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Abstract

The model of geodesic curves in three dimensions is a powerful tool for image segmen-
tation and also has potential for general classification tasks. We extend recent proofs
on curve evolution and level set methods to a complete algorithm for the segmentation
of tubular structures in volumetric images, and we apply this algorithm primarily to
the segmentation of blood vessels in magnetic resonance angiography (MRA) images.
This application has clear clinical benefits as automatic and semi-automatic segmen-
tation techniques can save radiologists large amounts of time required for manual
segmentation and can facilitate further data analysis.

It was chosen both for these benefits and because the vessels provide a wonderful
example of complicated 3D curves. These reasons reflect the two primary contribu-
tions of this research: it addresses a challenging application that has large potential
benefit to the medical community, while also providing a natural extension of previous
geometric active contour models research.

In this dissertation, we discuss this extension and the MRA segmentation system,
CURVES, that we have developed. We have run CURVES on over 30 medical datasets
and have compared our cerebral segmentations to segmentations obtained manually
by a neurosurgeon for approximately 10 of these datasets. In most cases, we are
able to obtain a more detailed representation of the thin vessels, which are most
difficult to obtain. We also discuss a novel procedure for extracting the centerlines of
tubular structures and proof-of-concept experiments applying surface evolution ideas
to general feature-based classification problems.

This work is a collaboration with Brigham and Women’s Hospital.

Thesis Supervisor: Olivier D. Faugeras
Title: Adjunct Professor of Computer Science and Engineering

Thesis Supervisor: W. Eric L. Grimson
Title: Bernard M. Gordon Professor of Medical Engineering



Acknowledgments

I am fortunate to have had the opportunity to work with my advisors Olivier Faugeras
and Eric Grimson. Olivier’s excitement for the mathematical foundations of image
analysis and for this project have made this project a truly enjoyable exploration
which has challenged and strengthened both my mathematical skills and my under-
standing of the field. He introduced me to this project, and his expertise and insight
have taught me about computer vision and scientific research in general. I thank him
for these lessons and for his confidence in me and his constant support.

Eric’s expertise, guidance, and assistance have also been invaluable over the course
of this project and of my entire stay at MIT. His leadership of a variety of projects
in our group has taught me about diverse computer vision methods, and his strong
collaboration with Brigham & Womens Hospital has enabled the unparalleled benefit
I have enjoyed from working closely with clinicians. I am grateful for these lessons,
his advising, and his constant support.

I thank Ron Kikinis for teaching me about the clinical utility of this area of
work and for helping to focus my attention on the aspects that are most important
practically, for providing datasets and for providing this fabulous inter-disciplinary
experience where I could benefit from close collaboration with medical specialists.
I thank Tomas Lozano-Pérez for encouraging me to focus on the big picture of my
research and for broadening the scope of my thinking about this project. I thank
Carl-Fredrik Westin for assistance on so many aspects of the project, from detailed
algorithm discussions to validation suggestions to data acquisition.

I thank Arya Nabavi for providing the manual segmentations used for validation
in this study and for many discussions which have helped me to better understand
the vasculature in the brain and to share his enthusiasm for this beautiful structure.
I thank Renaud Keriven for efficient level set prototype code. I thank Dan Kacher
for acquiring the multiresolution medical datasets, Yoshinobu Sato for discussing
validation approaches, and Mike Leventon for providing help and distance function
code. I thank Sandy Wells for discussions on this and related projects, Chris Stauffer
for tracking data, and Siemens for medical datasets.

While acknowledging my advisors, readers, and collaborators, I claim any errors
as my own.

Finally, I thank my colleagues at the AI Lab, INRIA, the SPL, and elsewhere who
have contributed to this research through discussion and friendship. I especially thank
my family — Charles, Shirley, Susan, and Lori Lorigo — for loving and supporting me
in all endeavors.

This document describes research performed at the Artificial Intelligence Laboratory at the Mas-
sachusetts Institute of Technology. Support was provided by NSF Contract 1IS-9610249, by NSF
ERC (Johns Hopkins University agreement) 8810-274, by Navy/ONR (MURI) N00014-95-1-0600,
and by NSF Contract DMS-9872228. This work was a collaboration with the Surgical Planning
Laboratory at Brigham and Women’s Hospital and unless otherwise noted all medical datasets
are courtesy of our collaborators there. Funding also provided by NIH 1R01RR11747 and NIH
1P41RR13218. Some research was also performed at INRIA in Sophia Antipolis, France.



To my parents.



Contents

Introduction
1.1 Algorithm perspective . . ... ... ... .. ... ... .......
1.2 Application perspective . . . . . . .. .. ... o o
1.2.1 Medical . . ... ... . .. . e
1.2.2 Classification . . .. ... .. ... . ... ... ..
1.3 Contributions . . . . . .. ... .. e
1.4 Roadmap . . .. .. . . . . . . . e
Background Mathematics
2.1 Mean Curvature Flow . .. ... .. ... .. ... ..........
2.1.1 Hypersurfaces . . . . ... .. ... ... .. L ..
2.1.2 Higher Codimension . . ... ... ... ... .........
2.2 Level Set Methods . . ... .. ... ... .. ... .. ... .....
221 Motivation. . . . . ... .. s
2.2.2 Hypersurfaces . . . . .. ... ... .. ... ..
2.2.3 Higher Codimension . . ... ... ... ............
2.2.4 Numerical Techniques . . . . .. ... ... ... .......
2.3 Viscosity Solutions . . . . . .. ... ... . e
2.3.1 Definition . . ... ... ...
2.3.2 Hlustration . . ... ... ... ... .. ... . ...
Active Contour Models
3.1 Classical Snakes . . . . . . . .. . . . . e
3.1.1 Energy Functional . .. .. ... ... ...... .. .....
3.1.2 Findinga Minimum . . . . ... ... .. .. .. ... ... ..
3.1.3 Limitations . ... ... ... .. ... ... . ...
3.2 Balloons . . . .. .. . . . .. e e e
33 T-Smakes . . . . . . . . . e
331 Equations .. ... ... ... ... .. L.
3.3.2 Reparameterization . . . . . . .. ... ... ... 0L
3.3.3 Topological Changes . . ... ... .. ... ..........
34 GeodesicSnmakes . . . . . . . .. ... ... e
3.4.1 Curve Evolution Equation . . . ... ... ...........
3.4.2 Equivalence to Classical Snakes . . . . ... ... .......

3.43 Level Set Implementation . . ... ...............



CONTENTS

3.44 Minimal Surfaces . . .. ... ... ... .. ... ... ...
3.4.5 Other Partial Differential Equations for Segmentation . . . . .
346 Extensions. . . . ... .. . . . .. e
3.5 Discussion . . . . . . ... e e e e

MRA Segmentation

41 MRAData . ... ... ... .. e
4.2 Thresholding . . ... ... ... ... o
4.3 Multiscale Filtering, Local Structure . . ... ... ... ... ... ..
4.4 Intensity Ridges, Centerlines . . . . . . . .. ... ... ... .. ...
4.5 Deformable Models . . . . . ... . ... .. .. ... .. 0.,
4.6 Morphology . . . . . . . . ...
CURVES
5.1 Ewvolution Equation . . . . . ... .. ... ... . ... .. .
5.2 e-Level Set Method . . ... .. ... ... ... . ... .. ...,
5.3 Locality of Image Information . . . . . . ... ... .. ........
54 Banding . . .. .. ...
5.5 Computing Distance Functions . . . . .. .. ... ... .. .....
5.5.1 Bi-directional Propagation . . . .. ... ... ... ......
55.2 PDEMethod .. ... ... .. ... ... ... ... ....
5.6 Regularization Term . . ... ... ... ... .............
57 Image Term . . . . ... . . ... . .. ... e
5.8 Numerical Issues . . . ... ... . ... .. .. ... ...
5.9 Imitial Surface . . . . . . . . .. .. oo
5.10 Convergence Detection . . . . . . . .. .. ... ... .. .. ...
5.11 Marching Cubes . . . . . . . .. . . ... ... .. .. ...
5.12 Pre-processing, post-processing . . . . . . ... ... .. 0.
Results
6.1 ValidationIssues . ... ... ... ... ... . ... ... ... ..
6.2 Simulation . . . .. .. ... e
6.2.1 Tubular Objects Under Codimension-Two Flow . . .. .. ..
6.2.2 Incorporation of ImageData . . . . ... ... .. .. .....
6.2.3 Reinitialization and Image Weighting . . . . . ... ... ...
6.3 Medical Evolution Sequences . . . . . .. ... ... ... ... ..
6.4 Aorta . . .. ... e e e e e e e e e e e
6.5 Lung CT, Comparison to Mean Curvature . . .. ... ... ... ..
6.6 Cerebral Vessel Validation . . . . .. ... ... ... .........
6.6.1 Multiresolution Validation . . . . . ... ... ... ..., ..
6.6.2 Manual Validation . .. ... ... ...............

6.7 RadiiEstimation . ... .. ... .. ... .. ... ... 0000,



CONTENTS

7 Centerline Extraction

7.1 Initial Centerline Points . . .. .. ... ... ... ... .......
7.2 Dijkstra’s Shortest Path Algorithm . . . ... ... ..........
7.3 Hierarchical Shortest Path . . . . ... ... ... ...........
7.4 Applicationto MRAdata . ... ......... ... ........
7.5 Comparison to Other Methods . . . . . ... ... ... ........

7.5.1 Singular-ness of Distance Function . . ... ... ... .. ..

7.5.2 SimplePoints . . . ... ... ... . ... ..., .. ....

8 Application to General Classification Problem
81 Approach . ... ... ... . ... ...
82 Experiments . . . ... ... ... ...

9 Conclusions

109
110
111
112
116
117
118
119

124
124
125

127



Chapter 1

Introduction

A fundamental task in computer vision is the segmentation of objects, which is the
labeling of each image region as part of the object or as background. This task can
also be defined as finding the boundary between the object and the background.

While no computerized methods have approached the capabilities of the human
vision system, the body of automatic and semi-automatic methods known as active
contour models has been particularly effective for the segmentation of objects of ir-
regular shape and somewhat homogeneous intensity. After the initial presentation of
the active contour approach by Kass, Witkin, and Terzopoulos in 1987, extensions
abounded. Such extensions included both functional improvements which yielded in-
creased capabilities and robustness improvements which improved the success rate of
the existing approach.

Our studies began with the in-depth exploration of one group of such extensions
which apply to 3D objects in 3D images, such as anatomical structures in clinical
magnetic resonance imagery (MRI), and use 3D partial differential equations as an
implementation mechanism. This group exhibits a number of advantages which will
be explained in this dissertation.

One difficulty with these approaches and all previous related approaches, however,
is their limitations in terms of presumed local object shape. In particular, it was
presumed that all 3D objects were smooth, “regular” objects. This limitation is
problematic for 3D objects whose shape better resembles lines or tubes than smooth
solid shapes, for example. An example object is the network of blood vessels in the
human body, as imaged with MR techniques. Note that we are not discussing a global
notion of object shape, but rather a local notion which looks at small areas of the
object.

To address this problem, we looked to theoretical research in the mathematics com-
munity which deals with a very general notion of local shapes in arbitrary dimensions.
This generality is large as the number of local “shapes” in arbitrary dimensions, e.g.
much greater than three, grows with the dimension of the space. We have provided
an interpretation of these ideas for application to computer vision problems and also
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to general data representation for tasks such as classification and recognition, which
are not necessarily vision-based.

To further explore these ideas, we developed a complete algorithm for the seg-
mentation of blood vessels in magnetic resonance angiography (MRA) data using
an active contours approach presuming the correct line-like local object shape. The
“lines” are modeled as geodesic (local minimal length) curves; this notion will be ex-
plained in subsequent chapters. The program we developed based on our algorithm is
called CURVES, and we have run it on over 30 medical datasets. We have compared
its segmentations with those obtained manually by a neurosurgeon for approximately
10 of these datasets. In most cases, CURVES was able to obtain a more detailed
representation of the thinnest vessels, which are the most difficult for both automatic
methods and for a human expert. Because CURVES treats the tubular-shaped vessels
as the 3D curves that comprise their centerlines and also because of clinical interest,
we have also considered these centerlines directly and have developed an algorithm
for finding them explicitly.

In short, the thesis of this research is that the model of geodesic curves in three di-
mensions is a powerful tool for image segmentation, and also has potential for general
classification tasks. This document is an elaboration on this thesis with appropriate
theoretical and empirical support. The application of MRA segmentation was chosen
both for its practical importance and because the vessels provide a wonderful example
of complicated 3D curves. These dual reasons reflect, respectively, the two primary
contributions of this research: It addresses a challenging application that has large
potential benefit to the medical community, while also providing a natural extension
of previous geometric active contour models research.

1.1 Algorithm perspective

Curvature-based evolution schemes for segmentation, implemented with level set
methods, have become an important approach in computer vision [20, 56, 96]. This
approach uses partial differential equations to control the evolution. An overview of
the superset of techniques using related partial differential equations can be found
in [19]. The fundamental concepts from mathematics from which mean curvature
schemes derive were explored several years earlier when smooth closed curves in 2D
were proven to shrink to a point under mean curvature motion [44, 46]. Evans and
Spruck and Chen, Giga, and Goto independently framed mean curvature flow of any
hypersurface as a level set problem and proved existence, uniqueness, and stability
of viscosity solutions [38, 22]. For application to image segmentation, a vector field
was induced on the embedding space, so that the evolution could be controlled by an
image gradient field or other image data. The same results of existence, uniqueness,
and stability of viscosity solutions were obtained for the modified evolution equations
for the case of planar curves, and experiments on real-world images demonstrated the
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effectiveness of the approach [17, 20].

Curves evolving in the plane became surfaces evolving in space, called minimal
surfaces [20]. Although the theorem on planar curves shrinking to a point could not
be extended to the case of surfaces evolving in 3D, the existence, uniqueness, and
stability results of the level set formalism held analogously to the 2D case. Thus the
method was feasible for evolving both curves in 2D and surfaces in 3D. Beyond elegant
mathematics, impressive results on real-world data sets established the method as an
important segmentation tool in both domains. One fundamental limitation to these
schemes has been that they describe only the flow of hypersurfaces, i.e., surfaces of
codimension one, where the codimension of a manifold is the difference between the
dimensionality of the embedding space and that of the manifold.

Altschuler and Grayson studied the problem of curve-shortening flow for 3D curves
[3], and Ambrosio and Soner generalized the level set technique to arbitrary manifolds
in arbitrary dimension, that is, to manifolds of any codimension. They provided the
analogous results and extended their level set evolution equation to account for an
additional vector field induced on the space [4]. Subsequent work developed and
analyzed a diffusion-generated motion scheme for codimension-two curves [95]. We
herein present the first 3D geodesic active contours algorithm in which the model is a
line instead of a surface, based on Ambrosio and Soner’s work. Our CURVES system
uses these techniques for automatic segmentation of blood vessels in MRA images.

1.2 Application perspective
1.2.1 Medical

The high-level practical goal of this research is to develop computer vision techniques
for the segmentation of medical images. Automatic and semi-automatic vision tech-
niques can potentially assist clinicians in this task, saving them much of the time
required to manually segment large data sets. For this research, we consider the
segmentation of blood vessels in volumetric images.

The vasculature is of utmost importance in neurosurgery and neurological study.
Elaborate studies with a considerable x-ray exposure, such as multi-planar conven-
tional angiography or spiral computed tomography (CT) with thin slices, have to
be carried through to achieve an accurate assessment of the vasculature. But due
to their two-dimensional character, the spatial information is lost in x-ray studies.
Three-dimensional CT angiography and three-dimensional time-of flight magnetic
resonance angiography (TOF-MRA) yield spatial information, but lack more subtle
information. Furthermore, the three-dimensional CT needs a significant amount of
contrast administration. All these studies cannot provide a spatial representation of
small vessels. These vessels whose topology exhibits much variability are most impor-
tant in planning and carrying out neurosurgical procedures. In planning, they provide
information on where the lesion draws its blood supply and where it drains, which
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is of special interest in the case of vascular malformations. The surgical interest is
to distinguish between the feeding vessel and the transgressing vessel which needs to
be preserved. In interventional neuroradiology this information is used to selectively
close the feeding vessel through the artery itself. During surgery the vessels serve as
landmarks and guidelines toward the lesion. The more minute the information is, the
more precise the navigation and localization of the procedures. Current representa-
tions do not yield such detailed knowledge. A more precise spatial representation is
needed.

Working toward this goal, we developed the CURVES vessel segmentation system
with a focus on extracting the smallest vessels. CURVES models the vessels as three-
dimensional curves with arbitrary branching and uses an active contours approach
to segment these curves from the medical image [75]. That is, it evolves an initial
curve into the curves in the data (the vessels). It is not limited to blood vessels, but
is applicable to a variety of curvilinear structures in 3D.

1.2.2 Classification

In addition to the segmentation of tubular objects in 3D images, this curve evolution
algorithm can be applied to general classification and recognition problems in the field
of artificial learning. In the most general case, we assume that instances of objects
are specified by n parameters; that is, each instance is a point in an n-dimensional
feature space.

The motivating assumption is that objects can be represented by continuous d-
dimensional manifolds in that feature space, for d < n. The manifolds would be
initialized to some given manifold, then would evolve, within the n-D space, based
on positive and negative training examples until it converged to an appropriate rep-
resentation of the object. The case analogous to the evolution of curves in 3D would
be instances of an object in a 3D feature space which are well-modeled by 1D mani-
folds. This dissertation focuses on only the medical applications, but a classification
experiment is also performed for proof-of-concept.

1.3 Contributions

Specifically, this dissertation makes the following contributions.

1. We have extended the geodesic active contour model, increasingly common in
computer vision, to handle tubular structures correctly.

2. We have specialized the segmentation algorithm to blood vessels in volumetric
MRA data, with a focus on extracting the very thin vessels, which are the most
difficult.
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3. We have experimented with our algorithm on over 30 medical datasets, in ad-
dition to synthetic volumes.

4. We have compared our cerebral segmentations to segmentations obtained man-
ually by a neurosurgeon for approximately 10 of these datasets. In most cases.
we are able to obtain a more detailed representation of the thin vessels.

5. To accompany our segmentation tool, we have developed a novel procedure for
extracting the centerlines of tubular structures.

6. Finally, we have performed proof-of-concept experiments applying surface evo-
lution ideas to the general feature-based classification problem.

1.4 Roadmap

This dissertation begins with a review of the mathematical techniques that are the
foundation of our segmentation algorithm, including pure curve evolution, the level
set representation of manifolds, and a formalism for evaluating the correctness of so-
lutions to partial differential equations. We then review deformable models that have
been used in computer vision, starting with the classic approach then comparing
later approaches and modifications to the initial formulation. Chapter 4 describes
the MRA data on which we have focused our experiments and discusses previous
MRA segmentation approaches. CURVES is described in Chapter 5 which details its
components and discusses some of the design decisions that were made. Results on
simulated data and on real MRA data are presented in Chapter 6 along with com-
parisons to manual segmentations. Chapter 7 describes our algorithm for extracting
the centerlines of tubular structures, shows examples on MRA datasets, and discusses
related approaches. Chapter 8 shows our preliminary exploration of the use of mani-
fold evolution for general data representation tasks in which this approach is applied
to tracking data representing patterns of motion in a street scene. The dissertation
concludes with comments on the studies described and suggestions for future work.



Chapter 2

Background Mathematics

CURVES is based on evolving a manifold, over time, according to a partial differential
equation comprised of two terms. The first is a regularization force that controls the
smoothness of the manifold, and the second is in image-related term that allows
image data to influence the shape of the manifold. If one considers the case in which
the image term is identically zero, that is, there is no image term, then the partial
differential equation becomes an instance of a partial differential equation well-studied
in the differential geometry community, mean curvature flow. CURVES then uses the
level set method to implement this differential equation.

Both of these topics were first studied for the case of hypersurfaces, then subse-
quently for the more difficult case of higher codimensional manifolds. The distinction
between these situations is important for an understanding of CURVES, which is
an extension of previous computer vision work based on the hypersurface cases of
these mathematical concepts to a higher codimensional case. Both concepts are thus
described for the two cases separately.

Finally, an important benefit of the level set technique is that one can prove that
it solves the given partial differential equation in the viscosity sense. An overview of
the concept of viscosity solutions is thus provided.

2.1 Mean Curvature Flow

Mean curvature flow refers to some manifold (curve, surface, or other) evolving in
time so that at each point, the velocity vector is equal to the mean curvature vector.

2.1.1 Hypersurfaces

Let m be a hypersurface in R*, N = N(Z) the normal for a given orientation (choice
of inside/outside), and H = H(Z) the mean curvature of the manifold. All quantities
are parameterized by spatial position Z, an (n — 1)-tuple. The mean curvature vector

13
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m

Figure 2-1: Left: A curve C(p) with mean curvature vectors drawn. Right: Under

curve-shortening flow for space curves, a helix (solid) shrinks smoothly to its axis
(dashed).

or mean curvature normal vector H of m is defined locally as
H=HN

Now, let M be a family of hypersurfaces in R* indexed by ¢, so M (t) is a particular
hypersurface. Consider ¢ as “time”, so the family describes the manifold’s evolution
over time. Then mean curvature flow is the evolution according to the equation

where M, is the derivative of M with respect to ¢ and an initial manifold M(0) = M,
is given.

For the case of 1D curves, which are treated in this research, the mean curvature
is just the usual Euclidean curvature x of the curve. Let C(t) be a family of curves
indexed by time ¢. The evolution equation is then

C; = kN (2.2)

with initial curve C(0) = Cp. This motion is pictured in Figure 2-1a where a curve
C(p) is drawn along with mean curvature vectors at two different points. Figure 2-1b
demonstrates this evolution for a helix in 3D which shrinks smoothly into its axis.
Mean curvature flow for the case of 1D curves is also called curve-shortening flow
since it is the solution, obtained by Euler-Lagrange equations (Appendix A, [37, 51]),
to the problem of minimizing Euclidean curve length:

mia [ 1C"(9)ldp

where p is the spatial parameter of the curve. That is, we now have C = C(p, 1)
as a function of both a spatial parameter and a temporal parameter. We will write
C = C(p) when we are concerned only with the trajectory of the curve at a particular
time ¢.

Work in the differential geometry community has studied the behavior of hyper-
surfaces evolving under mean curvature motion. A fundamental theorem in this area
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Figure 2-2: A surface in 3D that develops singularities and changes topology under
mean curvature motion.

is that smooth closed curves in 2D shrink to a point under mean curvature motion
(44, 46]. This theorem was proven in two steps. First, it was proved that smooth
closed convex curves shrink to a point under this motion, becoming round in the limit.
Second, it was proved that simple (not self-intersecting) closed planar curves become
convex under this motion, thus completing the proof. For hypersurfaces of higher
dimensionality, however, the behavior is not analogous. The usual counterexample
is the case of a dumbbell-shaped surface in R?, as in Figure 2-2. Such a shape can
easily be constructed so that it breaks into two pieces and develops singularities in
finite time under mean curvature motion. That is, the evolution is smooth for a finite
time period, but after that time period, cannot be continued in the same fashion.

One would like to continue the evolution even after the singularities develop.
Presumably, the dumbbell should break into two separate pieces which should shrink
smoothly. However, the representation of the shape directly as a parametrized surface
cannot support this splitting. A more powerful representation is needed. The level
set representation [88, 100] will be described in detail in this document as it is used
in our system. The need for a representation that can handle topological changes
and singularities is a major motivation for the level set methods. Similarly, the
singularities that develop is one instance of the class of problems that motivated the
development of viscosity solutions, which we will explain in section 2.3. The papers
describing the level set method for mean curvature flow of arbitrary-dimensional
hypersurfaces prove the correctness of the method for this problem “in a viscosity
sense”, which means, informally, that the solution is the smoothest approximation
possible given the singularities present [38, 22].
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We will see in section 3.4 that the image segmentation problem can be defined
as minimizing a non-Euclidean curve length over all possible curves. The resulting
curve flow equation obtained is closely related to 2.2. We will therefore be able to use
much of the mathematical technology and results obtained for the mean curvature
flow case for the image segmentation case. The definition of mean curvature is more
complicated for manifolds that are not hypersurfaces. For completeness and because
our studies have dealt with higher codimensional manifolds, we give this definition
below.

2.1.2 Higher Codimension

For manifolds that are not hypersurfaces, there is not a single normal direction.
Instead the dimensionality of the normal space is equal to the codimension of the
manifold. Thus we no longer have a single well-defined normal direction. However, it
turns out that one can compute the mean curvature normal vector uniquely as follows
[102]. Let M™ = M C R? be an n-dimensional manifold in R? with codimension d—n.
Let M, and MI;L be the tangent and normal spaces, respectively, to M at point p. For
any normal vector £ € M,;L, we can define a mean curvature Hy in the direction of £.
Like in the hypersurfaces case and as is intuitive, curvature measures the change in
the tangent directions. Let X1,... , X, be vector fields that are tangent to M that are
orthogonal to each other and unit length so that X;(p),...X,(p) is an orthonormal
basis for M,. We then define the {-dependent mean curvature as

1 n
He=—3 VipXi-§
i=1

where V' (p)Y is the covariant derivative of the vector field Y in the direction of

X(p)-
It turns out that there is a unique vector n(p) € M, such that

n(p)-§=Hy forall &€ M

and that this vector can be computed by summing the vectors obtained by multiply-
ing each element of an orthonormal basis for Ml;L by its direction-dependent mean
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curvature. Let v,,,1,..., 7 be an orthonormal basis for Mj‘, SO

d
n(p) = Z H, v,

r=n+1l

d n
= 3 (O Vi X e

r=n+l i=1
1 n
= ;H[Z V’Xe(I))Xi]’
i=1

where II denotes projection onto the normal space M,;L.

As an example, let M be a 1D curve in R3. So the tangent space is 1-dimensional,
and X; is the tangent field along M, and X;(p) is the tangent to M at point p. We
will choose the usual unit normal and unit binormal for a space curve as the basis
vectors v;. These vectors are defined from the tangent ¢ according to the first two
Frenet equations ([35])

' =kN
N =—xt— 7B

where N is the unit normal, B is the unit binormal, & is the curvature of the curve,
and 7 is its torsion. Further note that the covariant derivative of the tangent field in
the direction of the tangent is the usual derivative #' of the tangent.

We then compute

n(p) = Z(Z V,X.-(p)Xi Vr )y

r=2 =1

3
= Z(V’X1(J))X1 . V,-)l/,-

r=2

= Z(t’ 7R}

r=2
= (kN -N)N + (kN - B)B
=kN +(0)B
= kN.

Thus, we’'ve shown that this definition for arbitrary dimensions does in fact reduce
to the usual definition of the mean curvature vector for a curve.

The case of mean curvature flow for non-hypersurfaces has been less well-explored
by the differential geometry community than that of mean curvature flow for hy-
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Figure 2-3: Under curve-shortening flow, the initial non-simple curve (solid) evolves
into a curve (dashed) which contains a singularity.

persurfaces. The case of curve-shortening flow was studied for 3D curves [3] for the
specific application of using this flow to address the limitation of planar curve flow
that the curve be simple. When the initial curve is not simple then it can develop
singularities after a finite time period, as pictured in Figure 2-3. In this example,
the initial curve has a “figure eight” shape, and after evolving for some finite length
of time, it develops a corner because the smaller circle in the figure eight shrinks to
a point more slowly than does the larger circle. Altschuler and Grayson lifted the
curves out of the plane by a small amount at the singular points and used the curve-
shortening flow of space curves to implement the evolution of the original planar curve
past these singularities.

It is the 3D version of curve-shortening flow which is most relevant to our CURVES
system, as the objects to be segmented are modeled as 3D curves undergoing a motion
related to curve-shortening flow. This curve flow is implemented in CURVES via level
set methods, to which we now turn our attention.

2.2 Level Set Methods

Level set methods increase the dimensionality of the problem from the dimensionality
of the evolving manifold to the dimensionality of the embedding space [88, 100]. For
the case of a planar curve, one defines a surface which implicitly encodes the curve,
then evolves that surface instead of the explicit curve. An example of a surface as an
implicit representation of a curve is the signed distance function pictured in Figure 2-
4. In this case, let C be the curve, and the surface u is defined so that its value at
any point is the signed distance to C, with interior points having negative distance by
convention. C' is then, by construction, the zero level set of u. The representations
are equivalent in information content since one can generate the surface from the
curve and the curve from the surface.
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c >

Figure 2-4: Level sets of an embedding function u, for a closed curve in R2.

2.2.1 Motivation

A brief discussion of the reasons why level set methods were developed is provided be-
fore a formal statement of the equivalence that underlies the methods. This discussion
draws closely from [100], to which the reader is referred for further discussion.

Imagine we have some front C propagating over time. A necessary requirement
for the use of the level set approach is that we care only about the front as a boundary
between two regions. That is, we do not care about tangential motion of the front,
but only about motion in the normal direction (Figure 2-5). As before, C is a function
of both a spatial parameter and a time parameter, so we write C = C(p,t) where
p € [0,1] is the spatial parameter and ¢ > 0 is the time parameter.

We can write some equation for this motion as a partial differential equation: at
each point on the curve C, the derivative of C' with respect to time ¢ is equal to a
speed S times the normal N

with initial condition C(-,0) = Cy(-).

One problem with an explicit evolution of the curve is that singularities develop
over time. This problem is a primary motivation for the use of level set methods.
To understand this problem, first consider the case in which the initial curve can
be written as a function of its spatial parameter. We will extend the intuition to
functions that cannot be so written below; we discuss this case first because the
derivatives are more natural.

The straightforward, explicit way to evolve the curve is to compute the normals
analytically and use those normals to recompute the position of the curve at successive
time steps. Consider the example of a cosine curve and assume we would like to
propagate it forward in time with constant speed 8 = 1. This curve is plotted as the
lowest curve in Figure 2-6(a). Successive curves are plotted above this curve of the
evolution forward in time. The difficulty occurs at the convexity of the original curve.
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Figure 2-5: A front propagating over time, where motion is assumed to be only in
the direction of the normal vectors of the front.

A singularity develops eventually, after which time the normal is ambiguous. This
ambiguity implies that the evolution is no longer well-defined. Retaining all possible
normal directions would cause the two “sides” of the front to intersect.

In order for the evolution to be well-defined, we need to choose one solution.
The solution we choose is what is called the entropy solution, pictured in Figure 2-
6(b). This solution is defined by the property that once a region has been crossed
by the front, that region cannot be crossed again so the front cannot cross itself.
One often uses the analogy of a fire moving across a field, in which case the behavior
is characterized by the statement, “Once a particle is burnt, it stays burnt.” This
statement is referred to as the entropy condition and the solution it implies as the
entropy solution because of the relation to information propagation. Information has
becomes lost when the singularity develops. Since the normal is not unique at that
time and location, we cannot reverse the propagation to obtain the original curve.

We now make concrete the notion of “entropy solution”. For the current cosine
example, if we change the speed 8 from 8 =1 to 8 = 1 — ¢k, for some small ¢ and
where k is the Euclidean curvature of the front, then the singularities do not form. As
¢ approaches zero, the evolution approaches the entropy solution. Let X¢ ... be
the evolution (the sequence of curves) obtained by using speed term 8 =1 — ek and
Xentropy De the evolution obtained with the entropy condition. It can be proved that
the limit of the X7, ,..re’S as € approaches zero is identically the entropy solution:

vt, ll_r)% Xeurvature () = Xentropy(t)-

This limit, ¢.e. the entropy solution, is called the viscous limit and also the viscosity
solution of the given evolution. Viscosity solutions will be defined from a more formal
perspective in section 2.3 below. The reason this limit is called the viscous limit is
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Figure 2-6: Left image: the bottom curve is the initial cosine curve and the higher
curves are successive curves obtained by propagating with normal speed 8 = 1. Right
image: continuing propagation after normal becomes ambiguous using entropy solu-
tion.

its relevance to fluid dynamics. In fluid dynamics, any partial differential equation of
the form

s+ [G(w)), = 0

is known as a hyperbolic conservation law. A simple example is the motion of com-
pressible fluid in one dimension, described by Burger’s equation:

U + utgy = 0.

To indicate viscosity of the fluid, one adds a diffusion (spatial second derivative) term
to the right hand side to obtain

U + UUy = EUgy

where ¢ is the amount of viscosity. A well-known fact in the fluid dynamics community
is that for € > 0, this motion remains smooth for all time: singularities, or shocks as
they are called in the fluid dynamics community, do not develop.

To relate the viscous limit to front propagation, we return to the idea of a curve
propagating as in Figure 2-6. Let C' = C(p) be the evolving front and C; the change
in height of C' in a unit time step. Referring to Figure 2-7, observe that the tangent
at (p,C) is (1, Cp) and notice that

C _(1+oyve

g 1
which gives the update rule

Ce = B(L+ C,p)\/2
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Figure 2-7: Computation of motion C; for relation of viscosity to front propagation.

Setting the speed term to F' = 1 — ex and observing that x = Cp,/(1 + C2)/2
yields an equation which relates the motion C; of the curve C to its spatial derivatives:

eC,
Cr—(1+CHY? = —2
= (1+6) 1+C2)
Differentiating with respect to p and setting u = 2< to be the slope of the propa-
. . . . & dp
gating front gives an evolution equation for u:

u
ug + [~ (1 +up) ), = 5[(1—_'_?1;35];:-

Observe that this evolution equation is a hyperbolic conservation law. We observe
that the curvature term in the speed function for a curve plays exactly the same role
as the viscosity term in the evolution equation for the slope of the curve. It then
follows that we can use the technology and theorems from fluid dynamics to prove
that no singularities can develop in the slope of the front.

Sometimes we want to describe the motion of curves that are not expressible
as functions. We thus cannot propagate them analytically. More importantly, we
cannot detect singularities explicitly without the analytical form. Level set methods
were developed to address exactly this issue. To summarize, they

e apply only to the situations in which we care about motion in the normal
direction but not in the tangential direction,

e address problems of singularities developing during an evolution,
e evolve such fronts according to their entropy or viscosity solutions, and

e are well-suited to boundaries which are not expressible as functions.

2.2.2 Hypersurfaces

We now explain the specific equivalence that underlies the level set methods. For the
example of planar curves, let u : R2 — R be the signed distance function to curve
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Figure 2-8: Left: the initial value of the curve C is shown as a solid curve, and a later
value is shown as a dashed curve. Right: The embedding surface u at the initial time
(solid) and the later time (dashed).

C as in Figure 2-4, so C is the zero level-set of u. Let Cy be the initial curve. It
is shown in (38, 22] that evolving C according to Equation 2.3 with initial condition
C(-,0) = Cy(-) for any function B, is equivalent to evolving u according to

w = B|Vul (2.4)

with initial condition u(-,0) = ug(-) and ue(Cp) = 0 in the sense that the zero level
set of u is identical to the evolving curve for all time. Referring to Figure 2-8 as an
example, if the solid initial curve in the left image evolved to the dashed curve, the
embedding surface would evolve as pictured in the right image.

Although this method may initially appear less efficient since the problem is
now higher-dimensional, it has important advantages. First, it facilitates topolog-
ical changes in the evolving manifold (the curve) over time. Evolving a curve directly
necessarily relies on a particular explicit parameterization of the curve, which makes
topological changes cumbersome, requiring special cases, whereas an implicit repre-
sentation can handle them automatically as will be seen throughout this document.
Parameterization is the heart of the second advantage of the implicit method as well:
it is intrinsic (independent of parameterization). That is, it is an Eulerian formula-
tion of the problem which updates values at fixed grid points instead of a Lagrangian
formulation which would move the points of the curve explicitly. The Eulerian for-
mulation is desirable for modeling curves in many applications including image seg-
mentation since parameterizations are related only to the speed at which the curve
is traversed, but not to its geometry. It is therefore problematic for a segmentation
algorithm to depend on the curve’s parameterization.

To see the equivalence geometrically, consider the zero level set

{L € R?: u(l,) = 0}
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Differentiating with respect to t gives
Vu- Pt +u = 0

Further note that for any level set

Vu _
-

where NV is the inward-pointing normal of the level set (for the case of a planar curve
embedded in a surface, this level set is a curve). Substituting,

—NIVUI I‘t—}—ut = 0.

We want to define the evolution u; of u so that I' = C for all time; that is I'(¢) = C(¢).
Having already initialized I'(0) = C(0), we only need set I';, = C, to obtain

uy = S| Vul.

This derivation was given in [20], and is very similar to the derivation given in [87].
Moreover, it applies to hypersurfaces in any dimension [38, 22]; planar curves were
used as an example for simplicity only.

It was shown that any embedding function u that is smooth in some open region of
RY and for some time period and whose spatial gradient does not vanish in that region
and time period is a viscosity solution to Equation 2.4 [38, 22]. Specifically, u must
be Lipschitz continuous, where Lipschitz means that it cannot grow unboundedly:
function f is Lipschitz if

[f(z) — f(y)] < Clz -y

for all z,y in the domain of f and for some constant C. It is also unnecessary to
choose the zero level set of u: any isolevel set suffices, although the zero level set is
the standard choice. For further detail, the reader is referred to [100], the primary
reference for level set methods, implementation issues, and applications.

One limitation of this body of work, as described until this point, is the restriction
to hypersurfaces (manifolds of codimension one). The examples of a planar curve and
a three-dimensional surface have codimension one, but space curves have codimension
two. Intuition for why the level set method above no longer holds for space curves is
that there is not an “inside” and an “outside” to a manifold with codimension larger
than one, so one cannot create the embedding surface u in the same fashion as for
planar curves; a distance function must be everywhere positive, and is thus singular on
the curve itself. The more recent discovery of level set equations for curvature-based
evolution in higher codimension [4], however, overcame this limitation.
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2.2.3 Higher Codimension

Ambrosio and Soner provided level set evolution equations for mean curvature flow
of an arbitrary dimensional manifold in arbitrary dimensional space. Further, they
gave the extension to more general curvature-based evolution which can incorporate
an auxiliary externally defined vector field [4]. It is these equations that inspired our
CURVES segmentation algorithm which models blood vessels as curves in 3D, which
have codimension two. In particular, the auxiliary vector field equation enables the
use of image information in addition to regularization. We now state these equations
for the general case, as in [4].

Imagine we wish to represent and evolve some manifold I' C R? implicitly. Further
assume that the codimension of I' is £ > 1. Let v : R — [0,00) be an embedding
function whose zero level set is identically T', that is smooth near I', and such that
Vu is non-zero outside I'. For a nonzero vector q € R?, define

T
aq
P.o=1-

4 lq?

which is the projection operator onto the plane normal to q. Let X = P,AP, for
some matrix A and let

A(X) < A(X) <10 L€ A1 (X)

be the eigenvalues of X corresponding to the eigenvectors orthogonal to q. Notice
that q will always be an eigenvector of X with eigenvalue 0.
Further define

d—k

Fla,4) =3 M(X).

=1

Assuming the general case in which the only 0 eigenvalue corresponds to the eigen-
vector orthogonal to g, we can say that F' is the sum of the d — k smallest nonzero
eigenvalues of X. It is then proved that the level set evolution equation to evolve T’
by mean curvature flow is

v, = F(Vv(z,t), Viu(z,1)). (2.5)

That is, this evolution is equivalent to evolving I' according to mean curvature flow
in the sense that I' is identical to the zero level set of v throughout the evolution.
For intuition, consider v as a distance function to I" which thus satisfies [Vv| =1
everywhere except at I', although other functions are possible. Consider an isolevel
set ' = {z|v(z) = €} of v where ¢ is very small and positive. Then the eigenvalues
of ﬁX that are orthogonal to Vv are precisely the principal curvatures of the
hypersurface I, oriented by Vuv. Since I' has codimension k, we expect I'; to have
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k — 1 very large principal curvatures and d — k principal curvatures related to the
geometry of I'. For the lowest dimensional case in which I" is a curve in R3, I', is a
thin tube around T, the larger principal curvature corresponds to the small radius of
the tube, and the smaller principal curvature corresponds to the geometry of I. Note
that the eigenvalues of ﬁX are exactly the eigenvalues of z scaled by ﬁ. Thus

the use of X instead of 7;; X in Equation 2.5 is the same as using v X and scaling
by |Vv| as in

d—k 1
’Ug*) = |V’U| Z )\,(WX)
i=1

This alternate expression is perhaps more intuitive since the sum corresponds to
curvatures so it looks like Equation 2.4.

Consider the situation in which there is an underlying vector field driving the
evolution, in combination with the curvature term, so that the desired evolution
equation is of the form

I; = kN - Id, (2.6)

where I'; gives the motion of the manifold I" over time, « is the mean curvature of T,
IT is the projection operator onto the normal space of I' (which is a vector space of
dimension d — k) and d is a given vector field in R¢. The evolution equation for the
embedding space then becomes

vy = F(Vv, V) + Vv - d. (2.7)

2.2.4 Numerical Techniques

From the equations above, one does not yet have the full story about how to implement
such evolutions. An underlying theme to both the direct curve evolution and the level-
set based curve evolution is that we wish to compute temporal derivatives in terms
of spatial derivatives. There is some discomfort in this notion since although the
two are intimately related, it is not natural to regard one as a function of the other.
In order to make this construction feasible, one must be careful about how exactly
the spatial gradients are computed. Specifically, one should not use values at points
that correspond to future times, in which the evolution has not yet occurred. That is,
information should propagate in the same direction as the evolving front. Methods for
gradient computation and for overall evolution are called upwind if they respect this
restriction on information flow. That is, they use only values that are upwind of the
direction of information propagation. This stability issue arises in the computation
of the gradients needed in the update equation, Equation 2.4. Sethian discusses these
issues in detail in his book [100]; we will provide intuition and then state the choices
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used for gradient computations.

A function f : R — R is said to be convez if its second derivative is everywhere
positive: f”(z) > 0. In higher dimensions, a function G : R — R is convex if it is
smooth and all second derivatives are everywhere non-negative: affc'gi - > 0. One can
also use an alternate definition that includes non-differentiable functions: f is convez
if firz+ (1 —71)y) <7f(x)+ (1 —-7)f(y),Vz,y € RY,7 € [0,1]. In the generalized
evolution equation

u = H(z, u(z), u'(z)),

the term H(z,u(z),u'(z)) is called the Hamiltonian. In Equation 2.4, the Hamilto-
nian is f|Vu| = §4/us? + u,? + u,?, assuming 3 dimensions. We say that the speed
function 8 in an evolution equation is convez if the Hamiltonian 3|Vu| is a convex
function.

Sethian provides numerical schemes for computation of gradients for both con-
vex and non-convex speed functions, and also for first order approximations to the
gradient and for second order approximations to the gradient [100]. We review the
first-order convex case here for discussion purposes. First, some notations:

The central difference operator, forward difference operator, and backward dif-
ference operator for first-order approximating the spatial derivative of u in the z
dimension, at grid point (i, j, k), are, respectively,

u. . _u._ .
T _ nr ,, _ 2itljk i—1,5,k
D, = Dijpu =

2Azx
DT = Dty — Uiti,5.k — Uijk
ijk — i3 - A
i
722 — —Zu — ui)j)k _ ’u’i—l,j,k
ijk ijk Az

Taylor series expansions around z show that

Uy = D;;ﬁ + O(h)
u; = Dy + O(h),

where h is the spacing between adjacent grid points. We thus see that the central
difference scheme yields the most accurate approximation. However, when handling
moving fronts, the issue of direction of information propagation is also important, so
we will see that it is suboptimal in some cases.
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First Order, Space Convex

An example of a convex speed function is a constant speed function applied to an
embedding space u which has constant slope. Let F' be any convex speed function,
and assume we have the evolution equation

The first order upwind scheme for iteratively solving this equation ([100, 88]) is
then

upt! = uly, — At[max(Fyje, 0)V* + min(Fi, 0)V 7], (2.8)

where
V* = [max(Dg;, 0)* + min(D}7, 0)* +

max(D;},0)? + min(D;¥,0)* +

max(D;;;,0)? + min(Dj}3, 0)?]z,

and
V™ = [max(Df}, 0)? + min(D3, 0)* +

ma.x(D;;z, 0)? + min(D;, 0)% +

max(Dj;Z,0)2 + min(D;;Z, 0)%]3.

To demonstrate the importance of choosing the correct scheme for gradient com-
putation, we constructed a simple experiment in which a front is propagating outward
at constant speed F' = 1. Assuming u is a distance function so |Vu| = 1 everywhere,
this speed function is convex because F|Vu| is constant so all of its second derivatives
are 0. In this case, we have

u + 1|Vu| = 0,
and Equation 2.8 becomes
u:;‘,tl = ugy, — At[V7] (2.9)
= ufy, — At[max(D;;},0)* + min(Djf, 0)% + (2.10)
max(D},0)? + min(D}}}, 0)* + (2.11)
max(DjZ, 0)% + min(D}Z, 0)2)5. (2.12)

Imagine that each slice of our embedding surface is identical at time ¢ = 0, and
looks like the “Initial” solid plots in Figure 2-9. That is, the front is defined by two
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Figure 2-9: Cross-sectional slices for a front moving with constant unit speed. Behav-
ior is shown for four different numerical methods of gradient approximation: upper
left is upwind scheme, upper right is central difference scheme, lower left is forward
difference scheme, and lower right is backward difference scheme.

straight lines in the direction normal to the figures, and the outward direction is the
direction towards the edges of the plots. What Figure 2-9 shows is the evolution
computed, for At = 1 and three iterations, for four difference methods of finite
gradient approximation. The upper left plot shows the upwind scheme, the upper
right the central difference scheme D7, the lower left the forward difference scheme
D;;ﬁ , and the lower right the backward difference scheme. Points on the zero level
set which correspond to the contour itself moving over time are marked in black.
For this particular example, |Vu| is one everywhere initially. This implies that any
one-sided difference scheme will work: the backward and forward schemes thus give
the desired evolution, as does the upwind scheme away from the singularities. The
upwind scheme differs from the desired behavior at exactly the singularities because
it is at those points that it chooses either both or neither of the difference operators,
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Upwind Scheme

R Sl
Figure 2-10: Cross-sectional slices for another front moving with constant unit speed.
Upper left is upwind scheme, upper right is central difference scheme, lower left is
forward difference scheme, and lower right is backward difference scheme.

so is not using exactly one of them and is thus not obtaining a slope of one. Notice
that the central difference scheme, although theoretically more accurate than the
one-sided schemes, gives worse behavior. It develops a local maximum at the center
point of the plot, and has developed multiple undesirable local maxima by the third
iteration.

Figure 2-9 shows an example in which any one-sided scheme is effective. When
|Vu| # 1, however, one cannot simply use any one-sided scheme. In general, even
if one initializes the evolution with an embedding function u such that |Vu| = 1
everywhere, the evolution will not maintain this invariant over time with a non-
constant speed function. Hence, one should not use simple forward or backward
differencing in general. Figure 2-10 demonstrates a case in which the initial embedding
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surface u is parabolic, so does not have slope one. In this case, we are still using
constant speed F' = 1. Note that we still have a convex speed function because the
second derivatives are constant for a parabolic u and constant F'. Observe that the
forward and backward differencing schemes yield different behaviors, with the zero-
level-set points becoming spaced unequally on the opposite sides of the center. This
is clearly wrong. The central differencing scheme naturally maintains symmetry, but
develops an undesirable singularity at the original center point. The upwind scheme
is most effective here.

Hybrid Speed Functions

Imagine a speed function F is the sum of multiple speed functions each of which
would require different schemes for computation of Vu. In this case, Sethian advises
to use the correct, and different, gradient computations for each term [100]. The
example of a speed function which is a sum of a curvature term and a term related
to an external vector field is important for the application of image segmentation, as
we will see in Chapter 3.4, so we will describe that case here. This is a subpart of an
example provided in [100]. Assume

F=Fcurv+Fezt)

where F,,;, = —¢k is the curvature-related component of the speed with ¢ a small
positive constant and k the curvature of the front, F,;; = E (z,y) -1 is the component
that depends on an external vector field, with 7 the unit normal to the front. The
equation for the embedding space u is then

u, = ek|Vu| — E(z,y) - V.

The curvature term is based on second derivatives so uses information from both
sides of the front; that is, information propagates in both directions. Thus, Sethian
advocates the uses of central differences for the curvature term. The other term
corresponds to a speed independent of u, so one should use an upwind scheme just
as in the previous example of F' = 1. The numerical update rule for u becomes

+eK}(Dg + DY)3)
t+1 t
vy U AL (£, 00D + min(fy;, 0) D3
-+ max(g;;, 0) D;;¥ 4 min(gy;, 0) D;}Y]

where E = (f,g) and K}; is the approximation to the curvature computed using
second differences on the level set (Equation 5.10).
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2.3 Viscosity Solutions

We would like to say that the curve evolution is well-defined for all time and that the
specific embedding function used (usually the distance function) is a formal solution
to the partial differential equation (PDE) defining the evolution. Unfortunately, we
will see that this PDE does not admit a classical solution. This is because there may
be singularities in the “solution” at time ¢ = 0 or singularities may develop over time,
in which cases we cannot have the differentiability required for a classical solution.

Instead, we will settle for a “generalized” solution that allows the development of
non-differentiable points. Moreover, we will see that the distance function is such a
solution. The framework used to justify this solution is that of viscosity solutions.
This new topic in mathematics was first introduced [30] and was developed to make
rigorous the idea of generalized solutions to PDE’s when classical solutions do not
exist. The primary reference for this topic is [29], and a collection of recent lectures
by leaders in this field is found in [9).

2.3.1 Definition

The notion of viscosity solutions applies to scalar second order PDE’s
F(z,u,Du, D*u) =0 (2.13)

where z € 2, Q C RN is open, and u : @ — R is the unknown function we seek. Du
and D?u correspond to the first and second derivatives of u. We say “correspond”
because these operators must be defined even at singularities of u so are not equal to
the classical derivatives in those cases.

We further assume that F' is proper. This means that F' is nondecreasing in u and
nonincreasing in D?u:

F(z,s,p,X) < F(z,7,p,Y)

for Y < X, s < r where matrix inequality is defined as Y < X <= £TY¢ < €TX€,
all £ € RY. The reason that F' must be proper will be stated below.

The definitions of upper and lower semicontinuous functions are needed next. Let
Q2 be an open subset of RN and u :  — R. Then the upper semicontinuous envelope
u* and lower semicontinuous envelope u, of u are defined as

u'(z) = limsup{u(y) : y € O, ly — 2| < 7}
u.(z) = liminf{u(y) :y € Q, |y — z| < r}

rl0

One then says that u is upper semicontinuous if © = u* and lower semicontinuous
if ¥ = u.. In other words, the upper semicontinuous envelope of u is the smallest
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Figure 2-11: (a) An upper semicontinuous function. (b) A lower semicontinuous
function.

upper semicontinuous function that is > u, and the lower semicontinuous envelope of
u is the largest lower semicontinuous function that is < u.

Figure 2-11 illustrates these definitions with examples in R'. The first graph
shows an upper semicontinuous function that is not lower semicontinuous, and the
second graph shows a lower semicontinuous function that is not upper semicontinuous.
Intuitively, upper semicontinuity means that at any discontinuities the function value
is equal to the higher limit; lower semicontinuity means that at any discontinuities
the function value is equal to the lower limit. A function that is both upper and lower
semicontinuous is continuous.

We are now ready to define viscosity solutions. u is a viscosity subsolution of F = 0
in € if it is upper semicontinuous and for every ¢ € C?(£2) and local maximum point
& € Q of u— ¢, we have F(&,u(Z), Dp(z), D?p(£)) < 0. Analogously, u is a viscosity
supersolution of F = 0 in  if it is lower semicontinuous and for every ¢ € C?()
and local minimum point Z € Q of u — ¢, we have F(&,u(Z), Dp(2), D*o(£)) > 0.
Finally, u is a viscosity solution of F' = 0 in § if it is both a viscosity subsolution and
a viscosity supersolution (thus continuous) of F = 0.

2.3.2 Illustration

What does this mean? The goal is to characterize some type of solutions u to PDE’s
that may not be once (or twice) differentiable. That is why one introduces the ¢
functions which are by assumption twice differentiable. This differentiability is why
we see Dy and D?p as arguments of F in the definition. To gain intuition, consider
the ¢’s that are closest to u. Figure 2-12 provides a one-dimensional example on
2 = (-1,1) in which u(z) = 1 — |z| is shown by the solid lines. Note that this
u is continuous so both semicontinuity constraints are satisfied. For the ¢ (dashed
line) in the first figure, £ = 0 is a local maximum of u — ¢. So, we would evaluate
F(0,u(0), Dp(0), D*p(0)) for whatever F is under consideration, and if the result is
< 0, and if this is true for all ¢’s such that u — ¢ has local maxima and for all such
local maxima, then u is a viscosity subsolution of F = 0.

To determine if it is also a supersolution, we would consider all ¢’s such that
u — ¢ have local minima and all local minima. In the second graph in Figure 2-12,
the local minimum is attained at 0, so we evaluate F(0,u(0), Dyp(0), D?p(0)) for the
given F'. If this and all other local minima give results > 0, then u is a viscosity
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Figure 2-12: Illustrations to accompany explanation of subsolutions and supersolu-
tions. For both examples, u is the solid line, and the ¢’s are the dashed lines.

supersolution of F' = 0. If 4 is both a subsolution and a supersolution of F' = 0, then
it is a (viscosity) solution of F = 0.

The reason F' must be proper is to ensure that if u— ¢ has a nonnegative maximum
(¢ — v has a nonpositive minimum) at £, then F(%,¢(2), Do(%), D*o(%£)) < (>
VF(2,u(Z), Du(%), D*u(Z)). The proof of these inequality is that F' is nonincreasing
in its second argument, Dy(£) = Du(%) since z is an extremum of u — ¢, D?u(2) <
(>)D?p(Z) since £ is a maximum (minimum), and F is nonincreasing in its fourth
argument.

To conclude, if u satisfies the above definition for a particular scalar second order
PDE F = 0, then even though u may not be twice (or even once) differentiable, we
will say that it “solves” the PDE, but the solution is in the viscosity sense instead of
in the classical sense.



Chapter 3

Active Contour Models

There has been much excitement in the past decade over the development of ac-
tive contour models, or snakes, for segmentation tasks in computer vision. Such de-
formable models iteratively update an initial contour so that the contour is attracted
to true object boundaries in the image.

The era began with the model described by Kass, Witkin, and Terzopoulos in 1988
[54]. This model is now known as classical snakes to distinguish it from later models,
including balloons [26] , T-snakes [80, 82], and geodesic snakes [20, 17, 56, 96, 18, 111].
The curvature-based evolution schemes on which this dissertation focuses are the
last in this list, called geodesic snakes or geodesic active contour models. They are
in some cases equivalent to the classical models but are implemented with more
sophisticated mathematical tools which enable automatic topological flexibility and
increased numerical stability. A related segmentation approach which explicitly deals
with shocks is found in [105).

Although this body of methods has enjoyed use in a variety of computer vision
domains, they are especially popular in medical image analysis where the smooth
irregular anatomical shapes present are well-handled by the active contour approach
[111]. A survey of such models in this domain is found in [81]. Likewise, our pri-
mary application is a medical application, the segmentation of blood vessels in mag-
netic resonance angiography data. Some other applications that have benefitted from
deformable models approaches include motion tracking [12] and stereo-based depth
reconstruction [40]. Also, in addition to local image gradient information, as given
below for illustration, more complicated image forces have been used to drive the
segmentation process, such as texture [90, 96, 73] and local orientation [96]. Most of
these models were initially described for segmentation of 2D images and have been
extended to the segmentation of 3D images.

Besides varying the image force, the underlying representation of the contour
has been varied. Cohen and Cohen described “finite element” snakes in 2D and 3D
[27]. Menet et al described “B-snakes” [84] which are based on B-splines constructed
through the node points, and Staib and Duncan used Fourier descriptors as the pa-

35
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rameterization for the deformable model [103].

The general snakes formulation contains the capability for user-interaction. In
addition to the placement of the initial curve points, some type of energy force could
be defined which would incorporate user interaction, such as pulling the snake in some
pre-specified direction. Several groups have studied the specific problem of making
this interaction most intuitive and effective. The live-wire method by Barrett and
Mortensen [10] is generally considered a competing method with snakes although the
two ideas are closely related and could be considered modifications of one another.
The live-wire process begins with the user choosing a seed point on the object bound-
ary. The software then automatically grows this point along the boundary using a
minimal cost algorithm; during the growth process, the user can accept various pieces
of the generated boundary and start new seed points. Thus, the procedure segments
pieces of the boundary at a time, each piece representing some minimal cost path
between the endpoints. Another approach to incorporating user-interaction is called
tamed snakes [52]. This approach represents the curve at multiple scales by per-
forming hierarchical subdivision of the curve and allowing the user to influence the
segments at the various scales. It also uses the model of masses and springs attached
to control vertices to update the curve. Liang, McInerney, and Terzopoulos recently
proposed a software package called United Snakes which combines several interactive
snake models and emphasizes the generality of the snake model [68].

This chapter explains the fundamentals of the classical snake model since all sub-
sequent active contour algorithms are based on the same principles. The “balloon”
extension is then described because it is used in the methods described after it. We
then explain in detail the topologically adaptive snakes because this is very simi-
lar to the geodesic contour model in terms of which limitations of classical snakes
it addresses, which are numerical instability and topological invariance. Finally, we
describe the geodesic active contour model itself, from which our CURVES algorithm
proceeds. We provide a proof of equivalence to the classical snake model for those
cases in which it is indeed equivalent and discuss related segmentation schemes also
based on partial differential equations that have proceeded from geodesic snakes.

3.1 Classical Snakes

A classical snake is a spline curve which minimizes an energy functional. This func-
tional is based on two terms, one that is related of the smoothness of the curve
(internal energy) and one that is related to image information (external energy). For
example, internal energy may be measured by one or more derivatives of the curve
and external energy may be measured by the degree to which the curve is positioned
at high image gradients, which are often presumed to indicate the true boundary of
the object to be segmented. The model is quite broad, however, and many other
internal and external energy forces are possible. The relative weighting of the two
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forces is a parameter of the method. The model is called active because the contours
are updated iteratively to minimize the pre-defined energy functional; these contours
are called snakes because they move smoothly (slither) over the image during this
process.

3.1.1 Energy Functional

A snake is a planar curve, represented parametrically by C(p) = (z(p), y(p)), where p
is the spatial parameter of the curve. We will assume the curve is closed, so p € [0, 1]
and C(0) = C(1). The energy functional to be minimized is

1
/ Einternal (C(p)) + Eezternal (O(p))dp (31)
0
where the internal energy is given by

Einternat(C(p)) = |C'(p)[* + B|C" (p)

where C' and C" are the first and second order derivatives of C' with respect to p. In
practice, 3 is often set to zero, so the first-order term is the only regularizing force.
Also, a and B are usually constant over the curve but could vary along the curve
if desired. The external energy expression is more variable than the internal energy
expression and is defined to attract the snake to whatever image features indicate
the presence of the object boundary. A common choice which assumes that large
intensity gradients signify the object boundary is

Eea:ternal(o(p)) = "IVI(C(Z)))'2 (32)

where I is the intensity image. The potential of the shape is defined to be the external
energy,

P(C) = Eezternal(c)~ (3.3)

3.1.2 Finding a Minimum

Euler-Lagrange equations provide an expression for the gradient of an integral func-
tional and set this gradient to zero, thus providing conditions that are true for the
function that extremizes the integral. Appendix A derives the general Euler-Lagrange
equations and performs the computations used in this dissertation.

The Euler-Lagrange equations for Expression 3.1 are

6 ] 62 n —
—%(aC ) + a—pg(ﬂo )+ VP(C)=0 (3.4)
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when C is a local minimum, with boundary conditions either indicating that C is
closed or specifying the positions and derivatives of the endpoints. Making C a
function of time ¢ as well as spatial position p and setting the expression to the
negative time derivative of C for minimization implies the following evolution equation

0 ' * "
= %(00) - _(/BC ) - VP(C)’ (3'5)

C. 57

with specified boundary conditions.
The original presentation described an implementation using sparse matrix meth-
ods to implement Euler steps [54]. One first defines the force

F(C) = VP(C).

Second, a pentadiagonal matrix is used to compute derivatives by finite differences
because the computation requires two node points on either side of a given point.
One can write

a ! 62 "
AC = —5(a0") + 55 (8C")

where A is the pentadiagonal matrix. C; is estimated by €= where C® and
C**! are the curve at times ¢ and #+ 1 respectively and 7 is the time step parameter.
One then rewrites Equation 3.5 as

3 o2
(t+1) _ () — 2 n __ Y "m o (t)
C C T@p(ao) T8p2 (BC"y = TF(C")
= —TACHY _ rF(CW)

when we apply the regularization constraints (multiplication by A) to the future curve
points C®*1) instead of to the current curve C®. Finally, one obtains

Ct = (I; + TA)~H(C® — 7F(CY))

where I; denotes the identity matrix.

An illustration of the evolution of a snake for the segmentation of a simple image
is shown in Figure 3-1. The snake is initialized outside of the object. In the absence
of image gradients, the internal energy causes it to shrink smoothly. When high
gradients are encountered, the contour converges to segment the triangle.

As an alternative to the Euler-Lagrangian solution, dynamic programming ap-
proaches have also been used to implement the snake motion [5, 21]. Such methods
can potentially come closer to finding global minima and achieve an increase in effi-
ciency.
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Figure 3-1: Segmentation illustration for image of triangle. The outermost ellipse is
the initial contour. It is iteratively updated until it converges on the boundary of the
triangle.

3.1.3 Limitations

Limitations of the classical snake formulation inspired several important extensions.
Each of the following limitations is addressed by one or more of the three extensions
described below.

1. Shrinking: Since the model is moving to increase smoothness, it will shrink
to a point or line (depending on boundary conditions) in the absence of image
information. This necessitates initializing the snake outside the object if it
would need to move through any regions of zero image force, such as a region
of constant intensity for the energy defined in Equation 3.2. This restriction is
severe since there are some applications for which it is easier to initialize the
contour inside the region to be segmented and to then have it evolve outward.

2. Topology: A second restriction of the model is the inability of the contour to
change topology over the course of the evolution. For example, when segmenting
an image of several nonoverlapping objects, it may be desirable to initialize one
contour enclosing all of the objects, and have it evolve into multiple disjoint
contours enclosing the separate objects. A second situation when topological
flexibility is desired is when an object contains holes.

3. Parametrization-Dependence: The functional in Expression 3.1 depends
on the parameterization which is unspecified. That is, the energy depends on
the speed at which the curve is traversed, which is counterintuitive for the
segmentation problem in which only the boundary matters, not the speed of
traversal. [20] shows the following. Let p = ¢(r), with ¢ : [¢,d] — [0, 1] and
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¢' > 0, be a new parameterization of the curve C(p). We then observe that

/ 1 |C'(p)|dp = (3.6)

[ 1e@r@ &) - (3.7

[ |c'<p)|2(§;‘3>2(%)*1dr= (3.
d

[ ic@s. oG = (3.9

d
1€ 00,0 Pntr) ar (3.10)

where subscripts indicate differentiation by the subscripted variable. This equa-
tion means that the energy is weighted by (¢,(r))~! at each point, and can thus
change in an arbitrary way depending on the parameterization. Likewise, the
external energy can also change arbitrarily since it is weighted by ¢.(r):

1 d
- / VICE)Edp =~ [ IVI(C o8P (r)ar. (3.11)

This arbitrariness to the energy is problematic for segmentation algorithms
which should be independent of parametrization.

A second negative effect of parameterization dependence is the inability to
evolve into thin finger-like structures since the initial parameterization did not
contain enough points in that region of the curve to represent fine detail.

4. Numerical Instability: Another difficulty is numerical instability. Node
points move based on a fixed stepsize and image information, so there is no
constraint to stop them from moving too close to each other which could cause
numerical instability in derivative estimates as spacing between points on the
boundary becomes potentially widely variable as the boundary is evolve forward
in time.

5. Stepsize: The final limitation we mention is that there is no constraint on the
amount of motion a node made undergo from one iteration to the next. That is,
a point can move too far and thus move past a local minima, causing the snake
to miss the desired segmentation. In general a fixed stepsize is a parameter of
the algorithm, but when this fixed value is scaled by large image gradients, the
resulting step may be larger than desirable.

The following three sections discuss extensions to the classical snakes model. Each
addresses some subset of the limitations above. As the methods are described, their
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solutions to those limitations are emphasized.

3.2 Balloons

The balloon model made two changes to the force F, which became

(3.12)

where N is the unit normal to the curve, and k;, k are constants of the same order,
controlling the relative weighting between the two terms [26].

Ignoring the first term momentarily, we notice that the second term is the original
force F' modified to disregard the magnitude of the image-based information. &
should be set so that each curve point can move at most one pixel per iteration. This
modification avoids stepsize difficulties that could cause the snake to move too much,
skipping over a local minimum.

The first term is the more significant change to the model. It is an inflationary
force (when k; > 0) enabling the snake to be initialized inside the object and to inflate
to the object boundary, hence the name balloon. k should be slightly larger than & so
an image force can overcome the inflation force. The sign of k; controls whether an
inflationary or deflationary force is used, and in either case, the position of the initial
contour can be farther from the target position and still converge correctly. An infla-
tionary force was also included in the framework described in [106], which included
many degrees of freedom and could give rise to many different equations of motion
depending on the forces chosen for a particular application. The balloon model thus
addresses the problems of stepsize and shrinking. In accordance with the its name,
this model is generally known for its solution to the shrinking limitation, and the
term “balloon” is usually used with reference only to the first term of Equation 3.12.

3.3 T-Snakes

A different change to the snakes model is given by topologically adaptive snakes, or T-
snakes [80, 83]. This approach addresses the problems of topology, parameterization-
dependence and numerical instability. The primary approach is to periodically repa-
rameterize the curve by computing its intersections with a regular grid. In this way,
the curve can evolve to fit far more complicated shapes, such as thin-tube-like struc-
tures, than it could under the original model. The method is also more numerically
stable since the reparameterization implies that node points do not become more than
a small fixed distance apart, and are approximately equidistant along the curve. The
model also enables the contour to undergo topological changes such as splitting and
merging over the course of the evolution.
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3.3.1 Equations

A T-snake is a discrete approximation to a curve. It is a set of ordered connected
nodes, where the following quantities are associated with each node. The position at
time ¢ is given by x;(¢) = [z:(t), yi(¢)], stretching and bending forces are given by A;
and B; respectively, and inflation and image forces are given by p; and f; respectively.
For each node i of the snake, the equation governing its motion is

VX +Ai+Bi=pi+ f; (3.13)

where Z; is the velocity of node ¢ and # is a parameter of the method.
The stretching term A; attempts to keep the points equally spaced and is given
by

1
A =a(x; — §(Xi—1 + Xiy1)).

The bending term B; inhibits bending of the contour and is given by

B; = b((%i1 — %(Xz' + Xiy2)) — %(xd - %(XHI +%-1)) + (%1 — %(xz‘ +Xi-2)))-

p; is similar to the balloon force above
pi = qn; (3.14)

where n; is the unit normal to the curve at node i. Finally, f; is the original image-
related force

f,' - kVP(X,‘) (3.15)

where P is as defined in equation 3.3 and a,b,k are weighting constants. ¢ has
constant magnitude, but its sign depends on image information so that the contour
can expand to encompass the object but can contract if leaking into the background.
For notational simplicity in this discussion, we regard it as a constant.

Using a discrete approximation to derivatives, the node positions are updated
according to equation 3.13 so that

At
X0 _ @ _ T(Ai +B;i—pi— fi) (3.16)

3.3.2 Reparameterization

The above equations are slightly different from the original snakes formulation [54],
but are not the primary difference defining the method of T-snakes. The primary
extension is that the parametrization of the curve changes over the course of the
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Figure 3-2: (a) Simplicial grid decomposition of R?. (b) Reparametrization of evolving
contour. Figure reproduced from [83].

evolution. This prevents neighboring nodes from becoming too far apart while still
permitting them to deform into unusual shapes, such as long thin shapes. Moreover,
the particular method of reparametrization enables the topological changes which
resolve that limitation of the original method.

A fixed grid is overlaid on the image, then a new parametrization is computed
from a previous parametrization by computing the intersection points of contour
with the grid edges. Those intersection points become the new nodes defining the
new parametrization. Although both versions exist, a simplicial cell decomposition is
usually used to partition space instead of the usual nonsimplicial Cartesian grid. In
a stmplicial cell decomposition, the cells are open simplices, where an n-D simplez is
the generalization of a tetrahedral region of space to n-D. An equivalent definition is
that an n-D simplex is the simplest geometrical object of dimension n. Hence, a 2D
simplex is a triangle. A simplicial cell decomposition is also called a triangulation. The
benefit of a simplicial decomposition over a nonsimplicial decomposition is that only
the vertices of the simplicial decomposition are needed to unambiguously represent
an implicitly defined object boundary, without special machinery for disambiguation.

This reparametrization is illustrated in Figure 3-2, which is reproduced from [83].
The first figure shows a simplicial decomposition of RZ. The second figure illustrates
the use of this decomposition in reparametrizing the curve. The initial contour is
indicated by the solid line, defined by a set of node points which lie on the edges
of the simplicial decomposition. Each node point is then moved according to the
t-snakes update equation, and the points no longer lie on the edges of the grid. The
curve is reparametrized so that the intersections of the new contour (dotted line) with
the grid become the node points for the next iteration.
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3.3.3 Topological Changes

Lists of all interior vertices of the grid are maintained as the contour moves over
the grid. The contour is thus implicitly represented by the information about which
points are inside the contour and which are outside the contour. This representation
is similar to the level set representation described in section 2.2 in that interior and
exterior vertices correspond, respectively, to negative and positive values of the dis-
tance function in the level set framework. Thus, it can also handle topological changes
automatically. We will see the full level set method used in another extension to the
classical snakes model next.

3.4 Geodesic Snakes

The geodesic snakes are another extension to the basic active contour model. They
are based on concepts from the differential geometry, partial differential equations,
and fluid dynamics communities. In addition to a different form of the energy func-
tion, they provide a novel implicit boundary representation which avoids some of the
limitations of classical snakes. In particular, this representation provides an elegant
solution to the problems of topology, parameterization-dependence, and numerical in-
stability.

A geodesic curve is a minimal distance curve: the shortest path between any two
points on the curve is exactly the portion of the curve connecting those two points.
The idea is to formulate the minimization problem 3.1 as the minimization of the
length of the curve, where “length” is computed according to some non-Euclidean
image-related metric. Recall from section 2.1 that to minimize Euclidean arclength

[icw
one evolves the curve according to
C,=kN. (3.17)

One would like to define a similar minimization so that the corresponding evolution
equation achieves image segmentation [20, 17, 56, 78, 79].

3.4.1 Curve Evolution Equation

The task of finding the curve that best fits the boundary of the object is posed as a
minimization problem over all closed planar curves C(p) : [0,1] — R?. The objective
function is

/0 d(IVI(CE))IC (p)\dp
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Figure 3-3: The evolution equation near an edge in a 1D image. (a) The intensity
profile of the 1D image 1. (b) Its gradient V1. (c) The weighting function g = —1

VI
(d) Its gradient Vg.

where I : [0,a] x [0,b] — [0,00) is the image and g : [0,00) — R* is a strictly
decreasing function such that g(r) — 0 as r — oo [20, 17, 56]. That is, we are
looking for the minimal distance curve where distance is weighted by the function
g which acts on intensity gradients, so that the curve is attracted to intensity edges
in the image. For example, g(|VI|) = —H—@TF is a common choice because it can be
computed easily.

To minimize this objective function by steepest descent, consider C' to be a func-
tion of time ¢ as well as spatial parameter p. Then one can compute the Euler-
Lagrange equation of the objective function to determine the evolution of the curve,
i.e., its derivative with respect to time. This yields the curve evolution equation

= g(|VI|)sN — (Vg(|VI|) - N)N (3.18)

where x is the Euclidean curvature and N is the unit inward normal. Note that
we have obtained an equation similar to the original mean curvature flow equation
(Equation 2.2). Both equations find geodesic curves (curves of minimal length), but
the original equation uses the Euclidean metric and the new equation uses a weighted
distance.

We call the attention of the reader to the two terms present in Equation 3.18.
Previous evolution schemes have used only the first term [18]. That is, the curve-
shortening flow is weighted by some function of the image gradient to attract the
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curve to regions of interest in the image. In the geodesic snakes curve evolution
equation, however, the second term which follows from the use of a non-Euclidean
distance metric gives improved behavior. This improvement lies in the fact that
—Vg gives the direction toward the minimizer of g. Thus, the addition of the term,
which is zero at the minimizer of g, provides additional influence on the curve in the
correct direction. Figure 3-3 illustrates this situation. The leftmost graph shows the
intensity profile of a test 1D image I. This profile was generated by convolving an
ideal step edge with a Gaussian filter. The next graph shows its gradient, VI, whose
maximum occurs at the sharpest point on the profile of /. Third is the g function,
with g = WIVI‘_I; of course its minimum is attained at the point which maximizes V1.
Note that in an ideal situation, this minimum would be equal to zero, so the first term
in Equation 3.18 would be zero. The final graph, Vg, shows that the second term
would also be zero at this extremal point, thus causing the evolution to converge.
Also observe that near this point, —Vg gives the direction in which the boundary
estimate should move to extremize g.

3.4.2 Equivalence to Classical Snakes

The geodesic snake formulation is equivalent to the classical snakes formulation with
a couple parameters fixed [20]. First, choose Eepiernai(C) = Ag(|VI(C)|)? where g is
constrained as above and fix 8 = 0 to obtain the energy expression

E(C)=o / 1C"(p) Pdp + A / o(VI(C())))dp (3.19)

where a and ) are free parameters that control the trade-off between smoothness and
edge proximity. That is, we now have

Einternal = alC’(p)|2

and

Eezternat = A.‘.7(|VI(C’(p))|)2

Maupertuis’ Principle states conditions sufficient for an energy minimization to be
equivalent to finding a geodesic curve in some metric space. This principle is used to
obtain the length-minimization (geodesic) expression that is equivalent to the energy
equation 3.19.

Before stating the principle, we define the terms from physics that are needed [37].
Specifically, we use the Lagrangian and Hamiltonian formalism of mechanics. This
means that we need a Lagrangian L(p,C,C’) which is the sum of a kinetic energy
term and a potential energy term. For our purposes, we call the internal energy the
“kinetic energy” and the external energy the “potential energy”. Note that these
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choices are only for the Lagrangian-based derivation of the equivalence; they do not
reflect dynamic or mechanical properties or relations of the snakes’ energy terms. So,
the Lagrangian is

L= Einternal + Eezternal

Once a Lagrangian has been defined, the Hamiltonian H is given by

oL
oC'’

This formalism is used to write down equations for a variety of types of motion in the
mechanics field, and we now use it to relate geodesic snakes back to classical snakes.
We next compute it for our Lagrangian £. We have

oL A C
60'—2040'[2'7[—2&0’

H= C'- L.

S0
H =2aC"-C' - a|C']> — \g*

which reduces to

H = olC' = \g(II(C))? (3.20)
= Linternal — Eexternal (321)
(3.22)

Note the dual nature of the Hamiltonian and the Lagrangian: the Hamiltonian is
the difference of the summands of the Lagrangian. This relationship holds for a large
class of motion equations.

For similarity to the literature and for simplicity of the theorem below, we denote
% by ¢, so ¢ = 2aC’. To avoid carrying around the “2”, we make a change of
variables: m = 2 and ¢ = mC’. That is, our Hamiltonian is written as
g

H =5~ - Xg(I[(O))*

We are now ready to state the theorem on which the equivalence relies.

Theorem 3.1 (Maupertuis’ Principle) Curves C(p) in Euclidean space which

1. are extremal corresponding to the Hamiltonian H = -2% +U(C) and

2. which have a fized energy level Ey
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are geodesics with respect to a new metric. Specifically, they minimize

1
| veniE=vONIc w)ds
For our Hamiltonian, we have
U(C) = -xg(lI(C)])%

The fixed energy level Ej refers to a fixed value of the Hamiltonian. By Equa-
tion 3.20 we saw that this is the difference between the internal energy and the
external energy, so

EO = Einternal - Eezternal'

Next, we need to specify the fixed energy level Fy required to apply Maupertuis’
Principle. This parameter incorporates both the parameterization of C' (which until
now was arbitrary) as well as a and ), since Ey = Finternal — Fezternai- 10 the absence
of other information, and for simplicity, the method chooses F; = 0 which means
that the internal and external energy components are equal; that is, they make equal
contributions to the total energy level.

We have now obtained that minimizing the energy equation 3.19 is equivalent to
finding the (geodesic) curve which minimizes

/0 VI (VIC@)RIC () dp

which is equivalent to minimizing

/0 9(IVI(C )] |C'@)\dp

since m and A are constants.

Thus, the geodesic snake formulation is equivalent to the classical snake formu-
lation with the restrictions of # = 0 and of equal contributions from internal and
external energy components. This discussion follows [20].

3.4.3 Level Set Implementation

A level set scheme as described in section 2.2 is used in order to make this flow
intrinsic to the curve. Define u : [0,a] x [0,b] — R to give the signed distance
from any image point to the curve C(-). Then u is evolved instead of C, which is
identically the zero level-set of u, according to the method described in section 2.2.

Choosing 8 = gk — (Vg - N) as in Equation 3.18 and noting that x = div(lg—zl) gives
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V

Figure 3-4: Level set implementation of curve evolution for segmentation of triangle
image.

the evolution equation

.V
Ry = g|Vu|d1v(—u) + Vg - Vu. (3.23)
V|
This behavior is illustrated in Figure 3-4. An additional term ¢ can be used either
to increase the speed of the flow or to force the contour to flow outward, similar to
the balloon force in [26] described above, to yield

uy = g|Vu|(c+ div(%)) +Vg-Vu.

Notice that we again have a second term Vg - Vu not seen in previous surface
evolution schemes. This term causes the same desirable behavior as illustrated in
Figure 3-3 and described above in the context of planar curves.

We summarize the approach of the geodesic snakes method and its extensions:
The evolutions are related to curve-shortening flow. Instead of Euclidean distance,
however, a metric is used which is based on image information. In this way the
geodesic curve is one that optimizes some salient image features. The curve evolu-
tion equation follows directly from the objective function, assuming gradient descent.
Finally, the computation is lifted one dimension so that some embedding function u
is evolved instead of the curve, which can be retrieved at any time by extracting a
level-set of w.
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3.4.4 Minimal Surfaces

The extension to surfaces in three dimensions is straightforward and is called minimal
surfaces [18]. Consider the case of a surface S evolving in R3. This is important
for image segmentation applications in which the image data is volumetric, such as
segmenting the brain in magnetic resonance imagery.

In the absence of external image information, minimizing area A where

A= [ [ da

is achieved by mean curvature motion

0S5 -
E_HN

where da is an area element, H is the mean curvature of the surface, and N is its
inward unit normal. The incorporation of an image term gives a weighted area

sz//g(I)da

where I : [0,a] x [0,b] x [0,¢] — [0,00) is the 3D image and g : [0,00) — RY is
a strictly decreasing function such that g(r) — 0 as r — oo. Computation of the
Euler-Lagrange equations yields the surface evolution equation

s -
= = (¢H-Vg-N)N.

For a level set implementation, let v : R* — R be the signed distance function to
the evolving surface S with negative distances inside S and positive distances outside
S. The level set update equation is then

.,V
vy = g(I)le|d1v(W%|) + Vg - V.

For the same purposes as in the lower dimensional case, one can again incorporate
an additional term c to obtain

. , Vv
vy = g(I)|Vol|(c+ le(-IV—vI)) + Vg - V.

3.4.5 Other Partial Differential Equations for Segmentation

These segmentation schemes belong to the superset of work using partial differential
equations for a variety of image analysis tasks including image enhancement and
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restoration [59, 58], motion segmentation [59], stereo reconstruction [40], optical flow
[63, 6], and others. This general approach is applicable to any image task which is
local in nature, by the local nature of the differential equations. An overview of the
use of partial differential equations in image processing and analysis is provided in
[19].

3.4.6 Extensions

There have been many extensions to the geodesic snake model. Sapiro has provided
the natural extension to the case of vector-valued image data, such as in the case of
color images, texture images (in which one wishes to consider some original image’s
responses to a set of texture filters as separate “response images”, and multi-modal
medical images [96]. Yezzi, Tsai, and Willsky [112] have viewed the image segmen-
tation problem from a statistical standpoint, using both global and local properties
to partition the image into a predetermined number of classes. In particular, they
define energy functionals based on intensity mean, variance, and texture, and still use
a level set implementation. Paragios and Deriche have extended the geodesic snakes
segmentation strategy to detection and tracking of moving objects [89] and also to
the segmentation of static images according to texture information [90]. Gomes and
Faugeras have provided an extension in which the distance function is forced to remain
a distance function throughout the evolution [45]. The importance of this property
of the evolution will be discussed in further detail in relation to our CURVES system
in section 5.3. Another fundamental change to the framework has been the incor-
poration of an area-minimization force, in addition to the usual length-minimization
force [101].

One difficulty with the local nature of the active contours framework that there
is no mechanism to incorporate global shape information. Several researchers have
addressed this problem: Leventon et al. has incorporated learned shape and inten-
sity priors into the level set segmentation framework [65, 64] and Guo and Vemuri
have incorporated generator functions which represent the object shape with a small
number of parameters [49].

3.5 Discussion

Note that both the t-snakes and the geodesic snakes address the same limitations
in the original snake model: topology, parametrization-dependence, and numerical
instability. A potential benefit of the t-snakes approach over the geodesic snakes
approach is a more natural capability for user-interaction in the t-snakes approach,
in which the explicit representation of the boundary makes interactive control or
influence straightforward. One potential problem with the level set representation
used in geodesic snakes is that because there is only an implicit representation of the
curve, it is difficult to interact with it. Cohen and Kimmel, however, have provided
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a method for interacting with the evolving level set representation in which the user
can fix the endpoints of the curve [25].

In contrast, an advantage of the geodesic snakes over the t-snakes is that the rep-
resentation is more elegant and does not require the repeated reparametrization and
computing of the new node points. Further, the fact that no specific parametriza-
tion is used in the geodesic snakes method enables proofs and understanding about
the behavior of the evolution which are not possible when the energy function is
dependent on the changing parametrization; this problem is presumably lessened in
the t-snakes case since although the parametrization changes, the distance between
points is bounded.

It is also important to note that the t-snakes’ representation of lists of interior
and exterior points is very similar to the level set representation which distinguishes
these two groups based on the sign of the distance function. That is, although the
underlying ideas and the directions from which the problems were approached are
different, the resulting representations are very similar. In both cases, they are used
to calculate the true boundary at some step (either throughout the evolution in the
t-snakes case or when the boundary is requested for visualization in the geodesic
snakes case) and provide the basis for the topological flexibility.

All of the deformable models discussed, by construction, are vulnerable to local
minima. This is a result of the iterative evolution, which only considers local informa-
tion. This aspect of the methods makes it difficult to understand their convergence
properties, such as how many iterations are required for convergence, if convergence
is guaranteed at all, for what class of images is convergence possible, and whether
or not the contour at convergence indeed corresponds to the true object boundary.
Some work has incorporated a statistical framework [112], but this remains an area,
for future work.



Chapter 4

MRA Segmentation

To study deformable models for image segmentation and also the temporal evolution
of 3D curves, we have chosen the application of segmenting tubular structures in
volumetric medical imagery. We have addressed the specific task of segmenting blood
vessels in MRA data with a focus on segmenting the thinnest vessels because these
are most difficult and because the fine spatial detail they provide is important in
surgical planning. This chapter provides a description of this type of image data and
of previous approaches to segmenting it.

4.1 MRA Data

The two standard types of MR angiography imaging are “Time of Flight” (TOF) and
“Phase Contrast” (PC-MRA). Both obtain volumetric images in which bloods vessels
appear bright against a dark background. We have dealt primarily with PC-MRA
images, so it is of that technique that we will provide an overview. Many of the same
segmentation techniques can be applied to both types of images, since the appearance
is very similar. When reviewing previous approaches, we will not distinguish between
the two. Computed Tomography Angiography (CTA) is a different imaging modality
also used to visualize blood vessels. These images have a very different appearance,
although some similar segmentation approaches may be possible.

PC-MRA measures the velocity of blood flow at each spatial location in the im-
aged volume. One thus obtains bright voxels in locations of blood vessels and dark
voxels elsewhere. Moreover, the brightness of the imaged vessels is greater for vessels
carrying faster blood flow than for those carrying slower motion. The velocity at
each spatial location is obtained for the x, y, and z directions. Thus, one obtains a
3-vector at each point indicating this velocity. For each dataset, a venc or velocity
encoding parameter must be set. This is the maximum velocity that can be correctly
measured. For, example, if a venc of 60 cm/second is selected, speeds between -60
cm/second and 60 cm/second will be reported correctly. The valid velocity range is
mapped to a circle and the measurement can be considered as an angle. Zero degrees
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Figure 4-1: Maximum intensity projection of a phase-contrast MRA image of blood
vessels in the brain.

is mapped to zero cm/second, angles approaching 180 degrees are mapped to values
approaching 60 cm/second, and angles approaching -180 degrees are mapped to val-
ues approaching -60 cm/second. Speeds whose magnitude is greater than the venc,
however, will “wrap” around the circle. For our example, a speed of 70 cm/second
will wrap so it appears as a speed of -50 cm/second. Choosing a lower venc, such as
30 cm/second, provides better visualization of the thin vessels in which blood flows
slowly since a larger portion of the dynamic range of the image is devoted to them.
The expense is that the fast blood flow in the centers of large vessels will be measured
incorrectly due to wrapping.

Although one obtains these three volumes for the x, y, and z velocity components,
one generally uses only what is called the magnitude image. Also a 3D volume, the
magnitude image is obtained by computing the magnitude of the (x,y,z) vectors at
each voxel and then usually scaling that magnitude by an anatomical magnetic reso-
nance image. That scaling has the effect of removing noisy vectors that may appear
outside the anatomical structure, in regions that would be black (zero intensity) in
the anatomical MR image. Other scaling terms can also be used. In general, when we
say “MRA image,” we refer to a magnitude image which consists of a scalar intensity
value at each point with high intensities indicating blood flow.

An advantage of magnetic resonance vascular imaging over x-ray vascular imaging
such as CTA is that MR techniques often do not require the injection of any contrast
agent into the bloodstream of the patient. If a contrast agent is used, the amount
injected is often small.

One such PC-MRA image is pictured in Figure 4-1. Again, blood vessels appear
as bright curve-like patterns which may be noisy and have gaps. What is shown is a
“maximum intensity projection”. The stack of slices is collapsed into a single image
for viewing by performing a projection through the stack that assigns to each pixel in
the projection the brightest voxel over all slices. This image shows projections along
three orthogonal axes. The typical size of cerebral datasets we saw was 60 slices,
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each of dimensions 256x256 voxels. For these datasets, each voxel had dimensions
9375 x .9375 x 1.5 cm®. These datasets are considered quite high resolution, and
many other datasets have larger voxel sizes.

4.2 Thresholding

Thresholding is one possible segmentation approach in which voxels are labeled as
vessels if their intensity is above some threshold and as background otherwise. This
approach works adequately on the larger vessels. The problem arises in detecting the
small vessels, and that is the objective of our work. Thresholding cannot be used
for the small vessels for several reasons. The voxels may have an intensity that is a
combination of the intensities of vessels and background if the vessel is only partially
inside the voxel. This sampling artifact is called partial voluming. Other imaging
conditions can cause some background areas to be as bright as other vessel areas,
complicating threshold selection. Finally, the images are often noisy, and methods
using local contextual information can be more robust.

A statistical approach has been proposed which retains the basic thresholding ap-
proach but employs a fully automatic method for choosing thresholds [109, 24]. This
method assumes Gaussian [109] or Rician [24] intensity distributions for background
and for vessel intensities, then uses the expectation maximization (EM) algorithm to
find appropriate thresholds that will be used to classify the voxels.

4.3 Multiscale Filtering, Local Structure

Multiscale filtering has been proposed for the segmentation of curvilinear structures
in 3D medical images such as vasculature in MRA images [97, 62, 42, 72]. The
primary application addressed is the segmentation of vasculature in MRA images.
This method involves convolving the image with Gaussian filters at multiple scales
and analyzing the eigenvalues of the Hessian matrix at each voxel in the image to
determine the local shape of the structures in the image. Multiscale analysis has a
wide range of applications, and the method of normalizing the outputs of the filters
of the various scales in order to determine the best response over the scales is studied
in the relatively new field of scale-space theory [69].

We now discuss this theory for the specific application of detecting structures
which have local shape properties of interest, such as cylindrical blood vessels; this
discussion follows [97]. The Hessian can be used for line or cylinder detection and
enhancement according to the following observations. Let I : [0,a] X [0,5] x [0, c] —
[0,00) be the volumetric image (e.g., an MRA image). The Hessian matrix of I at
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each point Z = (z,y, z) is given by

Ioa(Z) Loy(Z) Ina(Z)
Vz[(-'i): Iys(Z) Iyy(ZT) 1:(T)
L.(Z) L,(Z) IL.(Z)

Instead of using the image directly, one first convolves it with a Gaussian filter
G(Z;0y) of sigma oy to obtain smoother gradients which improve the estimation
of local structure in the presence of image noise or non-smooth edges. The Hessian
of this filtered image is equivalent to convolving the original image with the second
derivatives of the Gaussian filter, for example

I(Z;05) = {%G(E;af)} * I(Z).

To understand how the eigenvalues of this matrix express the structures in I,
consider an image L containing a bright line parallel to the z axis with Gaussian
cross-sectional intensity profile of width o,. That is,

(z —z0)® + (y — yo)z)
20,2

L(z;0,) = exp(—

where (zo,y0) is the center of the line. Let V2L(Z;0,,0f) be the corresponding
Hessian matrix combined with the Gaussian convolution, and let A;(Z), A2(Z), A3(T)
be its eigenvalues with A;(Z) > A2(Z) > A3(Z). Observe that both A\, and A3 have
the same minimum at z = 2z, y = y, and o, = oy, assuming oy is fixed. They
have the same minimum there because they correspond to two eigenvectors that lie
in the plane perpendicular to the line, whose relative strengths are equal because the
line is radially symmetric; they would differ for a ribbon-like model that lacked this
symmetry. Further, at this location, A; is zero because it corresponds to the curvature
of the line, which is zero. It follows that the conditions indicating a bright line are

/\1%0
and
A& A3 K 0.

Further analysis of the eigenvalues [62] has provided more specific information about
structure within the image. Such analysis can be performed for other structures as
well, such as spheres and thin sheets.

Various vessel segmentation algorithms have been proposed following such eigen-
value analyses. Some methods use the output of the multiscale filter directly to define
a new image in which curvilinear structures are brightened and bright voxels corre-
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sponding to speckle noise and planar structures such as skin are darkened [97, 42, 72].
This enhanced image is visualized directly [42], thresholded [97], or segmented using
an active contour method [72]. Other methods use the eigenvalues so obtained to
define a candidate set of voxels which could correspond to the centerlines of vessels
[62, 61]. Multiscale response functions are evaluated at each of these voxels to de-
termine the likelihood that the voxel is a vessel of various diameters. The maximal
response over all choices of diameters (scales) is retained at each voxel, and a surface
model of the entire vascular structure is reconstructed from knowledge of centerlines
and diameters. A final method which obtains segmentations by thresholding a filtered
MRA image uses anisotropic diffusion to remove noise without removing small vessels
[60, 91].

A related approach for segmentation and enhancement is the estimation of local
structure by tensors that are created from the outputs of quadrature filters or other
local filters [108]. These filters are sensitive to signals at various orientations, and the
tensors indicate the degree to which each location is planar, line-like, and sphere-like.

4.4 Intensity Ridges, Centerlines

A different multiscale approach based on medial axes uses the fact that the center-
lines of the vessels appear brightest to detect these centerlines as intensity ridges of
the image [7]. The width of a vessel is then determined by a multiscale response
function. This algorithm has been used in conjunction with 2D/3D registration to
incorporate information from a pair of x-ray angiograms [16, 15]. Another algorithm
that extracts centerlines explicitly uses differential geometry and treats the 3D MRA
image as a hypersurface of 4D space in which extrema of curvature correspond to
vessel centerlines [92].

4.5 Deformable Models

Instead of looking for centerlines, an alternate approach to segmentation is to look for
the boundary directly. Deformable models, as described in Chapter 3, have been ap-
plied to 3D vascular segmentation. In these approaches, an initial boundary estimate
is deformed iteratively to optimize an energy function which depends both on image
information and on the smoothness of the surface. Two such approaches are minimal
surfaces [18] and t-surfaces [83]. Our work follows closely from the minimal surfaces
approach and we compare results obtained with our algorithm to those obtained by
a variant of the minimal surfaces approach in section 6.5.

Frangi et al. have recently used their multiscale filtering method [42] within the
framework of a deformable model approach to yield a complete segmentation system
[41]. They use two deformable models: the first is a B-spline curve which represents
the central axis of the vessels, the second is a B-spline surface which represents the
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vessel walls. An overview of the use of deformable models in medical image analysis
is found in [81].

4.6 Morphology

A recent vessel segmentation algorithm was proposed that is based on dilation or
erosion of a 3d volume [36]. It was presented with application to segmentation of
vessels in a 3D tomography scan of a liver. The method is based on the concept of
simple points which are defined as a point in an object (assume 3D object for this case)
whose deletion does not change the topology of the object. Two dual methods are
proposed. In the first, the object is initialized to consist of only a single point known
to be inside the true object, then that object is dilated successively by the addition
of adjacent simple points. In the second, the background is segmented with the same
method, and then the object is defined as the complement of the background. Voxel
intensities give priorities on points so that they are added in order of decreasing
(increasing) intensity; this ordering is crucial to the algorithm. In both cases, an
intensity threshold is uses to stop the growing so that no points beneath (above) that
threshold are added. This algorithm relies on the assumption that the structure to
be segmented has a known topology, and can be regarded as a thresholding based
algorithm that maintains the topological constraint. The calculation of simple points
has also been applied to 3D skeletonization [11], which we will discuss in section 7.



Chapter 5
CURVES

CURVES is our technique for segmentation of MRA images based on 3D curve evolu-
tion. The name CURVES is derived from the description “CURve evolution for VES-
sel segmentation.” It is an implementation of the equations described in section 5.1
and operates on clinically-obtained images. The previous geodesic active contour
models described only the flow of hypersurfaces: manifolds whose co-dimension is
one. We extend these techniques to the evolution of manifolds of higher co-dimension.
For our case of curves in three dimensions, the curves have dimension one and co-
dimension two.

The high-level structure of the algorithm is the iterative modification of volume
v to move closer to the final segmentation at each step. Specifically, the CURVES
system takes in an MRA dataset or other similar volume as input. It uses this
dataset both to generate an initial volumetric distance function vy and to drive the
evolution. The most important component of the system is the evolution routine
which repeatedly modifies this volume v according to the partial differential equation
that corresponds to our customized geodesic active contours model. Periodically, it
is necessary to reinitialize the evolving volume to be a true distance function to its
current zero level set. This is necessary because the evolution equation modifies the
volume so that it is no longer a distance function. At convergence or when desired,
the zero level set is extracted from v for visualization of the segmentation. This
framework is illustrated in Figure 5-1.

The curve evolution equation we use follows directly from an energy-minimization
problem statement. Following the description of this equation, we discuss the pri-
mary components of the CURVES system including the choice to model the curves as
tubes. When embedding that curve evolution in the evolution of a volume, we make
a non-traditional choice for incorporating the image information. The calculation of
distance functions is important to the system and we discuss two types of distance
function estimation algorithms. We discuss the use of curvatures instead of eigenval-
ues in the regularization force and describe a modification to the image force that
forces the orientation of the detected boundary to coincide with the orientation of
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MRA Image
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Figure 5-1: Overview of segmentation system. v is the evolving volume whose zero
level set is the current segmentation estimate. An initial volume v, is generated
and passed to the “Evolve” routine along with the image data, where it is evolved
according to the partial differential equation derived from the energy minimization
formulation. Periodically, v is reinitialized to be a distance function to its zero level
set. Finally, the zero level set is extracted from v for visualization of the segmentation.

the intensity gradients in the image. Finally, we review the Marching Cubes isolevel
surface extraction algorithm used to visualize the vascular segmentation.

5.1 Evolution Equation

For the case of 1D structures in 3D images, we wish to minimize

/0 o(IVI(C@))IC' @) ldp (5.1)

where C(p) : [0,1] — R is the 1D curve, I : [0,a] x [0,8] x [0,c] — [0,00) is the
image, and g : [0,00) — R" is a strictly decreasing function such that g(r) — 0 as
r — oo (analogous to [20]). For our current implementation, we use g(r) = exp(—r)
because it works well in practice. Another possible choice is g(|VI|) = V T

By computing the Euler-Lagrange equations, we find that the followmg Lolds at
local minima:

0=geN —TI(Vg) (5.2)
= nl¥ — M g; ) (5.3)

where H is the Hessian of the intensity function and II is the projection operator onto
the normal plane to C'. Initially, one would expect to set the temporal derivative of
the curve C; to the quantity on the right hand side of Equation 5.3 for gradient
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Figure 5-2: (a) The tangent to C at p, the normal plane, the image-based vector, and
its projection onto the normal plane. (b) e-level set method.

descent minimization. The update rule of Ambrosio and Soner in Equation 2.7 ([4])
requires, however, that the motion equation for C; be the product of curvature and
the normal vector, offset by an auxiliary vector field. In order to achieve this form,
we divided Equation 5.3 by g before setting C; to the quantity on the right hand side.
This modification is valid since g is constrained to never attain a value of zero; it is
expected to have effects on the speed of the evolution, but not on the local minimum
obtained. We thus obtain the motion equation

VI

C,= kN - —H(Hl o7 |)

(5.4)

The second term in Equation 5.4 is illustrated in Figure 5-2(a). In the notation
of Equation 2.7, the auxiliary vector field is

VI

- g’
d==-H——,
g | VI

and the update equation for the embedding space v is

VI

VT (5.5)

/
= MVo(z, t), V2u(z, 1)) + %Vv(m, t)-H

where A(Vv(z,t), V?v(z,t)) is the smaller nonzero eigenvalue of Py,V2vPg, analo-
gous to the F function in Section 2.2.3. We note that for g(r) = ezp(—r), we have
99— = —1 identically. We retain the more general expression in terms of g in our
equations because they are applicable to other choices of g as well.

We make some comments on the division by g involved in moving from Equa-
tion 5.3 to Equation 5.4. The evolution equations used in [18] do not have this di-
vision by g. Thus, they obtain the advantageous behavior described in Section 3.4.1
and illustrated with Figure 3-3. That is, the g function approaching zero causes the
gch term to go to zero, stopping motion from this term, and the Vg term also goes
to zero at the steepest point on the gradient, stopping motion from this term as well.
In the CURVES situation of Equation 5.4, the first term s is independent of the
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image I (recall that g = g(I) is a function of the image) so it will not go to zero
on sharp image gradients. In this sense, when the curve stops evolving, we have a
balance between the two terms, but we do not have the more stable situation of both
terms going to zero separately. We ran preliminary _experiments in which we did not
divide the right hand side by g, that is, in which C, = gxN — g'l'[(Hlv Il) and thus

= gA\(Vu(z,t), V2u(z,t)) + ¢'Vu(z,t) - H,g; , but performance suffered in compar-

ison to the original rules of Equation 5.4 and Equation 5.5. Large-scale analysis of

the reasons for the change in performance has not been done. We currently retain
Equation 5.4 and Equation 5.5 due to empirically superior segmentation results.

In summary, Ambrosio and Soner’s work has provided the basis for the use of

level set methods to segment 1D structures in 3D. Equation 5.5 will become the main

body of in the CURVES segmentation algorithm.

5.2 e-Level Set Method

Initial experiments required that the evolving volume be a distance function to the
underlying curve; however, it was not clear how to robustly extract the zero level set
or even evolve those points since the distance function was singular exactly there.
Moreover, the projection operator P4 is defined only for non-zero vectors ¢, so the
method is undefined at Vv = 0, Wthh is the curve itself, and is numerically unstable
near the curve. For this reason, we developed the e-Level Set Method which defines
a thin tube of radius ¢ around the initial curve, then evolves that tube instead of
the curve (Figure 5-2(b)). £ does not denote a fixed value here, but means only that
the evolving shape is a “tubular” surface of some unspecified and variable nonzero
width. Thus, we are now evolving surfaces similar to minimal surfaces [18], but that
follow the motion of the underlying curve so they do not regularize against the high
curvatures found in thin cylindrical structures such as blood vessels and bronchi. In
addition to being more robust than the straightforward method of using a 3D distance
function to curves, this method better captures the geometry of such structures, which
have nonzero diameter.

We stress that this is an approximation to evolving the underlying curve but is
not equivalent. If we were to constrain the width of the tube to remain constant along
the tube, it would be equivalent; however, allowing the image to attract local surface
areas independently causes the width to vary, so the tube is no longer as isolevel set
of the distance function to its centerline.

5.3 Locality of Image Information

For geodesic snakes of any dimensionality and codimensionality one must compute
some curvature and some external image-related term at each point on the higher-
dimensional manifold (the surface in the case of a planar curve, the volume in the
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Figure 5-3: To evolve a point on the distance function, CURVES chooses image
information from A instead of B.

case of a space curve). For each of these terms, one can use the values defined at the
particular location or those defined at the closest point on the zero level set (Figure 5-
3). Traditional level set segmentation methods use the image term from the closest
point on the level set, but compute the curvature term locally {20, 17, 56]. The reason
is that the curvature term is defined locally, and the level-set-equivalence relation
says that indeed one should use that local curvature. The image-term, conversely,
is not defined locally if one regards the problem as evolving the curve directly. One
must, then, “invent” an image term at those points off the zero level set. The choice
that best implies a smooth evolution is the use of the image term at the nearest
point on the zero level set. This choice keeps the evolving “distance function” as
close to a true distance function as possible without modifying the curvature term.
Alternative formulations keep the evolving manifold a distance function throughout
the evolution [45, 113] using image or other information from the object boundary as
well as curvature information from the boundary only; no local information is used
at all.

The CURVES method, however, uses the image term at each location on the
higher dimensional manifold instead of propagating the image data off the current
zero level set. This choice was made to enable the evolving surface to be attracted to
edge gradients that are not on the current surface. For example, if there are two neigh-
boring tubes in the image and the curve or surface is initialized near one, CURVES
can capture the other tube; the traditional method cannot. However, this also means
that the CURVES method is not equivalent to explicit Lagrangian evolution, which
would not find the second tube. The reason that neither an explicit evolution nor
a traditional level set evolution would find the second tube is that they are stopped
by the local minimum found at the outline of the single tube. CURVES is thus less
sensitive to initialization than previous level set methods are.

This choice also has implications for the need to reinitialize the evolving higher-
dimensional manifold to be a distance function. In general, all of the level sets are
evolving toward the same local minima implied by the image force in traditional
methods; they thus become increasingly close together so the manifold is no longer a
distance function [45]. In the case of CURVES, the local image much more severely
invalidates the distance function constraint than does the general motion of all of
the level sets to the local minima. This invalidation is due to the use of potentially
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Figure 5-4: A binary image of an object to which we would like to build an L; distance
map.

very different image values used to update the “distance function” in a small region.It
follows that CURVES requires far more reinitializations than the traditional method.
However, if we wish the image information off the zero level set to affect the evolution,
we cannot reinitialize too frequently. For example, reinitializing after every step in
the evolution is equivalent to using only the image information on the zero level set,
since the reinitialization maintains only those values, updating all other values to be
their distance to the zero level set.

5.4 Banding

Instead of evolving the entire volume, we evolve only the portion of the volume within
a narrow band of the zero level set (the current surface). Normally, we set the band
to include voxels that are 4 to 6 voxels away from the surface. This aspect of the
implementation does not have the same meaning as “banding” in previous geodesic
active contour methods where the image data on the zero level set is propagated
throughout the band [2, 78, 23]. We simply mean that only those points are evolved.
Note that, unlike these other methods, CURVES is sensitive to the width chosen for
the band since image values therein are indeed used in the evolution.

5.5 Computing Distance Functions

Recall from Section 2.2 that a distance function to a given object boundary is a
function whose value at each point is the distance from that point to the object
boundary. A signed distance function is a distance function with the modification
that each distance is labeled as either positive or negative. For our purposes, we will
use negative labels to denote the interior of the object and positive labels to denote
the exterior of the object. Although we are interested in the signed distance function
computation, we will usually have prior labels indicating “interior” versus “exterior”,
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Figure 5-5: State of the distance function d(z,y) after passing the mask M; over the
first two rows only. All unmarked pixels have infinite distance at current estimate,
and have not been visited. *’s indicate pixels that have been visited but still have
infinite estimated distance.

so it is the distances themselves with which we concern ourselves. Observe that the
distances must increase with slope one as one moves away from the object in a normal
direction. Letting v be the volume in question, this constraint is written as

Vo] =1, (5.6)

which is known as the Fikonal equation. The step of generating distance functions
to object boundaries is crucial to our segmentation algorithm and is potentially very
slow, so we experimented with various algorithms searching for the most efficient
method that gave an approximation to the distance function that was adequate for
our purposes.

5.5.1 Bi-directional Propagation

A common method of distance function computation in computer vision is to use
what is called the chamfer method [14]. A very readable discussion of this approach is
given in [94]. The family of efficient algorithms for computing an approximation to the
distance function to which this method belongs is called bi-directional propagation.
Assume that we would like to compute the distance function defined by the L; distance
to the object in the 2D images in Figure 5-4. In R®, the L; distance between z =
(%1,...,2,) € R* and & = (%1,...,%,) € R" is defined as

n
o — & = |z — &il.
i=1

The idea of the these methods is to create a mask that will be passed over the
image (two times) to propagate the distances throughout the image. For the L;
distance, the mask M is
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Figure 5-6: State of the distance function d(z,y) after one complete pass of M; over
image. *’s indicate infinite estimated distance.

1
1 0 1
1
which is divided into two masks, M;:
1
1 0 -
and M,
- 01
1

The distance function d(z,y) will be initialized for each location (z,y) according
to

_J 0 if (z,y) in object
d(z,y) = { oo otherwise

Then the mask M; will be passed over the image in left-to-right, top-to-bottom order,
so that at each location (z,y) the update rule is

d(z,y) < min ( dz —1,) +1, d(z,y) ) ’

where z is increasing in the left-to-right direction and y is increasing in the top-to-
bottom direction. Figure 5-5 shows the intermediate distance function resulting from
passing M; over only the first two rows of the image. Those pixels marked with a “*”
were visited, but still retain their initial distance estimate of oo. Figure 5-6 shows
the distance function after one complete pass of M; over the image.

The next step of the algorithm is to pass M, over the image in the opposite order
of the ordering used with M;. That is, right-to-left and bottom-to-top ordering for
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Figure 5-7: State of the distance function d(z,y) after passing M; and M, over the
image. This is the final distance function.

this example. The update rule for the M, mask is

d(z,y), dlz+1,y) + 1,
z,y+1)+1

d(z,y) + min ( d( ,
Figure 5-7 shows the result of this step, which is also the final distance function.
Thus, the entire distance function has been computed in only two passes over the
image, which gives time complexity that is constant in the number of pixels.

For this case of the L, distance, bi-directional propagation gives an exact distance
function. However, for the Euclidean, or Lo, distance, an exact solution is not possible.
Instead, the method gives an approximate answer whose accuracy depends on the
mask used. The simplest approximation is the use of the mask

V2 1 V2
1 0 1
V2 1 V2

It is bi-directional propagation with this 3 x 3 mask that is called the chamfer
method, although sometimes the term is used loosely to include any bi-directional
propagation algorithm. A better approximation than that obtained with the chamfer
mask is obtained with the larger mask

v V5

VB V2 1 V2 V5
1 0 1

Vi V2 1 V2 V5
v V5

For numerical reasons, one may prefer integer estimates, such as the mask

225 225

225 141 100 141 225
100 0 100

225 141 100 141 225
225 225
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which is the above mask scaled by 100, then rounded. This mask approximates
the true L, distance to within 2% [94]. For further discussion of such masks, the
reader is referred to [66].

These masks extend naturally to 3D distance function computation. The draw-
back is the error inherent in the method when used for Euclidean distances and also
the inability to construct a distance function to a surface defined with subvoxel ac-
curacy, both of which are needed for our application.

An extension to bi-directional propagation which increases its accuracy is the
storing, for each pixel location in the image, of the pixel location on the object
from which the distance was calculated. That is, it is the pixel that is “closest” to
the object; “closest” is in quotes because it is in the sense of this distance function
approximation, not in the sense of an exact computation. This is only a constant-
time expense in efficiency, since this location value is propagated at the same time as
the distance itself. Once the forward and reverse passes are complete, one performs
a final pass over the data during which exact distance values are computed between
each pixel location and these points from the object that are associated with them.
While still not providing an exact measure, this method provides significantly higher
accuracy. Even higher accuracy can be obtained by computing exact distances to the
associated object points at each step in the propagation.

Related methods which compute Euclidean distances and still require a small
number of images scans have been described and explored by Danielsson [33]. A
subsequent method applies morphological operators to compute the exact Euclidean
distance at a limited number of pixels for efficiency [32]. These methods overcome the
approximation error of simply adding distances, but retain the limitation to distances
to only discrete pixel (voxel) locations: the chamfer method and its variations are
effective when the object boundary exactly coincides with discrete pixel locations.
For our implicit representation, however, this is not the case. In particular, we have
a 3D volume with a value at every point, and the goal is to reset that volume to be
the signed distance function to its current zero level set which is an implicitly defined
surface of subvoxel precision.

A potentially more precise but inefficient approach to obtain the unsigned dis-
tances would be to extract the zero level set explicitly using Marching Cubes [71],
which would generate the zero level set as a list of triangles. The unsigned distance
could then be computed for each voxel by computing the distances from that voxel
to each of the triangles and selecting the minimum over those distances. Regarding
the subsequent choice of sign for each voxel, i.e, whether it is interior or exterior, an
analytical calculation using surface normals of the triangles could be used. This may
yield ambiguous results near edges or vertices of the triangles, and in general there is
not a known stable method for determining this sign. For our problem, however, one
knows that the sign of each voxel should remain unchanged from the previous step,
since the zero level set should not move. Thus, we can just copy the signs from the
previous volume.
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It would be inefficient to compute the distances from each voxel to each triangle
for complicated surfaces which would have large numbers of triangles. However, an
efficient hybrid method combining the triangle vertices approach with bi-directional
propagation could also be constructed. In such a method, one would use the triangle
vertices to generate precise distance function values in the voxels that are within one
voxel of the triangle surface model. One would then use bi-directional propagation
to efficiently propagate these distances throughout the remainder of the volume.

This use of the triangles is likely more precise than the usual bi-directional method
of reducing the object boundary to a discrete binary representation. However, it is
dependent on parameters of the Marching Cubes method, such as allowed angles
between triangles, number of triangles returned, and other tolerances. Moreover,
it also has the disadvantage of being a piecewise planar approximation to the true
boundary instead of the true boundary itself.

Bi-directional propagation is very efficient, but it is only an approximation to the
true distance. It turns out that for the very thin and complicated structures we wish
to segment, such as blood vessels, the error in this approximation has a significant
negative affect on segmentation performance. Because some structures may be as
thin as only one voxel in width at some places, the quantization error of rounding to
nearest voxels and other error due to summing of discrete distances can be significant
enough to “break” those structures. We need a more precise method that does not
perform this inexact rounding to either voxels or triangle vertices. Specifically, we
would like a precise smooth solution satisfying Equation 5.6. We naturally turn to
the use of partial differential equations to obtain this property.

5.5.2 PDE Method

The partial differential equation
n=1-— |V'Ul (5.7)

was proposed by Rouy et. al. [93], where it is assumed that v > 0 on some region
0t and v = 0 on its boundary dQF. One repeatedly applies Equation 5.7 to Q+ —
Ot until convergence, at which time |[Vv| = 1. The difficulty with this method is
the requirement that the zero level set be known. Sussman et. al. thus modified
Equation 5.7 to apply to the entire domain of v, without the zero level set being
known explicitly [104]. Let vy be the initial function which we would like to reset to
a distance function to its zero level set. Their PDE evolves v into a (signed) distance
function with the property that the zero level set of v remains the same as that of v,
over the evolution. This property is achieved by the incorporation of the sign of the
previous values into the PDE. Their new PDE is

vy = sgn(ve)(1 — |V|) (5.8)
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where sgn is the sign function sgn(z) = 7= for any nonzero scalar z and sgn(0) = 0
by definition. They suggest smoothing the sign function sgn(v,) by replacing it with

Vo

) = e

(5.9)

for numerical reasons.

One difficulty with Equation 5.8, however, is that it is not robust to slight inaccu-
racies in those values of vy near the zero level set. These inaccuracies can cause those
values of vy to have the wrong sign, thus causing the zero level set to move slightly,
which is undesirable. The smoother sign function proposed in Equation 5.9 can lessen
the problem, but still can result in numerical instabilities near this boundary. Further,
it is heuristic and depends on the choice of €.

Sethian proposed a different method of creating such a distance function which
does not have this difficulty at the border [99]. This method computes the positive
(exterior) distances by propagating the zero level set of v forward with speed 8 =1
in the normal direction:

St = ]-N;n
where N, is the inward pointing normal and S is the surface to be evolved, or
S = 1Nous

where N:ut is the outward pointing normal. Because we choose the interior of the
object to have negative distance and the exterior to have positive distance within
our level set implementation, |Vu| gives the outward pointing normal of the isolevel
surface. Thus, our level set update rule comes from the equation in terms of N;ut,
yielding

v = —|Vul.

One then stores the time at which this front passes each voxel; that time gives the
distance of the voxel to the zero level set of vy. Note that this level set is an implicit
representation of the evolving front, so the contour is never extracted explicitly. Since
we will need multiple time steps to move this front (the zero level set of the volume)
and to store the given time step at which it crosses each grid point, we do not actually
write to the volume v which is used for the segmentation evolution. Instead, we copy v
to some temporary volume w when we wish to reinitialize it to be a distance function
to its zero level set. It is w that is then updated by

wy = —|Vuwl.

And when the zero level set crosses a grid point, the time at which the crossing
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Figure 5-8: A white object on a black background, followed by two different signed
distance functions to the object. The first (center image) is computed with a chamfer
map, the second (rightmost image) with the level set method. We thank Mike Lev-
enton for code used to compute the chamfer map and Renaud Keriven for code used
to compute the PDE map.

occurred is written to v, at that grid point, as this gives the distance of that grid
point to the zero level set of v. A final detail is that we actually need two volumes
w; and ws for this evolution, since the need for gradients prevents performing the
updates “in place”. That is, each iteration must compute values from one and write
them to the other. (This is likewise necessary in the segmentation update of v.) To
compute the negative (interior) distances, one repeats the procedure with normal
speed = —1:

wy = |Vl

Keriven [55] notes that the advantages of this method are that it does not move the
zero level set, it can be implemented in large part with the fast methods described
in [1], and it can be truncated naturally at some pre-specified distance from the
boundary when distances are only required in a narrow band around the object. It
is the implementation of the § = 4/ — 1 evolution by Keriven [55] that we use in
CURVES.

We experimented with the chamfer method and the variant of the chamfer method
that uses the triangle vertices because these versions are faster than our § = +/ —1
implementation. We found, however, that the error in the chamfer approximations
caused CURVES to find worse segmentations than it found with the implementation of
[55]. Figure 5-8 illustrates this situation. It shows two distance functions to a roughly
circular object. The leftmost image is the object, and the center image is the distance
function created with the basic chamfer map using the 3 x 3 mask. We acknowledge
Mike Leventon for code used to compute the chamfer map. The rightmost image
is the smoother distance function created with the PDE method. Notice the rays
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that appear to extend from the circle toward the corners in the chamfer map. These
inaccuracies in the distance map can be problematic for algorithms that require high
accuracy. Thus, we retained the PDE method which produces slower but higher
quality distance functions.

In conclusion, our reinitialization of the distance function is itself implemented
with a level set method. To obtain the positive distances, the surface is propagated
outward at constant speed of 1, and the distance at each point is determined to be the
time at which the surface crossed that point. A second step propagates the surface
inward to obtain the negative distances analogously. We reinitialize the distance
function every 3 to 5 steps; this is much more frequently than previous level set
techniques for reasons discussed in Section 5.3.

5.6 Regularization Term

For computational efficiency and because of numerical instability of the gradient
computations and thus the evolution equation near Vv = 0, we remark that the level
sets of the function v flow in the direction of the normal with velocity equal to the
sum of their smaller principal curvature (scaled by |Vv|; see Section 2.2.3) and the
dot product of Vv with the image-based vector field d. Therefore, we compute the
smaller curvature p, directly from v instead of as an eigenvalue of Py,V?vPy,, as in

MVu(z,t), V?u(z,t)) = |Vo|ps.

p2 is computed from the mean and Gaussian curvatures of the surface by solving a
quadratic equation. The mean curvature x3; and Gaussian curvature k¢ are available
directly from the volume v according to

(Vyy + V22)V3 + (Voo + 022)02 + (Vor + vy )02
VU _zvzvyvzy - 2’09;’02’03;2 - 2’Uy’Uz’Uyz

Qkry =V - = 5.10
o Vo] (02 + 02 + 02)372 (5.10)
and
U%(vyyvzz - 'ng) + 'U; (V22Vez — 'ng) + vf (Vezyy — 'Ugy) }
K +2[Uzvy(vxzvyz - v:z:yvzz) + vaz (vmy'vzz - 'Uyzvzz) + Uz Uz ('U:cyvyz - vmzvyy)]
G prmumey

(v + 02 +v2)?
(5.11)
These equations are given in [100, 107]. We then use the definitions that the Gaussian

curvature is the product of the two principal curvatures and the mean curvature is
their average to compute the p; by solving a quadratic equation.
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5.7 Image Term

To control the trade-off between fitting the surface to the image data and enforcing the
smoothness constraint on the surface, we add an image scaling term p to Equation 5.5
to obtain

VI

VIT (5.12)

!
v = A(Vo(z, 1), V2u(s, 1)) + p%Vv(x, £)-H
p 1s set by the user or can be pre-set to a default value. Empirically, we have found it
useful for p to be set so that the image-related term p<-Vv - HZ, and the curvature-

VI
related term A(Vv, V2v) are the same order of magnitude. I
The second modification to the image term is more fundamental and controls the
direction of the angle between the surface normal and the image intensity gradient.
Because vessels appear brighter than the background, we weight the image term by
the cosine of the angle between the inward normal to the surface and the gradient of
the image. This cosine is given by the negated dot product of the respective gradients
of v and I, so the update equation becomes

Vv VI VI

— 2,) — v
vy = AV, V) p(|V’U| IVII) Vv HIVII.

(5.13)
This dot product is negated because Vv gives the outward normal and we want the
inward normal. For example, if the inward surface normal and the image gradient
point in the same direction, then the brighter region is inside the surface and the
darker region is outside; the angle between the vectors is 0, whose cosine is 1, so
the image term is fully counted. However, if they point in opposite directions, the
negative weighting prevents the evolving vessel walls from being attracted to image
gradients that point in the opposite direction.

It should be noted that this change to the image force can also be viewed as an
approach toward increasing the tolerance to image noise. We can rewrite the last
term in Equation 5.13 so that the outer product matrix VIQ’,V” is multiplied by VI.
The result is the projection of VI onto the direction of Vv. At stages in the evolution
where the surface is approaching the correct segmentation result, this has the effect
of removing noisy components of VI that may be orthogonal to the true intensity
gradients.

5.8 Numerical Issues

With regards to the numerical issues involved in computing the gradients for level set
evolutions (Section 2.2.4), we make different choices for the two level set techniques
used in CURVES.

For the segmentation evolution, Equation 5.5, there are two terms as in the ex-
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Figure 5-9: Illustration of initialization part of CURVES.

ample in Section 2.2.4. The first depends on curvature, so should be computed with
central differences because information propagates in all directions off the curve. The
theory says that we should use an upwind scheme for the image-dependent term since
the direction is dependent only on an external force. In practice, however, we have
found central differences to yield smoother and better segmentations. The reason is
that central differences are more accurate than the upwind scheme because they look
at a larger neighborhood for gradient computation, in the absence of singularities. It
is these singularities that motivate the use of the upwind scheme. For smooth areas
in the distance function v, such as the neighborhood around the zero level set, the up-
wind scheme is not necessary. Thus, for empirical reasons, we use central differences
for this second term in Equation 5.5 as well.

The evolution equation that is used to reinitialize the distance function as de-
scribed in Section 5.5.2, however, is a simple convex external speed function, so we
do use the upwind method described in Section 2.2.4. We do not experience the
smoothness difficulties which warranted the central differencing method in the seg-
mentation evolution because the speed function is much smoother in this case due to
the absence of the image term. For this evolution, the upwind scheme does in fact
achieve smooth and accurate distance function. We thank Renaud Keriven for the
code used to compute these reinitializations [55].

5.9 Initial Surface

Like all active contour and surface approaches, CURVES begins with an initial bound-
ary estimate. Because our segmentation surface is represented implicitly by a distance
function, we must start with an initial function. This initial volume is created in one
of two ways. The usual approach is to threshold the raw dataset to obtain an initial
boundary estimate, then to build the distance function to this surface. One may
also manually edit the initialization to remove noise artifacts if desired. The second
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approach is to simply provide a prior arbitrarily constructed surface and build a dis-
tance function to it. Figure 5-9 illustrates this process. Our early experiments used
this second approach to test the capture range of the segmentation algorithm. For
example, we initialized the algorithm with a vertical bar in the center of the volume
as shown in Section 6.3.

5.10 Convergence Detection

Convergence of the algorithm is detected when the volume of the segmented region
changes less than some specified percentage of total volume, across a specified number
of iterations. We usually choose .01 for this percentage and 10 or 20 for the number
of iterations. One can expect to achieve similar behavior using a smaller percentage
over a smaller number of iterations or using a larger percentage over a larger number
of iterations.

Due to the trade-off between evolving the “distance function” to fit image informa-
tion and reinitializing it to be a true distance function, the volume does not converge
to a distance function to its zero level set. That is, the image force is repeatedly
driving it away from a distance function, and the reinitialization step returns it to
a distance function periodically. Thus, what we wish to capture is convergence of
the zero level set surface, given a particular frequency of reinitializations. This is
the reason we do not check at successive steps, but instead across a larger number of
steps.

We experimented with variations on this protocol. The first experiment was to
add a loop on top of this checking protocol which would require some number Y of
convergence checks to be satisfied before declaring convergence. We tested Y values
of three and four. We observed with this protocol that the evolution could enter an
infinite loop: the segmentation would expand and contract slightly due to the image-
reinitialization tradeoff, so would never determine convergence. One could of course
decrease the frequency of checking, but loops are possible for any frequency. This is
an undesirable aspect of the algorithm. At the current time we only use the single
convergence check (Y = 1) for empirical reasons. This raises an interesting question
for future study: can we guarantee that successive steps indeed decrease the “energy”
of the evolving manifold, as defined by the energy functional in (5.1) or a related
expression? Note that it may not be possible to use the fundamental geodesic active
contours energy function (5.1) directly since we use image information off the curve.

5.11 Marching Cubes

Whenever we would like to view the segmentation, the zero level set is extracted
using Marching Cubes [71]. This is a popular method for extracting isolevel surfaces
from 3D data in the graphics and visualization communities. It operates on the
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Figure 5-10: The 2-isolevel contour of a 2D array.

principle that for each cell (the cubes whose vertices are neighboring voxels), there
is only a finite number of ways the contour can pass through that cell. These ways
are differentiated according to which of the eight vertices of the cell are inside the
contour and which are outside. There are thus 28 = 256 ways the contour can pass
through a cell. These ways are called the topological states of the cell, and once the
topological state of a cell is determined, the exact contour through that cell can be
computed by linear interpolation of the values at the vertices.

The 2D analog of Marching Cubes is called Marching Squares. We describe March-
ing Squares first to facilitate understanding of Marching Cubes. Marching Squares is
a technique for producing isolevel curves of a 2D array of values, such as an image or
a 2D distance function (Figure 5-10). In this case, a cell is a square whose vertices
have values given by the 2D array. Analogous to Marching Cubes, it treats each cell
independently. Because a cell has 4 vertices, there are 2* = 16 topological states
a cell can exhibit as shown in Figure 5-11. Note that two of the states exhibit an
ambiguity about where to draw the contour because there is not enough information
to decide; in general one choice is chosen arbitrarily. Each state can be represented
with a 4-bit index, which will be used to index into a table giving the proper con-
tours to draw (modulo the array values, which must be interpolated) for each state.
For a pre-selected value at which the contour is desired, Marching Squares does the
following.

1. Choose a cell.

2. Examine the value of each vertex in the cell to see if it is above or below the
value. This tells if it is inside or outside the contour. Note that it does not
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Figure 5-11: The 16 topological states a cell can have according to Marching Squares.
Each square represents a state: filled-in circles indicate that the vertex is inside the
contour, empty circles indicate that the vertex is outside the contour. The lines within
the squares indicate where to place the contour, although the values at the vertex
will indicate exactly where along the particular edges it should be placed. The dotted
lines indicate an ambiguity in this choice.
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matter whether higher/lower indicates inside/outside or vice versa, but this
must be defined a priori.

3. Encode the inside/outside information in a 4-bit index.
4. Use this index to probe the table to obtain a rule for how to draw the contour.

5. Using his rule, interpolate the specific array values at the vertices to draw the
precise contour.

This method has the advantage of being easy to implement and efficient, due to
the table and the ability to perform only one pass over the data. One drawback is
that many disconnected contour segments are produced since each cell is processed
separately. In practice, one uses a post-processing step to connect these segments.

The 3D version, Marching Cubes generates isosurfaces analogously. In this case,
the cells are cubes with eight vertices, so there are 256 possible states. This large
number can be reduced using rotational and reflective symmetries to the 15 states
pictured in Figure 5-12. In this figure, black circles indicate vertices that are inside the
isosurface. The triangles within the cubes indicate where to place the triangles that
comprise the isosurface, although the values at the vertices will indicate exactly where
along the particular edges they should be placed. Like in the Marching Squares case,
there are some ambiguities. Here, the six states with ambiguities are indicated with a
“*_ Unfortunately, resolving the ambiguities is more difficult for the 3D case than for
the 2D case. In the 2D case, either interpretation is acceptable in the sense that the
contour still remains connected. In the 3D case, however, some choices may lead to
holes in the isosurface. This difficulty can be addressed by a post-processing decision
step, by the use of tetrahedra (which avoid ambiguity since they are simplices) instead
of cubes, or by the addition of several “complementary states” to the illustrated 15



CHAPTER 5. CURVES 78

.
:
: :
: :
;
, ,
e
V Dok
£ .
' :
: ;
[ IORTNY ARy P T TR
. -
/ /
L

Figure 5-12: The 15 topological states for Marching Cubes, which have been reduced
from the original 256 states by symmetry. Black circles indicate vertices that are inside
the isosurface. The triangles within the cubes indicate where to place the triangles
that comprise the isosurface, although the values at the vertices will indicate exactly
where along the particular edges they should be placed. There is ambiguities in the
6 states marked with an asterisk “*”.

states. The reader is referred to [98] for further detail and discussion. In CURVES, we
use the implementation of Marching Cubes available with the Visualization Toolkit
(VTK) [98]. This set of visualization libraries provides a wide range of visualization
functionality and is available without cost from http://www.kitware.com/vtk.html.
We use it for all rendering in the CURVES system.

5.12 Pre-processing, post-processing

Before running CURVES on medical datasets, the datasets are usually smoothed by
a small isotropic Gaussian since the algorithm inherently requires some smoothness
of gradients. The sigma normally used is 0.75mm in each dimension, where a typical
dataset has voxel dimensions of .9375 x .9375 x 1.5mm?.

We post-process the segmentations to remove any surface patches whose surface
area is less than some threshold (a parameter of the method) to eliminate patches
corresponding to noise in the original data. Alternately, the user can base the thresh-
olding on volume of connected components instead of surface area, removing all struc-
tures whose volume is less than some threshold. This step can remove “noise” that
may have been incorrectly segmented or can enable the user to focus only on the
largest connected structures.
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Results

We have run CURVES on approximately 30 medical datasets and on synthetic vol-
umes as well. Initial experiments on simple tubular structures were conducted to
understand the behavior of the curve evolution differential equation. Once medical
experiments were started, our first results demonstrated the potential of the method
to operate effectively on such complicated structures in the presence of imaging noise.
Results were compared visually to simple thresholding of the raw data to see in which
cases the curve evolution approach is most important [75]. With further experimen-
tation, the algorithm was refined to have the improved performance we currently
observe [74]. While experimenting, we simultaneously explored various validation
options. Prior to showing results, this chapter explains various validation options,
why it is difficult to obtain quantitative performance measures, and what validation
strategies we chose for this research. We then provide images showing results of the
CURVES segmentation system, first on synthetic data, then on medical datasets.
Medical image segmentations are validated against simple thresholding and against
manual segmentations by a neurosurgeon.

6.1 Validation Issues

It is difficult to quantify the performance of an automatic segmentation algorithm
whose output is as complicated as a vessel tree. The primary difficulty is in obtaining
ground truth. The ideal ground truth would be a correct labeling of each voxel as
“vessel” or “not vessel”, and also a surface model showing the exact vessel wall to
increase precision in areas of partial voluming. The first reason this is difficult to
obtain is the complexity of the vasculature. An image of a cerebral vessel model
obtained by plastination is shown in Figure 6-1. Plastination is a process in which a
glue-like substance in injected into the vessels of a cadaver. This substance is carried
throughout the vessels in the anatomical region of interest. After it hardens, the
anatomical area is caused to disintegrate, so that the only remaining structure is the
hardened glue in the shape of the vessels. This figure shows the huge number of

79



CHAPTER 6. RESULTS 80

Figure 6-1: Plastination model of cerebral vessels in a human brain. Image reproduced
from [114] with permission from Zlokovic, Keck School of Medicine, University of
Southern California.

vessels and intricate 3D arrangement and branching pattern.

The availability of such knowledge about the locations of the vessels, although
unwieldy, raises the possibility of constructing an atlas of the vessels to use as ground
truth in validation experiments. One could register the segmented model to the atlas
then calculate a score of what percentage of the total vasculature was obtained. This
idea, however, is precluded by the large variability of these structures across indi-
viduals. For example the Circle of Willis, a structure connecting the major cerebral
arteries, is not fully connected in a large fraction of people. Yasargil found percentages
of occurrence for the major cerebral vessels by studying cadavers [110], but incidence
rates for all vessels are not known.

Other difficulties that are potentially easier to overcome, but would still need to
be addressed, are the question of how to represent the vessels and the related question
of exactly what to measure once a registration is achieved. Possibilities for the latter
include the presence of pre-specified “important” vessels, the lengths and widths of
vessels, the number of small vessels, and overall surface area or volume agreement.
An additional source of error is the scanning modality. Since the algorithm does not
operate on the vessels directly, but rather on an image acquired by a scanner, this
transformation from anatomy to image should be modeled. Some vessels will not
appear in the image, while phase wrapping due to velocity encoding (for the case of
PC-MRA) will cause others to appear in the wrong geometric locations and at the
wrong intensities.

Another area of discussion is the question of vascular malformations. These seg-
mentation algorithms will often be applied to pathological cases. In some cases the
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goal will be to detect and perform calculations on the particular pathology, such as
an arteriovenous malfunction (AVM) in which an artery and a vein connect and thus
short-circuit the blood flow or an aneurysm in which a portion of an artery has a
potentially large balloon-like bulge. These pathologies, however, may confound the
registration algorithm and also the atlas-based comparison.

Since we reject the atlas validation strategy at present for the reasons above, we
consider other possibilities for validation. The first is to have an expert radiologist,
neurosurgeon, or neuroradiologist (for the case of the cerebral vessels) manually label
each voxel in a dataset “vessel” or “not vessel”. The most obvious drawback to this
option is the large amount of time required for this task. Typical MRA datasets
acquired clinically at Brigham and Womens Hospital are 256 x 256 x 60 voxels, and
one may prefer to use super-resolution datasets which would be even larger to obtain
more precise validation. The time required for an expert to carefully segment such a
dataset is on the order of a few hours. This is not feasible for testing on a large number
of cases. Other drawbacks to this approach include the variability for a common
dataset of the same expert’s segmentation over multiple trials and the variability of
segmentations by multiple experts, both of which are significant.

Another method that has been used in the research community is the use of a
vascular phantom for which ground truth vessel locations are know. R.G. Shelley Lit.,
North York, Ontario is a company which manufactures and sells a variety of vascular
phantoms (http://www.simutec.com, [39, 85, 8, 50]). Such phantoms contain one
or more tubes made of material designed to mimic vessel walls. “Blood-mimicking
fluid” can then be pumped through these tubes while they are imaged in a magnetic
resonance scanner, to obtain a volumetric image similar to that of actual blood ves-
sels. Frangi et. al. used a Shelley phantom in recent vessel segmentation studies [41].
One limitation is that such phantoms do not contain the extra-vascular tissues that
interfere with the imaging process in real anatomy. The phantom image is thus often
“cleaner” than is realistic which makes it easier to segment. Shelley has used of bags
filled with saline solution surrounding the tubes to simulate this effect. The funda-
mental limitation of this validation strategy even with an excellent phantom, however,
is that it does not measure the algorithm’s performance on the actual datasets on
which it is to be applied, but only on necessarily simpler structures.

Also used in the literature has been the visual comparison of segmentations of
volumetric MRA scans with digital subtraction angiography (DSA) images [15, 97].
Also called z-ray angiograms, DSA images are 2D images that show projections of 3D
vascular structure. They are used because they exhibit a much higher level of detail
than do MRA images. They are more invasive than MR imaging since a significant
level of contrast agent must be injected into the subject, so one would not use them
in healthy subjects for validation experiments only. However, there are corresponding
MR and DSA images for a large number of patients, so availability is not problematic.
The approach used in [15] is to register the MRA image to the DSA image, project the
centerlines and branching points of the segmentation of the MRA image onto the DSA
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Figure 6-2: Top row demonstrates the tubular object evolving to smooth the un-
derlying curve, as in CURVES. Notice that the bumps are first smoothed out until
the shape approximates a torus, then the torus shrinks to a point. Bottom row
demonstrates the shape evolving under codimension-one flow. The high curvatures
corresponding to the small radius of the tube cause the shape to become thinner until
it disappears without perceptibly affecting the geometry of the underlying curve.

image, then ask an expert to verify that the branching locations are indeed correctly
localized. This strategy does adequately quantify the degree to which branches are
correctly detected, but there are many other attributes one wishes to validate, such
as the presence of very thin vessels and the vessel widths. Further, it is dependent
on the quality of the registration between the two datasets and on the quality of the
DSA image and is restricted to arteries since veins do not appear in DSA images.

We propose another strategy for ground truth determination to overcome some
of these problems. We acquired two scans of a single subject at different resolutions.
The scans were acquired without moving the patient so they are registered by default.
The idea is to then use a segmentation of the higher resolution dataset as ground truth
by which to evaluate segmentations of the lower resolution dataset. This strategy is
discussed in more detail in section 6.6 below.

We also ran compared to segmentations acquired in a different manner. This
manner involves an interactive MRA segmentation tool currently used clinically at
Brigham and Womens Hospital, considered “state of the art” for vessel segmentations
in clinical use. This tool enables the expert to generate segmentations in much less
time than would be required by a fully manual method, but the segmentations gener-
ated are not completely reflective of the true vasculature. This protocol is described
in detail in section 6.6.2 where comparison results obtained with it are shown. In
particular, we compared our segmentations to those obtained by a neurosurgeon with
this tool for approximately 10 datasets.

The following sections describe experiments on simple tube-like structures that
were used in early stages of development, then other simulation results. Following
the simulation discussion, the experiments on medical datasets are provided.
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Figure 6-3: A tubular shape with corners under codimension-two flow.

6.2 Simulation

We constructed many toy shapes to understand the behavior of the codimension-two
evolution and the image force. We first show regularization only applied to synthetic
tubular shapes. We then show a toy shape evolving by both regularization and
image-attraction. Finally, we discuss the trade-off between image weighting and the
frequency of reinitializing the evolving volume to be a true distance function, using
a synthetic example for illustration.

6.2.1 Tubular Objects Under Codimension-Two Flow

We generated a tubular shape whose centerline is a sinusoidal function along a cir-
cle. The first row of Figure 6-2 demonstrates the behavior of this shape undergo-
ing smoothing based on the curvature of its centerline. This regularization is the
“codimension-two” force we use in CURVES since we want shapes to behave like
their centerlines where regularization is concerned. These images were produced by
using CURVES with the image term set to zero. Notice the bumps are first smoothed
out until the shape approximates a torus, then the torus shrinks to a point. This is
the behavior of the circular 1D centerline would exhibit under curve-shortening flow.
The second row shows the behavior of traditional (codimension-one) mean curvature
flow in which the regularization is based on the mean curvature of the surface. In
this case, the high curvatures corresponding to the small radius of the tube cause
the shape to become thinner until it disappears without perceptibly affecting the ge-
ometry of the underlying curve. We emphasize that our novel regularization force
is one of the primary differences between our work and previous surface evolution
segmentation methods which use the mean curvature force [18].

Figure 6-3 shows another tubular shape undergoing codimension-two flow. Again,
the figures were produced by evolving the shape in CURVES with the image term set
to zero, so only the regularization force was used. This shape has sharp corners, and
we see that although the 1D centerline of the shape is singular at those corners, the
codimension-two force simply uses the smaller principal curvature of the surface at
these points. This procedure has the advantage of enabling the evolution to proceed
in a natural way to smooth out these corners and the disadvantage of causing the tube
to become fatter at these corners over the course of the evolution. The fattening is
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Figure 6-4: Evolving helix under mean curvature flow with additional vector field:
target curve, initial level set, level set after evolution with endpoints constrained.

caused by the different curvature estimates obtained on the inside and outside of the
corners. This disadvantage exists for all tubular shapes, but is especially prominent
for corners where the interior curvature estimate is very high. As expected, the tube
shrinks according to its underlying centerline, modulo this non-constant change in
width.

6.2.2 Incorporation of Image Data

We illustrate our early image-force experiments with the evolution of another tubular
shape. We wanted to evolve a helical tube into a cosine-shape tube. Recall that a
helix shrinks to its centerline under usual curve-shortening flow. In this case, however,
we are using the full image-based CURVES evolution equation with an underlying
image of a bright cosine curve, so we would expect the helix to evolve smoothly
into this cosine shape. Indeed, this is the result, as pictured in Figure 6-4. The
underlying volumetric image data is shown first as a maximum intensity projection.
This volume was generated by drawing a cosine curve in the volume, then smoothing
with a Gaussian filter. We chose to evolve an initial curve which was very far from the
target, such as the helix (second image), instead of using thresholding to obtain the
initial curve, which would give a close guess. The result of the evolution is shown in
the rightmost image. For this experiment, we made a modification to the algorithm.
Because the tube is open, it has endpoints at which both principal curvatures are
large, and neither of those curvatures corresponds to the geometry of the centerline.
Thus, it is inappropriate to use the specified regularization force at these points.
We modified the algorithm accordingly to perform at check at each point based on
the ratio of the principal curvatures to determine which points were endpoints, at
which no regularization would be performed; that is, the regularization force was set
to zero. This modification did not cause the points to remain motionless because
of the image force, the motion of neighboring points, and the smoothness of the
distance function, but it did prevent high curvatures from being used incorrectly
for regularization. In our later experiments with MRA data after default parameter
setting and initialization procedures were in place, we found this modification to be
unnecessary since the image weighting and the gradient-directionality term are strong
enough to counteract the inappropriate regularization. This modification is thus not
used in CURVES.
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Figure 6-5: Simple segmentation example for which ground truth is known. The
structure to be segmented was a cylinder. Cross-sectional slices are shown. The first
image is the boundary computed analytically, to resolution precision. The second
image is the boundary found by CURVES. The third image is the two overlaid.

A different experiment used thresholding for initialization instead of a pre-specified
shape. A dark image containing a bright cylinder of Gaussian intensity profile was
created. A ground truth segmentation was defined to be all voxels inside the tube
defined by the largest intensity gradient magnitudes. This ground truth was computed
analytically. The CURVES segmentation using default parameter settings, including
thresholding to obtain the initial boundary estimate, did indeed find this segmentation
to within rasterization error, as demonstrated by the images of cross-sectional slices
in Figure 6-5. The first image is the boundary computed analytically, to resolution
precision. The second image is the CURVES segmentation. The third image is the
two overlaid.

The Gaussian intensity profile is a common and adequate approximation to the
intensity profile of vessels under MRA imaging. This profile, combined with the fea-
ture of our algorithm of convergence on maximal gradient magnitudes implies that
the detected boundaries can be inside the true vessel boundaries since the gradient
maxima are generally inside the vessel walls in this imaging modality. However, for
modalities such as CT that do not have this profile, gradient magnitude does not
have this difficulty. The first row of Figure 6-6 shows the CURVES segmentation of
a Gaussian profile cylinder from a lengthwise slice. Notice that even when initial-
ized (by thresholding) outside of the bright vessel-like structure, CURVES converges
to the sharpest gradients. The second row shows an example with a flatter profile
constructed by smoothing a step edge. In this case, the sharpest gradients better ap-
proximate the object boundary. As we will see in real MRA experiments below, this
“thinning” effect is problematic for the wider vessels whose intensities are brightest
on the centerlines and diminish toward the vessel walls with this profile. The small
vessels’ profiles only show one or two voxels brighter than the background (the diam-
eter of the vessel), so this troublesome profile is prevented by the image resolution.
We expect that this problem could be addressed by extremizing measures other than
image gradients but have not explored them.
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Figure 6-6: First row: Gaussian intensity profile. Second row: smoothed step profile.
In both cases, the current boundary estimate is overlaid in red and the initialization
boundary is shown first followed by the boundaries after several steps until conver-
gence.

6.2.3 Reinitialization and Image Weighting

The observed behavior on clinical datasets as well as on toy examples was that one
could reinitialize much less frequently if the image term had relatively low weight.
This is intuitive since the image term destroys the distance function, and the degree
to which v is not a distance function is monotonically related to the weighting of this
image term. Further, when v becomes more irregular, the evolution becomes noisy and
is not well behaved; one must reinitialize to maintain smooth behavior. It is desirable
for efficiency reasons to reinitialize as infrequently as possible since the procedure is
computationally expensive. However, a low image weight may slow the evolution or
cause faint structures to be missed entirely, thus a high image weight is also often
desirable. We constructed a simulation experiment to enable better understanding of
the trade-off between infrequent reinitialization and increased image weighting.
Using the same synthetic cylinder as in Figure 6-5, we ran the evolution with
default parameters, using thresholding for initialization, to determine the valid range
of trade-offs for the image weighting parameter p versus the frequency of reinitial-
ization of the distance function. Figure 6-7 illustrates the structure, ground truth,
and CURVES’ performance. The upper left image is a cross-section of the cylinder,
showing the Gaussian intensity profile. The upper right image is the gradient mag-
nitude image, and the lower left is the set of points with highest gradient magnitude
which are the “ground truth” boundary points. With adequate settings for image
weighting and reinitialization frequency, CURVES indeed converges to the true seg-
mentation, as illustrated in the lower right image in which the CURVES segmentation
is overlaid on the ground truth boundary points. Note that a forced reinitialization
always occurs when the zero level set gets too close to the border of the narrow
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Figure 6-7: Simple segmentation example for which ground truth is known. The
structure to be segmented was a cylinder. Cross-sectional slices are shown. The first
image is the Gaussian intensity profile of the cylinder, the second is the gradient mag-
nitudes, the third are those points with highest gradient magnitude, and finally those
points overlaid on the CURVES segmentation, showing that CURVES did converge
to the correct segmentation.

band, and the parameter controlling reinitialization frequency is in addition to this
forced reinitialization. Figure 6-8 plots the largest number of steps permitted between
parameter-reinitializations for which the answer found was correct versus the image
scaling term. A larger value of this term indicates more image weight, proportionally.
The figure shows that for an image term less that one, one can reinitialize infrequently,
but for an image weight over 2.5, one must reinitialize every step. We would inter-
pret this to mean that surface is moving too much at each step, so one should either
decrease the coeflicients such as p or the step size. Note that these measurements
are dependent on the intensity properties of the image, so and image with a different
distribution of gradients would give different results. Thus, one can regard this graph
as showing an example of the shape of this trade-off, but the numbers will vary for
different types of datasets.
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Figure 6-8: The largest number of steps permitted between parameter-reinitializations
for which the answer found was correct versus the image scaling term. The experiment
was performed for the data pictured in Figure 6-7.

Figure 6-9: Illustration of a vertical bar evolving to segment vasculature.

6.3 Medical Evolution Sequences

We next move to medical datasets. The datasets we normally operate on are PC-
MRA, as described in Section 4.1, and a typical dataset size in 256 x 256 x 60 voxels.
Image size, imaging artifacts, and complexity of the anatomical structures make these
experiments more difficult than the synthetic shapes above. Before showing final seg-
mentations and validation comparisons for various types of datasets, we illustrate the
evolution over time of the boundary estimate for these types of datasets. These se-
quences are shown to give the reader an understanding of the behavior and run-time
performance of the system before analyzing the final segmentations. As stated, we
have two options for how to initialize the segmentations: a pre-specified shape or one
obtained by thresholding the input dataset. We show two sequences, one obtained
with each method. Figure 6-9 shows the evolution of a pre-specified shape, a vertical
bar: the initial bar is shown, followed by subsequent steps in the evolution for the
segmentation of an MRA dataset. Notice that the image attraction force can pull the
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Figure 6-10: Surface evolution over time: initialization, followed by successive bound-
ary estimates.

surface toward true vessels even when the starting point is not close to the vessels.
In practice, however, it is beneficial to start with the better estimates that are avail-
able by thresholding. Figure 6-10 illustrates the system’s behavior when initialized
by thresholding the dataset. This dataset was also a cerebral MRA scan and the
surface models are shown from an axial viewpoint. The initial surface is obtained
by thresholding the raw dataset, then CURVES evolution produces the subsequent
images. Notice how branching occurs automatically with either initialization. Again,
in practice the thresholding initialization approach is better for both speed and per-
formance, so it is the default in our system and was used in the remainder of the
experiments described in this chapter.

6.4 Aorta

Figure 6-11 shows the segmentation of a contrast-enhanced MRA image of an aorta
courtesy of Siemens. This dataset was acquired on a Siemens scanner at New York
University. Voxel dimensions are 1.75 x 1.75.39mm? and a contrast agent was used.
The image size of the volume shown is 110 x 256 x 46 voxels. The segmentation is
shown from two orthogonal viewpoints. For each viewpoint, the maximum intensity
projection of the raw data is shown first, followed by the CURVES segmentation.
Notice that CURVES is able to obtain many thin vessels, which are the most difficult
to segment.

6.5 Lung CT, Comparison to Mean Curvature

For comparison purposes, we have created a version of the CURVES program which
uses the codimension-one regularization force, the mean curvature of the surface,



CHAPTER 6. RESULTS 90

Figure 6-11: Segmentation of a contrast-enhanced aorta MRA image, courtesy of
Siemens, acquired on a Siemens scanner at New York University. From each view-
point is shown the maximum intensity projection of the raw data and the CURVES
segmentation.

as in previous level set segmentation schemes [18]; otherwise, all parameter settings
were identical to those used in the CURVES experiment. That is, this version of
CURVES is not the minimal surfaces algorithm because CURVES uses a different
image force that is obtained locally in the image and that is also weighted by a
gradient-directionality term, but it differs from CURVES only in the regularization
force.

Experiments with this version have shown that the magnitude of the effect of the
modification on the resulting segmentation depends on the trade-off chosen between
the regularization term and the image term in the underlying evolution equation.
(This trade-off is specified by p in Equation 5.13.) When this trade-off is chosen so
that the image information is weighted much more heavily than the smoothing term,
the effect is negligible. This was the case for the highest quality MRA image we had,
such as shown in Section 6.6.2. However, for CT data and lower quality MRA images,
the effect can be significant.

Figure 6-12 shows the CURVES segmentation of bronchi in a lung CT dataset
compared to the codimension-one segmentation, for the same parameter settings. The
first image is the maximum intensity projection of a subregion of the dataset in which
the bronchial tubes appear bright. They appear bright in CT because blood vessels
cause a bright signal in CT and they run along the bronchi. The second and third
images are the CURVES and codimension-one segmentations respectively, and the
fourth is a combination image of the two segmentations. Notice that the codimension-
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Figure 6-12: Segmentation of bronchi in volumetric CT image of lung. Maximum
intensity project of raw data is shown, followed by CURVES segmentation (red) and
codimension-one segmentation (green). Final image is combination image of the two
segmentation images, showing that CURVES method captures more fine detail of the
bronchial structure.

two regularization force in CURVES does indeed allow the segmentation of more
thin structures than does the codimension-one force. This effect is intuitive because
the codimension-one algorithm incorporates a smoothness constraint which acts to
prevent high curvatures anywhere on the resultant surface, which is inappropriate
for the segmentation of thin tubular structures which must have high curvatures
corresponding to their small radii. Conversely, the regularization force in CURVES
allows this high curvature, regularizing against only the curvature of the underlying
one-dimensional curve.

6.6 Cerebral Vessel Validation

One would like a quantitative measure of CURVES performance in comparison to
some baseline or to other methods or as an absolute score of performance. For this
reason, we developed a multi-resolution validation strategy in which a pair of regis-
tered MRA images are acquired at multiple scales and a segmentation of the higher
resolution scan is used as ground truth for the experiments on the lower resolution
scan.

We thus acquired several multi-resolution cerebral MRA images, some with a .5T
magnet and some with a 1.5T magnet. We selected an area containing the Circle
of Willis because of its connections to important vessels. The Circle of Willis is a
vascular structure which loops around the brainstem and connects to the anterior,
middle and posterior cerebral arteries, the primary arteries supplying the brain. This
situation has the unusual benefit that damage to any one of these three arteries will
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not compromise blood flow to the brain; moreover, blood can flow in either direction
in the circle.

In the .5T magnet, we acquired three pairs of images of this region of healthy
subjects. A velocity encoding (venc) of 60cm/sec was used. Slice thicknesses of
1.7mm and 0.8mm were obtained for the low and high resolution scans respectively.
A 256x256 pixel image was acquired for each slice in the high resolution scan, and a
256x128 pixel image was acquired for each slice in the low resolution scan. The low
resolution slices were interpolated to 256x256 but the true resolution was 256x128.
28 slices were acquired for the low resolution scan and 60 for the high resolution scan.
The same venc, resolutions, and slice thicknesses were used for the 1.5T scans, of which
we acquired for two pairs of healthy subjects, except the field of view was increased
to obtain 40 slices and 84 slices for the low and high resolution scans respectively.

A concern of ours in using this strategy is that although the higher resolution
dataset can presumably show more detail, each voxel represents a smaller number
of hydrogen atoms, so is less likely to give a reliable reading. Empirically, however,
we found that the high resolution scans did indeed appear much better than th low
resolution scans for the 1.5T images and that the pairs of scans looked very similar
for the .5T images.

Besides our multiresolution validation experiments, it was these datasets that a
neurosurgeon segmented manually for us with the use of an interactive computer pro-
gram that works as follows. The neurosurgeon interactively chooses a threshold that is
used to binarize the MRA dataset: all voxels brighter than that threshold are labeled
as vessel, while all others are discarded. A “connectivity” program then partitions the
set of labeled voxels into connected components. Each connected component appears
in a distinct color on the user interface. The surgeon looks at individual slices and
clicks on colored regions that correspond to vasculature. All connected components so
chosen are stored as the final manual segmentation. The surgeon may choose to man-
ually edit the segmentations depending on the errors present and the requirements of
the clinical situation. Note that segmentations obtained with this process can often
contain image artifacts and miss small vessels since the process is based on thresh-
olding which has these difficulties. We will discuss the manual segmentations and our
comparisons to them following the discussion of the multiresolution experiments.

6.6.1 Multiresolution Validation

There are several parameters of the multiresolution validation method that need to
be specified. The first is how to construct the “ground truth” segmentation from
the higher resolution scan. Possibilities include CURVES and the expert interactive
method described in section 6.6.2; we will show experiments with both choices. Second
is what to measure about the the segmentations of the lower resolution scan: we chose
the scoring protocol used by Sato in [97] in which ROC-like curves are plotted.
Receiver operating characteristic (ROC) curves show performance of detection
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systems for which the only free parameter is a single decision threshold on some
quantity related to the probability of the signal being correct. Such systems have the
property that one can always choose a threshold high enough so that the probability
of both false positives and true positives is zero; conversely one can always choose
a threshold below the valid range so that the probability of false positives and true
positives is one. So, each such algorithm sweeps out a curve over the (ps,p:) space,
where py is the probability of false positives and p; is the probability of true positives.
(0,0) and (1,1) are contained in the curves for all algorithms. The ideal case is p; = 0
and (p;) = 1, so to compare different algorithms, one sees which yields a curve that
comes closest to the (0,1) location in this space. For our experiments, we wish to
compare the performance of CURVES to that of simple thresholding on the raw data.
Our needs do not fit the requirements for ROC curves in two aspects, so we will
generate similar “ROC-like” plots instead.

The first aspect in which our situation differs from standard ROC analyses is that
we obtain a complicated segmentation for each run of the algorithm, instead of a
single “yes” or “no” response. For each segmentation, we compute a true positive
fraction T, and a false positive fraction F, as defined by Sato et al. [97]. In parts of
this analysis, we use skeleton points of the vessels instead of the entire segmentations
for robustness of the comparisons. The skeletonization algorithm used, however,
returns a very large number of points so the “skeleton” is often thicker than the
true centerlines. In fact there was approximately a 3:1 ratio between the number of
segmentation points and the number of skeleton points. The skeletonization algorithm
used is based on the removal of simple points from the binary segmentation [11, 76].
This thinning algorithm will be discussed in Section 7.5.2. Let N4 be the number of
ground truth vessel skeleton points that are detected, N, the total number of ground
truth vessel skeleton points, Ny; the number of detected points not included in the
ground truth segmentation, and Ny the total number of detected points. Then,
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This definition can be stated equivalently as follows. If G is the ground truth seg-
mentation, G the skeleton of the ground truth segmentation, A the automatic seg-
mentation to be evaluated, and A, the skeleton of the automatic segmentation to be
evaluated, then
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where G denotes those points not in G and S| denotes the cardinality of some set S.

In the plots of thresholding, each point on the curve corresponds to a different
threshold. The CURVES curves, however, exhibit the second aspect in which our
situation differs from standard ROC analyses. There is not a “decision threshold” in
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the CURVES algorithm. Instead, the most meaningful parameter to vary is p, the
relative weighting between image fidelity and surface smoothness. Each is point on
a CURVES ROC-like curve then is the (T}, T,) value for a differ choice of p. This is
a more important difference from usual ROC curves than just definition. It means
that CURVES will not produce ROC curves of the usual shape; for example, they
will generally not contain the points (0,0) and (1,1). They also are not guaranteed
to be monotonically increasing in T, and T} as usual plots are. We would expect an
increase in p to increase T, and T} since higher image weight implies less smoothing
and smoothing is related to shrinking the size of the surface model. Empirically,
we have found that increasing p normally causes larger segmentations. However,
since the image term depends on the local image information which will vary as the
segmentation evolves into different image regions, we cannot expect this increase in
size to be proportional to p or even monotonic, it is only the expected case.

One of the segmentations of a 1.5T dataset used in this experiment is pictured
in Figure 6-10. More images of the segmentations and raw datasets used will be
shown in Section 6.6.2. Figures 6-13 and 6-14 show ROC-like plots for two different
experiments. The same dataset, a low resolution 1.5T scan (Figure 6-16 with corre-
sponding high resolution scan in Figure 6-15 which shows the manual segmentation
used as ground truth), is used in both cases. Segmentations of it are computed with
CURVES for various values of p and by thresholding for various thresholds. The dif-
ference is how the ground truth segmentation is computed. Figure 6-13 shows values
for when a CURVES segmentation of the corresponding high resolution scan is used
as ground truth, and Figure 6-14 shows values for when an expert’s “manual” seg-
mentation is used as ground truth, where the “manual” procedure is the interactive
thresholding-based procedure described above.

These plots demonstrated that this experiment was extremely biased toward the
choice of ground truth. If the higher resolution manual segmentations, which con-
tain a thresholding step, were used, then the thresholding method appears superior
to the CURVES method. However, when the higher resolution CURVES segmenta-
tions are used, then CURVES appears much better. Thus, one cannot use this set
of experiments to make conclusive statements about the advantages of the CURVES
method since an unbiased ground truth estimate was not available. Two observations,
however, can be made. The first is that there is consistency between how CURVES
(and thresholding) behaves on images take at higher and lower scan resolutions. One
would expect this behavior, since the MRA datasets have a similar appearance in
terms of intensities and image gradients. The second is that there is symmetry be-
tween the CURVES case and the manual/thresholding case in that each option gave
a more desirable ROC-like curve when it was chosen as the ground truth, with the
benefit appearing stronger in the CURVES case than the thresholding case. Due to
the limited nature of the conclusions we can draw from this experiment, we chose to
compare segmentations directly against manual segmentations. The following section
describes and show these comparisons.
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Figure 6-13: Ground truth is CURVES segmentation of high resolution scan. Scan on
which experiments were run is corresponding low resolution scan. Green and red show
two variations of the CURVES algorithm. Notice that when this particular “ground
truth” is used, CURVES appears to significantly outperform thresholding (blue).

6.6.2 Manual Validation

One specific practical motivation for our work is the use of surface models of cerebral
vasculature as an aid in neurosurgical planning and procedure, especially in the con-
text of the image-guided surgery program at our institution [47]. Currently the vessel
models are obtained with the thresholding-based manual procedure described above.
The first drawback of this method is the expert user-interaction required, the second
is that the thresholding step implies that all regions of image “noise” which adjoin
vasculature are incorrectly labeled as vessel and small thin vessels which may appear
broken or disconnected from larger structures will often be omitted. Thus, our goal
is to reduce user interaction while increasing the ability to segment thin vessels.

A neurosurgeon has segmented our multi-resolution image image pairs for us us-
ing this procedure. We show comparisons for eight such datasets of both high and
low image resolution and of both high (1.5T) and low (0.5T) magnet strength. All
datasets are PC-MRA on healthy subjects without contrast agent. In all cases, each
image slice was 256 x 256 voxels, but the number of slices varied across the datasets.
The image size of 256 x 256 was cropped to approximately 110 x 125 to remove empty
borders before processing for efficiency. In all cases, all slices were used; that is, the
2 dimension was not cropped. The voxel z and y dimensions were 1.171875mm, and
but the 2 dimension (slice thickness) varied. Each of the following figures shows a
single dataset from three orthogonal viewpoints. For each viewpoint in each figure,
the maximum intensity image of the raw data is shown first, followed by the CURVES
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Figure 6-14: Ground truth is manual segmentation of high resolution scan. Scan on
which experiments were run is corresponding low resolution scan. Notice that now
simple thresholding appears to outperform CURVES since the “manual” method of
segmentation is closely related to thresholding.

segmentation in red, the manual segmentation in blue, and a combination image illus-
trating the differences between the segmentations. In all cases the voxel-based manual
segmentations are displayed as surfaces which were smoothed for better appearance.
The smoothing parameters used are the same that are used as a default in surgical
planning cases at our institution.

The first comparison is shown in Figure 6-15. This dataset was acquired with
a 1.5T magnet and has 84 slices each of 0.8mm thickness. Notice that CURVES is
able to capture much more of the thin vessels than is the manual procedure which is
based on simple thresholding. One negative aspect of CURVES performance on this
example is that some large vessels such as the middle cerebral arteries and the superior
sagittal sinus appear too thin in the CURVES segmentation. This artifact occurs
because CURVES places the vessel boundary at the location of sharpest intensity
gradient. If the vessel intensity profile in MRA is assumed to be Gaussian, then the
true vessel wall should be placed farther out along the tails of the Gaussian than
at the points of sharpest gradients. This problem does not occur in CT data below
which does not have a Gaussian profile, and future work will explore the modification
of the objective function dependent on the imaging modality used. Figure 6-16 shows
the corresponding lower resolution scan, also acquired with a 1.5T magnet, but with
40 slices of 1.714284mm thickness.

Figure 6-17 shows another 1.5T dataset also containing 84 slices each of 0.8mm
thickness. This dataset contains considerable pulsatile flow artifacts which appear as
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a bright horizontal area surrounding the middle cerebral arteries. For this example,
the thresholding-based manual method must include much of this “noise” in order
to also obtain the thin vessels; since CURVES depends on intensity gradients it is
better able to distinguish those arteries from the surrounding region, without losing
the small vessels. Figure 6-18 shows the corresponding lower resolution scan, also
acquired with a 1.5T magnet, but with 40 slices of 1.714284mm thickness; notice the
flow artifacts again present.

Figure 6-19 and Figure 6-20 show corresponding 0.5T datasets containing 60 and
28 slices of 0.8mm and 1.1714284mm thicknesses respectively. Observe that this lower
magnet strength yields less detailed images. Again, notice that CURVES is able to
extract additional detail at the thinnest vessels. Figure 6-21 and Figure 6-22 show
another pair of corresponding 0.5T images of containing 60 and 28 slices of 0.8mm and
1.1714284mm thicknesses respectively. Notice in these four datasets that CURVES
obtains more thin arteries which are most clearly visible in the centers of the images
in the middle (sagittal) viewpoint.

6.7 Radii Estimation

One would like to make a variety of size-related measurements of the vascular surface
models for diagnosis, change-detection as multiple scans are acquired for a single
patient over time, and for study purposes. Total volume and surface area estimates
are directly computable from the segmentations. Another important measurement
is vessel width. This measurement is important in determining the progression of
vascular malformations, in selecting blood flow patterns to be modified in surgical
procedures, and in diagnosing and quantifying vascular disease.

With a direct triangulated surface model representation of a segmentation, vessel
width would be difficult to estimate. Realistic data would not yield tubular struc-
tures smooth enough so that the vertices of the triangles could be used directly in
the curvature estimate. Curvature is computed from second derivatives, and the ir-
regular shapes or vessels would imply that the use of such points in in a second order
computation would be so noisy as to be unusable. A more sophisticated approach
would be needed, such as fitting cylindrical tubes to the vessels or applying signifi-
cant smoothing to the surface model to increase the stability of the second derivative
calculations.

By the nature of the CURVES algorithm, however, vessel width estimations are
automatically available. Of the two surface curvatures, CURVES computes the two
principal curvatures of the surface from the 3D distance function (via Equation 5.10
and Equation 5.11) and uses the smaller in the segmentation procedure, but the
larger curvature can also be useful as it corresponds to the radii of the vessels. We
color-code the segmentation result according to the larger curvature at each point on
the surface in Figure 6-23a. In this image of a partial segmentation, the colorscale
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is continuous from blue to green to red, with blue indicating a radius of curvature
< Imm and red indicating a radius of curvature > 2mm. Intermediate curvatures
are green. Notice that for a ribbon-like vessel, the flatter sides shows a large radius,
and the sharply curved edges show a small radius. The curvatures output by our
evolution have been smoothed by a 3x3x3 filter prior to coloring the surface. A color-
coded segmentation of the aorta images from Figure 6-11 is shown in Figure 6-23b.
We reiterate that cylinders are not fit globally, but only local curvature properties
are used, so the color can vary between adjacent regions where the structure is not
perfectly cylindrical.

To measure the accuracy of the radii estimated by this method, we constructed
synthetic volumes. We constructed distance functions corresponding to tubes of vary-
ing radii. These distance functions were 40 x 40 x 40 isotropic voxels, with the tube
centered in the volume and extending the length of the volume, parallel to the y-axis.
We loaded these distance functions into CURVES and computed the vessel radii ac-
cording to the distance function as described above. That is Equations 5.10 and 5.11
were used for the Gaussian and mean curvature, then the larger principal curvature
was computed from those curvatures. Its inverse was used as the computed vessel
radii.

Since there is numerical difficulty with computing curvatures from discrete points,
we experimented with various levels of smoothing of the larger principal curvatures.
The larger principal curvatures are available for all isolevel surfaces, i.e., for the entire
volume, even though the only ones used in the validation and in the coloring pictures
are those on the zero level set. Since they are defined for the whole volume, we can
smooth this volume. We define one “iteration of smoothing” as convolving the volume
once with a normalized [1 4 1] filter in each of the three dimensions.

Figure 6-24 shows the accuracy of the estimates for a variety of tube widths and a
variety of levels of smoothing. Tube radii was varied from one to ten millimeters, as-
suming each voxel’s dimension was 1mm3. The identity plot is shown for comparison:
it is the ideal situation. For each experimental case, the (larger principal) curvatures
were computed for the entire tube, then they were averaged over the middle portion
of the tube; the endpoints were excluded to control against any errors introduced by
boundary conditions where the mean and Gaussian curvatures are not defined. Plots
are shown for zero, three, and ten iterations of smoothing, for the various widths. For
this experiment, some smoothing does increase the accuracy of the estimates, but too
much smoothing decreases the accuracy. The correct level of smoothing also may be
dependent on the tube width. In practice, several iterations of smoothing are applied
before generating the color-coded segmentations of real datasets.
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Figure 6-15: Dataset 1, Maximum intensity projection of raw data, CURVES segmen-
tation (red), manual segmentation (blue), and combined image, from axial, sagittal,
and coronal viewpoints.
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Figure 6-16: Dataset 2, Maximum intensity projection of raw data, CURVES segmen-

tation (red), manual segmentation (blue), and combined image, from axial, sagittal,
and coronal viewpoints.
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Figure 6-17: Dataset 3, Maximum intensity projection of raw data, CURVES segmen-
tation (red), manual segmentation (blue), and combined image, from axial, sagittal,
and coronal viewpoints.
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Figure 6-18: Dataset 4, Maximum intensity projection of raw data, CURVES segmen-
tation (red), manual segmentation (blue), and combined image, from axial, sagittal,
and coronal viewpoints.
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Figure 6-19: Dataset 5, Maximum intensity projection of raw data, CURVES segmen-
tation (red), manual segmentation (blue), and combined image, from axial, sagittal,
and coronal viewpoints.
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Figure 6-20: Dataset 6, Maximum intensity projection of raw data, CURVES segmen-
tation (red), manual segmentation (blue), and combined image, from axial, sagittal,
and coronal viewpoints.
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Figure 6-21: Dataset 7, Maximum intensity projection of raw data, CURVES segmen-
tation (red), manual segmentation (blue), and combined image, from axial, sagittal,
and coronal viewpoints.
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Figure 6-22: Dataset 8, Maximum intensity projection of raw data, CURVES segmen-
tation (red), manual segmentation (blue), and combined image, from axial, sagittal,
and coronal viewpoints.
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(a)

Figure 6-23: Estimation of local radii of curvature of vessels. (a) In this image of
a partial segmentation, the colorscale is continuous from blue to green to red, with
blue indicating a radius of curvature < 1mm and red indicating a radius of curvature
> 2mm. (b) The aorta MRA dataset from which this segmentation was made is
courtesy of Siemens, acquired on a Siemens scanner at New York University. Again,
the colors range from blue to green to red in order of increasing radius (numerical
values not computed for this example). Two orthogonal viewpoints are shown.
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Figure 6-24: The accuracy of radii estimate versus tube widths and levels of smooth-
ing. The identity plot (ideal case) is shown for comparison. Tube radii was varied
from one to ten millimeters, assuming each voxel’s dimension was 1mm3. Plots are
shown for zero, three, and ten iterations of smoothing, for the various widths.



Chapter 7

Centerline Extraction

The task of finding centerlines in blood vessels has important practical motivations.
First, for large blood vessels, surgeons may perform endoscopic procedures in which
an instrument would be inserted into and along the vessel. Vessel centerlines, or
skeletons, are important in planning trajectories for such surgeries. Second, center-
lines provide a more concise representation of the vasculature than the segmentation
result itself. This representation can potentially be used in registering vasculature
structures to those in an atlas for labeling, those taken at previous times for change-
detection, and those of other patients for comparison. It can also be useful in building
a topological model of the vasculature for study purposes.

In addition to these separate applications, skeletonization methods became impor-
tant for our validation studies on the CURVES segmentation algorithm. It is possible
to produce more meaningful quantitative comparisons if one compares thinned ver-
sions of vascular structures instead of the structures themselves because often one
is less interested in obtaining the vessel wall perfectly than in acquiring the under-
lying topological structure. Further, if vessel width is incorrect by a small amount,
the overall change in volume of the structure is large; one may not want a valida-
tion protocol to penalize more heavily for this error than for missing thin structures
entirely.

Skeletonization in both 2D and 3D is a widely explored topic in computer vision.
Some references for the general case are [13, 67, 77]. For the case of application to
medical datasets, one should also refer to the “cores” approach [43]. Recent work
which deals with branching and connecting separate pieces of the skeleton, related
to our work below, is found in [70]. A system more related to ours which looks for
ridges in the distance function and smooths them with an active contour model was
developed for endoscopic applications [31].

We here present a novel method that was inspired by the presence of the distance
function, available from CURVES. In general, the skeleton of a volumetric region such
as the vessels is a two-dimensional surface. However, for many vascular applications,
one would like the one-dimensional skeleton that best approximates this surface. That

109
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Figure 7-1: An example 2D grid, near a distance function. The local minima are
indicated with black boxes.

is, we want the skeleton obtained to be one voxel thick. We have designed our skele-
tonization algorithm to meet this constraint. In short, our algorithm, Hierarchical
Shortest Path (HSP), finds an initial sparse set of disconnected points known to be
on the centerline. These points are then linked together in a hierarchical manner,
with increasingly large portions of the centerline structure detected at each iteration.
After describing our algorithm, we compare it to two related thinning algorithms with
which we also experimented.

7.1 Initial Centerline Points

Our centerline-finding algorithm is initialized with a set of disconnected points. Con-
sider the signed distance function defined so that the segmentation result (the vas-
culature surface) is the zero level set and voxels inside the surface are defined to
have negative distance. Our centerline extraction algorithm uses those points which
have negative distance and are also local minima of the distance function to initialize
the skeleton. Figure 7-1 shows an example on a 2D grid. The values are a rough
approximation to a distance function, and the local minima are indicated with black
boxes. Intuitively, these points must belong to the skeleton because they are inside
the vascular tubes and are as far as possible away from the vascular walls.

The next step is to connect these points to give trajectory and topology infor-
mation. This task is performed by applying Dijkstra’s shortest path algorithm [34]
repeatedly on larger and larger segments of the centerline structure and connecting
the segments by the resulting paths, until the entire structure is connected. Again,
the initial centerline structure is defined as the set of local minima points found as in
Figure 7-1.
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Figure 7-2: Illustration of Dijkstra’s shortest path algorithm.

7.2 Dijkstra’s Shortest Path Algorithm

Dijkstra’s shortest path algorithm finds the minimal distance from one vertex p in a
graph G to all other vertices in G. This problem is called the single-source shortest-
paths problem [28]. Let G = (V, E) be the graph, where a graph is a pair of a set V' of
vertices and a set E of edges. Each edge (u,v) € E, with u,v € V, has an associated
real-valued weight given by the function w : E — R. The algorithm keeps track of a
subset S C V for which the distances to p are known. Initially, this set is null: S = 0.
The algorithm also stores an upper bound on the distance for each vertex which is
initialized to oo for each vertex except p, for which it is initialized to O.

These upper bounds are used as the keys for a priority queue QQ which stores all
of the vertices whose distances to p are not yet known. A priority queue is a data
structure for which each entry has an associated priority, indicated by a real-valued
key. Such a data structure also includes an efficient means of modifying an entry’s
key and of extracting the entry with the minimal key, which is assumed to have the
highest priority. Further detail on priority queues is available in [28]. In Dijkstra’s
algorithm, the keys in the priority queue are the estimated distances to the vertices
from p. That is, p has a key of 0 and the other vertices have a key of oo at the start.

Dijkstra’s algorithm proceeds by repeatedly selecting the vertex u from @ whose
key (distance from p) is least. This key is assumed to be the correct distance to u
from p, so u is inserted into S. The algorithm then looks at all vertices v that are
adjacent to u, i.e., for which (u,v) € E. For each such v, the key of v (the estimated
distance from p) is replaced by the minimum of it and the sum of the key of u and
the weight of (u,v), w((u,v)). Intuitively, this weight is the distance from u to v; if
the distance from p to u (which is known to be correct) plus the distance from u to v
is less than the upper bound on the distance from p to v, then we wish to lower that
upper bound accordingly. After this procedure is performed for each v, the next u is
chosen, and the process repeats until () is empty.

Pseudocode for this algorithm is [28]:

Dijkstra(G = (V, E), w, p)
Initialize keys;
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Figure 7-3: The initial nodes are indicated with black dots. The paths found by the
first iteration of HSP are shown with arrows.

S+ 0;
Q+<V;
while Q # 0
do u — Extract-Min(Q)
S+ SuU{u}
for each vertex v such that (u,v) € E
do key(v) + min(key(v), key(u) + w((u,v)))

For a sample algorithm execution, refer to Figure 7-2. For this example, we will
assume that edge weights are symmetric. That is, (u,v) € E <= (v,u) € E and for
all (u,v) € E, (u,v) = (v,u). This property is displayed with the two-headed arrows
in Figure 7-2. This symmetry is also the case in our vessel-centerlines application.
On this graph, the algorithm terminates after the following behavior.

e After zero steps, S = 0, key(p) = 0, key(z) = key(y) = key(z) = co.

e 1 step, S = {p}, key(z) = min(oo,0 + 4) = 4, key(y) = min(oco, 0 + 6) = 6.
e 2 steps, S = {p, z}, key(y) = min(6,4 + 4) = 6, key(z) = min(oo,4 + 1) = 5.
e 3 steps, S = {p, z, 2}, key(y) = min(6,5 + 2) = 6.

4 steps, S = {p, 7, 2, y}.

7.3 Hierarchical Shortest Path

Now that the shortest-path algorithm is understood, we specify the HSP algorithm.
For each local minima point, first pass of the HSP algorithm finds the closest other
local minima point and stores the path between them. Consider the 2D example
pictured in Figure 7-3. The paths found on this first pass are shown in solid arrows.
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Figure 7-4: Paths (p,q) and (g,p) contain different points. We thus discard one of
them when generating the cluster to maintain the requirement that the centerline be
exactly one voxel thick.

Notice that points B and C find each other, as do points D an E, while point A finds
point B. We next generate clusters of points, where points belong to the same cluster
if they belong to the same connected component. Connected components are defined
by these paths and their endpoints. After one pass of HSP, we have two clusters. The
first cluster consists of points A, B, and C, and also the paths between A and B and
between B and C. The second cluster consists of points D and E and also the path
from D to E. Note that if a path (p, g) is included, we do not include the path (g, p).
Since we do not restrict the ordering of points considered in building the paths, it is
possible for (p, ¢) to contain different points that (g, p) (Figure 7-4). If we added both
paths, then the resulting structure could be wider that one voxel, which violates our
requirements for the centerlines.

The second path operates on the newly-constructed clusters. For each cluster, it
finds the closest other cluster, and stores the path between them. The closest cluster
is defined according to the distances from all points in the current cluster to all points
in the cluster being checked for proximity. That is, the distance between two clusters
is the minimum distance between any point of the first cluster and any point of the
second cluster. Figure 7-5 shows the clusters after the first pass of the algorithm. The
first cluster is indicated with white circles, the second with black circles. Shortest
paths are found from point F in the first cluster to point D in the second cluster, and
vice versa, as indicated in the figure with arrows. Notice that the point of connection,
F, in the first cluster was not one of the original local minima points. This illustrates
the fact that once a cluster has been formed, all points are considered equally; it is
irrelevant which ones were in the paths and which were original points. The next
step is to generate higher level clusters. In this case, since the original points are now
fully connected, we only have one cluster (Figure 7-6) so the algorithm terminates.

If the points were not fully connected, the process of alternately finding paths and
clustering would continue until either there was only one cluster or there was no path
between remaining clusters. The latter could happen if the vessel structure contained
disconnected vessel trees. We reiterate that in all searches, the only points valid for
including in a path are those inside the vessel wall, as indicated by the sign of the



CHAPTER 7. CENTERLINE EXTRACTION 114

O ®

FO. ... eD

O

Figure 7-5: The two clusters after the first pass of the algorithm: one marked with
white circles, the other black. The paths found for each cluster are shown with arrows.

distance function to the vessel walls. Further, the datasets on which we apply HSP
are 3D; 2D was used for illustration only.
Formally, the HSP algorithm specification is the following.

e Input:

1. graph G = (V, E) of vertices and edges,
2. partition of vertices V = PUS into primary and secondary vertices, and

3. weight function w : E — R on edges.
e Procedure: Iterate the following 2-step sequence until convergence.

1. Shortest-Path Step: For each p € P, calculate

path*(p) = min SP(p,q)
q€P—p

where SP(p, q) is the shortest path ([34]) from p to ¢. If no path exists,
define path*(p) = p.

2. Cluster Step: We now have clusters, each of which is comprised of two
primary nodes and the path*’s of secondary nodes connecting them. Al-
ternatively, some clusters may contain more than two primary nodes if the

same node was found by more than one node in the previous step. Let C
be the set of all clusters. Then update the graph as follows.

(8) P41+ C

(b) E is re-defined as follows. V(p,s) € P,yy x S, 3(p,s) € Fypq if Irep
such that (r,s) € E,. w is re-defined for nodes p in P,,; as

wip,s) = min _w(rs).
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Figure 7-6: The final cluster of this run of the HSP algorithm. This is the detected
centerline.

There is no change to w(s,t) where s,t € S.

e Output: P.

We make two comments on the algorithm. First, at convergence, the number of
primary nodes |P| is the number of disconnected subgraphs in the initial graph G
that contain at least one primary node p € P. Second, one could update S in the
second step of the procedure to remove any node that is contained in any cluster. This
is not necessary, however, since such a node would never be found by the shortest
path algorithm: when that node is encountered, the cluster containing it would be
encountered, which is itself a primary node, so the shortest path algorithm would
stop because a primary node was reached. Further note that the distance function
information is not used after the initial local minima points are detected, except that
its sign is used as a mask indicating which voxels are inside the object and which are
outside it. This mask is used as a constraint on the paths found between the points.

Our HSP algorithm follows a similar structure as general hierarchical cluster-
ing algorithms in computer science [53]. Such algorithms can be classified as either
divisive or agglomerative, depending on whether they build the clusters in a coarse-
to-fine order (divisive) or a fine-to-coarse order (agglomerative). Our HSP algorithm
is thus agglomerative. General agglomerative hierarchical clustering algorithms clus-
ter a fixed set of data points into clusters at increasing levels, where the clusters at
a higher level are groups of clusters from a previous level. Our HSP algorithm has
this intuition, but differs in that the points that are not in the initial set of local
minima points, but are in the final cluster(s) are not known a priori. Instead, more
such additional points are found at each level of the hierarchy, i.e., at each iteration.
It still, however, is helpful to see the connection of our algorithm to this broad and
well-studied class of algorithms. The reader is referred to [53] for information on gen-
eral clustering algorithms. For information on shortest path algorithms, the reader is
referred to [28].
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Figure 7-7: Illustration of skeletonization procedure on a partial segmentation of
a cerebral MRA dataset. First row shows segmentation, local minima of distance
function, and skeletal structure after one iteration. Second row shows final skeletal
structure in original display format and also in line segment format at a slight rotation.

7.4 Application to MRA data

For this application, we initialize the primary nodes P to be the negative local minima
extracted from the distance function and the secondary nodes S to be all other voxels
inside the vascular walls. We define edges E between nodes adjacent in the 3D volume
and weight the edges with the Euclidean distance between the corresponding voxels;
we use 26-connectedness which means a point is adjacent to each of the 26 points in
the smallest cube around that point, so weights are either 1, v/2, or v/3. We then run
the hierarchical shortest path on this graph.

In more detail, the graph G = (V, E) for our application is constructed as follows.
Let v be the distance function volume, and recall that the vessel wall is defined
implicitly as the zero level set of v, and those voxels inside the vessel wall have
negative values and those outside have positive values. We thus insert a node into
V for each voxel with a negative value of v. Assuming 26-connectedness, there is an
edge in E between each pair of vertices whose corresponding voxels are adjacent. The
weight of each edge is the distance between the voxels: 1, v/2, or v/3. The partition
of V into sets of primary and secondary nodes V = PUS is given by the local minima
of the distance function. Those local minima comprise P and the remaining points



CHAPTER 7. CENTERLINE EXTRACTION 117

- —
' '
)""rj f

AN

Figure 7-8: a. Surface model of vessels in a human neck. b. Skeleton model with
local minima of distance function in yellow and connections obtained by hierarchical
shortest path in magenta. c¢. Same skeleton with branch points only shown in yellow.

inside the vessel wall comprise S. Then for each primary node, we run Dijkstra’s
shortest path algorithm. We do not run it until all shortest paths are found, however.
That is, we do not continue until () is empty. Instead, we terminate the algorithm
when one of the vertices extracted from @) is a primary node. The path to this vertex
is the answer for the given starting point. All paths are then clustered into new
primary nodes, and the hierarchical algorithm continues.

An example on a partial vasculature segmentation is shown in Figure 7-7. The
initial local minima are shown in green, and the paths detected by hierarchical shortest
path are shown in purple. We can display the skeletal structures connected line
segments to emphasize the fact that the structures are indeed one voxel thick, as
also shown in the last image where a line segment is drawn between each pair of
neighboring voxels in the set of HSP skeleton points. The fact that the resulting
path is one-voxel in diameter implies that branching points can be detected trivially
as voxels with more than two neighbors in the centerline structure. This topological
information is important for endoscopic applications, registration, labeling, and other
purposes. Figure 7-8 shows an example in which the skeletonization result is displayed
with branch points indicated. Figure 7-9 shows a skeletonization example on a full
cerebral MRA dataset using the line segment display option.

7.5 Comparison to Other Methods

We experimented with two other techniques used for thinning and skeletonization.
The first uses extrema of the distance function, like ours. The second is based on
topological constraints. Neither guarantees a one-voxel-thick skeleton, which our HSP
algorithm does, but they both have advantages.



CHAPTER 7. CENTERLINE EXTRACTION 118

Figure 7-9: Centerlines for a cerebral vascular surface model, shown as a line-drawing.

7.5.1 Singular-ness of Distance Function

Gomes et. al. use the singular-ness of the distance function to estimate skeletons of
3D surfaces [45]. That is, the singular points correspond to skeleton points of the 3D
object. They define eight derivative operators as follows. Let v be the 3D distance
function, then define D v = v(i+1, j, k) —v(i, j, k) and Djv = v(i, 5, k) —v(i—1, 5, k).
Define expressions for D, and D, analogously. The eight derivative operators are then

D'v = (D}, D;rv, D),
D?*v = (D}v, D}v, D} v),

D% = (D;v, D, v, D; v).

Let Dv = %Z,-D,-v be the average of the values of those eight operators.
Singular-ness s is calculated according to the dot products between the individual
operators, normalized, and the average, also normalized.

. —_— 2
Dy Dv
= LI 4 7.6
’ Z(|D’v| |Dv|) (76)

i

One then thresholds the volume based on s: if s is below some threshold the point
is labeled as a skeleton point, else it is not. The intuition is that small dot products
correspond to large angle differences, which correspond to large variation in derivative
estimates, which means we are likely to be at a singularity. Singularities of the
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Figure 7-10: A surface model of blood vessels segmented from and MRA image,
followed by the points labeled as “skeleton points” according to the definition in [45],
for three different thresholds.

distance function are skeleton points of the surface.

Gomes et. al. demonstrate smooth-looking skeletons for 3D surfaces that are
the segmentation of the cortex. We applied this method to our vascular models to
observe its performance on very thin structures. Figure 7-10 shows the skeleton points
found for a sample branching structure, for several different thresholds of s. Since
the structure is very thin, increasing the threshold to obtain a connected structure
causes much of the vessels to be included. In general, the method does not allow one
to obtain a connected list of points that indicate a 1D curve in 3D space.

7.5.2 Simple Points

Bertrand and Malandain discuss a geometric concept called simple points [11, 86].
Assuming an object is indicated by a binary image, a simple point is a point whose
deletion does not change the topology of the object. That is, it does not change
the number of cavities, connected components, and holes in the object. One can
then define skeletonization algorithms based on the removal of simple points from the
object.

Assume we are using 26-connectivity for the object X and let Nj;(z) be the set
of 26 neighbors of z. We must then use 6-connectivity for the background X, which
means that points of the background are only said to be adjacent to those points
directly above, below, in front of, behind, left, or right of them; this set is called
N¢ (') for a point 2’ € X. We cannot use 26-connectivity for both because this would
enable objects to pass through each other; 6-connectivity for both would unnecessarily
break the object into too many pieces. Finally, 18-connectivity considers as adjacent
to z all points of the cube around x except for the 8 corners; this set is called Nj5(z).

The following definitions are stated in [11]. Let z be the point we are currently
checking to determine if it is simple or not. Let NCC,(Y’) be the number of connected
components of ¥ adjacent to z. The topological number of a point = in an object X,
using 26-connectivity, is defined as

Tgs(.’l?,X) = NCCG[X N N;G(.’L‘)]
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and the topological number using 6-connectivity is
Ts(z, X) = NCC,[X N Nfy(z)].

In words, for the 26-connectivity, the topological number of z is the number of con-
nected components (in the object) in the cube around z that remain if z is removed
from the object.

Then a point z in an object X is a 26-simple point if and only if

Tzﬁ(x, X) =1 and (77)

Ts(z, X) = 1. (7.8)

There can only be one connected component of the object in the cube around z, since
z is in the object and all other points of the cube are adjacent to z. So the first half
of this definition says that the removal of z does not cause there to be more than one
connected component; that is, it is not the case that only z is holding the component
together. The second half of the definition says that z is not simple if its removal
creates a hole, in the case of Tg(z, %) = 0, nor if its removal deletes a 6-cavity of X
or creates a 6-hole of X. We refer the reader to [11] for explanation of the latter
situation.

Malandain and Bertrand provide the following algorithm for determining if a point
z is simple or not [76]. Let NC? be an indicator which is one if the number of
connected components adjacent to the point z under consideration is one and zero
otherwise, where n is the connectivity used. That is, n = 26 or n = 6 depending
on which topological number statement we are testing. Let E, be the set of object
(or background for n = 6 case) points in the considered neighborhood, i.e., Ey =
X N Njs(z) and Es = X N Nj(z). Let S be the list of points adjacent to z that
need to be considered, visited the array that tells whether or not a point in E, has
been considered, and N the number of points in E,, that have been considered. T is a
temporary list that is used when updating S, since this update cannot be performed
“in place”. The following algorithm will be applied for both n = 26 and n = 6 to
check Equation 7.7 and Equation 7.8 respectively.

e Choose some i€ E,,. S+ {i}; T + 0.

o visited(i) + true; visited(y) « false for all y € E,, — {i}
o N1

e while S # 0 do

—forally e S do
* for all z n-adjacent to y with visited(z) = false
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Figure 7-11: A surface model of blood vessels segmented from and MRA image,
followed by the points that remain after removing simple points.

- N«N+1
- visited(z)  true
- T+ Tu{z}

- S« T;T«+0

o if N = |E,| then NC?} =1 else NC? = 0.

An increase in efficiency is possible by checking the following conditions before
running the above algorithm. If there is no ¢ € E,, n-adjacent to z, then z is not
a simple point. If there is a single point of X 6-adjacent to z, then z is a simple
point. If there are exactly two points X 6-adjacent to z, then z is not simple if the
two points are opposite, and z is simple if they are 18-adjacent to each other and
the common neighbor is in X. If these conditions do not apply, one runs the above
algorithm for NC?® and NC¢ in accordance with Equation 7.7 and Equation 7.8.

To construct a complete thinning algorithm from this simple points characteri-
zation algorithm, it remains only to specify the order in which the points are to be
checked for removal. The thinned structure depends on this order, so it is necessary to
choose an ordering consistent with knowledge about the object. For use on our vessel
segmentations, we based the order on the intensity of the MRA image so the faintest
point in the object is the next to be removed if it is a simple point. The intuition for
this strategy is that the centerlines of the vessels are brightest, with intensity falling
off monotonically with distance from the centerline. We also prohibit the removal of
end points from the structure to avoid shortening the vessels. Our thinning algorithm
is thus:

e Input the binary image with vessel points X indicated.

e Sort these vessel points in order of increasing intensity, so the faintest will be
checked first for removal.

e For each p € X, if p is a simple point and is not an endpoint, X + X — {p}.
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Figure 7-12: A surface model of blood vessels segmented from and MRA image,
followed by the points that remain after removing simple points, then by the skeleton
obtained with our Hierarchical Shortest Path skeletonization method.

Another option for the ordering of the points would be to use the distance function
defined by our segmentation algorithm. Recall that all vessel points will have negative
distances by definition, so the order would be to remove those whose magnitude of
distance is least. We would expect performance to be similar to the use of image
intensity.

Figure 7-11 shows a vascular segmentation obtained by CURVES and the result
of applying our simple points-based thinning algorithm to it. A cube is drawn for
each non-simple point in the skeleton. It appears that our implementation of these
ideas retains too many points. However, it is still useful in cutting down the number
of points from the original number of object points in a meaningful way, for use in
validation for example. Figure 7-12 shows another example for which we also ran our
Hierarchical Shortest Path skeletonization algorithm. Notice that the HSP method
only is able to guarantee a one-voxel-thick skeleton, which is desirable for vascular
applications. However, it is possible that the HSP method could miss segments of
the vasculature if no initial local minima point was found within particular segments.
Our simple points-based algorithm retains all of the original structure.

Dokladal et. al. propose two dual approaches to segmentation of vascular struc-
tures using this definition of simple points [36]. That is, they do not use it to thin
an existing segmentations but use it to generate the segmentation from 3D images.
Their algorithms operate on volumetric CT scans of the liver, in which vessels appear
brighter than the surrounding tissues. Their first algorithm requires initialization
with a point inside the vessel structure (which can presumably be obtained fully au-
tomatically). The algorithm then proceeds to iteratively grow this initial structure
by adding adjacent simple points. Again, the order of insertion is important, and
points are added in order of brightest to dimmest. The algorithm also restricts points
to be brighter than some threshold before adding them; this condition provides the
termination criterion for the algorithm. The dual approach is to initialize with a
non-vessel point, i.e., a point in the background of the image. One then reconstructs
the background of the image by iteratively adding adjacent simple points until no
simple points that are dimmer than the threshold exist. The fundamental idea be-
hind this pair of algorithms is that the vascular structure should have a fixed and
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pre-specified topology: it is a single simply connected component. Constraining the
growing procedures to simple points enforces this specification.



Chapter 8

Application to General
Classification Problem

A very different application of the evolution of high codimensional manifolds is for
general data representation and classification problems. Each instance in a training
set would be represented by a point in a high dimensional feature space which is the
embedding space for the manifolds. One would then evolve manifolds in this feature
space, and the resulting manifolds would be a concise, meaningful representation of
the objects in the training set. One could classify new instances by their distances to
the manifolds, and one could analyze variability within object classes by the shapes
of the manifolds. One could further use this representation to detect anomalies in
datasets, for example, when new instances do not lie on or near existing manifolds.

8.1 Approach

Specifically, we create an N-dimensional image where N is the number of features
used to describe an instance of an object and where each positive instance corresponds
to brightness in the feature space and each negative instance darkness. We then use
intensity gradients and regularization to control the evolution so that the manifold
is attracted to large intensity gradients. For the case of 1-D manifolds in 3-D space,
this will result in tubular structures (analogous to blood vessels) in which the interior
is contained in the manifold and the exterior is not.

For classification and recognition, the probability of an instance being the object
is high inside the manifold, lower as the distance from the manifold increases, and
highest at the centerlines of the manifold. The relative widths can also be used to ex-
press variance of an object: wider tubes indicate higher variance in the corresponding
object.

124
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Figure 8-1: a. The scene. b. Motion trajectories for tracked objects: cars, pedestri-
ans, bicycles, and trucks. c. Projection onto x-y space. d. Projection onto x-s space:
the lowest white segment corresponds to people, the second and brightest segment to
cars, and the highest and faintest segment to trucks which have the largest size (s)
values.

8.2 Experiments

For proof-of-concept, we applied this approach to data points acquired by Chris Stauf-
fer at the MIT AI Laboratory as part of the video surveillance and monitoring project.
He has built a tracker that detects moving objects in the scene [48]. The first image
in Figure 8-1 shows an area of a street in front of the laboratory. Moving objects that
occur in this scene include cars, trucks, bicycles, and pedestrians. The second image
in this figure shows locations at which these objects were detected. We wish to obtain
a geometric description of the patterns of motion occurring in this scene which could
be used for detecting anomalies that may be detected by the tracker. In addition to
anomaly detection, the description could be useful as a rich and compact represen-
tation of activity within the scene. An important requirement of the representation
is that it accurately separate out the different types of instances of motion, such as
cars, trucks, bikes, and pedestrians while obtaining smooth manifolds for each.

For this experiment, we evolve 1D manifolds in a 3D feature space, where the three
dimensions correspond to x, y (of centroid), and size (s) of an image region that was
detected by the motion tracker. We obtained a list of 30,880 such triples and initialized
the 3D space (resolution = 50x50x50) as described above. We smoothed the volume
for compatibility with the gradient-based approach. Figure 8-1 the volume we created
from this dataset in maximum intensity projection from two orthogonal viewpoints.
The first viewpoint is like the previous images, with the x axis horizontal and the
y axis vertical; notice the motion trajectories appearing as bright lines or smears.
The second viewpoint shows the x axis horizontally and the size axis vertically, so
pedestrians correspond to the lowest line or smear, then bikes, cars, and trucks in
order of increasing image height in this projection. Notice that the truck line is faint
as there were comparatively few trucks in the dataset.

Manifolds produced by CURVES are displayed in Figured 8-2. Notice that the
manifolds are smooth while still showing potential for cleanly separating out the
different classes of instances.
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Figure 8-2: Manifolds produced by CURVES, from orthogonal viewpoints.

Figure 8-3: First two images: Surface models produced by thresholding non-smoothed
data, too noisy to use as a geometric description. Final two images: Structures
obtained by thresholding smoothed data. Note that it is not possible to obtain the
fainter lines (such as the trucks in the X-S view) while simultaneously separating the
lanes of traffic into different structures, which is possible with the CURVES method.

We compared this evolution approach to simple thresholding on the initialized 3-D
space. The first two images in Figure 8-3 show results of thresholding the raw data:
gaussian blur was not used. The final two images show results of thresholding the
Gaussian-blurred dataset, which was the input to the evolution algorithm. Observe
that in order to obtain most of the structure by thresholding, one either needs to blur
together the different object classes or settle for a noisy representation, both of which
are undesirable. Thus, these images support the use of our evolution technique to
potentially produce a more robust and useful geometric class than considering only
the raw data.



Chapter 9

Conclusions

We have studied the mathematics of manifolds undergoing under curvature-based
evolution and the related computer vision techniques for segmentation. Moreover,
we have contributed to a further understanding of the connection between these two
topics by exploring the new area of regularization dependent on a manifold which
is not a hypersurface. Using these ideas, we have developed a novel algorithm for
the segmentation of tubular structures in medical images. We have customized our
algorithm for the segmentation of vessels in MRA datasets because of the clinical im-
portance of this application. During algorithm development, we worked with surgeons
and radiologists to understand this problem and the types of segmentations that are
most useful clinically so that our algorithm could be clinically useful. To demonstrate
potential clinical benefit, we have run our algorithm on over 30 medical datasets and
have compared our segmentations to manual segmentations when possible. In addi-
tion to the segmentation algorithm, we developed a centerline extraction algorithm
that operates on the vascular models because our interaction with clinicians showed
us the importance of such a tool. Finally, we performed preliminary experiments
to show the wide applicability of high-dimensional manifold evolution, beyond the
medical domain. In particular, we showed an application to data representation for
general classification an recognition tasks.

This work suggests a number of challenging studies in the computer vision and
medical image analysis fields, including

e Varying the image weighting function g in Expression 5.1, perhaps making it
dependent on quantities other than the gradient magnitude in addition to ex-
perimenting with different functions;

e Exploring the use of the combination of Marching Cubes isosurface generation
and very smooth distance functions to create surface models as smooth as those
returned by CURVES for other applications;

e Developing a labeled atlas for the blood vessels such as that described by Koller
et al. in [57] and the incorporation of the raw 3D MRA flow vectors (Section 4.1)
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into the segmentation algorithm for increased performance;

e Exploring further the evolution of true 1D curves with particular application to
the extraction of vascular centerlines instead of evolving tubes and finding the
skeletons separately;

e And exploring the use of manifold evolution for data representation (Chapter 8)
for more complicated situations of higher dimensions and sparse data.

Such studies would provide practical benefit in addition to further understanding of
the theory of manifold evolution and related areas.
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Appendix A

Euler-Lagrange Equations

The calculus of variations is the branch of calculus in which the variables of the expres-
sions or equations are functions instead of single-valued parameters. A primary topic
in this area is finding extrema of expressions that depend on functions. We review
this calculation because it is used in minimizing the energy functional upon which
the active contours approach is based. For further details, we refer the reader to [51]
and [37]. The explanation that follows is based on that in [51], with customization
to the energy-minimization problem used in geodesic snakes and in CURVES.
Consider the integral

1
Ez/ ®(p,C,C")dp
0

where C'is an unknown function that depends on p, and ® is a function that depends
on C' and its derivative C’, also unknown. Further assume that C is a closed curve,
so C(0) = C(1), and that we wish to minimize E over all possible C. We will call £
the “energy” of C. The goal is to characterize the C' at which a minima is attained
according to the property that the gradient of E is zero there. To minimize F by
gradient descent, we follow that gradient to modify an initial curve C;. We emphasize
that by construction, only local minima are found. No global search is performed.

Assume that C is a function that minimizes E. This implies that small variations
to C should not change F significantly, and should increase it. Let n(p) be a test
function. Consider adding en(p) to C(p) for small e. Assume that 5(0) = n(1) for
consistency with C. If E varied linearly with ¢, then we could subtract en(p) from
C(p) to decrease the energy, which contradicts the assumption that C' minimizes E.
Therefore E cannot vary linearly with ¢, so it must increases with €2. Since F cannot
vary linearly with € at C(p), we must have that the first derivative of E with respect
to € at C(p), equivalently, “at € = 0, is zero. That is, for all test functions n(p),

OE

e=0

Modifying C by en, we obtain the energy equation

1
E= / ®(p,C + en, C' + en')dp.
0

In order to derive the Euler-Lagrange equations, one expands ®(p,C + e, C' + e7f')
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in Taylor series around € = 0 to obtain

&(p,C+en,C' +en) = (1)
/ a ! a ! /

where e contains second-order and higher powers of e.
The energy equation is now

1
E = / (® + en(p)®c + en' (p) o + €)dp.
0

By above, the derivative of E with respect to ¢, evaluated at € = 0, must be zero
in order for C' to solve the minimization. Thus, we differentiate E with respect to e,
choose € = 0, and set the result to zero:

1 1 1
0= / (n(p)®c + 7' (p)@cr)dp = / 1(p)®cdp + / 1 (p)@crdp. 3)
0 0 0
We then use integration by parts to remove reference to 7/(p):

1

/0 7 (0)®cdp = [n(p)@erlh — / n(p)-%@c'dp-

Because 7(0) = n(p) and C(0) = C(1), we have that [n(p)®c]} = 0. Substituting
into Equation 3, we obtain

1 1 p] 1 o
0= (I’d—/ —<I>:d=/ ®c — —P¢r)dp.
|| @2cdn— [ a0)zeods= [ ne)@e - -ec)dp

For this to hold for all test functions 7(p), then

0
b — —Pc =0. 4
¢~ 5% (4)
Equation 4 is called the Fuler-Lagrange equation or the Euler equation for the
given minimization problem. The Euler-Lagrange equations for the situation where
the integrand contains higher order derivatives of C [51, 37] are as follows. At a local
minima, of

1
E=/ o(p,C,C",C",...)dp,
0
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one finds that

0 0?
(I)C — 5}.9(1)0, + %2—@01: —...=0. (5)

After one obtains this condition for a local minima, one makes C a function of time
t as well as spatial position p and sets the gradient to the negative time derivative of C
to yield the evolution equation. We next provide the calculations of Euler-Lagrange
equations for the problems of minimizing Euclidean curve length and non-Euclidean
curve length, as in geodesic snakes.

Curve-Shortening Flow

To minimize curve length

1
[ @i
we set ®(p, C,C") = |C'(p)|. Differentiating,

®c=0

_ C'(p)
e = 10)]

8. 8 (CW
%%‘onw)

Let s denote arclength of C, £ the unit tangent vector of C, and N the unit normal
vector of C. Then the curvature  of C is defined according to the Frenet equation

-

ot

g’—‘h)N.

Observe that I%% = { is the unit tangent to C. The chain rule gives
?__(C'(P))_Q(_C_'_’_@)§
ap \IC'(p)|) 0s\|C'(p)|) Op

g—; is the speed of the parametrization p, which is also equal to |C'(p)|. Thus,

9 (00 _ i
@QOW) NC'w)l
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We find that the Euler-Lagrange equation is
0= -xN|C'(p)|

Dividing by |C’(p)| and setting the temporal derivative of C to the negative of
this quantity for minimization gives Equation 2.2

Gt = K,N. (6)

Geodesic Active Contours

To minimize
/0 d(IVI(C®))IC'(v)dp,

we set ®(p, C,C") = g(|VI(C(p))|)|C’'(p)|- Differentiating,

VI

= I o H

o)
o= 91Eip)

5. 8(CWm). CWao
0 =95 (IC’(p)I) 10w 5 9

By the chain rule application above,

é_ C'(p) _n" 1
p(IC’(p)I)_ M@

We find that the Euler-Lagrange equation is

C'(p) 0
|C"(p)| Bp

The final term is a vector in the direction of the tangent to the curve. It would
give an amount to move the curve in the direction of the tangent. Since we only
care about the curve as a boundary between regions of the image, and do not care
about the parametrization of the curve, we can ignore this motion. Thus, that term

is omitted. We also remove the tangential motion from ¢’ -2 lg§|H by replacing it with

Y gkNIC )| -

0= 0wl

(9)
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its component in the direction of the normal to the curve. We thus obtain

0=|C"@I((¢’ |VI|H) N)N — gsN|C'(p)!.
Equivalently,
\Z
0=((g |VI|H) N)N — grN. (7)

Observe that ¢' -2k lgle Vg and write

0= (Vg-N)N - gsN

To achieve this minima by an iterative evolution using gradient descent, we set
the time derivative of C to the negative of this expression to obtain:

C, = gkN — (Vg- N)N.
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