
Zero Configuration Name Services for IP
Networks

by

Paul E. Huck, Jr.

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

June 2001

(M.I.T., MMI. All Rights Reserved.

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 11 2001

LIBRARIES

BARKER

Author

Department of Electrical Engineering and Computer Science

Certified by
Dr. Amar Gupta

Thesis Supervisor

Accepted by
Arthur C. Smith

Department Committee on Graduate Theses

11, 1

Chairman,

Zero Configuration Name Services for IP
Networks

by

Paul E. Huck, Jr.
Submitted to the

Department of Electrical Engineering and Computer Science

May 30, 2001

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract
The current implementation of the Domain Name System (DNS) requires extensive
configuration and administration for proper operation. This thesis examines several
solutions to reduce the need for human administration of DNS. A solution that adds an
agent program to monitor and configure BIND dynamically is examined in detail. The
DNS agent automatically configures BIND during start-up and updates the configuration
automatically as network conditions change. The agent program is compared to existing
commercial products and research underway by the Internet Engineering Task Force
(IETF) which have similar goals. Several improvements to the agent program are
suggested by the author that will increase the compatibility, security, and performance of
the system.

Thesis Supervisor: Dr. Amar Gupta
Title: Co-Director of Productivity From Information Technology (PROFIT) Initiative

2

Acknowledgements

I would first like to thank Dr. Gupta for providing me with opportunity to work on this

thesis as well as for the guidance and patience he has shown me.

In addition I would like to thank Ralph Preston, Kevin Grace and Sam Wiebenson for their

technical support and overview of the project background. Also, without Mike Feng's

original work much or this thesis would not be possible.

I would also like to thank my roommates Dan, Mark, John, Dave, and Chris for making this

experience as enjoyable as possible and for all the distractions they offered me. Lea also

deserves my thanks for making sure that I did not starve and die while alone at Athena and

for the constant motivation to start writing.

Finally, I would like to give thanks to my parents, Paul and Patricia Huck, and my family

for all the help and support they have provided me throughout my life and college career.

Table of Contents

Chapter 1 Introduction .. 8

Chapter 2 D N S... 11

2.1 N am e Servers ... 13

2.2 D ynam ic D N S and Zone Transfers ... 14

Chapter 3 Self-Configuring and Self-Administering Name System.......................... 19

3.1 N etw ork O verview ... 19

3.2 N am e Service Interface .. 22

3.3 Internal Root Servers... 23

3.4 D N S M essages ... 24

3.4.1 D N S U pdate ... 24

3.5 A gent M essages.. 26

3.5. 1 A gent M essage Behavior .. 27

3.6 State Inform ation... 31

3.7 Operation... 33

3.7.1 Initial Configuration.. 33

3.7.2 Configured.. 34

Chapter 4 Related W ork.. 39

4.1 ZERO CO N F.. 39

4.2 N on-IP N etw orks... 41

4.2.1 A ppleTalk.. 42

4.2.2 N etBIO S ... 44

4.3 Easing D N S A dm inistration... 46

4.3.1 N ssetup .. 46

4.3.2 Com m ercial Solutions... 47

4.3.2.1 Lucent QIP Enterprise 5.0.. 47

4.3.2.2 Check Point M eta IP 4.1 ... 49

4.3.2.3 N TS IP Server .. 50

4.3.2.4 Com parisons to the agent nam e system ... 53

Chapter 5 Im provem ents to the A gent N am e System .. 56

5.1 Com patibility with other networks.. 56

5.2 D N S M essages 58

5.3 A gent Cess ens 61

5.3 .1 becom eslave.. 61

5.3.2 negotiatem aster 62

5.3.3 rc oer ..ds o... 62

5.4 7 B o ncarh ... 6 5

5.4.1 IPSec... 66

5.4.2 Securing the individual protocols... 68

Chapter 6 Conclusion... 73

Chapter 7 Bibliography... 75

5

List of Figures
Figure 1 - D N S H ierarchy... 10

Figure 2 - Using DNS to resolve www.mit.edu (from [13])...............................14

Figure 3 - BIND Updates (from [40])... 17

Figure 4 - Sam ple N etw ork... 20

Figure 5 - Name Space View of Figure 4..21

Figure 6 - Relationship between agent, BIND, and other processes (from [13])..........23

Figure 7- A gent M essage Form at.. 26

Figure 8 - Merging of two previously unconnected networks with name conflicts. a) A

new physical connection joins the two (the dashed line). b) Agent programs in both

networks receive discover messages informing them of the newly discovered managers.

... 2 8

Figure 9 - c) The conflicting primary master servers send each other negotiatemaster

messages. d) The winner of the election sends aforceslave message to the loser... 30

Figure 10 - e) The new slave performs a zone transfer with the master. f) Because there

are name conflicts, a new sub domain is automatically created for every host in the

loser's network. Every host in that network is renamed to be a part of the sub

d o m ain ... 3 1

Figure 11 - Startup Scenario...34

Figure 12 - Discover message handling in configured state...............................37

Figure 13 - Integration between DHCP and DNS.. 49

Figure 14 - Peer Backup IPservers (from [9])...51

Figure 15- IPserver co-serving for the mit.edu zone (from [9]).................................... 52

Figure 16 - An Internet host resolving the address of a host in the agent system........57

Figure 17 - Relationship between BIND, agent program, and other processes. Updates

are now the only DNS message handled by the agent. .. 60

List of Tables
T able 1 - H eader Fields ... 26

T able 2 - O peode V alues ... 27

Table 3 - Server R ecord Fields.. 32

Table 4 - Comparison of Commercial Solutions to the Agent Name System.............. 54

Chapter 1 Introduction

Computer networks are no longer restricted to corporate intranets and the Internet.

As households with multiple computers have become more common, smaller home

networks have become increasingly more popular. Also many "non-PC" devices are

available in network-ready forms. These include mobile phones, PDAs, and household

appliances. Future plans call for every appliance in the house, from light-switches to the

microwave, to connect to the home network [27]. The PC will act as the hub, and will be

able to control every device on the network, as well as provide a link to the Internet. This

will enable home users to enhance the functionality of everyday appliances such as

downloading recipes from the Internet directly to their microwave oven [41].

The TCP/IP protocol forms the basis of communication between various devices

on the network. It has become the standard protocol of the Internet, and consequently it

has become the dominant protocol of Local Area Networks (LANs). The rapid growth of

computer networks is accelerating innovations related to the TCP/IP protocol [40]. This

innovation is necessary to keep pace with the dynamic requirements of managing a large

TCP/IP network. The innovations cover many aspects, ranging from the physical

network connections to the application level protocols. One aspect of IP networks that

could benefit from innovation is the existing concept of the Domain Name System

(DNS). In a TCP/IP network, every resource is identified by its IP address, a unique 32-

bit number assigned to the resource by the network administrator. Thus to communicate

with a resource known to exist on the network, the IP address must be known to establish

communication. Because human beings often find it easier to remember a name than a

cryptic 12 digit number, most networks, including the Internet, provide a service that

maps names to addresses. DNS is the standard naming service for the Internet. With it in

place, all that is needed to communicate with another host is the hostname and the

location of the DNS service.

For more than a decade, the Berkeley Internet Name Domain (BIND) has been

the de facto standard for DNS implementations [40]. Nearly all modem networks use the

public domain BIND implementation or commercial products derived from BIND. In

fact, BIND has become virtually synonymous with the industry standards that define the

DNS architecture. The DNS specification was written to allow product interoperability

and thus permit and encourage flexibility in each DNS implementation. Thus, it is

possible to develop new DNS implementations with added features, while remaining

compliant with existing standards.

In particular, it would be desirable if a DNS service could be run with no lengthy

configuration process and no need for user intervention after it has started. The current

implementation of BIND requires a network administrator to write several configuration

files in order to function correctly. These configuration files tell BIND the zone it is

responsible for, the location of other DNS servers on the network, and the location of the

root name server. Setting up this configuration can be a tedious process, as every time a

new host is added or removed from the network, these files must be updated. In addition,

9

if the network topology changes (such as by adding or removing name servers or by

merging two networks together), significant changes are required to the configuration of

BIND as the DNS zones and ownership of the zones may have changed too. This is

certainly not ideal for home networks or networks consisting of mobile or wireless

clients. In a home networked environment, hosts are frequently leaving and entering the

network as appliances are turned on and off, or as new hosts are added. Mobile clients

also will join and leave networks often as they are transported across network boundaries.

In an ideal environment, hosts should be free to join and leave the network, and should

immediately gain access to the services; this requires that the DNS be able to configure

itself on a dynamic basis.

This thesis will examine current and proposed solutions to this problem. In

Chapter 2 an overview of the current architecture and operation of DNS is given.

Chapter 3 introduces a name a system proposed in [13] which is based on BIND and

requires zero configuration and zero administration. Chapter 4 examines current industry

solutions and other related research, and compares them to system in Chapter 3. In

Chapter 5 the author proposes several design changes to the self-configuring and self-

administering name system that allow for higher performance, security, and functionality.

Finally, in Chapter 6 some conclusions are drawn.

10

Chapter 2 DNS

This section describes the hierarchical naming system and distributed architecture

of the current DNS standard. It also examines the operations involved for performing

updates to the network.

DNS was developed in 1984 by Paul Mockapetris as a distributed database that

could resolve the address of any computer on the network [28]. It was created to replace

the ASCII host files that associated host names with their respective IP addresses. These

host files resided on every host in the network, and if a name was not listed in the file,

DNS Root

Top level domains com edu org gov

mitedu domain

Figure 1 - DNS Hierarchy

11

that host could not be reached. As the Internet grew to become a worldwide network, the

process of maintaining the host files became increasingly unwieldy, leading to a growing

need for the DNS.

The DNS directory can be thought of as a tree, with each node on the tree

representing a "domain" [1]. Each domain is identified and located in the tree by its

domain name, which uses the familiar dotted notation (www.mit.edu, for example.). As

we read the domain name from right to left, we can follow the path down the DNS tree to

the correct node (See Figure 1). The "edu" domain is one of many top level domains;

others include "com", "gov", "org", and "uk". The full and unique domain name of any

node in the tree is the sequence of labels on the path from that node to the root.

The hierarchical tree of domain names can be referred to as the domain name

space. Each domain in the space has host data associated with it. These host data are

defined in resource records. There are many different types of resource records, the most

common being the address-record (A-record), which associates the domain name with an

IP address.

The other distinguishing characteristic of the DNS architecture is its distributed

implementation. DNS servers may be operated by any organization which owns a

domain. Each DNS server is given authority for one or more "zones". A zone is a

collection of one or more DNS domains that share the same parent domain, along with

the associated resource records. A DNS server receives authority over a zone when the

network manager responsible for the domain that contains that zone delegates the

authority to that particular DNS server. Therefore, the DNS infrastructure is distributed

both geographically and administratively [40].

12

2.1 Name Servers

Each zone in the domain name space has at least two name servers authoritative

for it, a primary and a secondary. Authoritative name servers are the only name servers

guaranteed to contain the correct resource records for their zone. When querying a name

on the Internet, a resolver can only be assured that the address is correct if the answer

comes from an authoritative name server for the zone that is being queried [Figure 2]. To

improve performance, other name servers may cache resource records, but each cached

entry has time-to-live to prevent staleness of data. A name server stores all the resource

records for the zone for which it is authoritative. The primary name server is an

authoritative server for its zone(s) and reads its zone data from the zone files [1]. When

changes are made to the zone's resource records, they must be made to the primary's

zone file. This data is sent to secondary name servers upon request. A secondary name

server is also authoritative for its zone(s); however, it obtains its zone data via data

transfers from other name servers. A secondary name server interrogates the primary or

other secondary servers periodically to determine if its zone's data have changed. The

period of this interrogation can be set by a network administrator. A single name server

can act as both the primary and secondary server for two or more different zones.

13

Query for address of
wwwmitedu an

Name
Local Referral to .edu name server

Namae server
Server

Query for address of
www.mit.edu

rsme
Referral to mit.edu saervr

name server

Query for address
of www.mit.edu. mit.edu

Name
server

CO Address of
a) www.mit.edu

rWso ve

edu
com org

stanford mit

Figure 2 - Using DNS to resolve www.mit.edu (from [13])

2.2 Dynamic DNS and Zone Transfers

The original DNS specification was written with static networks in mind. It was

assumed that hosts would join and leave the network infrequently. However, in modem

networks, computers are free to join and leave the network, and many new devices are

being connected. In order to deal with dynamically changing networks, several

extensions to DNS have been implemented. Specifically, RFC 2136 [48] defines the

DNS Update protocol which allows for dynamic updates to the DNS. A dynamic update

is a deletion or addition of resource records to a zone. It can be sent by either a DNS

14

client, DNS server, or a DHCP server (see Section 3.1). The update signal is sent to the

primary name server, which receives the signal and permanently updates its zone file.

The signal may be sent to the primary server directly or passed through one or more

secondary servers until it reaches the primary. When a primary server fulfills an update

request, it can use the notify signal to inform its secondary servers that the zone

information has changed.

In order for multiple name servers to maintain consistency of their records, zone

transfers are performed on a periodic basis. A zone transfer is the transfer of resource

records from a primary name server to a secondary name server. A full zone transfer

occurs when all resource records are sent. Instead of sending all the resource records, it

is possible for the primary name server to perform an incremental zone transfer. This

will transfer only those records updated since the last zone transfer. A secondary name

server requests an incremental zone transfer and a primary server chooses whether it will

perform a full zone transfer or an incremental one. It is recommended that full zone

transfers be performed no more than once every 15 minutes and at least once every 24

hours [3].

The following is a brief example of how the current version of BIND propagates

changes to the resource records to all authoritative name servers. The process is

illustrated in Figure 3.

1. An addition or deletion of a host is received by the primary server. This may

come from administrator manually editing the zone file, or through an update

message received. If the update message is received at a secondary server, it will

pass it to the primary server if it knows its location, or to another secondary

15

server. This is continued until the primary server receives the update signal.

Once the zone file is changed, the serial number of the file is incremented.

2. The primary name server reads the edited zone file. The frequency in which the

server rereads its zone file and checks for zone changes is a configurable

parameter of BIND.

3. The primary server will send a notify message to all known secondary servers.

The primary server will wait some time between sending each notify to reduce the

chance of multiple secondary servers requesting zone transfers at the same time.

4. If the secondary server(s) support(s) the notify signal, a zone transfer is

immediately initiated. Otherwise, the secondary server will discard the notify and

wait until the next scheduled zone transfer time.

5. The secondary server then notifies any other secondary servers which may be

dependent on it for zone transfers. This multi-level transfer is continued until all

secondary servers have received the changed records.

16

Primary

z5:neH DNS Server

Secondary Secondary
DNS Server DNS Server

Secondary
DNS Server

Figure 3 - BIND Updates (from [40])

While the dynamic update system may lessen the amount of administrative work

for the name servers, it does not make them administrator free. Each name server in the

network must be configured with the address of either the primary DNS server or other

secondary DNS servers for its zone. Name servers are not free to join and leave the

network. If a secondary name server is added to the network, either the primary DNS

server or other secondary DNS must be configured to recognize the presence of the new

secondary name server so that the primary DNS server can receive updates properly.

Also, if the primary name server is removed and another added in its place, an

administrator must manually change the configuration of every secondary server

dependent on it for updates, so that it is informed of the new primary DNS server. In

addition, the current DNS system requires extensive initialization effort to ensure proper

operation. Zones must be properly allocated with specific primary and secondary servers

and a clear domain hierarchy must be defined. These tasks all require extensive
17

knowledge and effort from an administrator.

The above problems are addressed by the name system described in the next

chapter. It uses a combination of an agent program monitoring BIND and dynamic DNS

protocols to maintain a true self-configuring and self-administrating naming system.

18

Chapter 3 Self-Configuring and Self-
Administering Name System

3.1 Network Overview

The naming system described in this section was conceived as part of a larger

network system that is under development at a company codenamed as Research

Corporation in this thesis. The proposed design provides a full array of network services

to the hosts on the network. This is done with virtually no configuration and no

administration. The network design allows for a group of computers to be physically

connected together (through ethernet or other network media) and after a short time, they

will all be properly configured in a working network. On this network there will be two

types of nodes: managers and hosts [Figure 4 and Figure 5]. Managers form the

backbone of the network and provide services, such as name to address resolution, to the

hosts. Besides the name to address resolution service, the managers also provide

dynamic IP configuration for new hosts, discovery mechanisms for new managers, packet

routing, and a database of all hosts in the system. The services directly related to the

naming service are automatic IP configuration and manager discovery, as these will be

the services that the name system will directly interact with.

The goal of the network system is to allow any computer, either a host or a

manager, the freedom to join or leave the network, without the need for any external

administration. The network should be able to detect the presence of a new node or the

19

Host

Name Name
Service Service

Host
Host

Manager 4 Manager 3

Name Name
Service Service

Host Host

Figure 4 - Sample Network

absence of an existing one, and deal with either type of change in an appropriate manner.

In addition, the network system, and in particular the name system, should deal gracefully

with the merging of two networks. Conflicts should be detected and resolved quickly.

In order to provide the self-configuring and self-administrating name service,

each manager in the system is designed to run three types of services: the IP

configuration service, the manager discovery service, and the agent based name service.

The IP configuration service is handled by a standard implementation of the dynamic

host configuration protocol (DHCP). DHCP is a network protocol specified by the IETF

that provides hosts with configuration parameters for their IP interface [7]. This includes

an IP address, a domain name, a subnet mask, a default gateway, and a location of DNS

20

Manager 1 Manager 2

server. DHCP also allows a host to retain a previous configured domain name while

receiving an IP address. After receiving the necessary information from a DHCP server,

a previously unconfigured host's IP interface has all the necessary parameters in order to

Manager 1
Manager2

Primaryo ' Secondary
Internal Root Internal Root

Server Server

Manager3 Manager 4
Domain 1 Domain 2
Primary Primary
Server Server

Figure 5 - Name Space View of Figure 4

begin transmitting and receiving on the network. DHCP requires no prior configuration;

as a host locates a DHCP server by broadcasting discover messages on the local network.

All modem operating systems and even most embedded devices support DHCP [33].

Overall, DHCP meets the goals and design objectives of the desired self-configuring and

self-administrating network.

Manager discovery is accomplished by having the manager discovery process

periodically broadcast "discover packets" to each interface. These packets contain the

source address and a unique network number that the manager resides on. All other

manager discovery processes will receive the packet, and if the network number is

known, the packet will be dropped. If, however, the network number is unknown, that

manager will respond to the source of the "discover" with a "discover reply". This reply

21

includes the network number for the new manager. This allows the manager discovery

process to inform the local name service of any new managers that appear on the

network.

The design and the operation of the name service are discussed in the next

subsection.

3.2 Name Service Interface

The name service runs on every manager in the system and consists of two

concurrently running processes. The first is the BIND implementation of DNS. As

stated before, BIND is currently used in the overwhelming majority of name servers on

the Internet. It provides a scalable, stable, and fault-tolerant basis for the name service.

The second process is an agent program which reacts to network conditions and

configures BIND automatically. Figure 6 shows the relationship and manner of

communication between BIND, the agent program, the other local manager processes, as

well as other managers in the network. The agent program uses Berkeley UDP sockets to

listen for two different formats of messages. On port 53, the standard DNS port, the

agent program listens for DNS messages. It acts as a filter for the DNS messages,

sending queries directly to the BIND process, and processing update messages from the

IP configuration process. On port 541, the agent program listens for any agent messages

coming from either the manager discovery service, or other agents in the system. The

agent messages allow an agent process to gain knowledge of other agents and offer a

method of communication between agents. The details of both DNS and agent message

'The IETF has designated port 54 to be used for XNS Clearinghouse [38]. We chose to use port 54
because XNS is uncommon on modern servers. If this service is needed, another port may be specified for
agent communication.

22

processing are discussed in following sections.

Agent Program
Port #53

A

Manager
Name Service

Discovery 0rPort # 5,4
S erv ice . -..-...................

Agent Agnmage

Program BIND config files BIND
Configuration Process

Service DNS Me- e rN#5Messae Port #55
(upda te) Port #53

Host Resolver Mess Me Mssa Agent Program
(query) Port #53

Figure 6 - Relationship between agent, BIND, and other processes (from [13])

3.3 Internal Root Servers

The name servers in the system are only authoritative for the IP addresses of the

subset of hosts configured by the naming system. Presently there is no requirement for

connectivity to outside networks such as the Internet. Therefore, hosts managed by the

agent name system may communicate only with other hosts in the same system. Section

5.1 discusses extensions to the agent name system that will allow for communication with

outside networks. With this in mind, the name system is implemented using the idea of

internal root servers. Certain name services in the manager network act as the internal

root servers and are authoritative for the entire domain that is serviced by the self-

configuring naming system. So, as long as a name service knows the location of at least

23

one internal root server, the name service will be able to provide name resolution for the

network's name space. For example, if the entire mit.edu domain is using the self-

configuring naming system, a host in the lcs.mit.edu sub domain may wish to know the

IP address of a computer in another sub domain serviced by the naming system (such as

media.mit.edu). This host will query any local name system, and since the manager is not

authoritative for the media.mit.edu domain, it will query the internal root server of the

mit.edu domain. This server may resolve any domain name in the mit.edu domain by

directing the resolver to the proper media.mit.edu authoritative name server.

3.4 DNS Messages

The only DNS messages that the agent program processes directly are DNS

updates. All other messages are simply directed to the local BIND process on port 55.

These messages will simply be DNS queries and BIND will process the query, return an

answer to the agent process, which in turn will forward the response to the inquirer. The

agent process is the only entity with access to the BIND process. To all hosts on the

network, it appears as if BIND is running on the normal port.

3.4.1 DNS Update

DNS updates, however, require special processing by the agent. DNS updates

only occur when the IP configuration service or manager discovery service detects the

addition or deletion of a host or manager on the network. The respective local manager

service then assembles the appropriate DNS update message containing the resource

record that must be added, modified, or deleted and sends it to the agent program.

Although DNS updates may be sent to any DNS server that is authoritative for a zone,

24

they will always end up being processed by the primary master for the zone, as that is the

only server that has the definitive set of resource records for a particular zone. As stated

in Section 2.2, standard DNS implementations state that any secondary server which

receives a DNS update message must forward it directly to the primary master if its

location is known, or alternatively through the secondary server chain until it reaches the

primary master [48]. The secondary servers will only learn of the update through notify

signals originating from the primary master.

To try to improve the efficiency of this mechanism, the agent program will

examine the update message, and if it applies to RR in the zone that it is authoritative for,

it will send it directly to the primary master for that zone. Each agent process has

knowledge of its primary master as this is part of its state information described in

Section 3.6. When the agent program is not authoritative for the zone receiving the

update, then it must search for the primary master for that zone on the network. To do

this, the agent program will send a Start of Authority (SOA) DNS query to the local

BIND process. The SOA asks the DNS for the address of the primary master for a

particular zone. Upon receipt of the SOA, BIND will perform standard DNS resolution

to find the information on the zone name. If the zone exists, BIND will return to the

agent process the IP address of the primary master for the requested zone, and the agent

process will forward the update to that address. If, however, the DNS update message

applies to a zone that does not exist on the network, BIND will return the non-existent

domain error flag (NXDOMAIN), and the agent program will configure the local BIND

process to be authoritative for the new zone. The reconfigured BIND process will then

process the update request. This allows for dynamic creation of zones and is especially

25

useful at resolving all naming conflicts when two networks are merged.

3.5 Agent Messages

Agent messages are used for inter-agent communication and as a mechanism for

agent discovery. Figure 7 shows the structure of an agent message. It consists of a three

field header followed by a payload section. The header fields are explained in Table 1.

The payload holds the data from the message. The data is specific to each Opcode. The

data sent with each agent message is explained in more detail in the following sections.

Message ID;Opcode;S/R flag Header

Opcode specific Data Payload

Figure 7- Agent Message Format

Table 1 - Header Fields

Header Field Description

Message ID The unique message ID for the message

The operation code for message. Can have one of six
values; see Table 2

Send/Response Flag. A flag indicating whether the
S/R flag message is a send request or response to an earlier

message

The Opcode may take on one of six values. These values are explained in Table 2 and

the following sections.

Currently the header is formatted as ASCII text separated by semicolons. A

sample agent message header is shown here:

3;getroot;response

26

The total length of this header will be 18 bytes (one byte for each character).

However, it is possible to represent each field with a more efficient binary representation.

If the message ID were encoded as a 12 bit binary number (allowing for 212 unique

IDs), the opcode as 3 bit number, and the S/R flag as a one bit field, the header size

could be reduced to two bytes. ASCII text was chosen to simplify the implementation

and debugging of the system.

Table 2 - Opcode Values

Opcode Brief Description

discover Informs agent of new managers

leave Informs agent of lost managers

getroot Used to request the location of internal root server

becomeslave Sent to an agent to make it a slave to the sender

negotiatemaster Used to resolve primary master conflicts

forceslave Sent by the winner of two conflicting servers, to force the loser
into becoming a slave

3.5.1 Agent Message Behavior

The manager discovery process will send the local agent process discover and

leave messages whenever it discovers that a manager has joined or left the system,

respectively. These messages include the information about the new or lost server such

as the zone it is authoritative for and also whether it was a master or slave for that zone.

They allow an agent to gain a current view of the network topology and can also help to

warn against conflicts and errors arising in the network. For example, if a manager that

was a primary master for a zone disappeared, a slave for that zone would receive the

appropriate leave message and negotiate with its peers to elect a new primary server for

27

that zone.

The negotiatemaster and forceslave messages are designed to be used in such

situations. The negotiatemaster is used when two managers discover that they are

primary masters for the same zone. This may happen when two previously unconnected

networks are physically joined. The two agents will exchange negotiatemaster messages

and elect a new master. The negotiatemaster message includes metrics to help determine

the optimal master, such as the number of slaves the server currently has. The winner of

the election then sends aforceslave to the loser and requests the latter's zone data, so that

such data may be merged with the existing data. The merge is accomplished via a zone

transfer from the loser to the winner. If any conflicts are detected during the merge (such

as two different hosts having the same name), then a new sub domain is automatically

created for the loser, and every host listed in the loser's resource records is placed into

that sub domain. See Figure 8 - 10 for an example.

The becomeslave message can also be used to make an agent a slave for a zone.

However, while the forceslave message is only used between two competing primary

servers, the becomeslave can be sent to any agent in the system. It is not used for

elections, but only to notify agents of new primary servers. If a new primary server for a

zone leaves the network and new one is elected, the becomeslave message is passed to all

the old slaves of the former primary server and to the slaves of the loser in the election.

The becomeslave message informs them of the new primary server and allows the agents

to reconfigure themselves accordingly.

28

Primary Master for Primary Master for
zone a.mit.edu zone a.mit.edu

s1.a. it.edu s2.a.m t.edu

a.mit.edu a.mit.edu
domain - - - - - - domain

a.

Primary Master for Primary Master for
zone a.mit.edu zone a.mit.edu

discover si .a it.edu s2.a.m t.edu discover

a.mit.edu a.mit.edu
domain domain

b.

Figure 8 - Merging of two previously unconnected networks with name conflicts. a) A
new physical connection joins the two (the dashed line). b) Agent programs in both

networks receive discover messages informing them of the newly discovered managers.

The getroot message is used by agents to share the internal root server

information. This is useful when a new unconfigured agent is introduced to the system

and wishes to know the internal root server.

29

Primary Master for
zone a.mit.edu

s, -- t-edu

negotiatemaste

negotiatemaste

Primary Master for
zone a.mit.edu

r

r

s2.a.m t.edu

a.mit.edu
domain

a.mit.edu
domain

C.

Primary Master for
zone a.mit.edu

si.a. it.edu

a.mit.edu
domain

Primary Master for
zone a.mit.edu

forceslave

s2.a.m t.edu

a.mit.edu
domain

d.

Figure 9 - c) The conflicting primary master servers send each other negotiatemaster messages. d)
The winner of the election sends aforceslave message to the loser.

30

Primary Master for Slave for zone a.mit.edu
zone a.mit.edu

Zone transfer

s1.a. it.edu s2.a.m t.edu

a.mit.edu a.mit.edu
domai domain

e.

Primary Master for
Primary Master for zone 1.a.mit.edu
zone A.mit.edu slave for A.mit.edu

s1.a.mit.edu s2.1.a.mit.edu

a.mit.edu
domain with
subdomain
1.a.mit.edu

f.

Figure 10 - e) The new slave performs a zone transfer with the master. f) Because there are name
conflicts, a new sub domain is automatically created for every host in the loser's network. Every host

in that network is renamed to be a part of the sub domain.

3.6 State Information

To assist with the agent tasks, each agent stores state information about itself and

other managers in the network, as well as a log of all messages it has received. In

particular, the agent will keep a record for all managers that it knows to exist on the

31

network. This server record contains the name, lIP address, a unique server ID, and a

status flag that tells if the server is configured or just starting up [Table 3]. Each server

record is placed into one or more of the following categories:

* Own Servers - contains the agent program's own server information.

" Known Servers - list of server records for every manager on the network.

" Root Servers - server records for every domain root server on the network

* Newly Discovered Servers - list of recently discovered managers. Once the agent

processes the discover message, the server record will be moved to one of the

above categories.

Table 3 - Server Record Fields

Server Record Field Description

Name Name of the manager the name
service resides on.

IP Address IP address of the manager the
name service resides on

Unique ID of the manager the
name service resides on. The

Server ID unique ID may be derived from
the MAC address of the
network interface in use by the
manager.

Configured: name service is
configured with the location of

Status Flag an internal root server.
Start-up: name service is
unaware of a location of an
internal root server.

In addition to keeping records for every manager, each agent also keeps

information on every zone it is authoritative for. If the server is a slave in that zone, the

zone information includes the server record of the primary master for the zone. If the
32

zone is the master for the zone, then the zone information includes the number of slaves

for the zone, the server records of all the slaves, and the number of slaves required. If

the number of slaves is less than the number required, the agent will attempt to send

becomeslave messages to other agents.

3.7 Operation

At any time, the agent program can be in two different states: the Configured state

and the Start-up state. The state of the agent is stored in the in the server record

information for the agent as described in Section 3.6.

3.7.1 Initial Configuration

The key piece of information any agent needs to operate is the location of an

internal root server. On startup, the primary goal of any new agent is to find the location

of an internal root server. Once an internal root is found, the agent is put into Configured

state. An agent can only be in the Configured state if it knows the location of the internal

root server, otherwise it is in the Unconfigured state.

Figure 11 depicts the startup scenario and the states of the transition between

unconfigured and configured. When a new agent is started, it will wait for discover

messages from the discovery process on the local manager. When at least one discover

message is received, the new agent will send one getroot message to one of the

discovered agents. If a specified timeout period expires and no other manager has been

located, the agent will assume it is the only running manager on the system and configure

itself to be the internal root. If the new agent hears only discover messages from

Unconfigured managers, then they will compare Server IDs and elect the server with the

33

No discovers
received /

Configure as
Internal Roo

No getroot response
within timeout /
Resend getroot

At least one
Own configured server Startu Received getroot
Wait on found / Wait on response /discovers Sen getroot getroot Use exis ing rootresponse sre

lrOwn Server ID is
confygnre- higher than those

ofnfr g uru d d is c o v e re d /

Watre forvda Configure as

conigrepsrv reSrr trn Ro

IDs Startup ScenaRoOwn Server ID is Cormpare
lower than Server Server

of a discovered IlDs
server /

Wait for a
configured server

Figure 11 - Startup Scenario

highest ID to be the internal root server. This may happen when two or more managers

join the network at the same time.

3.7.2 Configured

Once an agent has entered the Configured state, it is ready to handle any name

resolution query on the network. Even if it does not have the requested name in its

database, it can query the internal root server and find an answer by working recursively

down the DNS tree. When the agent is in the Configured state, it listens for queries, DNS

updates, discover and leave messages, and (if it is a primary master for a zone)

periodically runs the getSlave function. The getSlave function is used to find more slaves

for a primary master. For every zone, the agent is a primary master for, the getSlave

function will check the zone information to see if more slaves are needed. If more slaves

are needed, the agent picks a random server out of the Known Servers list that is not

34

already a slave for the zone. It then sends a becomeslave message to that server.

The behavior of the agent in response to both DNS queries and updates is

described in section 3.4. The arrival of a discover or leave message signals a change in

network topology, as managers have either joined or left the network. In the case of a

discover message, there are two options: the discovery of a configured manager, or the

discovery of an unconfigured manager. The case of the discovered unconfigured

manager is rather simple as an agent need only record the server record of the new

manager and respond to any getroot messages it may receive. When a configured

manager is discovered, the process is slightly more complex.

Configured managers are discovered when two configured networks are joined.

Network unions are revealed by the manager discovery process as two managers will

have different network IDs that were previously unknown to the other manager. In this

case it is possible to have a conflict where two managers are primary masters for the

same zone. Therefore an agent needs to have a mechanism to detect and resolve this

conflict.

Figure 12 illustrates the procedure when a configured agent receives a discover

message. When an agent is a primary master for a zone and receives a discover message

with information on new configured managers, the agent will send a getroot message to

the newly discovered server with highest ID (the server ID is used so that only one server

is contacted, any other metric could be used as well). Only primary masters need to

participate in the conflict detection scheme, as any slave's master will detect the conflict

and transfer the new network information in a future zone transfer.

Zone conflicts can only occur if the two networks have different internal root

35

servers. If both networks shared the same internal root server, it would be impossible for

zone conflicts to occur as a single DNS root tree will not allow the same zone to have two

different primary masters. When the two internal root servers are different, an agent must

make sure that it is the only primary master for its zone. Therefore, the agent will send a

SOA query to the differing root server for every zone that it serves as primary master for.

The differing root server will then respond with the address of the manager that it

considers to be the primary master for that zone, or an error message indicating that it is

not aware of the zone. If the SOA response is an error message or if the address matches

the querying agent, then no conflict exists2 . If, however, the differing root server

indicates that it believes another manager to be the primary master for the zone, a conflict

exists and must be resolved. The conflict is resolved by the negotiatemaster master

message described in section 3.5 and illustrated in Figure 8.

2 If the SOA message is an error, this indicates the other root server is not aware of the zone on the
network. However, it can still resolve names in that zone by recursing down the DNS tree from the top
node.

36

No discovers received No getroot response
within timeout /
Resend getroot

Discoverve fecive fro

lastcoer m Configured Received getroot Configured
Configured configured servers/ Wait on response /Compare

getroot Root
Send getroot response Compare root Servers

servers

Discover recei12 froD
unconfigure srer Root servers are the same Root Servers are

different

Another Master Zone does
not exist Configured sa eat no

Loop through s s A be notfie
Master Zones ofhdb te la w t

name service

Elected Masters/
Send forcestave and

becomeslave messages SOA reveals another

Elected Slave /mase
Respond to forceslave e ndaease

messagemessage

Configured
Configured Wait on
Elect Master/ negotiatemaster

Save Negotiatemnaster response response

received

No negotiatemnaster res ponse
within timeout /

Resend negotiaternaster
Figure 12 - Discover message handling in configured state

An arrival of a leave message may also require an agent to reconfigure itself. If a

master server loses a slave, it will delete the slave's server record from its state

information and send an update to the BIND process informing it of the lost name server.

If an agent is a slave, it only needs to be concerned with leave messages that inform it

that its master has left the network. All other leave messages will be processed by its

master. When a primary master has left the network, all its slaves will be notified and

need to elect a new master for their zone. This is accomplished by the slave with the

highest server ID asserting itself as master. The highest server ID can be calculated by

looking at the Known Servers state information (see section 3.6). This new primary

master will then send becomeslave messages to every other slave informing them of their

37

new master.

38

Chapter 4 Related Work

4.1 ZEROCONF

The Internet Engineering Task Force's (IETF) ZEROCONF Working Group is

currently proposing a protocol to enable networking in the absence of configuration and

administration [52]. Although they have yet to propose a specific implementation or

specification of the protocols, they have set a list of requirements for ZEROCONF

protocols [17]. The goal is to allow hosts to communicate using IP without requiring any

prior configuration or the presence of network services. Of particular relevance to this

thesis is the name to address resolution problem. The ZEROCONF requirements

specifically state that there should be no need for preconfigured DNS or DHCP servers.

In fact, the ZEROCONF protocols are required to work in the absence of DNS servers.

However, when these services are present, the ZEROCONF requirements direct that

hosts should use them. Thus, the ZEROCONF requirements offer temporary and inferior

solutions to the name resolution problem until a complete name resolver is located, such

as a DNS server.

ZEROCONF protocols face two challenges when determining name to address

bindings. The first is obtaining a unique address and/or hostname on the network. This is

handled extremely well in modem networks by the use of a DHCP server; however,

39

ZERCONF protocols must not rely on the presence of DHCP server. Therefore, the

working group recommends using either IPv6 or IPv4 auto-configuration [15]. IPv6 auto

configuration is vastly superior as it allows hosts to obtain a link local address (useful

only on a single network) using address auto configuration [15] and a routable address by

discovering routers using Neighbor Discovery [30]. IPv4 auto configuration is still in the

research state by the IETF, but the initial specifications allow a host to only get a link-

local address [5]. This will prevent the host from communicating with any device not

directly on the same network as it. Also, while IPv6 provides nearly all necessary

network parameters such an address, domain name, default router, and DNS server

location (if present), IPv4 provides only an address. Thus, if a host configured with IPv4

auto configuration leaves a network and rejoins, it may have a new address, while a host

configured by IPv6 will have a permanent method of contact, its domain name. While

IPv6 clearly offers more advantages, it is expected that IPv4 will dominate for some time

[5]. This is because IPv6 is relatively new standard and the lack of fully complaint IPv6

routers and hosts on most networks has prevented it from gaining widespread acceptance.

Once a ZEROCONF host has obtained an address on the network, it still has to

discover other hosts and resolve domain names. The ZEROCONF requirements state

that hosts should use multicast to resolve names in the absence of a DNS server. In order

to support this requirement, an IP host will also need to listen for such requests and

respond when the request corresponds to the host's own name. The IETF currently has

two ongoing works in this area: multicast DNS [12] and "IPv6 Node Information

Queries" [6]. In each case, all hosts will run a "stub" name service that only responds

when it fields a request for its hostname. The stub service does not provide any name to

40

address resolution for other hosts on the network.

While the naming service proposed in this paper may fit into the broad goals of

the Zero Configuration Working Group, it has several key differences. The most obvious

one is that the ZEROCONF requirements are designed to work with a network composed

of entirely client devices, with no service providers or managers in the network. By

design, the agent program is run on a network manager, and provides DNS services for

the entire network. While the ZEROCONF requirements state that hosts need no

previous configuration, they do rely on more complete solutions such as DNS and DHCP

for long term operation and scalability. However, the ZEROCONF Working Group has

set no requirements that these servers be self-configuring and self-administrating. This is

precisely the problem that the agent program attempts to solve. In a network managed by

the self-configuring naming service described in this paper, both hosts and managers are

administrator free and may join and leave the network freely. Therefore it is possible to

have a network that runs the agent program on the DNS servers and also meets the

ZEROCONF requirements. Hosts could use the ZEROCONF protocols to obtain an

address until the discovery of a manager. Once a manager is found, the host is free to

resolve any name on the network using standard DNS calls.

4.2 Non-IP Networks

The requirements laid out by the ZEROCONF Working Group stress the

importance of having computers networked together "just work" in the absence of service

providers such as DNS and DHCP [17]. Two protocols in use today provide this level of

functionality. The AppleTalk suite of protocols is simple to operate in small networks.

Plugging a group of Macs into an Ethernet hub will get one a working AppleTalk

41

network without the need to setup specialized servers like DNS [15]. As a consequence,

AppleTalk networks can be used in homes, schoolrooms, and small offices --

environments where IP networks have been absent because they are too complicated and

costly to administer. NetBIOS provides similar functionality and ease of use on

Microsoft Windows machines.

However, because nearly all computers used today are connected to the Internet,

they also require TCP/IP to be configured, as this is the protocol of the Internet.

Therefore the benefits of AppleTalk and NetBIOS are overshadowed as application

developers will need to support two protocols: TCP/IP to access the Internet, and either

AppleTalk or NetBIOS to access the local network. This is the motivation behind our

research as well as the ZEROCONF Working Group and other efforts to make the IP

suite of protocols simple to configure. Allowing developers to concentrate on one

protocol for all communications will make application development simpler and more

efficient. Although the IETF has plans to eliminate the need for the AppleTalk and

NetBIOS protocols, the design of each is relevant to this paper as it impacted the design

of the agent naming system.

4.2.1 AppleTalk

AppleTalk follows a decentralized architecture with the goal of "plug and play"

capability, wherein a user can plug in a compatible device into the network and have full

access, without any associated configuration [2]. AppleTalk accomplishes name to

address translation with the Name Binding Protocol (NBP). Each device on an

AppleTalk network is assigned an entity name of the format: Entity:Type@Zone. The

type specifier allows a host to determine what higher level protocol to use when

42

communicating with the device, while the Zone field allows devices to be grouped

together in logical clusters. Zones may include a number of nodes from different

networks (i.e. nodes behind different routers). The NBP provides a mapping from these

entity names to internet address 3. Each node on the network will maintain a names table

containing entity to internet address mappings. The names directory (ND) is a distributed

database which stores all the entity to internet address mappings in the system. NBP does

not require the use of name servers, however, it will allow the use of name servers if they

are present [2].

When a host wishes to lookup the address of an entity, NBP is used to search the

ND for the appropriate name. If the entity does not exist in the local ND, a request will

be sent over the network to find the address. If the name in question resides in the same

zone as the requester, a name lookup packet is broadcast over the network. To perform a

lookup of an entity in a different zone the Zone Information Protocol (ZIP) is used to

determine the zone of the requested entity, and then a directed broadcast is sent over that

zone [43]. ZIP uses a zone information tables to determine which zone an entity belongs

to. These tables must be stored on every router in the system.

Although AppleTalk provides decent performance on small to medium sized

localized networks, it cannot scale to meet the needs of large networks such as the

Internet. The use of broadcast packets to perform name lookup is inefficient when

compared standard DNS lookups. While a node broadcasts the name lookup to every

device on the network, it only accepts one response. Because the agent name system uses

standard DNS queries, a name lookup consists of one request and one reply.

3 Note that internet here is simply a collection of networks; internet addresses are not IP addresses, but a
way of uniquely addressing a node across AppleTalk networks.

43

Another problem is the way AppleTalk stores the ND and zone information table.

Because the ND is stored on all nodes, each node replicates data that is available on every

other node in the network. Also, as the number of hosts in the network grows, this flat

directory could become large, and every time a host joins or leaves the network, every

host must be notified. Keeping the zone information table consistent across all the

routers may also prove difficult when network topologies change.

The agent naming system presented in this paper exhibits none of the above

weaknesses. Because the DNS is used as the name lookup scheme, scalability is not an

issue, as DNS is proven to scale up to networks with millions of hosts. Also the

managers handle the case of changing network topologies and can adapt the domain

names and automatically update the DNS to prevent naming conflicts.

4.2.2 NetBIOS

NetBIOS allows several computers that share the same broadcast medium to

locate resources, establish connections, send and receive data with an application peer,

and terminate connections [37]. NetBIOS defines an interface for the above operations,

but relies on lower level protocols for operation. The most common today is NetBIOS

over TCP, which is what will be discussed below.

Devices using the NetBIOS service are identified by dynamically assigned names.

The NetBIOS name space is flat and allows up to sixteen alphanumeric characters. For

an application to acquire a name it must first perform the name registration process.

During registration, a bid is placed for a name and broadcast over the network. The

bidding process occurs in real time and is necessary for all applications that wish to use

the NetBIOS service. Implicit permission for the name is given when no objections are

44

received from other nodes on the network.

The NetBIOS service defines three types of nodes on a network. Broadcast nodes

("B"), point to point nodes ("P"), and mixed modes ("M"). Each node has a different

method of name resolution. If the network consists of entirely of B nodes, then broadcast

messages are used for name to address resolution. If the network contains P or M nodes,

however, then a NetBIOS Name Server (NBNS) is required to be present on the network.

The NBNS handles name lookups for a NetBIOS network. The NetBIOS specification

allows for extreme flexibility in the implementation of the NBNS [37]. The NBNS can

simply act as a "bulletin board" on which name and address information can be freely

posted, or it may assume full control over the validation and management of the names.

P nodes rely solely on the NBNS for address lookups, while M nodes will first broadcast

queries and then contact the NBNS if no response is returned. At any time, either all the

B nodes or the NBNS will have knowledge of the names on the network.

The most obvious problems with the NetBIOS service are issues of scalability.

With a flat sixteen character name space, many name conflicts may occur in large

networks, particularly when networks are merged together. Also because B and M nodes

require the use of broadcasts to register and lookup names, the amount of bandwidth used

for address resolution will be much higher than what is needed for a DNS query.

Because the agent name service relies on standard DNS implementations, it allows for

greater scalability and efficient bandwidth use.

The use of a properly configured NBNS in the NetBIOS environment with only P

nodes may solve some of these problems. In particular, a DNS server may be used as a

NBNS [37]. This would reduce the number of broadcasts in the network, as lookups

45

would only require one query and response. However, the flat name space issue still

remains.

4.3 Easing DNS Administration

The above solutions were all replacements for a full DNS system; either by using

other methods of name to address mapping over IP or using different protocols

altogether. However, because IP networks and DNS have been integrated into nearly all

modem network systems, there have been other efforts to ease the configuration and

administration of DNS.

4.3.1 Nssetup

Researchers in Japan have attempted to tackle DNS administration problems by

simplifying configuration tasks and eliminating repetitive tasks through automation [14].

They developed a program with a graphical interface that reduced the work of a DNS

administrator. Their tool, called nssetup, automates repetitive tasks such as generation a

DNS database file from the machine's host file, keeping the root cache file up-to-date,

and maintaining the reverse address lookup table. To check the correctness of the

configuration, nssetup contained a feature that checked if the name server was up and

running. In addition, nssetup provides a graphical user interface for configuring the

resolver and adding new hosts into the database. The nssetup developers showed that it

was considerably faster to configure a name server using nssetup than without it. They

state they have reduced the configuration time from two hours to three minutes.

However, nssetup does not truly reach the goal of zero administration. It simply

provides a nice user interface and a good set of default configuration values for BIND.

46

Every time new DNS servers are added, an administrator must configure them as well as

every DNS server already running on the network so that they are properly integrated into

the network. The agent program requires no prior configuration when DNS servers are

added. Simply starting the agent program is all that is needed to be done; it will locate

other managers on the network and they will configure themselves accordingly, all

without user intervention. The time is takes for the agent program to configure a name

service is less than the time using nssetup, and does not require a human administrator.

4.3.2 Commercial Solutions

There are several commercial products available today that aim to simplify the

operation and administration of DNS servers. Most provide solutions that include both

DHCP and dynamic DNS in a single software package. These products are aimed at

corporations that run a large intranet with their own DNS servers. By including both

dynamic DNS and DHCP, they allow hosts to freely join and leave network with no

manual configuration. DHCP will assign the new host an IP address, and send DNS

update signals to notify DNS server of the new host so that it may be located on the

network. Figure 13 shows the integration between DNS and DHCP in the commercial

solutions with the addition of remote administration. Some popular products are

described in more detail below.

4.3.2.1 Lucent QIP Enterprise 5.0

Lucent's product provides Enterprise based IP network planning in addition to

integrated DHCP and DNS services [25]. The DNS server is based upon BIND but adds

several other features such as remote administration. QIP uses one centralized database

to store all updates for recovery purposes. It also provides enterprise tools such as user

47

profile management and directory services.

QIP is componentized set of services that can be turned on and off. For example,

a third party implementation of DNS and DHCP could be used along with the QIP profile

management features. Therefore it would be possible to use the agent name system to

provide the DHCP and DNS services for the network managed by QIP.

QIP provides a fault tolerant design using replication and by eliminating any

single source of failure. The QIP DHCP server can update both primary and secondary

DNS server's resource records as DHCP leases are granted and deleted. This allows for

update messages to be handled properly even when the primary server is unreachable. In

the primary server's absence, a secondary server will receive the updates. When the

primary again becomes reachable, they will be passed along.

48

Remote

Commercial Administration

Product through web browser J

DNS

DNS updates

DHCP
Requests IP

configuration and
Queries DNS

Host

Figure 13 - Integration between DHCP and DNS

4.3.2.2 Check Point Meta IP 4.1

Like QIP, Meta IP provides an integrated service that includes DNS and DHCP

[26]. BIND is again used as the basis for the DNS service. However, the Meta IP does

include some changes to the standard DNS protocol. Specifically, the developers of Meta

IP developed a proprietary way for primary and secondary servers to notify other slaves

of zone updates. However, recent BIND implementations support the notify message

which provides similar functionality [47]. Because the agent name service runs BIND, it

also supports this feature.

Another modification to the DNS system that Meta IP supports is that it allows for

slaves to process any update messages received when the primary is unreachable. Thus,

if the primary server is unavailable, updates to the zone will be maintained. While this is

an improvement to standard DNS, this problem is also handled by the agent name system.

If the primary goes down for any zone, its slaves will receive leave messages and they

49

will negotiate amongst themselves to elect a new primary. Any updates to the zone will

then be handled by the new primary.

Meta IP also includes several features that make it more enterprise friendly. It

provides remote access services that track users to the addresses they login from, user

login authentication services, and logon monitors. Meta IP, like QIP, uses a centralized

data store to allow for centralized administration of all services.

4.3.2.3 NTS IP Server

In addition to providing integrating DNS and DCHP, IP Server also includes a

NetBIOS NBNS. The goal of the IP Server is to provide a single solution that

streamlines the administration of the above three services [40]. To reach this goal, NTS

have added two extensions to the DNS protocol.

The first DNS extension developed by NTS allows for servers to have "peer

backups". These are essentially duplicates of the server, and unlike secondary servers,

they are always consistent with the main server (Figure 14). Essentially, "peer backup"

allows for more than one primary server. Thus if one fails, the other is available for

updates. Peer backups share a consistent database of resource records. When one server

receives an update, it is instantly transmitted to its peer. If one server should become

unreachable, the other will continue to operate, and upon successful revival of its peer, it

will transmit all changes it has received since communication terminated between them.

50

web.mit.edu

LAN
connection

Figure 14 - Peer Backup IPservers (from [9])

The other DNS extension allows for zone "co-serving". A zone can be split into a

number of pieces, each served by a different server. However, any of the servers may be

queried and appear to be primary masters for the zone. They will communicate amongst

each other and return the correct answer to the resolver. For larger zones, this may lead

to a performance improvement as the load can be balanced amongst a number of different

servers. In addition co-servers may be deployed geographically near to clients, thereby

partitioning and localizing DNS traffic [40]. Figure 15 illustrates the operation of DNS

co-serving.

51

IPserver A
DHCP

DNS

NBNS

IPserver B
DHCP

DNS

NBNi

1. The DHCP server leases an IP address

2. DHCP server updates DDNS database

3. The DHCP server instantaneously sends the new

lease "Configuration" to its peer backup DHCP

server

4. The DNS server sends its new resource record to

its peer backup DNS server

Look up
Yern.mit.edu" Ierver A Iserver

a.mit.edu d.mit.edu
b.mit.edu
c. it.edu

I.mit.edu

Yes, here is D ydu nsw
"n~mitedu" n.mit.edu"?

Itserver C IPServer D
m.mit.edu p.mit.edu
n.mit.edu
o.mit.edu

Z.Mit.edu

Figure 15- IPserver co-serving for the mit.edu zone (from [9])

IIP Server is not based on any version of BIND and is instead built from the

ground up to provide these services. The extensions created by NTS for DNS allow them

to improve reliability and performance of their DNS system. However, these extensions

are not Internet standards, and only those servers running the NTS IP Server will be able

to use them. The agent name system can match many of these features while at the same

time conforming to Internet standards. Primary backup is achieved in the agent name

system by immediately promoting one of the slaves to the role of primary master. The

new master may then handle any updates to the zone's resource records. Neither the

agent name system nor BIND provides any mechanism to "co-serve" a zone. The

concept of "co-serving" is directly in conflict with DNS standards [29] as they state that

every zone may have exactly one primary master. While "co-serving" may provide some

performance increase, as updates may now be handled by many servers instead of just

one, we believe it is more important to stay in compliance with existing standards.

52

4.3.2.4 Comparisons to the agent name system

In addition the products described above, there exist other similar solutions to

ease the administration and operation of DNS [20][32]. Nearly all of these vendor

products offer features that appeal to the corporate environment. These features include

user profile support, directory services, and remote administration. While these features

are certainly advantageous in the corporate environment, they do not pertain directly to

the name system. In addition, the goal of these commercial solutions is to provide a

central point of administration for the entire network.

In contrast, the agent name system takes a decentralized approach to the

administration of the network. No one manager is in charge of the entire management

and most network operations such as creating a new zone and electing a new master

require communication amongst multiple managers. The decentralized approach allows

for the relevant portions of the network to be involved in the decision making process.

Table 4 illustrates the different features of each commercial solution as well as the

features offered by the agent name system.

53

Table 4 - Comparison of Commercial Solutions to the Agent Name System

Configuration free 0 0 0 0

Administrator free 0 Q Q Q

Allow hosts to freely join
and leave network

Allow name servers to
freely join and leave 0 0 0
network

Based on BIND Q 0

Properly handle updates
while primary is 0 0
unavailable

Handle failure of slave
server with no intervention

Does not use propriety Q 0
DNS extensions

Decentralized
administration 0 0 0 0 0

Centralized administration 0 0

Enterprise features (profile 0 0
support, directory service)

Remote Administration 0 S 5 5 0

GUI for Administration 0 5 5 5 5

Configuration error 0
detection

Built in DNS security 00 0 0

54

Another key difference between the agent name system and those described in this

section is the procedure for introducing new name servers into the system. Both the

commercial systems and the agent name system require no administrative input when

hosts join and leave the network. However, only the agent name system allows for

servers to do the same. In all of the above products, extensive reconfiguration is required

when a server exits or joins the network.

While most of the commercial products provide a method to handle update messages

while the primary server is down, none of them provide a permanent solution like the

agent name system. They simply store the updates until the primary comes back on line

or allow the secondary server to process them. However, if the secondary also fails, the

updates will be lost. In contrast, the agent name system quickly promotes a new server to

primary allowing all updates to be recorded permanently. Networks managed by the

commercial solutions must be carefully planned so that the master/slave server

relationship exists for all zones. Servers must be configured so that they are aware of the

locations of the other servers. In the best case, the commercial products provide a human

administrator a nice graphical user interface for performing the necessary configuration.

In the worst case, manual editing of the configuration files is needed. Whatever the case

is, the agent name system provides a simpler solution. No human administration is

necessary when name servers exit or join the network, as the managers will communicate

amongst themselves and adapt dynamically to the changing network topology.

55

Chapter 5 Improvements to the Self-
Configuring and Self-
Administering Name System

Although Feng's design has several desirable attributes, it is not perfect. In

particular, any network managed by the agent name system cannot communicate with an

outside network. Also, security concerns seemed to be an afterthought, as no security

measures were built into the system. This chapter outlines several improvements to the

agent name system that will solve the above problems as well as increase overall system

performance.

5.1 Compatibility with other networks

The current implementation of Feng's agent program is designed to only handle

names and addresses in the domain managed by the agent name system. Presently, there

is no requirement or method for hosts to communicate with other networks not under

control of the agent system, such as the Internet.

In order to enable interaction with other networks, the internal root server must be

configured to manage only a portion of the DNS hierarchy and not the entire tree. Each

internal root will take a special domain name like autonomous.mit.edu and manage the

namespace in that domain. The basic operation of the agent name system will remain the

56

same, as agents in that domain would only need to be aware of autonomous.mit.edu's

address to enter the Configured state.

However, when the network managed by the agent name system is connected to

the Internet, hosts will need the ability to resolve Internet names. Therefore, every agent

name service in the system must be able receive Internet hostname queries and respond

with the correct address. To provide this functionality, each agent name service needs to

know the location of an Internet root DNS server. It can then direct the query to the root

server and recurse down the DNS tree as necessary until the correct answer is found.

Because the locations of the Internet root DNS servers are static, this can be pre-

edu DNS serve
Internet root DNS

server

Redirect query

mit.edu DNS Redirect query
server

Internal root
server for

mit.edu domain

Answer:
18.181.0.31

mit.edu domain
managed by
agent name

system

QU
of

ery for address
www.mit.edu

Internet Host

Figure 16 - An Internet host resolving the address of a host in the agent system

57

r

configured or built into the agent name system. With this information, any agent in the

system may resolve any hostname on the Internet.

It also necessary for hosts on the Internet to be able to resolve the names of hosts

managed by the agent name system. To do this, the agent's internal root server must be

properly registered in the Internet's DNS hierarchy. This way any host on the Internet

may query the Internet root server for an address managed by the agent name system.

That resolver will be redirected down the DNS tree until it reaches the internal root server

of the agent name system network, which will then return an answer or direct it to a

manager in the system which is authoritative for that zone (see Figure 16).

5.2 DNS Messages

As described in Section 3.4 the agent program acts a filter for each DNS message

sent to the BIND process. If the DNS message is an update, the agent program sends it to

the appropriate manager or creates a new zone. For every other DNS message the agent

program simply forwards the message to the local BIND process, waits for the result, and

directs the result back to the original sending host.

This approach will suffer performance degradation when compared to normal

BIND implementations. This is because the agent program must first examine every DNS

message to see if its an update message. Then if the message is not an update, it has to

log the sender of the message, forward the message to BIND, examine the answer,

lookup the sender of the original message, reconstruct the message, and finally send it

back to the correct host. This is an addition to the work that BIND will perform on the

message it receives, such as looking up the address from its database, or querying other

DNS servers. Comparatively, the number of updates versus the total number of DNS

58

messages is very low, as any network will have much more queries than host updates.

Under heavy load, this design of the agent name system will fail before standard

implementations of BIND, due to the extra overhead of filtering every message.

Because the number of update messages is dwarfed by the total number of DNS

messages, it would be ideal if the agent name system could respond to these messages as

fast as a standard BIND implementation. This can be accomplished by allowing the local

BIND process to listen on the standard DNS port, port 53. Therefore, hosts in the

network will query the local BIND process directly, bypassing the agent program

altogether. Port 54 is still used for inter-agent communication.

This solution will provide equal performance to standard BIND, because the agent

is not involved in any DNS messages. However, it is still necessary for the agent

program to receive the update messages, as these need to be processed as described in

Section 3.4.1. BIND may not directly receive update messages because if the zone does

not exist, it will return an error to the update sender, instead of creating a new zone.

The DNS specification states that update messages may come from hosts, DHCP

servers, or other DNS servers [48]. However, in a network managed by the agent name

system, only other managers and the IP configuration process are allowed to send an

update message to an agent. Hosts must first register with the IP configuration process,

and that process will relay the information to the agent program. Other updates will be

ignored. Therefore, we can require that all update messages be sent to a manager's port

54, where the agent program may examine the message before taking any action. Any

action the agent program takes will be according to the procedure described in Section

3.4.1. The only change is that it will now listen on port 54 for updates and when

59

necessary, it will forward the update to the local BIND process running on port 53.

Figure 17 shows the new interaction between the agent, BIND, and other processes.

Secure DNS updates (see Section 5.4.2) may be used to ensure that only updates

received from the trusted local lIP configuration service or another manager are processed

Agent Program

DNS
Message

Manager
l

sAgent Message

Service
Agent

Agent Programm datet HoagstRsle

Ip Prt 5 IDcn ie BIND
Configuration dte Process

Service DNS Message hPort #53
(te update)

DNS

AgntPrgrm DNS Message

Agen Proram upd teHost Resolver

Figure 17 - Relationship between BIND, agent program, and other processes. Updates are now
the only DNS message handled by the agent.

by the manager [50]. BIND will therefore refuse any update message received on port 53

coming from a host, or untrusted manager.

This change keeps all existing functionality of the agent name system, including

dynamic zone creation, while increasing the performance to be equivalent to standard

implementations of BIND. It also decreases the complexity of the agent program, as it

no longer needs to deal with other DNS messages besides update messages or listen on

two ports simultaneously.

60

5.3 Agent Messages

In order to fully optimize the performance of the agent program, the agent

messages must also be reviewed. By changing the message payload or the agent's

response to the receipt of the message, it may be possible to increase performance, while

maintaining the current state of functionality.

5.3.1 becomeslave

When a primary master has less than the required number of slaves needed to

serve its zone, it calls the getSlave function. getSlave adds new slaves by sending

random known servers the becomeslave agent message. Managers which receive the

becomeslave messages reconfigure their BIND process to act as a slave for the new zone,

regardless of the current number of zones they already serve. This could lead to a single

manager being authoritative for a large number of zones and therefore increasing its load,

while other managers serve only a single zone with a light load. The optimal solution

would be to distribute the load evenly across all managers.

If agents are permitted to decline becomeslave messages, the system could come

closer to achieving the goal of an evenly distributed load. When an agent is already

serving a number of zones and is at near capacity, it could respond to a becomeslave

message with a decline message. Then the manager sending the becomeslave would pick

a new agent to become its slave. However, if the requesting manager sends a

becomeslave message to all other agents and they decline, then it may send a forceslave

message to an agent which cannot be declined. This would ensure that a primary server

would have a backup.

The becomeslave message, however, is not only used by the getSlave function. It

61

is also used when a new primary server is elected. Every slave of the old primary master

is notified by the new master with a becomeslave message. This message should not be

declined, as it would result in a incorrectly configured agent. To prevent this, the agent

can use forceslave messages instead of becomeslave. The forceslave message would be

used in every case that becomeslave was used previously, except for the getSlave

function. The getSlave function would be the only sender of becomeslave messages.

5.3.2 negotiatemaster

The negotiatemaster message is used when two different managers believe they

are primary master for the same zone. The two conflicting servers exchange

negotiatemaster messages and elect a new master based on message's payload. The

payload includes the number of slaves the server currently has and the server ID of the

sender. Currently, the manager with the most number of slaves will be the new master.

If both managers have the same number of slaves, then the server with the higher ID will

be elected.

When the servers have the same number of slaves, then the computer that is best

equipped to handle responsibility for the zone should be elected. "Best equipped" can be

defined by such statistics as CPU speed, available memory, etc. If these statistics are

included in the payload of the negotiatemaster message, the conflicting servers can use

them when making their decision. This ensures that the computer with the most available

resources will be elected as the primary master for the zone, and most likely leading to an

increase in performance.

5.3.3 discover

Discover messages are used when a new agent joins the system. Every agent in

62

the system will receive two discover messages whenever an unconfigured agent joins the

network. The first will come when the manager discover process discovers the new

agent. A configured agent receiving this discover message will update its state

information with the new manager's information. Then when the new agent is

configured, a second discover message will be received by each agent on the network.

This message informs them that the new agent is configured and will include the newly

configured agent's server record. These discover messages generate a nontrivial amount

of network traffic and could have negative impact on system performance.

In [13] Feng suggests a solution that will cut the number of discover messages

received for each new manager from two to one. He proposes that each new agent enter

the network configured as the internal root server. Only after the new agent hears of an

existing internal root, will it change its configuration. To do this, it will negotiate with

the internal root server using the previously discussed negotiatemaster message. Once

the conflict is resolved, it may again begin servicing name requests.

Surely this is an improvement upon the existing implementation, as each new

agent would require each configured agent to receive only one discover message.

However, the negotiation between the conflicting roots also requires a nontrivial amount

network traffic. This is especially true when one master is demoted to slave and all its

previous slaves must be notified of their new master.

A better solution is to loosen the requirement that every manager receive a

discover message whenever a new agent is introduced to the system. The discover

information should be passed on a "need to know" basis. That is, only those managers

that will directly interact with the new agent should be informed. This drastically reduces

63

the number of discover messages, and also avoids the extra traffic involved when

negotiating a new master.

To accomplish this, we must first define which servers "need to know" of an

agent's arrival or departure. Clearly, the internal root server should be notified, as it

keeps an accurate view of the current network topology. In addition, master servers

should be aware of every slave for the same zone. Likewise, slaves should be aware of

the primary master for their zone.

When a new manager is introduced into the network, its IP configuration service

will notify it of any other managers it finds. If no other managers are found it will

assume it is the only manager in the system and configure itself as the internal root

server, as described in Section 3.7.1. If it locates other managers on the network it will

also behave as described in Section 3.7.1. The only difference is that existing managers

will not propagate the knowledge of the new agent. The new agent will send a getroot

message to one existing manager and then configure itself with the location of the

internal root server and send a discover to the root server. Upon receipt of the discover

message, the internal root will record the new server record in its state information. The

internal root server always has an accurate view of all the managers in the system.

Because individual managers are not aware of every agent in the system, the

getSlave function may not operate correctly. This is because the agent may not know of

any other servers that are not already slaves for its zone. Therefore, in order to find more

slaves, the agent must contact the internal root server and request server records for other

managers.

The internal root server will now have the responsibility of detecting conflicts.

64

When a new manager joins the system and claims to be primary master for the same zone

as another existing manager, the internal root will recognize this, and send a discover

message to the both primary masters. The two conflicting managers will then resolve

their conflict in the same manner as described in Section 3.5.

5.4 Security Concerns

The current implementation of the system has no security mechanisms built in.

Securing a network designed to be configuration-free and administrator-free creates a

conflict, as any meaningful security mechanism will require some sort of configuration

[51]. The best that anyone can hope to accomplish is to minimize the configuration

overhead necessary to keep the system secure. For a closed environment such as a

corporate intranet, perhaps the easiest security model is to have none at all, simply

relying on physical security mechanisms to control access to the machines [46]. This will

work well for an environment that is well controlled and where one can physically

control access to the network. If a corporation only allows approved machines and

approved users to plug into the ethernet, it is impossible for an outside intruder to gain

access to the network.

However, as wireless networks become increasingly popular, controlling physical

access to networks becomes impossible [15]. Insecure wireless networks allow anyone in

range to send and receive data. This allows for theft of services (such as an individual

using his or her neighbor's internet connection), as well as the potential for malicious

hosts to be introduced to the system.

Another reason for incorporative security capabilities is when the network

managed by the agent-naming system is connected to another larger network, such as the

65

Internet. If the system is left insecure, any host in the world could attempt to violate the

network's security.

When a network is managed by the agent naming system, it should be at least as

secure as a standard IP network. That is, the agent naming system should not open up

any new holes into the DNS system. Currently, most DNS implementations are

completely insecure, instead relying on redundancy and physical security as the best

weapon from attack [50]. DNS servers are kept in a trusted, safe location and distributed

throughout the network. Normal DNS servers only allow administrators at the physical

machine to change the configuration of the DNS server. However, because the agent

naming system allows other agents to change its configuration, it is prone to attacks from

outside. If a malicious user could introduce a "rogue agent" into the system, it could do

significant damage.

The managers in the agent naming system have two main functions. First, they

provide IP configuration information to new hosts that join the network, and second they

provide the name to address resolution service for the network. Each of these services is

vulnerable to attack, and for a fully secure network, both must be secured.

There are two possible methodologies for securing the managers. The first is to

use IPSec to provide network layer security for all traffic [21]. The second is to secure

the individual protocols that provide IP configuration and name to address resolution.

Both are discussed in the following sections.

5.4.1 IPSec

RFC 2401 defines the protocol and motivation for IPSec. It states:

"IPSec is designed to provide interoperable, high quality,

66

cryptographically-based security for IPv4 and IPv6. The set of security

services offered includes access control, connectionless integrity, data

origin authentication, protection against replays (a form of partial

sequence integrity), confidentiality (encryption), and limited traffic flow

confidentiality. These services are offered at the IP layer, offering

protection for IP and/or upper layer protocols."

IPSec uses two protocols to secure traffic: Authentication Header (AH) and

Encapsulating Security Payload (ESP). For more information consult their respective

RFCs [21][22]. The combination of these two protocols allows the user to select the

granularity at which security service is offered. IPSec uses shared secret values

(cryptographic keys) to encrypt and authenticate data. It relies on separate mechanisms

to distribute these keys among hosts. This may be done manually or through an

automatic key distribution method like IKE [16]. For environments where a vendor

controls the hardware used in the network (such as corporate intranets, or even cellular

networks), the key may be pre-installed by the hardware manufacturer. This would

preclude the need for an automatic key distribution method. However, automatic

systems, while being more complicated to implement, allow for more flexibility in the

network. A multiple of different hardware devices could be added as long as they

conform to the appropriate key distribution protocol. If the key is pre-installed in

hardware, it may need to be updated manually if for any reason it becomes compromised.

Key distribution is a significant problem in securing any network, particularly those

designed for zero-configuration and administration. Other possible approaches include

[51]:

* Using an "out-of-band" mechanism to transfer security, such as barcodes,

smart cards, etc.
67

" Diffie-Hellman key agreement [23], with an additional form of external

authentication to prevent man-in-the-middle attacks.

" A public key certification approach (such as the DNS extensions,

described in the next section)

Steve Hanna discusses various secret sharing schemes in more depth in his

internet draft [51]. For the remainder of this thesis, I will assume that there is a

mechanism in place for distributing keys and concentrate on the security protocols that

use these keys.

Using IPSec, all traffic between managers is authenticated and optionally

encrypted [21]; this ensures that no malicious user can place a rogue manager into the

network, for it will not be able to authenticate itself. Also hosts can authenticate

managers, so that when they receive their IP configuration, they can make sure it is

correct and that it came from a known manager. The alternative to using IPSec is to

secure the existing lIP configuration protocol and name to address resolution protocol.

5.4.2 Securing the individual protocols

The managers in the agent based naming system rely on DHCP to perform host IP

configuration. Normal DHCP operation provides no security. Hosts discover DHCP

servers through directed broadcasts on the local network and the DHCP server replies

with an available IP address. This open model allows for several attacks. The inherent

threat to any DHCP server is an insider threat. This is because when routers are

configured correctly, DHCP packets only flow on the local medium. Thus, the DHCP

server and host must be on the same local network. The main threat to a DHCP client (a

host that is requesting information from a server) is a rogue DHCP server introduced to

68

the network. This server can be configured to give false information, reeking havoc on

the state of the network.

To prevent such attacks the IETF has proposed a standard for authenticating

DHCP messages [8]. Their proposal defines a technique that can provide both entity

authentication and message authentication. It uses a combination of the original Schiller-

Huitema-Droms authentication mechanism along with the "delayed authentication"

proposal developed by Bill Arbaugh [8]. Like IPSec, they assume a mechanism for

distributing shared secrets. [18] also describes a DHCP authentication mechanism using

Kerberos.

Using the proposed standards, a host can be assured that his configuration is

coming from a reliable source and it can be trusted. Also, the DHCP can authenticate a

client if necessary. In an open network environment, this is not necessary as any host

may join. However, if the administrators choose to only allow access to certain hosts,

this would allow the DHCP server to detect invalid clients masquerading as valid clients.

One threat that DHCP authentication does not address is denial of service attacks.

These attacks can involve the exhaustion of valid addresses, or the consumption of all

available network or CPU resources. This vulnerability is present anytime there is a

shared resource available. The best current solution to such attacks is to provide

redundancy of services.

Every manager in the network also provides naming services via DNS. DNS is

also an insecure protocol, though there are configurations in use today that can protect

themselves from many attacks [10]. In order to fully address the insecurities in DNS, the

IETF has standardized the DNS Security Extensions (DNSSEC) [11]. DNSSEC provides

69

three distinct services: key distribution, data origin authentication, and transaction and

request authentication. DNSSEC was not designed to provide any sort of confidentiality

for queries or replies. This is because the designers feel that DNS data is public and that

DNS should give the same answers to all inquirers. Similarly, no attempt was made to

implement any sort of access control lists for DNS. If confidentiality is needed for

queries (such as DNS updates) this can be provided by the IPSec protocol.

To implement the key distribution system into DNS, DNSSEC defines a new

resource record (RR) to associate keys with domain names. This allows the DNS to

function as a public key distribution mechanism for either DNS security itself or other

security protocols (such as IPSec). Thus to find the public the key of any host in the

network, a client must simply query a known DNS server.

Data authentication is provided by associating cryptographically generated digital

signatures with resource record sets. Usually there is a single private key that

authenticates each zone [11]. If a resolver reliably learns the public key of a zone, it may

authenticate any signed data read from that zone. Note that the keys are not associated

with servers, but zones. So data received from the slave server or master server is signed

by the same key. Resolvers may obtain public keys of zones from either DNS or by

having it statically configured beforehand. To read a key from DNS reliably, the key

itself must be signed with another key that the resolver trusts. To start, a resolver must be

configured with at least one zone's public key. Then it can use that key as a starting point

and reliably read keys for other zones if they are stored in the DNS.

DNS transaction and request authentication maintains an ability for a resolver to

be assured that the authenticated response it got from the DNS was a reply to the correct

70

query. This is accomplished by the DNS returning the concatenation of the query and

response signed with the entity's digital signature. Request authentication also allows a

host to be authenticated by the server. This is only useful in the case of secure DNS

updates.

Thus, in order to provide a secure implementation of the agent naming system,

DHCP authentication and DNS security extensions are needed. The minimal

configuration needed for this system is every host needs the public key of its zone. Then

with this public key, it can authenticate the DNS, and receive new reliable keys. When a

new host is added to the system, it is authenticated with DNS and secure DNS updates

are sent to the appropriate manager.

Additionally all non-DNS communication between managers (discover, leave

messages, etc.) should be sent strictly over IPSec. This ensures every manager in the

network may be authenticated. To accomplish this, all managers in the system must

share a secret. It is not unreasonable to assume that this be done out-of-band, as all

managers in the same network should be controlled by some central authority (either a

person, or corporation). Thus, they will have methods in place to distribute the shared

secrets reliably and securely.

These individual secure protocols may prove to be lighter weight than IPSec;

however, they do not provide confidentiality of data. If confidentiality of data is desired,

IPSec must be used to encrypt all data. IPSec may also be easier to implement as it is a

broad solution covering all network traffic. The only requirement is that host's and

manager's TCP/IP stack support IPSec. When IPSec is not used for security, any

additional services added to the system must provide their own mechanism and protocol

71

for authentication.

72

Chapter 6 Conclusion

DNS is an essential service on modem networks of any size. However, because

of its complexity, administering DNS can prove quite difficult. Nearly all corporations

today that run an internal intranet dedicate full-time personnel to this job. It is because of

this complexity that much current research is devoted to simplifying DNS administration.

The implementation of the agent program successfully solves the problem of

providing a scalable and fault-tolerant way to store name-to-address mappings and to

handle name-to-address resolutions in the absence of human configuration or

administration. The agent program handles the configuration and administration of a

DNS name server implementation called BIND, and BIND stores name information and

answers name queries with scalability and fault-tolerance in mind. In comparison to

approaches proposed by other researchers, the agent name system offers superior

functionality for large networks and can also be more easily integrated with existing

Internet solutions. With the improvements of Chapter 5, the agent name system provides

equal performance to standard BIND implementations, while at the same time providing

superior functionality.

In particular, the improved agent name system requires no manual configuration

or administration, a feature that other DNS implementations cannot match, commercial

73

or otherwise. A procedure for securing the agent name system using existing

standardized protocols is also presented in this thesis.

The improved agent name system presented in this thesis offers solutions for

many of today's networks. It offers a simple solution for homes and small businesses

that can't afford a permanent IT staff to administer their network, while being scalable

enough to handle networks of much larger size and complexity.

74

Chapter 7 Bibliography

[1] P. Albitz, C. Liu, DNS and Bind, 3 d Edition, O'Reilly, 1998.

[2] AppleTalk Network System Overview, Addison-Wesley Publishing Company,
Inc., 1990.

[3] BIND Administrator Reference Manual, Nominum BIND Development Team,
January 2001.

[4] H. Chao, T.Y. Wu, S.W. Chang, R. Wang, "The Network Topology Based
Domain Name Service", Proc. of Int. Workshops on Parallel Processing, pp. 214-
219, 1999.

[5] S. Cheshire and B. Aboba, "Dynamic Configuration of IPv4 Link-Local
Addresses", draft-ietf-zeroconf-ipv4-linklocal-02.txt, March 2001. (work in
progress)

[6] M. Crawford, "IPv6 Node Information Queries", draft-ietf-ipngwg-icmp-name-
lookups-07.txt, August 2000.

[7] R. Droms, "Dynamic Host Configuration Protocol", RFC 2131, March 1997.

[8] R. Droms, ed., "Authentication for DHCP Messages", draft-ietf-dhc-
authentication-16.txt, January 2001. (work in progress)

[9] "Dynamic DNS, Infrastructure essential for today's intranets",
http://www.nts.com/collateral/ddnstechpaper.pdf

[10] D. Eastlake, "DNS Security Operational Considerations", RFC 2541, March
1999.

[11] D. Eastlake, "Domain Name System Security Extensions", RFC 2535, March
1999.

[12] L Esibov, B. Aboba, and D. Thaler, "Multicast DNS", draft-ietf-dnsext-mdns-
00.txt, November 2000.

75

[13] M. Feng, "A Self-Configuring and Self-Administering Name System", Master's
Thesis, Massachusetts Institute of Technology, 2001.

[14] C.S. Giap, Y. Kadobayashi, S. Yamaguchi, "Zero Internet Administration
Approach: the case of DNS", Proc. of12'h Int. Conf on Information Networking
(ICOIN), pp. 350-355, 1998.

[15] E. Guttman, "Zero Configuration Networking", Proceedings of INET 2000, 2000.

[16] D. Harkins and D. Carrel, "The Internet Key Exchange (IKE)", RFC 2409,
November 1998.

[17] M. Hattig, ed., Zeroconf Requirements, draft-ietf-zeroconf-reqts-07.txt, March
2001. (work in progress)

[18] K. Hornstein, et al, "DHCP Authentication Via Kerberos V", November 2000.

[19] D.B. Johnson, "Scalable Support for Transparent Mobile Host Internetworking",
Mobile Computing, ch. 3, 1996.

[20] "JOIN DDNS", http://www.join.com/ddns.html

[21] S. Kent and R. Atkinson, "IP Authentication Header", RFC 2402, November
1998.

[22] S. Kent and R. Atkinson, "IP Encapsulating Security Payload (ESP)", RFC 2406,
November 1998.

[23] S. Kent and R. Atkinson, "Security Architecture for the Internet Protocol", RFC
2401, November 1998.

[24] Y. Lin and M. Gerla, "Induction and Deduction for Autonomous Network", IEEE
Journal on Selected Areas in Communications, vol. 11, no. 9, pp. 1415-1425,
December 1993.

[25] "Lucent QIP Enterprise 5.0: Automating IP Services Management",
http://www.qip.lucent.com/products/qipent_6093.pdf

[26] "Meta IP Technical White Paper",
http://www.checkpoint.com/products/metaip/whitepaper.pdf

[27] "Microsoft Vision for Home Networking",
http://www.microsoft.com/homenet/Vision.htm, March 12, 2001.

[28] P.V. Mockapetris, "Domain Names - Concepts and Facilities", RFC 1034,
November 1987.

[29] P.V. Mockapetris, "Domains Names - Implementation and Specification", RFC
1035 November 1987.

76

[30] T. Narton, E Nordmark, and W. Simpson, "Neighbor Discovery for IP Version 6
(IPv6)", RFC 2461, December 1998.

[31] N. Nuansri, T. Dillon, S. Singh, "An Application of Neural Network and Rule-
Based System for Network Management: Application Level Problems", Proc. of
30'h Hawaii Int. Conf on System Sciences, vol 5, pp. 474-483, 1997.

[32] "Optivity NetID",
http://www.nortelnetworks.com/products/01/unifiedmanagement/collateral/onetid
_brief.pdf

[33] C. Park, et.al., "The Improvement for Integrity between DHCP and DNS", High
Performance Computing on the Information Superhighway, pp. 511-516, 1997.

[34] C. Perkins, ed., "IP Mobility Support", RFC 2002, October 1996.

[35] C.E. Perkins, "Mobile networking in the Internet", Mobile Networks and
Applications, vol. 3, pp. 319-334, 1998.

[36] C.E. Perkins, K. Luo, "Using DHCP with computers that move", Wireless
Networks, vol. 1, pp. 341-353, 1995.

[37] "Protocol Standard for a NetBIOS Service on a TCP/UDP Transport: Concepts
and Methods", RFC 1001, March 1987.

[38] J. Reynolds and J. Postel, "Assigned Numbers", RFC 1700, October 1994.

[39] D. Sabin, et al, "A Constraint-Based Approach to Diagnosing Configuration
Problems", Proceedings IJCAI-95 Workshop on AI in Distributed Information
Networks, 1995.

[40] "Shadow IPserver", http://www.nts.com/collateral/ipserverdatasheet.pdf.

[41] "Sharp Shows First 'Internet Ready' Convection Microwave Oven", Company
Press Release, April 27, 2001.

[42] Y. Shim, H. Shim, M. Lee, 0. Byeon, "Extension and Design of Secure Dynamic
Updates in Domain Name Systems", 5 'h Asia-Pacific Conference on
Communications (APCC), vol. 2, pp. 1147-1150, 1998.

[43] G.S. Sidhu, R.F. Andrews, A.B. Oppenheimer, Inside Appletalk, Second Edition,
Addison-Wesley Publishing Company, Inc., 1990.

[44] M. Stapp and Y. Rekhter, "The DHCP Client FQDN Option", draft-ietf-dhc-fqdn-
option-Ol.txt, March 2001. (work in progress)

[45] R. Thayer, N. Doraswamy, and R. Glenn, "IP Security: Document Roadmap",
RFC 2411, November 1998.

77

[46] H. Toivanen, "Secure Zero Configuration",
http://citeseer.nj.nec.com/401221.html.

[47] P. Vixie, "A Mechanism for Prompt Notification of Zone Changes (DNS
NOTIFY)", RFC 1996, August 1996.

[48] P. Vixie, et.al., "Dynamic Updates in the Domain Name System (DNS Update)",
RFC 2136, April 1997.

[49] P. Vixie, et al, "Secret Key Transaction Authentication for DNS (TSIG)", RFC
2845, May 2000.

[50] B. Wellington, "Secure Domain Name System (DNS) Dynamic Update", RFC
3007, November 2000.

[51] A. Williams, "Securing Zeroconf Networks", draft-williams-zeroconf-security-
00.txt, November 2000. (work in progress)

[52] "Zero Configuration Networking (zeroconf) Charter,
http://www.ietf.org/html.charters/zeroconf-charter.html

78

