15.070 Midterm Exam

Date: October 24, 2005

Problem 1 (15 points) For the following questions/statements just give TRUE or FALSE answers. Do not derive the answers.

Given two distinct probability measures μ_1, μ_2 on a sample space/ σ -field pair (Ω, \mathcal{F}) .

- **A.** Define $\nu(A) = \min(\mu_1(A), \mu_2(A))$ for every $A \in \mathcal{F}$. Then ν is also a probability measure.
- **B**. Define $\nu(A) = .5\mu_1(A) + .5\mu_2(A)$ for every $A \in \mathcal{F}$. Then ν is also a probability measure.
- C. There exist sets A, B such that $\mu_1(A) < \mu_2(A)$ and $\mu_2(B) < \mu_1(B)$

Problem 2 (25 points) On a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ consider a sequence of random variables X_1, X_2, \ldots, X_n and σ -fields $\mathcal{F}_1, \ldots, \mathcal{F}_n \subset \mathcal{F}$ such that $\mathbb{E}[X_j|\mathcal{F}_{j-1}] = X_{j-1}$ and $\mathbb{E}[X_j^2] < \infty$.

- **A.** Prove directly (without using Jensen's inequality) that $\mathbb{E}[X_j^2] \geq \mathbb{E}[X_{j-1}^2]$ for all $j = 2, \ldots, n$. HINT: consider $(X_j X_{j-1})^2$.
- **B**. Suppose $X_n = X_1$ almost surely. Prove that in this case $X_1 = \ldots = X_n$ almost surely.

Problem 3 (25 points) Given a standard Brownian motion B(t) consider the following process on $t \in [0, 1]$ which is called Brownian Bridge: $W(t) = B(t) - tB(1), t \in [0, 1]$.

- **A**. Compute the covariance cov(W(s)W(t)) for every $0 \le s < t \le 1$.
- **B**. Show that W(t) and B(1) are independent random variables for every $t \in [0,1]$. You may use the fact that two normal random variables are independent if and only if their covariance is zero.

Problem 4 (35 points) Let B be a standard Brownian motion. Let $S = \{t : B(t) = 0\} \subset \mathbb{R}_+$ - zero set of a Brownian motion. Prove that S is almost surely an unbounded infinite set. HINT: use the fact that you know the distribution of $M(t) = \sup_{0 \le s \le t} B(s)$.