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ENERGY CONVERSION IN LAMINAR MAGNETOHYDRODYNAMIC CHANNEL FLOW

by

John Paul Penhune

Submitted to the Department of Electrical Engineering on May 13,
1961 in partial fulfillment of the requirements for the degree
of Doctor of Philosophy.

ABSTRACT

This thesis presents a detailed theoretical analysis of
two types (d-c conduction-driven and a-c induction-driven) of
laminar, incompressible, viscous magnetohydrodynamic flow in a
high-aspect-ratio channel, and of the operation of these flows
as various forms of energy converters. The introduction indi-
cates that laminar flow may be of practical importance in
magnetohydrodynamic channel flow devices, because the strong
magnetic fields that are necessary for efficient energy con-
version have been found to suppress turbulence. The treatment
is unified by obtaining all of the basic solutions from a single
set of fundamental equations in dimensionless form, and by
presenting the results in terms of characteristic dimensionless
parameters.

First, the basic solutions for d-c conduction-driven
(Hartmann) flow are obtained, and a variational principle for
this problem is presented. Although the square of the Hartmann
number is commonly interpreted as a measure of the ratio of
ohmic to viscous dissipation, exact analysis of both the I = 0
and the E = 0 flow dampers shows that this interpretation is
often considerably in error. The operation of this flow as a
motor (pump) and a generator is analyzed in detail, and uni-
versal efficiency curves are presented. Contrary to some opinion,
efficiencies greater than one-half are possible, at the expense
of less-than-maximum power conversion.

Second, the non-linear differential equations are derived,
which govern a-c induction-driven flow with either even or odd
excitation, if the fluid velocity is independent of time. These
non-linear equations are converted to an infinite set of linear
differential equations with variable coefficients that is



uncoupled from below, by making a perturbation expansion in the
magnetic Reynolds number. This set of equations is solved by
an analytical-numerical technique, and velocity and magnetic
field profiles are presented for various values of the parameters.
These basic profiles are used to form further results such as
flow rate and efficiency curves, and sample plots are presented.
The relative a-c to d-c response in parallel flow is found to be
quite small in common fluids at typical frequencies; and under
this assumption, the equation that governs the second-harmonic
time variations in the fluid velocity is derived.

Thesis Supervisor: William D. Jackson
Title: Assistant Professor of Electrical Engineering
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Chapter I

INTRODUCTION

1.1 Historical Background

The first use of a magnetohydrodynamic channel flow as an

energy converter was probably the direct-current electromagnetic
*1i

pump for mercury that was designed by Hartmann ' in 1918 for

use with the so-called jet-wave rectifier. Previously, there

had been some simple experiments designed to demonstrate the

interactions between a magnetic field and a flowing, elec-

trically conducting fluid, notably the attempt of Faraday2 to

measure the voltage induced in the river Thames by its motion

through the earth's magnetic field (the v x B electric field),

and the demonstration by Northrup3 of the deformation of the

surface of a pool of mercury caused by a current passed through

its bulk (the J x B body force).

The first detailed theoretical investigation of a magneto-

hydrodynamic channel flow was also made by Hartmann in 1937.

He obtained the velocity profile and the fluid resistance law

for the laminar flow in a high-aspect-ratio channel of a con-

ducting fluid in the presence of a uniform transverse magnetic

field; and discussed some of the consequences of this analysis

in the design of electromagnetic pumps. In the same year,

Hartmann and Lazarus reported some experimental results that

*
The superscript numerals refer to the Bibliography that begins
on p.171.
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were partially explained by Hartmann's theoretical work. The work

of Hartmann prompted the author to investigate in detail the pro-

perties of this flow when it is employed as various types of energy

converters.5

The principal energy conversion application of incompressible

magnetohydrodynamic channel flows has been to electromagnetic

pumps (both conduction and induction) for circulating liquid metal
*

coolants through the heat exchangers of atomic reactors. There

has been considerable practical design analysis of such pumps, but

invariably slug flow (flow in which the fluid velocity is constant

across the channel) is assumed and terminal properties are

emphasized. A notable theoretical exceptionis the work of

Harris, in which he shows that under certain circumstances

laminar induction driven flow resembles Hartmann flow. This work

aroused the author's interest in formulating a general theory of

laminar induction driven flows in which non-linear effects are

considered.

Recently there has been considerable interest in magneto-

hydrodynamic channel flow devices in which the working fluid is a

conducting gas or plasma. A large part of this effort centers

around the direct-current magnetohydrodynamic power generator,

For reviews of the various types of electromagnetic pumps and
their applications, see Cage,6 Barnes,7 and Watt.8

Prominent among such analyses are those of Blake9 '1 0 and Watt.

12
See Ch. 8 of Harris.

13For design studies, see Sporn and Kantrowitz, and Steg and
Sutton.14 Some experimental results are presented by Way et
al., 15 and Rosa.1 6



which its proponents hope will become a large-scale source of

electric power. There has also been continuing interest in the

acceleration of a plasma by a traveling magnetic field. 1721819

Most of the theoretical analyses of these plasma devices are based

on one-dimensional, compressible, magnetofluid dynamics.

1.2 The Object and Scope of This Investigation

The object of this investigation is to provide a unified and

detailed description of two types of magnetohydrodynamic channel

flow (direct-current conduction-driven, and alternating-current

induction-driven), and of their operation as various types of

energy converters. The treatment is unified because the deriva-

tion of all flow and field properties begins with a general and

fundamental set of equations of motion in dimensionless form

(see Chapter II); and because the results are presented in terms

of characteristic dimensionless groups, so that the effect on the

solutions of changes in various physical parameters is clearly

evident, and different results are easily compared. The treat-

ment is detailed because its emphasis is on first obtaining the

detailed properties of the flow, such as the velocity profile

and the magnetic field distribution, and then on deducing from

these detailed properties the terminal properties of the flow

operating as an energy conversion device. A further objective

of the chapters dealing with induction-driven flow is to obtain

the solution to a non-linear magnetohydrodynamic problem. All

too often, such problems are either linearized or abandoned.

However, in energy conversion non-linearity is the rule; not the

exception0 Finally, the object of this investigation is not

primarily to discuss the practical design of better magnetohydro-

dynamic energy converters, but to provide better understanding



of the detailed nature of two classes of magnetohydrodynamic channel

flows and the energy conversion processes that take place within

them.

The scope of this investigation is restricted to the laminar,

viscous, incompressible magnetohydrodynamic channel flow of a

homogeneous and isotropic fluid. The most common examples of such
**

fluids are electrolytes, and liquid metals such as mercury and

sodium-potassium alloy (Na K). In addition, the channel that is

considered is rectangular and has a high aspect ratio. Further-

more, two forms of electrical excitation are considered: the

direct-current conduction drive, in which a uniform transverse

magnetic field that is parallel to the shorter sides of the

channel cross section interacts with a non-uniform direct-current

density that flows parallel to the longer sides of the channel

cross section (see Fig. 3-1); and the alternating-current induction

drive, in which surface current sheets (with either even or odd

symmetry) flowing on the longer sides of the channel and traveling

in the direction of the fluid flow produce a traveling magnetic

field that "drags along" the conducting fluid (see Fig. 5-1).

Finally, throughout this investigation a conscious effort has been

made to make no assumptions that cannot be practically realized

experimentally. (e.g., An infinite slit channel is not

physically realizable, but a long rectangular channel with a

twenty to one aspect ratio approximates it very closely.) Flow

The results that are obtained here should also be applicab e to
gas flows at low Mach numbers. See, for example, Shapiro.l

**
Electrolytes pose other problems such as dielectric polarization
and electrochemical action.

4.



devices that are designed to conform to these theoretical assump-

tions may not be the best possible energy converters, but their

operating characteristics should provide an unambiguous check of

the theoretical results, and they should be magnetohydrodynamic

energy converters that are well understood.

1.3 The Importance of Laminar Flow

In view of the fact that most practical hydrodynamic flows
*

are turbulent, the restriction of this investigation to'laminar

magnetohydrodynamic flows deserves some discussion. There are

three reasons for studying laminar magnetohydrodynamic flows.

The first reason is analytical, the second is philosophical, and

the third is practical.

The analytical reason is that laminar magnetohydrodynamic

flows are susceptible of analysis by ordinary higher mathematical

methods, whereas turbulent magnetohydrodynamic flows have so far

escaped such treatment, and have only been analyzed by the semi-

empirical techniques of turbulent fluid mechanics (notably the

work of Harris 12). Thus, the restriction to laminar flows makes

the mathematical analysis more tractable and thereby allows more

involved results (e.g., efficiencies) to be obtained.

* 21
See, for example, Hunsaker and Rightmire, Ch. VIII.

**
A rational theory of hydrodynamic and magnetohydrodynamic
turbulence based on the calculus of random functionals is
being developed by Poduska.22

5.
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The philosophical reason is that although the majority of

practical hydrodynamic flows are turbulent, the great bulk of

existing theoretical knowledge concerns laminar and even ideal

fluid flow. Nevertheless, this knowledge of laminar flows has

helped to guide and shape both theoretical and experimental work
0*

on more complicated turbulent flows. In the words of Pai,

"The understanding of the laminar viscous flow seems a pre-

requisite for the complete understanding of turbulent flow."

Presumably, the same is true of magnetohydrodynamic flow.

The practical reason is that the high magnetic fields that

are found to be necessary for efficient energy conversion (see

Chs. IV and VII) have also been found to suppress turbulence.
4

In their classic experiments, Hartmann and Lazarus found that

the transition from turbulent to laminar flow depends not only
**

on the Reynolds number but also on the strength of a transverse
25

magnetic field. Later, Murgatroyd carefully investigated the

turbulent to laminar transition in a mercury flow in the presence

of a transverse magnetic field, and found that the critical

Reynolds number Rc [see Eq. (2.2.17)] was approximately related

to the Hartmann number M [see Eq. (2.2.20)] by the equation

R 225M, (1.3.1)

* 23*See the preface to Pai.
**
For an introduction to the experimental evidence concerning the
laminar-turbulgnt transition in hydrodynamic flow, see Hunsaker
and Rightmire,Ll Ch. VIII, and Pai,24 Ch. I.



for large values of M. (In hydrodynamic flow R c-. 500.) This

linear dependence of R on M had been conjectured by

Lundquist26 on physical grounds, and was predicted for the laminar
27

to turbulent transition by Lock on the basis of linear stability

theory. (Lock predicted the much higher value Rc -. 540 4, for

large M.)

Recently, Globe28 made a detailed experimental study of the

effect of a longitudinal magnetic field on the laminar to
*

turbulent transition in a mercury channel flow. The effect of

the longitudinal field is much less than that of an equal trans-

verse field; in fact, the maximum change in the critical Reynolds

number that Globe obtained was a factor of about 1.9, for a

Hartmann number of about 20. The increase of the critical

Reynolds number for the laminar to turbulent transition under the

influence of a longitudinal magnetic field was predicted by

Stuart30 on the basis of linear stability theory; and Globe has

shown that the ratios given by theory and experiment, of the

critical Reynolds numbers with a longitudinal magnetic field to

those without a field, are in reasonable agreement.

Although Globe's experiments concerned the laminar to turbulent
transition, he was careful to provide sufficient initial dis-
turbance of the,flow that the critical Reynolds numbers he
measured should correspond quite well to those for the turbulent
to laminar transition.

For a discussion of the effects of initial disturbances on the
laminar to turbulent transition in hydrodynamic flow, see
Prandtl and Tietjens29 , Art. 24.

7.
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In view of the very large Hartmann numbers (typically 100 to

1000) that are obtained in practical electromagnetic pumps, the

investigations that are discussed above indicate the possibility

of practical laminar magnetohydrodynamic energy converters, with

their inherently smaller losses. From a practical standpoint, a

transverse magnetic field is preferable, because it is required

by most energy conversion schemes and produces a large increase

in the critical Reynolds number. From an experimental viewpoint,

however, a longitudinal field is also interesting, because it

primarily affects the turbulence and only secondarily (through

its effect on the random velocity correlations) affects the

mean flow.



Chapter II

THE BASIC EQUATIONS

2.1 The Equations of Motion

The fluid that is considered in this investigation is homo-

geneousisotropic, and incompressible; and is characterized by

a permeability p r,* an electrical conductivity a, a mass

density p, and an absolute viscosity 11 The equations that

govern the motion of such a fluid are the Maxwell relations

VxH=J, (2.1.1)

V x at= (2.1.2)

and

v- 0; (2.1.3)

the constitutive relation

J = c(E + v x H) (2.1.4)

the magnetohydrodynamic Navier-Stokes equation

6 -- 2-
p(- + v - v)v = -VP + nv v + J x p. H; (2.1.5)

and the incompressibility restriction

V v = 0. (2.1.6)

The fluid is assumed to have the permeability and permittivity
of free space. For a discussion of the electrodynamics of
moving olarizable and magnetizable media, see Fano, Chu and
Adler.3

9.
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In Eqs. (2.1.1) through (2.1.6), V is the vector operator

-+ i + i 6z , is the magnetic field intensity, Jx x y y i isteelcrc ilis the conduction current density, E is the electric field

intensity, v is the fluid velocity and P is the mechanical

pressure. Throughout this investigation, all equations are
*

written with respect to a fixed coordinate system (an Eulerian

formulation), and rationalized MKS units are employed.

In Eq. (2.1.1), displacement currents have been neglected,

because they are extremely small in comparison with conduction

currents in common magnetohydrodynamic fluids at any reasonable
**

frequency. Equation (2.1.5) is the ordinary Navier-Stokes

equation for an incompressible fluid, with the addition of

the electromagnetic body force density J x p. H, and without

the force of gravity, which may be neglected since no free

surfaces are to be considered.

Equations (2.1.1) through (2.1.4), and Eq. (2.1.6) can be

combined to form the Bullard relation

v2i - a, [ + (v v) - ( - V)v] = 0 , (2.1.7)

*
For a discussion of the alternative Eulerian and Lagrangian
formulations of the hydrodynamic equations, see Lamb,32 Ch. I.

**
If a sinusoidal disturbance of frequency w exists in a static,
homogeneous, and isotropic medium with permittivity e and
conductivity a, the frequency at which the displacement
current is equal to the conduction current is o' - a/s
For example, in mercury o' ~ 6.3 1017 rad./sec.

23
See, for example, Pai, Ch. III.



11.

while Eqs. (2.1.1), (2.1.3), and (2.1.5) can be combined to yield

1 2 2-).(2.)
P + v - v)v = -V(P + 0 H ) + V2- + ( 0 ). (2.1.8)*

Equations (2.1.7) and (2.1.8) are compact in form, contain only

the variables H, v and P, and are often a convenient starting

point in the search for the solution of a specific problem.

2.2 The Equations of Motion in Dimensionless Form

Any complicated analysis involving the equations of motion

[Eqs. (2.1.1) through (2.1.8)] is greatly simplified by considering

these equations in dimensionless form. The equations of motion

can be rendered dimensionless by making the following normalizations

with respect to a characteristic length L , a characteristic

velocity v , and a characteristic magnetic field H . Let

(x, y, Z) = (x, y, z)/L , (2.2.1)

and therefore

V = L V. (2.2.2)

Also let

'r = tv /L , (2.2.3)

u = v/v , (2.2.4)

* 2
Note that if_ A is a vector, A is used throughout to
denote A . A.
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13.

In Eqs. (2.2.9) through (2.2.16),

2
pv0

2
R (v /L o (L / V0

mL/V0 o 00

(2.2.17)= pv L /T ,

(2.2.18)

RH2
0 20
2Hv

(2.2.19)

are respectively the hydraulic Reynolds number, the magnetic

Reynolds number, and the energy ratio. In addition to these three

dimensionless ratios, the Hartmann number M is often an important

characteristic ratio. It is defined by the equation

a(v H )
M = 2 0 H L ) ,

(v 0/L)200 0 )

(2.2.20)

and is related to the other dimensionless ratios by the identity

2
M RR~ (2.2.21)

Equations (2.2.17) through (2.2.20) indicate that from a dimensional

viewpoint, on an average basis, the hydraulic Reynolds number can

be thought of as the ratio of the kinetic-energy density to the

product of the viscous power-loss density and the fluid transit

time, the magnetic Reynolds number as the ratio of the magnetic-

field diffusion time to the fluid transit time, the energy ratio as

the ratio of the magnetic-energy density to the kinetic-energy

and
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density, and the Hartmann number as the ratio of the ohmic power-

loss density to the viscous power-loss density. These identifi-

cations are not rigorous, but they do give some physical feeling

for the nature of the dimensionless ratios. In specific situations

the physical significance of various dimensionless ratios can

vary considerably (see Secs. 4.1 and 7.1)

2.3 Power and Energy Relations

The Poynting theorem for this magnetohydrodynamic situation

can be derived as follows. In view of the vector identity

V . (A x B) E . (v x A) - A .(v x B) , (2.3.1)

Eqs. (2.1.1) and (2.1.2) yield

- - 3 1. 2 - -
-v - (E x H) = ( H )+ E - J (2.3.2)

However, Eq. (2.1.4) allows E to be written as

E -v x H (2.3.3)
a o

with the result that Eq. (2.3.2) becomes

J2-V - (E x H) = ( H ) + (v x H) . (2.3.4)
t 2 i det t

Finally, because of the vector identity

S(B x C) -B (A x C) , (2.3.5)
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Eq. (2.3.4) can be written as

- 1 2 J2-v (ExH) = ( H) +- + v 0(JxH) , (2.3.6)

which is the desired Poynting theorem. In Eq. (2.3.6),

-v CE x H) is the rate at which electromagnetic energy is
o 1 2supplied per unit volume, ( H ) is the rate at which the

t 2
magnetic-energy storage is increased per unit volume, J / a is

the rate of ohmic dissipation per unit volume, and v . (J x 40 H)

is the rate at which the electromagnetic body force does work on

the fluid per unit volume. Thus the electromagnetic energy that

is supplied to a unit volume of the fluid is used in three ways:

to increase the stored magnetic energy, to supply the ohmic

dissipation, and to provide the energy that is converted to

mechanical form (some of which is dissipated viscously).

An Energy Equation

An energy equation for the fluid can be obtained by forming

the dot product of the fluid velocity v and the magnetohydro-

dynamic Navier-Stokes equation (2.1.5). The result is

6 1 2 -- 2- - --
( + v - V)( 2 ) = -v VP + - V v + v (J x H).

(2.3.7)

3 -1 2In Eq. (2.3.7), + v -)(t pv 2 ) is the total rate of

increase of the kinetic energy per unit volume; and -v - VP,
-2-

nv - V v , and v - (J x p H) are respectively the rates at

which the mechanical pressure, the viscous surface traction, and

the electromagnetic body force do work on a unit volume of the



fluid as a whole. Thus the kinetic energy of the fluid can be

increased by pressure forces, equivalent viscous body forces, and

electromagnetic forces. [Note in particular that the term
2-

v . V v is not a dissipation (see the following section).]

The energy equation (2.3.7) is not the complete statement of
*

conservation of energy for the fluid, but is nevertheless a

valid and informative result. The complete energy equation is

not needed in this investigation, because the fluid is incom-

pressible,

The Viscous Dissipation

**
The viscous stress tensor a . for an incompressible

ij
fluid is given by

ov ov.
6v . ( +--1 , (2.3.8)***yij -X. 6x

in which xi (i = 1,2,3) are the Cartesian coordinates, and vi

are the Cartesian components of the fluid velocity. The viscous

power-loss density can be obtained by considering the rate at

which work is done by the viscous surface traction on a surface

S which encloses a volume V. The viscous surface-traction

*
For a discussion of the complete energy equation of compressible
magnetohydrodynamics, see Pai.33

The symbol aj., which is used only in this section to denote
the viscous stress tensor, should not be confused with the
scalar electrical conductivity a.

23
See, for example, Pai, Eq. (3.31).
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tensor a can be obtained from the stress tensor as

a. = a. .n.,1 1i
(2.3.9)

in which summation on a repeated index is understood, and ni

are the Cartesian components of the outward-pointing normal to

the surface S. An expression for the rate at which work is

done by the viscous surface tractions 0 can be obtained by

integrating the dot product of the viscous surface traction and

the fluid velocity over the surface S, i.e.

(2.3.10)fa v dS = fv a n dS
S S

The surface integrals in Eq. (2.3.10) can be converted into

volume integrals with the aid of Green's theorem, with the

result that

- (v a )dV,
V ca b e to

which can be expanded to

= f(V 3 + a -)d .
6x 1 XAdV

V 1

(2.3.11)

(2.3.12)

Because the volume V is arbitrary, the integral in Eq. (2.3.12)

may be identified as the density of power that is delivered by the

viscous forces 0, i.e.

6a .6v
$=v -"+ a. -

i 6x ij x.
j

(2.3.13)

17.
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If Eq. (2.3.8) is substituted in Eq. (2.3.13), and use is made of

the incompressibility restriction 6y /6x = 0, Eq. (2.3.13)

becomes

6 vi 6v 6v 6v
n= v 1 + ( + ) . (2.3.14)

J J; i J

The first term on the right-hand side of Eq. (2.3.14) can be

written in vector form as

v - 2-V (2.3.15)

J .J

and can be interpreted as the rate at which the equivalent viscous
2-

body force qV v does work on a unit volume.of the fluid as a

whole [cf. Eq. (2.3.7)]. This power is the rate at which the

viscous stresses are increasing the sum of the kinetic, potential,

and converted (to electrical form) energies within a unit volume,

and is not a viscous dissipation.producing heat.

The second term on the right-hand side of Eq. (2.3.14) is

the viscous power-loss density pV2 i.e.

6v i 6v 6v

pv = q( + i) . (2.3.16)
v xj .i jx

This power is the rate at which the viscous stresses are doing

work to deform the fluid per unit volume, and is a viscous

dissipation producing heat.
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Chapter III

FUNDAMENTALS OF CONDUCTION DRIVEN FLOW

3.1 The Configuration and the Choice of Characteristic Quantities

The particular field-flow geometry that is analyzed in this

chapter is called Hartmann flow, after the scientist who first

obtained the fluid velocity profile for this situation (see

Ch. I, and Hartmann1 ). In this configuration, the fluid flows

between infinite parallel planes that are separated by a distance

2a. The electrical excitation is provided by a constant magnetic

field 1a that is applied perpendicular to these planes, and a

constant electric field Ua that is applied perpendicular to the

applied magnetic field and the fluid velocity, as shown in Fig. 3-1.

x

z0
7

Af_g
a

a

V

Va

Fig. 3-1 Hartmann Flow Between

Infinite Parallel Planes

Because translation of the coordinate system in the x and

z directions does not alter the situation, the solution cannot

i -
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depend on x or z (note that although the pressure gradient is

independent of z, the pressure varies linearly with z). The

fluid velocity is assumed to be entirely in the z-direction, but

to vary with y, i.e.

V = v(y)i (3.1.1)

The total magnetic field is assumed to consist of the applied

field Ha, and an induced magnetic field H in the z-direction,

viz.

H = H ai y+ H Z(y)T . (3.1.2)
a y z z

The assumption that the induced magnetic field is in the

z-direction corresponds to the assumption that the current that

flows through the fluid in the x-direction has its return path

in an x-y plane.

The choice of the characteristic quantities is reasonably

straight-forward in this simple situation. The channel half-

width is taken as the characteristic length, i.e.

L = a , (3.1.3)

the applied magnetic field is taken as the characteristic magnetic

field, ice.

H =1 , (3.1.4)
o a

and the space-average of the fluid velocity is taken as the
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*0

characteristic velocity, i.e.

V> = <v - f (y)dy (3.1.5)**
-a

With these choices of characteristic quantities, the deminsion-

less parameters defined in Eqs. (2.2.17) through (2.2.20)

become

R = p v > (3.1.6)

R = aa <v > , (3.1.7)m 0

H24LHo a 2, (3.1.8)

p <vz>

and

M =(o H a) - (3.1.9)
o a

3.2 Basic Solutions

The normalized forms of Eqs. (3.1.1) and (3.1.2) for

velocity and magnetic field are

Us = U Z~i z ,(3.2.1)

and

h = i + h (Y)i . (3.2.2)

Note that another possible choice for the characteristic
velocity is the "electrical velocity" Ea /o H a, although the
choice that is made in Eq. (3.1.5) is more meaningful
in this situation.

The angular set of brackets is used throughout to denote an
average with respect to space.
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If Eqs. (3.2.1) and (3.2.2) are substituted in the dimensionless

equations of motion (2.2.15) and (2.2.16), the former yields the

single scalar equation

hI + R u = 0;z m z

while the latter yields the two scalar equations

-6 +1 U" + ph' =0,
^. R z zRz

and

6P+ ph# = 0 ,
^# z

in which the pressure p is in general a function of y

However, Eq. (3.2.4) demands that

2 ~W
P p(y~ 0 ,

with the result that

p(y,2) = %f() + g(')Y,

in which f(y)

(3.2.3)*

(3.2.4)

(3.2.5)

and z.

(3.2.6)

(3.2.7)

and g(y) are arbitrary functions of y.

However, Eq. (3.2.5) demands that

N= f + g (3.2.8)

*
A prime is used throughout to denote the differentiation of a
function of one variable with respect to its argument.
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must be a function of y only, with the result that,

f' = 0

and

=a constant Ep .
IZ

(3.2.9)

(3.2.10)

Equations (3.2.3) and (3.2.4), the definition (3.2.10), and

the identity (2.2.2 ) can be combined to yield a single equation

that governs the fluid velocity, viz.

"2
(u -Mu) = 0 .

Z Z
(3.2.11)

Equation (3.2.11) must be solved subject to the boundary condi-

tions

uZ(± 1) = 0 (3.2.12)

that are imposed by the channel walls and the fluid viscosity,

the symmetry condition

U Z (- ) = uz(Y), (3.2.13)

and the normalization

f 1.u (y) dy
0

1 (3.2.14)

that is required by the definition of v [Eq. (3.1.5)]. The

solution is readily found to be

(i - cosh - tanh ). (3.2.15)Z cosh M M
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Thus the shape of the normalized velocity profile depends only on

the Hartmann number M, although the average velocity v0

depends, of course, on the electrical and mechanical drives.

Figure 3-2 shows a set of normalized velocity profiles for

various values of M. When M is small, the profile is controlled

by viscosity and has a parabolic shape; however, when M is large

the profile is controlled by electromagnetic forces, and has a

highly squared appearance.

Now that the velocity uz has been determined, Eq. (3.2.4)

can be solved for the induced magnetic field h Subject to

the symmetry requirement

hz(-y) = -hZ(3) (3.2.16)

the solution is

h (Rpy -u ) . (3.2.17)
z RP 0 Z

The symmetry condition (3.2.16) demands that any net current that

flows through the fluid in the x-direction be returned

symmetrically with respect to the channel.

Next, the current density j can be obtained from the

magnetic field, by substituting Eqs. (3.2.17) and (3.2.2) in

Eq. (2.2.9), with the result that

j = i xj(y) = i - (Rp0 -u ) (3.2.18)
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Finally, the electric field e can be computed by sub-

stituting Eqs. (3.2.18), (3.2.1) and (3.2.2) in Eq. (2.2.12),

and is found to be

- 1 2
e =j-u x h = 1 2(Rp0 - u + M uZ). (3.2.19)

However, if Eq. (3.2.15) is substituted in Eq. (3.2.19), the

result is

Rp0  M
e - -0 + , (3.2.20)

M M - tanh M

which is independent of y, and is, therefore, consistent with

the idea of a constant applied electric field that was introduced

in the problem specification (see Sec, 3.1 and Fig. 3-1).

3.3 A Variational Principle

The velocity profile for the conduction driven flow situation

that is described in Sec. 3.1 can also be obtained from a varia-

tional principle. This principle states that out of all possible

velocity profiles that are consistent with the boundary condi-

tions, the fluid assumes the one that is associated with the

least dissipation. The application of the principle follows.

In the conduction driven flow, there are two forms of

dissipation; ohmic and viscous. The ohmic power dissipation per

unit length in the z-direction Pohm is given by
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a J2  2 12
Pohm f dy = aa(4H <v >) j (y)dy

-aa o a z -l Y

= ca( oHa <Z > 2 (e x - uZ)2 dy , (3.3.1)
-1

while the viscous power dissipation per unit length in the

z-direction PVis is given by (see Eq. (2.3.16)]

2
a dv 2 I<v> 1

Ps f i( ) dy- a f (u)2dy . (3.3.2)
v -a dya -1

Thus the total dissipation per unit length in the z-direction

Pt is given by

2
1a<v > 1 i

P I aZ [ u ) + M2 (e - u 2 ]dy , (3.3.3)
t a - x z

which is the integral that must be minimized by adjusting the

function u z(y), subject to the constraint

1
f uzdy = 2 . (3.3.4)
-1

The variational problem of minimizing the integral (3.3.3)

subject to the constraint (3.3.4) is solved by first minimizing

the integral

1

-1 zY
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in which

F =[(u)2 + M2 (e -u )2 + u , (3.3.6)z x z z

subject to no constraint, and then determining the Lagrange

multiplier A, and the constants of integration in the solution

of the Euler equation so that the boundary conditions and the

constraint (3.3.4) are satisfied. The function F(u', u )
z z

must satisfy the Euler equation

d F F (3.3.7)(T) - - 0

z z

which yields

i 2 x 2
uz - M uz + (g + M e) = 0. (3.3.8)

Subject to the symmetry requirement u z(-y) = u

and the boundary condition u z(+ 1) = 0, the solution of

Eq. (3.3.8) is

U - ( + e )(l - cosh My) (3.3.9)z 2 x cosh M
2M2

Finally, the Lagrange multiplier W must be determined such

that the constraint (3.3.4) is satisfied. The result is

U= (1 - cosh My) tanh M) (3.3.10)
z cosh M M

* 34See Hildebrand, Sec. 2.6.
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which is identical to that obtained from the equations of motion

in Sec. 3.2 [Eq. (3.2.15)].

This variational principle is an extension to a specific

magnetohydrodynamic problem of similar principles for certain
*

types of hydrodynamic flow.

See Lamb,32 Art. 344.
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Chapter IV

ENERGY CONVERSION IN CONDUCTION DRIVEN FLOW

4.1 Brake or Flow Damper Operation

The simplest conduction driven flow energy converter is the

brake or flow damper, in which the electromagnetic forces

produced by the interaction of induced currents and the applied

magnetic field, oppose the fluid motion and dissipate the fluid

energy in heat. There are two limiting forms of flow damper

that clearly illustrate this mode of operation. In the first,

the total current flowing through the fluid is zero (a non-

conducting channel, or conducting end plates that are open-

circuited); while in the second, the electric field in the fluid

is zero (conducting end plates that are short-circuited).

The I = 0 Flow Damper

The simplest type of flow damper consists of a non-

conducting rectangular channel across which a uniform magnetic

field is imposed. The rectangular channel is formed from the

infinite parallel planes of Fig. 3-1 by placing walls in the

y-z planes at x = + d (x = + d/a), as shown in Fig. 4-1.

The distance 2d in the x-direction is assumed to be much

greater than the distance 2a that separates the original

parallel planes (a high-aspect-ratio channel), with the result

that the semi-infinite analysis of Ch. III may be assumed to be

applicable.
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y

+a

-d +d
_ __x

-a

Fig. 4-1 A Channel Cross Section

The mathematical constraint for this type of flow damper

is simply that the total current fJ'owing in the x-direction

must be zero; that is, that all the current circulates within

the flow, by reversing direction at the walls x = + d. If

Eq. (3.2.18) is integrated across the channel, the total

normalized current flowing in the x-direction, per unit

length in z is found to be

i = f j (')dy = 2 [Rp - u (1)] , (4.1.1)
-l_ 2 o z

and is constrained to be zero. Thus the hydraulic Reynolds

number is given by

u'(1) u'(l)
p y > = R = z 2 (4.1.2)

9 PO po aP /p <vZ>

in which P is the unnormalized mechanical pressure gradient,

i.e.

P =- = a constant. (4.1.3)
o z

This current reversal is facilitated by having electrically
conducting planes at x = + d.
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Equation (4.1.2) can be solved for the average velocity and

yields, in view of the normalized velocity profile (3.2.15),

____ 1 1
Z > _ = ~ 2 (M coth M - 1), (4.1.4)

a 2P / uj() M120 Z

in which the initial minus sign indicates that the fluid is

driven in the minus z-direction by the mechanical pressure

gradient P 0

For small values of M, the average velocity tends to a

constant as in hydrodynamic flow, in fact

<vZ> 1 2

2 P ~ 3 (1 - 1i) as M -+ 0 ; (4.1.5)
a P/

with the result that the volume flow rate is little affected
*

for small magnetic fields. However, for large values of M

the average velocity is inversely proportional to M and is

given by

Ky> 1
,asM- (4.1.6)

a P I/

with the result that the volume flow rate is inversely pro-

portional to the magnetic field strength for large magnetic

fields,

Because experimentally the magnetic field strength is the most
easily varied quantity in M = p±H L0 Ja/n , the variation of
a quantity with M can often be instructively
interpreted as its variation with the magnetic field strength.
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The velocity profiles for this flow damper are conveniently

displayed by normalizing the velocity v(y) with respect to the

center channel velocity in hydrodynamic flow (M = 0), i.e.

<V > (1- coshMy

2vy)L 2 z u (y) cosh M(4.1.7)
a P a P / M tanh M

Figure 4-2 shows a set of these velocity profiles for several

values of M. For M = 0, the velocity distribution reduces

to the viscosity controlled parabolic contour. As M is

increased, however, the magnetic field begins to flatten the

profile and to decrease its amplitude. Finally, for large M,

the amplitude of the velocity is greatly reduced, the central

region of the profile is completely controlled and flattened

by the magnetic field, and viscosity is important only in thin

boundary layers near the walls.

The unnormalized current density J (Y) can be obtained

by combining Eqs. (3.2.18) and (4.1.2) and is given by

X_=_-(_ cosh (4.1.8)
= - sinh M (

aP a/M

in which the renormalization shown is convenient. Figure 4-3

shows a set of normalized (to -aP0 ,a/n ) current density

curves for various values of the parameter M. The current

always flows in the negative x-direction in the central region

of the channel, and in the positive x-direction along the walls,

however, the shape of the current distribution varies quite

drastically with M. For small values of M (M< 0.1), the

magnitude of the circulating currentis small, the distribution

is quite flat throughout, and the zero crossing approaches
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y = /Jf3 _ 0.577 as M approaches zero. As M increases

(0-1 < M < ~ 5.0) the magnitude of the circulating current

increases and the distribution remains flat near the center of

the channel, but develops a sharp negative peak near the walls.

Finally, as M increases still further (M-+ o), the magnitude

of the circulating current decreases, the zero crossing tends

to y = 1 monotonically, and the shape of the distribution

becomes flatter to the left of the zero crossing and more

peaked near the wall, with the peak rising to a limiting

value of one.

The square of the Hartmann number is commonly interpreted

as a measure of the ratio of the ohmic power loss to the

viscous power loss [see Eq. (2.2.20)]. Since the identifica-

tion is made on the basis of a rough dimensional argument,

the calculation of the actual ratio for the I = 0 flow

damper provides a check on the dimensional reasoning. The

exact calculations are somewhat involved algebraically, but

the result is that the ratio of the ohmic power loss to the

viscous power loss (both averaged with respect to y) is

given by

P [sinh 2M + 2M - 2(cosh M - 1)]

P Vis (sinh 2M - 2M) (4.1'9)

Although the expression (4.1.9) is a rather complicated function

of M, the following limiting properties can be deduced in a

straightforward manner. First, for small values of M the

ratio becomes

ohm - , as M -+ 0 . (4.1.10)
vis
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Second, for large values of M the ratio tends to one, in fact

ohm -+ - , as M-+c . (4.1.11)
Pvis

Thus for small values of M the actual power loss ratio differs

from the ratio M2 determined by dimensional arguments [ Eq.

(2.2.20)] only by the numerical factor 15. However, for large

values of M the dimensional ratio is considerably in error,

since it assumes a large value while the actual limiting value

is one.

This detailed discussion of the actual power loss ratio for

the I = 0 flow damper, and the results that follow for the

E = 0 flow damper, demonstrate that dimensional reasoning, of

the type that led to the identification of the square of the

Hartmann number with the ratio of ohmic to viscous power

dissipation, can quite often be misleading in specific situa-

tions. So-called "physical" and "dimensional" arguments of

this type are often helpful for obtaining a general idea of

the nature of a particular parameter or a physical situation;

however., they should be employed as aides to, and not sub-

stitutes for, more rigorous analysis.

The E = 0 Flow Damper

In this second type of flow damper, the electrically con-

ducting planes at x = + d are short-circuited, which constrains

the uniform electric field within the flow to be zero. If e
x

is set equal to zero in Eq. (3.2.20), the hydraulic Reynolds

number can be determined from the relation
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2a P 13
S-Rp=M

vZ> o M - tanh M'
(4.1.12)

with the result that the average fluid velocity is given by

<Vz M - tanh M
2 13aP0/q

(4-1.13)

in which again the initial minus sign indicates that the fluid

is driven in the minus z-direction by the mechanical pressure

gradient P 0

For small values of M, the average velocity again tends

to a constant, in fact

(Vz 1 2 2
2 POh- ) 3 M , as M -+ 0

a P /
(4.1.14)

which, when compared with expression (4.1.5) for the I = 0

flow damper, shows that the E = 0 flow damper has the greater

effect on the volume flow rate for small values of M. For

large values of M, the comparison is more striking, since

<z) 1
2 - - 1 , as M -+0,

a P h M2
(4.1.15)

whereas the expression (4.1.6) goes as only 1/M as M -+ co.

Thus the E = 0 flow damper is far more effective than the

I = 0 flow damper for large values of M.

The actual ratio of the ohmic power loss to the viscous

power loss can also be computed for this type of flow damper,

and the result is

P ohm
P vivis

2M cosh 2M - 3 sinh 2M + 2(21)
sinh 2M - 2M (4.1.16)
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Again the expression is rather complicated, but the limiting

forms are given by

P ohm 2 2
hm -+, M2 ,as M -+ 0;

vis
(4.1.17)

and

P
2h -+ 2M , as M-mco
vis

(4.1.18)

Thus the agreement between the ratio predicted on dimensional

grounds (M ) and the actual ratio is quite good for small

values of M, but is still poor for large values of M.

4.2 Generator Operation

The operation of the conduction driven flow as a generator

is quite similar to brake or flow damper operation, except that

a net current is allowed to flow through the fluid and an

external load. A rectangular channel is again formed as shown

in Fig. 4-1, and conducting electrodes of length 2b in the

z-direction form the walls at x = + d, as shown in Fig. 4-4.

y

-b
- 0

-a
I

Fig. 4-4 A Channel Electrode

+ b ,O

I



39.

The length of the electrodes 2b is assumed to be much greater

than the channel width 2a, or the channel depth 2d, with the

result that end effects at z = + b can be neglected. In order

to exactly preserve the direction and symmetry of the induced

magnetic field solution [see Eq. (3.2.16)], the external load

must be connected to the electrodes in such a way that the load

current flows in x-y planes and symmetrically with respect to

the x-axis, as shown schematically in Fig. 4-5.

y

+a

d _ / +d I..-

-a

Fig. 4-5 Schematic Diagram of Symmetrical
Generator Loading

The electrical load that is placed on the generator is

most conveniently characterized by its resistance per unit

length in z, RL. Therefore, the hydraulic Reynolds number

must be determined as a function of this external load resistance.

The total unnormalized current per unit length in z can be

obtained by integrating Eq. (3.2.18) across the channel, and is

found to be

a1
I =f J dy =aa 0 Ha <v >f xd

-a -

=a± H <z> [ - () . (4.2.1)
o a M 2z
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Furthermore, the voltage V between the electrodes at x = + d

can be obtained from the uniform electric field (3.2.20) as

V = -2d E = -2d H <v > ex o a z x

2 LH<V>1 ___+____4..2

o a Z> - (Rp0 + M - tanh M(4.2.2)

Therefore, the external load resistance RL can be expressed as

V d Rp0 + M /(M - tanh M)
I aa Rp0 + M2 tanh M/(M - tanh M)

The ensuing calculations, and the presentation of the

results are greatly simplified by normalizing the external load

resistance per unit length RL with respect to the internal

resistance of the generator per unit length d/aa and defining

RL(- -- (4.2.4)

a = d/aa

and by making the further identification

S M/tanh M . (4.2.5)

Equation (4.2.3) can be solved for the average fluid velocity

VZ> in terms of the dimensionless ratios a and p, with

the result that

(Vz _1_ _ - ._ (a +)(- 1) (4.2.6)
a/2 Rp0  M2 (a +)

In order to optimize the operation of the flow as a

generator, the electrical power output and the energy conversion
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efficiency are next expressed in terms of the parameters a and

P. If Eq. (4.2.6) is substituted in Eq. (4.2.1), the total

current per unit length in z is found to be

2aP
o H a + ;

(4.2.7)

and, therefore, the power delivered to the load per unit length

is given by

PL 2 =

4a 3d P0  2

2 0 a(P +
11M 2 (a + P)2

(4.2.8)

Furthermore, the mechanical power input density is just -v - VP,

with the result that the mechanical power input per unit length

in z is found to be

4a 3d P2
P = -4a d P0 <v > = o (a +

TIM2 + )
(4.2.9)

Therefore, the energy conversion efficiency

as a function of only a and p,

=n(a + 1)(a + P)

in which the range of a is

0 < a < w,

e can be expressed

viz.

(4.2.10)

(4.2.11)

while that of p is

1 < P _ 4 2 )(4.2.12)
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The important properties of e can be deduced quite easily

from Eq. (4.2.10). First, e is equal to zero when either a

is equal to zero or p is equal to one, i.e.

E(0,P) = e(a,l) =0 (4.2.13)

which implies physically that the efficiency is zero for either

a short-circuit load, or zero applied magnetic field. Second,

the partial derivative of e with respect to p is given by

a P2 ,(4.2.14)
(a + p)

which is non-negative for the ranges of a and p under con-

sideration [eqs. (4.2.11) and (4.2.12)]. Therefore, for any

fixed value of a (except a = 0), the efficiency is a mono-

tonically increasing function of 3. For such a fixed value of

a, the limiting value of a is

E a+ , as --.oo , (4.2.15)

Thus, for a fixed value of the external load resistance, the

efficiency increases monotonically from zero to the limit

(4.2.15) as the applied magnetic field increases from zero to

infinity. Third, the partial derivative of e with respect

to a is given by

(P - 1)(P - a (4.2.16)
la (a + 1)2 (a + P)2

which is equal to zero for

(4.2.17)



and for

2
S=a . (4.2.18)

For p = 1, the efficiency is a minimum (e = 0), while for

= a it is a maximum, and is given by

2
E(a,a ) (4.2.19)

Also, for a fixed value of p, the limiting value of s is

e -- 0, as a -+ w . (4.2.20)

Thus, for a fixed value of p, the efficiency increases from

zero to a maximum given by Eq. (4.2.19), and then decreases to

zero again, as a increases from zero to infinity. Therefore,

for a fixed value of the applied magnetic field, the maximum

possible efficiency is

(4.2.21)= IM/tanh M - 1

IM/tanh M + 1

which is attained for a load resistance given by

-d M
S a tan hM

(4.2.22)

In order to make the variation of the efficiency as a function

of the parameters a and P completely clear, Fig. 4-6 shows

a family of curves of e as a function of a, with p as a

parameter.

The final subject to be discussed concerning generator

operation is the dependence of the electrical power output

PL Eq. (4.2.8)] on the load resistance RL (through a). The

43.
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partial derivative of PL with respect to a is given by

a3  22P 4a d P 21 p -a)
.. .. M 2 o ( a , ( 4 .2 .2 3 )

which is zero for

a =(4.2.24)

which corresponds to a maximum of PL. Therefore, if all otherPL
parameters are held fixed, the power-output is a maximum when

the load resistance per unit length is given by

RL = d M (4.2.25)
~Laa tanh M

A comparison of Eq. (4.2.25) with Eq. (4.2.22) shows, as would

be expected from physical experience, that the value of the

load resistance for maximum power output is different from that

for maximum efficiency. If the value of a for maximum power

output [Eq. (4.2.24)] is substituted in the efficiency relation

(4.2.10), the result is

E020) (4.2.26)2 +l1

Therefore, if the load resistance is adjusted so as to give

the maximum power output for each value of the applied magnetic

field, the highest possible efficiency is one-half, which is

obtained as the value of the applied magnetic field tends to

infinity. -However, this does not mean, contrary to some opinion,

that efficiencies greater than one-hale are not possible; only

that such efficiencies are obtained at the expense of less than
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maximum power output. In fact, as has been demonstrated in the

preceding discussion, efficiencies approaching one are possible,

although they are accompanied by power outputs approaching zero.

4.3 Motor or Pump Operation

The physical configuration for motor or pump operation is

identical to that for generator operation, as shown in Figs. 4-4

and 4-5, except that the load resistance is replaced by a voltage

source, If the magnitude of this applied voltage source is
2V a the uniform electric field within the fluid is constrained

to be

V
a = H <v>e
d x o a z x

2
P a <v > M

0 M2 I M - tanh M

Equation (4.3.1) can be solved for <v >, with the result thatz
2

a P
ovz 71M 2 (4.3.2)

TM

in which the dimensionless parameter y, which is defined by
V
aa Ha-RH

y d o a 1  (4.3.3)
0

has been introduced. The parameter y can be interpreted

physically as a measure of the ratio of the applied electro-
Va

magnetic force density a T -±H to the pressure force density

P . Furthermore, Eqs. (4.3.2) and (4.3.3) show that if y is

Positive, the electromagnetic force is greater than the pressure
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force, and the fluid flows in the positive z-direction; while

if y is negative, the reverse is true. Thus the inequality

P d
V > 0 (4.3.4)
a - apo H a

is a necessary condition for pump operation.

The mechanical power-output density is simply v - VP,

with the result that the total mechanical power output per unit

length in z is given by

4a 3dP
P = 4adP <v > = 2 o ~ (4.3.5)
m 0 Z2

in view of Eq. (4.3.2). Also, the total current per unit length

can be obtained by substituting Eq. (4.3.2) in Eq. (4.2.1) and

is found to be

2aP
0 = o (P + (4.3.6)

oHa

with the result that the total electrical power input per unit

length is given by

4a 3dP 2

P = 2V1= 4a (d Y + l)(p + y) 4.3.7)e a 2
rjM

Therefore, the energy conversion efficiency of the pump can be

expressed as

S~y~ ( = Y+ )( (4.3o8)
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in which y is restricted to the range

0 < < C ou(4.3.9)

for pump operation [see Eq. (4.3.4)].

A comparison of Eqs. (4.3.8) and (4.3.9) with Eqs. (4.2.10)

and (4.2.11) shows that the expression for the efficiency in

pump operation is identical to that for generator operation if

y is replaced by a. Thus all of the discussion in Sec. 4.2

concerning the efficiency of generator operation is directly

applicable to pump operation. Restated in terms of pump

operation, the principal results are as follows. First, for a

fixed value of y (applied voltage), the efficiency increases

monotonically from zero to a limiting value given by

E - 1 1 , as $-+ O , (4.3.10)

as the applied magnetic field varies from zero to infinity.

Second, for a fixed value of M (magnetic field), the

efficiency becomes a maximum given by

/M/tanh M - 1 (4.3.11)
M/tanh M + 1

when y 2 = , that is when

P d
V at 0 ( M/tanh M +1) , (4.3.12)

o a

Finally, inspection of the expression (4.3.5) for the

mechanical power output shows that it varies linearly with y,

with the result that increasing the applied voltage monotonically

increases the power output.
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4.4 Relation to Existing Experiments

The principal scientific experimental results concerning

laminar conduction driven flow are still those obtained by

Hartmann and Lazarus, in 1937. At that time, they verified

the fact that in an electrically insulating high-aspect-ratio

channel (the I = 0 flow damper of Sec. 4.1), the volume flow

rate is inversely proportional to the applied transverse

magnetic field strength, for high values of the magnetic field.

They did not, however, make any tests of E = 0 flow damper,

pump, or generator operations; nor did they measure any velocity

profiles. Recently, there has been an attempt by Kliman36 to

measure velocity profiles in magnetohydrodynamic channel flow

by the use of an electromagnetic flow meter; although the

results were somewhat inconclusive, and more work is needed to

perfect the technique.

From a practical standpoint, a large number of conduction-

driven electromagnetic pumps have been built and tested,
*

primarily for pumping sodium in atomic reactor applications.

Unfortunately, such pumps do not conform to some of the assump-

tions that are made in this analysis. They are almost always

uncompensated, and thus are effected by armature reaction;

their channels are commonly rectangular or of low-aspect-ratio;

and their flow rates are such that, in consideration of

Murgatroyd's results (see Sec. 1.3), the flow within them is

probably laminar for low flow rates, but undoubtedly is turbulent

for high flow rates. The sort of experimental results that are

* 6 7 8
See, for example, Cage, Barnes, and Watt.
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published concerning these pumps are terminal properties such as
*

head-capacity and efficiency-capacity curves. The head-capacity

curves are invariably linear, which is in agreement with the

prediction of Eqs. (4.3.2) and (4.3.3); but which is also pre-

dicted by far less detailed theories that completely ignore the

magnetic field and velocity distributions. The efficiency-

capacity curves also have the same form as those predicted by

Eqs. (4.3.2) and (4.3.8), although again cruder theories predict

a similar form.

Thus there is a real lack of careful, detailed experimental

results of the type that would provide a rigorous experimental

check on the theoretical results that are presented here. A

discussion of some possible lines of experimental investigation

is presented in Sec. 9.3.

* 37
See, for example, Barnes03
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Chapter V

FUNDAMENTALS OF INDUCTION DRIVEN FLOW

5.1 The Configuration and the Choice of Characteristic Quantities

This chapter is concerned with the basic equations that govern

the laminar flow of a viscous, incompressible, conducting fluid in

a high-aspect-ratio channel under the influence of a traveling

magnetic field. This type of magnetohydrodynamic channel flow is

called "induction driven" because the currents that flow in the

conducting fluid are induced by the traveling magnetic field, and

because the gross operation of such a flow is similar to that of
*

a conventional induction motor.

In Fig. 5-1, the idealized situation that is analyzed here is

ik(+a)

x
- z t- _u
/ k(-a)

High-Aspect
Ratio Channel

6 = 0
ax

Fig. 5-1 An Induction Driven Magnetohydrodynamic
Channel Flow

*
For an introduction to conventional induction machines, see
White and Woodson,35 Sec. 3.6.4. For a practical design
analysis of induction pumps using induction motor theory,
see Watt.l

Pole
Pieces

-a
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shown schematically. The mean fluid flow is in the z-direction,

and is confined by parallel, non-conducting planes at y = + a.
Further, these planes extend sufficiently far in the x-direction

(high-aspect-ratio) that none of the quantities of interest vary

with x (- 0). The traveling magnetic field is excited by

current sheets that vary sinusoidally in space and time, and

flow in the x-direction on the surfaces of the infinitely

permeable pole pieces which bound the channel on the planes

y = + a. (In practice, the exciting structure might resemble

the polyphase stator of a conventional induction motor.)

The excitation surface currents are assumed to be of the

form:

x o
-i(t - kz)

K(y = -a) = + i K Ree(wt - kz) (5.1.2)

with the result that the magnetic field travels with a phase

velocity w/k in the positive z-direction. If the positive

sign is chosen in Eq. (5.1.2), the excitation has even symmetry

with respect to y; if the negative sign is chosen, it has odd

symmetry. Throughout this investigation, these two choices will

be referred to respectively as even and odd excitation. The

conventional induction motor, in which the coils are wound in

the faces of the magnetic structure, is an example of even
**

excitation; while the traveling wave tube, in which the coil

*
Throughout this analysis, i is used to denote PT , and Re
to denote "the real part of".

**
Note that in the traveling wave tube electric as well as
magnetic fields are important.
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or helix is wound around the electron beam, is an example of odd

excitation. Even excitation produces its maximum magnetic field

transverse to the flow direction, while odd excitation produces

its maximum magnetic field parallel to the flow direction.

Because the transverse component of the magnetic field provides

the electromagnetic (J x B) force in the direction of the mean

flow, even excitation qualitatively seems to be more effective

than odd excitation. Even excitation is used exclusively in
*

practical liquid metal induction pumps, although odd excita-
**

tion may be of interest in other applications. Both types

of excitation are analyzed in this investigation.

Equations (2.2.15) and (2.2.16) seem to indicate that

there are only three independent dimensionless parameters in

any magnetohydrodynamic problem, for example, R, R and p.
m

This is not so, because there may be more than one independently

variable characteristic length, velocity or magnetic field in

a particular problem.

In the situation considered here, there are two character-

istic lengths, the channel half-width a, and the excitation

pole spacing r/k. In order to simplify the location of the

boundary conditions on the velocity at the channel walls, the

* 810
See, for example, Watt and Blake.

**
Several groups are interested in using slow wave structures
to accelerate plasma beams. See Marshall,1 7 and Covert and
Haldemann.19
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channel half-width is chosen as the characteristic length, i.e.

L = a, (5.1.3)

and the dimensionless ratio

a = ka (5.1.4)

is introduced. There are also two characteristic velocities in

this problem, the mean (space and time) fluid velocity, and the

excitation phase velocity. The former is usually taken as

characteristic in purely hydrodynamic problems because of its

importance in the, transition from laminar to turbulent flow.

However, in this laminar magnetohydrodynamic situation the

phase velocity of the excitation is given, and the fluid

velocity must be determined. Thus the excitation phase

velocity is appropriately chosen as the characteristic

velocity, i.e.

v 0 w/k . (5.1.5)

Finally, the peak value of the magnetic field at the channel

walls is chosen as the characteristic magnetic field, i.e.

H = K 0 (5.1.6)
0 0

Now that the characteristic quantities have been defined,

the excitation [Eqs. (5.1.1) and (5.1.2)] can be written in

normalized form as

ky = 1) = K(y = a) /K = Re eia(T - Z) (5.1.7)y 0



55.

and

k( = -1) = K(y =-a)/K = + Re eia(T - Z) (5.1.8)
y 0-

5.2 Difficulties Concerned with an Exact Solution

Considerable difficulty is encountered in trying to obtain

an exact solution to Eqs. (2.2.15) and (2.2.16) subject to the

excitation of Eqs. (5.1.7) and (5.1.8), and the boundary condi-

tions at the channel walls. The crux of the difficulty is the

non-linear terms of the form (a - V)b in the equations of

motion.

Because the excitation is a periodic function of a(T - Z),

a natural approach to the problem is to seek solutions for the

magnetic field, the velocity, and the pressure which have the

same form. Unfortunately, due to the non-linearities in the

equations of motion, the responses are not confined to the

driving frequency, but in general contain various harmonics

of this frequency as well as d-c components. For this reason,

solutions to the equations of motion must be sought in Fourier

series form, e.g.

h(yZ, z) = [f h (y) + i h (y)le (5.2.1)*h~~z'r n-~yyn z -zn (..)

n / 0

00 uu incx(T - Z
u(y,zT) = i u () +Z[i u ()+i u (y) le

zy -yn z -zn

n/0 (5.2.2)

*
A line under a function indicates that it is complex.
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and

p(y),T) = -fz + pn)ina(t - (5.2.3)
n=-o

Because the variables h, u and p are analytic functions

of (T - Z), the series in Eqs. (5.2.1), (5.2.2) and (5.2.3)

are absolutely and uniformly convergent. They may be differen-

tiated term by term any number of times, and the products

(Cauchy) of them and their derivatives may be formed, and the

series in these derivatives and products are also absolutely and

uniformly convergent. Thus the series solutions given in

Eqs. (5.2.1), (5.2.2) and (5.2.3) may be formally substituted in

Eqs. (2.2.15) and (2.2.16) and the operations may be performed

as indicated. When this is accomplished, use is made of the

restrictions V 0 and V . u=O to set h /ina
V-zn -yn

and u z = u /ina, and Eqs. (2.2.15) and (2.2.16) are

separated into components with regard to direction and frequency,

four infinite sets of completely coupled non-linear differential

equations, each with an infinite number of terms are obtained.

Obviously such a set of equations is untractable. Even if these

equations are drastically simplified by retaining only the funda-

mental frequency in the magnetic field, and the d-c and double-

frequency terms in the velocity and the pressure, the resulting

set of coupled non-linear equations is still formidable.

There are three essential difficulties in the method of

formulating the solution that is outlined above. These diffi-

culties are the non-linearity of the differential equations,

the completely coupled nature of the sets of equations, and the

large numbers of equations and variables involved. Any one of

these difficulties is formidable enough by itself.
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In order to avoid the second and third difficulties, the

problem will be attacked with a method of successive approxi-

mations. This method proceeds as follows. First, a simple,

but physically reasonable, first approximation is made con-

cerning the form of the fluid velocity (that it is independent

of time and entirely in the direction of the mean flow). Next,

solutions are obtained to the coupled non-linear differential

equations which govern the magnetic field and the velocity

profile. Finally, the conditions under which this first

approximation is an acceptable total solution, and those

under which harmonic eddies in the fluid velocity tend to

form are investigated.

5.3 The Non-Linear Equations that Govern the Approximate

Solution

As a first approximation, the fluid velocity is assumed

to be entirely along the channel (z-direction), and independent

of time, i.e.

u= i u (y). (5.3.1)

This first approximation is physically appealing from the

following qualitative viewpoint. The a-c component of the

electromagnetic body force can be considered as the input to

a low-pass filter, characterized by the density and viscosity

of the fluid, whose output is the a-c component of the fluid

velocity. When the applied frequency and the density are

high, the inertia of the fluid very effectively filters out

the time variations in the electromagnetic body force and the
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fluid velocity is essentially independent of time. However, if

the applied frequency and the density are low, the fluid velocity

can be expected to attempt to follow the instantaneous variations

in the electromagnetic body force. The actual situation is com-

plicated by the fact that, due to the variation in fluid velocity

across the channel, different elements of fluid experience

electromagnetic body forces at different frequencies. This

problem of the generation of a-c components in the fluid velocity

is discussed quantitatively in Ch. VIII.

In view of the simplified form of the fluid velocity assumed

in Eq. (5.3.1), solutions will be sought in which the magnetic

field varies at the fundamental frequency only, viz.

h = Re h[i hy) +iz z ()eia(T - ')}. (5.3.2)

If Eqs. (5.3.1) and (5.3.2) are substituted in Eq. (2.2.15),

two scalar equations are obtained. The y-component of (2.2.15)

yields

d h R
- a2[I + i -m (I - u )]h = 0 , (5.3.3)d02 a z -ydy

while the z-component yields

2
d h R du

- 2 + i -m -u h -R h -z (5.3.4)
dy2 a Z -z m-y



Substitution of Eq. (5.3.2) in Eq. (2.2.9) shows that the

current density T is of the form

j = T Re[j (y)eia(r - z) (5.3.5)

in which j is given by
-x

1 dh
j- R ( - + ia(h ) . (5.3.6)

m - dy

However, the divergence relation (2.2.11) requires that

dh
- ia hz = 0, (5.3.7)

dy

with the result that the use of Eqs. (5.3.3) and (5.3.7) in

Eq. (5.3.6) produces a simplified form for the current density,

viz.

j = (1 - u Z)h . (5.3.8)

Equation (5.3.8) shows that the assumption that the magnetic

field varies at the fundamental frequency only [Eq. (5.3.2)]

is consistent with the assumption that the velocity is

independent of time [Eq. (5.3.1)], because the current induced

in the fluid, and hence the magnetic field it produces, varies

at the fundamental frequency only. If, however, the fluid

velocity is a function of time, the induced current and magnetic

field contain sums and differences of the velocity and magnetic

field frequencies, and a spectrum of harmonics is generated.

59.
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Next, consider the electromagnetic force in the magneto-

hydrodynamic Navier-Stokes equation (2.2.13). If Eqs. (5.3.2),

(5.3.5) and (5,3,8) are used to form an expression for j x h,
the result is

~ ei2ct(T -z))J x ' (I - U )Re[i (h h'* - h h' ei'( -z
2 z y ia -y -y -y -y

+ i (h h*+ h 2 ei2 a( -h))] ( 5.3.9)*
z -y -y -y

Furthermore, the curl of Eq. (5.3.9) is given by

V x (j x h) i Re[(1 - uz )h h

-1u'(h h* + h2 ei2a(T - . (5.3.10)2 z -y -y -y

Because this curl is not equal to zero, J x h cannot be

entirely represented as the gradient of a scalar magnetic

pressure, and is in fact more conveniently dealt with in the

form given in Eq. (5.3.9). Also, since the right-hand side

of Eq. (5.3.10) contains an a-c term, while under the assumed

solutions [Eqs. (5.3.1) and (5.3.2)] the curl of the remaining

terms in Eq. (2.2.13) has no a-c terms, the form of the

approximate solutions cannot be an exact solution.

*
A star over a complex function denotes the complex conjugate.
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If Eqs. (5.3.1) and (5.3.9) are substituted into Eq. (2.2.13),

the result is two scalar equations. The y-component of Eq.

(2.2.13) yields

0 - + R P(l - u )Re[- (h h'* - h h' ei2a(T - z)2 m Z ia -y -y -y-y

(5.3.11)

while the z-component yields

0 - + u"+1 R + (l - u )(h h* + Re h2 e 2a(T - z)
R z 2 m -y

(5.3.12)

Next, Eqs. (5.3.11) and (5.3.12) are averaged with respect to
*

time. Equation (5.3.11) yields

An objection to this averaging operation may be raised on the
following grounds. Consider an element of fluid that is
traveling at very nearly the traveling magnetic field wave
speed. This element of fluid experiences an a-c force with a
period that is so long that the fluid is bound to react to the
a-c force.

This objection can be answered as follows. As a measure of the
tendency of the fluid element to respond to the a-c force, con-
sider the impulse (integral of force with respect to time) that
is applied to the fluid element in one direction before the force
changes sign. If the fluid element is traveling with a normalized
velocity u that is nearly equal to one, the form of the a-c
part of the electromagnetic body force f is

f -. (1 - u) sin[(l - u)wt] .

Since the period of this force is 2ir/(l - u)w, the form of the
impulse I is

r/(l - u)w

I = f(l - u) - sin[(1 - u)wt]dt = 2/w.

0

Thus the impulse is inversely proportional to the external
applied frequency a and independent of the velocity of the
fluid element. Therefore the averaging process is equally
valid for all elements of the fluid, and the pertinent question
is whether or not the applied frequency w is high enough so
that a-c motions may be neglected.
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- + 1R P( - u ) (h h* + h* h') = 0,4 m z y y y y

while Eq. (5.3.12) yields

- + u" + R P(1- u )h h* = 0
R z 2 m z -y -y

(5.3.13)*

(5.3.14)

Consideration of Eqs. (5.3.13) and (5.3.14), in the light

of the fact that averaging with respect to time commutes with

differentiation with respect to space, shows that (cf. Sec. 3.2)

= a constant = P .
6z

(5.3.15)

Finally, therefore, Eq. (5.3.14) can be written in the

form

2
d2uz 1 2*
du+ 7 M (1 - u )h h* - Rp =0 ,

dy 2 z-y -y 0

in which the Hartmann number M, given by

(5.3.16)

2 2
M RR = ( K a) o/v , (5.3.17)

m 0 0

has been introduced.

The preceding analysis has reduced the general problem of

obtaining an approximate flow solution to the specific problem

A long bar over a quantity is used throughout to denote the
average with respect to time.
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of obtaining solutions to the three, coupled, second-order, non-

linear differential equations given by Eqs. (5.3.3) and (5.3.16).

[Equation (5.3.4) is not another independent equation; it can be

obtained from Eqs. (5.3.3) and (5.3.7).] These equations can be

simplified by introducing the normalized velocity defect e ,

which is defined by

E = 1 - u (5.3.18)

This substitution reduces Eqs. (5.3.3) and (5.3.16) to

2dh

d C_ 1 M 2h h* e + Rp =0 .(5.3.20)
2 2 m- z 0

Harris 12 obtained equations similar to Eqs. (5.(3.19) and

(5.3.20), and showed that under the drastic mathematical simpli-

fication that h is a constant Eq. (5.3.20) becomes linear

dyy

and has solutions that resemble the Hartmann profiles for d-c

conduction driven flow (see Sec. 3.2). These solutions apply

to the situation in which even excitation is employed, and in

which the excitation pole spacing is much larger than the channel

half width and the magnetic Reynolds number is small

( 2 + iaRs « 1).



64.

5.4 Power, Efficiency, and Mode of Operation

The purpose of this section is to develop expressions for

the electrical and mechanical power inputs, the ohmic and viscous

power losses, and the efficiency and dissipation ratio that are

associated with the induction driven flow. The forms of these

expressions are instructive in themselves, and they provide the

basis for the numerical calculation of the efficiency curves

that are presented in Sec. 7.5.

Power Inputs

First, consider the electrical power input. Let P be
e

the time-average electrical power input to the fluid per unit

length in the x and z-directions. Consideration of the magneto-

hydrodynamic Poynting theorem (2.3.2) shows that the time-average

electrical power input density is equal to I - J, with the

result that

a
Pe = 2 f dy (5.4.1)

In terms of the normalized variables that are introduced in

Secs. 2.2 and 5.1, Eq. (5.4.1) can be written in the form

2 -1
P e= 2a( v H ) L f e - j dy . (5.4.2)

An expression for the normalized electric field e can be

obtained by substituting Eqs. (5.3.1), (5.3.2), (5.3.5) and

(5.3.8) in Eq. (2.2.12), and is given by

e = u x h + j = i Re h e ia( (5.4.3)



65.

This expression for e can be combined with that of Eqs. (5.3.5)

and (5.3.8) for j to yield

J 1(1 - uz)h h* . (5.4.4)
z -y -y

Using Eq. (5.4.4), P can be written in the form

2 1 *
P = a H v ) f (l - u )h h dy, (5.4.5)e 0 0 0 0 0 z -y -y

or upon introducing the specific characteristic quantities of

this flow [Eqs. (5.1.3), (5.1.5) and (5.1.6)] as

P= aa (p K w/k)2 f (1 - u )h h* d . (5.4.6)e 0 0 0 -y -y

Second, consider the mechanical power input. Let P bem
the time-average mechanical power input per unit length in the

x and z-directions. Consideration of the fluid energy Equa-

tion (2.3.7) shows that the mechanical power input density is

given by -v - VP, with the result that

a_
P = -2 f v - VP dy . (5.4.7)
m 0

In terms of the normalized variables, Eq. (5.4.7) becomes

3 1-
P = -2pv - dy (5.4.8)
m vo u.pd

However, using Eqs. (5.3.1) and (5.3.15), Eq. (5.4.8) can be

written in the form

P= -2pv~p f3 udy , (5.4.9)
m op~~o 0
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or alternatively as

P -2pp 31 e
(--- 0fkd0

(5.4.10)

Power Dissipations

First, consider the ohmic power loss. Let Pohm be the

time-average ohmic power loss per unit length in the x and z-

directions. Again, consideration of the magnetohydrodynamic

Poynting theorem [Eq. (2.3.6)] shows that the ohmic power loss

density is given by J J/a, with the result that

- f J edyPohm a 0 (5.4.11)

In terms of the dimensionless variables, Eq. (5.4.11) becomes

(5.4.12)P ohm = 2aL (jHv)- j dy .

An expression for j j can be obtained from consideration of

Eqs. (5.3.5) and (5.3.8), viz.

1 2 *
SZy) h Yh ,

(5.4.13)

with the result that (5.4.12) can be written in the form

P=L[H2 1 2 *eP ohm= aL 0(4 0H v ) f (l - u ) h h dyohm o oo 0 Z -y -y
(5.4.14)

or alternatively as
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2 1 2 *rP = aa(p0 K w/k) f (1 - u ) h h dy . (5.4.15)

Next, consider the viscous power dissipation. Let Pvis
be the time-average viscous power dissipation per unit length

in the x and z-directions. In Sec. 2.3, an expression is

obtained for the viscous power-loss density [Eq. (2.3.16)],

which in this case reduces to r(dvz/dy) , with the result

that
a dv

Pvis = 21 f ( )dy . (5.4.16)

In terms of the dimensionless variables, Eq. (5.4.16) can be

written in the form

Pvi 21 v2/L f (u ) dy , (5.4.17)vis 0 0 0 z

or alternatively as

Pvi 2n(w/k) 2/a f (u')2 dy . (5.4.18)
Vis 0 z

Modes of Operation,. Efficiency, and Dissipation Ratio

The energy conversion modes in which the flow can operate

can be classified in the following manner. First, if the

electrical power input is positive and the mechanical power

input is negative, the flow is operating as a pump or motor.

Second, if the electrical power input is negative and the

mechanical power input is positive, the flow is operating as a

generator. Third, if both the electrical and the mechanical

power inputs are positive, the flow is operating as a flow
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damper or brake. Clearly, if both the electrical and the

mechanical power inputs are negative, an error has occurred.

If the flow is operating as a generator (P < 0, PM > 0)

the efficiency eS is given by -P e/P , which can be obtained

from Eqs. (5.4.5) and (5.4.9) in the form

1
2 f (1 - u )h h dy

(H ) 0 z -y -y

g 2p vp 1
00 J u dy

(5.4.19)

which may be written in terms of dimensionless groups as

1
f(l- u)h h* dy

M2 0 z -y y
e (5.4.20)
g 2Rp 1

f u
oz

Similarly, if the flow is operating as a pump (P > 0,

P < 0), the efficiency e is given by -P /P , or
m p

2Rp f uzd
p -M2 1

* .'~J

j (L - u )h n - cy
0 z -y-y

If, however, the flow is operating as a flow damper, it is

not characterized by an efficiency, but by a dissipation ratio.

There are two possible dissipation ratios. The first is simply

an extension of the concept of efficiency to the flow damper

mode of operation, and measures the ratio of electrical to

mechanical power input when both powers are entirely dissipated.

If ed is this ratio, it is equal to P /Pm and is given by

(5.4.21)

*
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f (1 - u,)h h* dy

M 2 0 -y y
d2 = -. (5.4.22)

0 f u dy
0z

The second dissipation ratio is more general, because it

is applicable to all modes of operation; and more deserving of

the name, because it measures the ratio of ohmic to viscous

dissipation in the fluid. If D is this ratio, it is equal

to P /P and through use of Eqs. (5.4.15) and (5.4.18)

can be written as

1 2
f (l- u) h h dy

M 2 0 z -y -y
D = - 0 (5.4.23)

f (u') dy
0

The simple form of many of the expressions obtained in this

section seems to indicate that a general discussion of them would

be possible at this time. In fact, this is not the case, because

each of the integrals in these expressions is a rather complicated

function of the four parameters a, M, R and Rp . For this

reason further discussion is deferred until Sec. 7.5, in which

curves of e , Ep and ed as functions of Rp0  for various

values of a, M and R are shown.m

69.
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Chapter VI

SOLUTIONS TO THE NON-LINEAR DIFFERENTIAL EQUATIONS

THAT GOVERN THE APPROXIMATE SOLUTION

6.1 Boundary and Symmetry Conditions

The problem at hand is to determine solutions to Eqs. (5.3.19)

and (5.3.20), subject to the excitations given in Eqs. (5.1.7) and

(5.1.8), and the boundary and symmetry conditions discussed below.

First, consider the restrictions on the fluid velocity. Since the

channel, the pressure drive (Rp ), and the electromagnetic drive

(" h h*) all have even symmetry with respect to y, the velocity
-y -y

will also have even symmetry. Further, since the fluid has finite

viscosity, the tangential component of the velocity must also be

zero at the channel walls. Next, consider the boundary conditions

on the magnetic field. Inspection of the excitation [Eqs. (5.1.7)

and (5.1.8), and Fig. 5-1], shows that the y-component of the

magnetic field has the same symmetry as the excitation, while the

z-component has the opposite symmetry. Further, since the magnetic

field is assumed to be equal to zero in the highly permeable pole

pieces, the magnitude of the tangential (z) component of the field

at the channel walls must be equal to the magnitude of the surface

current. (The signs in this equality are, of course, also

determined.)

All of the boundary and symmetry conditions discussed above

and some simple consequences thereof are tabulated below for

convenience.
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1) Boundary and Symmetry Conditions on Velocity

u(-y) = u(y) P- (-y) = E(Y)

(6.l.)
u(+ 1) = 0 ~ (+ 1) = 1

2) Boundary and Symmetry Conditions on Magnetic Field

a) Even Excitation

h (-y) =h (y)
-y

(6.l. 2)
h (1) = -l --)h (l) = -ia

-y

h (-l) = + 1 ~h(-l) = + ia

b) Odd Excitation

h (-y) = -h (y)
-y -y

h(-3"") =h_)_hz YI -Z
(6.l.3)

h (1) = -1 - h (1) = -ia
-z -y

h (-1) = -1 h (-l) = -ia-z -y

6o2 A Perturbation Expansion in Magnetic Reynolds Number

Since the magnetic Reynolds number tends to be small in most
*

liquid metal flows, there is utility in expanding a set of

solutions in this parameter. Furthermore, inspection of Eq. (5.3.19)

In mercury, with v0 = 1 m./sec. (a high velocity) and L = 0.1 m.
(a large channel), Rm 013.
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indicates that it becomes uncoupled from Eq. (5.3.20) when the

magnetic Reynolds number is equal to zero. The actual expansions

are made in the parameter Rm/a, which can be interpreted as the

magnetic Reynolds number based on the excitation pole spacing,

and are given by

R n

z n=O zn a

and

00 R n
h (y)= Zh (y)(-7) . (6.2.2)

From a practical standpoint, the series in Eqs. (6.2.1) and

(6.2.2) need not even converge; all that is necessary is that

the finite number of terms that are retained approximate the

correct solution to the desired degree of accuracy over the

required range of the parameter R /a.
m

If the expansions given in Eqs. (6.2.1) and (6.2.2) are

substituted in Eqs. (5.3.19) and (5.3.20) and terms containing

like powers of R /a are equated, the results for the magneticm
field equation are

h - 2 h = 0, n = 0; (6.2.3)-y -yO

Such series are often called asymptotic. For further informa-
tion concerning asymptotic expansions, see Erdelyi.38
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and

ti 2 2 n -1
h a h = a e h ,n-l-k n > 1 ; (6.2.4)

-yn -yn k=0 k-n-k-

while the velocity defect equation yields

F - M2 h h* E =-Rp, n= 0; (6.2.5)
zo 2 yo -yO zo 0

and

" 1 2 *1 2 n-l n-k
E I M 2 hh =- M Z I Zh h n > 1.
zn 2 -yo -yo zo 2 k=O zk J=0 -y1 -yn-k-2 n -

(6.2.6)

Inspection of the system of equations (6.2.3) through (6.2.6)

reveals several important features. First, the system is

uncoupled from below, because there is a progressive way of

solving the system of equations in which the coefficients in a

particular equation depend only on solutions that have previously

been obtained. This situation is in striking contrast with the

completely coupled systems of equations discussed in Sec. 5.2,

in which the coefficients in each equation depend on the solution

to every other equation. Second, since the coefficients in a

particular equation are known functions of y by the time that

the equation is considered, the equations are linear and super-

position may be applied. Thus the very powerful perturbation

expansion technique converts the three original coupled, non-

linear, differential equations into a system of linear equations

that is uncoupled from below.

The properties of this system of linear differential equa-

tions can be more clearly recognized if the first few equations

resulting from Eqs. (6.2.4) and (6.2.6) are written out. The



first two equations produced by Eq. (6.2.4) are

" 2 . 2
h - a h = ia E h , (n =1); (6.2.7)
-yl -yl zO-yO

and

2 2
h - a h = ia (E h + e h ), (n = 2). (6.2.8)

-2 -y2  zO -yl zi -yO

Similarly, the first two equations resulting from Eq. (6.2.6)

are

e 1 M2 h h 1 = 2(h h h h
zl 2 -y0 -Y 0  zl 2 -y -yl -yl -yO zo

(n = 1) ; (6.2.9)

and

E M h h = M [(hh* +h h*
z2 2 -y0 -y z2-yO-yO 2 -YO y2-yl -yl

+ h h * ) E-y2 -yo zO

+ (h h* + h h* )s E , (n = 2).
-yO -yl -yl -yO zl

(6.2.10)

Inspection of Eqs. (6.2.3) and (6.2.5), and Eqs. (6.2.7) through

(6.2.10) indicates the sequence in which this set of equations

should be solved. Equation (6.2.3) has constant coefficients,

and can, therefore, be solved immediately for the zero-order

magnetic field. Once the zero-order magnetic field is known,

Eq. (6.2.5) becomes linear, and can be solved for the zero-order

velocity defect. However, once the zero-order magnetic field

and the zero-order velocity defect are known, Eq. (6.2.7)

becomes linear, and can be solved for the first-order magnetic

74.
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field. This process of solving first a magnetic field equation,

then a velocity defect equation, and then the next-higher-order

magnetic field equation can be continued, at least in theory,

until any desired degree of accuracy is obtained in the expansions

in the magnetic Reynolds number [Eqs. (6.2.1) and (6.2.2)]. In

practice, however, the driving functions in the differential

equations rapidly become so complicated that numerical methods

must be employed.

6.3 An Analytical-Numerical Method of Solving the Resulting

Set of Linear Differential Equations

This section describes a combined analytical and numerical

method of obtaining solutions to and properties of the set of

linear differential equations given by Eqs. (6.2.3) through

(6.2.6). The philosophy of this procedure is to do analytically

that which can be done conveniently and reasonably compactly,

and to do numerically that which cannot. However, the two

methods are not separated; rather they are intermixed, each

where it seems most applicable. For example, general properties

of the system of equations are deduced analytically, while

homogeneous and particular solutions to the higher-order equa-

tions are integrated numerically.

First, a note concerning the boundary conditions. Since

the series (6.2.1) and (6.2.2) must satisfy the boundary condi-

tions (6.1.1), (6.1.2) and (6.1.3) for a continuous range of

values of the parameter R /a, the zero-order terms in these

series must satisfy the stated inhomogeneous boundary conditions,

while all higher-order terms must satisfy the corresponding

homogeneous boundary conditions. [For example, ezO(+ 1) = 1

while ezn 1) = 0, n / 0.]
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The system of equations starts off simply enough with

Eq0 (6.2.3), the solutions of which have the form sinh ay and

cosh ay. When subject to the symmetry and inhomogeneous

boundary conditions of Eqs. (6.1.2) and (6.1.3) these solutions

become

h y = -i cosh ay/sinh a (6.3.1)

for even excitation, and

h = -i sinh ay/cosh a (6.3.2)
-yO

for odd excitation. Note that physically these are the exact

magnetic field solutions if the fluid is non-conducting so that

the magnetic field is produced solely by the excitation surface
2-

currents and satisfies the homogeneous equation V h = 0.

The next step is to substitute Eqs. (6.3.1) and (6.3.2) in

Eq. (6.2.5), which governs the zero-order velocity defect. The

results of this substitution are

ff 2 -.
E M2 cosh2ay (6.3.3)8z0 sn 2  z0  -R0sinh a

for even excitation, and

1 2 sinh ay e - Rp (6.3.4)
cosh a

for odd excitation. Equations (6.3.3) and (6.3.4) have the form



*
of an inhomogeneous, modified Mathieu equation. Unfortunately,

relatively little theoretical work has been done on this form of

Mathieu equation; most of the effort has centered on character-

istic values and solutions of the homogeneous Mathieu equation

y + (a + b cos 2x)y = 0. Appendix A presents a discussion of

the relation of Eqs. (6.3.3) and (6.3.4) to the Mathieu equation,

and presents some approximate solutions to these equations. The

usefulness of such approximate solutions in this particular

problem is limited, however, by the difficulty of constructing

an approximate solution that is valid over a wide range of the

parameters M, a and Rp . Furthermore, because the higher-

order equations have driving functions that are more and more

complicated functions of the previous solutions, the process of

carrying an approximate solution through successive equations

rapidly becomes untenable. For these reasons, numerical

integration is used to obtain the required homogeneous and

particular solutions for each differential equation. The

numerical methods used in these calculations are described in

Appendix B.

The solution of the zero-order velocity-defect equation

[Eq. (6.2.5)] is obtained in the following manner. First, a

homogeneous solution s zEh to the equation

E z h M h O = 0 (6.3.5)**

For information concerning the general theory of Mathieu equa-
tions, see McLachlan39 and Campbell.40

**
The subscripts h and p are used throughout to denote homo-
geneous and particular solutions of a differential equation.
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*
with the properties s - elk) = 6 (y) and e 0) =1 is

zOh( zOh YzOh
integrated numerically. Next, a particular solution EzOp to

the equation

I -- M2 h h* = (6.3.6)zOp 2 -yO -yO zOp

with the properties EzOp(-,) e zop(y) and E zOp0) = 0 is

computed. Finally, these solutions are combined to form the

total solution

E E : ) + RpoE - zOph (6.3.7)
zo F- zh 0 ZOP E Oh (l) EzOh

which satisfies Eq. (6.2.5) and the boundary conditions

ezo-Y)= sz0 (y) and e0 (+, 1) = 1 [Eq. (6.1.1)]. The combi-

nations of homogeneous and particular solutions appearing in

Eq. (6.3.7) are formed during the numerical calculations; and

the solution is presented in the reduced form

Sz = SQ + Rp ezol (6.3.8)

The initial conditions, which are not related to symmetry, for
the various homogeneous and particular solutions are arbitrary,
except that in the homogeneous solutions care must be taken
to avoid the situation described on p.82 , in which starting
a solution with both zero value and zero slope makes it
identically zero.



Thus the principle of superposition for linear differential equa-

tions allows the parameter Rp0  to be carried through the solu-

tions analytically. This greatly reduces the number of different

numerical solutions that are required, since only two parameters

(M and a) must be varied numerically and not three. Note that

if the original non-linear equations [Eqs. (5.3.19) and (5.3.20)]

are integrated numerically, four parameters (M, R , a and Rp0 )

must be varied numerically.

Now that the zero-order velocity defect has been obtained in

the form of Eq. (6.3.8), the first-order magnetic field equation

[Eq. (6.2.7)] can be written as

S 2 i 2 h
h - a h = ia h (e +Rp ). (6.3.9)
-yl -YI -yO zoo o zol

Furthermore, the first-order magnetic field h must have the
-yl

same symmetry as the excitation and must satisfy the homogeneous

boundary condition h (l) = 0. If Eq. (6.3.9) is separated

into its real and imaginary parts, the results are

S2 2
h it- a hy = -a hyoio(EzOO + RpsE ) , (6.3.10)*
ylr ylr yi 0 0

and

h 2 - h =0, (6.3.11)
yli yli

*
A zero has been arbitrarily added to the subscript of h .
(viz. h ) to make it conform to the notation intro-
duced y A later in which this added number indicates the
power of Rp which multiplies a solution.

79.



80.

in which the subscripts r and i denote the real and imaginary

parts of the various magnetic field quantities, and where use has

been made of the fact that hyr = 0 for both even and odd exci-

tation [see Eqs. (6.3.1) and (6.3.2)].

Equation (6.3.11) can be readily disposed of; its solution

is either aecosh cy for even excitation or a-sinh ay for odd

excitation. However, in either of these solutions the boundary

condition hli(l) = 0 implies that a = 0. Thus

h = 0 (6.3.12)

The solution to Eq. (6.3.10) is obtained in the following

way. First, the homogeneous solutions are just those mentioned

above (cosh ay and sinh ay), and furthermore the correct

symmetry can be automatically obtained by letting

hylrh = h . [cf. Eqs. (6.3.1) and (6.3.2)] (6.3.13)

*
Next, an even <odd> particular solution h ylrp to the equation

" 2 2hylrp a h = -a hyi , (6.3.14)yr ylrp0 y~iO zoo

which satisfies the condition hylrpo (0) = 0 <hylrp (0) = 0>,

is integrated numerically. Also, to provide for the second

driving term in Eq. (6.3.10), an even <odd> particular solution

hylrpl to the equation

ylrp2
h - a 2h = 2 h e , (6.3.15)
ylrpl ylrpl yOiO zOl

*
The discussion is presented in terms of even excitation, and
the changes that are required for odd excitation are given in
angular brackets.
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which satisfies the condition hylrpl(0) = 0 <hy lrpl(0)

is computed. Finally, the three solutions are combined to form

the total solution

h = [h + h' (1) h
ylr ylrpO a ylrpO y0i0

+ Rp [h + h (1) - h I, (6.3.16)
o ylrpl a ylrpl yOiO

which satisfies Eq. (6.3.10), the symmetry requirement

h ylr(-y) = hylr (y) <h yr (-) = -h ylr ()>, and the homogeneous

boundary condition hy 1(1) = 0. Again the combinations ofylr
solutions required in Eq. (6.3.16) are formed during the numerical

computation, and the total solution is presented in the form

hylr = hylr0 = Rpohylrl (6.3.17)

Once the zero-order velocity defect and the zero and first-

order magnetic fields are known, Eq. (6.2.9) can be solved for

the first-order velocity defect. The driving term in this

equation is

1 M2 h h* + h h (6.3.18)
2 -y0 -yl -yl -yO zO

however, the zero-order magnetic field is now known to be purely

imaginary (Eqs. (6.3.1) and (6.3.2)] with the result that

h* = -h , and the first-order magnetic field is now known to
-yO -yO
be purely real [Eq. (6.3.12)] with the result that h* = h .

Thus (h h* + h h ) = 0, and the driving function vanishes.
yO -yl -yl -yO

Therefore, the first-order velocity defect satisfies the homo-

geneous equation
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1 2 *
E" = M h h * 1 . (6.3.19)Z1 2 -y0 -y0 zI

Since h h = cosh2 ay/sinh2 a <sinh2 ay/cosh 2a> is non-
-yO -yO

negative, eZ1 has the same sign as eZ1 for all values of y.

However, EZ1 must also satisfy the symmetry condition

Ezi () , which implies that e (0) = 0, and the

homogeneous boundary condition E 1(l) = 0.

Three situations are possible depending on the value of

E (0) as shown in Fig. 6-1.

el (0) = 0 0 -

E z1 (0) <0

Fig. 6-1 Possible Solutions for the
First-Order Velocity Defect

First, if E (0) > 0, then e (0) >0, and s a mono-

tone, non-decreasing function of y for j > 0. Second, if

E K(0) < 0, then E (0) K 0, and Ezs is a monotone, non-

increasing function of for y > 0. Third, if E (0) = 0,y y - zl()=0
then E = 0. Clearly the third situation is the only one

which satisfies the boundary condition s (1) = 0. Therefore,

E Z1 0 . (6.3.20)



Now that the zero-order velocity defect and the first-order

magnetic field are determined in the form of Eqs. (6.3.8) and

(6.3.17), and the first-order velocity defect has been found to

be zero, the second-order magnetic field equation [Eq. (6.2.8)]

can be written in the form

h 2 - a hy2 = ia(oo + Rp 0 l)(hylrO + Rph ylrl (6.3.21)

If Eq. (6.3.21) is separated into its real and imaginary parts,

and the driving function is multiplied out, the results are

h2 - a2h = 0, (6.3.22)
y2r y2r

and

h - a y2h = a [F- h + Rp (s hy21 - hy2 ~zoo ylrO o zoo ylrl

+ l h ylr) + (Rp ) 2 h I i (6.3.23)

As in the case of h i the only solution to Eq. (6.3.22) that

satisfies the symmetry requirement hy2r(-y) = hy2r(Y)
(hy2r -h) ~y2r (y)>, and the homogeneous boundary condition

hy2r(1) = 0 is

h = 0 (6.3.24)
y2r

with the result that the second-order magnetic field is purely

imaginary.

Equation (6.3.23) is solved for h in the same way
y2i

that Eq. (6.3.13) was solved for hylr, except that three

particular solutions, each corresponding to a single term in the
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drive, are required for Eq. (6.3.23). The homogeneous solution to

Eq. (6.3.23) is again identified with the zero-order magnetic field,

viz.

hy2ih =hYOM (6.3.25)

Among the particular solutions, hy21p0

- 2
y2ipO y21pO

that satisfies

and hy2ipO (0) = 0

is the solution of

2
zOO hylrO

hy21pO() = y2ip

<hy2io (0) = 0>; h 2 1 is the solution of

h 2 h
y21pl y21pl

that satisfies h
y

and hy2 1pl(O) = 0

solution of

2
= zOO( ylrl

2ipl(-y) = hy2i1pl(y)

)= >;
hy2ipl()=>;

+ E zhylrO

<hy2ipl(-y)

and hy2ip2

(6.3.27)

S-hy21pl

is the

" 2 2
hy2ip2 a hy2ip2 = a EzOl ylrl

that satisfies hy2ip2(- y) = hy21p2(y) <hy2ip2(-y) = -h (y)>

and hy2ip2(0) = 0 <hy 2 1p 2 (o) =

(6.3.26)

<h y21pO(-) = -hy21p(

(6.3.28)
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Again these solutions can be combined to form the total

solution

hy2i = [h 21p + h'2i 0( h

+ Rp [h 2 1 + 1hyp(1) h

+ (Rp0) 2[hy2 p2 + 1 hy2ip2(l) h , (6.3.29)

which satisfies Eq. (6.3.23), the symmetry requirement

y2i = hy2 () <hy 2 (- ) = -hy21(y)>, and the homogeneous

boundary condition hy2i(1) = 0. The solution is presented in

the simplified form

h = hy2iO + Rp hy21l + (Rp )2 hy212 '
(6.3.30)

Finally, consider the second-order velocity defect equation

(Eq. (6.2.10)], which now can be written in the form

1 - 2 * M2 2
E Z - M hyoh yoez2 2 ~( 2 h yoi h y2i + h ylr )ezo

(6.3.31)

A homogeneous solution to Eq. (6.3.31) that satisfies the con-

ditions E 2 h(- = S2h(y) and e (0) = 1 has already been

determined, viz.

(6.3.32)E E Oh. [cf. Eq. (6.3.5)]

To determine the drives for the various particular solutions,

Eq. (6.3.8), (6.3.17) and (6.3.30) must be substituted in. the
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expression (6.3.31) for the total drive D. The result is

D = M2  
8  (2h h + h 22 t zoo y~iO y2iO ylrO

+ Rp0[2e (hy0io hy2l + hylr h ylrl)

2
+ E (2hy0i0 hy2iO + h ylrO

+ (Rp )2 s (2hy~i h 2i 2 + h 1r

+ 2ezo1(h.y0i hy21l + hylrO hylrl)]

+ (Rp ) 3 E (2h hy2i2 + h 2lrl (6.3.33)

Of the four particular solutions that must be obtained in this

case, EzspO is the solution of

z2p M 2h 2i E 2E (2h hy~iOz~pOzoo y~iO y2iO + h 2
ylrO

(6.3.34)

that satisfies

Sz2 (0) = 0;

the conditions e 20 (-Y) E z2 0 y)

Ez is the solution of

o - M2 hy2 Zp = M2[2e (h h + h hy )
z2pl yOOz2pl zoo y0iyOi y2il ylrO ylrl

+8E (2h h. +h 2
zOl'yOiO y21.O ylrO) (6.3.35)

and
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that satisfies the conditions e 2l(-"* = (y)

Sz2pl(O) = 0; z2p2 is the solution of

and

I M 2h 0 0 2  IMt2sF (2h h +h2
2 ~O 2 2 - zoo y~iO y212 yin')

+ 2ezOl (h yiOh + h ylrO yi

(6.3.36)

that satisfies the conditions e - e (y) and

Sz2p2(O) = 0; and E 2p3 is the solution of

E23 -I M2h 2i E 1, Ms2 (2h h + h 2 (6.3.37)

that satisfies e - e (y) and

homogeneous and particular solutions are

total solution

Ez2p EzbZ2P0 zOh(1

+ Rp 0 Fz2pl

2
+ (Rp) 22

+(Rp) 3 23

6z2pl (1)
zOh (1)

S 0) = 0. The

combined to form the

ezoh'

E z~h

S z 2(1)

- Ezh (1

E (1)

EzOh '~
(6.3.38)

SI
E z2p2

6 z
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which satisfies Eq. (6.2.10), the symmetry requirement e -

e 2 (y) and the homogeneous boundary condition e 2(1) = 0. Again,

this solution is presented in the more compact form

z2 = Ez20 + oz2l (Rp )3 . (6.3.39)

The process of solving higher and higher order equations

in the system given in Eqs. (6.2.3) through (6.2.6) can be

continued indefinitely, although the algebraic and computational

difficulties increase with each step. However, some general

properties of the expansions in R /a [Eqs. (6.2.1) and (6.2.2)]m
are suggested by the solutions that have been obtained. First,

velocity defects corresponding to even powers of R /a are non-m
zero, while those corresponding to odd powers of R /a areM
identically zero. Second, the expansion of s n involves powers

of Rp up to and including n + 1. Third, the magnetic field

terms h are purely imaginary if n is even and purely real

if n is odd. Fourth, the expansion of h involves powers
yn

of Rp up to and including n. For convenience, these pro-

perties are displayed for the first few values of n in

Table 6-1 on the following page.

Of particular importance among the properties listed in

Table 6-1 is the fact that the third-order velocity defect is

equal to zero. This means that the error in the approximation

to the velocity defect provided by ez0 and ez2 iS proportional

to the fourth power of R /a. The numerical error curvesm
represented in Sec. 7.4 show that R /a can be reasonably large

before this error is appreciable.
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Table 6-1

Properties of the Expansions

in R /am

Highest Highest
n E Power of h Power of

Rp in E Rp in e0 zn 0 zn

0 / 0 1 Imaginary 0

1 =0 Real 1

2 / 0 3 Imaginary 2

3 =0 Real 3

4 / 0 5 Imaginary 4



Chapter VII

RESULTS OF THE NUMERICAL CALCULATIONS

CONCERNING INDUCTION-DRIVEN FLOW

This section presents and discusses the results of the

numerical calculations that were made to implement the method

of solution that is described in Ch. VI. Only the results of

these calculations are presented here, however, the numerical

methods that were employed are described in Appendix B,and

the digital computer techniques are outlined in Appendix C.

7.1 The Physical Significances of the Two Types of

Excitation and the Flow Parameters

The nature of the solutions that are presented in the

following sections is much more easily understood if the

physical significances of the two types of excitation (even

and odd) and of the various flow system parameters (a, M,

R /a and Rp ) are made clear.

First, consider the differences between even and odd

excitation. The fundamental distinction is that in even

excitation the traveling current sheets on the surfaces of

the channel are in phase, while in odd excitation they are

180* out of phase [cf. Eqs. (5.1.7) and (5.1.8)]. Figure 7-1

depicts the two forms of excitation schematically. The

traveling current sheets are represented by sine waves, with

a dot indicating current directed out of the paper, and a

cross indicating current directed into the paper. The

dotted arrows indicate the direction of the magnetic field
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produced by each "pole" of current, while the solid arrows

indicate the position and direction of the principal field

produced by the excitation. The phase velocity of the

current waves is , and their wave length is .

y
27r-

kC

Fig. 7-la Even Excitation

z -~.2v

4< ~ k

Fig. 7-lb Odd Excitation

In general, even excitation produces a large component of

transverse magnetic field (proportional to cosh ay/sinh a

when R << 1), while odd excitation produces exactly the
m

reverse. Thus, for small values of a, the field produced
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W

by even excitation is almost entirely transverse, and that

produced by odd excitation is almost entirely longitudinal.

However, for large values of a, the transverse and longi-

tudinal fields produced by both types of excitation are

approximately the same. [When R << 1, the ratio of the
m

average transverse field to the average longitudinal field

produced by even excitation, or the ratio of the average

longitudinal field to the average transverse field produced

by odd excitation is cosh a/(cosh a - 1).] Because the

transverse component of the traveling magnetic field

produces an electromagnetic force that is in the direction

of the mean fluid flow, while the longitudinal component

does not, even excitation has a greater effect on the fluid

motion than does odd excitation.

Next consider the significance of the parameter a.

Its definition [Eq. (5.1.4)] indicates that it measures the

ratio of the channel half-width a to the excitation pole

spacing r/k. Because of the way in which a effects the

magnetic field distribution, it may be thought of as a

measure of a sort of "geometrical skin effect". If a is

small, the magnetic fields are uniform (for R small);
m

while if a is large, they are strong near the channel walls

and weak near the center line.

The significance of the parameter M is already quite

clear from the discussion of Hartmann flow in Chs. III and

IV, but for the sake of completeness, it is discussed briefly
2 2

here. If the definition M = (p0 H L ) a/q is rearranged

slightly, it becomes
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22 Cro (1H 0)

11v/L

which can be interpreted dimensionally as the ratio of the

electromagnetic force 3 x 4 H due to the induced current
0 2-

Ov x 4 H, to the viscous force 'V v. Thus, if M is

small, viscous forces control the fluid motion and the

velocity profiles have a parabolic character, while if

M is large, electromagnetic forces dominate and the

velocity profiles have a highly squared appearance.

Next consider the parameter R /a in which the
m

perturbation expansions of Sec. 6.2 are made. If the

specific characteristic quantities of induction-driven flow

that are defined in Eqs. (5.1.3) through (5.1.6) are sub-

stituted in the general definition of R [Eq. (2.2.18)1,m
R /a can be written as
m

R/a -a (7)2
R /a ( 1 a 1 k .7.1.2)m ka 72 2

W La

The right-hand side of Eq. (7.1.2) shows that R /a ism
a measure of the square of the ratio of the excitation
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*
wave length to the electromagnetic skin depth. Therefore,

when R /a is small, electrical skin effect is unimportant,m
while when R /a is large, this skin effect prevents the

m
magnetic field from penetrating uniformly into the fluid.

Thus two of the flow system parameters are concerned with

skin effects: a with the geometrical skin effect; and

R /a with the electrical skin effect.m

Finally, consider the parameter Rp . In terms of the

definitions of R and p0  [Eqs. (2.2.17) and (5.3.15)], and

the characteristic quantities of this flow, Rp0  can be

written as

6P

Rp = 3 (7.1.3)o W 2

which can be interpreted physically as the ratio of the body

force due to the mechanical pressure gradient to the viscous

force that would exist if the average fluid velocity were

the synchronous speed. Hence, if Rp0  is small, the balance

between electromagnetic and viscous forces determines the

*
Because the fluid velocity varies across the channel,
different elements of fluid experience electromagnetic
fields at different frequencies. Hence, this skin effect
problem is more complicated than the usual one for which
the expression 6 = 42/wp a is derived. However, the
analogy is useful in obtaining a physical understanding of
the nature of the parameter R /am
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fluid motion, while if Rp0  is large, the balance is between

external pressure forces and either viscous or electromagnetic

forces. Note that when Rp0  is positive the mechanical

pressure force is in the negative z-direction and vice versa.

7.2 Velocity Profiles

The key results of the numerical calculations concerning

this induction-driven flow are fluid velocity profiles. Not

only are they central in all further calculations of such

quantities as flow rate and efficiency, but their form and

its variation with the various flow parameters very graphically

displays the physical phenomena that are significant in this

flow.

The basic form in which the velocity profiles were

calculated and in which the complete sets of profiles are

presented in Appendix D consists of the first two non-zero

terms in the perturbation expansion described in Secs. 6.2

and 6.3. Thus the velocity is written as the following

functional polynomial in the parameters R /a and Rp,
m 0

uZ(Y) = uz00(y) + Rp 0  uz01(y)

+ (R /a)2 [U (Y) + Rp u (Y )m z20 o z21

+ (Rp )2 . uz22 (y) + (Rpo)3  uz23(y)]

+ 0[(R /a) I, (cf. Table 6-1) (7.2.1)
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and the figures show plots of the functions u 00 (y) through

U z23( *

Figure 7-2 shows a set of velocity profiles for a = 1.0,

M = 1.0, and even excitation. Because the Hartmann number is

relatively low (cf. the Hartmann profiles, Fig. 3-2), the

functions all have the parabolic appearance that characterizes

profiles that are dominated by viscous forces. Since the

functions all have roughly the same shape, the form of the

velocity profile changes relatively little with changes in

R /a or Rp .m0

Note that uz00  is positive, because with no pressure

gradient along the channel the magnetic field, which travels

in the positive z-direction, drives the fluid in the same

direction. However uz0 1  is negative, because a positive

pressure gradient (Rp 0 ) drives the fluid in the negative

z-direction. A simple physical explanation of the fact that

all of the second-order (in R /a) velocities are negative

is somewhat more difficult to obtain, although this fact can

be demonstrated by direct analytical consideration of Eqs.

(6.3.31) and (6.3.33). In view of the interpretation of

R /a as a measure of the importance of the electrical skin

effect, the fact that the second-order velocities are negative

is indicative of the fact that as the electrical skin effect

becomes more pronounced the traveling magnetic field exerts

less influence on the fluid motion (cf. the flow rate-

pressure head curves of Sec. 7.5). In terms of the analogy
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between an induction-driven flow and a conventional induction

motor, the zero-order solutions correspond to the assumption

that the induction machine rotor is completely resistive,

while the second-order solutions begin to show the effects

of inductance.

Figures 7-3 and 7-4 show a pair of sets of velocity

profiles for even and odd excitations with a = 0.5 and

M = 10.0. In both sets of profiles, the effect of the

electromagnetic forces in establishing more rectangular

shaped profiles is evident, although far more pronounced

with even excitation. This difference is due to the

reasonably small value of a which implies that the trans-

verse magnetic field produced by the odd excitation is weaker

than that produced by the even excitation. (The "effective

Hartmann number" is smaller with odd excitation than it is

with even excitation.) The fact that even excitation

controls the fluid much more effectively than odd excitation

at this value of a is evident in two forms. First, the

average value of uz00  is larger with even excitation

(most of the fluid travels at very nearly the synchronous

speed). Second, the average value of uzOl is much smaller

with even excitation, indicating that a much larger pressure

force (Rp ) is required to alter the volume flow rate for

even excitation than for odd excitation.

Although a is relatively small, the "geometrical skin

effect" due to the non-uniformity of the transverse magnetic

field is already evident in the case of even excitation in

that uz0 1  has a more parabolic and less rectangular

appearance than uz00 . Thus, for small values of Rp0 the

98.



+1 .

-1 4 ... .. . 4 i

IT -i 4 41

44- +1 111 - , i

-77I

T4 '4 77774

<I ~ , ,, -
li--

0

71 7:7771: l

711-

+0O

+0.

44)

-0.

-0.

lev _b: 16X4 at"Ancon i j 1



+0.

+0.

+0.

+0.

1 .

:1it~1kLI~i~! 4j T1,~411TtI 21414 1 1~ if
+1.0

I _-I 7

4 :1
10-1-

2 444 24

H- LL

41~~ -ii -- --
-- -- 4- -

- -

2

-4 tj

0

-0.

.

-0.

.0



velocity has a more rectangular appearance, while for large

values of Rp0  it has a more parabolic appearance. This is

in sharp contrast with Hartmann flow, in which the shape of

the velocity profile is fixed by the Hartmann number alone

(cf. Sec. 3.1). The "geometrical skin effect" is, or course,

quite pronounced with odd excitation, because the transverse

magnetic field in that case is zero in the center of the

channel and increases in magnitude toward the channel walls

(cf. Fig. 7-9).

In Fig. 7-3, with even excitation, the electrical skin

effect is very apparent in the second-order (in R /a)m
velocity profiles. Furthermore, within this group of pro-

files the varying effect of the pressure drive can be seen.

Since uz2O is multiplied by (R/a) , but not Rp , its

shape is entirely dominated by the electrical skin effect.

By contrast, u 23  that is multiplied by (R /a)2  and

(Rp0) is dominated by the pressure and viscous forces.

In between these two extremes, uz2l and uz22 show

progressively less electromagnetic skin effect and more

viscous control. The pronounced electromagnetic skin effect

is absent from the second-order profiles for odd excitation,

because the magnetic fields in this case are already much

stronger near the walls than in the center of the channel

(cf. Fig. 7-9).

A final pair of sets of velocity profiles for a = 1.0

and M = 10.0 is shown in Figs. 7-5 and 7-6. Notice that

although M is the same in these figures as in Figs. 7-3

and 7-4, uz0 0 is less rectangular in Fig. 7-5 than in
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Fig. 7-3 and more rectangular in Fig. 7-6 than in Fig. 7-4.

Both of these changes are due to the increase in a (from

Figs. 7-3 and 7-4 to Figs. 7-5 and 7-6), which makes the two

forms of excitation more nearly equally effective. Note also

that the electromagnetic skin effect is less pronounced in

Fig. 7-5 than in Fig. 7-3. This is also due to the change

in a.

Figure 7-5 shows quite clearly that uz0 0  has a more

rectangular appearance than uzol, with the result that

the shape of the velocity profile will change with changes

in Rpo. This variation in profile shape is shown graph-

ically in Fig. 7-7 where the center channel velocity is

deformed continuously from twice the synchronous speed to

minus the synchronous speed by varying the pressure drive

Rp . (Note that these profiles are for R /a = 0.) The

profiles in Fig. 7-7 show the somewhat startling possibility

that the fluid velocity can have a point of inflection and

can even be positive near the walls and negative near the

center of the channel. This seemingly strange phenomenon

appears in fact to be quite reasonable, because the

mechanical pressure exerts a force that is uniform across

the channel, while the traveling magnetic field exerts a

force that is stronger near the walls than it is near the

center of the channel. The question of the stability of such
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*
profiles appears to be a very interesting problem.

A detailed examination of the way in which the velocity

profiles deform in Fig. 7-7 is quite revealing. Near the

synchronous speed, the pressure force is very small and the

center of the profile is flat, being controlled by electro-

magnetic forces. In order to make the center channel velocity

greater than the synchronous speed, Rp0 must be negative so

that the pressure force is in the positive z-direction and

drives the fluid faster than the traveling field. As Rp0

becomes more and more negative, the profile rapidly changes

from its highly rectangular form at u (0) = 1.0 to a much
z

more parabolic form at u z(0) = 2.0. This rapid transition

is due to the combination of two effects: the pressure and

viscous forces that are striving to make the profile parabolic;

and the electromagnetic force that is retarding all elements of

the fluid that are traveling faster than the synchronous speed,

but acting more strongly on those elements that are nearer the

walls.

When Rp0  increases in the positive direction, the

pressure force opposes the electromagnetic force, and begins

to depress the profile in the center where the electromagnetic

force is weakest. When uz(0) = 0.0, the pressure force is

beginning to dominate in the central region of the channel,

but the electromagnetic force is still in control near the

walls. Even when Rp is large enough to make u Z() = -1.0

and the central region of the profile has a decidedly parabolic

*
Note that the theorem concerning parallel hydrodynamic flows
that states that under certain circumstance the existance of
a point of inflection implies instability (see Lin,4 1 Sec. 4.3)
is not applicable to this magnetohydrodynamic situation.
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appearance, the effect of the electromagnetic force near the

walls is still noticeable.

7.3 Magnetic Field Profiles

In Sees. 6.2 and 6.3, the transverse magnetic field was

also expanded in a functional series in powers of R /am
and Rp0 . This series has the form

h (y)= i hy i(y) + (R /a)2 [hy (Y)

+ Rp ' hy2il) + (Rp) 2  h y2i2

+ O[(R /a)4 }

+ (Rm/a) -[hylr 0 ) + RP hylrl

+ O[ (R /a)3] (7.3.1)

and the numerical results consist of plots of the functions

h (y'%) through h )yOiOY 21

Because of the relatively large number of plots that would

be required, the entire set of magnetic field profiles that

corresponds to the set of velocity profiles shown in Appendix D

is not shown; however, for the purposes of discussion, a typical

pair of sets of magnetic field profiles for a = 1.0 and

M = 10.0 are shown in Figs. 7-8 and 7-9. The most striking

difference between these sets of profiles is of course the
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4-,

difference in symmetry. Notice also that only the applied field

h y0i has a non-zero slope at y = 1, because the surface current

sheets are independent of the parameters (Rm/a) and Rp0 .

Finally, for both types of excitation the higher-order

(in R /a) fields are more uniform than the original applied

fields.

7.4 Checking of the Solutions and Error Estimates

In order to provide a positive and accurate check on the

amount and behavior of the error in the solutions for the

fluid velocity and the magnetic field that were obtained by

the perturbation expansion method, exact solutions to the

original set of coupled, non-linear equations [Eqs. (5.3.19)

and (5.3.20)] were calculated for specific sets of values of

the parameters M, a, R /a, and Rp. These exact solutions

were obtained from Eqs. (5.3.19) and (5.3.20) by an iterative

procedure, using the perturbation expansion solutions as the

starting functions. Because the production of these exact

solutions requires far more computer time than does the

perturbation expansion method, exact solutions were only

calculated as a check for a few sets of values of the para-

meters.

Figure 7-10 shows a sample set of plots of the relative

errors in the real and imaginary parts of the transverse

magnetic field, and in the velocity defect as functions of a

parameter RAT, which is the ratio of the average of the

second-order (in R /a) fluid velocity to the average of the
m 2

zero-order velocity, and is proportional to (R /a) . Sets
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of error curves are shown for average zero-order velocities of

2.0, 1.0 and -1.0.

The important feature of these error curves is that over

most of their length they are almost perfectly straight lines.

The slopes of these lines, which are the powers of RAT with

which the error varies, are shown in the right-hand margin.

These slopes turn out to be almost exactly integers, and

furthermore they agree with the error behavior that is

predicted in the truncated perturbation expansions (7.2.1)

and (7.3.1). Thus the errors in the fluid velocity and the

imaginary part of the magnetic field have slopes of almost

exactly two in Fig. 7-10, and therefore depend on the second

power of RAT or the fourth power of R /a. However, thisM
is exactly the error dependence that is predictedin Eqs.

(7.2.1) and (7.3.1). Since the expansion of the real part

of the magnetic field [see Eq. (7.3.1)] has no term which is

independent of R /a against which to normalize the error,m
the error was normalized with respect to the first term in

the expansion, which is proportional to R /a. Thus the
m

expected relative error in the real part of the magnetic
0 2

field is O[(Rm/a) ], which is exactly what is found in Fig.

7-10 where this error depends on the first power of RAT or

the second power of R /a.
m

The results of this solution checking procedure are quite

important, because they demonstrate the correctness of the

perturbation expansion solutions, and testify to the validity

and applicability of this method.
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Finally, in order to give some idea of the range of values

of R /a in which the truncated perturbation expansion solutions
m

accurately approximate the exact solution, the relative errors

in the velocity defect that are shown in Fig. 7-10 are re-

plotted in Fig. 7-11 as functions of R /a. In general, the
m

error is very small for R/a < ~ 0.5, and often it is still

relatively small for R < -, 10.0.
m

7.5 Volume Flow Rate and Efficiency

The average fluid velocity, which is proportional to the

volume flow rate, can be obtained in the form of a polynomial

in R /a and Rp by averaging the functions uz00 through

uz23  in Eq. (7.2.1) with respect to y. Figure 7-12 shows

a typical set of curves of the average fluid velocity <uZ>

as a function of the pressure gradient Rp0 , with R /a0 m
as a parameter. For. R/a = 0, the curve is, or course, aM
straight line, because only <uz00> and <uz01> are present

in the polynomial. Again, note that a positive pressure

gradient drives the fluid in the negative z-direction. As

R /a is increased, the fluid velocity is affected very littlem
near synchronous speed (<uz > 1.0) where the pressure

gradient Rp is small, however it is affected considerably

in regions farther from this point (<uz> > - 2.0 or < -. 00)
where the pressure gradient is larger. As R /a is increased,

m
the electromagnetic skin effect decreases the effect of the

traveling magnetic field on the fluid, with the result that

the fluid responds more and more to the pressure drive.
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'4~4i.4'4 4~14'.4 4.44 4 4; "4 4

4 .t'44'4 4 '-'-.144 4 ~44...4' 4 '4' '4 4 .'i 7

I''
I:

;iA~ I It. I
.Tr.y. t"~VV 4

[~I

10

M im2

---.

m e m

; - - - -r- -- ---
ela L eto in

7r--7 - T-J

*I

.0.00

jig-

F
1747

Ii ~ ~ ~ ~ ~ ~ ~ ~ ~~T -'-4i~t7 V~711 ~~~ 'Ti
rT

IN -4-
.1 K

i 7 1

j

ALi--

I
10

~4

Kj

u only 1-

kV-> -I- -~

T'K

1]

~ i~

0-21 10

r
t44 .1'

444
4'"

210

10- 21 2 FT I

4

rel

10

-510

T
r

- t

*17 l
- I ~

I
10

71,, .

i a e 6. e
4L -

4a-r ne--r e r - in . -

t! 4

o re a e e.i is i in+i a a i a
114.

1
ie-2 UVV

1



+4.0

+3.0

+2.0

<UZ>

+1.0

7 7 . . I I : . : ,

r- T

a run vti -- o

(R~~ /a)sitli .

-4 K~tt0

- -7 - --- .

0.0

-4.0

)-A

1.11

I



Therefore, for positive values of Rp an increase in R /a1 0 m
causes a decrease in the average fluid velocity, while for

negative values of Rp an increase in R /a causes an0 m
increase in the average fluid velocity.

The efficiency of the flow as an energy converter can

also be obtained in the form of a ratio of polynomials in

R /a and Rp by substituting the truncated perturbation
m o

expansions (7.1.1) and (7.2ol) in the integral expressions

for the efficiency (5.4.20) and (5.4.21). The form of the

resulting polynomials is quite complicated and, therefore,

will not be written out here. Suffice it to say that this

procedure can be carried out and that efficiency curves

such as those discussed in the following paragraph can be

obtained.

Figure 7-13 shows a sample set of curves of efficiency

as a function of Rp with R /a as a parameter, for a = 1.0,

M = 10.0, and even excitation. The curves very graphically

demonstrate the regions of operation of the flow as an energy

converter. For large negative values of Rp , the pressure

force drives the fluid sufficiently faster than the synchronous

speed so that the mechanical power input is large enough to

supply the ohmic and viscous power losses, and to provide

electrical power output--the flow operates as a generator.

As Rp becomes less negative a point is reached at which

the fluid is still traveling faster than synchronous speed

(cf. Fig. 7-12), but at which the mechanical power input just

matches the ohmic and viscous power losses, and the electrical
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power output and the efficiency drop to zero. As Rp0  becomes

still less negative power comes into the flow from both the

mechanical and the electrical power sources, but is entirely

dissipated in ohmic and viscous loss--the flow operates as a

brake or flow damper. When Rp0  becomes positive, power

begins to flow out of the mechanical terminals--the device

operates as a pump or motor. The mechanical power output as

well as the ohmic and viscous losses are now supplied by the

electrical power input. As Rp is increased, the efficiency

increases to a maximum, and then decreases again. Finally,

when Rp0  has become large enough to reduce <uZ> to zero

(cf. Fig. 7-12), the mechanical power output and the

efficiency also drop to zero. Further increase in Rp0 causes

<uz> to become negative, with the result that mechanical as

well as electrical power again comes into the flow--the flow

has entered the second region of brake or flow damper

operation.

The effect on the efficiency curves of an increase in

R /a is essentially the same as it was on the flow rate curves

(Fig. 7-12). As Rm/a is increased, the effect of the electro-

magnetic forces is lessened with the result that less pressure

force is required to produce the same change in flow rate or

efficiency.

In order to give an indication of the variation of the

efficiency with the parameters a and M, the maximum

efficiencies for several values of a and M are shown in

Figs. 7-14 and 7-15 (in all of the efficiency curves that were
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obtained, the maximum efficiencies in the pump and generator

modes of operation were very nearly equal). There are

relatively few points shown in Figs. 7-14 and 7-15 because of

the relatively large amount of computer time required to

produce a set of efficiency curves. For the same reason, most

of the calculations were made concerning even excitation,

because for the few points at which the efficiency was obtained

for odd excitation, it was much lower than for even excitation

(see Figs. 7-14 and 7-15 ).

Figure 7-14 shows a plot of the maximum obtainable

efficiency as a function of the Hartmann number M for

a = 1.0. As in the conduction-driven flow situation, the

efficiency increases monotonically with increasing M

(cf. Ch. IV, particularly Fig. 4-6). Figure 7-15 shows a

plot of the maximum obtainable efficiency as a function of

a for M = 10.0. For even excitation, the efficiency

decreases monotonically with increasing a; while for odd

excitation it also decreases, but not as rapidly (the two

forms of excitation are becoming more nearly equally

effective).

7.6 Relation to Existing Experiments

To the author's knowledge, there have been no detailed,

scientific, experimental investigations of induction driven

magnetohydrodynamic channel flow. There has been considerable

interest in the use of induction pumps for liquid metals,

See, for example, Blake.10
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although the experimental results that are published concerning

tests of such pumps are restricted to overall operating

characteristics such as head-capacity and efficiency-capacity
*

curves. Just as in the case of conduction-driven flow

(see Sec. 4.4), the head-capacity and efficiency-capacity

curves have roughly the same forms as those shown in Figs. 7-12

and 7-13, but the actual conditions are sufficiently different

from those assumed in this analysis that quantative correlation

of the results would be unjustified. There is a real need for

some careful, detailed experimental investigations of induction-

driven magnetohydrodynamic channel flows (see Sec. 9.3).

See, for example, Barnard and Collins. 42
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Chapter VIII

TIME VARIATIONS IN THE FLUID VELOCITY

Section 5.2 describes the formidable difficulties that are

encountered in attempting to find solutions to the induction-

driven flow equations in the general case in which the fluid

velocity varies with time. With respect to this problem the

present chapter has two purposes: first, to develop a quanti-

tative understanding of the relative responses of a viscous

fluid to time-varying and steady forces through the analysis

of a simplified, but exactly soluble problem; and second, to

develop and discuss the equation that governs the second-

harmonic components of the fluid velocity, under the assumption

that these components are small in comparison with the mean

velocity.

8.1 The Relative A-C to D-C Response in Parallel Flow

In order to obtain a quantitative understanding of the

response of a viscous fluid that is subjected to both steady

and time-varying forces, the following simple hydrodynamic

situation is considered. A fluid characterized by a mass

density p and an absolute viscosity n flows in the

z-direction between infinite parallel planes located at

y = + a, as shown in Fig. 8-1. Furthermore, the fluid is

subjected to a uniform (with respect to space) body force in

the z-direction that consists of a constant plus a sinusoid of

frequency w. (Note that this is quite similar to the force

that is applied to the fluid by the traveling magnetic field
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y

+af

0 x f(t) v(y,t)

-a

Fig. 8-1 A Time-Varying Viscous Flow
Between Parallel Planes

in induction driven magnetohydrodynamic flow [cf. Eq. (5.3.9)].

If the applied body force f(t) is given by

f(t) = f (1 + sin wt) , (8.1.1)

the fluid velocity v(y,t) must satisfy the diffusion equation

2 f
- - (1 +

6y2 - ;t 1
sin wt) , (8.1.2)

the symmetry condition

v(-y) = v(y) , (8.1.3)

and the boundary condition

v(+ a) = 0 . (8.1.4)

Because Eq. (8.1.2) is linear, it may be solved separately

for the d-c and a-c components of the fluid velocity, which are

due respectively to the d-c and a-c terms in the applied force.
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The solution for the d-c driving term is the familiar

vdc ' 2 (a2 -2) , (8.1.5)

the average of which, with respect to y, is

f a 2
<vd> 3- ' (8.1.6)

By analogy with a problem in the conduction of heat in a

solid, the a-c velocity is found to be

va =A- n (2n + )ry
ac rp (2n + 1) 2a

t -a (t -T
f sin oT e n dt , (8.1.7)*
0

in which

a = (2n + 1)2 2/4a2 (8.1.8)

if the sinusoidal force commences at t = 0. When the integral

in Eq. (8.1.7) is performed, and the portion of the result that

corresponds to the transient solution is dropped, the desired

steady-state solution is found to be

See Carslaw and Jaeger,43 p. 131, Eq. (9). (Note that there is
a misprint in this equation in that 22 should be replaced by 4z2

in the denominator of the exponential.)
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40o -1)n (2n + 1) ry
pac (2n + 1) cos 2a

(a sin wt - w cos wt)

a 2 2
n

(8.1.9)

Because the time-average value of the a-c velocity is

zero, the root-mean-square value is used as a measure of the

a-c response. If the root-mean-square value of Eq. (8.1.9)

with respect to time is taken, the result is

(v )
2 F f ( 1 )n cos[ (2n + 1)7ry

0 2 2a .

rp n=O (2n + 1) (a2 + W2 1/2
n

(8.1.10)

Finally, the average of Eq. (8.1.10) with respect to y is

given by

44I2- f 0 0-22 2 /
<(Vac rms> 2 7 (2n + 1)2 a + 2-1/2

r p n=0
(8.1.11)

The ratio t of the a-c to the d-c response of the fluid

may now be defined as

< v ac rms 12 - 0 -2 2 2 -1/2
= V > 2 2 Z (2n +1) (a n+W)

dc r pa n=0 (8.1.12)

Equation (8.1.12) can be put in dimensionless form by intro-

ducing the dimensionless parameter
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R = pa W/ , (8.1.13)

which resembles a hydraulic Reynolds number. If Eq. (8.1.13) and

the definition of an [Eq. (8.1.8)] are substituted in Eq. (8.1.12),

the result is the final expression for e

12 12 1 ( -2 2n + ) 4r 4  -1/2
2 R Z (2n+1)
r n=O 16KR +1

(8.1.14)

Equation (8.1.14) shows that the ratio ( of the a-c to the

d-c response depends only on the dimensionless parameter R

(a fact that could have been conjectured from dimensional

analysis at the start).

The nature of the behavior of ( as a function of R can

be quite well understood by considering its behavior for very

small and very large values of R. When R is sufficiently

small, the first term will dominate the second term in the

square brackets in Eq. (8.1.14), with the result that, with

the aid of the identity

LL

n=O (2n + 1)7 9

is found to be given by

-1+

(8.1.15)*

(8.1.16)

*
Identities such as these are most easily established from thei
connection with Fourier series. See, for example, Rogosinski,
p. 15.

oo
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On the other hand, when R is sufficiently large, the second

term will dominate the first term in the square brackets in

Eq. (8.1.14) up to an n that is so large that the size of
2

(2n + 1) makes further terms in the series so small as to

be negligible. This reasoning, combined with the identity

2
1 = -, (8.1.17)*

n=O (2n+l) 8

shows that

3 1A -- , as R-+ao. (8.1.18)
42 R

Figure 8-2 shows the asymptotes that have just been obtained,

together with a plot of the actual function that was obtained by

summing the series in Eq. (8.1.14) numerically for several values

of R. The response curve is similar to that of a simple low-

pass filter; a result that can be anticipated on physical grounds

by considering the mass of the fluid as an energy storage element,

and the viscosity as a source of power dissipation. Note that

the response curve approaches the asymptote 1/2 very rapidly,

but approaches the asymptote 3/42R quite slowly. This slow

approach to the high frequency asymptote is due to the fact that

each component in the spatial Fourier series of the a-c fluid

velocity diffuses with a different characteristic time

(1/an) [cf. Eq. (8.1.7)].

*
Identities such as these are most easily established from their
connection with Fourier series. See, for example, Rogosinski,4 4

p. 15.
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The essential feature of the response curve is that for

small values of R the a-c and d-c responses are the same,

while for large values of R their ratio is asymptotic to

I/R. As a critical value of R, at which the attenuation of

the a-c response sets in, take the intersection of the two

asymptotes, viz.

Rc = 3, (8.1.19)

or in terms of frequency

V = 3 = - (8.1.20)
c 2w 2r 2pa

In order to obtain an idea of the size of v c in a practical

situation, consider mercury flowing in a two centimeter

(a = 1.0 cm.) slit channel. For this situation, the critical

frequency is v c 5.9 - 10~4 cps.; a very low frequency.

Also, if mercury in a two centimeter channel is subjected to

a body force that consists of a d-c term plus an equal amplitude

a-c term at a frequency of 120 cps. (as is the case in an

induction driven flow that is operated from the 60 cps. power

lines), the value of R is R _ 6.1 - 105 with the result

that the ratio of the a-c to the d-c response is

3.5 - 10-6; a very small ratio.

There are two effects that have not been considered here

that will increase the dissipation in the fluid in an induction-

driven magnetohydrodynamic flow.under these circumstances, and

that will, therefore, decrease the value of the parameter R

and increase the response ratio (. First, there is additional

dissipation in the fluid due to ohmic power loss. This
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additional loss is often accounted for by ascribing to the fluid

an additional "magnetic viscosity," which is said to be in the

ratio M to the absolute viscosity (although the analysis of

Sec. 4.1 indicates that at least for brake operation in con-

duction-driven flow a ratio of M would be a better estimate).

Second, the establishment of eddies in the fluid greatly

increases the viscous dissipation, and greatly reduces the

time required to reach the steady state (i.e. greatly

increases v c). However, even if a factor of fifty or one-

hundred is conceded to each of these effects, the response

ratio e in the example given above is still only of the

order of one percent.

Thus, although the simplified problem that is analyzed

above is by no means identical to the question of a-c variations

in the fluid velocity in induction-driven flow, it does have

many of the same essential features. The importance of the

results that are derived above is that they show that the

cut-off frequency of common fluids is quite low, that is, that

the fluid must oscillate very slowly if viscous forces are to

be comparable with inertial forces. These results lend strong

support to a theory of laminar induction-driven flow that assumes

that a-c variations in the fluid velocity are quite small in

comparison with the average d-c flow.

* 45
See, for example, Cowling, pp. 10 and 16.

** 32
See, for example, Lamb, Art. 366b. ff.
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8.2 The Equation that Governs the Second-Harmonic Time

Variation of the Fluid Velocity

The general problem of obtaining in a useful form the

equations that govern a particular harmonic component of the

fluid velocity is a formidable task (cf. Sec. 5.2). However,

under two simplifying assumptions, a single differential

equation that governs the second-harmonic time variation can

be obtained. The first assumption is that the time variations

in the fluid velocity are small in comparison with the mean

flow, with the result that linearization may be employed.

The practicality of this assumption is supported by the

results of Sec. 8.1, where the ratio of the a-c to the d-c

response of typical fluids in an idealized situation is shown

to be quite small. The second assumption is that the a-c

motion of the fluid is entirely due to the a-c electromagnetic

force that arises from the interaction of the traveling magnetic

field and the mean flow (this should be especially true if R
m

is small). Because this primary a-c force is at the second-

harmonic frequency [see Eq. (5.3.9)], the time variation of

the fluid velocity is assumed to be at the same frequency.

In keeping with the two assumptions discussed above, the

fluid velocity is assumed to be of the form

u = i u (y) + Re + + I i (y)] e-z)

(8.2.1)

in which uz (y) is the mean velocity in the z-direction that

has already been determined, and u (y) and E (y) are the
-y -z



133.

complex amplitudes of the second-harmonic time variation of the

fluid velocity, which must satisfy the restrictions $ yI << U
and _uzI << uz ' The incompressibility condition, V - u = 0,

immediately allows uz to be eliminated from Eq. (8.2.1) with

the result that

1=2au + 1 e - (8.2.2)

The procedure for obtaining a single differential equation

that governs one of the a-c velocity amplitudes is rather com-

plicated algebraically; therefore, only the method and the

result will be described here. First, Eq. (8.2.2), which

gives the assumed fluid velocity, and Eq. (5.3.9), which

gives the assumed electromagnetic force, are substituted in the

non- dimensional magnetohydrodynamic Navier-Stokes equation

[Eq. (2.2.13)]. Next, terms involving products of the a-c

variable u and/or its derivatives are neglected (the
-y

equation is linearized), and the d-c flow equation is sub-

tracted away. Finally, the resulting a-c equation is operated

on by the vector operator [v x (V x = [v(v . -v 2, and

the y-component of the resulting equation is found to be

( )( 2) + ut ^
z -y -y z -y

1 iv 2 A 4 A
+ QA- -y - 8a u 16a u)12aR -y -Y -y

2
= u I h . (8.2.3)2R z -y

This fourth-order, inhomogeneous, linear differential equation

with variable coefficients must be solved subject to two sets
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of boundary conditions. First, the existence of the walls

demands that

u (+ 1) = 0 (8.2.4)

Second, the walls and the finite viscosity of the fluid

demand that u = 0 when y = + 1 for all values of x and

z. This in turn requires that 6u/ z =0 for y = + 1,

which when combined with the incompressibility condition

V - u = 0, demands that

u'(+ 1) = 0 . (8.2.5)
-y

Needless to say, the task of solving Eq. (8.2.3) subject to

the boundary conditions given in Eqs. (8.2.4) and (8.2.5) is

far from simple. In fact, the homogeneous part of Eq. (8.2.3)

is similar to that encountered in the study of the linear

stability of plane parallel hydrodynamic and magnetohydro-
*

dynamic flows. Some solutions have been obtained in these

cases, both analytically and numerically, after a great deal

of effort.

There is, however, an essential difference between these

linear stability problems and the situation considered here

that may make this problem less difficult. The linear

Specifically, see Lin,41 p. 28; and Cowling,45 pp. 60-61.
For a brief discussion of the linear stability of plane
parallel magnetohydrodynamic flows, see Cowling,4 5 Ch. 4.
Also, for a complete and detailed study of the linear
stability of hydrodynamic flow, see Lin.41
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stability problems are characterized by a homogeneous differential

equation containing three undetermined constants; the wave number

a and the phase velocity c of the disturbance, and the

hydraulic Reynolds number R of the mean flow. The classical

problem is to determine the minimum value of the hydraulic

Reynolds number R at which the imaginary part of c becomes

positive for some value of a, and the disturbance grows

with time. Thus the characteristic value c must be obtained

as a function of the parameters R and a to determine the

"neutral stability" curve which separates the region in which

the imaginary part of c is negative from that in which it

is positive. One of the principal difficulties encountered

in these problems is that for the high values of R at which

instability occurs, the a-c velocity varies very rapidly with

y and is, therefore, difficult to determine.

In contrast, the present problem is governed by an

inhomogeneous differential equation [Eq. (8.2.3)] in which the

constants M, R and a are known, and from which the a-c

velocity U must be determined. Thus in this problem it is
-y

not necessary to search for characteristic values. Further-

more, solutions for smaller values of R would be of interest

here, and they should not be as difficult to compute.
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Chapter IX

CONCLUDING REMARKS AND SUGGESTIONS

FOR FURTHER INVESTIGATIONS

9.1 Concluding Remarks

The aim of this investigation has been to develop a clear

and detailed understanding of laminar conduction and induction-

driven magnetohydrodynamic channel flows, and of the ways in

which they can operate as energy converters. The development

proceeds from the fundamental equations of incompressible

magnetohydrodynamics to the fundamental solutions for the

fluid velocity and the magnetic field, and thence to the basic

energy conversion properties of the flow.

Although both of the flows considered here have their

counterparts in practical devices (the d-c conduction and the

a-c induction pumps for liquid metals), and are analogous in

some respects to conventional rotating machines (the separately

excited d-c and induction machines), the emphasis here has been

neither on the practical aspects of device design nor on the

similarity of these flows to electric machinery. Rather, the

emphasis has been on considering idealized forms of these

flows as problems in magnetohydrodynamics. However, care has

been taken throughout to avoid any assumptions that cannot

reasonably be realized experimentally. Thus, although the flow

situations that are analyzed here are idealizations in com-

parison with practical liquid metal pumps, they correspond to
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flows that can be established in the laboratory and that may well

have practical applications.

A brief word is perhaps in order concerning two of the

mathematical methods that were employed in the analysis of

induction-driven flow. The first is the perturbation expansion

technique that was employed in Sec. 6.2 to convert three coupled,

non-linear differential equations into an infinite set of linear

differential equations that are uncoupled from below. These

expansions are only a single example of a variety of very power-

ful perturbation techniques that have proved to be extremely
*

useful in diverse areas of mathematical physics. These

perturbation methods appear to be suitable to a wide variety of

hitherto unsolved non-linear magnetohydrodynamic problems. The

second method is the idea of combining analytical and numerical

procedures in the search for a solution to a difficult mathe-

matical problem (cf. Sec. 6.3). This approach departs from the

time-honored technique of carrying the analysis as far as

possible analytically and then of calculating a few terminal

numerical results. Rather it seeks to use numerical analysis

and high-speed digital computation as integral parts of the

mathematical analysis, through the realization that some mathe-

matical operations may now be performed more easily numerically

than analytically. The skillful combination of modern analysis

and modern high-speed digital computers now makes it possible to

obtain solutions to problems formerly thought to be insoluble.

See, for example, Morse and Feshbach,46 Ch. 9.
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9.2 Theoretical Extensions

Several interesting theoretical extensions and generalizations

of this investigation suggest themselves. First, the analysis of

energy conversion in conduction-driven flow that is presented in

Ch. IV can be extended to the case of a finite-aspect-ratio

channel, by following the method of Shercliff, for obtaining

the velocity profiles. Second, the problems of electric and

magnetic end effects at the entrance and exit of an energy con-

version section in a magnetohydrodynamic flow configuration

appear to be soluble by perturbation expansion techniques that

are similar to that of Sec. 6.2 (again the magnetic Reynolds

number seems to be a likely choice for the expansion parameter).

Third, the results of Ch. IV concerning the operating character-

istics of conduction-driven pumps and generators can be combined

to predict the operation of a complete magnetohydrodynamic d-c
*

transformer. Fourth, there is the question of the stability of

magnetohydrodynamic velocity profiles such as those shown in

Fig. 7-7. This is surely a formidable problem, because even

the linear stability of hydrodynamic flows is extremely complex,

whereas most actual hydrodynamic and magnetohydrodynamic

Such a device attempts to use a d-c conduction pump coupled to
a d-c conduction generator as an electrical to electrical
magnetohydrodynamic energy converter. Some experimental models
of such devices have been tested (see Pierson48), although their
performance was rather poor. The author is convinced that care-
ful design can improve the performance of such devices, although
their ultimate practicality is perhaps questionable.
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instabilities are now generally conceded to be non-linear in

character. The work of Poduska22 in describing the fluid

turbulence by the calculus of random functionals appears to

be the most promising recent advance in this area. Fifth,

numerical calculations concerning Eq. (8.2.3) should provide

information as to the amplitude and spatial distribution of

the second-harmonic time variations in the fluid velocity in

induction driven flow.

The theoretical extensions that are discussed above are

not intended to form a complete list (inevitably the most

interesting ones will be found to have been omitted); rather

they are facets of this investigation in which the author has

a continuing interest.

9.3 Experimental Investigations

The field of detailed experimental investigation of

magnetohydrodynamic channel flows is wide open. To paraphrase:

"Everyone talks about the Hartmann profiles, but no one

measures them." The fundamental problem in making a detailed

study of a magnetohydrodynamic flow is to find suitable means

for measuring the fluid velocity and the magnetic field as

functions of time and space with the flowing fluid. For

measurements of the fluid velocity, attempts have been made

to use an electromagnetic flow meter, and are currently being

made to use a pitot tube. However, to the author's knowledge,

* 36
See Kliman.

**
See East.49
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there are still no detailed, accurate experimental velocity

profiles for a magnetohydrodynamic flow. There have apparently

been no attempts to measure the magnetic field distribution

within a flowing, electrically conducting fluid.

Some of the overall characteristics of a magnetohydrodynamic

channel flow that is operating as an energy converter, such as

efficiency and volume flow rate, can be measured without

probing the flow in detail; and, if such characteristics are

measured as functions of the significant parameters under

carefully controlled conditions, they should provide significant

checks on the results of Chs, IV and VII. (The author intends

to embark on such an experimental program.) However, the rela-

tion between theory and experiment really will not be resolved

satisfactorily until detailed experimental velocity and magnetic

field profiles are obtained.
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Appendix A

A MODIFIED MATHIEU EQUATION

The purposes of this appendix are: to indicate the relation-

ship of Eqs. (6.3o3) and (6.3.4) to the Mathieu equation; to develop

some approximate solutions to these equations; and to indicate the

difficulties that are encountered in attempting to apply these solu-

tions to the problems of Sec. 6.3.

For convenience, Eqs. (6.3.3) and (6.3o4) are reproduced below.

ell - M2 cosh2 a2o sh 2  zO 0A1
sinh a

2
E" - M2 sinh ay z= -Rp (A.2)
z0 2 cosh2 a z 0

Since these equations are quite similar, only Eq. (A.1) is investi-

gated here. Furthermore, only the homogeneous formi of-the equation

is considered, because the complete solution can be obtained from

the homogeneous solutions by variation of parameters.

A convenient canonical form of Eq. (A.1) is

y (P 2 c sh 2 ax)y = 0, (A.3)

in which p-= M/(47 sinh a). The substitutions z - ax and

= /a transform Eq. (A. 3) to

y- (y2 cosh 2 z)y = 0, (A.4)

which is the form of the equation that is considered throughout this

appendix.
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Relation to the Mathieu Equation

Equation (A.4) can also be written as

2

y" -1 (1 + cosh 2z)y = 0, (A.5)

which is readily identified with the canonical form of the modified

Mathieu equation

V'' - (a - 2q cosh 2z)v = 0, (A.6)*

by setting v = y, a = y2/2, and q = - '2/4. Furthermore, Eq. (A.6)

is related to the Mathieu equation

v'' + (a - 2q cos 2z)v = 0, (A.7)

by the transformation z -+ iz.

Most of the research concerning Mathieu funct.ops has been con-

cerned with eigenvalue problems in which one of the constants

(usually q) in Eq. (A.7) is fixed by the boundary conditions, while

the other is a function of the separation constant.

The two nst complete accounts of the theory of Mathieu functions are
cLachian' and Campbell;40  although significant discussions of

specific points are given by many others, for example, Ince.50

** 46See, for example, Morse and Feshbach, p. 554 ff. A notable excep-
tion to the concentration on eigenvalue problems is the research con-
cerning planetary motion that began with Hill (see McLachlan,39

Ch. VI).
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The problem is to determine whether or not a periodic solution exists

for a particular value of q; and if it does, to determine it and

the corresponding characteristic value a.

In contrast, the problem presented by Eq. (A.4) is that of

obtaining a solution (periodic or not) to the modified Mathieu equa-

tion [Eq. (A6)] for specified values'of a and q. Some series

developments of such solutions in terms of hyperbolic and Bessel

functions have been obtained, but in general these series are diffi-

cult to.manipulate and the coefficients eventually must be computed
*

numerically. Furthermore, the rate of convergence of these series

is often quite slow. For these reasons, the application of existing

Mathieu functions to the solution of Eqs. (A.1) and (A.2) does not

appear to be very practical.

Solutions Valid Near z = 0

Although Eq. (A.4) possesses irregular singular points (in fact,

essential singularities) at z = + m, z = 0 is an ordinary point,

and there are no singular points in the finite z-plane. Therefore,

Eq. (A.4) possesses two linearly independent solutions that are
**

regular at z = 0, and converge everywhere in the finite z-plane.

In the following paragraphs, forms of the even solution of Eq. (A.4)

See McLachlan,39 Ch. VIII.

**
See, for example, Hildebrand,51 Sec. 4.3.
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*

that are valid near z = 0 are investigated.

For small values of z (z << 1), cosh z _' 1, with the

result that Eq. (A.4) takes on the simplified form

2
y" - T y = 0, (A.8)

the even solution of which is

y = A cosh yz, (A.9)

in which A is an arbitrary constant.

A natural extension of this simple solution is to attempt to

find a solution that is valid over a wider range of z by the
**

WKBJ method. In view of the solution (A.9) that is valid near

z = 0, the WKBJ method attempts to obtain a solution, which is

valid over a wider range of values of z, in the form

y = A cosh Eyf(z)z]. (A.10)

The substitution of the solution (A.10) in Eq. (A.4) shows that

the function f(z) must satisfy the differential equation

z 2f" - 2f = cosh z, (A.ll)

Although both even and odd solutions to Eq. (A.4) exist around
z = 0, for simplicity, only the even solution is discussed here,
because even solutions to Eqs. (A.1) and (A.2) are required.

See, for example, Morse and Feshbach,4 6 p. 1092 ff.
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while the requirement that the solution (A.10) shall reduce to the

solution (A.9) when z -+ 0, demands that

f(0) = 1. (A.12)

Unfortunately, the solutions of Eq. (A.ll) cannot satisfy the

restriction (A.12). If, however, the restriction f(O) = 1 is

ignored, the solution of Eq. (A.ll) that is regular at z = 0

yields the approximate solution to Eq. (A.4)

y = A cosh ( Y sinh z). (A.13)

This solution is clearly incorrect near z = 0, an4 also, in the

following section, will be shown to be incorrept asynptotically.

However, for a properly chosen value of A, Eq. (A.1.3) undoubtedly

provides a reasonable approximation to the even solution of Eq.

(A.4) for a range of values of z.

The solution (A.9) can, however, be extended to a larger range

of values of z around z = 0 by expanding the even solution of

Eq. (A.4) in the following double Taylor series.

00 k 2n
y(yz) = a(n,k) Y z2k (A.14)

k=0 n=0 (2n)!

If the series solution (A.14) and the series expansion

2z 1 [I W 2k
cosh z= E[ + k * (A.15)

are substituted in Eq. (A.4) and terms containing like powers of 'y

and of z are equated, the following recursion relations are obtained.
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a(0,k) = 0, k > 1 (A.16)

(2k + 2)(2k + 1) a (n, k + 1) - 2n(2n -1) a (n -1, k)

k+1-n 22j
-2n(2n - 1) Z (2j)! a(n - 1, k - j) = 0,

j=0(2)
n > 1 (A.17)

Although the second recursion relation is rather complicated, the

initial terms in the series can be worked out without difficulty,

and are shown below.

2 4 6
y(y,z) =a(0,0) [[I + 21 +4! +6

+ z 2 .1(Tz) 2+-- ('Yz) + 41 (Yz) 6+ ..
6  2! 15 4! 14 6.

2 4 6
+ z4[-(z + - yz + _83(z)+45 2! 420 4! 1260 6!

+ .(A.18)

The first series in Eq. (A.18) is readily recognized as cosh yz,

however, the remaining series have so far escaped identification

with known functions, either from the terms that are written out

or from their general recursion relations.

Asymptotic Solutions

The task of obtaining solutions to Eq. (A.4) that are valid

for large values of Iz I is simplified by the substitution

= sinh z, which transforms Eq. (A.4) to

(1 + 2 )y" + y' - 2 1 + 2)y M 0 .) (A.-19)
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If a2 >> 1 (say a > ~ 3.2 or z > ~ 1.9), Eq. (A.19) can be

rewritten approximately as

2 + ' - 22y = 0, (A.20)

which is a form of the Bessel equation. The general solution of

Eq. (A.20) is

y = c1 I(y) + C2KO(y), (A.21)

in which 10 and KO are the modified Bessel functions of the

first and second kinds of order zero, and c1  and c2 are

arbitrary constants. Thus, for z > 2, the even solution to

Eq. (A.4) can be written approximately as

y = c 10 (y sinh I z 1) + c2K(Y sinh IzI). (A.22)

The function 10 (x) is equal to one for x = 0 and increases

rapidly with increasing x, while the function K0 (x) has a

logarithmic singularity at x = 0 and decreases rapidly with

increasing x. For large values of x, these functions have the

asymptotic behaviors

ex
10  -2rx x -+ CO (A.23)

See Hildebrand, 51 Sec. 4.8.
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-x
KO (x 1oeF2 x 0(A. 24)

x

For x = 5.0, the value of 10 (x) obtained from Eq. (A.23) is in

error by about 3%, while for x = 10.0 the value of K obtained

from Eq. (A.24) is in error by about 4. Therefore, for

y sinh Izi > 10.0, the even solution to Eq. (A.4) can be written

as .

c e y sinh IzI + c e -,y sinhizi

y =12.(A.25)
'y s inh Izi

A comparison of Eqs. (A.25) and (A.13) shows that in detail

the solution (A.13) does not have the correct asymptotic behavior,

although it does possess the proper characteristic form

exp (y exp (z)].

Difficulties in Applications

Considerable difficulty is encountered in attempting to apply

the approximate solutions of Eq. (A.4) that have been developed here

to the specific problem of obtaining solutions to equations like

Eqs. (A.1) and (A.2). In general, a series solution such as Eq. (A.18)

must be employed for small values of z; an intermediate solution

such as Eq. (A.13) is best for moderate values of z; while an

asymptotic solution such as Eq. (A.22) is required for large values

of z. These solutions must be matched at points where their errors

are comparable, and then the arbitrary coefficients must be determined

so that the complete solution satisfies the prescribed boundary condi-

tions. Furthermore, the solutions that must be employed and the

points of matching may change with changes in y and the range of z.
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To carry through such a process analytically is a complicated and

not particularly rewarding task.

The process of employing these approximate solutions and the

method of variation of parameters to obtain solutions to the

inhomogeneous form of Eq. (A.4) is even more involved. Thus,

although approximate analytical solutions to equations like

Eqs. (A.1) and (A.2) can be obtained by the methods described in

this appendix, the form of such solutions is so complicated that

they are of limited use in a complicated physical problem.
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Appendix B

NUMERICAL METHODS

This appendix describes the principal numerical methods that

were employed in performing the numerical calculations concerning

induction driven flow. Because all the functions involved in the

basic calculations (e.g., uz00 , hy0i0, etc.) are functions of the

single space coordinate y that varies from zero to one, the

numerical work was standardized by considering each of these

functions at fifty-one evenly spaced points between zero and one.

The spacing between points (h = 0.02) was chosen so as to pro-

vide a sufficient number of points for the plotting of accurate

profiles, and to provide a balance between round-off and trunca-

tion errors in the numerical calculations.

Differential Equation Integration

The fundamental numerical problem involved in the calculations

relating to Sec. 6.3 is the integration of an even or an odd solu-

tion to the second-order linear differential equation,

y" - A(x)y = B(x), (B.1)

as x varies from zero to one. In either case, A(x) must be

even: in addition, if an even solution is desired, B(x) must

be even and y(0) must be specified; while if an odd solution is

desired, B(x) must be odd and y'(0) must be specified.

The numerical integration was performed by the use of the

sixth-order integration formula

+2 '' "t " h6  vi
n+- = y + (yn+ + 1Qyn + yn -1 4 y (B.2)*

See Hildebrand,52 p.223.
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in which the point x = ( lies between xn and xn+1 Because

Eq. (B.1) is linear, its integration using Eq. (B.2) is straight-

forward, viz.

Yn+i 2 _yn( + -f- h A n) - Ynll- 12 An_1 )

22
+ (B + OB + B + ) ]/( - A (B.3)

This formula is self starting under the restrictions specified

above.

With h = 0.02, the truncation error in.Eq. (B.3) is about

3-10 . y (). Checks of the functions that were computed

using this integration formula showed that y ( ) was never

large enough to make the relative truncation error greater than

about 10- 8, and that it was usually much smaller. To prevent

round-off error from adding to this truncation error, the calcu-

lations involved in these integrations were performed double-

precision, which on the IBM 709 means accuracy to about seventeen

decimal digits.

Averaging

In order to find the average value of any of the functions

involved in the calculations (e.g., velocity profiles), the

definite integral of such a function from zero to one must be

evaluated. This was accomplished by applying the six-point,

seventh-order Newton-Cotes integration formula
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n+5 5h
f f(x)dx = 2 (19fn + 75fn+l + 50fn+2
x
n

+ 50fn+ 3 + 75fn +4 + 19fn+5)

- 275 h7f(,), (B. 4)*12096

ten times to cover the interval from zero to one.

With h = 0.05, the truncation error in Eq. (B.4) is about

3.10 14 and again the relative truncation error is never greater

than about 10-8

Differentiation

Numerical differentiation is required in two different places

in the calculations relating to Sec. 6.3. First, the z-component

of the magnetic field can be obtained from the y-component by

differentiation, because the divergence restriction demands that

h - iah = 0. Second, the derivatives at y = 1 of the parti-
y z
cular solutions to the various magnetic field equations [cf. Eqs.

(6.3. ) and (6.3. )1 must be calculated in order to form the
total higher-order magnetic field solutions so that they have

zero slope at y = 1.

The first situation requires the differentiation of a function

over the entire interval from zero to one; however, extreme accuracy

is not necessary, because the profiles of the z-component of the

See Hildebrand,52 p. 73.
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magnetic field that are so produced are terminal results that are

not used in further calculations. The following seven-point,

sixth-order Lagrangian differentiation formulas are reasonably

accurate and yet simple to apply. In the interior of the interval,

the symmetrical formula

f = (-f + 9f - 45f + Of + 45fn 60h ~n-3 ~n-2 ~n-1 n + n+l

6
-9f + 2 + h vii()n+2 +n+3' 140 ~(

(B.5)*

may be employed, but near the ends of the interval, non-symmetrical

formulas, such as

f I=I (-14 7f + 360f -n 60h n n +1

- 225f n4+ 72f n

450f n+2 + 400fvii+ 3

- l0f ) + h (6 ii
n+6 7

(B.6)

must be used.

The second situation requires that the derivative of a

function be calculated quite accurately at the single point

y = 1. For this purpose, the following eight-point, seventh-

order Lagrangian differentiation formula was employed.

f = (-60f + 490f
n 420h n-7 n-6

+ 3 6 7 5f n 4 - 4 9 0 0 f n-3+ 4410f

7
+ 1089f ) +h f viii

n 8 (B.7)

The coefficients for a large number of Lagrangian differentiation
formulas are tabulated by Lowan, Salzer, and Hillman.53

- 1764f 5

- 2940f n-1
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Although numerical differentiation is often a dangerous
*

procedure, the system of differentiation formulas described above

has worked out quite well. For example, the higher-order longi-

tudinal magnetic field profiles, which depend on the accuracy of

both types of differentiation for their values at y = 1 to be

zero, have values there that are from 10- to 10-5 of the

average value of the field over the interval.

See Hildebrand, 52 Sec. 3.8.
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Appendix C

THE DIGITAL COMPUTATION

The numerical calculations involved in this investigation

were performed by the IBM 709 Data Processing System at the
*

Computation Center of the Massachusetts Institute of Technology.
**

The computer programs were written by the author in the FAP

and FORTRAN programming languages, and were run on the computer

under the FORTRAN MONITOR SYSTEM. A total of about three and

one-half hours of computer time was used in debugging and testing

the programs and producing the final results.

For a description of the IBM 709, see IBM,54 while for a
description of the facilities of the Computation Center at M.I.T.,
see Computation Center.55

**
For a description of the FORTRAN ASSEMBLY PROGRAM (FAP), see
IBM.56

For a description of the FORTRAN programming system, see IBM.5 7

For a description of the FORTRAN MONITOR SYSTEM, see Computation
Center, 55 and IBM.56
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Appendix D

FURTHER SETS OF VELOCITY PROFILES

The purpose of this appendix is to provide a more complete

set of velocity profiles to augment those that were discussed in

Sec. 7.2. The sets of profiles that are presented were chosen in

an attempt to make the variation of the velocity profile with the

type of excitation (even or odd) and changes in the parameters

a and M as clear as possible, without presenting an excessive

number of plots.

Sets of velocity profiles are presented for both even and

odd excitations, with a = 0.5, 1.0 and 2.0, and M = 2.0, 5.0,

and 10.0. Figures D-1 through D-6 show the profiles for even

and odd excitations, with M = 2.0, and a = 0.5, 1.0, and 2.0;

while Figs. D-7 through D-12 show the profiles for both excita-

tions, with M = 5.0, and a = 0.5, 1.0, and 2.0. The profiles

for both excitations, with M = 10.0, and a = 0.5 and 1.0 are

shown in Ch. VII (Figs. 7-3 through 7-6), and this group is

completed in Figs. D-13 and D-14, which show the profiles for

both excitations, with M = 10.0 and a = 2.0.
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Appendix E

A BIOGRAPHICAL NOTE

John Paul Penhune was born in Flushing, New York on

February 13, 1936, and grew up in eastern New Jersey and on

Long Island. He was graduated from Great Neck High School in

1953, and entered M.I.T. in the same year with a four-year,

full-tuition scholarship from the Grumman Aircraft Engineering

Corporation. He worked in a variety of positions at Grumman

during the summers of his undergraduate years, and received a

BS. degree in Electrical Engineering and a commission in the

Signal Corps in 1957. In the same year he entered the Graduate

School at M.I.T. in Electrical Engineering, as a teaching assistant;

and in September, 1958 he married Nancy Lee Peabody of Houlton, Maine.

During his graduate years, he taught courses in electromechanical

energy conversion and electromagnetic field theory, and was given

a Special Electrical Engineering Award for excellence in teaching

in 1959. He began research in magnetohydrodynamics with the Energy

Conversion Group at M.I.T. in 1958, and attended the Summer School

in Theoretical Physics of the University of Grenoble, France during

the summer of 1959. In 1960, he became an Instructor in Electrical

Engineering. He is a coauthor of Case Studies in Electromagnetism,

and is a member of Eta Kappa Nu, Tau Beta Pi, Sigma Xi, The American

Physical Society, and the Institute of Radio Engineers.
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