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ABSTRACT

In Chapter 1, I propose that abnormal returns generated by price momentum can be explained
away within the framework of an existing risk factor model such as the Fama-French three-factor
model. Two features of a systematic factor, weakly positive autocorrelation and the leverage effect,
generate a small positive alpha in the factor portfolio scaled by its own past returns. The momentum
portfolio magnifies this alpha by taking long positions in stocks with highly positive (negative) betas
and short positions in stocks with highly negative betas given a positive (negative) realized factor
return. Time-varying stock betas enhance the degree of magnification significantly. I demonstrate
that a simulated market in which asset returns obey the three-factor model can produce realistic
momentum dynamics and substantial abnormal profits comparable to those found in the data. In
empirical tests, I show that a replicating portfolio with time-varying betas accounts for 84% of
the mean return and 75% of the alpha of the value-weighted momentum portfolio. Among firms
larger than the NYSE median, momentum has negligible return and alpha after taking into account
the dynamic replicating portfolio. Among small firms, the addition of a financial distress factor is
sufficient to explain away momentum alpha.

Chapter 2 confirms the idea that momentum is a dynamic portfolio of existing risk factors and
suggests that momentum profit should be positive and may be justified as compensation for risk.
Using select factors extracted from principal component analysis, I can construct replicating port-
folios that match the equally-weighted momentum returns and even achieve a higher Sharpe ratio,
whereas previous attempts based on the Fama-French factors failed to do so. Analyzing the repli-
cating portfolio reveals that momentum derives its returns from a diverse base of existing risk
factors, proportional to the amount of cross-sectional dispersion in risk premia they can explain.
Momentum returns are positive because it tends to have positive loadings on stocks with positive
risk premia and vice versa. The numerous and constantly changing sources of momentum profit
make it unlikely that a parsimonious model of a few long-lasting risk factors can completely explain
momentum; in that sense, momentum may yet be considered a quasi-risk factor.

In Chapter 3, a joint work with Eung Jun Brandon Lee, we present three sets of empirical results
pertaining to cross-sectional patterns in stock returns associated with various accounting ratios

3



such as return on assets, return on equity, turnover ratios of accounts receivable and payable, and

gross and net profit margins. First, we show that recent changes in these accounting ratios, rather

than their levels, are responsible for large returns spreads. Second, we document "fundamental

momentum", long-short portfolios formed by sorting on recent changes in these accounting ratios

have significant alphas after controlling for Fama-French three-factor and Carhart four-factor mod-

els. Third, we examine the findings of Chordia and Shivakumar (2006) who conclude that the

well-known price momentum effect is a manifestation of earnings momentum. We find, on the

contrary, that price momentum is not fully explained nor subsumed by earnings momentum.

Thesis Supervisor: Jiang Wang
Title: Mizuho Financial Group Professor
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Chapter 1

Explaining Momentum within an Existing Risk Factor

Model

1 Introduction

Price momentum is a well-documented stock market phenomenon in which stocks with

high recent returns ("winners") tend to outperform those with low recent returns ("losers")

in subsequent months. The momentum portfolio that buys winners and short-sells losers

based on stock returns within the past year is held for up to one year forward. It is a persis-

tent and puzzling fact that such a zero-investment portfolio generates an abnormal positive

profit, which is highly significant even after controlling for well-established systematic risk

factors. Since it was first described in Jegadeesh and Titman (1993), momentum has become

somewhat of an enigma and its genesis a hotly debated topic. Fama and French (1993, 1996)
successfully explained a large portion of the cross-sectional variation in stock returns using a

three-factor model (henceforth FF3) consisting of market (MKTRF), size (SMB) and value

(HML) factors; however, they had to concede that their model was unable to explain mo-

mentum. I will argue that the Fama-French three-factor model can in fact account for a large

portion of momentum's abnormal returns, on its own, without any additional assumptions

or theories.

My explanation for momentum is a mechanical one where the observed positive alpha

from the unconditional factor regression is not real but arises due to mismeasurement of

factor betas. The momentum portfolio does not have constant loadings on risk factors but

rather highly time-varying ones that depend on past realizations of factor returns. When the

factors exhibit positive autocorrelation and leverage effect (past returns negatively predicting

squared future returns), momentum inherits and amplifies these predictability features. Such

features, in turn, cause the unconditional factor regression model to generate an artificial

alpha, even if there is actually none. This mechanism is powerful in that only a small amount

of predictability in the risk factors is needed to generate a large unconditional alpha in the

momentum portfolio; it is also universal in that it works for any set of assets that obeys a

linear risk factor model.

Assuming that the Fama-French three-factor model is true, I can construct a replicating

portfolio for momentum. It is a portfolio of risk factors scaled by a weighted average beta
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of firms chosen into the momentum portfolio; the weight assigned to the beta of each firm

is equal to the weight that momentum assigns to its past returns. With this replicating

portfolio, I can explain away 84% of the mean return and 75% of the FF3 alpha of the

value-weighted momentum portfolio. The residual return and alpha are statistically indis-

tinguishable from zero. This result is significant because it demystifies momentum within

the confines of an existing and well-accepted multifactor pricing model. Among small firms

in which momentum is not as well explained by the replicating portfolio, the addition of a

financial distress factor can close the gap. The empirical evidence I will present below paints

a complete picture of momentum within a parsimonious framework.

It is important to understand the exact mechanism that gives rise to momentum alpha

and identify the parameters that determine its magnitude. The mechanism can be divided

into two parts, one that links momentum betas to past factor returns and the other that

links factor predictability to alpha. At each time the portfolio is formed, stocks are sorted

based on their recent returns, which are determined by their systematic returns (the realized

factor returns times individual firm betas on those factors) plus idiosyncratic returns. Given

that a factor has a positive realized return, winners are more likely to be firms with high

betas on that factor, while losers are more likely to be ones with low betas. The momentum

portfolio would then have a highly positive beta on the factor. The opposite is true given a

negative realized factor return. The magnitude of the realized factor return also determines

the extent to which a firm's beta determines its rank in the past return sort. Therefore,

momentum's portfolio beta on that factor is time-varying and proportional to the realized

factor returns.

An unconditional factor regression specification assigns constant betas to a portfolio,

even when it has time-varying betas. The beta estimates are roughly equal to the aver-

age portfolio betas over the sample period. If the time-varying betas are positively corre-

lated with factor returns, the regression yields a positive intercept estimate, or alpha, since

E [wF] - E [w] E [F] = cov (w, F) > 0. In addition, if the portfolio beta is negatively corre-

lated with the squared factor returns, there is an additional source of positive alpha. These

two sources of biases have been previously explored in the conditional CAPM literature: the

first was stated and emphasized in Dybvig and Ross (1985) and Jagannathan and Wang

(1996); the second was mentioned in Jagannathan and Wang (1996) and Lewellen and Nagel

(2006) but not explicitly considered until Boguth, et al. (2011). Boguth, et al. (2001) showed

that a number of biases, including the aforementioned two, can exist when computing the

alpha of the momentum portfolio. I will show that those two sources of alpha originate from

the factor structure and argue that they alone are responsible for generating the momentum

alpha we observe in the data.

8



Momentum betas inherit the ability to predict factor returns and return volatilities from

features that already exist within the factor structure. The three Fama-French factors, for

example, exhibit varying degrees of positive autcorrelation and leverage effect. Even though

the strength of the correlation is weak, the magnitude is statistically significant such that it

is possible to generate unconditional alpha from trading the factors themselves. Momentum

takes full advantage of this feature from all the factors it loads on by amalgamating and

magnifying factor-level alphas. Since only stocks at the extreme ends of the return sort are

selected into the momentum portfolio, its beta on a risk factor is a large multiple of the past

factor returns.

The size of the multiplier depends on the cross-sectional dispersion of individual firm

betas and the size of the idiosyncratic volatility. In simulation, increasing the former and

reducing the latter both lead to increases in momentum alpha. With values calibrated

from real data, the simulated market produces a momentum portfolio that is very similar

to the dynamic replicating portfolio in the empirical analysis, particularly in terms of FF3

alpha and correlation with the actual momentum portfolio. This experiment, along with the

empirical reconstruction of momentum profits from the factor-level correlations, provides

a comprehensive analysis of the mechanism that I described and proves that it works as

intended in both a controlled environment and historical data.

The work most closely related to mine is that of Grundy and Martin (2001), who adjusted

the momentum portfolio by time-varying exposures to common risk factors and found that

the adjustment significantly reduced variability of returns. They also found that momentum

profit and alpha increased after controlling for time-varying betas. Chordia and Shivakumar

(2002) cited this conclusion but raised doubt about its validity. They used a set of lagged

macroeconomic variables to predict one-month-ahead returns. The predicted part of returns

can largely explain momentum profits, giving hope that a conditional pricing model may

yet prove a viable path. In addition, Wang and Wu (2011) performed a similar exercise as

Grundy and Martin (2001) with an expanded sample and showed that the FF3 model can

explain 40% of momentum profits. My empirical procedures are similar to those of Grundy

and Martin (2001) and Wang and Wu (2011); my results are consistent with the latter in

support of conditional risk adjustment, as opposed to the former.

My results run counter to Grundy and Martin's for a number of reasons. One is that

they defined momentum by equally-weighting top and bottom deciles of stocks sorted on

past returns, so that the portfolio is dominated by a few very small firms. I examine the

entire cross-section and show that the replicating portfolio works well for most firms except

the very small. Another difference is that Grundy and Martin estimated pre-formation firm

betas using a five-year window, which systematically underestimates the magnitude of the
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momentum portfolio betas. I will show that individual firms have time-varying betas affected

by persistent shocks, and a short window of two years leads to much more accurate estimates.

GM also estimated post-formation firm betas using a rather unusual five-month window and

constructed an ex post replicating portfolio that yields a negative alpha. I repeat the same

exercise using a two-year estimation window and find that the ex post replicating portfolio

has a highly positive FF3 alpha, similar to the ex ante replicating portfolio.

Most existing explanations for momentum fall into one of two categories: behavioral or

rational. The behaviorists argue that price continuation is irrational and is the result of

cognitive biases such as under-reaction. Barberis, Shleifer and Vishny (1998) and Hong and

Stein (1999) both offer models of investors' bounded rationality that leads to under-reaction

to news. The former has investors suffer from representativeness heuristics of Tversky and

Kahneman (1974) and incorrect beliefs about the earnings process; the latter assumes that

investors follow simple trading strategies conditional on a limited information set. Both cause

investors to react slowly news initially and then possibly overreact over the next months,

leading to the observed short-term momentum. Fully rational investors are either not present

in the market or unable to correct the mispricing due to limits to arbitrage. The problem is

expected to be most pronounced among small, illiquid firms.

There is an ongoing debate about whether transaction costs are substantial enough to

eliminate momentum profits in practice. Lesmond, Schill and Zhou (2003) estimated that

trading costs exceed momentum returns and argued that the strategy is unprofitable due

to its selection of small stocks that are especially costly to trade. Korajczyk and Sadka

(2006), however, pointed out that the previous conclusion only applies to equally-weighted

momentum portfolio that heavily favors small firms. They estimated trading costs using

price-impact models and found that value-weighted and liquidity-weighted momentum port-

folios remain profitable even after accounting for transaction costs. Momentum among large

and liquid firms, it seems, is the more puzzling phenomenon that cannot be easily justi-

fied with a limit-to-arbitrage argument. In this respect, my explanation for momentum is

particularly successful.

There are also attempts at a fully rational framework for momentum. Johnson (2002)

proposed one in which a firm's log market value log (V) is a convex function of a priced

state variable p. Then the firm's beta, d log V (p) /dp, is a positive and increasing function

of p. An increase in p leads to both an increase in V, i.e., positive recent returns, and

higher subsequent returns due to the firm's now higher beta. Sagi and Seasholes (2006)

expanded on Johnson's model and interpreted the upper portion of the convex function as

risky growth opportunities within firms. Garlappi and Yan (2011) modeled firms as having

lower systematic risks as they approach the default boundary, rationalizing the lower portion
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of the convex function. The link between momentum and financial distress risk, focusing

on small firms with large recent losses, has also been explored empirically in Dichev (1998),
Campbell, Hilscher and Szilagyi (2008) and Avramov, et al. (2012). My results can be

interpreted as being consistent with this literature: for large firms in which financial distress

does not come into play, the Fama-French three-factor model is quite capable of explaining

momentum profits on its own; for small firms, the addition of a financial distress factor

proves sufficient.

Compared to convex value function models, my proposed mechanism for momentum is

more flexible because it is not specific to firm equity. Asness, Moskowitz and Pederson (2009)

found that the momentum phenomenon exists internationally across many asset classes in-

cluding bonds, currencies and commodities. In addition, momentum profits are positively

correlated across asset classes. These observations are natural implications of my mechanism

as long as these different groups of assets share some common risk factors. The same cannot

be said about the convex value function models. While they contribute valuable insight into

momentum of a particular market, namely the stock market, my explanation is more likely

to be the common driving force behind momentum everywhere.

In the next section, I will specify the conditions under which a factor model can generate

momentum endogenously, then perform simulation exercises to gauge the magnitude of the

momentum alpha that can be produced and explore how various parameters affect it. Sec-

tions III will be devoted to empirical results that confirm the intuition and simulation results

in the previous section. Section IV will break down the time-varying replicating portfolio

to the factor level and illustrate the importance of each component in the alpha-generating

and magnification processes. Section V will focus on the unexplained portion of momentum

alpha in small firms and examine the effect of an additional factor on financial distress.

Section VI will conclude.

2 Theory and Simulation

2.1 Unconditional Factor Regression and Alpha

I assume a market in which asset prices follow a multifactor model such as Ross (1976)'s

APT model, i.e., all asset returns obey

K

rit = rf + 1 Iikfkt + Eit
k=1

where 3 ik is the permanent constant beta of Asset i E {1, 2, ... , I} on the kth systematic
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factor. fkt is the return of the kth systematic factor at time t and cit is an i.i.d. noise term.

This is an arbitrage-free world with perfect information and no friction. Any static or

dynamic zero-investment trading strategy P using a subset of available assets will have the

following returns

K

rpt E Wktfkt + EPt
k=1

where Wkt is the portfolio's weight or beta on the kth factor and Ept the idiosyncratic

component orthogonal to fkt's and Wkt's. For a static trading strategy where Wkt = Fk, a

regression of rpt on the factor returns will yield an alpha of zero. The interesting case is

one in which Wkt varies with time. The returns to the dynamic trading strategy can then be

broken down into a number of terms:

K K

rpt = Vkt fkt + E fkt + EPt (1)
k=1 k=1

where

Wk E [WktI, Wkt = Wk± -- Wk

The alpha of the trading strategy relative to the risk factors is simply the sum of the

alphas generated from each component of Eq. 1. Since constant-beta portfolios and the

idiosyncratic component do not produce any alpha, the overall alpha of the strategy is the

sum, over k, of the alpha estimated from the following regression:

K

Wkt fkt = a'k + E kj fjt + 77t
j=1

Let Ft = [ fit ... fKt ', p = E [Ft] (K x 1 vector of the empirical expected factor

returns) and Q = E [(F - p) (F - y)'] (K x K empirical variance-covariance matrix of the

factors). Then, omitting the t subscripts, we have

ak cov (wk, fk)

3k1 1 ' COV (Wk , fAM1

. kK Cov(wk,fkfK) _

and

k= (1+ 'Q-1p) coV (wk, fA) - Y'Q-'cov (wk, fkF) (2)
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where
coV (wk, fAf)

coy (Wk, fkF) coV (wk, fkf2)

Scov (wk, fkfK)

Each &k is a linear function of the covariances. Of particular importance are cov (wk, fA),
the covariance between the portfolio's exposure to factor k and factor k's returns, and

coV (wk, fk), the covariance between the portfolio's exposure to factor k and its squared

returns. Since the variances of factor correlations are magnitudes smaller than those of

factor return and return volatility, the contributions of the covariance terms cov (wk, fkfj)

(k 7 j) to the portfolio alpha are negligible. So,

(i ± -1 +p' A) coV (wk, fA) - p'-~ cov (wk, fk) (3)

The coefficients on the two covariance terms depend on the covariance structure of the

factors. The decomposition of alpha into the two covariance terms is well-known, and equa-

tions similar to Eq. 3 have appeared previously in Jagannathan and Wang (1996), Lewellen

and Nagel (2006) and Boguth, et al. (2011). In the simplest case where all factors are

uncorrelated, the above expression is reduced to

&k= + E 4 cov (wk, f) - /2cov (wkf f)

~ coV (wk, fk) - Lcov (wk, f2) (4)

The equality comes from the fact that when factors are uncorrelated, coV (Wk, fjfk) = 0
for all j 7 k. The further simplification comes from the empirically observed fact that pi4/o2

is close to zero. For example, each of the Fama-French factors has p /ak < 0.02. Even

though the second term in Equation 4 containing cov (wpk, fk) may seem much smaller than

the first term due to fi, the kurtotic nature of the Fama-French factors, in particular MKT

and HML, makes it important as well. The term is also magnified by the multiplier pk/o,

which is around 2-3 in the data.

The alpha of the overall trading strategy is then

KF

Icov (wk, fA) - at2cov (Wk, (5)
k=1 . k

Each component of Equation 4 may be small, but when they come together they rise above
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statistical and economic significance. Momentum is a trading strategy that takes full advan-

tage of all of these components to generate a significant abnormal profit.

Two crucial links bring momentum into the picture. The first is that the beta of the

momentum portfolio on a factor is proportional to the realized return of that factor over the

period in which past returns are used to rank stocks. When a factor has a positive (negative)

realization, stocks with positive betas experience higher (lower) returns, keeping everything

else constant. Positive-beta stocks are then more likely to be selected into the winner (loser)

part of the momentum portfolio, and the opposite is true for low-beta stocks. The winner-

minus-loser position is then proportional to past factor realization, i.e., Wk ~ Mfk_, where

the minus sign in the subscript denotes the previous period (for momentum, it's t - 12 to

t - 2). It follows that

& ~ M [ cov (ffk-, A) - (Av )f, ]. (6)
k=1 Uk

The terms within the bracket depend entirely on the factor structure itself, and M acts as a

magnifier. The size of M depends on the volatility of the idiosyncratic risk and the dispersion

in betas. The former is true because the idiosyncratic component of a firm's return competes

with the systematic component in the return sort. It mixes up the ranking and reduces the

spread between the betas of winners and losers. The latter is true because momentum selects

stocks at the top and bottom of the sort, so high dispersion increases the spread between

the betas of winners and losers.

The second link is the autocorrelation structure of factors that fosters a small amount

of predictability. In order for momentum to generate a positive alpha, it is helpful if past

returns of a factor have predictive power in two ways: first, it predicts positively future

returns; second, it predicts negatively future return volatility. I will show in the empirical

section below that these two conditions are indeed satisfied for the three Fama-French factors

in the data. It must be noted that not all factors must exhibit these traits; the ones that do

contribute to a positive alpha to the momentum portfolio while those that don't offset some

of the positive alpha. While not true for the Fama-French factors, it is conceivable that an

alternative factor structure can generate a negative momentum alpha.

The two aforementioned links magnify the small alpha born out of the factor structure

and transform it into a significant one in the momentum portfolio. Therefore, momentum is

certainly capable of having a positive alpha in theory; the question is whether that alpha is

large enough, statistically significant and accounts for the momentum alpha we observe in

the data. Through simulation and empirical analysis, I will prove that the answer is, for the

most part, yes.
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2.2 Simulation

A simulated stock market provides the ideal controlled environment to test the hypothesis

that an existing factor structure can generate abnormal momentum returns. Simulation can

also predict the amount of momentum alpha that we should observe in the data and enable

comparative statics that is not possible to perform empirically.

I will use the CAPM and the Fama-French three-factor model as the reference factor

structure. I create a market with 1,000 assets (i = 1,...,1000), all starting with a capital-

ization of vio = 1 and permanent betas on the systematic factor(s) drawn from a distribution.

One period is equivalent to one month in reality. The market operates for 1032 months, which

correspond to the period of July 1926 to June 2012 for which FF3 returns are available on

Wharton Research Data Services (WRDS)1 . At time t, each asset i E {1, 2, ... , 1000} has a

return of

rit = 3mirmt + Eit

assuming CAPM and, alternatively,

rit = Imirmt + /38 rst + Ihirht + Eit

with FF3. Subscripts m, s and h stands for MKTRF (market-minus-riskfree), SMB (small-

minus-big or size) and HML (high-minus-low or value) factors, respectively. The risk-free rate

is assumed to be zero, and Ejt is drawn from an i.i.d. Ar (0, o) distribution. The assumption

of a zero risk-free rate can also be interpreted as all firms paying out rf of the firm value as

dividend each month. Factor returns are taken as the historical factor realizations; therefore,

they are identical across different iterations of the simulation. The reason for using actual

returns is to leave the factor structure intact while controlling for everything else, so that the

effect we see must be originated in the factor structure and nothing else. The capitalization

of the firm after time t is

vi,t = Vi't_1 (1 + rit)

In order to address the possibility that a small portion of the firms may grow dispropor-

tionally large and dominating the portfolio weight, a few randomly chosen firms each period

have their capitalizations set to the median firm size in the market. This procedure in reality

does not have a material impact on the results.

Betas are either drawn from independent normal distributions or an empirical distri-

'URL: https://wrds-web.wharton.upenn.edu/wrds/
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bution. The latter method is obtained by collecting betas estimated from time-series FF3

regressions of all individual stocks in the CRSP database with a monthly return history of

five years or more. The three-factor betas are drawn together to preserve their correlation

structure. This joint distribution best describes the long-run average betas of individual

firms. The former method takes the standard deviation of all long-run average betas, which

are approximately {0.5, 0.9, 0.9} for the three factors, respectively. Then market betas are

drawn from .JV(1, 0.52) while SMB and HML betas are drawn from .Af(0, 0.92). If we look

at the volatilities of short-term betas, then they are much higher at {0.8, 1.3, 1.3}. The three

scenarios, betas from empirical distribution and two different independent normal distribu-

tions, are tested to see whether the dispersion in beta matters and how the joint distribution

of betas differs from the independent normal distribution case.

The standard deviation of the idiosyncratic risk, o-, is either a constant from the set

{0.06, 0.12} or a time-varying value that equals the value-weighted root mean square error

(RMSE) of a two-year rolling-window FF3 regression at each time t. The two constants are

chosen to represent the mean RMSE for large and small firms. Since momentum portfolio

typically consists of the smallest firms in any group of stocks, the higher idiosyncratic volatil-

ity of 12% per month more accurate reflects reality. Since the empirically estimated o-, varies

significantly across time, a third scenario using empirical idiosyncratic risk is also included

in the analysis to see whether the time-varying quality affects momentum alpha. During

each month, o,, is taken to be the equally weighted RMSEs, across all firms, of firm-level

rolling-window FF3 regressions. The average standard deviation is about 10%.

2.3 Simulation Results

Table 1 shows the mean returns, Sharpe ratios and factor regression coefficient estimates

for various scenarios in the Fama-French three-factor simulation. Table 2 shows the same

statistics the CAPM simulation. Each column represents a different parameter pair of betas'

joint distribution and idiosyncratic volatility. The statistics are averaged over one hundred

iterations of the simulation, though the variations between iterations are very small such

that the statistics are all similar to the average values. The most striking observation from

these tables is that momentum strategies exhibit consistently large and significant profits and

unconditional alphas across different specifications. For the three-factor model, the alphas

range from as low as 0.27% per year to as high as 0.86% per month. Table 2 illustrates that

just the market factor itself can already generate a meaningful alpha, about half that seen in

the three-factor simulation with comparable parameters. However, this does not mean that

the market is more important than SMB or HML in the three-factor setting. When multiple
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Figure 1: FF3 Alpha of the Simulated Momentum Portfolio

10

a.1

04,

Plot of the FF3 alpha of the simulated momentum portfolio as a function of ae, monthly volatility of the idiosyncratic component

of firm returns and og, the dispersion in the permanent firm betas on the FF3 factors. The y-axis is the multiplier applied to

the benchmark op of 0.8 for MKT and 1.3 for SMB and HML, i.e., M = 0.5 means op of 0.4 for MKT and 0.65 for SMB and

HML. The z-axis is the unconditional FF3 alpha of momentum averaged over 100 iterations of the simulated market.

factors are present, they compete for the attention of the momentum portfolio. Therefore,

each factor is expected to contribute less than it would on its own. In fact, the three factors

contribute to the alpha roughly equally in the data.

The amount of momentum profit and alpha depends on a set of familiar parameters.

First and foremost is the dispersion in individual firm betas, which determines the degree

of magnification that momentum can deliver from the factor-level correlations. Comparing

the first two panels of Table 1, we can see the difference between using high (short-term)

and low (long-term) standard deviations of betas. While dispersions in the "high"~ case is

less than twice that in the "low" case, the resulting alpha is more than twice as high when

og= 12%. Higher dispersion not only has the benefit of creating a larger spread but also

cuts through the noise (idiosyncratic risk) better. Moments other the standard deviation do

not seem to matter much, as seen in the comparison between the first and the third panels.

Using the long-run empirical joint distribution of beta is similar to only using the standard

deviations.

Also important is the volatility of the idiosyncratic risk, as it mixes up betas in the

stock return ranking, reducing the spread in betas on which momentum profit is derived.

The average level of this volatility seems to be most important, as a 1% increase in monthly

volatility reduces momentum alpha by about 0.05% per month or 0.6% per year. The time
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variation of the volatility, though observed in the data, does not seem to have a material

impact. Simulation using the empirical time-varying RMSE looks similar to that using the

average of 10%. Figure 1 shows the joint effect of o, and op on momentum alpha. The x-axis

is the monthly o, and the y-axis the multiplier on the benchmark Up of 0.8 for MKT and

1.3 for SMB/HML. The z-axis is the average momentum alpha of the simulation based on

the aforementioned parameter set over 100 iterations. Other than minor variations, alpha

appears to be a monotonic function of the two parameters, decreasing in or and increasing

in op.

Among all combinations of the two parameters above, I will take as benchmark the case

where oa ={0.8, 1.3, 1.3} and o, = 12% per month. The reason for former choice is that

momentum is based on one-year returns in the past, which depend on the short-term betas

more than the long-term ones when betas are time-varying. In this case, there is indeed a

significant discrepancy. As I will show in the empirical section below, the long-term estimates

of betas are unreliable and lead to an alpha in the momentum replicating portfolio that is

too small, just like the first panel in Table 1. The reason for the latter choice also comes from

empirical analysis, based on the observation that firms selected into the momentum portfolio,

winners or losers, tend to be small firms within the group. Therefore, it is prudent to use a

larger idiosyncratic volatility. The benchmark case generates an alpha of 0.57% per month

on average, a number that is highly significant both statistically and economically. Figure 2

plots the simulated momentum returns against actual momentum returns. The correlation

between the two is quite strong at 69.4% despite the fact that the simulation consists of

randomly generated firms with random betas and idiosyncratic risks. Additionally, Panel A

of Table 4 presents statistics of the time-varying betas of the simulated momentum portfolio

on the FF3 factors. The statistics are averaged over 100 iterations using the benchmark

specifications. They will be compared to their empirical counterparts in the next section.

While the magnitude of alphas depends on a few of parameters, the existence of it de-

pends crucially on the factor structure. Table 3 illustrates what happens when the factor

structure is altered, while other parameters are fixed to the benchmark case. If the fac-

tor returns are drawn at random from historical values rather than in the order that they

appeared (Column 2), then momentum alpha instantly vanishes. This is proof that the fac-

tor structure, as it exists in the Fama-French factors, is of paramount importance. On the

other hand, only factor autocorrelation up to a certain horizon matters since momentum is

a short-term phenomenon. I perform a randomized block bootstrap (Column 3) using the

technique by Politis and Romano (1994) to see whether the alpha disappears if returns are

randomly drawn by blocks and then stitched together. At an average bootstrap sample size

of 24 periods (2 years), most of the momentum alpha is preserved. This is an indication
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Figure 2: Simulated vs. Actual Momentum Returns
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Scatterplot of actual monthly momentum returns against simulated momentum returns. The correlation between the two

return series is 69.4%. The simulated returns are based on a typical iteration of the benchmark case (o ={0.8, 1.3, 1.3} and

a, = 12%).

that the factor structure at the two-year horizon is the leading determinant of momentum

profits.

I can push the experiment further and isolate the effect of factor autocorrelation. This

is achieved by modeling factor returns as AR(12) processes. The parameters are estimated

using historical data and then used to generate sequences of factor returns that are different

between iterations of the simulation but have similar autogressive properties at a horizon of

one year or less. The leverage effect is eliminated, so the momentum portfolio should have

a smaller but still significant alpha; Column 4 of Table 3 shows exactly this result. The

addition of contemporaneous correlation between the factors appears to have little impact

on the resulting momentum alpha, so the results of this extension are omitted.

3 Main Empirical Results

3.1 Data Description

The main data sources are the CRSP (Center for Research in Security Prices) dataset

for monthly stock returns and the Fama-French factor data, both of which are available on

WRDS (Wharton Research Data Services). The entire CRSP universe of firms is used; it

covers the period from January 1925 to December 2011. The Fama-French factors are avail-
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able from January 1926 to June 2012. To be included in a ranking for portfolio formation,
stocks must meet two conditions during the formation month: first, they must be traded on

the New York Stock Exchange, the American Stock Exchange or the NASDAQ Stock Mar-

ket; second, they must have an ending price per share of at least $1. The latter rule is aimed

at eliminating penny stocks suffering extreme liquidity problems and trading frictions. The

cutoff does affect the amount of alpha generated from the momentum portfolio, but only

slightly and does not materially affect any of the results below. Only very small firms are

affected; large firms are defined as those above the NYSE median capitalization, so their

momentum is virtually unaffected by this rule.

3.2 Variants of the Momentum Portfolio

To maintain consistency throughout this paper, I will define the momentum portfolio

(also known as UMD or up-minus-down) by ranking stocks based on their cumulative returns

in the second to 12th months prior to portfolio formation, i.e., the most recent one-year

return excluding the most recent month. This is the canonical definition for momentum and

is used in most papers on the subject as well as for the momentum factor data available on

WRDS and Ken French's website. The most recent month is excluded due to short-term

return reversal, which is a phenomenon distinct from momentum and is the consequence

of market microstructure effects according to Jagadeesh and Titman (1995). Table 5 lists

the most common variations of the momentum portfolio based on the set of stocks and

portfolio weights used in the ranking. It is immediately apparent that large and small firms

experience momentum differently, namely that momentum profit and alpha are much higher

among small firms. The same discrepancy exists, to a lesser extent, between value-weighted

and equally-weighted momentum portfolios based on sorts over the entire sample. Small

firms dominate in the equally-weighted portfolio due to their more dispersed returns, while

large firms dominate in the value-weighted portfolio due to their size.

3.3 Momentum Replicating Portfolio

For most of the empirical exercises below, I will assume that the Fama-French three-

factor model adequately describes the cross-section of returns for all assets. This is strictly

speaking an incorrect assumption, as the FF3 regressions leave large residuals that exhibit

both cross-sectional and time-varying patterns indicative of additional latent systematic

factors. However, the omission of latent factors does not invalidate the results below if their

influences on pricing is limited. Since the mechanism I have described works for any factor

structure, the results should at least be interpreted as a partial description of reality based
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Figure 3: Momentum Betas on the Fama-French Factors
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Plot of the betas of the momentum portfolio on the FF3 factors through history, computed as the weighted-average betas of

individual firms chosen into the momentum portfolio. The weights are equal to the weights momentum assigns to the returns

of these firms.

on one of the most widely accepted risk factor model available. I will argue that this partial

picture is actually quite close to the full picture.

The momentum portfolio can be decomposed into two components: the systematic com-

ponent that loads exclusively on the Fama-French factors and the idiosyncratic component

orthogonal to them. The systematic component can in turn be decomposed into three fac-

tor components, each of the form wtft, where ft is the return of the factor and wt is the

time-varying weight of the momentum portfolio on that factor. wt is taken as the weighted

average beta of individual stocks on the corresponding factor. For the value-weighted mo-

mentum portfolio, the weights are either vit (the "winner" group), 0 (the middle group)

or -vit (the "loser" group). I estimate betas of individual stocks from a two-year rolling

window, starting at one month prior to the portfolio formation date. The short window

offers protection against time variations in betas, in exchange for noisier estimates compared

to longer windows. However, since the betas are averaged across hundreds of stocks given

the wide top-30% and bottom-30% design of the momentum portfolio, measurement error is

attenuated at the portfolio level.

Panel B of Table 4 contains the summary statistics of momentum's loadings on the

three factors. The average betas are close to zero and may paint a misleading picture

that momentum is weakly correlated with the three factors or is not very volatile. In fact,
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momentum has high betas on the three factors judging from the high standard deviations

of 0.4 to 0.6 and extreme values of magnitude well exceeding 1. However, since the loadings

switch frequently from large positive values to large negative values and vice versa, as seen

in Figure 3, the mean conceals the highly volatile time variation. These rapidly switching

betas cause problems in the typical factor regression model because it can only capture the

average loadings of a portfolio on a set of factors, leading to a positive alpha estimate. The

statistics in Panel B can be compared with those in Panel A from the simulated market. The

standard deviation, maximum and minimum values and correlations with factor returns are

similar between the two panels, meaning that the simulated market captures well the time

series dynamics of momentum. Other moments such as mean, skewness and kurtosis, are

somewhat different, but they do not affect alpha, which mostly depends on the comovement

between betas and factor returns.

The first three columns of Table 6 show positive and significant alphas between 0.1%

to 0.2% per month from factor portfolios scaled by time-varying loadings. Altogether, the

replicating portfolio generates a Fama-French alpha of over half a percent per month. This

figure, as well as a Sharpe ratio of about 10% compares favorably with the value-weighted

momentum portfolio or similarly momentum in large firms. When the replicating portfolio

is subtracted from the value-weighted momentum portfolio, the residual portfolio has a

return of less than 0.1% per month, compared with momentum's 0.5%, and an insignificant

FF3 alpha of 0.19%, compared with momentum's highly significant 0.75%. The momentum

strategy is no longer profitable after controlling for the replicating portfolio.

This result is not uniform in the cross-section, however. For firms larger than the NYSE

median in terms of capitalization, the story is more or less the same since they dominate in

the value-weighted momentum portfolio. The first panel of Table 7 shows that for them, the

replicating portfolio explains away most of the abnormal returns. Small firms, on the other

hand, have a 30% higher momentum alpha but a 10% lower momentum return volatility.

This additional alpha poses a challenge for the three-factor framework because the time-

varying factor dynamics of large and small firm momentum portfolios are rather similar.

As a result, the replicating portfolio is able to explain less than half of the alpha among

small firms. On the other hand, the group of small firms represents a tiny proportion of the

market; their total capitalization is on average only 6% of that of the market. In addition,

previous literature has shown that only momentum in large, liquid firms is profitable after

accounting for transaction costs.

When large and small firms are given equal weight, as in the canonical half-half (HH)

momentum portfolio, then half of the momentum alpha is explained (Panel 3 of Table 12).

An additional observation is that in the 20 years since 1990, the replicating portfolio has
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Figure 4: Momentum and Replicating Portfolio Returns

0.2-

0.15-

0.1 - .. .

0.05-
E

a '.

-0.05

-0.15 -'

-20.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Replicating Portfolio Monthly Retums

Scatterplot of the monthly weighted-average momentum returns and those of the replicating portfolio. The correlation

between the two series is 69.5%.

performed much better while the performance of the momentum portfolio remains roughly

the same. The alpha of the residual portfolio is reduced to 0.25% and no longer significant.

One may interpret this result as an improvement in the efficiency of the overall market,

particularly among small stocks. The residual alpha may be the result of mispricing of small

stocks not corrected in the past due to limits to arbitrage. Over time, the market has become

more efficient; the residual alpha has shrunk and may continue to shrink in the future.

3.4 Alternative Factor Regressions

A possible critique of the above replicating portfolio is that the post-formation betas

of the momentum portfolio are systematically mismeasured. Since the replicating portfolio

is a zero-investment trading strategy, it can be arbitrarily scaled to obtain any amount of

alpha desired. For instance, if the beta on each factor is overestimated by a factor of k > 1,

then the replicating portfolio would give an alpha ka greater than the "true" alpha. Then

the replicating portfolio would suddenly appear to generate a higher alpha. The converse

may also occur where the replicating portfolio with underestimated betas would appear to

explain too little. Such concern can be alleviated with an alternative factor regression where
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Figure 5: FF3 a of Momentum and Replicating Portfolios by Deciles
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Plot of the FF3 alphas of deciles portfolios based on past return sorts, with the alphas of the corresponding replicating portfolios.

BIG/SMALL represent subgroups of stocks whose capitalizations are larger/smaller than the NYSE median.

momentum returns are regressed on returns of each systematic component of the replicating

portfolio. In essence, this regression measures the performance of the momentum portfolio

relative to not the original systematic factors but the dynamic replicating portfolios based on

these factors. As seen in Table 8, the alphas from these regressions are roughly equal to the

difference between momentum alpha and that of the replicating portfolio. Since the alpha

estimates from these alternative regressions do not change when the regressors are scaled

by constants, they confirm that there is no systematic bias in the estimates of individual

firm betas and momentum portfolio betas. The coefficient estimates on the three systematic

components are different from 1 due to the fact that the factors are correlated and also that

the estimated momentum betas are bound to contain noise and different from the "true"

betas. In addition, the alpha estimates cannot be realistically obtained, unlike the residual

alpha from momentum minus the replicating portfolio, since the betas are fitted from the

entire sample and cannot be known at the portfolio formation time.
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3.5 Decile Portfolios

Analysis of returns in the cross-section offers more sights into where the conditional beta

model succeeds and where it is lacking. Just as the momentum portfolio can be replicated

with a time-varying factor portfolio, each decile portfolio from the past return sort can also

be replicated in the same manner. The replicating decile portfolios exhibit monotonically

increasing alphas from about -0.5% in Decile 1 to zero in Deciles 5 and 6 to about +0.5%

in Decile 10 (Figure 5a). The symmetrical nature of the alpha as a function of the decile

contrasts with that for the momentum deciles, which drop much more below zero at Decile

1 than it rises above at Decile 10. At the lower deciles, the replicating portfolios only

capture half of the magnitude of momentum's negative alphas, but they fare better at the

higher deciles. The discrepancy can mainly be attributed to the small stocks. If the decile

portfolios are formed separately for large and small stocks, as shown in Figure 5(c)(d), it

is clear that the replicating portfolios perform admirably for large stocks by matching the

alpha curve almost perfectly. Accounting for time-varying betas, there is no statistically

significant momentum effect for large stocks. The same cannot be said for the small stocks,

as the replicating portfolio struggles to keep up at the lower deciles. Figure 5(d) confirms

that the highly negative returns of the stocks suffering the worst recent returns present the

main challenge to my mechanism applied to the Fama-French three-factor model.

3.6 Longer Holding Periods

The abnormal returns of the momentum portfolio not explained by the replicating port-

folio diminish over the next six months and then disappear altogether. The first subplot of

Figure 6 traces the performance of the canonical half-half momentum and the corresponding

replicating portfolio relative to the Fama-French factors in the year following formation. The

portfolio composition changes slightly over time as a small proportion of stocks are delisted.

Their weights are then spread out among the remaining stocks according to the originally

weighting scheme. The weights of the replicating portfolio on the factors are computed

from individual stock betas estimated during the formation period, which are not revised

in the subsequent months. The dotted line represents the alphas through time of the same

replicating portfolio, but with continually updated beta estimates. The updated replicat-

ing portfolio looks similar to the original replicating portfolio. Momentum alpha decreases

nearly linearly from about 1% to zero in 12 months, while the replicating portfolio holds

steady at around 0.4% for the first half a year, then matches momentum alpha and drops

to zero in the later half. Even though the replicating portfolio only explains away half of

the momentum FF3 alpha in the first month after formation, it explains about two-thirds
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Figure 6: FF3 a of Momentum and Replicating Portfolio over Time
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Plot of the FF3 alphas of the canonical (half-half), large/small stock momentum portfolios and their corresponding replicating
portfolios over the 12 months after formation. The solid line represents the replicating portfolio based on firms betas estimated
using a two-year rolling window prior to the formation month; the dotted line represents the replicating portfolio based on
up-to-date firm betas estimated with a two-year rolling window relative to the current month.

of it over the 12 months after formation. Moreover, momentum alpha becomes insignificant

within six months after controlling for the replicating portfolio.

The second and third subplots of Figure 6 repeat the exercise for large and small firms.

For large firms, the difference between momentum alpha and the replicating portfolio alpha

is small and never statistically significant. In essence, there are no abnormal returns to this

momentum portfolio. For small firms, however, the replicating portfolio only explains part

of the momentum alpha.

4 Alpha Generation

Grundy and Martin (2001) explored the idea of explaining momentum using time-varying

exposures to existing systematic factors. They concluded that while factor models can

explain a large portion of the variability in momentum returns, they "cannot explain their

mean returns." In fact, after subtracting the dynamic replicating portfolio, the alpha of

the momentum portfolio increases in most specifications rather than decreases. The author

attributed the negative alpha of the replicating portfolio to the negative autocorrelation

of the underlying factors. The logic is sound since momentum is a magnified version of a

portfolio whose time-varying weight on a factor is a magnified version of the factor's past
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Figure 7: Beta Estimation Window
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returns, and positive (negative) autocorrelation of the factor leads to a positive (negative)

alpha. The authors, however, have missed several important aspects of the issue, including

the effects of sample selection, time-varying stock betas, the leverage effect of factors and the

nonlinear relationship between past returns and momentum loadings. They together have a

dramatic effect on the dynamic replicating portfolio, namely that it consistently generates

a large and positive alpha and explains a substantial proportion of momentum profit; they

also lead to a more accurate understanding of how such alpha comes to be.

4.1 Time-Varying Betas

Individual stock betas vary over time, and the selection of stocks based on past returns

takes this time-varying nature into account. If we assume that the true stock betas are

constant over time, then the window during which stocks betas are estimated prior to port-

folio formation should not systematically bias the betas of a portfolio consisting of many

stocks. Figure 7 is a clear illustration to the contrary: it plots the average magnitude of

the momentum portfolio's betas on the three factors computed from individual firm betas

estimated during different intervals. There are nine scenarios, each of which is a two-year

estimation window starting at six months apart. The data points in the middle represent

betas estimated from the most recent two years. There is a noticeable rise of over 50% in the

magnitude of these betas from a year ago. Individual stock betas are clearly not constant

over time.
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If stock betas change over time, then the momentum portfolio can take advantage of

this feature. Since stocks are ranked based on past year's returns which are products of past

factor returns and betas during the past year, those with highly positive or negative recent

betas, not long-run average betas, are chosen into the momentum portfolio. Regardless of

the exact time-series dynamics of the individual stocks, those that have recently experienced

a shock that made its betas more positive or more negative are more likely to be chosen.

Therefore, the magnitude of momentum's betas on the three factors should be higher than

what are implied by long-run betas of individual stocks. According to Figure 7, it is higher

by between 50% and 60%. This large difference adds a new dimension to the momentum

portfolio and has three important implications. First, as long as there is time variation in

stock betas, momentum betas are more volatile and its abnormal returns magnified. Time

variation in stock betas is not a controversial claim: previous studies such as Harvey (1989),

Ferson and Harvey (1991, 1993) and Ferson and Korajczrk (1995) offer evidence of this

property. Time-varying betas magnify the momentum portfolio by offering a wider range of

realized betas at any given time. Momentum seizes this opportunities and picks stocks with

the more extreme recent betas.

The second implication is that long run betas of individual stocks are bound to lead

to poor replicating portfolios. Table 12 compares the performance of replicating portfolios

based on different estimation windows. The 2-4 year window and the five-year window (used

by Grundy and Martin, 2001) are similar in that they both give estimates of long-term

average betas; they both produce replicating portfolios whose alphas are too small. The

recent two-year window, as expected, takes into account the recent changes in stock betas

picked up by the momentum portfolio, and produces an alpha that is significantly higher.

The third implication is that the most recent two-year window, if anything, underesti-

mates the dispersion in betas and produces an alpha in the replicating portfolio that is too

low. The two-year window includes an extra year outside of the most recent year that the

momentum sort considers and biases the estimated betas in the winner and loser groups

towards zero. It is clear from the rightmost panel of Table 12 that going from a [-5, 0]

window to a [-2,0] window, the resulting alpha increases monotonically when fewer of the

more distant returns are included in the FF3 regression. In addition, running the regression

on a smaller sample produces more noise, which lowers the covariance between momentum

betas and future factor returns (and volatility). Therefore, the true momentum betas must

be higher in terms of magnitude and more precise than the ones inferred from the firm-level

factor regressions. The amount of momentum alpha that can be explained by the mechanical

channel is even stronger than the empirical results suggest.

There is also evidence that the changes in stock betas are persistent over time. In Figure
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7, the average magnitude of the momentum betas increases by over 50% in the two years

prior to portfolio formation but decreases by less than 20% in the two years that follow,
still significantly higher than the previous average level. In fact, a replicating portfolio

constructed using post-formation betas, while clearly not a tradable strategy, yields a Fama-

French alpha of about 0.5%. This result refutes the possible criticism that the recent shocks

to stock betas are temporary and that those betas revert to the original level immediately

after the formation period; instead, it suggests that such shocks are persistent so that the

pre-formation short-window estimation is the correct method.

The two-year post-formation window also avoids the "overconditioning" problem associ-

ated with short-window contemporary beta estimation identified by Boguth, et al. (2011).

Both that paper and Grundy and Martin (2001) illustrated that momentum alpha appears

the same or larger when evaluated against a dynamic replicating portfolio formed on firm

betas estimated with a short post-formation window, e.g., daily data over a month or a few

months. Estimating betas at different frequencies may also contribute to this apparently

puzzling result. Table 12 shows that a two-year post-formation window is a sensible choice

that yields an alpha in the post-formation replicating portfolio similar to that generated by

its pre-formation counterpart. The consistency of the window length and the resulting alpha

are testaments to the validity of this method as opposed to the high-frequency short-window

approach.

4.2 Autocorrelation and the Leverage Effect

The root cause of abnormal return in the replicating portfolio is the factor structure itself.

Two effects are at work to generate a positive alpha: the slightly positive autocorrelation

and the leverage effect. Since factor autocorrelation is weak, it is susceptible to outliers

influencing the coefficient estimate, particularly when the factor is highly kurtotic. The

first look can be deceiving: the market factor and the HML factor have autocorrelation

coefficients of 1.5% and 0.9%, respectively, and both are insignificant. SMB is the only

factor with a significant autocorrelation coefficient of 6.5%. They seem to contradict the

fact that each factor component of the replicating portfolio generates a significantly positive

alpha. However, these low estimates are due to outliers. Removing around 5% of the most

extreme realizations of past factor returns changes the estimates dramatically. Market, SMB

and HML now have autocorrelation coefficients of 6.9%, 10.5% and 7.6%, respectively. All

are significant at 1%.

These extreme realizations of factor returns, while able to skew the autocorrelation

estimates at the factor level, turn out to have little impact on the replicating portfolio.
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Figure 8: Scatterplots of Momentum Betas and Past Factor Returns
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Scatterplots of momentum betas against past factor returns with OLS slope estimates, showing the downward bias caused byoutliers.

The reason is that as the realized factor return becomes larger in magnitude, its ability
to overcome idiosyncratic returns and align winners and losers with betas increases. After
a certain point, however, the marginal impact diminishes and eventually disappears since
winners and losers are already well aligned with betas. Momentum's loading on a factor
is roughly a linear function of the past factor return in the majority of the periods when
the return is close to zero. In periods with extremely large factor realizations, however,
the actual loading is much smaller in magnitude than that linear function would suggest.
Figure 8 illustrates the problem where a few outliers reduce significantly the slope of the
fitted line through the momentum betas and factor returns scatterplot. Robust regressions
using Huber weights, for example, reduce the influence of outliers and result in higher slope
estimates. This problem will affect conditional factor regression models that use past returns
as instrumental variables for betas. Although betas are allowed to vary over time, the linear
nature of the regression means that the estimated betas will be less volatile than in reality.
As a result, the alpha estimate has a positive bias. Estimating conditional betas directly
using individual firm betas avoids this problem and is the superior approach.

Even though the relationship between factor returns and momentum betas is not linear,
a linear function estimated from the core sample, i.e., with outliers removed, proves to be a
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suitable approximation because the vast majority of factor realizations are close to the origin.

A simple linear regression between the two variables yields an R 2 of around 50 -- 60%. More

elaborate methods, including nonlinear ones proposed by Grundy and Martin (2001), do not

improve on the predictive power. GM assumed normal distributions for all returns as well

invariant distribution of betas and idiosyncratic component of returns; none of these are

true in the data. A linear relationship allows the dissection of the momentum loading on a

factor w, into the past factor returns Ft-12,t-2 times a multiplier M. The exact mechanism

by which the features of the factor structure lead to momentum alpha is then revealed.

A solution that is ad hoc but effective is to remove the few outliers and look at the

"core" factor structure and relationship between past returns and momentum betas. The

two panels of Table 13 show the stark contrast between the full sample and truncated sample

statistics. Periods in which the absolute values of factor returns exceeding a cutoff point are

omitted in the truncated analysis. For the three factors, the thresholds are 0.04, 0.03 and

0.03, respectively. Altogether only 5% of the sample is removed, but the difference this makes

is substantial. The autocorrelation coefficients become significant for market and HML and

more significant for SMB. The full-sample "autoregressive portfolios", formed by factors

scaled with their own past returns, have insignificant alphas for SMB and HML, which are

at odds with the fact that the corresponding components in the replicating portfolio have

significant alphas. After the outliers are removed, however, both of these autoregressive

portfolios generate positive and significant alphas.

Table 14 gives a detailed account of momentum alpha down to the factor structure level,

made possible with the analysis of the core sample without outliers. Most of the alpha of

the autoregressive portfolio Ft- 12 ,t- 2F is the sum of the covariance between Ft-12,t-2 and F

and the covariance between F- 1 2,t- 2 and F 2 . The former is the factor autocorrelation and

the latter the leverage effect. All three factors have significant core autocorrelation, while

the market has a significant leverage component accounting for 36% of its autoregressive

portfolio alpha. The alphas of the autocorrelation portfolio, though small on the order

of 10- 5 , become magnified with the large multiplier M, which is estimated by regressing

momentum beta on the past returns of the corresponding factor. The result is a significantly

positive alpha around 0.15% for each component of the replicating portfolio. In total, factor

autocorrelation and the leverage effect contribute an alpha of 0.48% per month, which is more

than 85% of the total amount in the replicating portfolio. The remainder is a combination of

several minor effects including the slight predictability of factor covariance, the nonlinearity

of the momentum betas as a function of past factor returns and the predictability of the

residual portion.

It would appear, upon first glance, that the leverage effect is very small, only a fifth of

31



Figure 9: Contribution of the Autocorrelation and Leverage Effects
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Plot of FF3 alpha of momentum broken down into contributions from return predictability and volatility predictability, according
to Eq. 5, over a period of one year after portfolio formation.

the autocorrelation effect. This is the case mainly because market is the only factor with

significant leverage effect. Over the next 12 months, however, the situation changes. Figure

9 plots the breakdown of momentum alpha into the two effects, according to Eq. 5, over a

period of one year after portfolio formation. While factor autocorrelation diminishes quickly

down to zero and even into negative territory, the leverage effect holds steady and actually

increases its contribution to the portfolio alpha to over 0.2% per month. In the year following

formation, the average alpha generated from the leverage effect is about the same as that

from autocorrelation.

5 Residual Alpha

About 40% of the momentum alpha that is not accounted for by the replicating portfolio

is concentrated among small, losing stocks. They represent firms that are already small but

have suffered large losses recently; these are firms on the verge of being delisted and possibly

going into bankruptcy. Taking advantage of this profit opportunity is difficult and costly,
as one must take a short position in these often illiquid stocks and rebalance the portfolio

every month. The replicating portfolio has already removed what would otherwise appear

to be easier and cheaper arbitrage opportunity, i.e., to take a long position in recent winners

among large firms and reap an abnormal positive profit. The remaining portion presents

a high barrier to entry for potential arbitrageurs. Regardless of the limits to arbitrage

argument, however, the question remains of why these small losing firms suffer substantially

lower-than-expected returns.
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5.1 Calm and Turbulent Periods

One possibility is that the Fama-French model is misspecified, and there exist important

latent systematic risk factors that generate positive alpha among small firms. These latent

factors would be concealed in the idiosyncratic risk portion of the three-factor regression.

If the Fama-French model is assumed to be the correct pricing model, then the momentum

portfolio should have high alpha during times when past factor returns are large in either

direction and low otherwise. According to Table 9, this is true for the replicating portfolio

but not for the momentum. If we divide the last 80-some years into two halves based

on the absolute value of market returns in the one year prior to portfolio formation, we

can see that the replicating portfolio generates an alpha of 0.7% per month conditional

upon high market action and 0.4% per month otherwise. In the meantime, the momentum

portfolio generates an alpha of 0.8% per month conditional upon high market action but

1.0% per month otherwise. The results are similar when conditioning on the realizations

of all three factors jointly (Panel 4). Here a turbulent period is one in which the realized

factor return of at least one of the factors lies outside of the 10th-90th percentile range

of historical returns for that factor. As in the previous case with the market factor, the

replicating portfolio performs admirably during turbulent times but is less effective during

calm times. This striking difference shows when the replicating portfolio succeeds and when

it fails: it functions as expected and kicks into high gear whenever there is a significant

movement in one of the factors. This factor becomes the dominant one in the winner and

loser selection, and subsequent momentum returns are strongly tied to its subsequent returns.

When there is little movement in all of the factors, winners and losers are chosen based on the

"idiosyncratic" portion of their returns, which likely contains latent factors. The influence

of these latent factors is quite strong, creating a return spread of about 0.6% per month on

top of what the replicating portfolio can provide.

There is also the possibility that the return spread during calm periods is caused by

behavioral biases. Since the major systematic risk factors have barely moved in the last 12

months, investors have difficulties judging the relative performance of stocks. The regression

of individual stock returns on the three factors yields very noisy estimates because of the low

variation in the regressors, so investors must focus on other aspects of the firms. Therefore,

the recent returns of individual stocks become more important, as investors put more weight

on recent news. Then behavioral biases such as under-reaction to news are likely exacerbated,

leading to a significant alpha not accounted for by the systematic risks.
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5.2 Idiosyncratic Risks and Mismeasured Betas

More evidence of possible missing factors can be seen in Table 15, where the cross-

section of stocks is divided according to two indicators. First is the R 2 of the firm-level FF3

regressions that is a proxy for the proportion of returns that can be attributed to exposure

to the FF3 factors. The lower the R 2, the higher the idiosyncratic risk relative to the FF3

model. Latent factors almost certainly exist, and their influences are summarized in the

idiosyncratic component. The second indicator is the normalized distance between the firm-

level betas estimated from the more recent FF3 regression ([-2, 0] year window) and those

estimated from a more distant regression ([-4, -2] year window). Given a set of recent

estimates (#'2O] -2,O] -20 and earlier estimates k ,2[-4,2] [42, the distance

between them is

- ( .[-A2 ] -4 -~2])2 / 2 + (+ [-2 ] 4 ,442]) 2 /2m + (-2 ] - [-4,- 2]) 2

A large distance means that the firm has recently experienced a larger shock to its betas,

making it a more likely candidate to the momentum portfolio. A long-run estimate of betas

using a long window will not be able to detect the significance of this change. Stocks are

divided into four groups based on the medians of these two measures.

Comparing the high and low R 2 groups, we can see that the momentum profits and

alphas are roughly the same between the two. This should not be observed if the idiosyn-

cratic component is truly idiosyncratic and contains no latent factors. For stocks where the

FF3 component dominates, the influence of the latent factors is limited and the dynamic

replicating portfolio explains a larger portion of momentum returns; for stocks where there is

high probability of latent factor influences, the explanatory power of the replicating portfolio

is reduced. Within the high R 2 group, the residual momentum is much smaller for stocks

with lower A0. This is because the firm-level betas estimated using the short-window FF3

regression still have a bias towards zero and contain substantial estimation noise (from 4.1).

The high A#3 group suffers more from this problem, so its actual residual alpha should be

lower than the stated number. As expected, the mechanical explanation works well for the

set of stocks where the FF3 model works well.

5.3 Financial Distress Factor

Financial distress risk is often linked to momentum in the literature and has been ra-

tionalized as a systematic risk in Garlappi and Yan (2001). They showed that when stocks

are grouped by different levels of default probabilities, the momentum portfolio produces
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significantly positive Fama-French alphas in all groups but higher alphas in groups with

higher default risk. Since distressed firms are most likely to be small ones who have recently

experienced highly negative returns, it is possible that financial distress risk may indeed

explain some or all of the residual alpha.

To construct a financial distress factor (FDF), I first estimate each individual stock's

default probability in a fashion similar to Campbell, Hilscher and Szilagyi (2010). At the

end of each year, I perform a panel logistic regression of the form (Campbell, et al. 2010 Eq.

1)
1

Pt (Yi,t+1 = 1)=
1 + exp (-a - /xi,)

using all available COMPUSTAT firm data prior to that point. xi,t is a vector of firm

characters: net income to total asset ratio (NITA), total liabilities to total asset ratio (TLTA),

log excess return relative to the S&P 500 index in the most recent month (EXRET), standard

deviation of returns in the past three months (SIGMA), relative size of the firm relative to

the S&P 500 index (RSIZE), cash and short-term investments over the market value of total

assets (CASHMTA), market-to-book ratio (MB) and log price per share winsorized above

$15 (PRICE). All accounting indicators are computed from the most recent quarterly report.

Yi,t+1 is an indicator that takes a value of 1 if the firm defaults in the next 12 months with

a delisting code of 4XX (liquidations) and 5XX (dropped or stopped trading). The most

recent year is excluded because the firms' future prospects during the next year are not

known. The coefficient estimates are then applied to each firm to predict the likelihood that

it will be delisted in the next year.

At the end of each month, all stocks are assigned and then sorted by distress probabilities

implied by the most recent logistic regression results and their current firm characteristics.

A portfolio is formed by taking a long position in the firms with the 30% lowest distress

probabilities and a short position in those with the 30% highest distress probabilities. The

return on the financial distress factor is the return of the aforementioned portfolio in the

subsequent month. Since COMPUSTAT only has coverage starting in the 1970s, and the

number of firms available is spotty until the late 70s, the financial distress factor is available

from 1979 to 2010. During this period, the canonical "half-half" momentum portfolio pro-

duces a FF3 alpha of 0.86% per month. Controlling for the distress factor in a four-factor

regression, momentum still yields a significant alpha of 0.63% per month (Table 16). As

expected, momentum has a loading of 0.44 on the distress factor, whose positive expected

return helps to reduce its alpha. However, it is important to note that the unconditional

Fama-French model with the distress factor added to it does not explain all of momentum's

abnormal profits; for that, the dynamic replicating portfolio is necessary.
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Figure 10: Momentum Beta on the Financial Distress Factor
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Plot of the betas of the momentum portfolio on the financial distress factor (and the FF3 factors) from 1980 to 2010.

The replicating portfolio retains an alpha of 0.57% after controlling for the additional

factor. The alpha has hardly changed because the replicating portfolio is simply a weighted

factor portfolio and therefore unrelated to distress. Momentum and its replicating portfolio

now generate almost the same amount of alpha, and the difference is tiny and insignificant.

Distress appears to be the sole source of the residual alpha. A decile plot (Figure 11) shows

exactly what has changed when the fourth factor is added. In the lower deciles, momentum

loads negatively on the distress factor, so the abnormal return is much less negative than

before. The replicating portfolio can now match the left tail. In the higher deciles, the

replicating portfolio outperforms momentum slightly, but the difference is not statistically

significant.

I am agnostic about whether the distress risk factor arises due to behavioral biases

or compensation for risks. Garlappi and Yan (2011) would argue that firms take on less

systematic risk as they approach default, so the lower returns of distressed firms are justified

in terms of risk exposures. On the other hand, a behavioral argument in which investors flee

from failing firms due to disastrous recent performances, causing fire sale and contributing

to further price decline, may also justify this observed effect. in any case, it would be very

difficult for arbitrageurs to take advantage of this "arbitrage" opportunity. Regardless of

what causes distress risk, results in this section highlight the fact that the dynamic replicating

portfolio based on the Fama-French factors is distinct from it and that the four factors

together are just enough to explain all of momentum profits. The implications are twofold.
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Figure 11: FF3 + FDF a of Momentum and Replicating Portfolio by Deciles
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Plot of the return deciles on which the canonical (half-half) momentum portfolio is based, with the corresponding returns of

the replicating portfolio.

First, the breakdown between the mechanical effect from the Fama-French factor structure

and the financial distress effect is clear. Second, the sum of the two represents the totality of

momentum's abnormal returns, eliminating the need for other mechanisms and risk factors.

6 Conclusion

I have shown through simulation and empirical tests that a multifactor asset pricing

model is capable of explaining a large portion of momentum profits without resorting to

behavioral biases and additional latent systematic risks. Two features inherent in factor

structures, positive autocorrelation and the leverage effect, allow for the creation of small,
positive alphas in factor portfolios where the weights are equal to past returns. Momen-

tum loads selectively on factors depending on their realized returns and magnifies alphas

by choosing stocks with highly positive and negative betas in a long-short portfolio. Mo-

mentum's exposure to each factor is roughly the product of the past return of the factor

and the dispersion of individual stock betas on that factor in the cross-section. The former

provides two sources of positive alpha, while-the latter provides magnification. The time-

varying nature of individual stock betas is very important, as momentum gains additional

magnification power by selecting stocks who have experienced large shocks to their betas

recently, not ones with large average betas.

During the first month after portfolio formation, the replicating portfolio based on time-

varying loadings on the factors is capable of explaining half of canonical momentum's Fama-
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French alpha. For the value-weighted momentum portfolio, however, the replicating portfolio

explains 75% of its FF3 alpha, with the remaining portion statistically insignificant. Ex-

plaining the value-weighted momentum is arguably more important, since previous literature

has shown that such portfolio, dominated by large stocks, is still profitable after account-

ing for transaction costs, whereas the equally-weighted portfolio representing small stocks is

not. During the year after formation, the replicating portfolio explains an increasingly large

portion of momentum's abnormal profit until it reaches 100% in Month 8. The role of the

leverage effect is small in the beginning relative to the large alpha generated by factor auto-

correlation. However, the latter is short-lived, and the leverage effect becomes stronger and

dominates the autocorrelation effect six months from formation. The two sources contribute

equally to the abnormal return of the momentum replicating portfolio over time.

The remaining alpha not explained by the replicating portfolio can be attributed to

the underperformance of very small firms with recent losing streaks. Financial distress risk

appears to be the sole factor at work: a distress factor based on firms' predicted failure rate

can explain away the remaining alpha completely. The four-factor model demonstrates the

power of the conditional replicating portfolio: it is capable of explaining away the entirety of

the momentum returns, whereas an unconditional four-factor regression still leaves a highly

significant alpha and suggests that the model is inadequate.
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Tables

Table 1: Simulated Momemtum Based on the Fama-French Three-Factor Model

A simulated stock market with 1,000 stocks is operated for 1,032 months, corresponding to July 1926 to June 2012 in history. Each stock starts with a capitalization of 1 and is
assigned a permanent set of three Fama-French betas drawn from either independent normal distributions with means {1, 0, 0} and standard deviations {0.5, 0.9, 0.9} (low std)
or{0.8, 1.3, 1.3} (high std) for mkt, smb and hml factors, respectively, or from the empirical joint distribution of long-term betas from all stocks in CRSP. Returns follow the

Fama-French three-factor model with i.i.d. idiosyncratic risk drawn from the distribution N (0, oa), where a, is either a constant or the average RMSE in the FF3 regressions
of all stocks during that period in history. The factor returns are taken from and fixed at the realized historical values. Dividend yield is equal to the risk-free rate. At the
end of each month, stocks are sorted into deciles by their cumulative returns in the past 12 months (omitting the most recent month). The momentum portfolio is formed by
taking a value-weighted long position in the top three deciles and a value-weighted short position in the bottom three deciles. The simulated market is repeated 100 times, and
all statistics are averages across simulations.

0 independent normal (low std) independent normal (high std) long-run empirical

o 6% EM 12% 6% EM 12% 6% EM 12%

f 0.0036** 0.0023* 0.0018 0.0069*** 0.0049** 0.0042* 0.0034** 0.0024* 0.0018

[0.0016] [0.0013] [0.0012] [0.0029] [0.0025] [0.0023] [0.0017] [0.0014] [0.0013]

f/a 0.0639 0.053 0.0477 0.0787 0.0691 0.0595 0.0682 0.0444 0.0451

FF3 a 0.0046*** 0.0032** 0.0027** 0.0086*** 0.0065*** 0.0057*** 0.0051*** 0.0038*** 0.0032***

[0.0015] [0.0012] [0.0011] [0.0026] [0.0022] [0.0020] [0.0016] [0.0013] [0.0011]

/#mkt -0.25** -0.20** -0.19** -0.41** -0.35** -0.35** -0.29*** -0.23*** -0.23***

[0.1] [0.08] [0.08] [0.17] [0.15] [0.14] [0.10] [0.09] [0.08]

/smb 0.39** 0.26** 0.28** 0.61** 0.47** 0.50** 0.28* 0.19 0.22*

[0.16] [0.12] [0.12] [0.26] [0.21] [0.21] [0.15] [0.12] [0.11]

f#hml -0.12 -0.09 -0.10 -0.19 -0.17 -0.18 -0.16 -0.12 -0.13

[0.19] [0.16] [0.16] [0.30] [0.27] [0.27] [0.19] [0.16] [0.16]

Avg R 2  9.9% 8.5% 10.3% 9.1% 8.7% 10.5% 10.5% 9.8% 11.6%

[ ]: Newey-West standard errors with 6 lags; */**/***: statistically significant at 10/5/1%



Table 2: Simulated Momemtum Based on the CAPM

A simulated stock market with 1,000 stocks is operated for 1,032 months, corresponding to July 1926 to June 2012 in history. Each stock starts with a capitalization of 1 and is
assigned a permanent set of market betas drawn from either independent normal distributions with mean of 1 and standard deviation of 0.5 (low std) or 0.8 (high std), or from
the empirical distribution of long-term market beta from all stocks in CRSP. Returns follow the CAPM with i.i.d. idiosyncratic risk drawn from the distribution N (0, a2),
where a, is either a constant or the average RMSE in the CAPM regressions of all stocks during that period in history. The market returns are taken from and fixed at the
realized historical values. Dividend yield is equal to the risk-free rate. At the end of each month, stocks are sorted into deciles by their cumulative returns in the past 12 months
(omitting the most recent month). The momentum portfolio is formed by taking a value-weighted long position in the top three deciles and a value-weighted short position in
the bottom three deciles. The simulated market is repeated 100 times, and all statistics are averages across simulations.

# independent normal (low std) independent normal (high std) long-run empirical

6% EM 12% 6% EM 12% 6% EM 12%

i 0.0013 0.0009 0.0007 0.0030 0.0023 0.0017 0.0016 0.0010 0.0007

[0.0010] [0.0008] [0.0007] [0.0019] [0.0016] [0.0014] [0.0011] [0.0009] [0.0008

f/o 0.0360 0.0208 0.0435 0.0562 0.0404 0.0449 0.0418 0.0376 0.0209

FF3 ce 0.0022** 0.0016** 0.0015* 0.0046** 0.0037** 0.0032** 0.0027** 0.0020** 0.0016*

[0.0010] [0.0008] [0.0007] [0.0020] [0.0016] [0.0014] [0.0012] [0.0009] [0.0008]

flmkt -0.15 -0.13 -0.12* -0.26 -0.24 -0.23 -0.18 -0.15* -0.14*

[0.09] [0.08] [0.07] [0.17] [0.15] [0.14] [0.11] [0.09] [0.08]

Avg R 2  7.5% 7.9% 8.2% 6.0% 7.1% 8.2% 7.5% 8.5% 8.7%

[]: Newey-West standard errors with 6 lags; */**/***: statistically significant at 10/5/1%



Table 3: Simulation with Randomized Fama-French Factors

The benchmark simulation setup is one with T = 1032, betas drawn from independent normal distributions with high standard deviations {0.8, 1.3, 1.3} and i.i.d. idiosyncratic
risk drawn from the distribution K (0,0.12). All other scenarios have this setup and T = 3000 plus the following difference. The randomized factor scenario uses factor returns
drawn individually from the historical distributions of factors without replacement. The random block bootstrap scenario uses factor returns drawn in random length blocks
(average length = 24, or 2 years) without replacement. The generated factor scenario has factor returns generated from an AR(12) process, where the AR parameters are
calibrated from historical factor returns.

Case Benchmark Randomized Factors Random Block Bootstrapped Factors Generated AR(12) Factors

f 0.0042* 0.0016 0.0031** 0.0052***

[0.0023] [0.0016] [0.0012] [0.0006]

f/a 0.0595 0.0148 0.0765 0.1227

FF3 a 0.0057*** 0.0002 0.0047*** 0.0039***

[0.0020] [0.0015] [0.0012] [0.0006]

p8mkt -0.35** 0.00 -0.29*** 0.07**

[0.14] [0.07] [0.08] [0.03]

16,mb 0.50** 0.25 0.35* 0.17

[0.21] [0.17] [0.12] [0.11]

phmi -0.18 0.20* -0.17 0.14***

[0.27] [0.11] [0.15] [0.04]

Avg R 2  10.5% 4.5% 8.9% 3.6%

[ ]: Newey-West standard errors with 6 lags (except OLS in Row 6); */**/***: statistically significant at 10/5/1%



Table 4: Summary Statistics of Momentum Betas

Panel A contain statistics of the momentum portfolio betas (w) on the FF3 factors in the simulated market with the benchmark parameter values, averaged over 100 runs.
Panel B contain the same statistics of the momentum portfolio betas estimated from the data. At the end of each month, individual stock betas are estimated by regressing
monthly excess returns on the Fama-French three-factor returns in the past two years. The cross-section of betas is winsorized each month at the 1st and 99th percentiles. The
portfolio betas (w) are the value-weighted average betas of the individual stocks chosen into the momentum portfolio.

A. Simulations (Benchmark Case)

Univariate Statistics Correlations

Mean Median Std. Dev. Skewness Kurtosis Minimum Maximum MKTt- 12 ,t- 2  SMBt-12,t- 2  HMLt-1 2 ,t- 2  WSMB WHML

WMKT 0.1079 0.1624 0.5432 -0.3845 -0.0672 -1.5070 1.4758 78.32% 21.43% 9.84% 15.50% 12.58%

WSMB 0.0970 0.1247 0.7795 -0.1350 -0.1463 -2.1616 2.2189 21.43% 79.47% 5.50% 2.82%

WHML 0.2161 0.2404 0.8759 -0.0853 -0.3876 -2.2934 2.5062 6.57% -3.56% 78.40%

B. Data

Univariate Statistics Correlations

Mean Median Std. Dev. Skewness Kurtosis Minimum Maximum MKTt-12,t- 2  SMBt-12 ,t- 2  HMLt-1 2,t- 2  WSMB WHML

WMKT -0.0017 0.0154 0.3692 -0.0641 0.3378 -1.2980 1.2147 66.18% 15.16% 14.02% 9.12% 14.74%

WSMB -0.0542 -0.0548 0.6444 0.0899 -0.1975 -2.0127 1.7449 10.83% 72.23% 4.93% 5.31%

WHML -0.0147 0.0327 0.6120 -0.0517 -0.0055 -1.6924 2.2288 11.56% 8.03% 72.31%



Table 5: Variants of Momentum

At the end of each month, stocks are sorted into deciles by their cumulative returns in the past 12 months omitting the most
recent month. The momentum portfolio is formed by taking a long position in the top three deciles and a short position in the
bottom three deciles; it is then held for one month forward. Each column is a different method of weighting stocks in the long
and short portions of the portfolio: VW - value-weighted; EW - equally weighted. B/S/HH - stocks are divided into two groups
based on whether their capitalizations are larger or smaller than the NYSE median that month; a value-weighted momentum
portfolio is formed for each group, B as the large cap group and S as the small cap group. HH = (B+S)/2.

Weights VW EW HH B S

f 0.0049*** 0.0085*** 0.0065*** 0.0046*** 0.0085***

[0.0015] [0.0014] [0.0014] [0.0015] [0.0015]

f/a 0.1044 0.1798 0.1428 0.0955 0.1723

FF3 a 0.0075*** 0.0117*** 0.0094*** 0.0071*** 0.0118***

[0.0013] [0.0012] [0.0012] [0.0013] [0.0013]

/
3 mikt -0.16** -0.22*** -0.20*** -0.15** -0.26***

[0.07] [0.06] [0.06] [0.07] [0.06]

#
3
smb 0.07 -0.11 -0.02 0.07 -0.24

[0.09] [0.09] [0.08] [0.09] [0.06]

Oh,. -0.44*** -0.44*** -0.42*** -0.45*** -0.39***

[0.12] [0.13] [0.12] [0.12] [0.13]

Adj. R 2  16.4% 23.29% 20.01% 16.10% 20.79%

[]: Newey-West standard errors with 6 lags; */**/***: statistically significant at 10/5/1%

Table 6: Replicating Portfolio with Time-Varying Beta

At the end of each month, individual stock betas are estimated by regressing monthly excess returns on the Fama-French
three-factor returns in the past two years. The cross-section of betas is winsorized each month at the 1st and 99th percentiles.
The momentum portfolio betas are the weighted average betas of individual stocks selected into the momentum portfolio;
the weights are identical to those assigned by the momentum portfolio. Each factor component of the replicating portfolio,
REP(Factor), is the factor itself scaled by momentum's beta on that factor. The replicating portfolio (REP) is the sum of the
three components. The residual portfolio (RES) is the difference between the value-weighted momentum portfolio (UMD-VW)
and the replicating portfolio (REP).

REP(MKT) REP(SMB) REP(HML) REP RES UMD-VW

f 0.0007 0.0020*** 0.0014* 0.0041*** 0.0008 0.0049***

[0.0008] [0.0007] [0.0008] [0.0014] [0.0012] [0.0015]

f/a 0.0306 0.1041 0.0596 0.0964 0.0234 0.1044

info ratio 0.0350 0.1042 0.0931 0.1382 0.0551 0.1726

FF3 a 0.0015** 0.0020*** 0.0021*** 0.0056*** 0.0019 0.0075***

[0.0008] [0.0006] [0.0007] [0.0012] [0.0012] [0.0013]

0lmk -0.12*** -0.01 -0.09** -0.21*** 0.05 -0.16**

[0.04] [0.01] [0.04] [0.06] [0.04] [0.07]

i.,mb 0.01 0.03 0.14** 0.18 -0.12 0.07

[0.03] [0.07] [0.07] [0.13] [0.07] [0.09]

3 hml -0.03 -0.01 -0.14 -0.17 -0.27*** -0.44***

[0.04] [0.03] [0.1] [0.13] [0.05] [0.12]

Adj. R 2  8.9% 0.2% 10.2% 10.1% 8.0% 16.4%

corr(UMD-VW, REP) 69.50%

[]: Newey-West standard errors with 6 lags; */**/***: statistically significant at 10/5/1%



Table 7: Replicating Portfolio by Size and Time Period

At the end of each month, individual stock betas are estimated by regressing monthly excess returns on the Fama-French three-factor returns in the past two years. The
cross-section of betas is winsorized each month at the 1st and 99th percentiles.The momentum portfolio betas are the weighted average betas of individual stocks selected into
the momentum portfolio; the weights are identical to those assigned by the momentum portfolio. Each factor component of the replicating portfolio is the factor itself scaled
by momentum's beta on that factor. "REP", the replicating portfolio, is the sum of the three components. "RES", the residual portfolio, is the momentum portfolio minus the
replicating portfolio. "Big"/"Small" are momentum portfolios formed on stocks larger/smaller than the NYSE median. "HH" (half-half) is the portfolio that gives equal weight
to the big and small momentum portfolios. "Jan. Excluded" means that all months of January are removed from the sample.

Size/Period Big Small HH HH, >1990 HH, Jan. Excluded

REP RES REP RES REP RES REP RES REP RES

f 0.0039*** 0.0007 0.0035** 0.0050*** 0.0037*** 0.0029** 0.0043 0.0021 0.0030** 0.0049***

[0.0014] [0.0012] [0.0014] [0.0013] [0.0013] [0.0011] [0.0031] [0.0026] [0.0014] [0.0012]

f/a 0.0928 0.0191 0.0965 0.1192 0.0886 0.0814 0.0822 0.0566 0.0730 0.1554

info ratio 0.1320 0.0536 0.0960 0.2094 0.1213 0.1500 0.1293 0.0691 0.1173 0.1799

FF3 a 0.0052*** 0.0018 0.0042*** 0.0076*** 0.0047*** 0.0047*** 0.0060** 0.0025 0.0045*** 0.0055***

[0.0012] [0.0012] [0.0012] [0.0013] [0.0012] [0.0011] [0.0027] [0.0025] [0.0013] [0.0012]

/
3mkt -0.21*** 0.05 -0.26*** 0.02 -0.23*** 0.03 -0.43*** 0.10 -0.24*** 0.01

[0.06] [0.04] [0.06] [0.04] [0.06] [0.04] [0.12] [0.08] [0.06] [0.04]

f
3 smb 0.22* -0.15** 0.43*** -0.53*** 0.32** -0.34*** 0.45 -0.32* 0.32** -0.15*

[0.12] [0.07] [0.13] [0.09] [0.13] [0.08] [0.29] [0.16] [0.14] [0.08]

#ml -0.17 -0.27*** -0.06 -0.33*** -0.12 -0.30*** -0.24 -0.08 -0.17 -0.21***

[0.13] [0.05] [0.12] [0.07) [0.12] [0.05] [0.27] [0.11] [0.12] [0.06]

Adj. R 2  10.5% 8.8% 14.6% 26.7% 12.5% 20.1% 18.8% 6.5% 14.9% 7.6%

[]: Newey-West standard errors with 6 lags; */**/***: statistically significant at 10/5/1%



Table 8: Alternative Three-Factor Regressions

At the end of each month, individual stock betas are estimated by regressing monthly excess returns on the Fama-French
three-factor returns in the past two years. The cross-section of betas is winsorized each month at the 1st and 99th percentiles.
The momentum portfolio betas are the weighted average betas of individual stocks selected into the momentum portfolio; the
weights are identical to those assigned by the momentum portfolio. Each factor component of the replicating portfolio is the
factor itself scaled by momentum's beta on that factor. Momentum returns are then regressed on the returns of the three factor
components.

VW Big Small HH

FF3 a 0.0094*** 0.0071*** 0.0118*** 0.0075***

Alt. a 0.0039*** 0.0019 0.0058*** 0.0022*

[0.0011] [0.0012] [0.0012] [0.0011]

REP(MKT) 0.93*** 0.91*** 0.96*** 0.92***

[0.21] [0.11] [0.12] [0.11]

REP(SMB) 0.44*** 0.41*** 0.47*** 0.44***
[0.08] [0.08] [0.10] [0.08]

REP(HML) 0.82*** 0.85*** 0.78*** 0.85***

[0.11] [0.10] [0.12] [0.1]

Adj. R2  53.0% 49.0% 45.1% 8.0%

[]: Newey-West standard errors with 6 lags;

*/**/***: statistically significant at 10/5/1%

Table 9: Momentum and the Replicating Portfolio in Turbulent and Calm Periods

Turbulent periods for a factor are defined as ones in which the realized factor return lies outside of the 25th-75th percentile
range of historical returns. The calm periods are the remaining periods. The "Any One" turbulent periods are ones in which
the realized factor return of at least one of the factors lies outside of the 10th-90th percentile range of historical returns for
that factor. UMD-HH FF3 a is the Fama-French three-factor alpha of the half-half momentum portfolio. REP a and O's are
coefficient estimates from the unconditional FF3 regression of the replicating portfolio.

Market SMB HML Any One

Turbulent Calm Turbulent Calm Turbulent Calm Turbulent Calm

UMD-HH FF3 a 0.0072*** 0.0106*** 0.0074*** 0.0114*** 0.0094*** 0.0089*** 0.0074*** 0.0082***

[0.0018] [0.0013] [0.0017] [0.0016] [0.0019] [0.0013] [0.0022] [0.0011]

REP a 0.0066*** 0.0038*** 0.0044** 0.0069*** 0.0052*** 0.0053*** 0.0057** 0.0030**

[0.0018] [0.0014] [0.0018] [0.0017] [0.0019] [0.0016] [0.0023] [0.0012]

#6mikt -0.30*** -0.07 -0.20** -0.23*** -0.31*** -0.01 -0.28*** 0.01

[0.08] [0.05] [0.09] [0.07] [0.08] [0.06] [0.08] [0.05]

/
3smb 0.01 0.39* 0.27 0.04 0.23 0.11 0.24 0.04

[0.11] [0.21] [0.18] [0.09] [0.16] [0.12] [0.16] [0.08]

Aml -0.04 -0.27** -0.26 -0.02 -0.23 0.12 -0.27* 0.22***

[0.18] [0.14] [0.18] [0.14] [0.16] [0.09] [0.16] [0.07]

Adj. R 2  15.0% 16.4% 11.9% 10.6% 18.4% 1.4% 18.2% 15.70%

[]: Newey-West standard errors with 6 lags; */**/***: statistically significant at 10/5/1%



Table 10: Momentum and the Replicating Portfolio Based on Different Formation Periods

At the end of each month, individual stock betas are estimated by regressing monthly excess returns on the Fama-French
three-factor returns during the period specified in "Formation Period", where t is the formation month.[t - 11, t - 6] means the
most recent year omitting the most recent six months; [t - 6, t - 1] means the most recent seven months less the most recent
month. The cross-section of betas is winsorized each month at the 1st and 99th percentiles. The momentum portfolio betas are
the weighted average betas of individual stocks selected into the momentum portfolio; the weights are identical to those assigned
by the momentum portfolio. Each factor component of the replicating portfolio is the factor itself scaled by momentum's beta
on that factor. "REP", the replicating portfolio, is the sum of the three components. "RES", the residual portfolio, is the
momentum portfolio minus the replicating portfolio. "VW" and "HH" represent the value-weighted and half-half-weighted
momentum portfolios, respectively.

Formation Period [t - 11, t - 6] [t - 6, t - 1]

Weighting Scheme VW HH VW HH

REP RES REP RES REP RES REP RES

0.0047*** 0.0012 0.0044*** 0.0028*** 0.0013 0.0004 0.0012 0.0021*

[0.0017] [0.0011] [0.0016] [0.001] [0.0016] [0.0013] [0.0015] [0.0012]

f/ 0.1055 0.0377 0.1030 0.0888 0.0288 0.0101 0.0260 0.0567

info ratio 0.1225 0.0704 0.1168 0.1469 0.0618 0.0454 0.0534 0.1198

FF3 c 0.0052*** 0.0022** 0.0048*** 0.0043*** 0.0027* 0.0017 0.0023* 0.0041***

[0.0014] [0.0011] [0.0014] [0.0010] [0.0014] [0.0012] [0.0013] [0.0011]

#mkt -0.07 0.03 -0.10 0.01 -0.20*** 0.00 -0.23*** -0.01

[0.08] [0.03] [0.08] [0.03] [0.06] [0.05] [0.06] [0.05]

.smb 0.27*** -0.13** 0.32*** -0.28*** 0.04 -0.09 0.16 -0.29***

[0.1] [0.06] [0.1] [0.05] [0.19] [0.13] [0.19] [0.1]

/hmi -0.21 -0.22*** -0.15 -0.22*** -0.08 -0.28** -0.05 -0.29***

[0.16] [0.05] [0.15] [0.05] [0.13] [0.11] [0.13] [0.11]

Adj. R2 6.4% 6.9% 7.1% 15.1% 6.3% 7.1% 7.3% 16.6%

[]: Newey-West standard errors with 6 lags; */**/***: statistically significant at 10/5/1%
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Table 11: Fama-French Alphas of the Past Return Decile Portfolios and the Replicating
Portfolios

For Panels 2-3, stocks are divided into two groups based on whether their capitalizations are larger (B) or smaller (S) than
the NYSE median. Within each size group, stocks are sorted into deciles by their cumulative returns in the past 12 months
omitting the most recent month. Each decile portfolio is then held for one month forward. UMD columns list the FF3 alphas
of the decile portfolios; REP columns list the FF3 alphas of the replicating portfolios, formed using the same methodology as
the momentum replicating portfolio. Figure 5 has the graphical representation of this table.

Size VW Big Small

UMD REP UMD REP UMD REP

Smallest -0.0133*** -0.0053*** -0.0081*** -0.0053*** -0.0163*** -0.0042***

[0.0014] [0.0011] [0.0012] [0.0011] [0.0014] [0.001]

2 -0.0071*** -0.0029*** -0.0046*** -0.0027*** -0.0087*** -0.002***

[0.0011] [0.0008] [0.0009] [0.0008] [0.001] [0.0007]

3 -0.0052*** -0.0028*** -0.0017** -0.0029*** -0.0049*** -0.001*

[0.0009] [0.0007] [0.0007] [0.0007] [0.0008] [0.0006]

4 -0.0024*** -0.0010** -0.0020*** -0.0009* -0.0039*** -0.0012**

[0.0007 [0.0005] [0.00061 [0.0005] [0.0007] [0.00051

5 -0.0017*** -0.0008* -0.0015** -0.0008* -0.0039*** -0.0011**

[0.0006] [0.0004] [0.0006] [0.0004] [0.0007] [0.0005]

6 -0.0012** -0.0002 0.0005 -0.0003 -0.0017*** -0.0001

[0.0005] [0.0003] [0.0006] [0.0003] [0.0006] [0.0005]

7 0.0009 0.0009** 0.0010* 0.0009** -0.0009 0.0003

[0.0006] [0.0004] [0.0005] [0.0004] [0.0006] [0.0005]

8 0.0023*** 0.0014*** 0.0019*** 0.0012*** 0.001 0.0009

[0.0006] [0.0005] [0.0007] [0.0005] [0.0006] [0.0006]

9 0.003*** 0.0025*** 0.0025*** 0.0023*** 0.0023*** 0.0017***

[0.0007] [0.0007] [0.0008] [0.0007] [0.0007] [0.0006]

Biggest 0.0051*** 0.0044*** 0.0054*** 0.0041*** 0.0042*** 0.0030***

[0.0012] [0.0011] [0.0012] [0.0011] [0.001] [0.001]

[]: Newey-West standard errors with 6 lags; */**/***: statistically significant at 10/5/1%
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Table 12: Momentum Replicating Portfolios Based on Various Beta Estimation Windows

At the end of each month, individual stock betas are estimated by regressing monthly excess returns on the Fama-French
three-factor returns during different windows. The first three scenarios all involve two-year windows; they are nonoverlapping
periods starting at 47 months prior to, 23 months prior to and one month ahead the formation month, respectively. The last
scenario involves a longer window of the most recent five years. The cross-section of betas is winsorized each month at the 1st
and 99th percentiles. The momentum portfolio betas are the value-weighted average beta of stocks in the long portion minus
that in the short portion. Each factor component of the replicating portfolio is the factor itself scaled by momentum's beta
on that factor. The replicating portfolio is the sum of the three components. In the first, second and fourth scenario, the
replicating portfolio is a tradable strategy.

REP [-4, 2] [-2, 0] [0, 2] [-5, 0] [-4, 0] [-3, 0] [-2.5, 0]

f 0.0021*** 0.0041*** 0.0019 0.0025** 0.0027** 0.0030** 0.0037***

[0.0008] [0.0014] [0.0013] [0.0012] [0.0012] [0.0013] [0.0014]

f/a 0.0805 0.0964 0.0448 0.0732 0.0721 0.0733 0.0874

info ratio 0.0857 0.1382 0.1426 0.1117 0.1162 0.1180 0.1309

FF3 a 0.0022*** 0.0056*** 0.0052*** 0.0037*** 0.0041*** 0.0045*** 0.0052***

[0.0008] [0.0012] [0.0011] [0.001] [0.0011] [0.0012] [0.0012]

#6mkt -0.09** -0.21*** -0.23*** -0.17*** -0.21*** -0.23*** -0.22***

[0.04] [0.06] [0.07] [0.06] [0.06] [0.06] [0.06]

#amb 0.08 0.18 -0.08 0.16* 0.18* 0.16 0.17

[0.07] [0.13] [0.08] [0.10] [0.10] [0.12] [0.13]

#hml 0.05 -0.17 -0.41*** -0.13 -0.16 -0.17 -0.17

[0.06] [0.13] [0.13] [0.12] [0.12] [0.13) [0.13]

Adj. R2  3.3% 10.1% 27.8% 9.4% 12.2% 11.9% 11.0%

p (., umd) 52.4% 71.1% 84.4% 71.8% 72.1% 71.1% 70.0%

[]: Newey-West standard errors with 6 lags;

*/**/***: statistically significant at 10/5/1%
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Table 13: Fama-French Factor Autoregressive Portfolios

The correlations are between a factor's average return this month and return in the past year (omitting the previous month). Outliers are defined as past returns whose values
are in the top 5% percentile or the bottom 5% percentile of the entire sample of historical factor returns. The autocorrelation portfolio is a factor portfolio with weights equal
to the past returns; at time t it has a return of rt-12,t-2rt. The tradable portfolio has weights rt-12,t-2 winsorized at the top and bottom 5% of historical factor returns up
to the portfolio formation date. All point estimates and standard errors are 100 times their actual values.

Full Sample Outliers Winsorized Tradable Portfolio

MKT SMB HML MKT SMB HML MKT SMB HML

p [rt-12,t-2, rt] 1.5% 6.5%** 0.9% 6.9%** 10.5%*** 7.6%**

{0.64} {0.04} {0.78} {0.03} {0.00} {0.02}

p [rt-12,t-2,r21 -24.1%*** 4.1% -6.2%** -17.8%*** 4.9% -12.8%***

S {0.00} {0.04} {0.05} {0.00} {0.13} {0.00}

FF3 a x100 0.0125** 0.0018 0.0014 0.0077* 0.0023** 0.0027** 0.0090** 0.0021** 0.0025**

[0.0053] [0.0013] [0.0019] [0.0041] [0.0011] [0.0013] [0.0041] [0.0010] [0.0012]

#6mkt X 100 -0.62 -0.04 -0.18 0.01 -0.02 -0.21* -0.06 -0.03 -0.17

[0.56] [0.04] [0.13] [0.32] [0.03] [0.11] [0.35] [0.03] [0.13]

f xmb x 100 0.50 0.48*** 0.46** 0.22 0.39*** 0.29** 0.34 0.46*** 0.36**

[0.38] [0.16] [0.19] [0.21] [0.14] [0.14] [0.24] [0.13] [0.16]

Ohml X 100 -1.28 0.04 0.09 -0.13 0.01 -0.25 -0.54 0.00 0.05

[0.99] [0.09] [0.34] [0.22] [0.07] [0.3] [0.46] [0.07] [0.33]

Adj. R 2  10.28% 12.93% 4.78% 8.94% 12.92% 9.16% 3.35% 17.73% 4.41%

[]: Newey-West standard errors with 6 lags; */**/***: statistically significant at 10/5/1%

{ }: p-values for Ho : p = 0; H. :p 0



Table 14: Reconstruction of Momentum's FF3 Alpha from Factor Structure Autocorrelations

The alpha of the replicating portfolio is the sum of the alphas of the three factor components. Each component is roughly a M x
magnified version of the factor autocorrelation portfolio, which is the factor itself scaled by its past returns, i.e., Ft-12,t-2Ft.
The alpha of the factor autocorrelation is in turn approximately the sum of two components, the autocovariance of the factor
E [Ft-12,t-2Ft]and the covariance between the factor's squared returns and past returns k [Ft-1 2,t- 2 Ft] x {E [Ft] /a 2 [Ft]}.
The factor covariances are estimated in a robust regression limiting the influence of outliers. The magnifier is estimated in a
robust regression of momentum beta on a factor on the factor's past returns, also limiting the influence of outliers. The alphas
of the autoregressive portfolios are similar to those in the right panel of Table 13.

p (rt-12,t-1, rt) p (rt-12,t-1, r2) cov (rt-12,t-1,rt) coV (r-12,t-1, r2)
MKT 6.9% -17.8% 4.93E-05 -1.50E-05

SMB 10.5% 4.9% 2.88E-05 1.16E-06

HML 7.6% -12.8% 2.12E-05 -2.95E-06

Autocorr. Leverage Autoreg. a Magnifier (M) a
MKT 5.08E-05 2.86E-05 7.94E-05 17.97 0.0014

SMB 2.97E-05 -2.61E-06 2.71E-05 61.06 0.0017

HML 2.18E-05 9.06E-06 3.09E-05 55.32 0.0017

Momentum a 0.0048

Table 15: Momentum Replicating Portfolios Based on Recent AO and Regression R 2

At the end of each month, stocks are ranked according to two indicators: (1) the R 2 of the FF3 factor regression with
the most recent two years (i.e., [-2,0] years) of monthly returns and (2) the normalized distance between the beta esti-
mates from the recent ([-2,0] years) FF3 factor regression and estimates from the earlier ([-4, -2] years) regression, i.e.,

AR = (/mD ± (,m - /m)
2

12 +(RNEW O. The sample is divided intomt mkt Ja Wmt am am Vb+ hmi hmlI Oh.
four subsamples by the medians of these two indicators. UMD-VW is the value-weighted momentum portfolio in the subsample
and REP the dynamic replicating portfolio. Stocks with high R

2 
are ones with lower idiosyncratic risks relative to the FF3

factors compared to stocks with low R
2

; stocks with high AO are ones that have experienced larger shocks to their betas than
stocks with low A#8.

High R
2  Low R

2

High A/8 Low A/i High A/8 Low A/i

UMD-VW REP UMD-VW REP UMD-VW REP UMD-VW REP

r 0.0070*** 0.0048** 0.0037*** 0.0032*** 0.0072*** 0.0055*** 0.0036** 0.0006

[0.002] [0.0021] [0.0014] [0.0011] [0.0017] [0.0012] [0.0015] [0.0008]

FF3 a 0.0108*** 0.0073*** 0.0061*** 0.0040*** 0.0096*** 0.0056*** 0.0055*** 0.0014*

[0.0018] [0.0018] [0.0012] [0.001] [0.0017] [0.0012] [0.0014] [0.0007]

imkt -0.30*** -0.32*** -0.17*** -0.17*** -0.10 -0.13** -0.16** -0.1**

[0.09] [0.08] [0.06] [0.05] [0.07] [0.06] [0.07] [0.04]

/smb 0.14 0.23 0.03 0.23** 0.02 0.22 0.09 0.08

[0.12] [0.2] (0.07] [0.1] [0.13] [0.17] [0.08] [0.05]

/hml -0.61*** -0.34* -0.38*** -0.11 -0.46*** 0.00 -0.31*** -0.11*

[0.17] [0.2] [0.11] [0.1] [0.13] [0.11] [0.11] [0.06]

Adj. R 2  21.7% 13.2% 16.3% 10.1% 10.0% 3.6% 11.0% 8.0%

[ 1: Newey-West standard errors with 6 lags; */**/***: statistically significant at 10/5/1%
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Table 16: Momentum Replicating Portfolio relative to the FF3 Factors + Financial Distress
Factor

The financial distress factor (FDF) is a long-short portfolio formed by sorting stocks on their predicted delisting probabilities,
which are estimated from a logistic regression model using firm characteristics. At the end of each month, individual stock betas
are estimated by regressing monthly excess returns on the Fama-French three-factor returns and the financial distress factor
during the most recent two years. The cross-section of betas is winsorized each month at the 1st and 99th percentiles. The
momentum portfolio betas are the value-weighted average beta of stocks in the long portion minus that in the short portion.
Each factor component of the replicating portfolio is the factor itself scaled by momentum's beta on that factor. The replicating
portfolio is the sum of the four components.

UMD-HH REP (FF3) REP(FF3+FDF)

f 0.0066*** 0.0049** 0.0064**

[0.00221 [0.0021] [0.0029]

f/- 0.1516 0.1092 0.1266

info ratio 0.2045 0.1461 0.1269 0.1464 0.2005 0.1885

FF3 a 0.0086*** 0.0063** 0.0054*** 0.0063** 0.0093*** 0.0087***

[0.0018] [0.0029] [0.0021] [0.0025] [0.0026] [0.0029]
3mkt -0.18** -0.11 -0.19* -0.28** -0.38*** -0.37***

[0.09] [0.08] [0.10] [0.11] [0.10] [0.11]

f.amb 0.11 0.27* 0.34 0.23 0.30 0.33

[0.13] [0.15] [0.23] [0.23] [0.28] [0.25]

/hml -0.35** -0.30 -0.14 -0.25 -0.32 -0.30

[0.17] [0.18] [0.22] [0.25] [0.23] [0.25]

Ofdf 0.44** -0.04 0.08

[0.20] [0.16] [0.20]

Adj. R2 7.0% 8.7% 7.3% 8.7% 14.0% 13.9%

p (., UMD-HH) 68.3% 68.8%

[]: Newey-West standard errors with 6 lags;

*/**/***: statistically significant at 10/5/1%
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Chapter 2

The Diverse and Ever-changing Sources of Momentum

Profit

1 Introduction

Since first described in detail in Jegadeesh and Titman (1993), price momentum has been

a well-known but puzzling phenomenon in finance. In many asset classes including stocks,
bonds and commodities, assets that have high recent returns ("winners") tend to outperform

those with lower recent returns in subsequent months. A zero investment portfolio that buys

the aforementioned winners and short-sells losers tend to generate a persistently positive

profit. Such profit remains positive even after controlling for well-established systematic risk

factors. This raises the question of the origin of the momentum profit, whether it arises due

to short-lived anomalous causes or represents compensation for systematic risks.

The answer to this question has proven elusive for several reasons. One is that we do not

yet have a complete picture of momentum profit. Previous attempts to replicate momentum

using dynamic portfolios of the popular Fama-French factors (henceforth FF3) were first

deemed a failure by Grundy and Martin (2001) and then declared successful by Liu (2012).

Success, however, is limited to large stocks, for which abnormal momentum profit can be

reduced to a positive but insignificant level; for small stocks, the FF3 replicating portfolio has
trouble matching momentum return. One may stop here and declare "mission accomplished"

because small stocks are notoriously difficult and expensive to trade, rendering small-stock

momentum impractical. A limits-to-arbitrage argument would be able to rationalize the

continued existence of small-stock momentum. Still, the complete origin of momentum profit,
why it is positive and more significant among small stocks, remains unknown. Moreover,
residual momentum, a portfolio formed by sorting stocks on their residual returns relative

to the Fama-French factors, appears more prominent than momentum itself according to

Blitz, et. al. (2011). As long as we leave unexplained portions of momentum, we will forever

wonder about what remains. Further research along that line amounts to a waiting game for

new systematic factors to be discovered and widely accepted. Those factors can then be used

to construct a momentum-replicating portfolio and its performance compared against the

real thing. Given the constantly changing market dynamics and the potentially very large

set of systematic risks, it is unlikely that we will ever know the complete and permanent set
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of risk factors as the benchmark against which momentum can be measured.

The second source of difficulty is that the definition of what constitutes systematic risks

is unclear, and the set of known systematic risks is constantly debated. In a theoretical

sense, a systematic risk factor is one that is correlated with the stochastic discount factor,

which in turn is determined by the preferences of the representative consumer. All of these

are highly abstract concepts that can only be tested indirectly in the data. In a more

practical sense, a systematic risk factor can explain some of the cross-sectional variations

in asset returns and in turn generates a nonzero risk premium. The Fama-French factors

were first conceived as systematic risk factors in the practical sense since they function

well in explaining cross-sectional returns over a long period of time. Subsequently, they

were assigned deeper meanings to justify their practical usefulness, but those theoretical

connections are up for debate. The Fama-French factors may be good proxies of some

underlying "real" risk factors, but they may also include transient trends. Liu (2012) found

that momentum's FF3 alpha can be traced to slightly positive autocorrelation among the

Fama-French factors themselves, which could arguably be a sign of behavioral influences. At

the same time, the size factor, which was originally thought to be a permanent systematic

factor, has lost its significance in recent years. Our experience with identifying risk factors

so far shows that we cannot even guarantee the factors we know to be fully rational and

long-lasting.

This paper does not aim to explain momentum completely but rather take a step in

the right direction. The first part is purely empirical, an attempt to replicate momentum

better than previous efforts and eliminate the unknowns in residual momentum. Rather than

relying on known systematic factors such as the FF3, I will use a model-free method, namely

principal component analysis, to extract factors. This method has a well-defined limit: as the

number of factors approaches the number of available assets in the market, the replicating

portfolio by definition approaches perfect correlation with momentum. I will show that

only a small set of factors is needed to replicate the difficult equally-weighted momentum

portfolio with high precision, and all remaining factors make insignificant contributions..

I will introduce a refined selection technique that can substantially reduce the number of

factors needed to match momentum profit. Several interesting results follow immediately:

first and the most obvious is that there is no longer residual momentum. Momentum profit

can be essentially characterized as the sum of the profits of the replicating component plus a

number of terms that are essentially noise. Second is the fact that the momentum portfolio

is not the most efficient implementation given its design: the replicating portfolio can yield

superior return and Sharpe ratio, both in the first month following formation and over a

longer horizon. In addition, momentum makes apparent "mistakes" in its implementation so
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that there exists a portfolio positively correlated with momentum but has a negative return.

Finding a set of factors that can explain momentum is only the beginning. The next

task is to see whether these factors could shed a light on the mechanisms behind momentum

and the factor structure that drives it. Across all factors, momentum indeed takes positions

corresponding to the factors' recent returns, hence the highly time-varying loadings. Mo-

mentum casts a wide net and changes its portfolio composition constantly. Thus, there is

a severe limit to how much a fixed set of few factors, such as the Fama-French factors, can

explain. Momentum derives its profit in many pieces scattered about in the factor structure.

The more a factor explains the cross-sectional dispersion in mean returns, the more the factor

contributes to momentum. Since the portfolio tends to load positively (negatively) on stocks

with positive (negative) risk premia, momentum is expected to achieve a positive return on

average. If we believe that the time-varying risk premia, as proxied by long-run historical

average returns, are justified as compensation for risks, then momentum profit can also be

rationalized as fair compensation.

The idea of momentum not being a standalone risk factor but a portfolio of existing

risk factors stands alongside other well-known behavioral and rational explanations. The

behaviorists argue that price continuation is irrational and is the result of cognitive biases

such as under-reaction. Barberis, Shleifer and Vishny (1998) and Hong and Stein (1999)

both offer models of investors' bounded rationality that leads to under-reaction to news.

The former has investors suffer from representativeness heuristics of Tversky and Kahneman

(1974) and incorrect beliefs about the earnings process; the latter assumes that investors

follow simple trading strategies conditional on a limited information set. Both cause investors

to react slowly news initially and then possibly overreact over the next months, leading to

the observed short-term momentum. Fully rational investors are either not present in the

market or unable to correct the mispricing due to limits to arbitrage.

Fully rational frameworks for momentum includes Johnson (2002), who modeled a firm's

log market value log (V) as a convex function of a priced state variable p. Then the firm's

beta, d log V (p) /dp, is a positive and increasing function of p. An increase in p leads to

both an increase in V, i.e., positive recent returns, and higher subsequent returns due to

the firm's now higher beta. Sagi and Seasholes (2006) expanded on Johnson's model and

interpreted the upper portion of the convex function as risky growth opportunities within

firms. Garlappi and Yan (2011) modeled firms as having lower systematic risks as they

approach the default boundary, rationalizing the lower portion of the convex function. Both

behavioral and rational explanations have merits and are backed by empirical evidence,

albeit often in indirect forms. It is difficult to distinguish between the two because rational

explanations require complete identification of the systematic risks that momentum profit
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rewards, while behavioral explanations require proof of the lack thereof. Both of which are

not easy tasks. The decomposition of momentum into a series of dynamic factor portfolios

does help build a common platform upon which the phenomenon can be better understood

and various explanations tested.

The paper is organized as follows. In the next section, I will discuss in theoretical terms

the mechanisms that drive momentum returns and the method of extracting factors from

principal component analysis. Section 3 is devoted to the replication of equally-weighted

momentum portfolio in the data, and Section 4 contains analysis of the results that link

factor risk premia to momentum profit. Section 5 has additional tests on the replicating

portfolio, and Section 6 concludes.

2 Theoretical Background

2.1 Factor Structure and Momentum Returns

As in Liu (2012), I modeled a market of many assets whose returns follow a multifactor

model such as Ross (1976)'s APT model, i.e.,

K

rit = rf + E ikfkt + Eit
k=1

where /ik is the beta of Asset i E {1, 2,... ,I} on the kth systematic factor. fkt is

the return of the kth systematic factor at time t and cit is an i.i.d. noise term. This is

an arbitrage-free world with perfect information and no friction. Any static or dynamic

zero-investment trading strategy P using a subset of available assets will have the following

returns:

K

rpt = wktfkt + CPt
k=1

where Wkt is the portfolio's weight or beta on the kth factor and Ept the idiosyncratic

component orthogonal to fkt's and Wkt'S. w can be a constant or vary over time. Rather

than focusing on the alpha of the portfolio relative to the factor structure, I will instead

focus on the mean return, which can be easily measured and model-free. Unlike the more

complicated expression for the alpha, the mean return of the above portfolio is simply

K
p= 5 E [wktfkt]

k=1
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Compared to the one for alpha, this expression is substantially simpler. Since at each

time t, Wk,t+1 is already known, we can write the conditional version of the above expression:

K K

Et [fPt+1] = Z WktEt [fk,t+1I x: Wkt7rkt (1)
k=1 k=1

where 7rkt is the (possibly time-varying) risk premium of factor k at time t. It follows

that momentum return is positive if enough components in the summation in Eq. 1 are

positive, i.e., Wkt and lrkt are positively correlated. In other words, as long as momentum

more often takes positive positions on most systematic risks, we would expect a positive

return. This condition is substantially easier to satisfy than the one for positive alpha.

Given that a factor has a positive (negative) risk premium, its realized returns are more

likely to be positive (negative). Therefore, momentum is more likely to take a positive

(negative) position in it. So over time, Wkt and irkt will in fact be positively correlated. It

follows that momentum profit is expected to be positive.

In practice, we can proxy risk premium by the average historical factor return over a

long horizon (e.g., 60 months), then we have

K

Et [fPt+1] el E Wkt Ik,t-60-+t-1 (2)
k=1

If we are concerned about the most recent 12 months being unusual deviations from the

long-run average, then we can also define the risk premium more conservatively with the

[-60, -13] window instead.

When we decompose momentum into a large number of replicating components, each

of which represent a risk factor in the market, the factors that contribute the most to the

portfolio mean return are ones whose Wktlrkt are the largest. Rather than a perfect replication,
we can select a small subset of components with the highest risk premia and discard the rest.

The reduced portfolio is much leaner and possibly more efficient due to the residual terms

contributing negligible amount to the mean but positive amount to the variance. Since a

higher risk premium affects both w and 7r, it has a quadratic influence on the covariance

between them. Therefore, factors with larger risk premia have disproportionately larger roles

in shaping the momentum profit. It is likely that only a small subset of factors is needed

in the reduced portfolio to achieve a return similar to momentum's. An indirect test of

Eq. 2 involves sorting a known set of factors, in descending order, by their risk premium

estimates multiplied by the loadings of the momentum portfolio on them. Taking a small

subset of factors should yield a replicating portfolio with the majority of the momentum
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profit explained. Then, taking successively larger subsets will yield replicating portfolio of

increasing mean returns, but with the marginal increase quickly diminishing. This selection

method can reduce a potentially large set of factors to a small set of relevant ones.

The above mechanism only works if past returns are good proxies for future returns, i.e.,

Eq. 2 holds. This can be tested directly in the data by comparing the mean factor returns

going forward with the mean past factor returns across the set of available factors. If the

future factor returns are well-explained by the past returns, it means that the historical risk

premia predict future factor returns. If the coefficient is equal to one, then Eq. 2 holds

exactly.

A related implication of Eq. 2 is that there could exist components for which w and

ir have opposite signs. Since the sign of w is determined by the 12-month past returns,

momentum sometimes assigns negative weights to factors with positive expected returns.

For factors with small risk premia, the effect is negligible; but for ones with large risk

premia, the effect may be significant. When this happens, momentum returns next period

will be impacted negatively. By selecting the most negative wktf,t-6o+t-1, we may be able

to construct a portfolio that is positively correlated with momentum yet has a negative

return. The practical benefit of identifying this portfolio is that they can be subtracted from

momentum to increase its return and Sharpe ratio simultaneously.

2.2 Systematic vs. Idiosyncratic Risks

I define systematic risk factors as ones who have a relatively large impact on the dis-

persion of mean returns (risk premia) in the cross-section. This definition is a relative one

in the sense that there is no absolute boundary between systematic and idiosyncratic risks.

A set of factors can be sorted based on their impact. Factors at the two ends are clearly

systematic and idiosyncratic risks, while the ones in the middle are of uncertain quality.

The amount of impact a factor has on the dispersion of risk premia depends on its own risk

premium and the dispersion of betas on the factor among assets. The impact of Factor k is

therefore

Ik = CA3J -rk| (3)

Both terms are necessary. By definition, all factors orthogonal to the market portfolio must

have net betas in the cross-section equal to zero. Therefore, a higher dispersion of betas leads

to more differences in mean returns among assets, ceteris paribus. A larger risk premium,

of course, magnifies this effect. The dispersion term also normalizes the risk premium term

since factors are zero-investment portfolios that can be arbitrarily scaled.

The sorting mechanism described in 2.2 is somewhat similar to the one that separates
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systematic risks from idiosyncratic risks. Iwi is proportional to the dispersion of betas in the

cross-section, while f is a proxy for the factor risk premium. However, w is also proportional

to the recent 12-month return of the factor, so a sort by Eq. 2 will favor assets that have

a more significant return in recent months. On the other hand, since I is a multiplicative

term, a factor will still only be chosen if its historical average return is sufficiently large.

2.3 Principal Component Analysis

I use principal component analysis to generate a pool of orthogonal factors. At each

time t, a panel data consisting of cross-sectional excess returns (stock return - the risk-free

rate) over a long history, e.g., 60 months, is transformed into a set of principal components

I

= Z Ajire
i=1

for j = 1,... , J. Each factor fi is automatically a portfolio of stocks and the risk-free asset,
uncorrelated with all other factors by construction. The factors are by default numbered in

the descending order of their eigenvalues, or equivalently their ability to explain the variances

and covariances of returns in the cross-section. The first factor often resembles the market

portfolio with a correlation of over 95% and is often capable of explaining well over half of

the total variances.

Factors generated from PCA are not literally the factor structure because the procedure

uses only limited data (return data). The real factor structure, should it exist, may look

rather different. At any given time, the underlying "real" systematic factor may be captured

by one or several PCA factors or none at all. The last scenario may occur if the factor is

not volatile enough to explain a significant portion of cross-sectional returns. In the next

period, that factor may correspond to some differently numbered PCA factors. Since PCA by

definition explains most of the variations in returns, however, it is impossible for systematic

risks to elude the PCA factor space altogether. A risk factor that hardly explains any cross-

sectional returns over time certainly cannot be a relevant one. Therefore, the dynamically

updated set of PCA factors should be an adequate starting point for identifying systematic

risks.

A useful feature of the PCA factors is that subsets of factors can be chosen at will

without affecting subsequent analysis such as beta estimation. In a time-series regression of

any particular stock return,
S

rt =ca+Z1 f( ,t 8 +et
s=1
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The point estimate for 0,3 only depends on re and fj(,), not any other f's when all the factors

are uncorrelated:

var (fj(s))

For the purpose of replicating a portfolio, it is possible and easy to discard some factors.

The resulting replicating portfolio is simply the full replicating portfolio minus the contri-

bution from the discarded factors. Each component in the replicating portfolio is essentially

independent to every other since the betas of each factor on all assets can be estimated in-

dependently. Discarding components of a replicating portfolio do lead to a loss of precision,

for sure, but there may be a gain in efficiency.

This technique of selecting a subset of factors is particularly important for replicating

momentum, since by construction it derives its profit from a large and diverse set of factors.

As I will show in the next section, the selection process matters a great deal to how well the

replicating portfolio matches the momentum portfolio.

3 Main Empirical Results

3.1 Data Description

The main data sources are the CRSP (Center for Research in Security Prices) dataset for

monthly stock returns, which is available on WRDS (Wharton Research Data Services). The

entire CRSP universe of firms is used; it covers the period from January 1925 to December

2011. The Fama-French factors, also available from WRDS, are used in certain subsections;

the data run from January 1926 to June 2012. To be included in a ranking for portfolio

formation, stocks must meet three conditions during the formation month. The first is that

they must be traded on the New York Stock Exchange, the American Stock Exchange or the

NASDAQ Stock Market. The second is that they must have an ending price per share of at

least $1; this rule is aimed at eliminating penny stocks suffering extreme liquidity problems

and trading frictions. The third rule, which is imposed by necessity, removes stocks without

a complete 60-month return history. This rule ensures that principal component analysis

has access to a complete panel. While the first two rules do not reduce the sample size

significantly, the third one on average removes 28% of the stocks in the CRSP database.

One may argue that requiring a five-year history takes out many small stocks that are often

chosen by momentum. That is indeed the case. Nevertheless, all analysis in this paper

assume that the universe consists of only stocks that satisfy these rules, so there is internal

consistency. For example, the replicating portfolio has access to the same set of stocks as the
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momentum portfolio. Had complete historical data existed for the remaining stocks, they

would be included in momentum and made available to the replicating portfolio at the same

time.

3.2 Variants of the Momentum Portfolio

To compensate somewhat for omitting a large set of stocks, I will use the equally-weighted

momentum portfolio as the default momentum. It is a more difficult variant of momentum

to explain, as it heavily favors small stocks and results in higher return and Sharpe ratio

compared to other momentum variants with different weighting schemes. On the other hand,
the equal weights make factor analysis and portfolio formation much more straightforward.

As usual, I will define the momentum portfolio (also known as UMD or up-minus-down)

by ranking stocks based on their cumulative returns in the second to 12th months prior to

portfolio formation, i.e., the most recent one-year return excluding the most recent month.

This is the canonical definition for momentum and is used in most papers on the subject as

well as for the momentum factor data available on WRDS and Ken French's website. The

most recent month is excluded due to short-term return reversal, which is a phenomenon

distinct from momentum and is the consequence of market microstructure effects according

to Jagadeesh and Titman (1995). Table 1 lists the most common variations of the momen-

tum portfolio based on the set of stocks and portfolio weights used in the ranking. The

large- and small-stock momentum portfolios are formed by first splitting the sample into

two groups, stocks with capitalizations higher and lower than the NYSE median, then com-

puting the value-weighted momentum in the subgroup. The half-half momentum portfolio

is the simple average of the large- and small-stock momentum. It is immediately apparently

that momentum in small stocks is notably stronger than that in large stocks.

3.3 The Replicating Portfolio

Momentum is a dynamic portfolio of existing risk factors, so in theory, if we can identify

all relevant factors, we can replicate the momentum portfolio exactly in two simple steps:

determining the betas of individual assets on each factor, inferring from them momentum's

loadings on all the factors and composing a portfolio by attaching the appropriate weights

to them. The replicating portfolio should then be perfectly correlated with the momentum

portfolio and attains the identical returns. In practice, there are several difficulties. The

most serious problem is that the set of relevant factors is not known. The Fama-French

three-factor model has been widely accepted as a working solution to this problem. The

FF3 factors, when applied to large stocks, can adequately explain the time variation of the
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momentum portfolio and a large portion of the mean return. For small stocks, however,

they are not sufficient. Panel A of Table 2 shows the replication results. While the FF3

replicating portfolio can explain most of the time variation in equally-weighted momentum

portfolio, it achieves a mere fraction of the mean return.

In general, it seems very easy to explain the time variation part of momentum: even

the market component of the replicating portfolio is already 60.5% correlated with momen-

tum. Explaining the mean return, however, is almost a completely separate task. In view

of the dynamic nature of the momentum portfolio, this is not entirely a surprise. In any

given period, momentum loads on all risk factors depending on their past returns and the

dispersion of betas in the market. Since the market factor is by far the most prominent, mo-

mentum's time-series properties are inextricably tied to it. But since the dynamic portfolio

takes positive and negative positions on it over time, the average position is close to zero.

Momentum's mean return, the most puzzling part about it, is insulated from the constant

ebbs and flows of market returns over time.

Therefore, it is unlikely that factors formed from the first few principal components

can adequately describe momentum's mean return. They are deemed important because

they explain the highest amount of variances among individual stock returns. For example,

the market portfolio is often the first factor. In Panel B of Table 2, we can see that the

replicating portfolio from the first three factors performs very similarly to the FF3 factors.

The replicating portfolio is highly correlated with momentum but has a negligible mean

return.

Unlike FF3, which stops at three factors, the principal component method produces a

large number of potential factors. Using more factors to construct the replicating portfolio

should improve the mean return of the replicating portfolio. The reason is that, in the

theoretical limit when the frequency of the available return data exceeds the number of

stocks in the market at any time, all stock returns can be expressed precisely as a linear

combination of the principal components. That is, of course, not a meaningful result. Even

though momentum loads on all risk factors, the question is whether there exists a small

number of factors that can replicate momentum sufficiently well. In the current ordering

(by eigenvalues), increasing the number of factors helps but not fast enough. Panel C of

Table 2 contains the statistics of replicating portfolios of increasingly larger factor set. As

expected, both correlation with momentum and mean return increases with the number of

factors used. Still, the replicating portfolio can only explain a little over half of the 0.71%

per month return of the momentum portfolio with 30 factors. Over 90% of the momentum

variance has already been explained by this point.

The encouraging fact, as seen from Figure 1, is that the mean return of the replicating
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Figure 1: Explanatory Power of the Replicating Portfolio with Successively More Factors
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The correlation of the replicating portfolio with the equally-weighted momentum portfolio (mean return = 0.71%) and its mean

return as the number of factors increases. The factors are portfolios formed from principal components of the 60-month return

panel and sorted in descending order by their eigenvalues.

portfolio increases roughly monotonically as the number of factors increases. It suggests

the possibility that at every point in time, some select factors are contributing to the mean

return in significant ways while most others do not. Over time, these important factors

rotate due to momentum putting more or less emphasis on them with its dynamic loadings.

When not sorted in the correct manner, e.g., in a random order, the first few factors chosen

are going to have importance just by luck in some periods but are not useful in others. As a

result, the average is positive but small. As the factor set expands, the most relevant factors

are more likely to be included somewhere in the set every period, so that the mean return

increases steadily towards that of the momentum portfolio.

3.4 Subsample Momentum

Performing principal component analysis on a large panel is a computationally intensive

task that can be simplified by noting that momentum works just as well with a subset of

stocks as with the full cross-section. The momentum portfolio on a randomly selected subset

is indistinguishable from the canonical momentum portfolio in almost all aspects, and the

subset can be a fraction of the size of the cross-section. Table 3 shows the moments of

the momentum portfolios formed on various subsets of stocks. For example, in Column 2,

5% of stocks are chosen at random (with a minimum of 200) each period, and they are

capable of generating momentum portfolios that are on average identical to the canonical

momentum portfolio in terms of mean return and over 90% correlated with it. One minor
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difference is that since the subset momentum averages over a small set of stocks, the returns

are more volatile, leading to a slightly lower Sharpe ratio. This difference, along with minor

sample variations, will affect the precision of the analysis below but not the main conclusions.

Therefore, instead of extracting factors from the full cross-section, I will extract them from

randomly selected subsets. The benefit is faster computation plus smaller factor portfolios.

The factors extracted from a random subset are also similar to the ones extracted from

the full cross-section, albeit slightly more noisy. Table 4 compares the performance of a

typical replicating portfolio built from a 5% subset to its full-sample counterpart (Panel C

of Table 2). They are nearly the same. In terms of mean returns, there are no obvious

advantages or disadvantages in using factors extracted from a subset.

3.5 Factor Rearrangement and Refinement

Given a set of factors is generated each period and a replicating portfolio is formed on the

first k factors, it may be possible to rearrange the factors in a particularly way first that will

improve the efficiency of the first few factors. The obvious choice is to rank factors by their

expected returns going forward, i.e., Eq. 2. The ranking is implemented as follows: the first

50 factors are retained from the principal component analysis; the beta of the momentum

portfolio on each factor (w) and the factor's 60-month average returns (proxy for Et (ft+i))

are determined; the factors are sorted in descending order of wEt (ft+i) and the first k factors

are chosen.

If momentum return wft+i is positively related to its proxy wEt (ft+i), this ranking

should shift the mass under the green curve in Fig. 1 to the left, meaning that the first few

replicating components have become more efficient. This is indeed the case as illustrated by

Table 5 and Fig. 2. Taking only first five components, the replicating portfolio achieves a

mean return of 0.26% per month compared to the original 0.07%. The first three replicating

components generate a mean return of 0.19% per month compared to FF3's 0.10% per month.

The dramatic improvement in the first few factors proves that the expected returns of the

factors, as proxied by the average historical returns, are positively correlated with returns

going forward. This is the first piece of suggestive evidence that momentum's seemingly

abnormal returns can be justified by compensation for systematic risks.

On a practical level, we still face the problem that there is unexplained residual mo-

mentum. With the current method, a sensible number of factors is unable to match the

momentum profit in its entirety. As seen in Fig. 2, rearranging the factors shifts some

positive mean returns to the first few components but does not affect the sum of the first 30

components. The problem may be caused by subsample noise. In any particular subsample,
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Figure 2: Effect of Rearranging Factors on Replicating Portfolio Performance
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The mean return of the the replicating portfolio for the equally-weighted momentum portfolio as the number of factors increases.

The factors are portfolios formed from principal components of the 60-month return panel of a typical 5% subset and sorted in

descending order by their eigenvalues (dotted-blue) or by their expected return (solid-green).

some principal components may capture their corresponding risk factors well, while others

do not. This occurs when the subset is not representative enough in some particular dimen-

sions. Some risk factors may affect only a small portion of stocks during a given period,
so a random subset is not guaranteed to capture them. It follows that the single-subset

rearrangement strategy can be refined by comparing factor sets across a number of random

subsets. Factors that are highly correlated across subsets are merged, while factors that

are different are added to a pool. In practice, factors that are more than 70% correlated

are merged while those that are less than 30% correlated are preserved. If two factors have

correlation between 30% and 70%, the one that has a lower historical return is discarded.

The large pool of factors is then sorted by their expected returns times their weights in

the momentum portfolio, just as before, and the first k factors are chosen to construct the

replicating portfolio.

The refinement produces a much more efficient factor set and better replicating portfo-

lios. The last panel of Table 5 shows that the first five factors can now explain half of the

mean return of the momentum portfolio; with about 20 factors, the replicating portfolio's

mean return approaches the 0.71% per month level for equally-weighted momentum. After

that, additional factor does not contribute additional mean return; in fact, they are ever

slightly counterproductive. From Figure 3, we can see that this refined method substantially

outperforms the previous methods. More importantly, it proves that it is possible to explain

momentum in its entirety with a limited number of factors (in this case, 20). A comparison

of the three panels in Table 5 also reveals that the refined method can overcome the noise
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Figure 3: Refined Rearrangement of Factors

Z -

The mean return of the the replicating portfolio for the equally-weighted momentum portfolio as the number of factors increase.

The factors are portfolios formed from principal components of the 60-month return panel of a typical 5% subset and sorted

in descending order by their eigenvalues (dashed-blue) or by their expected return (dotted-green). The red line represents the

refinement of the ordering-by-expected-return method.

introduced in subsampling by comparing factors across a number of subsamples.

With as few as 12 factors, the replicating portfolio now outperforms even the momentum

portfolio itself in terms of Sharpe ratio. This result follows from concentrating the sources of

mean return in the first few factors. The remaining factors, from 20th on, contribute nothing

to the mean but positive amount to the variance. The implication is that momentum does

not give the most efficient implementation given its design. When the expected return of a

factor times its beta in the momentum portfolio is sufficiently small, the momentum portfolio

should discard this component altogether, because the potential contribution to the return

is not worth introducing the extra volatility.

In any case, we now have a set of 20-30 factors that can reliable reproduce both the

time variation and mean level of momentum returns. The residual momentum is no longer

a mystery because it is essentially white noise. Now we can treat this replicating portfolio

(henceforth the "benchmark" replicating portfolio) as a decomposition of the momentum

portfolio and turn our attention to analyzing the sources of momentum profit.
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Figure 4: Scatterplot of Momentum Returns vs. the Benchmark Replicating Returns
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The momentum portfolio is the equally-weighted variety. The replicating portfolio is constructed from 20 factors extracted
from principal component analysis of the 60-month return panel using the refined method and sorted by their historical mean
returns times their weights in the equally-weighted momentum portfolio. The correlation is 84.5%.

4 Sources of Momentum Profit

4.1 Dispersion in Mean Returns

We have seen earlier a distinction between factors that can explain variances and covari-
ances of assets and factors that can explain the spread in mean returns of assets. The former,
represented largely by the market portfolio, is capable of explaining the time variation of
momentum returns but not the mean. The latter, as seen in the previous section, can. The
question is how well the ability of a factor to explain the spread in mean returns correlates
with the factor's subsequent role in explaining momentum. For a given set of orthogonal
factor set F = {fi, ... , fk}, I regress the historical excess returns of each stock ri on factor
returns to obtain the explained portion fit = XX f3 tfkt. Then, I construct an indicator

signifying the average ratio of the dispersion in mean return explained by the factor set to
that in the actual cross-section:

x x

where fi and ?; are both 60-month historical averages of ri and ?it, respectively, at time t.
RF is a proxy for the average amount of dispersion in mean return that the factor set F can
deliver.

Figure 5 suggests a clear linear relationship between RF and the mean return of the repli-
cating portfolio. We can see that with only 60% of the dispersion in mean returns explained,
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Figure 5: Scatterplots of the Dispersion Indicator vs. Replicating Portfolio Mean Return
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Each point represents a particular factor set with the number of factors equal to 3, 5, 10, 12, 15, 20 and 30 from left to right.

The x-coordinate is the dispersion indicator RF for that factor set and y-coordinate the mean return of the replicating portfolio

divided by that of the momentum portfolio.

the replicating portfolio can already explain 100% of momentum's mean return. Reaching

this goal without explaining all of the dispersion suggests the possibility of constructing

momentum-like portfolios that are superior to momentum. As I will show below, this can

indeed be done. It is also possible to break down a 30-factor portfolio into individual com-

ponents and treat each as a factor set. Figure6 shows a noisier but still linear relationship

between each factor's Rf and the mean return of the corresponding replicating component.

The ability of a factor structure to explain the cross-sectional differences in mean returns

among assets appears to be tightly related to its ability to explain momentum. Since RF

is also roughly the sum-product of the factors' historical risk premia and the cross-sectional

dispersion of betas, we can also interpret the linear relationship in another light: factors

that had nonzero risk premia in the past contribute to momentum profit according their

historical impact on the dispersion of risk premia. Therefore, we may be able to argue that

momentum returns are justified as risk premia or compensation for some risks.

4.2 Momentum Return as Compensation for Risk

In order to interpret momentum return as compensation for risk, we need to show that the

factors involved commanded nonzero risk premia in the past and that momentum's returns

can be justified given these past levels of risk premia. A straightforward test is to compute

the replicating portfolio's historical risk premium and compare it against its return going

forward. Since the portfolio consists of a number of components, the test can be applied to
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Figure 6: Scatterplots of the Dispersion Indicator vs. Replicating Component Mean Return
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Each point represents a particular component within the 30-factor replicating portfolio. The x-coordinate is the dispersion

indicator RF for that factor and y-coordinate the mean return of the replicating component divided by that of the momentum

portfolio.

individual components for additional comparisons.

For the benchmark replicating portfolio, its mean historical risk premium is 1.27% per

month if measured with the most recent 60 months and 0.45% per month if measured with

the most recent 60- to 13-month period. The most recent 12 months plays an important role

because momentum's loading on a factor depends on the most recent 12-month return. The

deviation of the recent return from the long-run average may be a temporary phenomenon

that will be reversed or suggestive of a permanent change in the risk premium. The one-

month forward return, about halfway between the 60- to 13- month historical mean and

the most recent 12-month mean, seems to indicate influences from both the long-run risk

premia and short-run fluctuations. When we look across individual replicating components

in Figure 7, we see something more interesting: a one-to-one relationship between historical

risk premium and the mean one-month forward return. The slope of the line in the figure is

roughly one, yet the y-intercept is positive at 0.01%. There appears to be a constant 0.01%

additional risk premium attached to each of the replicating component. Since the correlation

between the long-run premia and short-term 12-month return across replicating components

is about 96%, the aforementioned result suggests that about 0.41% of the momentum return

can be traced directly to risk premia and 0.30% (a constant 0.01% per factor) to the influence

of recent deviations.
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Figure 7: Factor Risk Premia vs. Future Return
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Each point represents a replicating component in the benchmark replicating portfolio. The x-axis is the long-run risk

premium of the replicating component and the y-axis its average return one month after portfolio formation

4.3 Diminishing Returns

In addition to the first-month after portfolio formation, we can look further into the

future to see the trajectory that momentum takes. It is well known that momentum profit

declines quickly over time and even reverses slightly. The replicating portfolio matches the

momentum portfolio in terms of the first-month-forward returns, but it also discards a large

set of factors at the tail end. These residual components appear to be nothing more than

white noise in the first month, but their subsequent performances are not trivial. Figure 8
plots the average monthly returns and cumulative returns of the momentum portfolio and

the benchmark replicating portfolio over longer holding periods. The two portfolios diverge

almost immediately after the first month, and the difference becomes more prominent as time

goes on. The replicating portfolio consistently outperforms the momentum portfolio such

that the residual portfolio consistently achieves a negative return. The superiority of the

replicating portfolio in terms of the Sharpe ratio is even more spectacular, as seen in Table

6. By removing factors that do not contribute to the mean return, the replicating portfolio

achieves a much higher rate of efficiency, often more than 50% higher than momentum,
meaning that it achieves the same level of return with only 2/3 of the return volatility. In

terms higher moments, the replicating portfolio is less skewed and less kurtotic than the

momentum portfolio.

Inside the replicating portfolio, the individual component's performance over time also

relates to its historical risk premium. Table 7 displays the predictability of historical risk

premia on future returns over a number of periods. Starting at about the historical level at
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Figure 8: Momentum and the Replicating Portfolio over Time
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The average monthly and cumulative returns of the equally-weighted momentum portfolio (UMD__VW), the benchmark repli-

cating portfolio (REP) and the residual (UMDVW - REP) over a 36-month period after portfolio formation.

Month 1, risk factor returns decline uniformly over time. The slope coefficient decreases to

less than 10% in two years but remains positive and highly significant. Across all factors

included in the replicating portfolio, their historical risk premia have long-lasting impacts

on their future returns. Unlike the momentum portfolio that experiences long periods of

negative returns starting at Month 6, the replicating factors experience only slight amount

of reversal and followed by leveling off.

The difference in the long-term prognosis between the replicating factors and the residual

factors is interesting. In the past, replicating factors looked more like systematic factors with

significant observed risk premia while the residual factors look more like idiosyncratic risks.

Over a long period of time, however, the systematic factors gradually fade into obscurity while

the idiosyncratic risks start carrying a significant (negative) risk premium. The dynamic

nature of the factor space seems to suggest that it is constantly in flux: systematic factors

emerge only to disappear in the long run, replaced by new factors.

5 Additional Analysis

5.1 Durability of Factors

A crucial mechanism of the momentum portfolio is its ever-changing loadings on the

entire set of risk factors in the market. The challenge, as seen in the replicating exercises

above, is that momentum cannot be represented with one or a few factors. The strategy,
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Figure 9: Return of the Replicating Portfolio over Time as Percentage of Past Risk Premia
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Slope coefficient estimate of the regression of the returns of the replicating components on their risk premium proxies over a

number of holding periods. Each point is the average realized return of factors as a percentage of its supposed risk premium n

months since formation. All estimates are statistically significant at 1%.

by definition, always casts a wide net across the entire spectrum of risk factors and collects

returns from many sources at once. As I have shown, it is possible to tell which factors

will more likely to be important in the future, so momentum can indeed be represented

by a small, select set of factors, chosen out of a larger pool each period. However, the

pool of factors also changes every period. Well known risk factors such as the Fama-French

factors are not rebalanced every period. The size and value portfolios, for example, are only

rebalanced once every year. The question arises as to whether momentum can potentially

be replicated sufficiently well by a fixed set of factors that are only occasionally rebalanced.

Two conditions can be imposed on the factor set: the less restrictive version fixes the

pool of available factors for a number of periods; the more restrictive version fixes the final

set of selected factors for a number of periods. In the former case, a different set of factors

can be chosen each period, leaving more flexibility. The first panel of Table 8 shows the

statistics for the replicating portfolio when the factor pool is constructed once every two,
four, six and 12 months. The loss of fidelity is about 35% when the factor pool remains

stale for 12 months just like the Fama-French factors. A larger loss occurs when the final

set of factors used is also fixed for 12 months. In this case, the replicating portfolio achieves

only 40% of the momentum return. Still, this return of 0.28% is far superior to that of the

replicating portfolio based on the Fama-French factors. There is still a possibility that a

fixed set of "durable" factors can explain more of the momentum return, up to a limit of less

than a half.
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Figure 10: Replicating Portfolio with Infrequently Rebalanced Factors
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Mean return of the replicating portfolios that use factors rebalanced once every 2, 4, 6 and 12 months. The blue-solid line
represents the scenario where the larger pool of factors is rebalanced infrequently but in each month a different subset can be
chosen; the green-dotted line represents the scenario where the final selection of factors is rebalanced/reselected infrequently.
The latter condition is more restrictive.

The reason that a small set of long-lasting factors is incapable of explaining momentum

is that the momentum portfolio rapidly shifts its emphasis on factors. The weights that

momentum places on each factor depend on the relative performance of that factor in the

recent months. Given the sheer number of factors and the volatility of factor returns, the

weights can shift drastically in just months. As the three time-series plots in Figure 11
show, there is virtually no pattern to which factors momentum selects over time, and it is

not possible to predict the factor selection in the future. From the histogram, we can see

that almost all factors have the same likelihood of being important to momentum, except

the first factor, market, which as can be seen in the time-series plots is selected more often

than others.

One may argue that the extracted factors are not the actual risk factors and that a

permanent risk factor can exist and explain momentum: it just appears as different principal

components at different times. However, since the extracted factors are orthogonal, the rapid

shifting of factors seen in Figure 11 would imply that such a risk factor needs to be radically

different over any short period of time. That factor would then be transient and momentum-

like and very different from the permanent systematic risk factors like the Fama-French

factors that we usually have in mind. Therefore, it is much more plausible that momentum

is merely a dynamic portfolio that loads on a wide array of factors, not a few permanent

ones. In that sense, we may still consider momentum as a distinct source of risks, a quasi-risk
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Figure 11: The Rapidly Shifting Factor Set
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On the left is the histogram of the eigenvalue rankings of the top five factors in the benchmark replicating portfolio. The

vertical axis represents the number of times factors of certain rankings have been selected as the top five factors. On the right

are time-series plots of the eigenvalue rankings of the top three factors chosen by the benchmark replicating portfolio.

factor. It is true that momentum is not a standalone source of risk distinguishable from all

others out there, because it is merely a dynamic portfolio of existing risk factors; however,

it cannot be represented as a portfolio, static or dynamic, of the Fama-French factors or a

few stable and permanent factors. Rather, it summarizes different aspects of the large and

changing factor space. Short of describing all of the systematic risks, which is probably an

impossible task, momentum cannot be eliminated as an extraneous factor.

5.2 Counterproductive Factors

Up until this point, we have only considered factors that contribute most to the momen-

tum portfolio. Since momentum loads on a wide array of factors, it also makes "mistakes"

occasionally, taking the opposite position of what it should. This occurs when a factor has a

positive (negative) risk premium but momentum takes a negative (positive) position in that.

We can identify such factors by sorting the factor pool in ascending order of expected returns,

which is the opposite of the replication exercise above. As illustrated in Table 9, the reverse

order does yield a "counterproductive" portfolio (COUNTER) that has a expected return

of -0.14% per month and yet is 44.2% correlated with momentum. When it is subtracted

from the momentum portfolio, momentum's Sharpe ratio increases by over a third to 0.19.

This result presents a simple method to enhance momentum profit with a complementary

portfolio.
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5.3 Residual Momentum

In Figure 8, we can see that the residual portfolio, defined as equally-weighted momentum

minus the benchmark replicating portfolio, has almost zero return in the first month after

formation, then negative and declining returns over time. Another way of looking at the

residuals is to form a momentum-like portfolio based on the residual returns. The residual

returns for an individual stock are returns not explained by factors used in the benchmark

replicating portfolio. As expected, the residual momentum has an insignificant return. This

conclusion is not surprisingly different from Blitz, et. al. (2011), who found significant

residual momentum relatively to the FF3 model. Since the FF3 factors cannot adequately

explain momentum, the residual portion has some momentum leftover. However, my method

explains away all of the momentum profit, leaving no residuals. As seen in Table 10, the

residual momentum portfolio has negative but insignificant returns not only in the first

month but in all 24 months following portfolio formation.

5.4 Other Momentum Variants

I have focused on equally-weighted momentum for convenience and because the momen-

tum phenomenon is the most difficult to explain among small stocks. Since the replicating

method works on equally-weighted momentum, it should work on other momentum variants

as well. Replication of two variants of particular interest, shown in Table 11, confirms this

conjecture. The first panel refers to the scenario in which the momentum portfolio takes a

long position in the top 10% winners and short position in the bottom 10% losers, as opposed

to top 30% and bottom 30% for the regular momentum. Taking a smaller set of more extreme

winners and losers yields a higher profit, but it is easily matched by the replicating portfolio.

The replicating portfolio also generates a much higher Sharpe ratio due to the fact that the

10% momentum is noisier as it averages over fewer stocks. This exercise confirms that the

replicating procedure works over the entire range of cross-sectional returns, including the

extreme ends that prove problematic for any attempts at explaining momentum.

The second panel contains results for large-stock momentum. The setup is a little differ-

ent here because the universe of stocks on which principal component analysis is performed

is limited to large stocks (capitalization higher than the NYSE median) only. Using the full

panel, including small stocks, to explain large-stock momentum, may amount to cheating as

small-stock momentum overwhelms the large-stock counterpart. Restricting the universe of

stocks to large stocks turns out not to be an issue. The replicating portfolio again matches

momentum returns with ease and again achieves a higher Sharpe ratio.
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5.5 Fama-French Plus

For all previous replication exercises, I have ignored the Fama-French factors, which

are supposedly risk factors and so should be covered by the set of PCA-based factors. To

separate the FF3 factors from the rest, I can first filter out the influence of the three factors

and divide the replicating portfolio into the part for which they are responsible and the part

orthogonal to it. Before the selection and replication process, I regress 60-month PCA factor

returns on FF3 returns and take the residuals as the new PCA factors. Then I select factors

just like before and add the final selection to the FF3 factors. The combined set is then

used to replicate momentum. Not surprisingly, the contribution from the FF3 components

is minor, and the addition of more PCA factors slowly bridges the gap between the returns

of the replicating portfolio and those of momentum. As seen in 12, the replicating portfolios

with 20 or 30 factors are almost identical to the benchmark replicating portfolio, meaning

that isolating the FF3 components merely rearranges the factors. The FF3 factors contribute

nothing in addition to the PCA-based factors.

5.6 The Conglomerate Factor

Since the set of factors in the replicating portfolio changes every period, it is difficult to

trace any particular factor through time. We can, however, summarize the set of the factors

important to momentum with the conglomerate factor. It is formed by first multiplying

each factor used in the benchmark replicating portfolio by their 60-month historical mean

returns. This procedure flips factors with negative risk premia so that all factors now have

nonnegative risk premia. The factors are then further divided by the sum of the positive

weights over individual stocks or the sum of the negative weights, whichever is greater. This

normalization ensures that each factor is a zero-investment portfolio taking a long position in

a stock portfolio and a short position in another. Finally, the conglomerate factor is formed

as the equally-weighted portfolio of the normalized factors.

Table 13 displays the properties of the conglomerate factor versus the equally-weighted

momentum portfolio. The two are 74.2% correlated but have many differences. The con-

glomerate factor has a higher mean return and Sharpe ratio, less skewed and kurtotic and

less correlated with the Fama-French factors despite having a higher alpha. In some sense,

the conglomerate is a momentum-like portfolio in that it tends to load positively (negatively)

on factors with positive (negative) risk premia. However, it is more efficient than momentum

and is an example of a momentum-like portfolio that outperforms momentum itself.
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6 Conclusion

From the replicating exercises to the subsequent analysis, we have gained a better un-

derstanding of how momentum works. The nonparametric factor extraction method results

in a replicating portfolio far superior to the one based on the Fama-French factors, achieving

a higher correlation but more importantly matching momentum's seemingly impossibly high

return. The existence of such a replicating portfolio is consistent with the idea that momen-

tum is merely a dynamic portfolio of existing risk factors; it also removes the uncertainty

about what the residual momentum really is. Best of all, this method does not rely on the

exact factor structure being known, an almost impossible task. It does, however, impose a

rather low upper limit on how much of the momentum profit a set of stable and permanent

factors such as the Fama-French factors can explain.

The replicating portfolio, as it turns out, does a lot more than explaining momentum.

Since it discards components that do not contribute to the mean return, it outperforms

momentum in terms of the Sharpe ratio. Over a longer holding period, the replicating

portfolio also achieves a higher return and Sharpe ratio compared to the momentum portfolio

due to much less reversal. The residual portion generates slightly negative returns over time,

and the residual momentum portfolio generates negative but insignificant returns. Analyzing

the replicating components reveals that their returns going forward are directly proportional

to their historical risk premia. In this sense, we may be able to attribute momentum profit

as compensation for risks. At the same time, the simultaneous decline and slight reversal

of all replicating components over a longer holding period indicates behavioral influences

permeating through the entire factor structure.

The shortcoming of the principal component method is that the resulting factors are

abstract constructs and have no inherent identities in the real economy. Ideally, we would

like to know what each factor really means, but in practice there is no straightforward way to

identify the complete set of systematic risks or an accepted set of criteria to evaluate it. The

purpose of this paper has been to show that such a set, if we can find it at some point, would

be able to replicate momentum in its entirety. Until then, we can still consider momentum

as a quasi-risk factor that describes many of the systematic risks still unknown to us.
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Table 1: Variants of Momentum

At the end of each month, stocks are sorted into deciles by their cumulative returns in the past 12 months omitting the most
recent month. The momentum portfolio is formed by taking a long position in the top three deciles and a short position in
the bottom three deciles; it is then held for one month forward. Each column is a different method of weighting stocks in the
long and short portions of the portfolio: VW - value-weighted; EW - equally weighted. LG/SM/HH - stocks are divided into
two groups based on whether their capitalizations are larger or smaller than the NYSE median that month; a value-weighted
momentum portfolio is formed for each group, LG as the large cap group and SM as the small cap group. HH = (LG+SM)/2.

Weights EW VW HH LG SM

f 0.0071*** 0.0040*** 0.0062*** 0.0042*** 0.0081***

[0.0015] [0.0015] [0.0014] [0.0015] [0.0015]

f/a 0.1463 0.0851 0.1363 0.0889 0.1677

Skewness -4.16 -2.75 -3.33 -2.68 -3.06

Kurtosis 39.93 24.81 31.53 24.13 27.5

FF3 & 0.0111*** 0.0068*** 0.0092*** 0.0070*** 0.0115***

[0.0012] [0.0013] [0.0012] [0.0013] [0.0013]

4imkt -0.21*** -0.18** -0.21*** -0.18** -0.23***

[0.07] [0.08] [0.07] [0.08] [0.07]

fsmb -0.21** 0.08 0.01 0.08 -0.06

[0.09] [0.09] [0.09] [0.09] [0.09]

4hmi -0.50*** -0.45*** -0.43*** -0.45*** -0.42***

[0.15] [0.14] [0.14] [0.14] [0.14]

Adj. R 2  27.9% 17.7% 21.4% 17.6% 21.1%

[]: Newey-West standard errors with 6 lags; */**/***: statistically significant at 10/5/1%



Table 2: Replicating Portfolio with Time-Varying Beta

At the end of each month, individual stock betas are estimated by regressing monthly excess returns on the factor set in the
past 60 months. For Panel A, the factor set is the Fama-French factors; for B and C, the factor set is the first nth orthogonal
factors constructed from principal components of the 60-month historical return panel. The momentum portfolio betas are the
average betas of individual stocks selected into the momentum portfolio. Each factor component of the replicating portfolio is
the factor itself scaled by momentum's beta on that factor. The replicating portfolio is the sum of the three components in
Panel A and B. In Panel C, the replicating portfolio is the sum of the first nth PCA factors, The PCA factors are numbered
in descending order of their eigenvalues.

Panel A UMD-EW FF3 REP MKT REP SMB REP HML REP

f 0.00 7 1 *** 0.0010 -0.0005 0.0009 0.0006

[0.0015] [0.0012] [0.0006] [0.0006] [0.0007]

f/0 0.1463 0.0292 -0.0287 0.0521 0.0332

p(-, UMD-EW) 77.4% 60.5% 39% 57.4%

UMD-

Panel B EW PCA 1-3 PCA1 PCA2 PCA3

0.0071*** 0.0007 -0.0007 0.0009*** 0.0006***

[0.0015] [0.0010] [0.001] [0.0003] [0.0002]

f/0 0.1463 0.0245 -0.0249 0.1186 0.1021

p(-, UMD-EW) 80.3% 76.9% -3.6% 38.4%

UMD-

Panel C EW PCA 1-5 PCA 1-10 PCA 1-20 PCA 1-30

f 0.0071*** 0.0011 0.0018* 0.0033*** 0.0039***

[0.0015] [0.0011] [0.0011] [0.0011] [0.0012]

f/0, 0.1463 0.0352 0.053 0.0887 0.0997

p(-, UMD-EW) 82.2% 86.9% 89.5% 93.2%

[ ]: Newey-West standard errors with 6 lags; */**/***: statistically significant at 10/5/1%
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Table 3: Subsample Momentum

Equally-weighted momentum portfolios are formed on random subsets of stocks at the end of each month. The first column,
UMDEW, contains the statistics of the full-sample equally-weighted momentum portfolio. Each subsequent column contains
the statistics over 50 random subsamples of different sizes. The number of stocks in a subset is the maximum of n% of the total
number of stocks and 200. There are 2235 stocks available on average but the number ranges from 350 in the early 1930s to
4500 by the end of 2011. The mean and standard deviation statistics are over the 50 random subsample momentum portfolios.

UMDEW Subsample (% of total number of stocks)

5% 10% 15% 20%

Mean f 0.0071 0.0071 0.0072 0.0071 0.0071

a (f) (0.0006) (0.0005) (0.0006) (0.0005)

Mean f/a 0.1463 0.1372 0.1397 0.1392 0.1390

a (f/a) (0.0147) (0.0110) (0.0124) (0.0120)

Mean a 0.0485 0.0526 0.0514 0.0507 0.0505

Mean p(-, UMDVW) 0.9211 0.9441 0.9553 0.9621

Mean skewness -4.16 -3.33 -3.63 -3.74 -3.85

Mean kurtosis 39.93 32.48 36.53 37.63 38.96

Table 4: Subsample Momentum Replication

In each period, a principal component analysis is performed on a 60-month panel of historical returns. In the first panel below,
the full sample is used; in the second panel, a random 5% subsample is used, and the results shown are typical. The Replicating
portfolios are constructed from the first few principal components, as ordered in descending order by their eigenvalues. PCA
1-N means the first N factors are used.

Full Sample UMD-EW PCA 1-5 PCA 1-10 PCA 1-20 PCA 1-30

0.0071*** 0.0011 0.0018* 0.0033*** 0.0039***

[0.0015] [0.0011] [0.0011] [0.0011] [0.0012]

f/a 0.1463 0.0352 0.053 0.0887 0.0997

p(-, UMD-EW) 1 82.2% 86.9% 89.5% 93.2%

Subsample (typical) UMD-EW PCA 1-5 PCA 1-10 PCA 1-20 PCA 1-30

0.0071*** 0.0007 0.0014 0.0032*** 0.0044***

[0.0015] [0.0010] [0.00111 [0.0011] [0.0012]

f/O 0.1463 0.0223 0.0394 0.087 0.1108

p(-, UMD-EW) 80.6% 83.4% 85.4% 88.4%

[]: Newey-West standard errors with 6 lags; */**/***: statistically significant at 10/5/1%
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Table 5: Alternative Factor Selection Schemes

In each period, a principal component analysis is performed on a 60-month panel of historical returns. A random 5% subsample

is used, and the results shown are typical. The Replicating portfolios are constructed from the first few principal components

according to different orderings. The first panel uses the default ordering by eigenvalues. The second and third panels order

factors by the expected returns of their corresponding replicating components. In addition, the third panel uses a refinement

method that merges and selects factors from multiple random subsamples. PCA 1-N means the first N factors are used.

By eigenvalues UMD-EW PCA 1-5 PCA 1-10 PCA 1-20 PCA 1-30

0.0071*** 0.0007 0.0014 0.0032*** 0.0044***

[0.0015] [0.0010] [0.00111 [0.0011] [0.0012]

f/a 0.1463 0.0223 0.0394 0.087 0.1108

p(-, UMD-EW) 80.6% 83.4% 85.4% 88.4%

By expected return UMD-EW PCA 1-5 PCA 1-10 PCA 1-20 PCA 1-30

f 0.0071*** 0.0026*** 0.0032*** 0.0039*** 0.0043***

[0.0015] [0.0009] [0.001] [0.0011] [0.0012]

f/0' 0.1463 0.0959 0.1027 0.1068 0.1137

p(-, UMD-EW) 72.7% 77% 78.9% 80.6%

By expected return (refined) UMD-EW PCA 1-5 PCA 1-10 PCA 1-20 PCA 1-30

f 0.0071*** 0.0034*** 0.0052*** 0.0069*** 0.0069***

[0.0015] [0.0012] [0.0012] [0.0013] [0.0013]

f/a 0.1463 0.0996 0.1372 0.1722 0.1708

p(-, UMD-EW) 80.0% 83.4% 84.5% 84.2%

[]: Newey-West standard errors with 6 lags; */**/***: statistically significant at 10/5/1%
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Table 6: Momentum and the Benchmark Replicating Portfolio Over Time

The momentum portfolio is the equally-weighted variety. The benchmark replicating portfolio is the 30-factor portfolio with
factors chosen using the refined method (PCA 1-30 in Panel C of Table 5). The portfolios are held for the specified holding
periods and the average monthly returns recorded below. Over time, some stocks are delisted and removed from both the
factors and the momentum portfolio, with the remaining stocks reweighted equally.

Holding Period (Month) 1 3 6 9

Portfolio UMD-EW REP UMD-EW REP UMD-EW REP UMD-EW REP

0.0071*** 0.0069*** 0.0054*** 0.0056*** 0.0041*** 0.0043*** 0.0026** 0.0032***

[0.0015] [0.0013] [0.0014] [0.0010 [0.0008] [0.0008] [0.0010] [0.0007]

0.1463 0.1708 0.1873 0.2629 0.2185 0.306 0.1812 0.2841

p(-, UMD-EW) 84.2% 78.8% 75.2% 74.5%

Holding Period (Month) 12 18 24 36

Portfolio UMD-EW REP UMD-EW REP UMD-EW REP UMD-EW REP

0.0010 0.0020*** -0.0003 0.0010** -0.0007 0.0006 -0.0007* 0.0006*

[0.0006] [0.0006] [0.0007] [0.0005] [0.0005] [0.0005] [0.0004] [0.0003]

0.0785 0.1987 -0.0291 0.1319 -0.089 0.0861 -0.1416 0.1197

p(-, UMD-EW) 73.8% 71.4% 74.3% 69.1%

[]: Newey-West standard errors with 6 lags; */**/***: statistically significant at 10/5/1%

Table 7: Predictability of Risk Premia on Future Returns

Cross-factor regression of the mean returns of replicating components on their estimated risk premia according to Eq. 2 over
different holding periods.

Holding Period (Month) 1 3 6 9 12 18 24 36

Intercept 0.0001*** 0.0001*** 0.0001*** 0.0001*** 0.0000*** 0.0000*** 0.0000*** 0.0000***

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

Slope 0.9399*** 0.8362*** 0.5394*** 0.355*** 0.2277*** 0.1165*** 0.0644*** 0.0550***

[0.0979] [0.0968] [0.0685] [0.0926] [0.0368] [0.0271] [0.0296] [0.0168]

Adj. R2 69.7% 76.4% 71.8% 60.4% 54.1% 41.0% 12.1% 12.5%

[]: Standard errors; */**/***: statistically significant at 10/5/1%
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Table 8: Replication Based on Restricted Factor Pool and Set

The benchmark replicating portfolios are formed using the refined method in Table 5. Fixed factor pool (Panel A) means that

the larger pool of factors from which a smaller subset is selected is not recomputed every month but rather every n months as

specified in the subheading. Fixed factor set (Panel B) means that the final subset of factors is fixed for a number of periods

and only refreshed once every n months.

Allow Rebalancing Every...
Fixed Factor Pool Benchmark

2 Months 4 Months 6 Months 12 Months

0.0069*** 0.0055*** 0.005*** 0.0049*** 0.0046***

[0.0013] [0.00111 [0.0011] [0.0011] [0.001]

f/a 0.1708 0.1537 0.1428 0.1426 0.1397

p(., UMD-EW) 84.2% 75.9% 77.8% 71.5% 64.9%

Allow Rebalancing Every...
Fixed Factor Set Benchmark

2 Months 4 Months 6 Months 12 Months

0.0069*** 0.0047*** 0.0044*** 0.0038*** 0.0028**

[0.0013] [0.0013] [0.0013] [0.0013] [0.0012]

f/a 0.1708 0.1238 0.1156 0.0995 0.0752

p(-, UMD-EW) 84.2% 78.9% 78.3% 78.3% 73.2%

[]: Newey-West standard errors with 6 lags; */**/***: statistically significant at 10/5/1%

Table 9: Counterproductive Factors

At the end of each month, a large pool of factors is first generated from principal component analysis and then sorted in ascending

order of the replicating components' expected returns. The first component is chosen and named the counterproductive portfolio.

UMD-EW is the equally-weighted momentum and REP the benchmark replicating portfolio.

Portfolio UMD-EW REP COUNTER UMD-EW - COUNTER REP - COUNTER

f 0.0071*** 0.0069*** -0.0014** 0.0085*** 0.0083***

[0.0015] [0.0011] [0.0006] [0.0014] [0.0013]

f/a 0.1463 0.1924 -0.0713 0.1946 0.2114

p(-, UMD-EW) 100% 77.3% 44.2% 91.7% 49.0%

Skewness -4.16 -2.82 -0.99 -5.19 -2.16

Kurtosis 42.93 31.84 31.05 59.83 25.48

[]: Newey-West standard errors with 6 lags; */**/***: statistically significant at 10/5/1%
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Table 10: Residual Momentum Portfolio

In each period, individual stock returns are regressed against the factors used in the benchmark replicating portfolio using the
most recent 60 monthly return data. The intercept estimate, &, is then used to sort stocks into deciles. The residual momentum
portfolio is formed by taking long positions in the top 30% of stocks and short positions in the bottom 30%. The stocks in each
half of the portfolio are equally-weighted. The portfolio is then held for a number of periods specified below.

Residual Momentum 1 Month 3 Months 6 Months 12 Months 24 Months

-0.0041 -0.0027 -0.0024 -0.0017 -0.0018

[0.00251 [0.0024] [0.0022] [0.0018] [0.00141

f/ -0.0555 -0.0561 -0.0684 -0.0688 -0.1023

Skewness 0.78 1.29 0.32 0.27 0.30

Kurtosis 13.09 14.35 6.54 7.28 4.39

[]: Newey-West standard errors with 6 lags; */**/***: statistically significant at 10/5/1%

Table 11: Replication of Other Momentum Variants

Panel A (Decile EW) contains statistics for the top 10% minus bottom 10% (as opposed to the canonical 30%) equally-
weighted momentum portfolio and the corresponding replicating portfolios. Panel B (LG) contains statistics for the value-
weighted momentum portfolio formed on large stocks and the corresponding replicating portfolios. Large stocks are stocks
with capitalizations greater than the NYSE median. The replicating strategy is the same as the one used on the benchmark
replicating portfolio throughout this paper.

Decile EW UMD-EWD PCA 1-5 PCA 1-10 PCA 1-20 PCA 1-30

0.0116*** 0.0051*** 0.0082*** 0.0114*** 0.0117***

[0.0022] [0.0015] [0.0016] [0.0018] [0.0018]

f/ao 0.1627 0.1068 0.1517 0.1967 0.2016

p(-, UMD-EWD) 72.8% 76.4% 78.5% 78.6%

Large Stocks UMD-LG PCA 1-5 PCA 1-10 PCA 1-20 PCA 1-30

f 0.0042*** 0.0026** 0.0038** 0.0050*** 0.0049***

[0.0015] [0.0011] [0.0012] [0.0013] [0.0013]

f/0' 0.0889 0.0764 0.1009 0.1252 0.1238

p(-, UMD-LG) 83.9% 86.0% 86.9% 86.7%

[]: Newey-West standard errors with 6 lags; */**/***: statistically significant at 10/5/1%
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Table 12: Incremental Power of the Replicating Portfolio Relative to the FF Factors

In each period, PCA-based factors are regressed against the Fama-French three factors in a 60-month time-series regression.
The residuals are sorted by their expected contribution to the replicating portfolio and the top factors (number specified below
in the title row) are chosen. They are then added to the Fama-French factors to form the factor set used in the replicating
portfolio. For example, FF+7 means seven additional factors are added so that 10 are used to replicate momentum.

Portfolio UMD-EW FF REP FF+1 REP FF+2 REP FF+7 REP FF+17 REP FF+27 REP

f 0.0071*** 0.0010 0.0023* 0.0028** 0.0047*** 0.0071*** 0.0070***

[0.0015] [0.0012] [0.0012] [0.0012] [0.0013] [0.0014] [0.0014]

f/u 0.1463 0.0292 0.0621 0.0750 0.1185 0.1732 0.1643

p(-, UMD-EW) 100% 77.4% 77% 77.9% 79.8% 80.3% 80%

Skewness -4.16 -2.47 -2.20 -2.56 -3.19 -2.95 -2.87

Kurtosis 42.93 32.51 27.97 31.74 40.61 35.75 34.06

[]: Newey-West standard errors with 6 lags; */**/***: statistically significant at 10/5/1%

Table 13: The Conglomerate Factor

The conglomerate factor is formed by multiplying the factors used in the benchmark replicating portfolio by the signs of their

mean 60-month historical returns and combining the results in an equally-weighted portfolio.

se f/a Skewness Kurtosis p(-, UMD-EW)

UMD-EW 0.0071*** [0.0015] 0.1463 -4.16 42.93

Congl. Factor 0.0146*** [0.0023] 0.2068 -2.30 19.82 74.2%

FF3 & se Lmkt se 4smb se 4hmi se Adj. R 2

UMD-EW 0.0111*** [0.0012] -0.21** [0.07] -0.21** [0.09] -0.50*** [0.15] 27.9%

Congl. Factor 0.0170*** [0.0023] -0.01 [0.13] 0.13 [0.12] -0.66*** [0.19] 11.3%

[ ]: Newey-West standard errors with 6 lags; */**/***: statistically significant at 10/5/1%
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Chapter 3

Fundamental Momentum

1 Introduction

In this paper, we study cross-sectional patterns in stock returns associated with various

accounting ratios. Accounting ratios of interest in this paper are measures of book returns,

namely return on assets and return on equity, turnover ratios in accounts receivable and

payable, and measures of profit margins, in terms of both gross and net profits. Our main

results can be summarized in three parts. First, we find that long-short portfolios formed

by sorting on these accounting ratios as well as their annual changes have large, positive

average returns as well as significant a with respect to both Fama-French three-factor and

Carhart four-factor models. We then ask the question of which of these two sets of variables,

levels of accounting ratios or their changes, are more important in the cross-section of stock

returns. We find significant evidence that changes in the accounting ratios are stronger

determinants of stock returns than their levels. Second, motivated by the first finding, we

document significant abnormal returns of portfolios formed by sorting on the changes in the

accounting ratios through an extensive set of regressions with widely used risk factors. The

two main portfolios in our study, long-short portfolios formed by sorting on changes in return

on asssets and return on equity, exhibit a of 0.5% to 0.75% per month. Third, we find that

the abnormal returns of the momentum factor can be explained by inclusions of the factors

formed by sorting on changes in the accounting ratios. Chordia and Shivakumar (2006)

report a similar finding and conclude from this regression evidence that price momentum is

fully explained and subsumed by "earnings momentum", where they use the SUE portfolio'

as an explanatory factor. We examine their finding by running double-sorts on past returns

and change in return on assets or return on equity, and we find that there are large return

spreads across past returns even after controlling for changes in return on assets or return

on equity. Therefore, we conclude that the price momentum effect is not fully explained

by earnings momentum, even though regression results of price momentum on earnings

momentum might suggest otherwise.

Section 2 describes our data construction. Section 3 documents return performances

'SUE stands for standarized abnormal earnings and is formed by sorting on change in earnings stan-
darized by standard deviation of quarterly changes. SUE portfolio is similar to our construction of factors
based on changes in return on assets and return on equity.
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of factors formed on accounting ratios and their changes, and then answers the question

of whether levels or changes in the accounting variables are more important in the cross-

section of stock returns. Section 4 continues the previous section by reporting significant and

robust abnormal returns associated with factors based on changes in the accounting ratios.

Section 5 first reports regression results of price momentum factor UMD on our accounting

factors, and subsequently examines whether price momentum is fully captured by earnings

momentum. Section 6 concludes.

2 Data

The main data sources are Compustat Annual and Quarterly Data Files for accounting

variables and Center for Research in Security Prices (CRSP) monthly data for stock returns.

Data covers the period from January 1975 to December 2010. The starting date is restricted

by the availability of reporting date of quarterly earnings in Compustat (item RDQ) as well

as poor data quality and limited number of data points in the earlier part of the Compustat

database. We exclude financial firms (SIC codes 6000-6999), firms with negative book equity,

and firms with share prices less than $10. The restriction on share prices is a conservative

choice and is intended to alleviate the concerns that small companies are prone to poor

accounting data and that abnormal returns may primarily be driven by illiquid stocks.

Accounting variables of interest are return on assets, return on equity, turnover ratios of

accounts receivable and payable, and gross and net profit margins (often referred to as "the

accounting ratios" in the rest of the paper). We denote them by lower case letters roa, roe,

arturn, apturn, gmarg, and nmarg, respectively. Return on assets and return on equity

measure rates of returns to entire stakeholders and equity shareholders, respectively. Return

on assets, roa, is defined as income before extraordinary items (Compustat quarterly item

IBQ) divided by one-quarter-lagged total assets (Compustat quarterly item ATQ). Simi-

larly, return on equity, roe, is defined as income before extraordinary iterms (Compustat

quarterly item IBQ) divided by one-quarter-lagged book equity (Compustat quarterly item

CEQQ). Turnover ratios in accounts receivable and payable measure the number of times

that balances of accounts receivable and payable are turned over, respectively. Accounts re-

ceivable turnover, arturn, is defined as revenue (Compustat quarterly item REVTQ) divided

by average accounts receivable (Compustat quarterly item RECTQ) over the current and

previous quarters. Similarly, accounts payable turnover, apturn, is defined as cost of goods

sold (Compustat quarterly item COGSQ) divided by average accounts payable (Compustat

quarterly item APQ) over the current and previous quarters. Finally, gross and net margins
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are measures of profitability. Gross margin, gmarg, is defined as gross profit (Compus-

tat quarterly item REVTQ minus COGSQ) divided by revenue (Compustat quarterly item

REVTQ). Similarly, net margin, nmarg, is defined as operating profit (Compustat quarterly

item OIBDPQ) divided by revenue (Compustat quarterly item REVTQ).

In months in which quarterly earnings are reported, we define these accounting ratios

using the newly updated data. In other months, we define them based on the most recent

accounting data, and they are allowed to be stale for a maximum of five months. Finally, we

define changes in these accounting variables as a year-over-year change, current value minus

the value twelve months ago. The reason for defining annual, rather than quarterly, changes

is because quarterly accounting data displays significant seasonality. We note changes in the

accounting ratios by A preceeding the accounting ratio, so for example, Aroa denotes the

year-over-year change in roa of a firm. We will often refer to these accounting ratios and

their changes as "the levels" and "the changes", respectively. Table 1 summarizes the data

definitions.

In the empirical analyses, we will form a number of long-short portfolios by sorting on

various sorting variables. For each sorting variable, we take the following steps in construct-

ing the long-short portfolio, in the spirit of Fama and French (1993). At the beginning of

each month t, we use the median market equity of NYSE firms and split all stocks into two

groups, small and big. Independently, we define breakpoints for the sorting variable at 30th

and 70th percentiles using all firms, and assign firms to three groups low, middle, and high.

We then form six portfolios by taking the intersection and compute their value-weighted

returns for month t. Finally, return on the long-short portfolio is defined as the simple

average of return on the high portfolio minus return on the low portfolio, across the two

size groups. As a matter of notation, we denote the time series of factor returns on the

long-short portfolio by upper case letters corresponding to the sorting variable in lower case

letters. For example, ROA and AROA are factor returns on portfolios formed by sorting on

roa and Aroa, respectively. We will often refer to portfolios formed by sorting on the levels

and the changes in the accounting ratios as "factors formed by levels" and "factors formed

on changes", respectively. In addition, we denote by UMD, the standard momentum factor

constructed by sorting on cumulative returns from month t - 12 to month t - 1 following

Jegadeesh and Titman (1993).

Table 2 reports summary statistics of accounting ratios and their changes. We make

three main observations. First, while changes in the accounting ratios are close to zero on

average, their standard deviations are quite large. Second, correlations between levels and

changes of the accounting ratios are generally large and positive. Combined with the first

observation, this suggests that a substantial fraction of cross-sectional dispersion in levels of
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these accounting variables is driven by recent changes in them. Third, we note that some

of these accounting ratios have significant correlations among themselves, both in terms of

levels and changes. Most notably, roa is highly correlated with roe, and to a lesser extent,

gmarg and nmarg. This is mechanical because the numerators of these ratios are closely

related to one another2 . This pattern of correlations mostly holds in terms of changes as

well. The two turnover ratios, however, show much smaller correlations with other ratios,

both in terms of levels and changes.

3 Changes or Levels?

There is a large number of papers documenting abnormal returns associated with both

levels and changes in some of the accounting variables that we are currently studying. First,

there is an extensive literature that documents abnormal returns of portfolios formed by

sorting on roa and roe (e.g., Fama and French (2006), Chen, Novy-Marx, and Zhang (2010),

and Hou, Xue, and Zhang (2012) to name a few). Also, in a recent paper, Novy-Marx (2012)

studies the profit margin premium, and finds that portfolios sorted by profit margins produce

a large spread in returns. Moreover, originating in the accounting literature, many authors

have documented abnormal returns associated with changes in earnings. In particular, Ball

and Brown (1968), Chan, Jegadeesh, and Lakonishok (1996), and Chordia and Shivakumar

(2006) report significant abnormal returns of the SUE portfolio which closely resembles our

AROA and AROE portfolios.

Given these previous findings, we begin our discussion by studying the average returns

and portfolio a of factors formed on levels and changes in the accounting variables. The top

panel of Table 3 reports return performances of factors formed by sorting on levels of the

accounting ratios. Sorting stocks by roa, roe, and arturn produce large return spreads of

0.60%, 0.65%, and 0.38% per month, significant at 1% level. Moreover, factors ROA, ROE,

and ARTURN have large and highly significant a with respect to both Fama-French three-

factor and Carhart four-factor models. Moreover, although sorting stocks by profit margins

gmarg and nmarg do not produce large return spreads, factors GMARG and NMARG

have highly significant positive a against the two benchmark models. However, APTURN

does not show significant return spread or a with respect to the two models.

The bottom panel of Table 3 reports summary statistics of factors formed by sorting

on changes in the accounting ratios. We can see that return spreads generated by sorting

2 Gross profits minus operating expenses equals operating profits. Operating profits minus taxes and
interests equals income before extraordinary iterms.
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on changes in the accounting raios are greater than or around similar magnitudes as those

generated by sorting on levels of the accounting ratios. Moreover, all of these factors formed

on the changes have highly significant and positive average returns and a with respect

to Fama-French three-factor and Carhart four-factor models. Another notable observation

is that R 2 of factor regressions in the four-factor model are significantly higher than in the

three-factor model, suggesting that these factors formed on the changes are highly correlated

with the momentum factor UMD 3 . On the other hand, factors formed by sorting the

levels do not show a large increase R2 when UMD is included in the regressions, with

ARTURN, APTURN, GMARG, and NMARG showing negligible increases. Finally, we

observe significant correlations between factors formed on levels and on changes for the

ratios roa, roe, and gmarg. As we will discuss shortly, a large part of this correlation is

mechanical. As we have shown in Table 1, the levels and changes in these accounting ratios

have correlations between 40 and 50 percent. Therefore, it is not surpring that factors formed

on significantly correlated sorting variables show large return correlations.

In summary, we can see, for the most part, that the factors formed by sorting on levels

and changes in the accounting ratios both have large and positive average returns a with

respect to both Fama-French three-factor and Carhart four-factor models. These results

are in broad agreement with the aforementioned papers that have documented large return

spreads and abnormal returns associated with factors formed on both levels and changes in

the accounting ratios. Given this observation, we examine the question of whether levels

or changes are more important in the cross-section of stock returns. We first note that we

cannot directly compare factors based on levels and changes in answering this question. The

reason is that the current level of an accounting ratio could be decomposed into its lagged

value a year ago and its year-over-year change. Therefore, if it were the case that changes

in the accounting ratios drive spreads in returns, factors formed on current levels could

mechanically inherit these return spreads. In order to control for this mechanical component,

we examine effects of one-year-lagged levels and year-over-year changes in these accounting

ratios in the cross-section of stock returns4 . We tackle this problem in two directions, first

by using Fama-MacBeth (1973) procedure and second by implementing double-sorts.

In the first approach, we use the methodology of Fama and MacBeth (1973). For each

accounting ratio, we determine the relative strengths of level and change in this variable as

follows: In each month t, we regress the cross-section of stock returns on both levels and

changes in the accounting ratio, in addition to log market capitalizations, log book-to-market

3We provide direct evidence for this in Table 10.
'if the accounting ratios followed a random walk, lagged levels and changes would be uncorrelated.
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ratios, and cumulative past returns from month t - 12 to month t - 1, denoted by umd. In

other words, we are interested in the predictive powers of level and change in the particular

accounting ratio, controlling for characteristics that are well-known to be related to expected

returns. Moreover, in each month t, we normalize both levels and changes by their respective

cross-sectional standard deviations in month t prior to running the regression, so that their

slope estimates could directly be compared to each other. In the final step, we aggregate

the slope estimates into a time series and determine their average estimates and statistical

significance. Table 4 reports the results.

For roa and roe, we see very strong results that changes in these accounting ratios are

much stronger than levels in explaining the cross-section of stock returns, with magnitudes

15 to 30 times greater5 . Moreover, though both levels and changes are significant, levels show

much higher statistical significance. These results are true regardless of whether past returns

umd are controlled for. The results are similar for the margin measures, gmarg and nmarg.

Lagged levels are hardly significant, yet changes are strongly significant with magnitudes of

slope estimates around 10 times greater. For the two turnover ratios arturn and apturn,

the magnitudes of slope coefficients for levels and changes are approximately equal, but the

result is much more statistically significant for changes than levels. In summary, the cross-

sectional regression results are all highly significant for changes in the accouting ratios, with

magnitudes often exceeding those of levels by more than 10 times. These results clearly

suggest that changes in the accounting ratios are stronger determinants in the cross-section

of returns.

In the second approach, we make use of the double-sorting methods to see if recent

changes in the accounting ratios produce return spreads, after controlling for the current

levels. The reason for this specification is as follows: From Table 4, we see that both levels

and changes are significant in the cross-section of returns, but changes being stronger of the

two. We are interested in a relative comparison of the two, noting that both are positively

correlated with average returns. We achieve this horse race between levels and changes via

double-sorting. We first sort stocks into five quintiles by the current level of an accounting

ratio. Within each quintile, we are effectively controlling for the current level, and we then

sort stocks in this quintile into further quintiles based on changes. In this manner, we produce

25 portfolios, (dependently) double-sorted first by current level and then by change. Note

that the second step of sorting by changes also corresponds to sorting on lagged levels in the

reverse order, as we are already controlling for current levels. Therefore, increasing patterns

of returns across the change quintiles would suggest that recent changes are stronger than

5We can directly compare their magnitudes because we have normalized both levels and changes prior to

the regression.
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past levels in the cross-section of stock returns.

Tables 5, 6, and 7 report our results from this double-sorting exercise. Looking across

rows, we see that sorting by changes produce mostly positive return spreads, after having

controlled for current levels. Moreover, around half of these results are statistically sig-

nificant. Again, these results serve as solid corroborating evidence to the results from the

Fama-MacBeth regressions. Therefore, we conclude that changes in the accounting ratios

are more significant determinants of stock returns than levels.

4 Fundamental Momentum

The previous section has illustrated that factors formed by sorting on changes in the

accounting variables produce large and positive average returns and a, and that they are

stronger represent strong phenomena than factors formed by sorting on levels of the ac-

counting ratios. In this section, we take this finding a step further by documenting various

properties of the factors formed on changes in accounting ratios.

We observed in Table 3 that these factors have highly significant and positive average

returns and a with respect to both Fama-French three-factor and Carhart four-factor models.

In Table 8, we elaborate on this finding by reporting the full time-series regression statistics

of these factors. There are three main observations. First, all of the factors formed by

sorting on changes in the accounting ratios produce large, positive, and highly significant

a with respect to both Fama-French and Carhart models. In particular, magnitudes of a

are quite large, ranging from 0.5% to 0.75% per month for AROA and AROE. With the

exception of AAPTURN, other factors also exhibit large a ranging from 0.25% to 0.5%

per month. Second, we can see that all of these factors have significant factor loadings on

the momentum factor UMD, and R 2 of time-series regressions increase dramatically once

UMD is included. This close relationship between factors formed by sorting on changes

in the accounting ratios and price momentum is a strong and important one and we will

investigate this in more detail in the following section. Finally, we note that these factors

do not exhibit significant factor loadings on the Fama-French factors, especially after taking

into account the momentum factor UMD. Though often statistically insignificant, these

factors in general have negative loadings on the HML factor.

In Table 9, we check robustness of our results on the factors formed by sorting on changes

in the accounting ratios. We regress our factor returns on Fama-French factors as well as

the momentum factor UMD, Pastor-Stambaugh (2003) liquidity factor PS, credit spread

DEF6 , and NBER Recession Indicator REC. We can see that the factors continue to have

'Motivated by Chen, Roll, and Ross (1986)
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large, significant a after controlling for the additional factors. They also consistently have

positive loadings on the momentum factor. One noteworthy observation is that many of the

factors formed on changes in the accounting ratios exhibit negative, and often statistically

significant, loadings on credit spread, DEF.

Table 10 reports pairwise correlations of these factors formed on changes in the accounting

ratios and the momentum factor UMD. Similar to our results in Table 1, factors AROA

and AROE are highly correlated with each other, while these two are also significantly and

positively correlated with AGMARG and ANMARG. AARTURN and AAPTURN show

weaker correlations with other factors, but the correlations are all positive. Finally, we note

that all factors except for AARTURN and AAPTURN show high correlations with UMD,

with magnitudes above 45%.

Based on these results, we refer to our results on the factors formed by sorting on changes

in the accounting variables as "fundamental momentum". First, "fundamental" refers to the

fact that these factors are formed by sorting on accounting data, rather than stock market

data. Second, "momentum" refers to the cross-correlation between changes in the accounting

variables and subsequent changes in prices. In a similar spirit, Chordia and Shivakumar

(2006) refer to their results as "earnings momentum".

5 Relationship between Price and Earnings Momen-

tum

In this section, we first examine whether the momentum profits can be explained by

the factors formed on changes. Table 11 reports regressions of the momentum factor UMD

on the factors formed on levels and changes in the accounting ratios in addition to the

Fama-French factors. There are two main observations. First, UMD has highly positive

and significant factor loadings on factors formed on changes. Moreover, AROA, AROE,

AGMARG, and ANMARG eliminate statistical significance of momentum a, with the first

two reducing the magnitudes of momentum a to 0.01% per month. Second, factors formed on

levels, on contrast, cannot explain the momentum profits. Though controlling for ROA and

ROE marginally reduces statistical significance of momentum a, but momentum remains

largely profitable.

Chordia and Shivakumar (2006) makes a similar finding where they use the SUE portfolio

to explain the momentum profits. Based on this evidence, they conclude "our results support

the argument that price momentum is primarily subsumed by the systematic component of

earnings momentum and that price momentum is merely a manifestation of the earnings
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momentum." If this were true, this would be a very significant statement. Price momentum

still remains elusive despite much efforts, and if earnings momentum captured the essential

elements of price momentum, it would greatly help our quest for price momentum. Alas, we

find that price momentum is neither fully explained nor subsumed by earnings momentum.

We make this point by implementing double-sorts. If it were true that price momentum

is fully subsumed by earnings momentum, then sorting by past returns umd should not

produce large return spreads, after controlling for changes in earnings by either Aroa or

A/roe. Tables 12 and 13 report average returns and a against Fama-French three-factors of

25 double-sorted portfolios for Aroa and Aroe, respectively. In these tables, we first sort by

Aroa or Aroe, and then sort by umd. In Table 12, we see that return spreads across quintiles

sorted by umd are all positive and moreover most of the Aroa quintiles show significantly

positive a on long-short portfolios sorted by umd within the Aroa quintile. A similar pattern

occurs for Aroe in Table 13. These results provide strong evidence that change in earnings,

measured by Aroa or Aroe, does not subsume large return spreads associated with past

returns umd.

As a robustness check, we perform double-sorts in the reverse order, first sorting by umd,

and then sorting by Aroa or Aroe. Here, we see that sorting by Aroa or Aroe produce return

spreads, after controlling for umd. Therefore, it seems that both past returns and changes

in earnings are strong predictors of subsequent stock returns and neither one subsumes the

other. If anything, the results for return spreads associated with umd controlling for Aroa

or Aroe (Tables 12 and 13) are stronger than return spreads associated with Aroa or Aroe

controlling for umd (Tables 14 and 15).

Therefore, we disagree with the conclusion of Chordia and Shivakumar (2006) that "price

momentum is merely a manifestation of the earnings momentum." Though our factors formed

on changes in the accounting ratios are able to explain momentum profits in the sense of

insignificant portfolio a, we observe that both price changes and earnings changes produce

large and significant spreads in stock returns. We conclude that though price and earnings

momentum seem to share a common systematic component, residual components in them

are still significant in the cross-section of stock returns.

6 Conclusion

We study cross-sectional pattern in stock returns associated with accounting ratios and

their changes. We consider measures of book returns, operating efficiency, and profit mar-

gins. We find that levels and changes in many of these accounting ratios produce large and
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significant return spreads. In further investigating their properties, we make three main

findings. First, changes in these accounting ratios, rather than their levels, are important

and strong determinants of stock returns in the cross-section. Second, portfolios formed by

sorting on changes in the accounting ratios have very large and significant a with respect to

Fama-French and Carhart factor models, and this is robust to inclusion of additional risk fac-

tors. We call our results, "fundamental momentum". Third, we document that momentum

profits can be explained away by these factors formed on changes. However, we demonstrate

that this regression result does not mean that earnings momentum fully explains price mo-

mentum. In particular, we find that past returns generate large and positive return spreads

after controlling for changes in earnings, and vice versa. This leads us to conclude that

residual components in price and earnings momentum after accounting for their common

component still contain much explanatory power in the cross-section of stock returns.
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Table 1: Summary of Accounting Ratio Definitions

Description

Return on assets
Return on equity

Acconts receivable turnover

Accounts payable turnover

Gross profit margin
Net profit margin

Definition
IBQ (t) /ATQ (t - 3)

IBQ (t) /CEQQ (t - 3)
REVTQ (t) /j (RECTQ (t - 3) + RECTQ (t))

COGSQ (t) /1 (APQ (t - 3) + APQ (t))
(REVTQ (t) - COGSQ (t)) /REVTQ (t)

OIBDPQ (t) /REVTQ (t)

Compustat item at month t is defined as the most recent data entry if there has been at

least one reported quarterly earnings during the past five months, and undefined otherwise.

Changes in these accounting ratios, denoted with a preceeding A, are defined as year-over-
year changes, i.e.,Ax (t) = x (t) - x (t - 12).
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roa (t)
roe (t)

arturn (t)
apturn (t)
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Table 2: Summary Statistics on Accounting Ratios and Their Changes

Levels
Corr

Variable Mean Std. Dev. roe arturn apturn gmarg nmarg

0.01411
0.03037
3.32528
3.10638
0.25196
0.01949

0.0448
0.1018
6.5013
2.8238
1.6959
2.7173

0.7821 0.0513
0.0539

0.0782
0.0349
0.1375

0.3217
0.2167
-0.0390
-0.2066

0.3518
0.2788
-0.0350
-0.0889
0.6810

Changes

Variable Mean Std. Dev. Corr(-, A-)

Aroa
Aroe

Aarturn
Aapturn,
Agmnarg
Anmarg

0.0006
-0.0003
--0.0056
-0.0093
0.0107
0.0070

0.0455
0.0969
2.6819
1.6581
1.2987
2.1800

0.4154
0.5148
0.1965
0.2580
0.3560
0.3809

Changes
Corr

Variable Aroe Aarturn Aapturn Agmarg Anmarg

Aroa 0.7755 0.0551 0.0215 0.1848 0.2916
Aroe

Aarturn
Aapturn
Agmarg
Anmarg

0.0418 0.0078
0.1052

0.1409
0.0246
-0.1644

0.2246
0.0363
0.0027
0.5686

Corr(x, Ax) denotes correlation between accounting ratio x and its year-over-year

change Ax.
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Table 3: Summary Statistics of Factors Based on Accounting Ratios

Factors Formed by Sorting on Accounting Ratios

FF3 FF3+UMD
Factor Mean Std. Dev. a 2 a R2

0.0058***
[4.27]

0.0065***
[4.62]

0.0038***
[3.11]

0.0016*
[1.86]

0.0009
[0.8]

0.0020*
[1.73]

0.0268

0.0283

0.0219

0.0157

0.0194

0.0248

0.0075***
[5.49]

0.0077***
[5.61]

0.0042***

[4.44]
0.0009
[1.18]

0.0026***
[3.07]

0.0036***
[3.55]

11.4%

14.7%

37.8%

14.4%

48.1%

39.6%

0.0062***
[4.4]

0.0061***
[4.46]

0.0039***
[4.1]

0.0005
[0.65]

0.0027***
[3.21]

0.0034***
[3.07]

17.3%

22.8%

38.1%

15.8%

48.3%

39.8%

Factors Formed by Sorting on Changes in Accounting Ratios

FF3 FF3+UMD
Factor Mean Std. Dev. a R2 a R 2 Corr(., A-)

AROA

AROE

AARTURN

AAPTURN

AGMARG

ANMARG

0.0065***
[6.08]

0.0063***
[6.44]

0.0047***
[6.24]

0.0018***
[3.36]

0.0037***
[4.81]

0.0046***
[4.88]

0.0202

0.0190

0.0166

0.0112

0.0160

0.0198

0.0075***
[7.79]

0.0069***
[7.9]

0.0046***
[5.96]

0.0017***
[3.01]

0.0039***
[5.3]

0.0051***
[6.13]

8.0%

3.1%

0.4%

0.1%

6.1%

12.0%

0.0055***
[6.3]

0.0049***
[6.14]

0.0037***
[5.07]

0.0014**
[2.46]

0.0025***
[3.34]

0.0033***
[3.96]

32.6%

31.6%

8.0%

2.1%

25.4%

31.1%

0.4317

0.4236

0.0425

0.0534

0.2789

-0.0200

Corr(X, AX) denotes return correlation between factors X and AX. Columns FF3 and
FF3+UMD report a and R 2 of regressions of factors on Fama-French three-factor and

Carhart four-factor models. Numbers in square brackets are t-statistics and *, *, and *

denote statistical significance at 10%, 5%, and 1% levels.
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Table 4: Fama-MacBeth Regressions

Without Controlling for umd Controlling for umd
Variable Lagged Level Change I Lagged Level Change

0.0061**
[2.11]

0.0036***
[3.61]

0.0005
[1.04]

0.0009***
[2.71]

0.0011*
[1.74]

0.0012
[1.64]

0.1703***
[6.77]

0.0545***
[7.64]

0.0005***
[6.81]

0.0006***
[5.27]

0.0078***
[5.22]

0.0121***
[4.28]

0.0054*
[1.94]

0.0032***
[3.43]

0.0004
[0.87]

0.0008**
[2.54]

0.0009
[1.52]

0.0007
[1.08]

0.1401***
[6.30]

0.0456***
[7.26]

0.0041***
[6.40]

0.0006***
[5.55]

0.0060***
[4.86]

0.0094***
[3.88]

This table reports average slopes and their standard errors in Fama-MacBeth (1973) regres-
sions of returns on lagged levels and changes of accounting ratios, controlling for log market
capitalization, log book-to-market ratio, and cumulative return from month t - 12 to month
t - 1 denoted by umd. The two regressors of interest, lagged levels and changes of account-
ing ratios are standarized by their cross-sectional standard deviations in each month t in the
Fama-MacBeth regressions. Numbers in square brackets are t-statistics and *, * and *
denote statistical significance at 10%, 5%, and 1% levels.
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Table 5: Double-Sorted Portfolios on Levels and Changes, roa and roe

FF3+UMD a of Portfolios Double Sorted by roa and Aroa

Aroa

1

2

3

roa
4

5

5-1

1
0.0O69***

[-3.49]
-0.0007
[-0.39]
0.0007
[0.5]

-0.0003
[-0.2]

0.0018
[1.3]

0.0087***
[3.65]

2
-0.0036*

[-1.94]
-0.0021
[-1.59]

-0.0010
[-0.77]
0.0000
[-0.02]

0.0033***
[2.71]

0.0069***
[2.84]

3
-0.0061***

[-3.05]
-0.0002
[-0.14]

0.0021**
[2.22]

0.0027**
[2.31]

0.0032***
[2.61]

0.0093***
[3.94]

4
-0.0045*

[-1.96]
0.0018
[1.35]

0.0004
[0.34]

0.0019
[1.44]

0.005***
[3.18]

0.0095***
[3.28]

5
-0.0014
[-0.51]

-0.0012
[-0.9]

0.0033**
[2.33]

0.0046***
[2.97]

0.0068***
[3.09]

0.0081***
[2.73]

5-1
0.0055**

[2.13]
-0.0005
[-0.27]
0.0027

[1.3]
0.0049**

[2.35]
0.0050*

[1.95]

FF3+UMD a of Portfolios Double Sorted by roe and Aroe

Aroe

1

2

3

roe
4

5

5-1

1
-0.0060***

[-3.23]
-0.002
[-1.28]

-0.0001
[-0.06]
-0.0009
[-0.62]
0.0018
[1.23]

0.0077***
[3.18]

2
-0.0042**

[-2.25]
-0.0024*

[-1.69]
-0.0014

[-1.2]
0.0008

[0.7]
0.004***

[3.27]
0.0081***

[3.75]

3
-0.0033*

[-1.81]
-0.001
[-0.73]
0.0000
[-0.01]

0.0020*
[1.75]

0.0036***
[3.22]

0.0069***
[2.99]

4
-0.0028
[-1.33]

-0.0008
[-0.72]
0.0011
[0.99]

0.0026**
[2.40]

0.0027*
[1.83]

0.0055*
[1.89]

5
-0.0047*

[-1.96]
-0.0004
[-0.23]

0.0028*
[1.79]

0.0028*
[1.65]

0.0068***
[3.94]

0.0115***
[3.87]

5-1
0.0012
[0.48]

0.0016
[0.73]

0.0029
[1.38]

0.0038*
[1.71]

0.0050**
[2.34]

This table reports a of 25 double-sorted portfolios formed by first sorting on accounting

ratio x, then by sorting on change in the ratio Ax within each bin (dependent double sort;

capturing return spread associated with different levels of Ax controlling for the level x).

Numbers in square brackets are t-statistics and *, * and *** denote statistical significance

at 10%, 5%, and 1% levels.
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Table 6: Double-Sorted Portfolios on Levels and Changes, arturn and apturn

FF3+UMD a of Portfolios Double Sorted by arturn and Aarturn

Aarturn

1

2

3
arturn

4

5

5-1

1
-0.0087***

[-4.93]
-0.0023
[-1.53]

-0.0013
[-0.9]

-0.0016
[-1.03]

0.0024*
[1.69]

0.0110***
[4.96]

2
-0.0032**

[-2.14]
-0.0019
[-1.46]

-0.0001
[-0.06]

0.0017*
[1.75]

0.0017
[1.04]

0.0049**
[2.29]

3
-0.0027**

[-1.98]
0.0012
[1.07]

0.0029**
[2.12]

0.0013
[1.13]

0.0016
[1.37]

0.0044**
[2.31]

4
0.0015
[1.09]

-0.0002
[-0.18]
0.0009
[0.68]

0.0046***
[3.26]

0.0046***
[3.32]

0.0031
[1.56]

5
0.0001
[0.07]

0.004**
[2.18]

0.0049***
[3.14]

0.0012
[0.76]

0.003*
[1.92]

0.0029
[1.32]

5-1
0.0088***

[3.57]
0.0062**

[2.47]
0.0062***

[2.67]
0.0028
[1.27]

0.0006
[0.36]

FF3+UMD a of Portfolios Double Sorted by apturn and Aapturn

Aapturn

1

2

3
apturn

4

5

5-1

1
-0.0016
[-1.21]

-0.0025
[-1.63]
0.0001
[0.09]

-0.0001
[-0.11]

-0.0011
[-0.66]
0.0005
[0.24]

2
0.0031**

[2.2]
0.0024*

[1.8]
-0.0001
[-0.12]
0.0009
[0.85]

-0.0006
[-0.44]

-0.0037*
[-1.85]

3
0.0005
[0.42]

0.0012
[1.21]

0.0026**
[2.13]

0.0011
[0.75]

0.0004
[0.39]

-0.0001
[-0.04]

4
0.0002
[0.19]

0.0026**
[2.01]

0.0007
[0.56]

0.0014
[1.11]

0.0015
[1.24]

0.0013
[0.69]

5 5-1
0.0022

[1.4]
0.0006
[0.44]
0.001
[0.62]
0.0015
[1.04]

0.0026
[1.32]

0.0004
[0.16]

0.0038*
[1.92]

0.0031
[1.59]

0.0009
[0.48]

0.0016
[0.82]

0.0037
[1.34]

This table reports a of 25 double-sorted portfolios formed by first sorting on accounting

ratio x, then by sorting on change in the ratio Ax within each bin (dependent double sort;

capturing return spread associated with different levels of Ax controlling for the level x).

Numbers in square brackets are t-statistics and *, * and *** denote statistical significance

at 10%, 5%, and 1% levels.
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Table 7: Double-Sorted Portfolios on Levels and Changes, gmarg and nmarg

FF3+UMD a of Portfolios Double Sorted by gmarg and Agmarg

Agmarg
1 2 3 4 5 5-1

1 -0.0039*** -0.0014 0.0014 0.0014 -0.0002 0.0037*
[-2.7] [-0.97] [1.13] [1.05] [-0.13] [1.84]

2 -0.0022 0.0008 0.0024 0.0002 0.0014 0.0036**
[-1.59] [0.63] [1.641 [0.14] [1.17] [2.07]

3 -0.0022* 0.0009 0.0000 0.0022* -0.0006 0.0017
gmarg [-1.69] [0.63] [-0.01] [1.84] [-0.32] [0.97]

4 0.0001 0.0009 0.0021* 0.0033*** 0.0009 0.0008
[0.07] [0.74] [1.70] [2.89] [0.50] [0.39]

5 0.0010 0.0019 0.0036*** 0.0041*** 0.0040* 0.0030
[0.58] [1.37] [2.69] [2.86] [1.86] [1.09]

5-1 0.0049** 0.0033 0.0022 0.0026 0.0042*
[2.17] [1.62] [1.14] [1.27] [1.75]

FF3+UMD a of Portfolios Double Sorted by nmarg and Anmarg

Anmarg
1 2 3 4 5 5-1

1 -0.0059** -0.0075*** -0.0015 0.0027 0.0020 0.0080***
[-2.57] [-3.4] [-0.74] [1.36] [0.74] [3.11]

2 -0.0015 0.0007 -0.0006 0.0035** 0.0023 0.0038
[-0.85] [0.46] [-0.44] [2.46] [1.27] [1.52]

3 -0.0012 0.0021* -0.0001 0.0005 0.0028 0.0040
nmarg [-0.81] [1.68] [-0.1] [0.37] [1.29] [1.54]

4 -0.0009 0.0000 0.0033*** 0.0046*** -0.0014 -0.0005
[-0.58] [0.03] [2.67] [2.8] [-0.78] [-0.24]

5 -0.0006 0.0004 0.0011 0.0047*** 0.0025 0.0031
[-0.41] [0.40] [0.89] [3.79] [1.41] [1.44]

5-1 0.0053* 0.0079*** 0.0026 0.0021 0.0005
[1.85] [3.10] [1.10] [0.82] [0.16]

This table reports a of 25 double-sorted portfolios formed by first sorting on accounting
ratio x, then by sorting on change in the ratio Ax within each bin (dependent double sort;
capturing return spread associated with different levels of Ax controlling for the level x).
Numbers in square brackets are t-statistics and *, *, and *** denote statistical significance
at 10%, 5%, and 1% levels.
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Table 8: Regression of Accounting Factor Returns on FF3 and FF3+UMD

Factor a /MKT OSMB OHML IUMD R
AROA 0.0075*** 0.00 -0.06 -0.19*** 8.0%

[7.79] [-0.02] [-1.26] [-3.12]
0.0055*** 0.04 -0.08 -0.11** 0.23*** 32.6%

[6.3] [1.58] [-1.54] [-2.13] [6.55]
AROE 0.0069*** 0.00 -0.06 -0.11** 3.1%

[7.9] [-0.05] [-1.63] [-2.36]
0.0049*** 0.04** -0.07* -0.03 0.23*** 31.6%

[6.14] [2.06] [-1.96] [-0.78] [7.97]
AARTURN 0.0046*** 0.00 0.02 0.03 0.4%

[5.96] [-0.16] [0.44] [0.74]
0.0037*** 0.01 0.01 0.06 0.10*** 8.0%

[5.07] [0.45] [0.18] [1.64] [5.39]
AAPTURN 0.0017*** 0.00 0.01 0.01 0.1%

[3.01] [0.08] [0.35] [0.44]
0.0014** 0.01 0.00 0.02 0.04** 2.1%

[2.46] [0.56] [0.18] [0.95] [2.42]
AGMARG 0.0039*** 0.03 0.02 -0.10** 6.1%

[5.3] [1.26] [0.52] [-2.3]
0.0025*** 0.06*** 0.00 -0.04 0.16*** 25.3%

[3.34] [2.97] [0.15] [-1.31] [6.00]
ANMARG 0.0051*** 0.01 0.05 -0.19*** 12.0%

[6.13] [0.46] [1.27] [-4.22]
0.0033*** 0.05** 0.04 -0.13*** 0.20*** 31.1%

[3.96f [2.13] [1.22] [-3.12] [6.70]

This table reports time-series regression results of accounting factor returns on Fama-French
three factors and Carhart four factors. Numbers in square brackets are t-statistics and *,
**, and *** denote statistical significance at 10%, 5%, and 1% levels.
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Table 9: Regression of Factor Returns on Additional Risk Factors

Factor a
AROA 0.0042***

[4.38]
AROE 0.0045***

[5.39]

IUMD

0.2173***
[7.35]

0.2195***
[8.21]

OPS
-0.0028
[-0.09]
0.0133
[0.47]

ODEF
-0.1243***

[-3.06]
-0.1065*

[-1.87]

OREC
0.0031
[1.40]

0.0021
[0.93]

AARTURN 0.0044*** 0.0900*** 0.0301** -0.0643 0.0002
[5.46] [4.36] [2.17] [-1.75] [0.08]

AAPTURN 0.0014*** 0.0469*** -0.0108 0.0181 0.0008
[2.59] [2.71] [-0.66] [0.58] [0.50]

AGMARG 0.0023*** 0.1342*** 0.0016 -0.0768** -0.0007
[3.32] [5.34] [0.06] [2.11] [-0.35]

ANMARG 0.0032*** 0.1845*** -0.0076 -0.1024*** -0.0005
[3.90] [6.55] [-0.21] [-2.68] [-0.23]

This table reports time-series regression results of accounting factor returns on an exten-
sive set of risk factors including the Fama-French three factors (market, size, and value),
momentum UMD, Pastor-Stambaugh liquidity factor PS, excess return on the Dow Jones
Corporate Bond Return Index DEF, and NBER Recession Indicator REC. The Pastor-
Stambaugh factor is from Pastor and Stambaugh (2003). The use of credit spread DEF is
based on Chen, Roll, and Ross (1986). Numbers in square brackets are t-statistics and *,
**, and *** denote statistical significance at 10%, 5%, and 1% levels.
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Table 10: Correlations among Accounting Factors

Correlations

| AROE AARTURN AAPTURN AGMARG ANMARG UMD
AROA 0.8997 0.2946 0.1253 0.6177 0.7055 0.5295
AROE

AARTURN
AAPTURN
AGMARG
ANMARG

0.2621 0.1356
0.2595

0.6197
0.3526

-0.1309

0.6643
0.2757
0.0741
0.7438

0.5436
0.2610
0.1319
0.4522
0.4819
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Table 11: Regression of Momentum Returns on Accounting Factors

Factors Formed by Sorting on Changes in Accounting Ratios

Factor a 3 MKT 3 SMB OHML OFACTOR
None 0.0085*** -0.1800* 0.0850 -0.3384*

[4.50] [-1.93] [0.13] [-1.91]
AROA -0.0001 -0.1864** 0.1513 -0.1238 1.1795***

[-0.03] [-2.37] [1.16] [-0.77] [6.65]
AROE -0.0001 -0.1855*** 0.1499 -0.2112 1.2821***

[-0.02] [-2.62] [1.2] [-1.41] [6.95]
AARTURN 0.0054** -0.1655* 0.0939 -0.3362** 0.7320**

[2.20] [-1.76] [0.72] [-1.98] [2.42]
AAPTURN 0.0080*** -0.1869* 0.0936 -0.3501* 0.5577**

[3.93] [-1.83] [0.70] [-1.91] [2.48]
AGMARG 0.0038 -0.2288*** 0.0563 -0.2209 1.2868***

[1.64] [-2.72] [0.48] [-1.53] [5.05]
ANMARG 0.0032 -0.2034** 0.0180 -0.1336 1.1089***

[1.44] [-2.52] [0.16] [-0.86] [6.66]

Factors Formed by Sorting on Accounting Ratios

Factor a IMKT OSMB OHML OFACTOR
ROA 0.0054** -0.1767** 0.1995 -0.2685 0.4525**

[2.04] [-2.02] [1.48] [-1.4] [2.36]
ROE 0.0048* -0.1799** 0.2551* -0.3404* 0.5197**

[1.67] [-2.12] [1.95] [-1.95] [2.57]
ARTURN 0.0080*** -0.1659* 0.1097 -0.3934** 0.1812

[3.29] [-1.84] [0.83] [-2.1] [0.76]
APTURN 0.0083*** -0.1609* 0.0884 -0.3871** 0.3904

[4.12] [-1.78] [0.61] [-2.26] [1.47]
GMARG 0.0091*** -0.1881** 0.0769 -0.4127** -0.1441

[4.6] [-1.99] [0.57] [-2.24] [-0.57]
NMARG 0.0083***

[3.88]
-0.1746*

[-1.78]
0.1226
[1.13]

-0.3603**
[-2.04]

0.1172
[0.6]

This table reports regression statistics of UMD on factors formed by sorting on changes and
levels of the accounting variables, in addition to the Fama-French three-factors. Numbers in
square brackets are t-statistics and *, **, and *** denote statistical significance at 10%, 5%,
and 1% levels.
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Table 12: Double sorts on price and earnings changes

Average Returns of Portfolios Double-Sorted on Aroa and umd

umd
1 2 3 4 5 5-1

1 0.0017 0.0025 0.0026 0.0024 0.008** 0.0063*
[0.42] [0.75] [0.89] [0.8] [2.12] [1.73]

2 0.0034 0.0044 0.0007 0.0048** 0.0081*** 0.0047
[0.96] [1.58] [0.27] [2.01] [2.781 [1.41]

3 0.007** 0.0081*** 0.0051** 0.0071*** 0.0088*** 0.0018
Aroa [2.32] [3.66] [2.03] [3.03] [3.15] [0.61]

4 0.004 0.0046* 0.008*** 0.0073** 0.0091*** 0.0051*
[1.35] [1.89] [3.55] [2.5] [2.7] [1.65]

5 0.0055* 0.0071** 0.0079** 0.0106*** 0.0159*** 0.0104**
[1.71] [2.43] [2.39] [2.68] [3.13] [2.38]

5-1 0.0038* 0.0047** 0.0053** 0.0083*** 0.0079***
[1.66] [2.07] [2.07] [2.65] [2.98]

FF3 a of Portfolios Double-Sorted on Aroa and umd

umd
1 2 3 4 5 5-1

1 -0.0055** -0.0038* -0.0033** -0.0023 0.0035 0.0090**
[-2.25] [-1.94] [-2.26] [-1.46] [1.65] [2.44]

2 -0.0034 -0.0018 -0.0053*** -0.0003 0.0032** 0.0066**
[-1.52] [-1.16] [-3.82] [-0.25] [2.26] [1.98]

3 0.0003 0.003** -0.0002 0.0022** 0.0040*** 0.0037
Aroa [0.17] [2.35] [-0.15] [2.04] [2.71] [1.23]

4 -0.0022 -0.0007 0.0028** 0.0025 0.0038** 0.0060**
[-1.25] [-0.56] [2.39] [1.62] [2.12] [2.09]

5 -0.0004 0.0021 0.0031 0.0054** 0.0112*** 0.0116***
[-0.21] [1.24] [1.63] [2.26] [3.89] [2.84]

5-1 0.0050** 0.0059*** 0.0065*** 0.0078** 0.0077***
[2.38] [2.62] [2.61] [2.48] [3.14]

This table reports average returns and Fama-French a of 25 double-sorted portfolios formed

by first sorting on Aroa, then by sorting cumulative past return umd within each bin (de-

pendent double sort; capturing return spread associated with umd controlling for Aroa.

Numbers in square brackets are t-statistics and *, **, and *** denote statistical significance

at 10%, 5%, and 1% levels.
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Table 13: Double sorts on price and earnings changes

Average Returns of Portfolios Double-Sorted on Aroe and umd

umd
1

0.0012
[0.29]

0.0039
[1.08]

0.0056*
[1.91]

0.0057**
[2.11]

0.0053
[1.63]

0.0042
[1.45]

2
0.0034
[1.01]

0.0047*
[1.65]

0.0061***
[2.67]

0.005**
[2.2]

0.0073***
[2.82]

0.0039*
[1.80]

3
0.0036
[1.24]

0.0025
[1.04]

0.0036
[1.40]

0.0086***
[3.5]

0.0073**
[2.44]

0.0037*
[1.71]

4
0.0022
[0.76]

0.0062**
[2.47]

0.0067***
[2.93]

0.0076**
[2.47]

0.009***
[2.62]

0.0068**
[2.52]

5
0.007*

[2.01]
0.0076**

[2.57]
0.0076**

[2.55]
0.011***

[3.29]
0.016***

[3.06]
0.0090***

[2.97]

5-1
0.0058
[1.62]

0.0037
[1.28]

0.0020
[0.67]

0.0054*
[1.71]

0.0106**
[2.24]

FF3 a of Portfolios Double-Sorted on Aroe and umd

umd
1

-0.0058**
[-2.32]

-0.0032
[-1.57]

-0.0003
[-0.17]
0.0001
[0.05]

-0.0014
[-0.66]

0.0044*
[1.66]

2
-0.0030
[-1.58]

-0.0014
[-0.96]
0.0009
[0.64]

0.0001
[0.08]

0.0018
[1.27]

0.0048**
[2.23]

3
-0.0027*

[-1.94]
-0.0032***

[-2.72]
-0.0017
[-1.31]

0.0033***
[2.69]

0.0022
[1.4]

0.0050**
[2.37]

4
-0.0028*

[-1.88]
0.0012
[0.99]

0.0019
[1.55]

0.0031*
[1.83]

0.0035*
[1.76]

0.0063**
[2.39]

5
0.0025
[1.30]

0.0027*
[1.95]

0.0029**
[2.15]

0.0062***
[3.44]

0.0111***
[3.34]

0.0086***
[3.04]

5-1
0.0083**

[2.30]
0.0060**

[2.04]
0.0032
[1.12]

0.0061*
[1.95]

0.0125***
[2.87]

This table reports average returns and Fama-French a of 25 double-sorted portfolios formed
by first sorting on Aroe, then by sorting cumulative past return umd within each bin (de-
pendent double sort; capturing return spread associated with umd controlling for Aroe.
Numbers in square brackets are t-statistics and *, **, and *** denote statistical significance
at 10%, 5%, and 1% levels.
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Table 14: Double sorts on price and earnings changes

Average Returns of Portfolios Double-Sorted on umd and Aroa

1

2

3
umd

4

5

5-1

1
-0.0010
[-0.27]
0.0037
[1.27]

0.0022
[0.82]

0.0076***
[2.85]

0.0071*
[1.72]

0.0081**
[2.12]

2
0.0041
[1.13]

0.0022
[0.80]

0.0029
[1.22]

0.0069***
[2.72]

0.0110***
[3.13]

0.0069*
[1.88]

Aroa
3

0.0046
[1.44]

0.0048*
[1.89]

0.0055**
[2.42]

0.0061**
[2.19]

0.0104***
[3.08]

0.0058*
[1.70]

4
0.0041
[1.23]

0.0073***
[2.96]

0.0059***
[2.61]

0.0099***
[3.78]

0.0131***
[3.27]

0.009**
[2.32]

5
0.0050
[1.43]

0.0053*
[1.88]

0.0062**
[2.28]

0.0064**
[2.00]

0.0136***
[2.67]

0.0087*
[1.84]

5-1
0.0060***

[2.70]
0.0017
[0.83]

0.0040**
[2.13]

-0.0012
[-0.59]

0.0066**
[2.51]

FF3 a of Portfolios Double-Sorted on umd and Aroa

Aroa

1

2

3
umd

4

5

5-1

1
-0.0076***

[-3.25]
-0.0021
[-1.29]

-0.0028*
[-1.94]

0.0025*
[1.78]

0.0024
[1.10]

0.0100***
[2.60]

2
-0.0027
[-1.33]

-0.0039***
[-2.91]

-0.0026**
[-2.42]
0.0020
[1.49]

0.0066***
[3.21]

0.0093***
[2.61]

3
-0.0022

[-1.1]
-0.0012
[-0.93]
0.0005
[0.46]

0.0014
[1.09]

0.0052**
[2.52]

0.0074**
[2.26]

4
-0.0023

[-1]
0.0024
[1.59]

0.0006
[0.54]

0.0051***
[3.40]

0.0079***
[3.42]

0.0102***
[2.81]

5
-0.0018
[-0.75]
0.0000
[0.00]

0.0007
[0.5]

0.0012
[0.68]

0.0090***
[2.96]

0.0108**
[2.38]

5-1
0.0057***

[2.77]
0.0021
[1.02]

0.0035*
[1.83]

-0.0013
[-0.64]

0.0065***
[2.61]

This table reports average returns and Fama-French a of 25 double-sorted portfolios formed
by first sorting on cumulative past return umd, then by sorting by Aroa within each bin
(dependent double sort; capturing return spread associated with Aroa controlling for umd.
Numbers in square brackets are t-statistics and *, * and *** denote statistical significance

at 10%, 5%, and 1% levels.
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Table 15: Double sorts on price and earnings changes

Average Returns of Portfolios Double-Sorted on umd and Aroe

1

2

3

4

5

5-1

1
-0.0031
[-0.81]
0.0033
[1.10]
0.002
[0.72]

0.0059**
[2.13]

0.0067*
[1.74]

0.0097***
[2.81]

2
0.0051
[1.45]

0.0044
[1.63]

0.0033
[1.29]

0.0080***
[3.33]

0.0102***
[2.69]

0.0051
[1.42]

Aroe
3

0.0044
[1.31]

0.0039
[1.57]

0.0054**
[2.27]

0.0067***
[2.64]

0.0116***
[3.36]

0.0072**
[1.97]

4
0.0052
[1.58]

0.0059**
[2.37]

0.0052**
[2.33]

0.0095***
[3.28]

0.0129***
[3.42]

0.0077**
[2.07]

5
0.0035
[1.04]

0.0055**
[2.05]

0.0067***
[2.66]

0.0070**
[2.37]

0.0138***
[3.01]

0.0103**
[2.33]

5-1
0.0065***

[2.63]
0.0021
[1.09]

0.0048***
[2.94]

0.0011
[0.67]

0.0071***
[2.83]

FF3 a of Portfolios Double-Sorted on umd and Aroe

Aroe

1

2

3
umd

4

5

5-1

1
-0.0097***

[-4.04]
-0.0028*

[-1.66]
-0.0036***

[-2.77]
0.0009
[0.63]

0.0022
[1.10]

0.0119***
[3.32]

2
-0.0021
[-1.13]

-0.0016
[-1.14]

-0.0017
[-1.37]

0.0033**
[2.36]

0.0055**
[2.47]

0.0076**
[2.33]

3
-0.0025
[-1.14]

-0.0019*
[-1.67]
0.0003
[0.29]

0.0020
[1.63]

0.0068***
[3.45]

0.0092***
[2.63]

4
-0.0011
[-0.47]
0.0005
[0.34]

0.0002
[0.13]

0.0050***
[3.42]

0.0077***
[3.52]

0.0087**
[2.40]

5
-0.0033
[-1.33]
0.0003
[0.19]

0.0011
[0.80]

0.0018
[1.08]

0.0086***
[3.27]

0.0119***
[2.86]

5-1
0.0065***

[2.67]
0.0031
[1.57]

0.0047***
[2.68]

0.0010
[0.58]

0.0064***
[2.60]

This table reports average returns and Fama-French a of 25 double-sorted portfolios formed
by first sorting on cumulative past return umd, then by sorting by Aroe within each bin
(dependent double sort; capturing return spread associated with Aroe controlling for umd.
Numbers in square brackets are t-statistics and *, * and *** denote statistical significance
at 10%, 5%, and 1% levels.
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