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Operators currently controlling Unmanned Aerial Vehicles report significant boredom, and such systems 

will likely become more automated in the future. Similar problems are found in process control, 

commercial aviation, and medical settings. To examine the effect of boredom in such settings, a long 

duration low task load experiment was conducted. Three low task load levels requiring operator input 

every 10, 20, or 30 minutes were tested in a four-hour study using a multiple unmanned vehicle 

simulation environment that leverages decentralized algorithms for sometimes imperfect vehicle 

scheduling. Reaction times to system-generated events generally decreased across the four hours, as did 

participants’ ability to maintain directed attention. Overall, participants spent almost half of the time in a 

distracted state. The top performer spent the majority of time in directed and divided attention states. 

Unexpectedly, the second-best participant, only 1% worse than the top performer, was distracted almost 

one third of the experiment, but exhibited a periodic switching strategy, allowing him to pay just enough 

attention to assist the automation when needed. Indeed, four of the five top performers were distracted 

more than one-third of the time. These findings suggest that distraction due to boring, low task load 

environments can be effectively managed through efficient attention switching. Future work is needed to 

determine optimal frequency and duration of attention state switches given various exogenous attributes, 

as well as individual variability. These findings have implications for the design of and personnel 

selection for supervisory control systems where operators monitor highly automated systems for long 

durations with only occasional or rare input.  
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1. Introduction  

While automation has greatly reduced operator workload and generally enhanced safety  in 

supervisory control settings, humans can fall prey to “the ironies and paradoxes of automation” [1]. 

Increased automation can lower an operator’s  task load to the point where vigilance is negatively affected 

and boredom possibly results. Unfortunately, as increased automation shifts controllers into system 

management positions, monotony, loss of vigilance, and boredom are likely to proliferate [2].  

With recent advances in autonomous flight control of unmanned aerial vehicles (UAVs), it is not 

uncommon in search and reconnaissance missions for a UAV pilot to spend the majority of the mission 

waiting for a system anomaly to occur, with only occasional system interactions. For example, in 

describing the difficulties in flying Predator UAVs due to the few tasks requiring human input, one pilot 

said, “Highly skilled, highly trained people can only eat so many peanut M&Ms or Doritos or 

whatnot…There's the 10 percent when it goes hot, when you need to shoot to take out a high-value 

target. And there's the 90 percent of the time that's sheer boredom—12 hours sitting on a house trying to 

stay awake until someone walks out [3]." In a recent Predator operations study, 92% of pilots reported 

‘moderate’ to ‘total’ boredom [4].  

In these systems, automation has become so reliable at maintaining programmed system states 

(such as flying a holding pattern), human operators have little to do unless either the system experiences 

an anomaly or exogenous events occur that require mission replanning. This reduced need for interaction 

can result in a lack of sustained attention, leading to boredom with ultimately negative performance 

consequences such as missed alerts. Moreover, boredom may be a factor that induces complacency, 

which is also a significant concern in supervisory control systems [5]. 
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This problem of requiring a highly trained specialist to supervise a highly automated system with 

relatively few required interactions that results in boredom is not unique to UAV operations, as similar 

problems have been reported in air traffic control settings [6], the supervision of process control plants 

[7], train engineers [8] anesthesiologists [9, 10] and even commercial aviation pilots [11, 12]. This 

problem was recently brought to the attention of the general public when two Northwest pilots overflew 

Minneapolis by 90 minutes because the plane was on autopilot and, as reported by the FAA, the pilots 

became distracted by their laptops [13], presumably because the enroute portion of the flight required so 

little interaction that the pilots sought stimulation from another source. 

Given that automation is becoming more prevalent in such complex systems, more research is 

needed in predicting negative consequences as a result of long periods of inactivity and boredom, with 

possible deadly consequences, as well as designing to mitigate these problems. As will be discussed in 

more detail in the next section, while there has been significant research into the impact of fatigue as well 

as the vigilance decrement [14] in supervisory control domains, there has been relatively little focus on 

the impact of boredom on human performance, particularly in supervisory control environments [15-17].  

Through a human-in-the-loop experiment with operators independently controlling multiple 

unmanned vehicles under low task load environments, we show that the lack of sustained attention and 

boredom can negatively impact performance in terms of reaction times and mission performance metrics. 

In addition, while generally more focused attention on task objectives resulted in better performance as 

compared to participants who were completely distracted, we demonstrate that participants who can 

effectively self-regulate their attention management can successfully perform their objectives while 

spending a significant amount of time distracted. Furthermore, we show that operators spend substantially 

less time in divided attention states as compared to focused and distracted attention states. These results 

suggest that technology and personnel selection interventions could be leveraged to help operators cope 

with low task load and resultant boredom in such supervisory control settings. 
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2. Background 

There is no commonly agreed-upon definition of boredom. Random House Dictionary [18] 

defines it as a state of weariness caused by dullness and tedious repetition. Various researchers have 

defined boredom as an unpleasant, temporary affective state resulting in a human’s lack of interest for a 

specific current activity [17], or a decreased arousal state associated with feelings of repetitiveness and 

unpleasantness [19, 20]. Descriptors commonly associated with boredom include tedious and 

monotonous. It has been shown that boredom produces negative effects on morale, performance, and 

quality of work [21]. 

It is generally recognized in cognitive psychology that boredom has both trait (i.e., individual 

propensity toward boredom [22], also known as boredom proneness) and state (i.e.,  environmentally-

driven transient feelings [23]) aspects. Ultimately, boredom is an affective and subjective state often 

resulting in frustration, dissatisfaction, melancholy, and distraction [24]. We define a distraction as having 

occurred when an operator consciously elects to divert attention from a primary task to an unrelated task 

(such as no longer monitoring an air traffic display in favor of talking on a cell phone.)  

In addition to high job dissatisfaction, boredom has been linked to greater anxiety and stress [17, 

25], particularly for military personnel [26],  as well as premature death due to cardiovascular disease [27, 

28].  Other long term consequences of boredom can include absenteeism and poor retention [17]. These 

problems directly negatively impact supervisory control domains where highly skilled operators are few 

and require significant training. The US Air Force is currently struggling to retain enough UAV pilots, 

and the boring environment is one of a number of causes for the low retention [29]. 

 Boredom has been shown to occur in mentally demanding environments [23, 30-34]. This 

highlights the subjective nature of boredom, and it is important to make the distinction between task load, 

or the number of tasks that must be completed in the environment, and workload, which is the subjective 

interpretation of the task load by an individual operator. Since it is not an objective measure, boredom can 
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be considered a performance-shaping factor which influences vigilance, motivation, stress, and fatigue [9, 

35]. However, to what degree still remains an open question. 

Fatigue, typically caused by hours of continuous work or too much work, and boredom often 

occur concurrently [36]. However, fatigue is not a necessary and sufficient prerequisite for boredom, i.e., 

operators can be well rested, but still suffer performance decrements as a result of boredom. Boredom and 

fatigue are related in that a pre-existing lack of sleep could bring about a bored feeling earlier, or that a 

boring work environment induces fatigue. However, limiting shift work time in a supervisory control 

UAV environment proved to be a poor safeguard as even a four-hour work shift still resulted in fatigue 

and boredom [4]. This paper focuses on strictly boredom, which is not exacerbated by any pre-existing 

fatigue factors. 

In terms of the impact of boredom on supervisory control performance, previous studies on air 

traffic control monitoring tasks showed that participants reporting high boredom were more likely to have 

slower reaction times and worse performance than participants reporting low boredom [37, 38]. Similarly, 

participants who reported higher subjective, task-related boredom also had slower reaction times. 

Furthermore, a study of U.S. air traffic controllers showed that a high percentage of system errors due to 

controller planning judgments or attention lapses occurred under low traffic complexity conditions [39]. 

Boredom is intrinsically related to vigilance, which is defined as “a state of readiness to detect 

and respond to certain small changes occurring at random time intervals in the environment'' [40]. Given 

that vigilance tasks are, by definition, repetitive, it is not surprising that research has shown that 

participants in some laboratory vigilance experiments consider such tasks to be boring and monotonous 

[41-43]. This is not to say all vigilance tasks are under-stimulating, as recent research has highlighted that 

vigilance tasks can be demanding [44]. While the existence and negative impact of the vigilance 

decrement (i.e., a performance decline over time for vigilance tasks) in supervisory control settings is well 

established [45-47],  relatively little research has been conducted to assess the impact of resultant 

boredom in such settings, particularly in terms of operator coping strategies.  
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 Laboratory studies attempting to measure negative impacts of the vigilance decrement and 

boredom are difficult due to the time scale needed (hours), participant recruitment and retention, and the 

subjective nature of boredom, i.e., not all participants are guaranteed to actually become bored. Many 

vigilance studies have been conducted in strict laboratory environments with far more stimulus events 

than are realistic [48]. Vigilance studies typically focus on repetitive tasks, often with short response 

stimulus intervals on the order of seconds or just a few minutes [49, 50]. Such studies are representative 

for machine-paced and continuous control environments such as airport baggage inspection tasks and 

train engineers who must engage a “dead man’s switch” every 30-50s, and have generally shown that 

such environments can reduce physiological arousal and lead to boredom in most people [51-55].  More 

recently, several researchers have attempted to use neurophysiological assessment techniques such as 

fMRI [56] and galvanic skin response [57] to measure displeasure and boredom, but such work is in its 

early stages and there are no commonly-accepted psychophysiological measures of boredom. 

Studies that require near-continuous human-system interaction, such as those environments 

typical in monotony studies, do not generalize well to supervisory control domains where operators are 

expected to monitor and intermittently interact with an automated system, with potentially long periods of 

inactivity. Thus, there is a need to conduct more targeted research in environments where there is literally 

almost nothing to do [17], which, as evidenced by the earlier UAV pilot quotes, is the case in some highly 

automated unmanned vehicle systems where persistent surveillance is a primary mission objective. Our 

attempt to address this gap specifically for UAV environments, and more generally for highly automated 

supervisory control environments, is detailed in the next section. 

 

3. Method 

As will be detailed in the following sections, we hypothesized that given a four hour long study, 

with approximately only one new task to attend to per hour, that participants would not be able to 

effectively sustain attention after 20-30 minutes, in keeping with the vigilance literature [15]. Moreover, 
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we hypothesized that participants would become bored, resulting in poor focused attention and continued 

degraded performance. We also hypothesized that time spent distracted over time would increase, and 

those participants that were the most distracted would perform the worst. Lastly, this experiment was also 

an observational one since we wanted to determine how operators coped with the low task loading and 

what interactions and distractions might occur as a result. 

3.1 Apparatus 

This experiment employed a collaborative multiple unmanned vehicle simulation environment 

that leverages decentralized algorithms for vehicle routing and task allocation. For this experiment, 

participants were responsible for one rotary-wing UAV, one fixed wing UAV, one Unmanned Surface 

Vehicle (USV), and a Weaponized Unmanned Aerial Vehicle (WUAV). The objective of the simulation 

was to find as many targets as possible, and destroy the hostile ones over a four-hour test session.  This 

time was selected since the only other UAV study that examined the effects of boredom [4] was also a 

four-hour study. 

The UAVs and USV were responsible for searching for targets. Once a target was found through 

panning and zooming across an image sent from the vehicle, the operator identified the target given the 

icon presented (blue rectangle was friendly, yellow clover was unknown, red diamond was hostile). Chat 

messages from a virtual commander instructed participants what priority level to assign to targets (i.e., 

high, medium, or low). High priority targets were to be destroyed immediately, low priority targets could 

be ignored if needed, and medium target prosecution was left to the discretion of the operator. Neutral 

targets would be designated as friendly or hostile later in the experiment through a chat message, while 

one or more vehicles tracked hostile targets until the human operator approved WUAV missile launches.  

While operators do not specify any vehicle parameters in terms of altitude, speed, specific 

headings, etc., they perform higher-level tasks like creating search tasks, which dictate areas on the map 

where the operator wants the unmanned vehicles (UxVs) to specifically search. Operators also have 

scheduling tasks, but these are performed in collaboration with the automation. The autonomous planner 
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recommends schedules, but the operator can accept, reject, or modify these plans. This autonomous 

planner only communicates to the vehicles a prioritized task list, and the vehicles sort out the actual 

assignments among themselves by “bidding” on the tasks they estimate they can accomplish, manifested 

through a consensus-based auction algorithm [58]. In the course of this market-based auction scheme, 

vehicles bid on tasks while attempting to minimize the revisit times between tasks.  

However, if the operator is unhappy with the UxV-determined search patterns or schedule, he or 

she can create new search tasks, in effect forcing the consensus-based decentralized algorithms to 

reallocate the UxVs. This human-automation interaction scheme is one of high level goal-based control, 

as opposed to more low-level vehicle-based control.  

Participants interacted with the simulation via two displays. The primary interface is a map 

display (Figure 1a). The map shows both geo-spatial and temporal mission information (i.e., a timeline of 

mission significant events), and supports an instant messaging communication tool. This chat box 

simulates a command center that provides high-level direction and intelligence about targets in the 

designated area.  

In the map interface, operators identify targets and approve weapon launches and insert new 

search tasks as desired or dictated via the chat box. The performance plot in the lower left corner gives 

operators insight into the automated planner performance as the graph shows expected performance 

(given an a priori cost function) compared to actual performance. When the automation generates a new 

plan with a predicted performance better than the current plan via a decentralized, polynomial-time, 

market-based algorithm [58], the Replan button turns green and flashes. This illuminated button indicates 

that a new plan is ready for approval, and when selected, the operator is taken to the Schedule 

Comparison Tool (SCT), detailed next (Figure 1b).  
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Figure	
  1a:	
  Map	
  display	
  (left)	
  and	
  1b:	
  Schedule	
  Comparison	
  Tool	
  (right).	
  

Clicking on the Replan button in the lower left corner of the map display allows operators to view 

the Schedule Comparison Tool (SCT) (Figure 1b) anytime they desire. The three geometrical forms at the 

top of this display are configural displays that leverage direct-perception interaction [59] to allow the 

operator to quickly compare three schedules: the current, working, and proposed schedules. The left form 

(gray) is the current UxV schedule. The right form (green) is the latest automation proposed schedule. 

The middle schedule (blue) is the working schedule that results from the user modifying the plan by 

querying the automation to assign particular tasks. The rectangular grid on the upper half of each shape 

represents the estimated area that the UxVs will search according to the plan. The hierarchical priority 

ladders show the percentage of tasks assigned in high, medium, and low priority levels.  

When the operator first enters the SCT, the working schedule is identical to the proposed 

schedule. The operator can conduct a “what if” query process by dragging the desired unassigned tasks 

into the large center triangle. This query forces the automation to generate a new plan if possible, which 

becomes the working schedule, causing the configural display to change accordingly. Ultimately, the 

operator either accepts the working or proposed schedule or can cancel to continue with the current 

schedule. Details of the interface design and usability testing can be found in [60]. This environment is 

both a computer simulation and supports actual flight and ground capabilities [61]; all the decision 

support displays discussed in this paper have operated actual small air and ground unmanned vehicles. 
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3.2 Participants and Procedure 

The population for this long duration study consisted of 30 paid participants with 19 men and 11 

women. Ages ranged from 19 to 32 years (Mean (M) = 23 years, Standard Deviation (SD) = 3 years). 

Forty-three percent of participants had prior military or Reserve Officers’ Training Corps (ROTC) 

experience, but none had any multiple unmanned vehicle control experience (as no such operators 

presently exist). All participants reported good to great sleep for the previous two nights. Ten test sessions 

were conducted with three participants each within a mock command and control center. Each participant 

was responsible for his or her own simulation, i.e., there were no dependencies in a test session between 

the three participants. Participants were tested three at a time since unmanned vehicle operating 

environments typically contain multiple personnel responsible for dissimilar tasks.  

Each participant had two computer monitors that displayed either of the screens shown in Figure 

1, and another that was used at the participants' discretion. Participants interacted with this system and 

other computer functions through use of a standard keyboard and mouse. All wore headphones that 

sounded alerts when chat messages arrived, when new targets were found by the UxVs, and when they 

were prompted to replan. Participants were compensated $125 for their participation and also informed 

that the individual with the highest performance score would receive an additional $250 in the form of a 

gift card. 

The experiment was conducted on a Dell Optiplex GX280 with a Pentium 4 processor and an 

Appian Jeronimo Pro 4-Port graphics card. Each display’s resolution was 1280x1024 pixels. In order to 

familiarize each participant with the interfaces in Figure 1, a self-paced, slide-based tutorial was provided, 

as well as a ten-minute familiarization session with the experimenter. Then each participant conducted the 

control task for approximately an hour at a moderate task load level (they were required to interact with 

the system approximately half of the time) to ensure they were experts with the system. By the end of this 

training, participants had to demonstrate to the experimenter that they could effectively use the SCT, 

including understanding that they did not always have to follow the automation’s recommendations. All 
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participants exhibited these characteristics by the 30-minute training mark. After the practice session, 

participants were informed how well they did in terms of the percentage of targets they successfully 

destroyed, but intentionally were given no feedback in terms of strategies.  

Participants were not prohibited from engaging in tasks unrelated to the UxV control task. 

Checking email, reading books, talking, and eating were allowed, though these activities were neither 

encouraged nor discouraged. One goal of this study was to determine what types and how often 

participants would engage in self-selected distractions. Refreshments were provided to the participants, 

and the same food varieties were made available to all participants. Testing started at mid-day for every 

test session. The test administrators remained in an adjacent room and came into the test room four 

separate times, at the same time, to query if any of the participants needed to use the restroom or were 

experiencing any problems. 

The primary goals for each participant included finding moving targets in the environment and 

destroying hostile targets in an expedited and efficient manner. In this four-hour session, only four targets 

were available to be found and of those four, only two were designated hostile. These targets were 

released at a rate of one per hour, but this does not necessarily mean they were found at this same rate. If 

operators did not pay attention and maintain oversight of where vehicles traveled over time, it was 

possible to not find any targets over the four hours. It took almost an hour for a search vehicle to move 

from one side of the map to the other, reflecting a typical persistent surveillance environment. The 

participants were not told this information. 

Performance dependent variables included the number of targets found and number of hostile 

targets destroyed. The primary measure of objective workload was determined through utilization, i.e. the 

time a participant was engaged in one or more system-generated tasks, divided by the total time available. 

Utilization has been used to estimate objective workload in human performance models [62, 63] and 

supervisory control empirical studies have shown utilization to be a reliable predictor of high workload 

[64-66]. 
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The following utilization metrics were explored in this study: (1) required utilization, or the 

percentage of mission time the operator spent performing mandatory tasks required by the system; (2) 

self-imposed utilization, or the percentage of mission time the operator spent doing mission tasks not 

required, such as adding search tasks he or she felt would improve the automation’s performance, and (3) 

total utilization, the sum of required and self-imposed utilization. In terms of utilization, operators were 

considered “busy” for mission-related tasks when performing one or more of the following tasks: creating 

search tasks, identifying and designating targets, approving weapons launches, interacting via the chat 

box, and replanning in the SCT.  

Monitoring time was not included in percent busy time since participants were not explicitly 

trained to scan the display or perform any actions when the system provided no tasking. It is possible that 

during these times, occasionally participants could be cognitively engaged in the task, but given that we 

could not absolutely determine this, we limited the busy classification to observable, actionable behaviors. 

A self-rated busyness 5-point Likert metric was also collected as a subjective measure of workload since 

the objective workload measure focused on operator percent busy time. In this way, we attempted to more 

closely align the subjective measure of workload with the objective measure of task load, which also 

focused on how busy operators were. This scale was chosen since humans generally can only make 

subjective absolute assessments across five categories [67]. 

This experiment was a between-subjects design, defined in terms of three different replan 

intervals. A replan interval is the time interval separating automated requests for operator help in 

evaluating the computer-generated schedule. The three intervals were 10, 20, and 30 minutes, so operators 

were prompted to consider a new schedule 6, 3, or 2 times per hours. At these intervals, each operator was 

prompted by the green illumination of the replan button along with an aural replan alert, and then 

presented with a proposed automated schedule in the SCT. All aural alerts were designed to cue the 

participants to look at the screen. 
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These three conditions were selected since they represent the low extreme of task loading for this 

interface and were empirically determined via a discrete event simulation model [66, 68], targeting 5, 10, 

and 15% utilization levels. By comparison, a previous moderate workload study with this same system 

prompted operators every 0.5s - 120 seconds [68]. The intervals were counterbalanced and randomized 

across participants. So for each group of 3 participants, not everyone experienced the same interval in 

order to preserve ANOVA independence statistical assumptions. Participants’ interactions with the 

system were automatically recorded. In addition, participants were knowingly videotaped via wall-

mounted cameras to track their attention throughout the test sessions. While there is debate as to whether 

such recording has no effect or distorts results [69], all participants experienced the same exposure and 

we relied on statistical analysis to mitigate any negative effects. 

 

4. Results and Discussion  

A one way analysis of variance (ANOVA) was used to assess differences across the various 

dependent variables for parametric data and Kruskal-Wallis tests were used for non-parametric data that 

violated normality and homoscedastic assumptions, α = 0.05. It should be noted that while there are 

similarities in this experimental setting and other supervisory control environments like air traffic control, 

these results are unique to this environment. Moreover, the results should be interpreted in light of the 

relatively small sample size of 30 participants. 

 

4.1 Mission Performance 

To assess how well the participants performed across the three different replanning rates of 10, 

20, and 30 minutes, a one way ANOVA was conducted on two scores: 1) the Target Finding Score (TFS), 

and 2) the Hostile Destruction Score (HDS). These scores, assigned individually to each participant on a 

0-1 scale with 1 representing best performance, encapsulate the primary objectives expressed to the 

participants. TFS represented the number of targets found in the mission, weighted by how many total 
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could be found and by how quickly they were found, so that targets found more quickly resulted in a 

higher score. Similarly, the HDS score was the sum of hostile targets destroyed weighted by the 

maximum number that could be destroyed and also accounted for how quickly the hostile targets were 

destroyed. Note that TFS and HDS data from three participants were removed because of data loss and 

corruption.  

There were no statistical differences across the three replanning intervals for both of these 

performance scores, meaning that regardless of how often the automation asked an operator for help, 

operator performance was unaffected. One might expect boredom to decrease, and thus performance to 

increase with increasing replanning intervals, however, in this study, even the 10 minute interval was not 

stimulating enough to make a difference. Current research is underway to determine more optimal 

replanning intervals, both in terms of human and algorithm performance. 

To place the overall performance of this low task load group in context, their TFS and HDS 

scores were approximately one-fourth of those of a similar study that used the exact same test bed with 

the exact same training, but under moderate task load conditions (adjusting for the differences in the 

length of the experiments between the moderate and low task load studies (10 minutes versus 4 hours) as 

well as number of available targets (10 vs. 4)) [70]. Not only did this low task load group, on average, 

perform substantially worse than those in a moderate task load setting, but 5 participants in this low task 

load study did not destroy any hostile targets at all. 

 

4.2 Utilization 

Various aspects of utilization, measures of objective workload, were investigated due to the 

unique nature of this goal-based control paradigm. While the automation’s replanning rate could be varied 

experimentally to control how often the automation asked for help (i.e., required utilization), operators 

could replan anytime they wished by adding search tasks to the list of vehicle tasks, thereby preempting 

the automation and intervening when the system did not ask for help (i.e., self-imposed utilization).  
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One experimental confound in such a study that reflects the stochasticity of the real world is that 

even though the automation replanning rates were determined prior to the experiments based on 

predictions from a simulation model, how much utilization was required for each test session was directly 

dependent on whether participants found the targets, and how much each participant elected to preempt 

the automation. Figure 2 demonstrates the utilization metrics (required, self-imposed, and total utilization) 

across the three different replanning intervals, with several interesting results. 

First, there was statistically different required utilization across the three different replanning 

intervals. (Kruskal-Wallis χ2 = 13.224, p = 0.001). The 10 minute interval group had an average of 2.46% 

required utilization (SD = 0.49%), the 20 minute interval group had an average of 1.69% required 

utilization (SD = 0.15%), and the 30 minute interval group had an average of 1.63% required utilization 

(SD = 0.34%). Operators were tasked more to help the automation in the 10 minute replanning condition 

as compared to the other two lower task load conditions. However, it should be noted that overall, 

Figure	
  2:	
  Mean	
  Utilization	
  by	
  Replan	
  Interval,	
  with	
  95%	
  Confidence	
  Intervals	
  for	
  Total	
  Utilization 
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operators across all three conditions were only required to interact with the system roughly 2% of the 

entire mission time, or 5 minutes. 

Self-imposed utilization (operators electing to add search tasks and replan when the automation 

did not require it) is effectively a measure of how busy operators would make themselves in such a low 

task load environment, beyond what was required. The underlying algorithm, a consensus-based bundle 

market-based algorithm, was not guaranteed to produce optimal results so operator intervention could, in 

fact, improve the overall solutions [58]. 

The results in Figure 2 demonstrate that regardless of how often the automation asked for help, 

participants gravitated toward the same self-generated task load (Kruskal-Wallis χ2 = 0.439, p = 0.803). 

This led to statistically no difference across total utilization (the summation of self-imposed and required 

utilization), as seen in Figure 2. Because the standard deviations were so low for required utilization (in 

all cases, < 0.5%), the 95% confidence interval for total utilization is effectively the same for self-

generated utilization. So, regardless of the fact that some participants were tasked more than others, they 

all gravitated to the same narrow range of total utilization with an average of 11.0% (SD = 3.36%), 

approximately 26 minutes of the entire four hour test session. 

 In a post-experiment survey, participants were also asked to rate how busy they felt they were 

over the four hour test session at the conclusion of the experiment (1 = idle through 5= extremely busy).  

Across the three replanning sessions (10, 20, 30 mins), the median scores were all 2 and not statistically 

different using the Kruskal Wallis test. Participants generally did not feel they were overly taxed, which 

agrees with the overall nearly uniform total utilizations in Figure 2. In fact, no participants rated 

themselves as very or extremely busy (4 and 5 on the Likert scale) and only 2 participants out of 30 rated 

themselves as Busy (3).  Moreover, all participants rated themselves as confident, very confident, or 

extremely confident about the correctness of their actions. 
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4.3 Reaction Times 

  Due to the low task load and the randomness that each participant could inject into the 

simulation, there were few repeatable comparable events that could indicate whether reaction times were 

negatively influenced, which is expected given the vigilance literature. However, there were three such 

possible repeated measures throughout the experiment: 1) Reaction times to automation prompting to 

consider a replan, 2) Reactions to text messages asking for information, and 3) Prompts from the system 

to generate search tasks. An audio alert was sounded for all three tasks, in addition to visual cues. 

Figure 3 illustrates an observed increase in reaction times for all three events across the four hour 

experiment. There was no statistical difference across the three replanning levels given a multivariate 

ANOVA, so the data were combined in Figure 3. It should also be noted that there were no chat messages 

in the second hour, thus no data. Of note is the improvement in the chat and replan times in the last hour 

of the experiment, when we hypothesize participants became more engaged since they knew they were in 

the final hour of the experiment, as evidenced by conversations between participants to this end. 

Figure	
  3:	
  Chat,	
  Search,	
  and	
  Replan	
  Task	
  Reaction	
  Times	
  with	
  One	
  Standard	
  Error	
  Shown.	
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However, the search task creation times continued to erode and by the conclusion of the experiment, were 

a full 4 seconds slower than they were at the start. This could be an indication that participants considered 

the search creation tasks to be the lowest priority of the tasks and not substantially beneficial to the 

system’s overall performance. 

Gender has been suggested as a contributor to individual variability of perceived boredom [18, 

80, 81]. However, there were no statistically significant effects of gender on reaction times, or any other 

dependent variable.  

 

Attention States 

 Given that participants had significant opportunity for distraction in this study, we measured 

where their attention was directed at any given time and when they switched attention. We used three 

attention categories in this study: 1) Directed, which is when participants were directing their gaze at the 

interface or interacting with the interface, (2) Divided, when participants were looking or glancing at the 

interface but also engaged in other tasks such as talking to other participants, eating while watching the 

screen, etc., and (3) Distracted, which was coded as a participant not in a physical position to see the 

Figure	
  4:	
  Aggregate	
  Attention	
  States	
  with	
  95%	
  Confidence	
  Interval 
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interface, such as turned around in a chair while talking to other participants, at the table getting 

something to eat, working on a personal laptop, etc.  

These categories are based primarily on physical actions, and coded from videos taken of the 

entire experiments, a technique used in coding attention states in previous studies [71, 72]. We recognize 

that they are not absolute in that just because someone was looking at a screen, this does not mean he or 

she was cognitively engaged with a UAV control activity. However, these states were unambiguous to 

code and given that this study was designed to reflect actual command and control center environments, 

these states replicate the body positions that supervisors in command centers such as Air Traffic Control 

centers use to judge whether personnel are engaged in their tasks. Two personnel coded the four-hour 

long videos, and a third quality assurance person randomly checked ten percent of all results and if any 

discrepancies were discovered, the entire video was coded again. The inter-rater agreement (Cohen’s 

Kappa) was 85%. 

 In Figure 4, we collapsed the three replanning rates into a single category since a multivariate 

ANOVA revealed no significant differences for attention states across the three replanning rates. The 

results of Figure 4 demonstrate that across the four hours, participants spent most of their time in a 

distracted state (45%). This is of obvious importance since, by our definition, operators could not see the 

interface at all when distracted. While all participants had headphones to warn them of new events, in 

many cases participants ignored the alarms, either intentionally or due to their source of distraction. 

Occasionally participants removed the headphones even though they were instructed to wear them at all 

times. It is not clear whether the presence of the aural cue influenced the time spent in divided or 

distracted states through possibly engendering inappropriate trust [73, 74]. However, such event-based 

aural cues are standard in the design in supervisory control domains. 

The most common sources of distraction noted by the video coders in the coding of attention 

states were talking with other participants in the room, accessing the Internet, using cell phones, and 

eating snacks. The distraction behaviors seen in this study are not unlike others seen in similar 
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environments. Anesthesiologists reportedly read, listen to music, talk on the telephone, or converse with 

their colleagues during periods of low workload [9].  

 While participants generally spent approximately one-third of the time directing their gaze 

towards the interface or interacting with the system (i.e., utilization), another interesting result is how 

little time participants actually spent in a divided attention state (~21%). These empirical results add to an 

increasing body of literature that shows that people are not as effective at multitasking as they might think 

[75, 76], and that when given the opportunity, people typically gravitate towards a single attention state 

(in our case, either directed or distracted.) These results have important implications for supervisory 

control tasks, as previous research has shown that monitoring performance can be improved through 

dividing attention across tasks [77, 78].  

No attention state variables were significantly correlated with performance, e.g., there was no 

observable relationship between amount of distraction and performance. As will be discussed in the next 

section, this was primarily due to nonlinear relationships in attention management. In terms of 
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demographic influence assessed through a questionnaire prior to the experiment (e.g., gender, military 

experience, etc. The entire survey can be found in [69]), the only variable that was significantly 

associated with performance was the degree of video game playing. Those participants who played video 

games more than once weekly were statistically more likely to perform worse in this setting that those 

who occasionally or rarely played video games (ρ = -0.304, p = 0.05). This is in direct opposition to the 

previous moderate workload study with this exact same interface where gamers statistically performed 

better [68]. Thus it appears that gaming experience can be a handicap when the exogenous event arrival 

pace is perceived to be under stimulating.  

While Figure 4 provides important aggregate information, Figure 5 demonstrates over time (in 15 

minute intervals) how participants managed their attention in this low task load setting. In Figure 5, the 

average standard deviation for directed attention across the 4 hour period with 15%, for divided it was 

13%, and for distracted attention, 18%. Distraction was the absorbing state, and in keeping with well-

established vigilance research, directed attention began a significant decline at approximately 30 minutes 

and at about the 1 hour interval, distraction began to outweigh directed attention, leveling off at ~50% at 

the 2 hour mark. Divided attention was relatively steady state at ~20% for the entire experiment. These 

results have important implications for supervisory control of highly automated systems, particularly 

those that are safety critical and may require rapid response for low probability events after long periods 

of operator idleness. For example, most process control operators never see the combination of events like 

those that precipitated the 2003 Northeast blackout that affected 55 million people, and operator lack of 

recognition of what was unfolding was a causal factor in the blackout [79]. 

 

4.4 Best versus Worst Performers 

Examining the best and worst performers, in terms of their combined target finding and hostile 

destruction scores, provides additional insight into how attention management strategies could lead to 

above or below average performance. Figure 6 illustrates that, expectedly, the worst performer was 
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predominantly distracted throughout the entire four-hour period (66%), and spent more than an hour 

~85% distracted. The worst performer, -1.9 σ for performance score, found two targets but did not destroy 

any hostile targets. This participant rated himself a 2 on a scale of 1-5 in terms of busyness. 

 While the worst participant’s performance in Figure 6 was representative of other performers who 

did poorly, there were two very different strategies exhibited by the best performers, a group of five 

participants who all scored more than one standard deviation above the mean and represent the top 15% 

of the sample. The best performer’s strategy was to oscillate between directed and divided attention 

(Figure 7a), with very little time spent in a distracted state. The second best performer also exhibited 

oscillatory behavior (Figure 7b), but instead of oscillating between directed and divided, this performer 

demonstrated remarkable periodicity between directed and distracted attention, with very little time in a 

divided attention state.  There was no correlation with this participant’s attention state and aural alerts for 

replanning, in that he did switch his attention when an alert sounded but also regularly switched his 

attention with no cueing. Indeed, he took off his headphones for portions of the experiment.  
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The remaining top three participants’ attention profiles (~38% distracted) were similar to the 

second best performer (~37% distracted), compared to ~10% distraction of the top performer. Also of 

note is the influence of the number of years of military experience. While there was no statistically 

significance for years of military experience on performance overall, four out the five top performers did 

have some military experience, which could speak to the ability to more readily follow procedures and 

orders.  

 While the best performer of Fig. 7a exhibited the most constructive coping strategies of all 

participants, which generally was repeatedly creating search tasks and checking the SCT often to possibly 

generate a better solution, the remaining top performers chose a completely different non-task related 

coping strategy. Instead of interacting with the system frequently, they constructively interacted just 

enough with the system to finish just behind the top performer.  

While distraction in the human factors literature is generally seen as a problem in supervisory 

control domains and was an issue for the poor performers in this low task load study, the second-best 

performer was distracted for more than one-third of the mission (37%), as were the other top three 

performers (38%). These operators automatically shifted their attention in a highly regular manner 

between distraction and effective guidance of the automation, which we hypothesize mitigated the 
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negative effects of low task load and resulting boredom. Poor performers either spent too much time 

distracted or could not effectively regulate their attention, either in frequency or timing. Whether these 

issues can be addressed through personnel selection or system design are areas of future research, and are 

discussed in the next section. 

 

5. Conclusions  

In both current and future UAV operations, as well as in many other highly automated 

supervisory control settings like process control, long periods can elapse without requiring any direct or 

indirect input from operators. Such passive monitoring, often referred to as “babysitting the automation”, 

can be particularly difficult for operators who experience difficulties in sustaining attention and increased 

stress due to the tedious nature of the environment. Operators in such low task load environments are 

often easily distracted, but the cost and possible benefits of such distractions are not well understood. This 

research effort demonstrated that in a low task load setting, four distracted operators with inherent 

excellent attention management strategies did almost as well as the focused top performer, so the 

assumption that distractions will cause performance degradation may not always be accurate.  

Another interesting result was that participants gravitated to the same level of self-imposed 

utilization, which raises more questions such as whether there is a minimum level of activity operators 

will seek regardless of external tasking? It is possible that such interactions are indicative of a lack of trust 

and acceptance of the automation. Whether such levels of self-imposed utilization would be maintained 

over longer and repeated experiments or decrease due to complacency or inappropriate trust is still an 

open question. 

This research raises further questions in terms of staffing, in that several agencies would like to 

reduce the number of personnel in a control room, typically from a cost perspective, and often to a single 

person [80, 81]. This research shows that the presence of others in low task load environments may 

provide both negative and beneficial distraction. Previous social facilitation research has shown that the 
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presence of others can (but not always) increase physiological arousal with possible modest gains in 

simple performance tasks [82]. Moreover, organizational attempts to enforce a distraction-free or “sterile” 

environment may only exacerbate negative consequences of a boring environment. Banning radio 

listening and conversations, or limiting breaks has been shown to contribute to boredom [17, 19, 83], 

despite the fact that some of these secondary tasks can provide clear benefit, i.e., listening to music in a 

visual task can help to maintain sustained attention [84, 85]. 

In addition to organizational influences, a person’s interest or motivation in assigned tasks also 

likely has an impact on individual boredom [17, 86]. We leave the question of motivation and boredom in 

supervisory control domains to future work, but it is a critical one that raises recruitment and retention 

issues already acute for the US Air Force’s UAV workforce [29]. Other areas that deserve further scrutiny 

include the impact of training on boredom coping strategies in terms of how could or should operators be 

taught to sustain attention, and whether distractions add to or mitigate fatigue. 

Because of the high risk involved in the operation of nuclear power plants, air traffic control, and 

other safety-critical supervisory control domains, personnel selection is of practical concern so identifying 

those personnel who can manage long stretches of inactivity in such settings is important. To this end, 

experience, age, intellectual capacity, gender, and personality type have all been suggested as contributors 

to individual variability of perceived boredom [17, 87, 88]. Moreover, in air traffic control tasks similar to 

the UAV control tasks in this study, it has been suggested that task characteristics of repetitiveness and 

traffic density may interact with individual traits (e.g., personality, experience, age) in a way that causes 

monotony and boredom [16]. The only clear evidence of such influences in this work was video game 

experience that suggested poorer performance for those with significant gaming experience, although the 

sample size and homogeneity of participants likely was a factor in determining other possible 

associations. Clearly more data is needed in these areas to understand the interaction of the individual 

with tedious supervisory control environments and associated distractions, and how personnel selection 

practices might benefit. 
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Ultimately, we must accept that highly automated environments will likely be considered boring 

environments that can and will lead to distraction. Thus the question should not necessarily be how to 

stop distraction but how to manage it through either personnel selection considerations as previously 

discussed, or through more active interventions such as designing alerting systems to promote optimal 

attention management strategies. Indeed, previous work investigating UAV targeting has shown that 

active attention cueing through visual, audio, and haptic channels can aid operators in more effectively 

directing their attention across multiple tasks [89]. Another possible technology solution would be use of 

some psychophysiological alerting system such as one based on galvanic skin conductance (e.g., [90]) to 

warn either individual operators or supervisors that a low vigilance state has been achieved. However, as 

previously discussed, such work is still in early stages. Lastly, how interfaces could be designed to engage 

and stimulate personnel, such as through on-the-job training or possibly even task-related games, is 

another area of possible exploration. 
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