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of Doctor of Philosophy.

ABSTRACT

This thesis presents a detailed theoretical analysis of
two types (d-c conduction-driven and a-c induction-driven) of
laminar, incompressible, viscous magnetohydrodynamic flow in a
high-aspect-ratio channel, and of the operation of these flows
as various forms of energy converters. The introduction indi-
cates that laminar flow may be of practical importance in
magnetohydrodynamic channel flow devices, because the strong
magnetic fields that are necessary for efficient energy con-
version have been found to suppress turbulence. The treatment
is unified by obtaining all of the basic solutions from a single
set of fundamental equations in dimensionless form, and by
presenting the results in terms of characteristic dimensionless
parameters.

First, the basic solutions for d-c conduction-driven
(Hartmann) flow are obtained, and a variational principle for
this problem is presented. Although the square of the Hartmann
number is commonly interpreted as a measure of the ratio of
ohmic to viscous dissipation, exact analysis of both the I = 0
and the E = 0 flow dampers shows that this interpretation is
often considerably in error. The operation of this flow as a
motor (pump) and a generator is analyzed in detail, and uni-
versal efficiency curves are presented. Contrary to some opinion,
efficiencies greater than one-half are possible, at the expense
of less-than-maximum power conversion.

Second, the non-linear differential equations are derived,
which govern a-c induction-driven flow with either even or odd
excitation, if the fluid velocity is independent of time. These
non-linear equations are converted to an infinite set of linear
differential equations with variable coefficients that is



" uncoupled from below, by making a perturbation expansion in the
magnetic Reynolds number. This set of equations is solved by

an analytical-numerical technique, and velocity and magnetic
field profiles are presented for various values of the parameters.
These basic profiles are used to form further .results such as
flow rate and efficiency curves, and sample plots are presented.
The relative a-c to d-c response in parallel flow is found to be
quite small in common fluids at typical frequencies; and under
this assumption, the equation that governs the second-harmonic
time variations in the fluid velocity is derived.

Thesis Supervisor: William D. Jackson
Title: Assistant Professor of Electrical Engineering
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Chapter 1

INTRODUCTION

1.1 Historical Background

The first use of a magnetohydrodynamic channel flow as an
energy converter was probably the direct-current electromagnetic
pump for mercury that was designed by Hartm.ann*’1 in 1918 for
- use with the so-called jet-wave rectifier. Previously, there
had been some simple expgriments designed to demonstra;e the
interactions between a magnetic field and a flowing, eiec-
trically conducting fluid, notably the attempt of Faraday2 to
measure the voltage induced in the river Thames by its motion
through the earth's magnetic field (the v x B electric field),
and the demonstration by Northru.p3 of the deformation of the
surface of a pool of mercury caused by a current passed through
its bulk (the J x B body force).

The first detailed theoretical investigation of a magneto-
hydrodynamic channel flow was also made by Hartmanni% in 1937.
He obtained the velocity profile and the fluid resistance law
for the laminar flow in a high-aspect-ratio channel of a con-
ducting fluid in the presence of a uniform transverse magnetic
field; and discussed some of the consequences of this analysis
in the design of electromagnetic pumps. In the same year,

Hartmann and Lazarus4 reported some experimental results that

*
The superscript numerals refer to the Bibldography that begins
on p.l71.



were partially explained by Hartmann's theoretical work. The work
of Hartmann prompted the author to investigate in detail the pro-
perties of this flow when it is employed as various types of energy

5
converters.

The principal energy conversion application of incompressible
magnetohydrodynamic channel flows has been to electromagnetic
pumps (both conduction and induction) for circulating liquid metal
coolants through the heat exchangers of atomic reactors.* There
has been considerable practical design analysis of such pumps, but
invariably slug flow (flow in which the fluid velocity is constant
across the channel) is assumed and terminal properties are
emphasized,** A notable theoretical exception is the work of
Harris,*** in which he shows that under certain circumstances
laminar induction driven flow resembles Hartmann flow. This work
aroused the author's interest in formulating a general theory of
laminar induction driven flows in which non-linear effects are

considered.

Recently there has been considerable interest in magneto-
hydrodynamic channel flow devices in which the working fluid is a
conducting gas or plasma. A large part of this effort centers

F*kdkk
around the direct-current magnetohydrodynamic power generator,

*
For reviews of the various types of electromagnetic pumps and

their applications, see Cage,® Barnes,’/ and Watt.8

ok . 9,10
Prominent among such analyses are those of Blake”’

12

and Watt.ll

ek

See Ch. 8 of Harris.
Fededede . . 13
For desxgn studies, see Sporn and Kantrowitz, and Steg and
Sutton.l Some experimental results are presented by Way et
al.,15 and Rosa.l6



which its propoments hope will become a large-scale source of

electric power. There has also been continuing interest in the
acceleration of a plasma by a traveling magnetic fie1d°17’18’19
Most of the theoretical amalyses of these plasma devices are based

on one-dimensional, compressible, magnetofluid dynamics.

1.2 The Object and Scope of This Investigation

The object of this investigation is to provide a unified and
detailed description of two types of magnetohydrodynamic channel
flow (direct-current conduction-driven, and alternating-current
induction-driven), and of their operation as various types of
energy converters. The treatment is unified because the deriva-
tion of all flow and field properties begins with a general and
fundamental set of equations of motion in dimensionless form
{see Chapter II); and because the results are presented in terms
of characteristic dimensionless groups, so that the effect on the
solutions of changes in various physical parameters is clearly
evident, and different results are easily compared. The treat-
ment is detailed because its emphasis is on first obtaining the
detailed properties of the flow, such as the velocity profile
and the magnetic field distribution, and then on deducing from
these detailed properties the termimal properties of the flow
operating as an energy conversion device. A further objective
of the chapters dealing with induction-driven flow is to obtain
the solution to a non-linear magnetohydrodynamic problem. All
too often, such problems are either linearized or abandoned.
However, in energy conversion non-linearity is the rule; not the
exception. Finally, the object of this investigation is not
pPrimarily to discuss the practical design of better magnetohydro-

dynamic emergy converters, but to provide better understanding
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of the detailed nature of two classes of magnetohydrodynamic channel
flows and the energy conversiom processes that take place within
them.

The scope of this investigation is restricted to the laminar,
viscous, incompressible* magnetohydrodynamic channel flow of a
homogeneous and isotropic fluid. The most common examples of such
fluids are electrolytes,** and liquid metals such as mercury and
sodium-potassium alloy (Na K). In addition, the chamnel that is
consldered is rectamgular and has a high aspect ratio. Further-
more, two forms of electrical excitatiom are comsidered: the
direct-current conduction drive, in which a uniform transverse
magnetic field that is parallel to the shorter sides of the
channel cross section interacts with a non-uniform direct-current
density that flows parallel to the longer sides of the channel
cross section (see Fig. 3-1); and the alternating-current induction
drive, in which surface current sheets (with either even or odd
symmetry) flowing on the longer sides of the channel and traveling
in the direction of the fluid flow produce a traveling magnetic
field that "drags along' the conducting fluid (see Fig. 5-1).
Finally, throughout this investigation a conscious effort has been
made to make no assumptions that cannot be practically realized
experimentally. (e.g., An infinite slit channel is not
physically realizable, but a long rectangular chamnel with a

twenty to one aspect ratio approximates it very closely.) Flow

¥
'The results that are obtained here should also be applicab%e to
gas flows at low Mach numbers. See, for example, Shapiro. 0

ek |
Electrolytes pose other problems such as dielectric polarization
and electrochemical action.
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devices that are designed to conform to these theoretical assump-
tions may not be the best possible energy converters, but their
operating characteristics should provide an unambiguous check of
the theoretical results, and they should be magnetohydrodynamic

energy converters that are well understood.

1.3 The Importance of Laminar Flow

In view of the fact that most practical hydrodynamic flows
are turbulent,* the restriction of this investigation to’ laminar
magnetohydrodynamic flows deserves some discussion. There are
three reasons for studying laminar magnetohydrodynamic flows.
The first reason is amalytical, the second is philosophical, and
the third is practical.

The analytical reason is that laminar magnetohydrodynamic
flows are susceptible of analysis by ordinary higher mathematical
methods, whereas turbulent magnetohydrodynamic flows have so far
escaped such treatment,** and have only been analyzed by the semi-
empirical techniques of turbulent fluid mechanics (notably the
work of Harrislz)a Thus, the restriction to laminar flows makes
the mathematical amalysis more tractable and thereby allows more

involved results (e.g., efficiencies) to be obtained.

%
See, for example, Hunsaker and Rightmire,21 Ch. VIII.

Jede

‘A rational theory of hydrodynamic and magnetohydrodynamic
turbulence based on the calculus of random functionals is
being developed by Poduska.22



The philosophical reason is that although the majority of
practical hydrodynamic flows are turbulent, the great bulk of
existing theoretical knowledge concerns laminar and even ideal
fluid flow. Nevertheless, this knowledge of laminar flows has
helped to guide and shape both theoretical and experimental work
on more complicated turbulent flows. In the words of Pai,*

"The understanding of the laminar viscous flow seems a pre-
requisite for the complete understanding of turbulent flow."

Presumably, the same is true of magnetohydrodynamic flow.

The practical reason is that the high magnetic fields that
are found to be necessary for efficient energy conversion (see
Chs. IV and VII) have also been found to suppress turbulence.

In their classic experiments, Hartmann and Lazarus4 found that
the transition from turbulent to laminar flow depends not only

on the Reynolds number** but also on the strength of a transverse
magnetic field. Later, Murgatroyd25 carefully investigated the
turbulent to laminar transition in a mercury flow in the presence

of a transverse magnetic field, and found that the critical

Reynolds number Rc [see Eq. (2.2.17)] was approximately related

to the Hartmann number M [see Eq. (2.2.20)] by the equation

R~ 225M, (1.3.1

¥* 23
See the preface to Pai.

%k

_For an introduction to the experimental evidence concerning the
1aminar-turbu1$nt transition in hydrodynamic flow, see Hunsaker
and Rightmire,?l Ch. VIII, and Pai,?# Ch. I.

)



for large values of M. (In hydrodynamic flow Rc ~ 500.) This
linear dependence of Rc on M had been conjectured by
Lundquist26 on physical grounds, and was predicted for the laminar
to turbulent transition by Lock27 on the basis of linear stability
theory. (Lock predicted the much higher value Rc-z 53104DQ for
large M.)

Recently, Globe28 made a detailed experimental study of the
effect of a longitudinal magnetic field on the laminar to
turbulent transition# in a mercury channel flow. The effect of
the longitudinal field is much less than that of an equal trans-
verse field; in fact, the maximum change in the critical Reynolds
number that Globe obtained was a factor of about 1.9, for a
Hartmann number of about 20. The increase of the critical
Reynolds number for the laminar to turbulent transition under the
influence of a longitudinal magnetic field was predicted by
Stuart30 on the basis of linear stability theory; and Globe has
shown that the ratios given by theory and experiment, of the
critical Reynolds numbers with a longitudinal magnetic field to
those without a field, are in reasonable agreement.

%*

Although Globe's experiments concerned the laminar to turbulent
transition, he was careful to provide sufficient initial dis-
turbance of the flow that the critical Reynolds numbers he
measured should correspond quite well to those for the turbulent
to laminar transition.

For a discussion of the effects of initial disturbances on the
laminar to turbulent tramsition in hydrodynamic flow, see
Prandtl and Tietjenszg, Art. 24,
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In view of the very large Hartmann numbers (typically 100 to
1000) that are obtained in practical electromagnetic pumps, the
investigations that are discussed above indicate the possibility
of practical laminar magnetohydrodynamic energy converters, with
their inherently smaller losses. From a practical standpoint, a
transverse magnetic field is preferable, because it is required
by most energy comnversion schemes and produces a large increase
in the critical Reynolds number. From an experimental viewpoint,
however, a longitudinal field is also interesting, because it
primarily affects the turbulence and only secondarily (through
its effect on the random velocity correlations) affects the

mean flow.



Chapter I1I

THE BASIC EQUATIONS

2.1 The Equations of Motion

The fluid that is considered in this investigation is homo-
geneous, isotropic, and incompressible; and is characterized by
a permeability “o’* an electrical conductivity o, a mass
density p, and an absolute viscosity 1. The equations that

govern the motion of such a fluid are the Maxwell relations

vxH=17, : (2.1.1)
- dH
VXES= Mo St 0 (2.1.2)
and
v .- H=0; (2.1.3)

the constitutive relation

J=0(E+Vvx ugﬁ); . (2.1.4)
the magnetohydrodynamic Navier-Stokes equation

p(ga? +Y V)V = VP + 9 + T x uoﬁ ; (2.1.5)
and the incompressibility restriction

vV .v=0. ' (2.1.6)

%
‘The fluid is assumed to have the permeability and permittivity
of free space. For a discussion of the electrodynamics of

moving golarizable and magnetizable media, see Fano, Chu and
Adler.3
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In Eqso (2.1.1) through (2.1.6), Vv is the vector operator
ix §; + iy ;; + iz Sz ° H is the magnetic field intensity, J
is the conduction current density, E 1is the electric field
intensity, v 1is the fluid velocity and P is the mechanical
pressure. Throughout this investigation, all equations are
written with respect to a fixed coordinate system (an Eulerian*

formulation), and rationalized MKS units are employed.

In Eq. (2.1.1), displacement currents have been neglected,
because they are extremely small in comparison with conduction
currents in common magnetohydrodynamic fluids at any reasonable
frequencyo** Equation (2.1.5) is the ordinary Navier-Stokes
equation for an incompressible fluid,*** with the addition of
the electromagnetic body force density J x u;ﬁ, and without
the force of gravity, which may be neglected since no free

surfaces are to be considered.

Equations (2.1.1) through (2.1.4), and Eq. (2.1.6) can be
combined to form the Bullard relation

v2H - ouo[g§+ G -NiE-@@-v)vl =0, (2.1.7)

%
For a discussion of the alternative Eulerian and Lagrangian
formulations of the hydrodynamic equations, see Lamb,32 Ch. I.
ok
If a sinusoidal disturbance of frequency w exists in a static,
homogeneous, and isotropic medium with permittivity & and
conductivity o, the frequency at which the displacement
current is equal to the conduction current is o' = o/e .
For example, in mercury o' ~ 6.3 1017 rad./sec.

edede 23
See, for example, Pai, Ch. III.



110
while Egqs. (2.1.1), ¢2.1.3), and (2.1.5) can be combined to yield

p(—a%:- +v . V)v = -v(P + -12- uonz) + qux'z + uo(ﬁ . V)H. (2.1.8)*
Equations (2.1.7) and (2.1.8) are compact in form, contain only
the variables H, v and P, and are often a convenient starting

point in the search for the solution of a specific problem.

2.2 The Equations of Motion in Dimensionless Form

Any complicated analysis involving the equations of motion
[Egqs. (2.1.1) through (2.1.8)] is greatly simplified by considering
these equations in dimensionless form. The equations of motion
can be rendered dimensionless by making the following normalizations
with respect to a characteristic length Lo’ a characteristic

velocity A and a characteristic magnetic field Ho. Let

G 5,2 =@ 5 2L, (2.2.1)

and therefore

vV = LY. (2.2.2)
Also let

T = tvo,/Lo, (2.2.3)

u = ?;/vo, (2.2.4)

% -
Note that if A 1is a vector, A~ 1is used throughout to
denote A - A.
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P/pvo s

e ]
i

=l
]

ﬁ/Ho ,

j= J/op.ovoHO ,

and

0

e = E/ “‘ovoﬂo .

(2.2.

(2.2.

(2.2.

(2.2,

1f the normalized variables that are defined in Egs. (2.2.1)
through (2.2.8) are introduced in Eqs. (2.1.1) through (2.1.8),

the results are

%’xE=Rm-j-,
& __2h
xe=-"37°
V:-h=0,

d , = a— oo 1 a2

aT+u V)u = p+RV

V.-u=0,

2 dh — Ny =

V'h - RmKaT+ (u - Vjh - ¢(h » V)u] =0,

and

(2.2.
(2.2.
(2.2.
(2.2.
(2.2.
(2.2.

(2.2,

(2.2.

9

10)

11)

12)

13)

14)

15)

16)
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In Egs. (2.2.9) through (2.2.16),

pv_
R = > = pvoLoln R (2.2.17)
v Ly - (L /v
ouoLg
Rm T~ - ouOVoLo R (2.2.18)
o' o
and
ot
B =73 (2.2.19)
Vs

are respectively the hydraulic Reynolds number, the magnetic
Reynolds number, and the energy ratio. In addition to these three
dimensionless ratios, the Hartmann number M is often an important

characteristic ratio. It is defined by the equation

M = 5= = (w HL) %, (2.2.20)

M° = RR_B. (2.2.21)

Equations (2.2.17) through (2.2.20) indicate that from a dimensional
viewpoint, on an average basis, the hydraulic Reynolds number can
be thought of as the ratio of the kinetic-energy density to the
product of the viscous power-loss density and the fluid transit
time, the magnetic Reynolds number as the ratio of the'magnetic-
field diffusion time to the fluid transit time, the energy ratio as
the ratio of the magnetic-energy density to the kinetic-energy
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density, and the Hartmann number as the ratio of the ohmic power-
loss density to the viscous power-loss density. These identifi-
cations are not rigorous, but they do give some physical feeling
for the nature of the dimensionless ratios. In specific situations

the physical significance of various dimensionless ratios can

vary considerably (see Secs. 4.1 and 7.1)

2.3 Power and Energy Relations

The Poynting theorem for this magnetohydrodynamic situation

can be derived as follows. In view of the vector identity

V.(AxB)=B.(VxA) -A.(VxB), (2.3.1)
Egqs. (2.1.1) and (2.1.2) yield
-V - (Ex H) = SE'(Z uOH ) +E - J. (2.3.2)

However, Eq. (2.1.4) allows E to be written as

alyl

-V x u.oﬁ , (2.3.3)

E =
with the result that Eq. (2.3.2) becomes

2
-V - (E x H) = é%»(% uon) + %F -J - {vzx uOH) . (2.3.4)

Finally, because of the vector identity

A-(BxC =-B- (AxC) , . (2.3.5)
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Eq. (2.3.4) can be written as

2

2 Guy + L 4T Gxud, (2.3.6)

-V . (EXE)=§E 2
ﬁhich is the desired Poynting theorem. In Eq. (2.3.6),
-V.e (E x H) is the rate at which electromagnetlc energy is
supplied per unit volume, gl L Ko H ) is the rate at wgich the
magnetic-energy storage is 1ncreased per unit volume, J°/ o is
the rate of ohmic dissipation per unit volume, and Vv . @ xup H)
is the rate at which the electromagnetlc body force does work on
the fluid per unit volume. Thus the electromagnetic energy that
is supplied to a-unit volume of the fluid is used in three ways:
to increase the stored magnetic energy, to supply the ohmic
dissipation, and to provide the energy that is converted to

mechanical form (some of which is dissipated viscously).

An Energy Equation

An energy equation for the fluid can be obtained by forming
the dot product of the fluid velocity v and the magnetohydro-
dynamic Navier-Stokes equation (2.1.5). The result is

- 2 - - - - - -
(g% +v . v)(% pv) = -v - VP + qv - VY. T x w H) .
(2.3.7)

In Eq. (2.3.7), (5% +v V)(% pvz) is the total rate of
increase of the kinetic energy per unit volume; and -v . VP,
w - VZG', and v - (J x uéﬁ) are respectively the rates at
which the mechanical pressure, the viscous surface traction, and

the electromagnetic body force do work on a unit volume of the
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fluid as a whole. Thus the kinetic energy of the fluid can be
increased by pressure forces, equivalent viscous body forces, and
eiectromagnetic forces. [Note in particular that the term

v - VZ;"is not a dissipation (see the following section).]

The energy equation (2.3.7) is not the complete statement of
conservation of energy for the fluid but is nevertheless a
valid and informative result. The complete energy equation is
npt_needed in this investigation, because the‘fluid is inco@-

pressible.
The Viscous Dissipation
- Yok

The viscous stress tensor - Gij for an incompressible

fluid is given by |
Bvi ov,
= nf—= + —d Feddk
Oij -q(ij + axi) , _ (2.3.8)

in which Xy (i =1,2,3) are the Cartesian coordinates, and vi’
are the Cartesian components of the fluid velocity. The viscous
power-loss demnsity can be obtained by considering the rate at
which work is done by the viscous surface traction on a surface

S which encloses a volume V. The viscous surface-traction

¥*
"For a discussion of the complete energy equation of compressible
magnetohydrodynamics, see Pai.33 -

The symbol o which is used only in this section to denote

‘the viscous stress tensor, should not be confused with the
scalar electrical conductivity o.

23

dedede .
See, for example, Pai,” ™ Eq. (3.31).
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tensor ci can be obtained from the stress tensor as

o, = 0,.n, , (2.3.9)

in which summation on a repeated index is understood, and n,
are the Cartesian components of the outward-pointing normal to
the surface S. An expression for the rate at which work is
done by the viscous surface tractions ¢ can be obtained by
integrating the dot product of the viscous surface traction and
the flu%d velocity over the surface S, 1i.e.

¢ = éfoivids = évioijnjds . (2.3.10)
The surface integrals in Eq. (2.3.10) can be converted into
volume integrals with the aid of Green's theofem, with the

result that

d
o = ‘frg}g (v4035)dV (2.3.11)

which can be expanded to

do. . ov

- —l 1
® {7(Vi 5%, + o5 axj)dv . (2.3.12)

Because the volume V is arbitrary, the integral in Eq. (2.3.12)
may be identified as the density of power that is delivered by the

viscous forces ¢, 1i.e.

Boio Bvi .
¢ =v, 5;—1 045 Smo (2.3.13)

3
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If Eq. (2.3.8) is substituted in Eq. (2.3.13), and use is made of
the incompressibility restriction ij/axj =0, Eq. (2.3.13)

becomes
Bvi av j
o=y S, + G ) = (2.3.19
i 73 3 h|

The first term on the right-hand side of Eq. (2.3.14) can be

written in vector form as

v, S%T’gg% - W - vV, (2.3.15)
J ]

and can be interpreted as the rate at which the equivalent viscous

body force qVZG' does work on a unit volume of the fluid as a

whole [cf. Eq. (2.3.7)]. This power is the rate at which the

viscous stresses are increasing the sum of the kinetic, potential,

and converted (to electrical form) energies within a unit volume,

and is not a viscous dissipation. producing heat.

The second term on the right-hand side of Eq. (2.3.14) is
the viscous power-loss density P, i.e.

Bv

j
P, = n( ) . (2.3.16)
ij ij

This power is the rate at which the viscous stresses are doing

work to deform the fluid per unit volume, and is a viscous

dissipation producing heat.
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Chapter III

FUNDAMENTALS OF CONDUCTION DRIVEN FLOW

'3.1 The Configuration and the Choice of Characteristic Quantities

The particular field-flow geometry that is analyzed in this
chapter is called Hartmann flow, after the scientist who first
obtained the fluid velocity profile for this situation (see
Ch. I, and Hartmann'). In this configuration, the fluid flows
between infinite parallel planes that are separated by a distance
2a. The electrical excitation is provided by a constant magnetic
field ﬁa that is applied perpendicular to these planes, and a
constant electric field Ea that is applied perpendicular to the
‘applied magnetic field and the fluid velocity, as shown in Fig. 3-1.

/ +a
o 5 2,
il e N

\

Fig. 3-1 Hartmann Flow Between
Infinite Parallel Planes

Because translation of the coordinate system in the x and

z directions does not alter the situation, the solution cannot
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depend on x or 2z (note that although the pressure gradient is
independent of 2z, the pressure varies linearly with z). The
fluid velocity is assumed to be entirely in the z-direction, but

to vary with y, 1i.e.
vV = vz(y)iz o (3.1.1)

The total magnetic field is assumed to consist of the applied
field Ha’ and an induced magnetic field Hz in the z-direction,
viz.

H = Haiy + Hz(y)iZ . (3.1.2)

The assumption that the induced magnetic field is in the
z-direction corresponds to the assumption that the current that
flows through the fluid in the =x-direction has its return path

in an x-y plane.

The choice of the characteristic quantities is reasonably
straight-forward in this simple situation. The channel half-
width is taken as the characteristic length, i.e.

L =a, (3.1.3)

the applied magnetic field is taken as the characteristic magnetic
field, i.e.

H =H |, (3.1.4)

and the space-average of the fluid velocity is taken as the
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. %
characteristic velocity, 1i.e.

- _1 /2 ok
v, = <v,> = o J vz(y)dy . (3.1.5)‘

o _

-a
With these choices of characteristic quantities, the deminsion-
less parameters defined in Eqs. (2.2.17) through (2.2.20)

- become

- pa .1,
R , v,> (3.1.6)
Rm = oW a <vz> , (3.1.7)
1) H2
p=-22 , (3.1.8)
2
p<v>
and
2 _ 29
M™ = (uoHaa) n (3.1.9)

3.2 Basic Solutions

The normalized forms of Eqs. (3.1.1) and (3.1.2) for

velocity and magnetic field are

]

u uz<§yzz , (3.2.1)

and

=g
0

L, +h, I, . (3.2.2)

‘Note that amother possible choice for the characteristic
velocity is the "electrical velocity" Ea/uoHa, although the
choice that is made in Eq. (3.1.5) is more meaningful

in this situation.

Yede .
‘The angular set of brackets is used throughout to denote an
average with respect to space.
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If Eqs. (3.2.1) and (3.2.2) are substituted in the dimensionless
equations of motion (2.2.15) and (2.2.16), the former yields the

single scalar equation
h + R =0 ; 3.2.3)%*
z mz (3.2.3)

while the latter yields the two scalar equations

--:%+§u;+ﬁh;=0 , (3.2.4)
>
and |
_:% + fah; -0, (3.2.5)
y

in which the pressure p 1is in general a function of § and z.
However, Eq. (3.2.4) demands that

2 N~ N

o p(y,z) _

, (3.2.6)
33 2

with the result that

P(¥,2) = ZE() + 8() (3.2.7)

in which £(y) and g(?) are arbitrary functions of ¥.
However, Eq. (3.2.5) demands. that

L -3 +g (3.2.8)
oy

%
A prime is used throughout to denote the differentiation of a
function of one variable with respect to its argument.
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must be a function of ¥ only, with the result that,

£' =0, (3.2.9)

and

QP' = a constant = p

(3.2.10)
3z °

Equations (3.2.3) and (3.2.4), the definition (3.2.10), and
the identity (2.2.2 ) can be combined to yield a single equation
that governs the fluid velocity, viz.

" 2 !
(u, - Muw) =0. (3.2.11)

Equation (3.2.11) must be solved subject to the boundary condi-

tions
uz(i 1) =0 (3.2.12)

that are imposed by the channel walls and the fluid viscosity,
the symmetry condition

“z('Y) =u (y) , (3.2.13)
and the normalization

]‘ ~ ~N

[ uz(y)dy =1 (3.2.14)

o

that is required by the definition of v, [Eq. (3.1.5)]. The
solution is readily found to be

u = (1 - S8Ry, - Eﬁﬁh—ﬂ) . (3.2.15)
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Thus the shape of the normalized velocity profile depends only on
the Hartmann number M, although the average velocity v,

depends, of course, on the electrical and mechanical drives.

Figure 3-2 shows a set of normalized velocity profiles for

various values of M. When M is small, the profile is controlled
by viscosity and has a parabolic shape; however, when M 1is large
the profile is controlled by electromagnetic forces, and has a

highly squared appearance.

Now that the velocity u, has been determined, Eq. (3.2.4)
can be solved for the induced magnetic field hz° Subject to

the symmetry requirement
h (-y) = -h_(y) (3.2.16)
the solution is

h =EE(Rp'§-u) . (3.2.17)

The symmetry condition (3.2.16) demands that any net current that
flows through the fluid in the =x-direction be returned
symmetrically with respect to the channel.

Next, the current density 3 can be obtained from the
magnetic field, by substituting Eqs. (3.2.17) and (3.2.2) in
Eq. (2.2.9), with the result that

1=14,0) =1, 5 @, - u,) - (3.2.18)
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Finally, the electric field e can be computed by sub-
stituting Eqs. (3.2.18), (3.2.1) and (3.2.2) in Eq. (2.2.12),
and is found to be

R N R A 6219

M
However, if Eq. (3.2.15) is substituted in Eq. (3.2.19), the
result is
Rp M

e == + R (3.2.20)
M M - tanh M

which is independent of ¥, and is, therefore, consistent with
the idea of a constant applied electric field that was introduced
in the problem specification (see Sec. 3.1 and Fig. 3-1).

3.3 A Variational Principle

The velocity profile for the conduction driven flow situation
that is described in Sec. 3.1 can also be obtained from a varia-
tional principle. This principle states that out of all possible
velocity profiles that are consistent with the boundary condi-
tions, the fluid assumes the one that is associated with the
least dissipation. The application of the principle follows.

In the conduction driven flow, there are two forms of
dissipation; ohmic and viscous. The ohmic power dissipation per
unit length in the =z-direction Pohm is given by
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2
a Jx 2 1 2 Ay
Py = {a —= dy = ca(u H, <v,>) { le(y)dy
= ga(u _H 2 fl(e - u )2 dy (3.3.1)
= g U'O a <Vz> 1 % z Y » e Jo

while the viscous power dissipation per unit length in the

z-direction P, is given by [see Eq. (2.3.16)]

is

a dvz 2 n <Vz>2 1
= & = '
P .= {an(dy ~dy / (uz) dy . (3.3.2)

Thus the total dissipation per unit length in the z-direction

Pt is given by

n <v >2 1

p = —2 fl[(u;)z + Mz(ex - uz)21d§ , (3.3.3)

t a
which is the integral that must be minimized by adjusting the

function uz(y), subject to the constraint

1
fluzd§ =2 . (3.3.4)

The variational problem of minimizing the integral (3.3.3)
subject to the constraint (3.3.4) is solved by first minimizing
the integral

1
[ Flu (), u,()1dy , (3.3.5)
-1
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in which

F = [(u;)2 + Mz(ex - uz)2 ¥, (3.3.6)

subject to no constraint, and then determining the Lagrange
multiplier A, and the constants of integration in the solution
of the Euler equation so that the boundary conditions and the
constraint (3.3.4) are satisfiedo* The function F(u;, uz)

must satisfy the Euler equation

d ,oF oF
—() - =0, (3.3.7)
dy auz auz
which yields
" 2 A 2
uz - M uz + ("2"+ M ex) == 0 ° (333»8)

Subject to the symmetry requirement uz(—§) = uz(y),
and the boundary condition wu (+ 1) = 0, the solution of
Eq. (3.3.8) is

o N _ cosh My
u, ( 5 + ex)(l cosh M ) . (3.3.9)
2M

Finally, the Lagrange multiplier A must be determined such
that the constraint (3.3.4) is satisfied. The result is

h My tanh
u = (1 - %:’—hf—;‘{l)/(l - —a—;—ﬂ), (3.3.10)

* . 34
‘See Hildebrand, Sec. 2.6,
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which is identical to that obtained from the equations of motion
in Sec. 3.2 [Eq. (3.2.15)].

This variational principle is an extension to a specific
magnetohydrodynamic problem of similar principles for certain
%
types of hydrodynamic flow.

%
See Lamb,32 Art. 344,
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Chapter 1V

ENERGY CONVERSION IN CONDUCTION DRIVEN FLCW

4.1 Brake or Flow Damper Operation

The simplest conduction driven flow energy converter is the
brake or flow damper, in which the electromagnetic forces
produced by the interaction of induced currents and the applied
magnetic field, oppose the fluid motion and dissipate the fluid
energy in heat. There are two limiting forms of flow damper
that clearly illustrate this mode of operation. In the first,
the total current flowing through the fluid is zero (a non-
conducting channel, or conducting end plates that are open-
circuited); while in the second, the electric field in the fluid

is zero (conducting end plates that are short-circuited).

The I =0 Flow Damper

The simplest type of flow damper consists of a non-
conducting rectangular channel across which a uniform magnetic
field is imposed. The rectangular channel is formed from the
infinite parallel planes of Fig. 3-1 by placing walls in the
y-z planes at x = + d X = + d/a), as shown in Fig. 4-1.

The distance 2d in the x-direction is assumed to be much
greater than the distance 2a that separates the original
parallel planes (a high-aspect-ratio channel), with the result
that the semi-infinite analysis of Ch. III may be assumed to be

applicable.
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+a

Fig. 4-1 A Channel Cross Section

The mathematical constraint for this type of flow damper
is simply that the total current flowing in the x-direction
must be zero; that is, that all the current circulates within
the flow, by reversing direction at the walls x = + a.¥ 1f
Eq. (3.2.18) is integrated across the channel, the total
normalized current flowing in the x-direction, per unit

length in Zz is found to be

1
i = [ 3,504 - ;427 [Rp_ - w/(1)] , (4.1.1)

and is constrained to be zero. Thus the hydraulic Reynolds

number is given by

u, (1) u! (1)
£§-<v>= R = Z = Z

7z P 2>
0 aPO/p <v,>

(4.1.2)

in which Po is the unnormalized mechanical pressure gradient,
i.e.

p = 2P
Z

03z "2 constant. (4.1.3)

‘This current reversal is facilitated by having electrically
conducting planes at x = + d.
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Equation (4.1.2) can be solved for the average velocity and

yields, in view of the normalized velocity profile (3.2.15),

>
2 L - L (Mcothm - 1), (4.1.4)

2 = ; =
a Po/n uz(l) M
in which the initial minus sign indicates that the fluid is

driven in the minus z-direction by the mechanical pressure
gradient PO° |

For small values of M, the average velocity tends to a
constant as in hydrodynamic flow, in fact
VD> 2
—2 L la-My asu-o0; (4.1.5)
2 3 15
a"P _/q
o
with the result that the volume flow rate is little affected
%*
for small magnetic fields. However, for large values of M
the average velocity is inversely proportional to M and is
given by

<v,>

—y—ﬁ, as M—poo N (4.1.6)

aZPO/q
with the result that the volume flow rate is inversely pro-
portional to the magnetic field strength for large magnetic
fields.

‘Because experimentally the magnetic field strength is the most
easily varied quantity in M=p HL \Io/n , the variation of
a quantity with M can often ©09° The instructively

interpreted as its variation with the magnetic field strength.
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The velocity profiles for this flow damper are conveniently
displayed by normalizing the velocity v(?) with respect to the
center channel velocity in hydrodynamic flow (M = 0), i.e.

h My
~ v D (1 - _9_9_5___X)
2V(Y) - 2 Z uZ(&‘) = COSh M . (4.107)
a Po/n a PO/n M tanh M

Figure 4-2 shows a set of these velocity profiles for several
values of M. For M = 0, the velocity distribution reduces
to the viscosity controlled parabolic contour. As M is
increased, however, the magnetic field begins'to flatten the
profile and to decrease its amplitude. Finally, for large M,
the amplitude of the velocity is greatly reduced, the central
region of the profile is completely controlled and flattened
by the magnetic field, and viscosity is important only in thin

boundary layers near the walls.

The unnormalized current density Jx(y) can be obtained
by combining Eqs. (3.2.18) and (4.1.2) and is given by

9 _ (& . cosh My, (4.1.8)
- M  sinh M’/ ° T
aP_ o/n

in which the renormalization shown is convenient. Figure 4-3
shows a set of normalized (to >-aPo\F;Er) current density
curves for various values of the parameter M. The current
always flows in the negative x-direction in the central region
of the channel, and in the positive x-direction along the walls,
however, the shape of the current distribution varies quite
drastically with M. For small values of M (M 0.1), the
magnitude of the circulating current is small, the distribution

is quite flat throughout, and the zero crossing approaches
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Y = 1/J3 ~ 0.577 as M approaches zero. As M increases
(0.1 < M < ~ 5.0) the magnitude of the circulating current
increases and the distribution remains flat near the center of
the chénnel, but develops a sharp negative peak near the walls.
Finally, as M increases still further (M — =), the magnitude
of the circulating current decreases, the zero crossing tends
to y =1 monotonically, and thé shape of the distribution
becomes flatter to the left of the zero crossing and more
peaked near the wall, with the peak rising to a limiting

value of one.

The square of the Hartmann number is commonly interpreted
as a measure of the ratio of the ohmic power loss to the
viscous power loss [see Eq. (2.2.20)]. Since the identifica-
tion is ma@e on the basis of a rough dimensional argument,
the calculation of the actual ratio for the I =0 flow
damper provides a check on the dimensional reasoning. The
exact calculations are somewhat involved algebraically, but
the result is that the ratio of the ohmic power loss to the

viscous power loss (both averaged with respect to y) is

given by
P [sinh 2M + 2M -'z(cosh M- 1)]
ohm _ M (4.1.9)
. (sinh 2M - 2M)
vis

Although the expression (4.1.9) is a rather complicated function
of M, the following limiting properties can be deduced in a
straightforward manner. First, for small values of M the

ratio becomes

Pom _ 2
3
Pvis 15

M—0 . (4.1.10)
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Second, for large values of M the ratio tends to one, in fact

P .

o —’1 = g’ ’ as M—’m ° (401011)
P M

vis

Thus for small values of M the actual power loss ratio differs
from the ratio M’ determined by dimensional arguments [ Eq.
(2.2.20)] only by the numerical factor 15. However, for large
values of M the dimensional ratio is considerably in error,
since it assumes a large value while the actual limiting value

is one,

This detailed discussion of the actual power loss ratio for
the I =0 flow damper, and the results that follow for the
E =0 flow damper, demonstrate that dimensional reasoning, of
the type that led to the identification of the square of the
Hartmann number with the ratio of ohmic to viscous power
dissipation, can quite often be misleading in specific situa-
tions. So-called '"physical’ and '"dimensional' arguments of
this type are often helpful for obtaining a general idea of
the nature ofva particular parameter or a physical situation;
however, they should be employed as aides to, and not sub-

stitutes for, more rigorous analysis.

The E = 0 Flow Damper

In this second type of flow damper, the electrically con-
ducting planes at x = + d are short-circuited, which constrains
the uniform electric field within the flow tovbe zero. If e,
is set equal to zero in Eq. (3.2.20), the hydraulic Reynolds

number can be determined from the relation
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azP 3
—C __Rp = - M
| <Vz> lo) M - tanh M °’

(4.1.12)

with the result that the average fluid velocity is given by

v, > -
zZ _ M tgnh M , (4.1.13)

5 =
a Po/n M

in which again the initial minus sign indicates that the fluid
is driven in the minus z-direction by the mechanical pressure
gradient P0°

For small values of M, the average velocity again tends

to a constant, in fact

v >
-0 -21w), as M=o (4.1.14)
a"P /n
o
which, when compared with expression (4.1.5) for the I =0
flow damper, shows that the E = 0 flow damper has the greater
effect on the volume flow rate for small values of M. For
large values of M, the comparison is more striking, since
<Vz> 1
T—-——-_) - 7 N as M—-}& N (4.1.15)
a’P /n M
o
whereas the expression (4.1.6) goes as only 1/M as M— o,
Thus the E = 0 flow damper is far more effective than the

I =0 flow damper for large values of M.

The actual ratio of the ohmic power loss to the viscous .
power loss can also be computed for this type of flow damper,
and the result is

Pohm _ 2M cosh 2M - 3 sinh 2M + 2(2M)

sinh 2M - 2M ° (4.1.16)

vis
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Again the expression is rather complicated, but the limiting

forms are given by

Pohm_}_g_MZ , as M= 0; (4.1.17)
vis

and
Pohm
3 —+2M, as M— = , (4.1.18)
vis

Thus the agreement between the ratio predicted on dimensional
grounds (MZ) and the actual ratio is quite good for small

values of M, but is still poor for lafge values of M.

4,2 Generator Operation

The operation of the conduction driven flow as a generator
is quite similar to brake or flow damper operation, except that
a net current is allowed to flow through the fluid and an
external load. A rectangular channel is again formed as shown
in Fig. 4-1, and conducting electrodes of length 2b in the

z-direction form the walls at x = + d, as shown in Fig. 4-4.

y
A

+ a

b // / tb, ,
e

~-a

Fig. 4-4 A Channel Electrode
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The length of the electrodes 2b is assumed to be much greater
than the channel width 2a, or the channel depth 2d, with the
result that end effects at z = + b can be neglected. 1In order
 to exactly preserve the direction and symmetry of the induced
magnetic field solution [see Eq. (3.2.16)], the external load
must be connected to the electrodes in such a way that the load
current flows in x-y planes and symmetrically with respect to

the x-axis, as shown schematically in Fig. 4-5.

Fig. 4-5 Schematic Diagram of Symmetrical
Generator Loading

The electrical load that is placed on the generator is
most conveniently characterized by its resistance per unit
length in 2z, RLo Therefore, the hydraulic Reynolds number
must be determined as a function of this external load resistance-
The total unnormalized current per unit length in =z can be
obtained by integrating Eq. (3.2.18) across the channel, and is
found to be

a 1
I=/Jdy=aouH <v,>/[jdy
-a ! -

aou H_ <v,> —25 [Rp_ - u'(1)] . (4.2.1)
M
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Furthermore, the voltage V between the electrodes at x = + d

can be obtained from the uniform electric field (3.2.20) as

V = -2d Ex = -Zduoﬁa v,> e

M3

M - tanh M)

= -ZduOHa v, > ;%'(Rpo +
M

(4.2.2)

Therefore, the external load resistance RL can be expressed as

Rp, + M3/(M - tanh M)

R =1=-2 : . (4.2.3)
Rp, + M tanh M/(M - tanh M)

The ensuing calculations, and the presentation of the
results are greatly simplified by normalizing the external load
resistance per unit length RL with respect to the internal

resistance of the generator per unit length d/ac and defining

AL

a E d/ao M (4.2.4)
and by making the further identification
B = M/tanh M . (4.2.5)

Equation (4.2.3) can be solved for the average fluid velocity
<Vz> in terms of the dimensionless ratios a and B, with
the result that

V2 1 1 (a+1)(8 - 1)

azPo/n Rp, e (a + B)

(4.2.6)

In order to optimize the operation of the flow as a

generator, the electrical power output and the energy conversion
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efficiency are next expressed in terms of the parameters a and
B. If Eq. (4.2.6) is substituted in Eq. (4.2.1), the total
~current per unit length in 2z is found to be

2aPp

- o(p-1) .
I=- i, TP (4.2.7)

and, therefore, the power delivered to the load per unit length
is given by

3 2
b - 12 é 4a~d P0 a(p - 1)2
L R, 5 7 -
nM (o + B)

(4.2.8)

Furthermore, the mechanical power input density is just -v - VP,
with the result that the mechanical power input per unit length
in z 1is found to be

3, 5,2

Ml Y CESIYCIER (4.2.9)
W @+ p)

Pm = -4a d P0 <Vz> =

Therefore, the energy conversion efficiency & can be expressed

as a function of only « and g, viz.

8((1,5) = (Q :(i)zali B) ’ (4.2.10)

in which the range of a is

0< a £ =, (4.2.11)

while that of B is

1 < B £ =. (4.2.12)
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The important properties of € can be deduced quite easily
from Eq. (4.2.10). First, € 1is equal to zero when either «

~is equal to zero or B 1is equal to one, i.e.
e(0,8) = &(a,l) =0 , (4.2.13)

which implies physically that the efficiency is zero for either
a short-circuit load, or zero applied magnetic field. Second,
the partial derivative of & with respect to B 1is given by
%g - a 5 ) (4.2.14)
(o + B)

™

which is non-negative for the ranges of a and B8 under con-
sideration [eqs. (4.2.11) and (4.2.12)]. Theréfore, for any
fixed value of o (except a = 0), the efficiency is a mono-
tonically increasing function of pB. For such a fixed value of

a, the limiting value of ¢ 1is

S +1° as B— o , (4.2.15)
Thus, for a fixed value of the external load resistance, the
efficiency increases monotonically from zero to the limit

(4.2.15) as the applied magnetic field increases from zero to
infinity. Third, the partial derivative of & with respect

to o 1is given by

_ (8 - 1)§B - a2)2 o (4.2.16)
(a + 1)"(a + B)

de
da

which is equal to zero for

=1, (4.2.17)
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and for
8= o’ . | (4.2.18)
For B =1, the efficiency is a minimum (e = 0), while for
B = a2 it is a maximum, and is given by ‘
e(a,a?) = L1 (4.2.19)
JB+1 :

Also, for a fixed value of B, the limiting value of € 1is
e—=0, as a==x ., (4.2.20)

Thus, for a fixed value of B, the efficiency increases from
zero to a maximum given by Eq. (4.2.19), and then decreases to
zero again, as o increases from zero to infinity. Therefore,
for a fixed value of the applied magnetic field, the maximum

possible efficiency is

_ vM/tanh M - 1
vM/tanh M + 1

€ (4.2.21)

which is attained for a load resistance given by

-4 [ M
RL ~ acVtanh M ° (4.2.22)

In order to make the variation of the efficiency as a function
of the parameters a and B completely clear, Fig. 4-6 shows
a family of curves of €& as a function of a, with £ as a

parameter.

The final subject to be discussed concerning generator
operation is the dependence of the electrical power output
PL[Eq. (4.2.8)] on the load resistance RL (through a). The
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partial derivative of PL with respect to a is given by

oP 4a3 d P2

2
L o (B -1 - a)
= , (4.2.23)
da M’ (@ + 8)°>

which is zero for

a=8, (4.2.24)

which corresponds to a maximum of PL' Therefore, if all other
parameters are held fixed, the power. output is a maximum when

the load resistance per unit length is given by

-4 _M
RL " ac tanh M ° (4.2.25)

A comparison of Eq. (4.2.25) with Eq. (4.2.22) shows, as would
be expected from physical experience, that the value of the
load resistance for maximum power output is different from that
for maximum efficiency. If the value of o for maximum power
output [Eq. (4.2.24)] is substituted in the efficiency relation
(4.2,10), the result is

(4.2.26)

Nl
o
]

e(8:8) = 3 5%
Therefore, if the load resistance is adjusted so as to give

the maximum power output for each value of the applied magnetic
field, the highest possible efficiency is one-half, which is
obtained as the value of the applied magnetic field tends to
infinity. However, this does not mean, contrary to some opinion,
that efficiencies greater than one-halé are not possible; only

that such efficiencies are obtained at the expense of less than
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maximum power output. In fact, as has been demonstrated in the
preceding discussion, efficiencies approaching one are possible,

although they are accompanied by power outputs approaching zero.

4.3 Motor or Pump Operation

The physical configuration for motor or pump operation is
identical to that for generator operation, as shown in Figs. 4-4
and 4-5, except that the load resistance is replaced by a voltage
source. If the magnitude of this applied voltage source is
2v_, the uniform electric field within the fluid is constrained
to be

a
- Ex a uoHa V> ey
Poa2 <vz> M
= uoHa[ 5~ + ] . (4.3.1)
nM "M - tanh M :

Equation (4.3.1) can be solved for '<vz>, with the result that

a2P
wpy=—2xe - D (4.3.2)
nM B
in which the dimensionless parameter ¢, which is defined by
v
g 7? lJ’oHa

YE—F— - 1, (4.3.3)
_ o 4

has been introduced. The parameter < can be interpreted
physically as a measure ofvthe ratio of the applied electro-
magnetic force density o 1? uoHa to the pressure force density
Po° Furthermore, Eqs. (4.3.2) and (4.3.3) show that if v is
positive, the electromagnetic force is greater than the pressure
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force, and the fluid flows in the positive =z-direction; while

if v 1is negative, the reverse is true. Thus the inequality

P d
o

ouoHa

V> (4.3.4)

is a necessary condition for pump operation.

The mechanical power-output density is simply v . VP,
with the result that the total mechanical power output per unit
length in 2z 1is given by

4a3dP§ G - 1) '
P = 4adP <v >=—F—1 : (4.3.5)
m o "z

M p

in view of Eq. (4.3.2). Also, the total current per unit length
can be obtained by substituting Eq. (4.3.2) in Eq. (4.2.1) and
is found to be

2aP
_ o (B + v) '
I TH 5 , (4.3.6)

o a

with the result that the total electrical power input per unit
length is given by

3,52

4a ZPO (vy+ DE + v) ] (4.3.7)
nM B

Pe = ZVaI =

Therefore, the energy conversion efficiency of the pump can be

expressed as

(8 - 1)
E(IY)B) = (,Y +'Yl)('}’ + 6) ’ (4.308)
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in which v 1is restricted to the range
0Ly (4.3.9)

for pump operation [see Eq. (4.3.4)].

A comparison of Eqs. (4.3.8) and (4.3.9) with Eqs. (4.2.10)
and (4.2.11) shows that the expression for the efficiency in -
pump operation is identical to that for generator operation if
v 1is replaced by a. Thus all of the discussion in Sec. 4.2
concerning the efficiency of generator operation is directly
applicable to pump operation. Restated in terms of pump
operation, the principal results are as follows. First, for a
fixed value of v (applied voltage), the efficiency increases
monotonically from zero to a limiting value given by

3 as p— o , (4.3.10)

R A
y+1°

as the applied magnetic field varies from zero to infinity.
Second, for a fixed value of M (magnetic field), the

efficiency becomes a maximum given by

e-YM/tanh M -1 (4.3.11)
YM/tanh M + 1

when 72 = B8 , that is when

P d

=—2— (/M/tanh M + 1) , (4.3.12)

a
ouoHa

Finally, inspection of the expression (4.3.5) for the
mechanical power output shows that it varies linearly with v,
with the result that increasing the applied voltage monotonically

increases the power output.
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4.4 Relation to Existing Experiments

The principal scientific experimental results concerning
laminar conduction driven flow are still those obtained by
Hartmann and Lazarus,4 in 1937. At that time, they verified
the fact that in an electrically insulating high-aspect-ratio
channel (the I = 0 flow damper of Sec. 4.1), the volume flow
rate is inversely proportional to the applied transverse
magnetic field strength, for high values of the magnetic field.
They did not, however, make any tests of E = 0 flow damper,
pump, or generator operations; nor did they measure any velocity
profiles. Recently, there has been an attempt by Kliman36 to
measure velocity profiles in magnetohydrodynamic channel flow
by the use of an electromagnetic flow meter; although the
results were somewhat inconclusive, and more work is needed to

perfect the technique.

From a practical standpoint, a large number of conduction-
driven electromagnetic pumps have been built and tested,
primarily for pumping sodium in atomic reactor applications.*
Unfortunately, such pumps do not conform to some of the assump-
tions that are made in this analysis. They are almost always
uncompensated, and thus are effected by armature reaction;
their channels are commonly rectangular or of low-aspect-ratio;
and their flow rates are such that, in consideration of
Murgatroyd's results (see Sec. 1.3), the flow within them is
probably laminar for low flow rates, but undoubtedly is turbulent

for high flow rates. The sort of experimental results that are

* 6 7 8
‘See, for example, Cage, Barnes, and Watt.
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published concerning these pumps are terminal properties such as
head-capacity and efficiency-capacity curves.* The head-capacity
“curves are invariably linear, which is in agreement with the
prediction of Eqs. (4.3.2) and (4.3.3); but which is also pre-
dicted by far less detailed theories that completely ignore the
magnetic field and velocity distributions. The efficiency-
capacity curves also have the same form as those predicted by

Eqs. (4.3.2) and (4.3.8), although again cruder theories predict
a similar form.

Thus there is a real lack of careful, detailed experimental
results of the type that would provide a rigorous experimental
check on the theoretical results that are presented here. A
discussion of some possible lines of experimental investigation
is presented in Sec. 9.3.

* 37
See, for example, Barmes.
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Chapter V

FUNDAMENTALS OF INDUCTION DRIVEN FLOW

5.1 The Configuration and the Choice of Characteristic Quantities

This chapter is concerned with the basic equations that govern
the laminar flow of a viscous, incompressible, conducting fluid in
a high-aspect-ratio channel under the influence of a traveling
magnetic field. This type of magnetohydrodynamic channel flow is
called "induction driven'' because the currents that flow in the
conducting fluid are induced by the traveling magnetic field, and
because the gross operation of such a flow is similar to that of

*
a conventional induction motor.

In Fig. 5-1, the idealized situation that is analyzed here is

fx - ‘\\\\High-Aspect
z =u — Ratio Channel
k(-a)
2 d _
\ b= o ax—o

Fig. 5-1 An Induction Driven Magnetohydrodynamic
Channel Flow

*
For an introduction to conventional induction machines, see

‘White and Woodson,35 Sec. 3.6.4. For a practical design
analysis of induction pumps using induction motor theory,
see Watt.ll
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shown schematically. The mean fluid flow is in the z-direction,
and is confined by parallel, non-conducting planes at y = + a.
‘Further, these planes extend sufficiently far in the x-direction
(high-aspect-ratio) that none of the quantities of interest vary
with x (5% = 0). The traveling magnetic field is excited by
current sheets that vary sinusoidally in space and time, and
flow in the x-direction on the surfaces of the infinitely
permeable pole pieces which bound the channel on the planes
y=+a. (In practice, the exciting structure might resemble

the polyphase stator of a conventional induction motor.)

The excitation surface currents are assumed to be of the

form:

i
[
~
&
(]

K(y = + a) (5.1.1)%

R(y

]

!
o
~

]
+
e

»

~
&

o

(5.1.2)

with the result that the magnetic field travels with a phase
velocity w/k in the positive z-direction. If the positive
sign is chosen in Eq. (5.1.2), the excitation has even symmetry
with respect to y; if the negative sign is chosen, it has odd
symmetry. Throughout this investigation, these two choices will
be referred to respectively as even and odd excitation. The
conventional induction motor, in which the coils are wound in
the faces of the magnetic structure, is an example of even

%%
excitation; while the traveling wave tube, in which the coil

%
Throughout this analysis, 1 is used to denote V-1 , and Re
to denote ''the real part of'.

g

Note that in the traveling wave tube electric as well as
magnetic fields are important.
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or helix is wound around the electron beam, is an example of odd
excitation. Even excitation produces its maximum magnetic field
‘transverse to the flow direction, while odd excitation produces
its maximum magnetic field parallel to the flow direction.
Because the transverse component of the magnetic field provides
the electromagnetic (3 xiﬁ) force in the direction of the mean
flow, even excitation qualitatively seems to be more effective
than odd excitation. Even excitation is used exclusively in
practical liquid metal induction pumps,* although odd excita-
tion may be of.interest in other applications.** Both types

of excitation are analyzed in this investigation.

Equations (2.2.15) and (2.2.16) seem to indicate that
there are only three independent dimensionless parameters in
any magnetohydrodynamic problem, for example, R, Rm and B.
This is not so, because there may be more than one independently
variable characteristic length, velocity or magnetic field in
a particular problem.

In the situation considered here, there are two character-
istic lengths, the channel half-width a, and the excitation
pole spacing w/k. In order to simplify the location of the

boundary conditions on the velocity at the channel walls, the

%* : 8 10
See, for example, Watt and Blake.

%k

‘Several groups are interested in using slow_wave structures
to accelerate plasma beams. See Marshall,l? and Covert and
Haldemann,19
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channel half-width is chosen as the characteristic length, i.e.

L = a, (5-1.3)

and the dimensionless ratio

o = ka (5.1.4)

is introduced. There are also two characteristic velocities in
this problem, the mean (space and time) fluid velocity, and the
excitation phase velocity. The former is usually taken as
characteristic in purely hydrodynamic problems because of its
importance in the transition from laminar to turbulent flow.
However, in this laminar magnetohydrodynamic situation the
phase velocity of the excitation is given, and the fluid
velocity must be determined. Thus the excitation phase
velocity is appropriately chosen as the characteristic
velocity, i.e.

v, = w/k . (5.1.5)

Finally, the peak value of the magnetic field at the channel

walls is chosen as the characteristic magnetic field, i.e.

H =K . (5.1.6)

Now that the characteristic quantities have been defined,
the excitation [Egs. (5.1.1) and (5.1.2)] can be written in

normalized form as

ia(t - 2)

k(y=1) = K(y = a)/Kb = Re e (5.1.7)
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and

k(¥ = -1) = R(y =-a)/K_ =+ Re e (5.1.8)

5.2 Difficulties Concerned with an Exact Solution

Considerable difficulty is encountered in trying to obtain
an exact solution to Egs. (2.2.15) and (2.2.16) subject to the
excitation of Eqs. (5.1.7) and (5.1.8), and the boundary condi-
tions at the channel walls. The crux of the difficulty is the
non-linear terms of the form (a - V)b in the equations of
motion.

Because the excitation is a periodic function of a(T - Z),

a natural approach to the problem is to seek solutions for the
magnetic field, the velocity, and the pressure which have the
same form. Unfortunately, due to the non-linearities in the
equatioﬁs of motion, the responses are not confined to the
driving frequency, but in general containivarious harmonics

of this frequency as well as d-c components. For this reason,
solutions to the equations of motion must be sought in Fourier

series form, e.g.

—r N ® e ~ — ~ i - >
h(y,Z,7) = ni_ololyhyn(y) +1 b (e 2) (5.2.1)*

n#0

WGED =T, M+ u G +T, Gh1elnalr - 2)

n=-oo zZ —zn
n#0 (5.2.2)

¥
‘A line under a function indicates that it is complex.
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and

p(¥,%2,1) = -£fZ + 2 Bn(g;)ei"“"(T - 9 (5.2.3)
v n=-w
Because the variables h, u and p are analytic functions
of (t - 2), the series in Egs. (5.2.1), (5.2.2) and (5.2.3)
are absolutely and uniformly convergent. They may be differen-
tiated term by term any number of times, and the products
(Cauchy) of them and their derivatives may be formed, and the
series in these derivatives and products are also absolutely and
uniformly convergent. Thus the series solutions given in
Egs. (5.2.1), (5.2.2) and (5.2.3) may be formally substituted in
Egqs. (2.2.15) and (2.2.16) and the operations may be performed
as indicated. When this is accomplished, use is made of the
restrictions v - h=0 and Vv . u=0 to set h = h _/ina
and u =_1_1;,n/ma, and Eqs. (2.2.15) and (2.2.16) are
separated into components with regard to direction and frequency,
four infinite sets of completely coupled non-linear differential
equations, each with an infinite number of terms are obtained.
Obviously such a set of equations is untractable. Even if these
equations are drastically simplified by retaining only the funda-
mental frequency in the magnetic field, and the d-c and double-
frequency terms in the velocity and the pressure, the resulting
set of coupled non-linear equations is still formidable.

There are three essential difficulties in the method of
formulating the solution that is outlined above. These diffi-
culties are the non-linearity of the differential equations,
the completely coupled nature of the sets of equations, and the
large numbers of equations and variables involved. Any one of
these difficulties is formidable enough by itself.
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In order to avoid the second and third difficulties, the
_problemvwill be attacked with a method of successive approxi-
mations. This method proceeds as follows. First, a simple,
but physically reasonable, first approximation is made con-
cerning the form of the fluid velocity (that it is independent
of time and entirely in the direction of the mean flow). Next,
solutions are obtained to the coupled non-linear differential
equations which govern the magnetic field and the velocity
profile. Finally, the conditions under which this first
approximation is an acceptable total solution, and those
under which harmonic eddies in the fluid velocity tend to

form are investigated.

5.3 The Non-Linear Equations that Govern the Approximate
Solution

As a first approximation, the fluid velocity is assumed
to be entirely along the channel (z-direction), and independent
of time, i.e.

u = Izuz(y). (5.3.1)

This first approximation is physically appealing from the
following qualitative viewpoint. The a-c component of the
electromagnetic body force can be considered as the input to
a low-pass filter, characterized by the density and viscosity
of the fluid, whose output is the a-c component of the fluid
velocity. When the applied frequency and the density are
high, the inertia of the fluid very effectively filters out

the time variatioms in the electromagnetic body force and the
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fluid velocity is essentially independent of time. However, if
the applied frequency and the density are low, the fluid velocity
can be expected to attempt to follow the instantaneous variations
in the electromagnetic body force. The actual situation is com-
plicated by the fact that, due to the variation in fluid velocity
across the channel, different elements of fluid experience
electromagnetic body forces at different frequencies. This
problem of the generation of a-c components in the fluid velocity
is discussed quantitatively in Ch. VIII.

In view of the simplified form of the fluid velocity assumed
in Eq. (5.3.1), solutions will be sought in which the magnetic

field varies at the fundamental frequency only, viz.

B=re {[T hG) +71, b, (H1et (" - D) (5.3.2)

If Egs. (5‘3.1) and (5.3.2) are substituted in Eq. (2.2.15),

two scalar equations are obtained. The y-component of (2.2.15)

yields
d? h ) R
—?X-a[l+i-§(l-uz)]hy=0, (5.3.3)
y

while the z-component yields

dzh R : du

-z 2 . m z
dg;z -a 1 +1 - (- u,)lh, -leg_y o . (5.3.4)
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Substitution of Eq. (5.3.2) in Eq. (2.2.9) shows that the

‘current density j is of the form

- _ T R -z
j= ixRe[;x(y)e a(r Z)] , (5.3.5)
in which jx is given by
1 qu
J, =5 (—Z+1iah) . (5.3.6)
X Rm ,d'}‘,‘ y
However, the divergence relation (2.2.11) requires that
dh
—Z - igh_ =0, (5.3.7)
~ -z
dy

with the result that the use of Eqs. (5.3.3) and (5.3.7) in
Eq. (5.3.6) produces a simplified form for the current density,

viz.

de= @ -uih . (5.3.8)

Equation (5.3.8) shows that the assumption that the magnetic
field varies at the fundamental frequency only [Eq. (5.3.2)]

is consistent with the assumption that the velocity is
independent of time [Eq. (5.3.1)], because the current induced
in the fluid, and hence the magnetic field it produces, varies
at the fundamental frequency only. If, however, the fluid
velocity is a function of time, the induced current and magnetic
field contain sums and differences of the velocity and magnetic

field frequencies, and a spectrum of harmonics is generated.
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Next, consider the electromagnetic force in the magneto-
hydrodynamic Navier-Stokes equation (2.2.13). 1I1f Egs. (5.3.2),
(5.3.5) and (5.3.8) are used to form an expression for J x h,
the result is

== _ 1. e _ v i2a(t - %)
jxhe= 2(1 uZ)Re[iy h hy Ey e )

1

io (hy y

+T (b b*+ nZ 12007 - 2y (5.3,0)%
20y 2y T Iy

Furthermore, the curl of Eq. (5.3.9) is given by

vx (Jxh = EgRe[(l - uz)l;my h;*

-3 ety By &0 T )

(5.3.10)
Because this curl is not equal to zero, j x h cannot be
entirely represented as the gradient of a scalar magnetic
pressure, and is in fact more conveniently dealt with in the
form given in Eq. (5.3.9). Also, since the right-hand side

of Eq. (5.3.10) contains an a-c term, while under the assumed
solutions [Eqs. (5.3.1) and (5.3.2)] the curl of the remaining
terms in Eq. (2.2.13) has no a-c terms, the form of the

approximate solutions cannot be an exact solution.

*
‘A star over a complex function denotes the complex conjugate.
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If Eqs. (5.3.1) and (5.3.9) are substituted into Eq. (2.2.13),
the result is two scalar equations. The y-component of Eq.
(2.2.13) yields

- .9% .1 - 1 e v _i2a(T - 2)

(5.3.11)
while the z-component yields

- .o 1 n_ 1 - % 2 i2af(t - 2z)
0 = tgu, t3 Rms(l uz)(hy gy + Re Ey e )
‘ (5.3.12)

Next, Eqs. (5.3.11) and (5.3.12) are averaged with respect to
e
time. Equation (5.3.11) yields

*An objection to this averaging operation may be raised on the
following grounds. Consider an element of fluid that is
traveling at very nearly the traveling magnetic field wave
speed. This element of fluid experiences an a-c force with a
period that is so long that the fluid is bound to react to the
a-c force.

This objection can be answered as follows. As a measure of the
tendency of the fluid element to respond to the a-c force, con-
sider the impulse (integral of force with respect to time) that

is applied to the fluid element in one direction before the force
changes sign. If the fluid element is traveling with a normalized
velocity u that is nearly equal to one, the form of the a-c

part of the electromagnetic body force £ is

fa(l-u - sinf(l - vot]

Since the period of this force is 27/(l - u)w, the form of the
impulse I 1is

/(1 - uww
I=/(1-u) - sin[(1 - Wot]dt = 2/w.
0

Thus the impulse is inversely proportional to the external
applied frequency w®w and independent of the velocity of the
fluid element. Therefore the averaging process is equally
valid for all elements of the fluid, and the pertinent question
is whether or not the applied frequency w is high enough so
that a-c motions may be neglected.
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TN h R*+n*ny) =0 5.3.13)%
. 7 R B( uz)(y y y y) , ( )_‘

while Eq. (5.3.12) yields

nyl - *
u, 2 R B(l uz)hy Ey 0 . (5.3.14)

QJOJ|
==

N?

. Consideration of Eqs. (5.3.13) and (5.3.14), in the light
of the fact that averaging with respect to time commutes with
differentiation with respect to space, shows that (cf. Sec. 3.2)

Q% = a constant = p _ . (5.3.15)
oz

Finally, therefore, Eq. (5.3.14) can be written in the

form
dzu 1 *
d;z -f = M (1 - z)hy'hy - RpO =0 , (5.3.16)

in which the Hartmann number M, given by

2

M"=RRPpB = (uoKoa)zo/n , (5.3.17)

has been introduced.

The preceding analysis has reduced the general problem of

obtaining an approximate flow solution to the specific problem

*
‘A long bar over a quantity is used throughout to denote the
average with respect to time.
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of obtaining solutions to the three, coupled, second-order, non-
linear differential equations given by Eqs. (5.3.3) and (5.3.16).
[Equation (5.3.4) is not another independent equation; it can be
obtained from Eqs. (5.3.3) and (5.3.7).] These equations can be
simplified by introducing the normalized velocity defect €,
which is defined by

e =1 -u ., (5.3.18)

This substitution reduces Eqs. (5.3.3) and (5.3.16) to

d'h 2 R
__%g - +1-2€e)h =0, (5.3.19)
0% a z'=y

y

and
dze
2.1y w* e +mp -0. (5.3.20)

&;2 2 T =y =y "z o

Harrisl2 obtained equations similar to Eqs. (5.3.19) and
(5.3.20), and showed that under the drastic mathematical simpli-
fication that Qy is a constant Eq. (5.3.20) becomes linear
and has solutions that resemble the Hartmann profiles for d-c
conduction driven flow (see Sec. 3.2). These solutions apply
to the situation in which even excitation is employed, and in
which the excitation pole spacing is much larger than the channel
half width and the magnetic Reynolds number is small
(lo® + iaR e [ << 1).
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5.4 Power, Efficiency, and Mode of Operation

The purpose of this section is to develop expressions for
the electrical and mechanical power inputs, the ohmic and viscous
power losses, and the efficiency and dissipation ratio that are
associated with the induction driven flow. The forms of these
expressions are instructive in themselves, and they provide the
basis for the numerical calculation of the efficiency curves

that are presented in Sec. 7.5,

Power Inputs

First, consider the electrical power input. Let Pe be
the time-average electrical power input to the fluid per unit
length in the x and z-directions. Consideration of the magneto-

hydrodynamic Poynting theorem (2.3.2) shows that the time-average

electrical power input density is equal to E - J, with the
result that

P =2 E.Jady. (5.4.1)
e
0
In terms of the normalized variables that are introduced in -
Secs. 2.2 and 5.1, Eq. (5.4.1l) can be written in the form
1

2 - - .~
P = 20(uovoH0) L, fo e - j dy . (5.4.2)

An expression for the normalized electric field e can be
obtained by substituting Eqs. (5.3.1), (5.3.2), (5.3.5) and
(5.3.8) in Eq. (2.2.12), and is given by

c=-uUxR+T=T Rep ool (5.4.3)
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This expression for e can be combined with that of Eqs. (5.3.5)
and (5.3.8) for j to yield

‘é‘oJ?:

N

1 - uz)_b_y _rl; . (5.4.4)

Using Eq. (5.4.4), P, can be written in the form

1

. |
(1 -u)h h g5, (5.4.5)

2
P = o(uoHovo) L, / g

e 0

or upon introducing the specific characteristic quantities of
this flow [Egs. (5.1.3), (5.1.5) and (5.1.6)] as

1
P, = oca(u K o/k)’ [ (1 - u)h b*dy. (5.4.6)

e z)h
0 -y 7y
Second, consider the mechanical power input. Let Pm be
the time-average mechanical power input per unit length in the
X and z-directions. Consideration of the fluid energy Equa-
tion (2.3.7) shows that the mechanical power input density is
given by -v - VP, with the result that
a

P =-2[ v . 9P dy . (5.4.7)
m 0

In terms of the normalized variables, Eq. (5.4.7) becomes

1
- 9oy = . v
P = vao fo u - Vp dy (5.4.8)

However, using Egqs. (5.3.1) and (5.3.15), Eq. (5.4.8) can be
written in the form

1
3 ~
P = -2pvop0 fouzdy , (5.4.9)



66.

or alternatively as

1

9o (23 ~

P = pro( ” ) fouzdy . (5.4.10)
Power Dissipations

First, consider the ohmic power loss. Let Pohm be the

time-average ohmic power loss per unit length in the x and z-
directions. Again, consideration of the magnetohydrodynamic
Poynting theorem [Eq. (2.3.6)] shows that the ohmic power loss
density is given by J * J/o, with the result that

a
[ 3 -7 dy. (5.4.11)
0

Pohm =

Qlmno

In terms of the dimensionless variables, Eq. (5.4.11) becomes

2 e “~ ~
Poim = 2L (WHV) [ §j - jdy . (5.4.12)

An expression for 3'° E can be obtained from consideration of
Egs. (5.3.5) and (5.3.8), viz.

N

J-3=-2q- uz)z b, b¥ (5.4.13)

-y
with the result that (5.4.12) can be written in the form

1 .
2 2 * A
Poim = cLo(uoHovo) fo(l - uz) h p_y dy (5.4.14)

or alternatively as
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1
2 2 .~
= oa(u K o/k)® [ (1 - uw)  h hody .

P . ;B (5.4.15)

Next, consider the viscous power dissipation. Let PVis
be the time-average viscous power dissipation per unit length
in the x and z-directions. 1In Sec. 2.3, an expression is
obtained for the viscous power-loss density [Eq. (2.3.16)],
which in this case reduces to n(dvz/dy)z, with the result
that v
a dv '

Poig = 20 IOC—Es)dy . (5.4.16)

In terms of the dimensionless variables, Eq. (5.4.16) can be

written in the form
P . = 2n vi/L fl( 'y2 &5 5.4.17)
vis 1 Vo/% 0 uz) Yo (5.4.

or alternatively as

2 1 1 2 ~
s = 2y(w/k)“/a [ (uz) dy . (5.4.18)
0

Pvi

Modes of Operation,  -Efficiency, and Dissipation Ratio

The energy conversion modes in which the flow can operate
can be classified in the following manner. First, if the
electrical power input is positive and the mechanical power
input is negative, the flow is operating as a pump or motor.
Second, if the electrical power input is negative and the
mechanical power input is positive, the flow is operating as a
generator. Third, if both the electrical and the mechanical

power inputs are positive, the flow is operating as a flow
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damper or brake. Clearly, if both the electrical and the

mechanical power inputs are negative, an error has occurred.

If the flow is operating as a generator (Pe <0, Pm > 0),
the efficiency ag is given by -Pe/Pm, which can be obtained
from Egs. (5.4.5) and (5.4.9) in the form

| i *
oyt L S ek By &
o o o O
€ = , (5.4.19)
g 2p v P, 1 N
fo u_dy
which may be written in terms of dimensionless groups as
1 . o~
1 - h h’ d
e A (5.4.20)
eg 2RPO 1 m o L] L
J u, dy
0 4

Similarly, if the flow is operating as a pump (Pe >0,
P < 0), the efficiency sp is given by -Pm/Pe, or

1
J udy
2Rpo 0 z
e = (5.4.21)
) MZ 1 *
1 - h h 4
Io< u)lh b dy

1f, however, the flow is operating as a flow damper, it is
not characterized by an efficiency, but by a dissipation ratio.
There are two possible dissipation ratios. The first is simply
an extension of the concept of efficiency to the flow damper
mode of operation, and measures the ratio of electrical to
mechénical power input when both powers are entirely dissipated.

If eq 1s this ratio, it is equal to Pe/Pm and is given by
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1
Je ~
1 - h h” d
M2 fo( uz)_y 2y y ‘2
gq = - ZRPO 1 N (5.4.22)
[ udy
0 4

The second dissipation ratio is more general, because it
is applicable to all modes of operation; and more deserving of
the name, because it measures the ratio of ohmic to viscous
dissipation in the fluid. If D is this ratio, it is equal
to Pohm/RVis and through use of Eqs. (5.4.15) and (5.4.18)

can be written as

1
2 * A
1 - h h d
Mz IO( uz) 2y 2y y

2

D = (5.4.23)

1
fO<u;>2 &

The simple form of many of the expressions obtained in this
section seems to indicate that a general discussion of them would
be possible at this time. In fact, this is not the case, because
each of the integrals in these expressions is a rather complicated
function of the four parameters a, M, Rm and Rpo. For this
reason further discussion is deferred until Sec. 7.5, in which
curves of eg, sp and eq as functions of Rpo for various

values of a, M and Rm are shown.
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Chapter VI

SOLUTIONS TO THE NON-LINEAR DIFFERENTIAL EQUATIONS
THAT GOVERN THE APPROXIMATE SOLUTION

6.1 Boundary and Symmetry Conditions

The problem at hand is to determine solutions to Eqs. (5.3.19)
and (5.3.20), subject to the excitations given in Egqs. (5.1.7) and
(5.1.8), and the boundary and symmetry conditions discussed below.
First, consider the restrictions on the fluid velocity. Since the
channel, fhe pressure drive (Rpo), and the electromagnetic drive
(~ Ey H;) all have even symmetry with respect to ;, the velocity
will also have even symmetry. Further, since the fluid has finite
viscosity, the tangential component of the velocity must also be
zero at the channel walls. Next, consider the boundary conditions
on the magnetic field. Inspection of the excitation [Eqs. (5.1.7)
and (5.1.8), and Fig. 5-1], shows that the y-component of the
magnetic field has the same symmetry as the excitation, while the
z-component has the opposite symmetry. Further, since the magnetic
field is assumed to be equal to zero in the highly permeable pole
pieces, the magnitude of the tangential (z) component of the field
at the channel walls must be equal to the magnitude of the surface
current. (The signs in this equality are, of course, also
determined.)

All of the boundary and symmetry conditions discussed above
and some simple consequences thereof are tabulated below for

convenience.
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1) Boundary and Symmetry Conditions on Velocity

u(-y) = vy =e-y) = )

(6.1.1)
u(+ 1) =0 =e(*+ 1) =1

2) Boundary and Symmetry Conditions on Magnetic Field

a) Even Excitation

hy(-y) = hy(y)

b (-¥) = -b ()
(6.1.2)
b (1) = -1 = b (1) = -ia

hy(-1) =+1>h (-1) = + ia

b) 0dd Excitation

i
)
j= o
~
TS
~

hy(-y)

0
<
St
|
=
F280
<
Nt

, (6.1.3)

b (-1) = -1 g;(-l) = -iq

6.2 A Perturbation Expansion in Magnetic Reynolds Number

Since the magnetic Reynolds number tends to be small in most
%
liquid metal flows, there is utility in expanding a set of

solutions in this parameter. Furthermore, inspection of Eq. (5.3.19)

*
In mercury, with v, = 1 m./sec. (a high velocity) and L, = 0.1 m.
(a large channel), Rm‘: 0.13,
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indicates that it becomes uncoupled from Eq. (5.3.20) when the
magnetic Reynolds number is equal to zero. The actual expansions
are made in the parameter Rm/a, which can be interpreted as the
magnetic Reynolds number based on the excitation pole spacing,

and are given by

e n
e, () = 2 @) ) (6.2.1)
and
ho(y) = ni Obyﬁ(y) ) - (6.2.2)

From a practical standpoint, the series in Eqs. (6.2.1) and
(6.2.2) need not even converge; all that is necessary is that
the finite number of terms that are retained approximate the
correct solution to the desired degree of accuracy over the

*
required range of the parameter R.m/ao

If the expansions given in Eqs. (6.2.1) and (6.2.2) are
‘substituted in Egs. (5.3.19) and (5.3.20) and terms containing
like powers of Rm/a are equated, the results for the magnetic
field equation are

'}’0=0’ n=20; | (6.2.3)

Such series are often called asymptotic. For further informa-
tion concerning asymptotic expansions, see Erdélyi.38
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and

" 2 n-1l

. 2 .
Eyn -a gyn = ig kioszk hy,n-l-k , n>1l; (6.2.4)

while the velocity defect equation yields

1" _]:- 2 g - _ .
€0 " 3 M ByO EyO €0 = Rpo, n=20; (6.2.5)
and
-1 n-k
Mmool .2 % 12"
®on 2™ ByoByo Sp0 T2 M 2 far ZByp By kg o M2

(6.2.6)

Inspection of the system of equations (6.2.3) through (6.2.6)
reveals several important features. First, the system is
uncoupled from below, because there is a progressive way of
solving the system of equations in which the coefficients in a

particular equation depend only on solutions that have previously

been obtained. This situation is in striking contrast with the
completely coupled systems of equations discussed in Sec. 5.2,

in which the coefficients in each equation depend on the solution
to every other equation. Second, since the coefficients in a
particular equation are known functions of y by the time that
the equation is considered, the equations are linear and super-
position may be applied. Thus the very powerful perturbation
expansion technique converts the three original coupled, non-
linear, differential equations into a system of linear equations

that is uncoupled from below.

The properties of this system of linear differential equa-
tions can be more clearly recognized if the first few equations

resulting from Egs. (6.2.4) and (6.2.6) are written out. The
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first two equations produced by Eq. (6.2.4) are

1" 2

: 2 ’- .
h 1 - © le = ia” €, h 0’ (n =1); (6.2.7)
and
! 2 h i 2 h ., + h 2 6.2.8
Eyz - a Zy2 = la (ezo =yl ezl _yo): (n = 2). (6.2.8)

Similarly, the first two equations resulting from Eq. (6.2.6)

are
" 1.2 * _1 .2 * *
€ "3 M byohoge, =M h,hy +hy Bge, s
(m=1) ; (6.2.9)
and
" 1.2 * 1.2, 0 * L%
€0 " 7 M hyghog e, =3 My by +hyy by

%*
+ho, hopdeg

%
+ (hyo BY) + h

*
-yl =yl Eyo)ezll’ (= 2).

(6.2.10)

Inspection of Eqs. (6.2.3) and (6.2.5), and Eqs. (6.2.7) through
(6.2.10) indicates the sequence in which this set of equations
should be solved. Equation (6.2.3) has constant coefficients,
and can, therefore, be solved immediately for the zero-order
magnetic field. Once the zero-order magnetic field is known,
Eq. (6.2.5) becomes linear, and can be solved for the zero-order
velocity defect. However, once the zero-order magnetic field
and the zero-order velocity defect are known, Eq. (6.2.7)

becomes linear, and can be solved for the first-order magnetic
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field. This process of solving first a magnetic field equationm,
then a velocity defect equation, and then the next-higher-order
magnetic field equation can be continued, at least in theory,
until any desired degree of accuracy is obtained in the expansions
in the magnetic Reynolds number [Eqs. (6.2.1) and (6.2.2)]. 1In
practice, however, the driving functions in the differential
equations rapidly become so complicated that numerical methods

must be employed.

6.3 An Analytical-Numerical Method of Solving the Resulting

Set of Linear Differential Equations

This section describes a combined analytical and numerical
method of obtaining solutions to and properties of the set of
linear differential equations given by Eqs. (6.2.3) through
(6.2.6). The philosophy of this procedure is to do analytically
that which can be done conveniently and reasonably compactly,
and to do numerically that which cannot. However, the two
methods are not separated; rather they are intermixed, each
where it seems most applicable. For example, general properties
of the system of equations are deduced analytically, while
homogeneous and particular solutions to the higher-order equa-

tions are integrated numerically.

First, a note concerning the boundary conditions. Since
the series (6.2.1) and (6.2.2) must satisfy the boundary condi-
tions (6.1.1), (6.1.2) and (6.1.3) for a continuous range of
values of the parameter Rm/a, the zero-order terms in these
series must satisfy the stated inhomogeneous boundary conditions,
while all higher-order terms must satisfy the corresponding
homogeneous boundary conditions. [For example, eoni =1,
vhile e, (+1) =0, n#0.]
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The system of equations starts off simply enough with
Eq. (6.2.3), the solutions of which have the form sinh ay and
cosh ay. When subject to the symmetry and inhomogeneous
boundary conditions of Egs. (6.1.2) and (6.1.3) these solutions

become

hyO = -1 cosh ay/sinh a (6.3.1)

for even excitation, and
hyo = -i sinh qy/cosh a (6.3.2)

for odd excitation. Note that physically these are the exact
magnetic field solutions if the fluid is non-conducting so that
the magnetic field is produced solely by the excitation surface

currents and satisfies the homogeneous equation VZT; = 0.

- The next step is to substitute Eqs. (6.3.1) and (6.3.2) in
Eq. (6.2.5), which governs the zero-order velocity defect. The
results of this substitution are

2 ~
"
e - 1 % cosh ay e, = Rp (6.3.3)
sinh o °

for even excitation, and

4]

1 2 sinhzaz
€,0 " =M 7 €,0 =~ Rpo (6.3.4)

cosh q

for odd excitation. Equations (6.3.3) and (6.3.4) have the form
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of an inhomogeneous, modified Mathieu equation.* Unfortunately,
relatively little theoretical work has been done on this form of
Mathieu equation; most of the effort has centered on character-
istic values and solutions of the homogeneous Mathieu equation
y" + (a + b cos 2x)y = 0. Appendix A presents a discussion of
the relation of Egqs. (6.3.3) and (6.3.4) to the Mathieu equation,
and presents some approximate solutions to these equations. The
usefulness of such approximate solutions in this particular
problem is limited, however, by the difficulty of constructing
an approximate solution that is valid over a wide range of the
parameters M, a and R.po° Furthermore, because the higher-
order equations have driving functions that are more and more
complicated functions of the previous solutions, the process of
carrying an approximate solution through successive equations
rapidly becomes untenable. For these reasons, numerical
integration is used to obtain the required homogeneous and
particular solutions for each differential equation. The
numerical methods used in these calculations are described in

Appendix B.

The solution of the zero-order velocity-defect equation
{Eq. (6.2.5)] is obtained in the following manner. First, a
homogeneous'solution €,0h to the equation

1)

z0h

-—]2'-M2 h . h*¥ e =0 (6.3.5)%%*

£ 20 2y0 “z0h

%
For information concerning the general theory of Mathieu equa-
tions, see McLachlan3? and Campbell.40

s
‘The subscripts h and p are used throughout to denote homo-
geneous and particular solutions of a differential equation.
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~ ~ *
with the properties ezOh(-y) = szOh(y) and sZOh(O) =1 is

integrated numerically. Next, a particular solution EZOp to
the equation
" 1.2 % _
€0p 2 M hyO EyO €20p " 1 (6.3.6)

with the properties ezop(-y) = ezop(y) and ezop(O) =0 is
computed. Finally, these solutions are combined to form the
total solution

€,0h €20p (1)

€ = —————

20 e ou(D) *Regle,0p - e on L) €,0n) (6.3.7)

which satisfies Eq. (6.2.5) and the boundary conditions

szo(-y) = ezo(y) and szoti 1) =1 [Eq. (6.1.1)]. The combi-
nations of homogeneous and particular solutions appearing in
Eq. (6.3.7) are formed during the numerical calculations; and
the solution is presented in the reduced form

€,0 = €200 + Rp08201 . (6.3.8)

‘The initial conditions, which are not related to symmetry, for
the various homogeneous and particular solutions are arbitrary,
except that in the homogeneous solutions care must be taken

to avoid the situation described on p.82 , in which starting

a solution with both zero value and zero slope makes it
identically zero.
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Thus the principle of superposition for linear differential equa-
tions allows the parameter Rpo to be carried through the solu-
tions analytically. This greatly reduces the number of different
numerical solutions that are required, since only two parameters
(M and a) must be varied numerically and not three. Note that
if the original non-linear equations [Eqs. (5.3.19) and (5.3.20)]
are integrated numerically, four parameters (M, Rm, a and Rpo)

must be varied numerically.

Now that the zero-order velocity defect has been obtained in
the form of Eq. (6.3.8), the first-order magnetic field equation
[Eq. (6.2.7)] can be written as

11

h - a2 h
2y

2
B L = 1a” hugle,q0 + Bog £,00)- (6.3.9)

Furthermore, the first-order magnetic field le
same symmetry as the excitation and must satisfy the homogeneous
boundary condition g;l(l) = 0. If Eq. (6.3.9) is separated

into its real and imaginary parts, the results are

must have the

1] 2 2
- — *

Bote = @ Myip = " Bygi0(e,00 * RPGEL01) (6.3.10)
and

h" 2 =0 6.3.11

yli = @ By =05 (6.3.11)
*
A zero has been arbitrarily added to the subscript of hy0i

(viz. h 0i0) . to make it conform to the notation intro-
duced later in which this added number indicates the
power of Rpo which multiplies a solution.
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in which the subscripts r and 1 denote the real and imaginary
parts of the various magnetic field quantities, and where use has
been made of the fact that hyOr
tation [§ee Egs. (6.3.1) and (6.3.2)].

= 0 for both even and odd exci-

Equation (6.3.11) can be readily disposed of; its solution
is either a-cosh ay for even excitation or a.sinh a§ for odd
excitation. However, in either of these solutions the boundary

condition h;11<1) = 0 implies that a = 0. Thus

hopy =0 . (6.3.12)

The solution to Eq. (6.3.10) is obtained in the following
way. First, the homogeneous solutions are just those mentioned
above (cosh oy and sinh ay), and furthermore the correct

symmetry can be automatically obtained by letting

hoirh = Pyoso - lof+ Eas. (6.3.1) and (6.3.2)] (6.3.13)

%
Next, an even <odd> particular solution h to the equation

ylxpO

" 2

hylrpO - a hylrpO = (6.3.14)

-2h
® 150105200 °

o » » . . ' —
which satisfies the condition hylrpO(O) =0 <hylrp0(0) = 0>,
is integrated numerically. Also, to provide for the second
driving term in Eq. (6.3.10), an even <odd> particular solution

hylrpl to the equation

" 2 2
ylrpl ~ ¢ hylrpl - hinOezOl ’ (6.3.15)

*
‘The discussion is presented in terms of even excitation, and
the changes that are required for odd excitation are given in
angular brackets.
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which satisfies the condition hylrpl(o) =0 < ylrpl(0) 0>,

is computed. Finally, the three solutions are combined to form

the total solution

1

]
B [hylrpO ta hylrpO(l) hinO]

hylr

1

ylrpl T a y1rp1( ) " hogiols (6.3.16)

+ Rpolh
which satisfies Eq (6.3.10), the symmetry requirement

boundary condition h (l) . Again the combinations of

(¥)>, and the homogeneous

solutions required in Eq (6.3, 16) are formed during the numerical

computation, and the total solution is presented in the form

hote = Pyiro = B 1 (6.3.17)

Once the zero-order velocity defect and the zero and first-
order magnetic fields are known, Eq. (6.2.9) can be solved for
the first-order velocity defect. The driving term in this
equation is

1 .2 % .

> M (hyo gyl + gyl 0)s H (6.3.18)
however, the zero-order magnetic field is now known to be purely
imaginary [Egs. (6.3.1) and (6.3.2)] with the result that

E;O EyO’ and the first-order magnetic field is now known to

be purely real [Eq. (6 3.12)] with the result that h* hey le.

Thus (h + h ) = 0, and the driving functlon vanishes.
=y0 yl yl y0 |

Therefore, the flrst—order velocity defect satisfies the homo-

geneous equation



1" 1

zl 2

2 h h*. ¢

€ =y0 =y0

zl °

o
€21
~ 821 o 1
ezl(-y) = ezl(y), which implies that ezl(O) = 0, and the
ezl(l) = 0.

Three situations are possible depending on the value of
521(0)

negative,

Since <sinh2a§/cosh2a> is non-

has the same sign as ¢

cosh2a§/sinh2a
for all values of
zl

However, must also satisfy the symmetry condition

homogeneous boundary condition

as shown in Fig. 6-1.

€

Azl

e — —
— ——

szl(O) >0

<2

€z1<0) =0 0

ezl(O) <0

b — —
——
—
-—

Fig. 6-1 Possible Solutions for the

First-Order Velocity Defect

. "

First, if ezl(O) > 0, then szl(g) >0, Nand 3

tone, non-decreasing function of y for y > 0.
"

821(0) < 0, then ezl(Oi <0, ind 3

increasing function of y for y > 0. Third, if szl(O) = 0,

then 21 = 0. Clearly the third situation is the only one

which satisfies the boundary condition szl(l) = 0.

is a mono-
zl

Second, if

z1 is a monotone, non-

€
Therefore,

€ =0 .

zl

(6.3.

82.

19)

<e

(6.3.20)
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Now that the zero-order velocity defect and the first-order
magnetic field are determined in the form of Eqs. (6.3.8) and
(6.3.17), and the first-order velocity defect has been found to
be zero, the second-order magnetic field equation [Eq. (6.2.8)]

can be written in the form

" 2 . 2
h,-a hyz = ia (EZOO + Rp08201)(hy1r0 + Rpohylrl)' (6.3.21)

y2
If Eq. (6.3.21) is separated into its real and imaginary parts,

and the driving function is multiplied out, the results are

" 2

hyzr - ah

gor = 0> (6.3.22)

and

+ Rp (e

= az[e h
y2i z00 ylxO z00 ylrl

2
ezOlhyer) + (Rpo) ezOlhylrll : (6.3.23)

As in the case of hyli’ the only solution to Eq. (6.3.22) that
€2,

satisfies the symmetry requirement hyzr(-y) = hy2r

yzr(y‘) y2r(y)>, and the homogeneous boundary condition
yzr(l) =0 is
hy2r =0, (6.3.24)

with the result that the second-order magnetic field is purely

imaginary.

Equation (6.3.23) is solved for hy2i in the same way
that Eq. (6.3.13) was solved for hylr’ except that three

particular solutions, each corresponding to a single term in the
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drive, are required for Eq. (6.3.23). The homogeneous solution to

Eq. (6.3.23) is again identified with the zero-order magnetic field,

viz,
hyzih = hinO o (6.3.25)
Among the particular solutions, hyZipO is the solution of
h" %y = o’c_h 6.3.26
y2ip0 = % "y2ip0 T % ©200"y1r0 (6.3.26)

that satisfies hyZipO(-Y) = hyZipO(y) <h o y) = o(¥)>

y2ip y21p
1
and hyZipO(o) =0 <hy21p0(o) = 0>; hyZipl is the solution of

" 2 2
Bo2ipt ~ @ Byoip1 = @ (Bu00by121  E2010y110) (6.3.27)
that satisfies hy21pl( y) y21p1(y) <hy21p1( y) - y2ip1(Y)>
and hyZipl(O) = y21p1(0) >; and hyZipz is the
solution of
h 2 2 h 2
y2ip2 = @ Py2ipa = @ 010010 (6.3.28)

that satisfies h ,. ,(-y) = y2ip2(y) <hyaip2( y) = y21pz(y)>

U
and hooi5(0) =0 <hpy 5 (0) =
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Again these solutions can be combined to form the total

solution

1

)
h y2ip0 * 5 Py21p01) * Bygs0!

y2i = [h

1,
+ R lhooyng + 3 Py2ip1 () 7 Bygi0)

2 1
+ (Rpo) [hyZipZ * 2 a y21p2( ) - inO] ’ (6.3.29)

which satisfies Eq. (6.3.23), the symmetry requirement
y21( y) = y21(y) <h i( y) = -hyzi(y)>, and the homogeneous
boundary condition h' y2i (1) . The solution is presented in

the simplified form

= h + Rp_h

2
hooi = Byaso ¥ RPMyo4y + (RR) ™ hoyis (6.3.30)

Finally, consider the second-order velocity defect equation
{Eq. (6.2.10)], which now can be written in the form

_1,p2 2
=2 M (2hgy; hops h)e

|,...

" - hwPn o n*

€2 - M =y0 =y0 €22 =D.

(6.3.31)

A homogeneous solution to Eq. (6.3.31) that satisfies the con-
ditions EZZh(-y) = eth(y) and szOh(O) = 1 has already been

determined, viz.

€,2h = €z0hn ° [cf. Eq. (6.3.5)] (6.3.32)

To determine the drives for the various particular solutions,
Eq. (6.3.8), (6.3.17) and (6.3.30) must be substituted in# the
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expression (6.3.31) for the total drive D. The result is

1.2 2
D=3H '{ezoo(Zhy01o hooio * By1ro)

+ RpO[ZE h

200010 Py2i1 * Byiro Py1r1)

2
*+ 2,01 (hy050 By2io + Pyipo)]

2

2
+ (Rp) le,00(Phygi0 Pygsn + Bypg)

+ 28,01 (My050 Py2i1 + Byiro Byirl)]

3 2
* (Reg)"e,01 (Phyoi0 Byaip * hylrl)}' : (6.3.33)

Of the four particular solutions that must be obtained in this

case, 622p0 is the solution of

1A

2.2 1.2 2
€22p0

1 o ——
=3 Mhoi0%2p0 = 2 M %200(% 010 Py2i0 T Py1r0)
(6.3.34)

that satisfies the conditions ezzpo(-y) = ezzpo(y) and

ezzpo(O) = 03 822p1 ;s the solution of

T Y -1 v2: h +h h. )
z2pl 2 y0i0"z2pl 2 z00"' y0i0 y2il ylr0 “ylrl
+ e (2h . h .. +hZ_ )]
z01'" y0i0 y2i0 ylxr0

(6.3.35)
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that satisfies the conditions ezzpl(-y) = ezzpl(y) and

ezzpl(O) = 0; EzZpZ is the solution of

" 1 .22 1.2
e22p2 -3 Mh 2 M [sz

2
v010%22p2 = 2 zh

0025010 Py2i2 * Byir1)

+ 26,01 (oo10 Byas1 * Byiro Pyrrr)]
(6.3.36)
that satisfies the conditions ezzpz(-y) = ezzpz(y) and
szzpz(O) = 0; and €z2p3' is the solution of
" 1.2 2 1.2 2
€22p3 ~ 2 M Ny010 S22p3 = 2 M 501 PPypi0 Py2ia T Pyra)  (6-3-37)

that satisfies ezzp3(-y) = szzp3(y) and EzZpB(o) = 0. The
homogeneous and particular solutions are combined to form the
total solution

e _ [e . €22 0(1) e ]

z2 | z2p0 €,0h (1) “zoh

€ ¢y
+ Rp [E - _EZEl___ € ]
o z2pl €,0h (1) "zO0h

2 €22p2 (1)
+(Rpo) [€z2p2 B €,0h (1) ezOh]

€z223(1)

3
+(RPO) [EZZPS - 8ZOh (1) eZOh] ’ (6.3-38)
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which satisfies Eq. (6.2.10), the symmetry requirement ezz(-y) =
szz(y) and the homogeneous boundary condition ezz(l) = 0. Again,

this solution is presented in the more compact form

2 3
€,0 = €,90 + Rpoe221 + (Rpo) €,99 + (Rpo) €,03 (6.3.39)

The process of solving higher and higher order equatioms
in the system given in Eqs. (6.2.3) through (6.2.6) can be
continued indefinitely, although the algebraic and computational
difficulties increase with each step. However, some general
properties of the expansions in Rm/a [Eqs. (6.2.1) and (6.2.2)]
are suggested by the solutions that have been obtained. First,
velocity defects corresponding to even powers of Rm/a are non-
zero, while those corresponding to odd powers of Rm/a are
identically zero. Second, the expansion of €, involves powers
of Rpo up to and including n + 1. Third, the magnetic field
terms hyn are purely imaginary if n is even and purely real
if n 1is odd. Fourth, the expansion of hyn involves powers
of Rpo up to and including n. For convenience, these pro-
perties are displayed for the first few values of n in

Table 6-1 on the following page.

Of particular importance among the properties listed in
Table 6-1 is the fact that the third-order velocity defect is
equal to zero. This means that the error in the approximation
to the velocity defect provided by €,0 and €9 is proportional
to the fourth power of Rm/a. The numerical error curves
represented in Sec. 7.4 show that Rm/a can be reasonably large

before this error is appreciable.
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Highest Highest
€n | Power of hyn Power of
iRpo in €n Rpo in € n
#0 ! 1  Imaginary 0
=0 — Real 1
# 0 ' 3 Imaginary 2
=0 - Real 3
# 0 5 Imaginary 4
Table 6-1

Properties of the Expansions

in Rm/a
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Chapter VII

RESULTS OF THE NUMERICAL CALCULATIONS
CONCERNING INDUCTION-DRIVEN FLOW

This section presents and discusses the results of the
numerical calculations that were made to implement the method
of solution that is described in Ch. VI. Only the results of
these calculations are presented here, however, the numerical
methods that were employed are described in Appendix B,and
the digital computer techniques are outlined in Appendix C.

7.1 The Physical Significances of the Two Types of

Excitation and the Flow Parameters

The nature of the solutions that are presented in the
following sections is much more easily understood if the
physical significances of the two types of excitation (even
and odd) and of the various flow system parameters (a, M,

Rm/a and Rp ) are made clear.

First, consider the differences between even and odd
excitation. The fundamental distinction is that in even
excitation the traveling current sheets on the surfaces’of
the channel are in phase, while in odd excitation they are
180° out of phase [cf. Eqs. (5.1.7) and (5.1.8)]. Figure 7-1
depicts the two forms of excitation schematically. The
traveling current sheets are represented by sine waves, with
a dot indicating current directed out of the paper, and a
cross indicating current directed into the paper. The

dotted arrows indicate the direction of the magnetic field
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produced by each "pole'" of current, while the solid arrows
indicate the position and direction of the principal field

produced by the excitation. The phase velocity of the

current waves is %, and their wave length is %g .
y k o
A 8
+a _T® N _T® T k
\\ ///\‘ © I & ”’
X -~ - N - - Jk NS -
o
ol
-~ - .y - -(L-)-
Lz ® s - \\\m__,k
LY W
Fig. 7 -la Even Excitation
y k
A @
+a ® ® > k
\\~_,’/\\\_®_’/ \\____///
®
f;zﬁz;. z - > -
PN -V 4 - k

Fig. 7-1b 0dd Excitation

In general, even excitation produces a large component of
transverse magnetic field (proportional to cosh a?/sinh a
when Rm << 1), while odd excitation produces exactly the

reverse. Thus, for small values of a, the field produced
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by even excitation is almost entirely transverse, and that
produced by odd excitation is almost entirely longitudinal.
However, for large values of a, the transverse and longi-
tudinal fields produced by both types of excitation are
approximately the same. [When R.m << 1, the ratio of the
average transverse field to the average longitudinal field
produced by even excitation, or the ratio of the average
longitudinal field to the average transverse field produced
by odd excitation is cosh a/(cosh a - 1).] Because the
transverse component of the traveling magnetic field
produces an electromagnetic force that is in the direction
of the mean fluid flow, while the longitudinal component
does not, even excitation has a greater effect on the fluid

motion than does odd excitation.

Next consider the significance of the parameter a.
Its definition [Eq. (5.1.4)] indicates that it measures the
ratio of the channel half-width a to the excitation pole
spacing w/k. Because of the way in which o effects the
magnetic field distribution, it may be thought of as a
measure of a sort of ''geometrical skin effect'". If a 1is
small, the magnetic fields are uniform (for R.m small);
while if o is large, they are strong near the channel walls

and weak near the center line.

The significance of the parameter M is already quite
clear from the discussion of Hartmann flow in Chs. III and
IV, but for the sake of completeness, it is discussed briefly
here. If the definition M2 = (uOHOLo)Zo/n is rearranged
slightly, it becomes
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2
ov_ (b H )
M2 R (7.1.1)
v /L
K (o} o

which can be interpreted dimensionally as the ratio of the
éigctrnggnetic force J x uéﬁ duezf? the induced current
ov X uoH, to the viscous force nv v. Thus, if M is
small, viscous forces control the fluid motion and the
velocity profiles have a parabolic character, while if

M is large, electromagnetic forces dominate and the

velocity profiles have a highly squared appearance.

Next consider the parameter Rm/a in which the
perturbation expansions of Sec. 6.2 are made. If the
specific characteristic quantities of induction-driven flow
that are defined in Eqs. (5.1.3) through (5.1.6) are sub-
stituted in the general definition of R [Eq. (2.2.18)],
Rm/a can be written as
on_ a &2

ok __1 k (7.1.2)
ka 2 2 2 ’ M
7r ——

WLO

Rm/a =

The right-hand side of Eq. (7.1.2) shows that Rm/a is

a measure of the square of the ratio of the excitation
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wave length to the electromagnetic skin depth.* Therefore,
when Rm/a is small, electrical skin effect is unimportant,
while when Rm/a is large, this skin effect prevents the
magnetic field from penetrating uniformly into the fluid.
Thus two of the flow system parameters are concerned with
skin effects: a with the geometrical skin effect; and

Rm/a with the electrical skin effect.

Finally, consider the parameter Rpo. In terms of the
definitions of R and P, [Egs. (2.2.17) and (5.3.15)], and
the characteristic quantities of this flow, Rpo can be
written as

5P

Rp, = —22— (7.1.3)

which can be interpreted physically as the ratio of the body
force due to the mechanical pressure gradient to the viscous
force that would exist if the average fluid velocity were

the synchronous speed. Hence, if Rpo is small, the balance

between electromagnetic and viscous forces determines the

*
Because the fluid velocity varies across the channel,

different elements of fluid experience electromagnetic
fields at different frequencies. Hence, this skin effect
problem is more complicated than the usual one for which
the expression o6 = JZﬁnuc is derived. However, the

analogy is useful in obtaining a physical understanding of
the nature of the parameter Rm/a .
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fluid motion, while if Rpo is large, the balance is between
external pressure forces and either viscous or electromagnetic
forces. Note that when Rpo is positive the mechanical

pressure force is in the negative z-direction and vice versa.

7.2 Velocity Profiles

The key results of the numerical calculations concerning
this induction-driven flow are fluid velocity profiles. Not
only are they central in all further calculations of such
quantities as flow rate and efficiency, but their form and
its variation with the various flow parameters very graphically
displays the physical phenomena that are significant in this
flow.

The basic form in which the velocity profiles were
calculated and in which the complete sets of profiles are
presented in Appendix D consists of the first two non-zero
terms in the perturbation expansion described in Secs. 6.2
and 6.3. Thus the velocity is written as the following

functional polynomial in the parameters Rm/a and Rp_ ,
uz(}’) = uzooc}') + RpO * uZOl(Y)
+ R /D Tu, ) +Rp_ - u_. ()
m z20 po z21 y
F @7 u oG+ RS - u LD
Py 222\ P, z23 y

+ o[(Rm/a)"], (cf. Table 6-1) (7.2.1)
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and the figures show plots of the functions uzoo(y) through
u,55().

Figure 7-2 shows a set of velocity profiles for a = 1.0,
M = 1.0, and even excitation. Because the Hartmann number is
relatively low (cf. the Hartmann profiles, Fig. 3-2), the
functions all have the parabolic appearance that characterizes
profiles that are dominated by viscous forces. Since the
functions all have roughly the same shape, the form of the
velocity profile changes relatively little with changes in

Rm/a or Rp .

Note that U 00 isvpositive, because with no pressure
gradient along the channel the magnetic field, which travels
in the positive z-direction, drives the fluid in the same
direction. However U901 is negative, because a positive
pressure gradient (Rpo) drives the fluid in the negative
z-direction. A simple physical explanation of the fact that
all of the second-order (in Rm/a) velocities are negative
is somewhat more difficult to obtain, although this fact can
be demonstrated by direct amalytical consideration of Egs.
(6.3.31) and (6.3.33). 1In view of the interpretation of
Rm/a as a measure of the importance of the electrical skin
effect, the fact that the second-order velocities are negative
is indicative of the fact that as the electrical skin effect
becomes more pronounced the traveling magnetic field exerts
less influence on the fluid motion (cf. the flow rate-

pPressure head curves of Sec. 7.5). In terms of the analogy
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between an induction-driven flow and a conventional induction
motor, the zero-order solutions correspond to the assumption
that the induction machine rotor is completely resistive,
while the second-order solutions begin to show the effects

of inductance.

Figures 7-3 and 7-4 show a pair of sets of velocity
profiles for even and odd excitations with o = 0.5 and
M = 10.0. In both sets of profiles, the effect of the
electromagnetic forces in establishing more rectangular
shaped profiles is evident, although far more pronounced
with even excitation. This difference is due to the
reasonably small value of o which implies that the trans-
verse magnetic field produced by the odd excitation is weaker
than that produced by the even excitation. (The "effective
Hartmann number'" is smaller with odd excitation than it is
with even excitation.) The fact that even excitation
controls the fluid much more effectively than odd excitation
at this value of o is evident in two forms. First, the
average value of U400 is larger with even excitation
(most of the fluid travels at very nearly the synchronous
speed). Second, the average value of uo01 is much smaller
with even excitation, indicating that a much larger pressure
force (Rpo) is required to alter the volume flow rate for

even excitation than for odd excitation.

Although o is relatively small, the ''geometrical skin
effect" due to the non-uniformity of the transverse magnetic
field is already evident in the case of even excitation in
that W01 has a more parabolic and less rectangular

appearance than U 00 Thus, for small values of Rpo the
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velocity has a more rectangular appearance, while for large
values of Rpo it has a more parabolic appearance. This is
in sharp contrast with Hartmann flow, in which the shape of
the velocity profile is fixed by the Hartmann number alone
(cf. Sec. 3.1). The '"geometrical skin effect'" is, or course,
quite pronounced with odd excitation, because the transverse
magnetic field in that case is zero in the center of the
channel and increases in magnitude toward the channel walls
(cf. Fig. 7-9).

In Fig. 7-3, with even excitation, the electrical skin
effect is very apparent in the second-order (in Rm/a)
velocity profiles. Furthermore, within this group of pro-
files the varying effect of the pressure drive can be seen.
Since U900 is multiplied by (Rm/a)z, but not Rpo, its
shape is entirely dominated by the electrical skin effect.
By contrast, u_,, that is multiplied by (Rm/a)2 and
(Rpo)3 is dominated by the pressure and viscous forces.

In between these two extremes, u, o1 and U, 99 show
progressively less electromagnetic skin effect and more
viscous control. The pronounced electromagnetic skin effect
is absent from the second-order profiles for odd excitation,
because the magnetic fields in this case are already much
stronger near the walls than in the center of the channel
(cf. Fig. 7-9).

A final pair of sets of velocity profiles for a =1.0
and M = 10.0 is shown in Figs. 7-5 and 7-6. Notice that
although M 1is the same in these figures as in Figs. 7-3

and 7-4, U 00 is less rectangular in Fig. 7-5 than in
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Fig. 7-3 and more rectangular in Fig. 7-6 than in Fig. 7-4.
Both of these changes are due to the increase in a (from
Figs. 7-3 and 7-4 to Figs. 7-5 and 7-6), which makes the two
forms of excitation more nearly equally effective. Note also
that the electromagnetic skin effect is less pronounced in
Fig. 7-5 than in Fig. 7-3. This is also due to the change

in «.

Figure 7-5 shows quite clearly that u has a more

rectangular appearance than U910 with thzogesult that
the shape of the velocity profile will change with changes
in Rpo° This variation in profile shape is shown graph-
ically in Fig. 7-7 where the center channel velocity is
deformed continuously from twice the synchronous speed to
minus the synchronous speed by varying the pressure drive
Rpoo (Note that these profiles are for Rm/a = 0.) The
profiles in Fig. 7-7 show the somewhat startling possibility-
that the fluid velocity can have a point of inflection and
can even be positive near the walls and negative near the
center of ﬁhe channel. This seemingly strange phenomenon
appears in fact to be quite reasonable, because the
mechanical pressure exerts a force that is uniform across
the channel, while the traveling magnetic field exerts a
force that is stronger near the walls than it is near the

center of the channel. The question of the stability of such
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%
profiles appears to be a very interesting problem.

A detailed examination of the way in which the velocity
profiles deform in Fig. 7-7 is quite revealing. Near the
synchronous speed, the pressure force is very small and the
center of the profile is flat, being controlled by electro-
magnetic forces. In order to make the center chanmnel velocity
greater than the synchronous speed, Rpo must be negative so
that the pressure force is in the positive z-direction and
drives the fluid faster than the traveling field. As Rp,
becomes more and more negative, the profile rapidly changes
from its highly rectangular form at uZ(O) = 1.0 to a much
more parabolic form at uZ(O) = 2.0, This rapid transition
is due to the combination of two effects: the pressure and
viscous forces that are striving to make the’profile parabolic;
and the electromagnetic force that is retarding all elements of
the fluid that are traveling faster than the synchronous speed,
but acting more strongly on those elements that are nearer the
walls.

When Rpo increases in the positive direction, the
pressure force opposes the electromagnetic force, and begins
to depress the profile in the center where the electromagnetic
force is weakest. When uz(O) = 0.0, the pressure force is
beginning to dominate in the central region of the channel,
but the electromagnetic force is still in control near the
walls. Even when Rpo is large enough to make uZ(O) = ~-1.0

and the central region of the profile has a decidedly parabolic

*Note that the theorem concerning parallel hydrodynamic flows
that states that under certain circumstamce the existance of
a point of inflection implies instability (see Lin,41 Sec. 4.3)
is not applicable to this magnetohydrodynamic situation.
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appearance, the effect of the electromagnetic force near the

walls is still noticeable.

7.3 Magnetic Field Profiles

In Secs. 6.2 and 6.3, the transverse magnetic field was
also expanded in a functional series in powers of Rm/a

and R,po° This series has the form

h () = 1 {hy(,io(:}’) + R /a)” . (b 930

2

+Rp, t By () + (Rpy)

o) By (]

o
¥ o{(am/a)‘*l}

@0 - hy, 6) + ey - by )]
+0[(Rm/a)3]} : | (7.3.1)

and the numerical results consist of plots of the functions

hinO(Y) through hyZi‘z(y)°

Because of the relatively large number of plots that would
be required, the entire set of magnetic field profiles that
corresponds to the set of velocity profiles shown in Appendix D
is not shown; however, for the purposes of discussion, a typical
pair of sets of magnetic field profiles for a = 1.0 and
M = 10.0 are shown in Figs. 7-8 and 7-9. The most striking

difference between these sets of profiles is of course the
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difference in symmetry. Notice also that only the applied field
hinO has a non-zero slope at y = 1, because the surface current
sheets are independent of the parameters (Rm/a) and Rp,-
Finally, for both types of excitation the higher-order

(in Rm/a) fields are more uniform than the original applied
fields.

7.4 Checking of the Solutions and Error Estimates

In order to provide a positive and accurate check on the
amount and behavior of the error in the solutions for the
fluid velocity and the magnetic field that were obtained by
the perturbation expansion method, exact solutions to the
original set of coupled, non-linear equations [Egs. (5.3.19)
and (5.3.20)] were calculated for specific sets of values of
the parameters M, a, Rm/a, and Rpo. These exact solutions
were obtained from Eqs. (5.3.19) and (5.3.20) by an iterative
procedure, using the perturbation expansion solutions as the
starting functions. Because the production of these exact
solutions requires far more computer time than does the
perturbation expansion method, exact solutions were only
calculated as a check for a few sets of values of the para-

meters.,

Figure 7-10 shows a sample set of plots of the relative
errors in the real and imaginary parts of the transverse
magnetic field, and in the velocity defect as functions of a
parameter RAT, which is the ratio of the average of the
second-order (in R /a) fluid velocity to the average of the

zZero-order velocity, and is proportional to (R /a) Sets
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of error curves are shown for average zero-order velocities of
2.0, 1.0 and -1.0.

The important feature of these error curves is that over
most of their lemgth they are almost perfectly straight linmes.
The slopes of these lines, which are the powers of RAT with
which the error varies, are shown in the right-hand margin.
These slopes turn out to be almost exactly integers, and
furthermore they agree with the error behavior that is
predicted in the truncated perturbation expansions (7.2.1)
and (7.3.1). Thus the errors in the fluid velocity and the
imaginary part of the magnetic field have slopes of almost
exactly two in Fig. 7-10, and therefore depend on the second
power of RAT or the fourth power of Rm/ao However, this
is exactly the error dependence that is predictedin Egs.
(7.2.1) and (7.3.1). Since the expansion of the real part
of the magnetic field [see Eq. (7.3.1)] has no term which is
independent of Rm/a against which to normalize the error,
the error was normalized with respect to the firstiterm in
the expansion, which is proportional to R,m/a° Thus the
expected relative error in the real part of the magnetic
field is OE(Rm/a)zl, which is exactly what is found in Fig.
7-10 where this error depends on the first power of RAT or

the second power of Rm/a.

The results of this solution checking procedure are quite
important, because they demonstrate the correctness of the
perturbation expamnsion solutions, and testify to the validity
and applicability of this method.
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Finally, in order to give some idea of the range of values
of Rm/a in which the truncated perturbation expansion solutions
accurately approximate the exact solution, the relative errors
in the velocity defect that are shown in Fig. 7-10 are re-
plotted in Fig. 7-11 as functions of R.m/a° In general, the
error is very small for Rm/a < ~ 0.5, and often it is still
relatively small for R,m < ~ 10.0.

7.5 Volume Flow Rate and Efficiency

The average fluid velocity, which is proportional to the
volume flow rate, can be obtained in the form of a polynomial

in Rm/a and Rpo by averaging the functions u through

LI in Eq. (7.2.1) with respect to y. Figure ?932 shows

a typical set of curves of the average fluid velocity <u,>

as a function of the pressure gradient Rp_, with Rm/a

as a parameter. For. Rm/a = 0, the curve is, or course, a
straight line, because only <uzOO> and <uz01> are present
in the polynomial. Again, note that a positive pressure
gradient drives the fluid in the negative z-direction. As
Rm/a is increased, the fluid velocity is affected very little
near synchronous speed (<uz> = 1.0) where the pressure
gradient Rpo is small, however it is affected considerably
in regions farther from this point (<uz> >~ 2.0 or < ~ 0.0)
where the pressure gradient is larger. As Rm/a is increased,
the electromagnetic skin effect decreases the effect of the
traveling magnetic field on the fluid, with the result that

the fluid responds more and more to the pressure drive.
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Therefore, for positive values of R.po an increase in Rm/a
causes a decrease in the average fluid velocity, while for
negative values of Rpo an increase in Rm/a causes an

increase in the average fluid velocity.

The efficiency of the flow as an energy converter can
also be obtained in the form of a ratio of polynomials in
Km/a and Rp_ = by substituting the truncated perturbation
expansions (7.1.1) and (7.2.1) in the integral expressions
for the efficiency (5.4.20) and (5.4.21). The form of the

‘resulting polynomials is quite complicated and, therefore,
will mot be written out here. Suffice it to say that this
procedure can be carried out and that efficiency curves
such as those discussed in the following paragfaph can be
obtained.

Figure 7-13 shows a sample set of curves df efficiency
as a function of Rp_ = with Rm/a as a parameter, for a = 1.0,
M = 10.0, and even excitation. The curves very graphically
demonstrate the regions of operation of the flow as an energy
converter. For large negative values of Rpo, the pressure
force drives the fluid sufficiently faster tham the synchronous
speed so that the mechanical power input is large enough to
supply the ohmic and viscous power losses, and to provide
electrical power output--the flow operates as a generator.
As Rpo becomes less megative a point is reached at which
the fluid is still traveling faster than synchronous speed
(cf. Fig. 7-12), but at which the mechanical power input just

matches the ohmic and viscous power losses, and the electrical
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power output and the efficiency drop to zero. As Rpo becomes
still less negative power comes into the flow from both the
mechanical and the electrical power sources, but is entirely
dissipated im ohmic and viscous loss--the flow operates as a
brake or flow damper. When Rpo becomes positive, power
begins to flow out of the mechanical terminals--the device
operates as a pump or motor. The mechanical power output as
well as the ohmic and viscous losses are now supplied by the
electrical powér input. As Rpo is increased, the efficiency
increases to a maximum, and then decreases again. Finally,
when Rpo has become large enough to reduce <u > to zero
(cf. Fig. 7-12), the mechanical power output and the
efficiency also drop to zero. Further increase in Rpo causes
<uz> to become negative, with the result that mechanical as
well as electrical power again comes into the flow--the flow
has entered the second region of brake or flow damper

operation.,

The effect on the efficiency curves of an increase in
Rm/a is essentially the same as it was on the flow rate curves
(Fig. 7-12). As Rm/a is increased, the effect of the electro-
magnetic forces is lessened with the result that less pressure
force is required to produce the same change in flow rate or

efficiency.

In order to give an indicatiom of the variation of the
efficiency with the parameters o and M, the maximum
efficiencies for several values of o and M are shown in

Figs. 7-14 and 7-15 (in all of the efficiency curves that were
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obtained, the maximum efficiencies in the pump and generator
modes of operation were very nearly equal). There are
relatively few points shown in Figs. 7-14 and 7-15 because of
the relatively large amount of computer time required to
produce a set of efficiency curves. For the same reason, most
of the calculations were made concerning even excitation,
because for the few points at which the efficiency was obtained
for odd excitation, it was much lower than for even excitation
(see Figs. 7-14 and 7-15 ).

Figure 7-14 shows a plot of the maximum obtainable
efficiency as a function of the Hartmann number M for
a =1.0. As in the conduction-driven flow situation, the
efficiency increases monotonically with increasing M
{cf. Ch. IV, particularly Fig. 4-6). Figure 7-15 shows a
plot of the maximum obtainable efficiency as a function of
a for M= 10.0. For even excitation, the efficiency
decreases monotonically with increasing a; while for odd
excitation it also decreases, but not as rapidly (the two
forms of excitation are becoming more nearly equally
effective).

7.6 Relation to Existing Experiments

To the author's knowledge, there have beem no detailed,
scientific, experimental investigations of induction driven
magnetohydrodynamic channel flow. There has been considerable

%
interest in the use of induction pumps for liquid metals,

* 10
‘See, for example, Blake.
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although the experimental results that are published concerning
tests of such pumps are restricted to overall operating |
characteristics such as head-capacity and efficiency-capacity
curveso* Just as in the case of conduction-driven flow

(see Sec. 4.4), the head-capacity and efficiency-capacity

curves have roughly the same forms as those shown in Figs. 7-12
and 7-13, but the actual conditions are sufficiently different
from those assumed in this analysis that quantative correlation
of the results would be unjustified. There is a real need for
some careful, detailed experimental investigations of induction-

driven magnetohydrodynamic channel flows (see Sec. 9.3).

*
See, for example, Barnard and Collins.42
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Chapter VIII
TIME VARIATIONS IN THE FLUID VELOCITY

Section 5.2 describes the formidable difficulties that are
encountered in attempting to find solutioms to the induction-
driven flow equations in the general case in which the fluid
velocity varies with time. With respect to this problem the
present chapter has two purposes: first, to develop a quanti-
tative understanding of the relative responses of a viscous
fluid to time-varying and steady forces through the analysis
of a simplified, but exactly soluble problem; and second, to
develop and discuss the equation that governs the second-
harmonic components of the fluid velocity, under the assumption
that these components are small in comparison with the mean

velocity.

8.1 The Relative A-C to D-C Response in Parallel Flow

In order to obtain a quantitative understanding of the
response of a viscous fluid that is subjected to both steady
and time-varying forces, the following simple hydrodynamic
situation is considered. A fluid characterized by a mass
density p and an absolute viscosity 1n flows in the
z-direction between infinite parallel plames located at
y =+ a, as shown in Fig. 8-1. Furthermore, the fluid is
subjected to a uniform (with respect to space) body force in
the z-direction that consists of a constant plus a sinusoid of
frequency . (Note that this is quite similar to the force
that is applied to the fluid by the traveling magnetic field



124.

1
+a

o 7", £(t)  v(y,t)
5] 0 M £12]
-a

Fig. 8-1 A Time-Varying Viscous Flow
Between Parallel Planes

in induction driven magnetohydrodynamic flow [cE. Eq. (5.3.9)].
If the applied body force £(t) is given by

the

the

and

for

due

f(t) = fo(l + sin wt) , (8.1.1)
fluid velocity v(y,t) must satisfy the diffusion equation
3% paw_  f

S ) A — (1L + sin ot) , (8.1.2)
Byz 7 ot n

symmetry condition

v(-y) = v(y) , (8.1.3)
the boundary condition

v(+ a) =0 . (8.1.4)
Because Eq. (8.1.2) is linear, it may be solved separately

the d-c and a-c components of the fluid velocity, which are
respectively to the d-c and a-c terms in the applied force.
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The solution for the d-c driving term is the familiar

Vie = m (a” - y2) s (8.1.5)

the average of which, with respect to y, is

f a2
o

-—511—' (8.1.6)

Vie”
By analogy with a problem in the conduction of heat in a

solid, the a-c velocity is found to be

00

4 ——S:llg— cos[(2n + 1)Wy]

Vac = 7p nio Cn+ D) 7a
t -an(t - T)
- [ sin wt e dr , (8.1.7)*
0
in which
ag =3 (20 + 12 72/4a% (8.1.8)

if the sinusoidal force commences at t = 0. When the integral
in Eq. (8.1.7) is performed, and the portion of the result that
corresponds to the transient solution is dropped, the desired
steady-state solution is found to be

* .

‘See Carslaw and Jaeger,43 p. 131, Eq._(9). (Note that there is
a misprint in this equation in that 22 should be replaced by 4%
in the denominator of the exponential.)
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4f = n
=2 s (1) cos|

v (2n + 1)vy]
ac T __g (2n + 1)

(an sin ot - w cos wt)

. (8.1.9)
az + wz
n

Because the time-average value of the a-c velocity is
zero, the root-mean-square value is used as a measure of the
a-c response. If the root-mean-square value of Eq. (8.1.9)

with respect to time is taken, the result is

2 Ji-fo o (-1)" cos[(2rl % l)vy]
v_ ) = —= = . (8.1.10)
ac’rms e n=0 (2n + 1)(a§ + 2 1/2

®")

Finally, the average of Eq. (8.1.10) with respect to y is
given by

4J§'f ©
2 (2n + l)_z(a2 + wz)
mp n=0 n

<(v_)

ac rms

-1/2 (8.1.11)

The ratio € of the a-c to the d-c response of the fluid
may mow be defined as

<(v ) o
£ = rms 1255-0 nz 2 (2n + 1)—2(a§ + wZ)-l/Z.

<v > =
dc T pa n=0 (8.1.12)

Equation (8.1.12) can be put in dimensionless form by intro-

ducing the dimensionless parameter
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R = pazw/q , (8.1.13)

which resembles a hydraulic Reynolds number. If Eq. (8.1.13) and

the definition of a [Eq. (8.1.8)] are substituted in Eq. (8.1.12),
the result is the final expression for ¢

-1/2

-ZE(Zn + 1)4'1r4

1 ®
g = ) §2(2n+1) 2

T n=0 16R

+ 1] (8.1.14)
Equation (8.1.14) shows that the ratio ¢ of the a-c to the

d-c response depends only on the dimensionless parameter R

(a fact that could have been conjectured from dimensional
analysis at the start).

The nature of the behavior of ¢ as a function of R can
be quite well understood by considering its behavior for very
small and very large values of R. When R 1is sufficiently
small, the first term will dominate the second term in the

square brackets in Eq. (8.1.14), with the result that, with
the aid of the identity ’

) 1 4
2 ——=—7 =135 (8.1.15)%
n=0 (2n + 1)
¢ is found to be given by
1
g¢— =, as R=0. (8.1.16)
N2

*
Identities such as these are most easily established from theiz4

‘connection with Fourier series. See, for example, Rogosinski,
p. 15.



128.

On the other hand, when R is sufficiently large, the second
term will dominate the first term in the square brackets in
Eq. (8.1.14) up to an n that is so large that the size of
(2n + 1)2 makes further terms in the series so small as to

be negligible. This reasoning, combined with the identity

© 1 2
s — = r , (8.1.17)%
n=0 (2n + 1) 8
shows that
g,\,él as R—= o , . (8.1.18)

2 )
Figure 8-2 shows the asymptotes that have just been ébtained,
together with a plot of the actual function that was obtained by
summing the series in Eq. (8.1.14) numerically for several values
of R. The response curve is similar to that of a simple low-
pass filter; a result that can be anticipated on physical grounds
by considering the mass of the fluid as an energy storage element,
and the viscosity as a source of power dissipation. Note that
the response curve approaches the asymptote 1/J2 very rapidly,
but approaches the asymptote 3/\JZR quite slowly. This slow
approach to the high frequency asymptote is due to the fact that
each component in the spatial Fourier series of the a-c fluid

velocity diffuses with a different characteristic time
(l/an) [cf. Eq. (8.1.7)].

*
Identities such as these are most easily established from their
connection with Fourier series. See, for example, R.ogosinski,44
p. 15.
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The essential feature of the response curve is that for
small values of R the a-c and d-c responses are the same,
while for large values of R their ratio is asymptotic to
1/R. As a critical value of R, at which the attenuation of
the a-c response sets in, take the intersection of the two

asymptotes, viz.

R_ =3, (8.1.19)

or in terms of frequency

Te .3 m |
et m T (8.1.20)

c

In order to obtain an idea of the size of Vo in a practical
situation, consider mercury flowing in a two centimeter

(a = 1.0 cm.) slit channel. For this situation, the critical
frequency is Vo X 5.9 - 10-4 cps.; a very low frequency.
Also, if mercury in a two centimeter channel is subjected to
a body force that consists of a d-c term plus an equal amplitude
a-c term at a frequency of 120 cps. (as is the case in an
induction driven flow that is operated from the 60 cps. power
lines), the value of R is R~ 6.1 - 10°, with the result
that the ratio of the a-c to the d-c response is

€ ~ 3.5 - 10_6; a very small ratio.

There are two effects that have not been considered here
that will increase the dissipation in the fluid in an induction-
driven magnetohydrodynamic flow under these circumstances, and
that will, therefore, decrease the value of the parameter R
and increase the response ratio €. First, there is additional

dissipation in the fluid due to ohmic power loss. This
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additional loss is often accounted for by ascribing to the fluid
an additional 'magnetic viscosity,"* which is said to be in the
ratio M2 to the absolute viscosity (although the analysis of
Sec. 4.1 indicates that at least for brake operation in con-
duction-driven flow a ratio of M would be a better estimate).
Second, the establishment of eddies in the fluid greatly
increases the viscous dissipation, and greatly reduces the

time required to reach the steady state** (i.e. greatly
increases vc). However, even if a factor of fifty or omne-
hundred is conceded to each of these effects, the response
ratio € in the example given above is still only of the

order of one percent.

Thus, although the simplified problem that is analyzed
above is by no means identical to the question of a-c variations
in the fluid velocity in induction-driven flow, it does have
many of the same essential features. The importance of the
results that are derived above is that they show that the
cut-off frequency of common fluids is quite low, that is, that
the fluid must oscillate very slowly if viscous forces are to
be comparable with inertial forces. These results lend strong
support to a theory of laminar induction-driven flow that assumes
that a-c variations in the fluid velocity are quite small in

comparison with the average d-c flow.

% . 45
‘See, for example, Cowling, ~ pp. 10 and 16.

*% 32
See, for example, Lamb, Art. 366b. ff.
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8.2 The Equation that Governs the Second-Harmonic Time
Variation of the Fluid Velocity

The general problem of obtaining in a useful form the
equations that govern a particular harmonic component of the
fluid velocity is a formidable task (cf. Sec. 5.2). However,
under two simplifying assumptions, a single differential
equation that governs the second-harmonic time variation can
be obtained. The first assumption is that the time variations
in the fluid velocity are small in comparison with the mean
flow, with the result that linearization may be employed.

The practicality of this assumption is supported by the

results of Sec. 8.1, where the ratio of the a-c to the d-c
response of typical fluids in an idealized situation is shown

to be quite small. The second assumption is that the a-c
motion of the fluid is entirely due to the a-c electromagnetic
force that arises from the interaction of the traveling magnetic
field and the mean flow (this should be especially true if R
is small). Because this primary a-c force is at the second-
harmonic frequency [see Eq. (5.3.9)], the time variation of

the fluid velocity is assumed to be at the same frequency.

In keeping with the two assumptions discussed above, the

fluid velocity is assumed to be of the form
- _7T ~ T A T A i2a(T -'5)}
u 1zuz(y) + Re {[iy gy(y) +,iz BZ(Y)] e ,
(8.2.1)

in which uz(y) is the mean velocity in the z-direction that

has already been determined, and gy(y) and gz(y) are the
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complex amplitudes of the second-harmonic time variation of the
fluid velocity, which must satisfy the restrictions |§y| 1< u,
and |§;| < w, The incompressibility condition, V - u = 0,
immediately allows ﬁz to be eliminated from Eq. (8.2.1) with

the result that

A=1u +Re{[€ a
z z y =

y +Iz"1'§'] Ji2a(t - '5)} . (8.2.2)

i2a =y

The procedure for obtaining a single differential equation
that governs one of the a-c velocity amplitudes is rather com-
plicated algebraically; therefore, only the method and the
result will be described here. First, Eq. (8.2.2), which
gives the assumed fluid velocity, and Eq. (5.3.9), which
gives the assumed electromagnetic force, are substituted in the
non-dimensional magnetohydrodynamic Navier-Stokes equation
[Eq. (2.2.13)]. Next, terms involving products of the a-c
variable ﬁ& and/or its derivatives are neglected (the
equation is linearized), and the d-c flow equation is sub-
tracted away. Finally, the resulting a-c equation is operated
on by the vector operatdr [vx (vx ]=[v- -V2 ], and

the y-component of the resulting equation is found to be

At 2A "oA
(L - uz)(gy - ba gy) + u, Ey

1 Alv 2 An 4 A
+ iZaR,(Ey - 8a gy + 16qa ,gy)
=- 3R Y, h™ . (8.2.3)

This fourth-order, inhomogeneous, linear differential equation

with variable coefficients must be solved subject to two sets
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of boundary conditions. First, the existence of the walls
demands that

4 (+1) =0 (8.2.4)
_y_ Q © &a o
Second, the walls and the finite viscosity of the fluid
demand that u =0 when y = + 1 for all values of X and
Z. This in turn requires that aﬁzlaz = (0 for § =+ 1,
which when combined with the incompressibility condition
vV .u-= 0, demands that

g;(i 1) =0 . | (8.2.5)

Needless to say, the task of solving Eq. (8.2.3) subject to
the boundary conditions given in Eqs. (8.2.4) and (8.2.5) is
far from simple. In fact, the homogeneous part of Eq. (8.2.3)
is similar to that encountered in the study of the linear
stability of plane parallel hydrodynamic and magnetohydro-
dynamic flows.* Some solutions have been obtained in these
cases, both analytically and numerically, after a great deal
of effort.

There is, however, an essential difference between these
linear stability problems and the situation considered here
that may make this problem less difficult. The linear

*Specifically, see Lin,41 p. 28; and Cowling,45 pp. 60-61.
'For a brief discussion of the linear stability of plane
parallel magnetohydrodynamic flows, see Cowling,%3 Ch. 4.
Also, for a complete and detailed study of the linear
stability of hydrodynamic flow, see Lin.%l
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stability problems are characterized by a homogeneous differential
equation containing three undetermined constants; the wave number
a and the phase velocity ¢ of the disturbance, and the
hydraulic Reynolds number R of the mean flow. The classical
problem is to determine the minimum value of the hydraulic
Reynolds number R at which the imaginary part of c¢ becomes
positive for some value of @, and the disturbance grows

with time. Thus the characteristic value ¢ must be obtained

as a function of the parameters R and a to determine the
"neutral stability" curve which separates the region in which

the imaginary part of c¢ 1is negative from that in which it

is positive. One of the principal difficulties encountered

in these problems is that for the high values of R at which
instability occurs, the a-c velocity varies very rapidly with

§ and is, therefore, difficult to determine.

In contrast, the present problem is governed by an
inhomogeneous differential eQuation [Eq. (8.2.3)] in which the
constants M, R and a are known, and from which the a-c
velocity gy must be determined. Thus in this problem it is
not necessary to search for characteristic values. Further-
more, solutions for smaller values of R would be of interest

here, and they should not be as difficult to compute.
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Chapter IX

CONCLUDING REMARKS AND SUGGESTIONS
FOR FURTHER INVESTIGATIONS

9.1 Concluding Remarks

The aim of this investigation has been to develop a clear
and detailed understanding of laminar conduction and induction-
driven magnetohydrodynamic channel flows, and of the ways in
which they can operate as energy converters. The development
proceeds from the fundamental equations of incompressible
magnetohydrodynamics to the fundamental solutions for the
fluid velocity and the magnetic field, and thence to the basic

energy conversion properties of the flow.

Although both of the flows considered here have their
counterparts in practical devices (the d-c conduction and the
a-c induction pumps for liquid metals), and are énalogous in
some respects to conventional rotating machines (the separately
excited d-c and induction machines), the emphasis here has been
neither on the practical aspects of device design nor on the
similarity of these flows to electric machinery. Rather, the
emphasis has been on considering idealized forms of these
flows as problems in magnetohydrodynamics. However, care has
been taken throughout to avoid any assumptions that cannot
reasonably be realized experimentally. Thus, although the flow
situations that are analeed here are‘idealizations in com-

parison with practical liquid metal pumps, they correspond to
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flows that can be established in the laboratory and that may well
have practical applications.

A brief word is perhaps in order concerning two of the
mathematical methods that were employed in the analysis of
induction-driven flow. The first is the perturbation expansion
technique that was employed in Sec. 6.2 to convert three coupled,
non-linear differential equations into an infinite set of linear
differential equations that are uncoupled from below. These
expansions are only a single example of a variety of very power-
ful perturbation techniques that have proved to be extremely
useful in diverse areas of mathematical physicsq* These
perturbation methods appear to be suitable to a wide variety of
hitherto unsolved non-linear magnetohydrodynamic problems. The
second method is thé idea of combining analytical and numerical
procedures in the search for a solution to a difficult mathe-
matical problem (cf. Sec. 6.3). This approach departs from the
time-honored techmique of carrying the analysis as far as
possible analytically and then of calculating a few terminal
numerical results. Rather it seeks to use numerical analysis
and high-speed digital computation as integral parts of the
mathematical analysis, through the realization that some mathe-
matical operations may now be performed more easily numerically
than analytically. The skillful combination of modern analysis
and modern high-speed digital computers now makes it possible to

obtain solutions to problems formerly thought to be insoluble.

%
See, for example, Morse and Feshbach,46 Ch. 9.
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9.2 Theoretical Extensions

Several interesting theoretical extensions and generalizations
of this investigation suggest themselves. First, the analysis of
energy conversion in conduction driven flow that is presented in
Ch. IV can be extended to the case of a finite-aspect-ratio
channel, by following the method of Shercliff,47 for obtaining
the velocity profiles. Second, the problems of electric and
magnetic end effects at the entrance and exit of an energy con-
version section in a magnetohydrodynamic flow configuration
appear to be soluble by pcrtufbation expansion techniques that
are similar to that of Sec. 6.2 (again the magnetic Reynolds
number seems to be a likely choice for the expansion parameter).
Third, the results of Ch. IV concerning the operating character-
‘istics of conduction-driven pumps and generators can be combined
to predict the operation of a complete magnetohydrodynamic d-c
transformero* Fourth, there is the question of the stability of
magnetohydrodynamic velocity profiles such as those shown in
Fig. 7-7. This is surely a formidable problem, because even
the linear stability of hydrodynamic flows is extremely complex,
whereas most actual hydrodynamic and magnetohydrodynamic

%Such a device attempts to use 'a d-c conduction pump coupled to
a d-c conduction generator as an electrical to electrical
magnetohydrodynamic energy converter. Some experimental models
of such devices have been tested (see Pierson#8), although their
performance was rather poor. The author is convinced that care-
ful design can improve the performance of such devices, although
their ultimate practicality is perhaps questionable.
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instabilities are now generally conceded to be non-linear in
character. The work of Poduska22 in describing the fluid
turbulence by the calculus of random functionals appears to
be the most promising recent advance in this area. Fifth,
numerical calculations concerning Eq. (8.2.3) should provide
information as to the amplitude and spatial distribution of
the second-harmonic time variations in the fluid velocity in

induction driven flow.

The theoretical extensions that are discussed above are
not intended to form a complete list (inevitably the most
interesting ones will be found to have been omitted); rather
they are facets of this investigation in which the author has

a continuing interest.

9.3 Experimental Investigations

The field of detailed experimental investigation of
magnetohydrodynamic channel flows is wide open. To paraphrase:
"Everyone talks about the Hartmann profiles, but no one
measures them.'" The fundamental problem in making a detailed
study of a magnetohydrodynamic flow is to find suitable means
for measuring the fluid velocity and the magnetic field as
functions of time and space with the flowing fluid. For
measurements of the fluid velocity, attempts have been made
to use an electromagnetic flow meter,* and are currently being

dede
made to use a pitot tube. However, to the author's knowledge,

%
“See Kliman°36

doke
"See East.49
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there are still no detailed, accurate experimental velocity
profiles for a magnetohydrodynamic flow. There have apparently
been no attempts to measure the magnetic field distribution

within a flowing, electrically conducting fluid.

Some of the overall characteristics of a magnetohydrodynamic
channel flow that is operating as an energy converter, such as
efficiency and volume flow rate, can be measured without
probing the flow in detail; and, if such characteristics are
measured as functions of the significant parameters under
carefully controlled conditions, they should provide significant
checks on the results of Chs. IV and VII. (The author intends
to embark on such an experimental program.) However, the rela-
tion between theory and experiment really will not be resolved
satisfactorily until detailed experimental velocity and magnetic
field profiles are obtained.
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Appendix A
A MODIFIED MATHIEU EQUATION

The purposes of this appendix are: to indi¢ate the relation-
ship of Egs. (6.3.3) and (6.3.4) to the Mathieu equation; to develop
some approximate solutions to these equations; and to indicate the
difficulties that are encountered in attempting to apply these solu-
tions to the problems of Sec. 6.3.

For convenience, Egs. (6.3.3) and (6.3.4) are reproduced below.

en o L M2 cogh2a§

20 = 2 —73 €0 = "R, (a.1)
ginh a
1.2 sinhza'i |
" - — = - g
€20 -2 M .0 = "R, (a.2)

cosh a

Since these equations are quite similar, only Eq. (A.l) is investi-
gated here. Furthermore, only the homogeneous form of the equation
is considered, because the complete solution can be obtained from

the homogemeous solutioms by variation of parameters.

A convenient canonical form of Eq. (A.l) is
" 2 2
y" - (B cosh"ax)y = 0, (A.3)

in which B-= M/(N 2 sinh a). The substitutioms z = ax and
v = Bfa transform Eq. (A.3) to

y" - (yzcashzz)y =0, ' (A.4)

which is the form of the equation that is considered throughout this
appendix. |
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Relation to the Mathieu Equation

Equation (A.4) can also be written as
2
y" - %r (1 + cosh 2z)y = 0, (A.5)

which is readily identified with the canonical form of the modified
Mathieu equation

v'" - (a - 2q cosh 2z)v = 0, (A.6)*

by setting v=y, a= 72/2 and q = - vy /4 Furthermore, Eq. (A.6)
is related to the Mathieu equation ) “

v" + (a - 2q cos 2z)v = 0, (A.7)

by the transformation 2z — iz.

Most of the research concerning Mathieu functiops has been con-
cerned with eigenvalue problems in which one of the constants
(usually q) in Eq. (A.7) is fixed by the boundary conditions, while

- *%
the other is a function of the separation constant.

%
The two ggst complete accounts of the theory of Mathieu functions are
McLachlan”’ and Campbe11;40 although significant discussions of
specific points are given by many others, for example, Ince.”0

ook

See, for example, Morse and Feshbach,46 p. 554 ff. A notable excep-
tion to the concentration on eigenvalue problems is the research con-
cerning planetary motion that began with Hill (see MﬁcLachlan,39

Ch. VI).
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The problem is to determine whether or not a periodic solution exists
for a particular value of q; and if it does, to determine it and

the corresponding characteristic value a.

In contrast, the problem presented by Eq. (A.4) is that of
obtaining a solution (periodic or not) to the qédified Mathieu equa-
tion [Eq. (A.6)] for specified values of a and q. Some series
deVelopments.of'such solutions in terms of,hyperbolic and BeSsél
functions have been obtained, but in general these series are diffi-
cult to manipulate and the coefficients eventually must be computed
numerically? Furthermore, the rate of convergence of these series
is often quite slow. For these reasons, the application of existing
Mathieu functions to the solution of Eqs. (A.1) andA(A.Z) does not

appear to be very practical.

Solutions Valid Near z = 0

Although Eq. (A.4) possesses irregular sihgular points (in fact,
essential singularities) at z = + ©, 2 =0 is an ordinary point,
and there are no singular points in the finite é-plane. Therefore,
Eq. (A.4) possesses two linearly indepéndent solutions that are
regular at z = 0, and converge everywhere in the finite z-plane?*

In the following paragraphs, forms of the even solution of Eq. (A.4)

% .
See McLachlam,39 Ch. VIII.

e
See, for example, Hildebrand,5l Sec. 4.3.



144,
%
that are valid near 2z = 0 are investigated.

For small values of z (z2 < 1), coshzz ~ 1, with the
result that Eq. (A.4) takes on the simplified form

"

2
y"' - vy =0, (A.8)

the even solution of which is
y = A cosh vyz, (A.9)

in which A 1is an arbitrary constant.

A natural extension of this simple solution is to attempt to
find a solution that is valid over a wider range of 2z by the
WKBJ methodg** In view of the solution (A.9) that is valid near
z = 0, the WKBJ method attempts to obtain a solution, which is
valid over a wider range of values of 2z, in the form

y = A cosh [yf(z)z]. (A.10)

The substitution of the solution (A.10) in Eq. (A.4) shows that
the function £(z) must satisfy the differential equation

zzf" - 2f = cosh z, (A.11)

*

Although both even and odd solutions to Eq. (A.4) exist around

z = 0, for simplicity, only the even solution is discussed here,
because even solutions to Eqs. (A.l) and (A.2) are required.

ok
See, for example, Morse and Feshbach,*0 p. 1092 £f.



145,

while the requirement that the solution (A.10) shall reduce to the
solution (A.9) when 2z — 0, demands that

£(0) = 1. (A.12)

Unfortunately, the solutions of quﬁKA.ll) cannot satisfy the
restriction (A.12). If, however, the restriction £(0) =1 1is
ignored, the solution of Eq. (A.ll) that is regular at z =0
yields the approximate solution to Eq. (A.h)

y = A cosh (% v sinh z). (A.13)

This solution is clearly incorrect near z = 0, and also, in the
following section, will be shown to be incorrect asymptotically.
However, for a properly chosen value of A, Eq. (A.13) undoubtedly
provides a reasohable approximation to the even solution of Eq.
(A.4) for a range of values of =z.

The solution (A.9) can, however, be extended to a larger range
of values of z around z = 0 by expanding the even solution of
Eq. (A.4) in the following double Taylor series.

0 k 2n 2k
y(y,z) = kzo Zo a(n,k) ?%ETT z (A.14)
= n=

If the series solution (A.14) and the series expansion

© 2k

2 1 (2z)
cosh’z = (1 + kio (2k) T )| (A.15)

are substituted in Eq. (A.4) and terms containing like powers of vy

and of z are equated, the following recursion relations are obtained.
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a(0,k) =0, k>1 | (A.16)

(2k + 2)(2k + 1) o (n, k + 1) - 2n(2n -1) a (n -1, k)

k+l-n 22j
-2n(2n - 1) = nT a(n - 1, k - j) =0,
j=0

n>1 (A.17)

Although the second recursion relation is rather complicated, the

initial terms in the series can be worked out without difficulty,
and are shown below.

2 4 6
y(v,2z) = a(0,0) {[l + S%%l— + ﬁ%%l— + 5%%1— + ...
2 " 4 6
2 1 1 (yz) 11 p
el Pt st e ]

4 6
1 (v2)? . 47 (v2)* . 383 (vz)
tz [45 2r— t %20 "%t 1260 &t T -]

+ . (A.18)
The first series in Eq. (A.18) is readily recognized as~§psh Yz,
however, the remaining series have so far escaped identification

with known functions, either from the terms that are written out

or from their gemeral recursion relations.

Asymptotic Solutions

The task of obtaining solutions to Eq. (A.4) that are valid
for large values of |z | is simplified by the substitution
€ = sinh z, which transforms Eq. (A.4) to

1+ ey +ey -v2a+edy=o0. (A.19)
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1f gz >>1 (say ¢ >~ 3.2 or z >~ 1.9), Eq. (A.19) can be

rewritten approximately as
2 2,2
Ey" + ey' -y Ey=0, (A.20)

. %
which is a form of the Bessel equation. The general solution of
Eq. (A.20) is

y= c]_Io('Y&) + CZKO('Y&), (A.21)

in which I

first and second kinds of order zero, and ¢y and c, are

0 and KO are the modified Bessel functions of the

arbitrary constants. Thus, for z > ~ 2, the even solution to

Eq. (A.4) can be written approximately as
y = cllo(y sinh |z |) + CZKO(Y sinh |z]). (A.22)

The function Io(x) is equal to one for x = 0 and increases
rapidly with increasing x, while the function Ko(x) has a
logarithmic singularity at x = 0 and decreases rapidly with
increasing x. For large values of x, these functions have the

asymptotic behaviors

eX

IO(X) ~ \IFX— y X =0 ¢ (A.23)

*
See Hildebrand,51 Sec. 4.8.
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and

Ko (x) ~ < , X— o, (A.24)

2

= x

T
For x = 5.0, the value of Io(x) obtained from Eq. (A.23) is in
error by about 3%, while for x = 10.0 the value of K, obtained
from Eq. (A.24) is in error by about 4%. Therefore, for
v sinh |z| > ~ 10.0, the even solution to Eq. (A.4) can be written
as .

cle'y‘sinh |z | +cye -v sinh |z|

y = . . (A.25)
VY sinh |z|

A comparison of Eqgs. (A°25) and (A.13) shows that in detail
the solution (A.13) does not have the correct asymptotic behavior,

although it does possess the proper characteristic form
exp [y exp (2)]. .

Difficulties in Applications

Considerable difficulty is encountered in attempting to apply
the approximate solutions of Eq. (A.4) that have been developed here
to the specific problem of obtaining solutions to equations like
Egs. (A.l1) and (A.2). In general, a series solution such as Eq. (A.18)
must be employed for small values of z; an intermediate solution
such as Eq. (A.13) is best for moderate values of z; while an
asymptotic solution such as Eq. (A.22) is required for large values
of z. These solutions must be matched at points where their errors
are comparable, and then the arbitrary coefficients must be determined
so that the complete solution satisfies the prescribed boundary condi-
tions. Furthermore, the solutions that must be employed and the

points of matching may change with changes in vy and the range of z.
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To carry through such a process analytically is a complicated and
not particularly rewarding task.

The process of employing these approximate solutions and the
method of variation of parameters to obtain solutions to the
inhomogeneous form of Eq. (A.4) is even more involved. Thus,
although approximate analytical solutions to equations like
Eqs. (A.l) and (A.2) can be obtained by the methods described in
this appendix, the form of such solutions is so complicated that
they are of limited use in a complicated physical problem.
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Appendix B
NUMERICAL METHODS

This appendix describes the principal numerical methods that
were employed in performing the numerical calculations concerning
induction driven flow. Because all the functions involved in the
basic calculations (e.g., U.00° hinO’ etc.) are functions of the
single space coordinate § that varies from zero to one, the
numerical work was standardized by considering each of these
functions at fifty-one evenly spaced points between zero and one.
The spacing between points (h = 0.02) was chosen so as to pro-
vide a sufficient number of points for the plotting of accurate
profiles, and to provide a balance between round-off and trunca-

tion errors in the numerical calculations.

Differential Equation Integration

The fundamental numerical problem involved in the calculations
relating to Sec. 6.3 is the integration of an even or an odd solu-

tion to the second-order linear differential equation,
y" - A(x)y = B(x), | (B.1)

as x varies from zero to one. In either case, A(x) must be
even: 1in addition, if an even solution is desired, B(x) must
be even and y(0) must be specified; while if an odd solution is
desired, B(x) must be odd and y'(0) must be specified.

The numerical integration was performed by the use of the

sixth-order integration formula

2
h 11) " "
Yn+1 © 2yn © Yn-1 + 12 (yni-l + 10yn + yn-l)_ 240 Y (),

%
See Hildebrand,”? p.223.
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in which the point x = £ 1lies between X and x Because

n+1l°
Eq. (B.1) is linear, its integration using Eq. (B.2) is straight-

forward, viz.

5 h?
Yn+1 “‘[23’(1”12‘“’*) Yn-1<t - 13 24-1)
2 | p2
+ B +108_ +B . 01/ -FA L) (8.3)

This formula is self starting under the restrictions specified

above.

With h = 0.02, the truncation error in Eq. (B.3) is about

-13 . yVl(E). Checks of the functions that were computed

3-10
using this integration formula showed that yVi(e) was never
large enough to make the relative truncation error greater than
about 10-8, and that it was usually much smaller. To prevent
round-off error from adding to this truncation error, the calcu-
lations involved in these integrations were performed double-
precision, which on the IBM 709 means accuracy to about seventeen

decimal digits.

Averaging

In order to find the average value of any of the functions
involved in the calculations (e.g., velocity profiles), the
definite integral of such a function from zero to one must be
evaluated. This was accomplished by applying the six-point,

seventh-order Newton-Cotes integration formula
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*a+5 5h
}{ f(x)dx = 388 (19fn + 75fn+1 + 50fn+2
n
+ 50fn+3 + 75fn+4 + l9fn+5)
275 7.vi
- 12096 h"f ~(¢) , | ‘B.lb)*

ten times to cover the interval from zero to one.

With h = 0.05, the truncation error in Eq. (B.4) is about
3«10-14, and again the relative truncation error is never greater

than about 1078,

Differentiation

Numerical differentiation is required in two different places
in the calculations relating to Sec. 6.3. First, the z-component
of the magnetic field can be obtained from the y-component by
differentiation, because the divergence restriction demands that
h; - ioh = 0. Second, the derivatives at § = 1 of the parti-
cular solutions to the various magnetic field equations [cf. Egs.
(6.3. ) and (6.3. )] must be calculated in order to form the
total higher-order magnetic field solutions so that they have

zero slope at y = 1.

The first situation requires the differentiation of a function
over the entire interval from zero to one; however, extreme accuracy

is not necessary, because the profiles of the z-component of the

* 52
See Hildebrand,”“ p. 73.
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magnetic field that are so produced are terminal results that are
not used in further calculations. The following seven-point,
sixth-order Lagrangian differentiation formulas are reasonably
accurate and yet simple to apply. In the interior of the interval,
the symmetrical formula

0 1 :
fn = EOh (- -3 + 9fn_2‘- 45fn_1 + Ofn + 45fn+1
6 . v
_ _h vii *
M2 543 "1 f T (©) (B.3)

may be employed, but near the ends of the interval, non-symmetrical

formulas, such as

' 1
fn = €oh (-115+7£n + 360fn+1 - 450fn+2 + l+00fn+3
6
h™ _vii
-225fn+4 + 72fn+5 - 1Ofn+6) + 7 f (&) (B.6)

must be used.

The second situation requires that the derivative of a
function be calculated quite accurately at the single point
(4]

y = 1. For this purpose, the following eight-point, seventh-

order Lagrangian differentiation formula was employed.

! 1

£ = oo5n (-60f _, + 490f - 1764f
+ 3675f _, - 4900f . + 4410f
h/ viii
- 2940f _, + 1089£ ) + & £ (8) (B.7)

“The coefficients for a large number of Lagrangian differentiation
formulas are tabulated by Lowan, Salzer, and Hillman.23
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Although numerical differentiation is often a dangerous
proceduré,* the system of differentiation formulas described above
has worked out quite well. For example, the higher-order longi-
tudinal magnetic field profiles, which depend on the accuracy of
both types of differentiation for their values at y = 1 to be

5

zero, have values there that are from 1073 to 107 of the

average value of the field over the interval.

* 52
See Hildebrand, Sec. 3.8.
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Appendix C
THE DIGITAL COMPUTATION

The numerical calculations involved in this investigation
were performed by the IBM 709 Data Processing System at the
‘Computation Center of the Massachusetts Institute of Technologya*
The computer programs were written by the author in the FAP**
and FORTRAN*** programming languages, and were run on the computer
under the FORTRAN MONITOR SYSTEM.**** A total of about three and
one-half hours of computer time was used in debugging and testing

the programs and producing the final results.

%
For a description of the IBM 709, see IBM,54 while for a

description of the facilities of the Computation Center at M.I.T.,
see Computation Center.353

e
For gédescription of the FORTRAN ASSEMBLY PROGRAM (FAP), see
IBM.

dedede
‘For a description of the FORTRAN programming system, see IBM.37

Jededede

‘For a description of the FORTRAN MONITOR SYSTEM, see Computation
Center,55 and IBM.56
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Appendix D
FURTHER SETS OF VELOCITY PROFILES

The purpose of this appendix is to provide a more complete
set of velocity profiles to augment those that were discussed in
Sec. 7.2. The sets of profiles that are presented were chosen in
an attempt to make the variation of the velocity profile with the
type of excitation (even or odd) and changes in the parameters
o and M as clear as possible, without presenting an excessive

number of plots.

Sets of velocity profiles are presented for both even and
odd excitations, with o = 0.5, 1.0 and 2.0, and M = 2.0, 5.0,
and 10.0. Figures D-1 through D-6 show the profiles for even
and odd excitations, with M = 2.0, and a = 0.5, 1.0, and 2.0;
while Figs. D-7 through D-12 show the profiles for both excita-
tions, with M = 5.0, and ¢ = 0.5, 1.0, and 2.0. The profiles
for both excitations, with M = 10.0, and o = 0.5 and 1.0 are
shown in Ch. VII (Figs. 7-3 through 7-6), and this group is
completed in Figs. D-13 and D-14, which show the profiles for
both excitations, with M = 10.0 and o = 2.0.
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Appendix E
A BIOGRAPHICAL NOTE

John Paul Penhune was born in Flushing, New York on
February 13, 1936, and grew up in eastern New Jersey and on
Long Island. He was graduated from Great Neck High School in
1953, and entered M.I.T. in the same year with a four-year,
full-tuition scholarship from the Grumman Aircraft Engineering
Corporation. He worked in a variety of positions at Grumman
during the summers of his undergraduate years, and received a
B.S. degree in Electrical Engineering and a commission in the
Signal Corps in 1957. 1In the same year he entered the Graduate
School at M.I.T. in Electrical Engineering, as a teaching assistant;
and in September, 1958 he married Nancy Lee Peabody of Houlton, Maine.
During his graduate years, he taught courses in electromechanical
energy conversion and electromagnetic field theory, and was given
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