the set of observable events. For example, Table 2
shows the distribution function B={bi(c)} for the 2nd state.
In particular, the distribution shows that state 2 correlates with
planning behaviors for the MALEs (i.e. selecting the map, adding/
deleting a waypoint or changing the goal of a MALE UV).

The transition probabilities between the hidden states, as
highlighted in Fig. 6, can provide valuable insight into operator
behavior. The model suggests that the planning and visual task
states are heavily linked both for UUV and MALE types and
expresses the idea that operators alternate regularly between these
two activities. For both types of UVs, there is a high likelihood of
engaging in planning behavior with a vehicle of the similar type
after a given visual task (0.79 for the MALEs and 0.62 for the UUVs).

State 0
Planning
UuVs

suNERAnEnnnE,

State 4
Planning
HALEs

Visual Task

This demonstrates that the first action an operator does after
finishing a visual task is to send the vehicle towards another target,
a typical replanning strategy for RESCHU. While the transition
between the planning and visual tasks for the MALEs is strong
(0.72), the transition between UUV planning and the visual task is
comparatively weaker (0.33). This result is not surprising as UUVs
are slower vehicles in RESCHU. Thus, an operator is less likely to
perform a visual task right after retasking such a vehicle because
the UUV will have to take longer to reach the assigned goal.

Fig. 7 shows the duration distribution functions D = {d;(u)} for
the different states of the 5-state model in Fig. 6. The x-axis is
labeled in 0.5s intervals because this is the time resolution
needed to parse out all the events in distinct discrete time steps.
In other words, at most 2 events happened in the same second in
the training data set, and therefore a time resolution of 0.5 s is
needed to put them in different time intervals. The y-axis shows
the probability of staying in a given state for a duration x. Fig. 7
demonstrates that the planning tasks (states 0, 2 and 4) require,
on average, much less time to accomplish that the visual tasks of
states 1 and 3, which agrees with observed data (as well as real
world UAV operations). The mean duration of a planning state is
8.03 s whereas the mean duration of the visual task states is
25.43 s. These duration times thus present distinctly separate
modes of operator behavior.

State 1

LEELCLEE TN

MALEs

JrEEEFEREEE,

State 2
Planning
MALEs

aamsnnnpunn®

State 3
Visual Task
Uuvs

Fig. 6. Transition probabilities in the 5-state 1-mode GMM-HSMM (transitions with less than 0.1 weights have been removed for legibility purposes).

Table 2
State 2 observation probability function: interacting with MALEs.

All UVs 0.00 - - - - -

Underwater UV 0.00 0.00 0.00 0.00 0.00 0.00

MALE 0.00 0.30 0.00 0.28 0.41 0.01

HALE 0.00 0.00 0.00 0.00 0.00 0.00

UV type/mode Select sidebar Select map Waypoint edit Waypoint add/del Goal Visual task/engage
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Fig. 7. Hidden state duration probabilities.

In addition, one of the most interesting features of the model is
that 3 of 5 the hidden states in Fig. 6 represent operator planning
and replanning operator behavior with each of the 3 types of UVs
(HALEs, MALEs and UUVs). The last 2 hidden states represent the
visual tasks for both MALEs and UUVs (recall HALEs do not
perform a visual task). The expected durations of the visual task
states for MALEs and UUVs are comparatively longer (28.5 and
22.5 s, respectively) than that of the interaction states (around
8 s). The fact that the learning algorithm was able to segregate the
visual task states as different from the planning states highlights
the insights that can be obtained from patterns contained in such
a data set.

Overall, the qualitative interpretation of the model selected as
the most likely is consistent with the RESCHU task and suggests
that the learning algorithm was capable of extracting coherent
and valuable information from the sequences of behavioral data
used in model training. Given that this model can accurately
describe operator behaviors, the next section will detail how such
models can be used in a predictive manner.

5.2. Prediction metric

Additional value of using such models lies in their predictive
abilities. Models capable of accurately predicting future operator
behavior could be of great value in HSC settings which often can
be life or mission critical. In order to measure model predictive
capability, we introduce the Model Accuracy Score, a metric that
weighs the quality and timing of the predictions according to a
weighting parameter o.

5.2.1. MAS metric

Measuring the predictive capabilities of a regular HMM is a
relatively simple process. The next n actions can be predicted
from the model parameters and verifying if the predictions are
correct is straightforward. However, measuring the predictive
capabilities of HSMMs is more complex than for HMMs because
the predictions are made on two independent dimensions: the
first measures if the predicted event is correct (or at least of high
probability), and the second dimension measures the timing of
the prediction, i.e., did the prediction timing coincide with the
occurrence of next event? The Model Accuracy Score (Huang,
2009), or MAS, is an aggregate metric that considers both
dimensions, i.e. quality and timing of the predictions. The MAS
assesses the predictions capability of a model according to the
following:

it .. _n® x Quality(i)+(1—0) x Timing(i)
n

MAS(t) = (6)

The MAS is a running average of n subscores, where the o
parameter is the weighting factor used to balance the respective
importance of quality and timing of the predictions. In the current
application, we determined that n=10 provided a good balance
between smoothing and sensitivity. The effects of the oo parameter
on the results will be discussed in the following section. The range
of the MAS is [50 and 100], and each MAS sub-score is computed
every time a user event is logged. The range of values of the MAS
was chosen to promote a human operator’s understanding by
mimicking a prediction accuracy percentage where a score of 50
would mean no better than chance while a score of 100 would
represent perfect predictions. For example, a MAS of 90 indicates
that the model’s prediction of the human’s next action in
controlling the unmanned vehicles is well within the set of
expected actions (both in actual state transition and in timing
of action). Conversely, a MAS of 50 predicts that the next action is
outside the expected set of states or required time window for
action. However, it is unlikely that a single MAS prediction is
useful, as it is a running average and decision-makers will likely
require further context and a temporal representation of the MAS
to make an informed decision.

The MAS comprises two sub-scores that represent quality and
timing. The quality of the prediction is computed by determining
if the current event is within the top 52 predicted events at the
previous iteration and scaled according to the ranking of the
prediction. For example, if the current event was the top ranked in
the predictions, the maximum score of 50 is assigned. In contrast,
if the event is the 5th in the ranking, a score of 10 is assigned and
any event out of the top five is given a score of 0. Thus, the quality
sub-score of the prediction is exactly equivalent to the prediction
performances metric used to evaluate classical HMMs. The timing
of the prediction is evaluated by measuring the difference
between the predicted and the actual state duration. Specifically,
that difference is measured in terms of number of standard
deviations away from the predicted mean state duration, both
of which can be computed from the D={d;(u)} distributions. The
timing score is not penalized if the event happens within one
standard deviation before or after the prediction. The 1 standard
deviation standard was chosen because given the means and
standard deviations of the durations of the planning and visual
task operator states (states O, 2, 4 and states 1 and 3, respec-
tively), the chances of type I and II errors were 8% and 9%,
respectively, for the most distant states (states 0 and 1), low by
human modeling standards. Any timing deviation further than
1 standard deviation is penalized according to the Gaussian
cumulative tail probability. For example, if an event arrives within
1 standard deviation of the predicted, the assigned score for the
timing of the prediction is 50. In contrast, should a state duration
be between 1 and 2 standard deviations away from the predicted,
the timing score received will be 27.2, which is computed based
on the area under the Gaussian curve between 1 and 2 standard
deviations. Deviations larger than 3 standards deviations from the
predicted mean receive a 0 score for the timing metric. This
process is summarized in Fig. 8.

5.2.2. MAS sensitivity

Fig. 9 explores the sensitivity of the MAS to the weighting of
the quality and timing of the predictions sub-scores (in particular
the 1 standard deviation rule for the timing sub-score), both of
which are essentially subjective components. Specifically, Fig. 9
shows the MAS obtained for the 5-state 1-mode GMM HSMM
given different values of « (0.0, 0.5 and 1.0) and different time

2 Following Huang’s (2009) work, the top 5 events are considered in the
metric in order to balance the penalty incurred for inaccurate predictions.
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resolutions ranging from 0.003 to 1 standard deviation. With an «
value of 1.0, the MAS only considers how well the model is able to
predict the next events with no consideration of timing. In this
case, the value of the MAS is unaffected by the change in time
resolution as shown by the constant MAS of 78.31. In contrast,
with an o value of 0.0, the MAS only measures how well the states
durations are predicted, and is more sensitive to the changes in
time resolution. Finally, an « value of 0.5 weighs both quality and
timing of the prediction equally.

As expected, the MAS scores decrease monotonically with
finer-grained time resolution due to the increased penalty for
falling outside of the full-score interval. For all values of o < 1.0,

0.4
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03 (50)
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Fig. 8. Timing score scaling with a resolution of 1 standard deviation (Huang,
2009).S sensitivity.
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Fig. 9. MAS for the 5-state 1-mode HSMM given different time resolutions and o
values.
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the maximum MAS is obtained when the time resolution is
1 standard deviation (97.31 for «=0.0 and 88.10 for «=0.5).
The MAS values then decrease and plateau for time resolutions
finer than 0.03 standard deviations with MAS ranging from 55 to
60 for =0.0 and from 69 to 67 for =0.5. The MAS curves
obtained for different values of o intersect the ordinate at the
constant MAS score obtained for «=1.0 (78.31) and the abscissa
at a time resolution of 0.1 standard deviations. This intersection
marks the time resolution setting at which the timing part of the
metric stops contributing to the MAS. Finer-grained resolutions
lead to a decreased MAS due to more stringent penalties for
inaccurate predictions. In other words, at a time resolution
smaller than 0.1 standard deviation, the timing of the prediction
becomes inaccurate compared to the quality of the prediction and
the overall MAS score is decreased.

A similar analysis can be carried out for models of different
sizes. Fig. 10 (a) and (b) shows the same results as Fig. 9 but were
obtained given a 4-state 1-mode GMM HSMM and a 6-state
1-mode GMM HSMM, the 2 closest models to their 5-state
counterpart that exhibited the highest BIC score. Fig. 10
(a) shows that the 4-state 1-mode GMM HSMM can provide
accurate timing predictions for time resolutions ranging from 1 to
0.25 standard deviations. Similarly, the 6-state 1-mode GMM
HSMM provides accurate timing predictions for resolution up to
0.33 standard deviations (Fig. 10 (b)).

For reference, Fig. 11 compares the MAS scores of regular
HMMs, 1-mode GMM HSMMs and non-parametric HSMMs
trained on the same data set when o«=1.0. The comparison is
only valid for this specific value of o, because HMMs cannot
provide timing information and therefore the HMM MAS can only
consider the quality of the prediction.

Fig. 11 shows that the MASs of the HSMMs are generally lower
than that of the HMMs, which means that the additional number
of parameters that need to be learned to specify D={dj(u)}
hinders the HSMM ability to accurately predict state durations.
If looking at the highest MAS in Fig. 11, the simpler HMM models
provide marginally higher MAS (MAS=83.0 for an 8-state HMM
vs. MAS=79.5 for the 5-state 1-mode GMM-HSMM) at the
expense of not providing timing information. In addition, the best
HMM produces a more detailed 8-state model than the 5-state
HSMM. Thus, comparing the predictive capability of the HMM
and the selected GMM-HSMM provides insight into the practical
consequences of using a larger number of parameters to define
the model.

The MAS scores of the HMM were higher than any of the
GMM-HSMMs. This performance delta highlights the trade-off
between simple models which focus solely on quality of the
prediction and more complex HSMM models which incorporate
timing information. Our results suggest that simpler HMMs may
be preferable in non-time critical applications. HMMs are simpler
and can perform better than HSMMs at predicting next states, while
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Fig. 10. MAS for the 4- and 6-state 1-mode HSMM given different time resolutions and o values.
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being more computationally manageable and better capable of
generalizing from a smaller training data set. However, HSMMs are
capable of providing valuable information for time-sensitive applica-
tions that HMMs cannot, and for our UV application, the impact of
the increased complexity on state predictions was relatively minor.

6. Conclusion

This paper presented a methodology capable of learning a set
of hidden semi-Markov models in human supervisory control
settings, which led to the selection of the optimal model using
information theoretic measures. The selected model not only
captured the underlying distribution of events in the training
data, but also segregated qualitatively different behaviors (such as
a differentiating a visual task from a planning action). We propose
that such models can also be used to predict behaviors using the
Model Accuracy Score, which is a flexible aggregate metric that
weighs both quality and timing of the predictions. The advantage
of the HSMM over the HMM approach lies in the HSMM’s
capability of explicitly modeling state durations. This, however,
comes at a cost as HSMMs are significantly more complex than
HMMs. HSMMs are thus more challenging from a computational
standpoint, while also less likely to generalize well to unseen
data. Thus, if the explicit expression of the state duration is not
required, using regular HMMs should be favored. If the state
duration is important, however as in the case of many HSC
applications, HSMMs can provide a powerful framework to
capture such information.

It should be noted that one limitation of the HMM/HSMM
approach is the lack of generalizability beyond supervisory con-
trol domains with human-computer interaction in the form of
control manipulation. This means that such models are inherently
limited in settings where operators interact with a system
primarily through visual monitoring, such as a nuclear power
plant operator observing a system for long periods of time
without activating any type of control device. Another limitation
is that the models are data-driven and thus, inherently descrip-
tive. Such models cannot prescribe what the optimal behavior
should be without additional a priori performance knowledge. In
order to ensure proper detection and prediction, the parameters
of the HMMs and HSMMs must be learned from training data.
However, the models we present can prescribe what the “typical”
response of a person should be, given prior data about such

typical behaviors. Such models are useful in highly proceduralized
environments, commonly found in supervisory control settings.
Finally, an additional limitation of the current results is the use of
offline learning, in that the model parameters are learnt once
based on a given data set. In contrast, the model parameters could
conceivably be constantly updated as the system’s exposure to
real situations is increased. Such online learning algorithms
represent a great avenue for future research.

While we have shown that HSMMs can predict both quality
and timing of state transitions, the larger question remains as to
how to leverage such predictions in an applied setting.
As previously mentioned, the ability of a model to predict a single
next observable event is not intrinsically useful in isolation.
Because human behavior is rarely deterministic, a single low
MAS score does not necessarily signal an anomalous situation.
Instead, a consistent sequence of low MAS scores means that
operator behavior either is different from what the model expects
or within a range of the solution space not properly captured by
the model. For example, the training data may not contain
scenarios where an operator must deal with multiple simulta-
neous system failures. Should such an event happen in actual
operations, the resulting MAS scores would likely be low, even if
the behavior of the operator is perfectly appropriate in such an
emergency situations.

This discrepancy raises the question of the choice of the
appropriate threshold separating a marginal from a problematic
MAS score. Different operational conditions and even different
operators may have different thresholds, and there is no formal
analytical way as of yet to determine what that threshold should
be. Ultimately, it is our assertion that a human supervisor should
use the output of such models to decide if the different behavior is
qualitatively good or bad, and subsequently take the necessary
remedial actions. A related research effort that investigated how
HSMMs can be translated into real-time decision support displays
for supervisors of HSC systems demonstrated that such models
can be useful for anomalous behavior detection, but that the
complexity of the models may ultimately limit their use in real-
time settings (Castonia, 2010).

Acknowledgements

This research was sponsored by the Boeing Research and
Technology and the Office of Naval Research.

References

Anderson, J.R,, 1993. Rules of the Mind. Lawrence Erlbaum Associates, Hillsdale,
New Jersey.

Baum, LW.,, Petrie, T., 1966. Statistical Inference for Probabilistic Functions of
Finite State Markov Chains. The Annals of Mathematical Statistics 37 (6),
1554-1563.

Boussemart, Y., 2011. Predictive models of procedural human supervisory control
behaviors. Engineering Systems Division. Cambridge, Massachusetts Institute
of Technology. PhD: 150.

Boussemart, Y., M.L. Cummings, 2008. Behavioral recognition and prediction of an
operator supervising multiple heterogeneous unmanned vehicles. Humans
operating unmanned systems, HUMOUS'08, Brest, France.

Boussemart, Y., J. Las Fargeas, M.L. Cummings, N. Roy, 2009. Comparing learning
techniques for hidden Markov Models of human supervisory control behavior.
AIAA Infotech@Aerospace’09 Conference, Seattle, Washington.

Broadbent, D.E., 1958. Perception and Communication. Pergamon, Oxford.

Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference,
a Practical Information Theoretic Approach. Springer, New York.

Castonia, RW. (2010). The Design of a HSMM-based Operator State Modeling
Display. AIAA Infotech@Aerospace 2010, Atlanta, GA.

Dixon, S.R.,, C.D. Wickens (2003). Control of Multiple-UAVs: A Workload Analysis.
12th International Symposium on Aviation Psychology, Dayton, OH.

DoD, 2007. Unmanned Systems Roadmap (2007-2032). Washington DC.

Please cite this article as: Boussemart, Y., Cummings, M.L., Predictive models of human supervisory control behavioral patterns using
hidden semi-Markov models. Engineering Applications of Artificial Intelligence (2011), doi:10.1016/j.engappai.2011.04.008



dx.doi.org/10.1016/j.engappai.2011.04.008

Y. Boussemart, M.L. Cummings / Engineering Applications of Artificial Intelligence n (1mn) ma—um 11

Eads, D., K. Glocer, S. Perkins, J. Theiler, 2005. Grammar-guided feature extraction
for time series classification. Neural Information Processing Systems (NIPS
'05). Vancouver, BC.

Endsley, M., 1987. The application of human factors to the development of expert
systems for advanced cockpits. Human Factors Society 31st Annual Meeting,
Santa Monica, CA.

Gardenier, ].S.,, 1981. Ship navigational failure detection and diagnosis.
In: Rasmussen, J., Roude, W.B. (Eds.), Human Detection and Diagnosis of
System Failure. Plenum, Boston, pp. 49-74.

Griffiths, T.L., Kemp, C., Tenenbaum, ].B., 2008. Bayesian models of cognition.
Cambridge Handbook of Computational Cognitive Modeling. Cambridge Uni-
versity Press, R. Sun.

Guedon, Y., 2003. Estimating Hidden Semi-Markov Chains From Discrete
Sequences. Journal of Computational & Graphical Statistics 12 (3), 604-639.

Hayashi, M., B.Beutter, McCann, R.S., 2005. Hidden Markov Model analysis for
space shuttle crewmember's scanning behavior. [EEE International Conference
on Systems, Man and Cybernetics. Waikoloa, Hawaii, 1615-1622.

Huang, H., 2009. Developing an Abstraction Layer for the Visualization of HSMM-
Based Predictive Decision Support Electrical Engineering and Computer
Science, 118. Cambridge Massachusetts Institute of Technology, Masters.

Kirwan, B., Ainsworth, LK., 1992. A Guide to Task Analysis: The Task Analysis
Working Group. Taylor & Francis, Bristol, PA.

Law, A.M., Kelton, D., 2000. Simulation Modeling and Analysis. McGraw-Hill.

Leveson, N.G., 1986. Software Safety: Why, What, and How Computing Surveys 18
(2), 125-163.

MacKay, D.J.C., 2004. Information Theory, Inference, and Learning Algorithms.
Cambridge University Press, Cambridge, UK; New York.

Marin, J.-M., Mengersen, K. Robert, C.P., Dey, D.K,, Rao, C.R,, 2005. Bayesian
Modelling and Inference on Mixtures of Distributions. Handbook of Statistics,
25. Elsevier, North-Holland, Amsterdam 459-507.

Marin, M., Mengerson, K., Robert, C.P., 2005. Bayesian Modelling and Inference on
Mixtures of Distributions. In: Dey, D., Rao, C.R. (Eds.), Handbook of Statistics,
25. Elsevier, North-Holland, Amsterdam, pp. 15840-15845.

Mitchell, C., Harper, M., Jamieson, L., 1999. On the complexity of explicit duration
HMMs. Speech and Audio Processing, IEEE Transactions on 3 (3), 213-217.
Mitchell, P.J.,, Cummings, M.L. 2005. Management of multiple dynamic human
supervisory control tasks. The 10th International Command and Control

Research and Technology Symposium (ICCRTS), McLean, VA.

Nehme, C.E., Crandall, J. Cummings, M.L., 2008. Using discrete-event simulation to
model situational awareness of unmanned-vehicle operators. 2008 Capstone
Conference. Norfolk, VA.

Ollero, A., Maza, I, 2007. Multiple Heterogeneous Unmanned Aerial Vehicles.
Springer, Berlin Heidelberg.

Pentland, A., 2008. Honest Signals: How they Shape Our World. MIT Press,
Cambridge, Mass.

Pentland, A., Liu, A, 1999. Modeling and prediction of human behavior.
Neural Computations 11 (1), 229-242.

Rabiner, L., Juang, B., 1986. An introduction to hidden Markov models.
ASSP Magazine, IEEE [see also IEEE Signal Processing Magazine] 3 (1), 4-16.

Rabiner, L.R., 1989. A tutorial on Hidden Markov Models and selected applications
in speech recognition. Proceedings of the IEEE 77 (2), 257-286.

Schraagen, J.M., Chipman,, S., Shalin, V.E., 2000. Cognitive Task Analysis. Erlbaum,
Mahwah, NJ.

Sheridan, T.B., 1992. Telerobotics, Automation and Human Supervisory Control.
The MIT Press, Cambridge, MA.

Singh, S., Tu, H., Donat, W., Pattipati,, K., Willet, P., 1996. Anomaly detection via
feature-aided tracking and hidden Markov models. IEEE Transactions on
Systems, Man, and Cybernetics.

Terran, L., 1999. Hidden Markov Models for Human Computer Interface Modeling
International Joint Conferences on Artificial Intelligence, Workshop on Learn-
ing About Users, Stockholm, Sweden.

Wayne, D.G., Bonnie,, E.J., Michael, E.A., 1992. The precis of Project Ernestine or an
overview of a validation of GOMS. SIGCHI Conference on Human Factors in
Computing Systems. ACM, Monterey, California, United States.

Welford, A.T., 1952. The psychological refractory period and the timing of high-
speed performance—a review and a theory. British Journal of Psychology 43,
2-19.

Please cite this article as: Boussemart, Y., Cummings, M.L., Predictive models of human supervisory control behavioral patterns using
hidden semi-Markov models. Engineering Applications of Artificial Intelligence (2011), doi:10.1016/j.engappai.2011.04.008



dx.doi.org/10.1016/j.engappai.2011.04.008

	Predictive models of human supervisory control behavioral patterns using hidden semi-Markov models
	Introduction
	Background
	Methodology
	Hidden Markov models
	HMM algorithms

	Hidden semi-Markov models
	HSMM algorithms
	Duration distributions as Gaussian mixture models


	Experimental data
	Applying hidden Markov models to human supervisory controller behavior

	Results and discussion
	Description of the 5-state 1-mode GMM-HSMM model
	Prediction metric
	MAS metric
	MAS sensitivity


	Conclusion
	Acknowledgements
	References




