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Abstract

The superelastic effect in shape memory alloys (SMAs) is attributed to the stress-
induced reversible austenitic-martensitic phase transformations. It is characterized by
the development of significant strains which are fully recoverable upon unloading, and
also characterized by the stress-hysteresis in the loading and unloading cycle which
corresponds to the energy dissipated during phase transformations. Recently, exper-
iments have revealed size-dependent effects in the superelastic responses of SMAs
at micro- and nanoscales. For instance, the CuAlNi microwires and submicron pil-
lars show a substantially higher capacity for the energy dissipation than that of bulk
samples, which offers a significant promise for the applications in protective materials.

In this thesis, a continuum model is developed in order to improve our under-
standing of size effects in SMAs at small scales. The modeling approach combines
classic superelastic models, which use the volume fraction as an internal variable to
represent the martensitic phase transformation, with strain gradient plasticity the-
ories. Size effects are incorporated through two internal length scales, an energetic
length scale and a dissipative length scale, which correspond to the martensitic vol-
ume fraction gradient and its time rate of change, respectively. Introducing the
gradient of the martensitic volume fraction leads to coupled macro- and microforce
balance equations, where the displacements and the martensitic volume fraction are
both independent fields. A variational formulation for the temporally-discretized
coupled macro- and microforce balance equations is proposed, as well as a computa-
tional framework based on this formulation. A robust and scalable parallel algorithm
is implemented within this computational framework, which enables the large-scale
three-dimensional study of size effects in SMAs with unprecedented resolution. This
modeling and computational framework furnishes, in effect, a versatile tool to analyze
a broad range of problems involving size effects in superelasticity with the potential
to guide microstructure design and optimization. In particular, the model captures
the increase of the stress hysteresis and strain hardening in bulk polycrystalline SMAs
for decreasing grain size, as well as the increase of the residual strain for decreasing
pillar size in NiTi pillars. The model confirms that constraints like grain boundaries
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and the surface Ti oxide layer are responsible for the size-dependent superelasticity

in SMAs.
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Chapter 1

Introduction

The shape memory effect is a phenomenon wherein special materials recover their

original shape upon heating to some critical temperature. Alloys with the shape

memory effect are called shape memory alloys (SMAs). According to Otsuka and

Wayman [80], the shape memory effect was first discovered in Au-Cd alloy by Chang

and Read in 1951. Another important milestone is the discovery of the shape memory

effect in Ni-Ti alloy by Buehler et al in 1963 [16], which eventually led to successful

commercialization. The shape memory effect has also been observed in In-Tl, Cu-Zn,

Cu-Al-Ni, and others. Besides the shape memory effect, shape memory alloys often

exhibit another interesting feature, superelasticity, which refers to the complete re-

covery of deformation during a mechanical loading and unloading cycle that is far

beyond the elastic limit of common metals. Superelasticity is unusual in that despite

the complete recovery a certain amount of energy is dissipated through deformation.

The unique features of shape memory effect and superelasticity make the applica-

tions of SMAs very broad. Examples of applications include antennae and actuators

in aerospace engineering, cardiovascular stents and dental braces in biomedical en-

gineering, as well as eyeglass frames, fishing rods, and headbands of headphones in

consumer products. A review of SMAs applications can be found in [127].

The mechanism underlying the shape memory and superelastic effects is the so-

called martensitic phase transformation, a diffusionless solid to solid transformation

[80, 89]. Induced by the stress, temperature or magnetic field, the martensitic phase
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transformation occurs as a sudden change in the lattice structure where each atom

moves for less than one interatomic spacing. The phase with high order of symme-

try in lattice structure (e.g. cubic for Ni-Ti) is called austenite, the stable phase

at high temperatures. The phase with relatively low order of symmetry in the lat-

tice structure (e.g. monoclinic for Ni-Ti) is called martensite, the stable phase at

low temperatures. In Fig. 1-1, a schematic stress-temperature phase diagram and a

stress-loading cycle have been shown in order to demonstrate the superelastic effect.

The loading cycle is indicated by the vertical blue line in the phase diagram, which

can be described as follows. At temperature t > Af, the austenitic phase is stable

whereas the martensitic phase is only metastable. When loaded from the stress-free

state, the alloy first deforms elastically until the stress reaches a critical value .m,

at which the martensitic phase transformation initiates. Further loading leads to

the development of the phase transformation strain until the austenite to martensite

transformation (forward) is complete at a stress value uMf. The following deforma-

tion is the elastic deformation of the pure martensitic phase. Upon unloading, the

alloy initially deforms elastically until the stress reaches another critical value a-A,

at which the austenitic phase becomes thermodynamically favorable and the marten-

site starts to transform back to the austenitic phase. The reverse transformation is

complete at a critical stress value a-Af, and then the alloy deforms elastically in the

austenite until the deformation is fully recovered. As shown in Fig. 1-1, the differ-

ence between the stress levels during forward and reverse transformations indicates

a certain amount of energy dissipation, i.e. the area encompassed by the stress-

strain curve. This energy dissipation is attributed to the creation and motion of the

internal austenite-martensite interfaces, as well as martensite-martensite interfaces

during phase transformations. It is worth emphasizing that this energy dissipation of

SMAs comes with the complete deformation recovery, which makes SMAs promising

as protective materials.
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Figure 1-1: Schematic stress-temperature phase diagram and superelastic loading

cycle of SMAs.

1.1 Experimentally observed size-dependent me-

chanical responses in SMAs

In response to the rising implementations of micro-devices, researchers have shown

increasing interests in the behaviors of SMAs at micro- and nanoscales. The following

two questions are the main concerns. First, does the martensitic phase transformation

occur at such small scale? Second, if the martensitic phase transformation occurs,

is there any size-dependent effect? Experiments have definitely answered the first

question. San Juan et al. showed that both thermally and stress induced martensitic

phase transformations occur in single-crystal Cu-Al-Ni micro- and nanopillars [95].

Ye et al. observed the stress induced martensitic phase transformation in single-

crystal Ni-Ti nanopillars with diameter less than 200 nm [129]. Recently, Phillips et

al. observed the thermally induced martensitic phase transformation in free-standing

In-Tl nanowires with diameter down to 10 nm [88].

At the same time, some experimental results showed the evidence of the size de-

pendencies of martensitic phase transformations in SMAs. Waitz et al. observed the

suppression of thermally induced martensitic phase transformation with decreasing

grain size in bulk nanocrystalline Ni-Ti SMAs [122]. Frick et al. showed that the

strain recovered during the loading and unloading cycle diminishes with pillar diame-

ter in the compression tests of single-crystal Ni-Ti pillars [32]. Further study revealed

that this trend of losing superelasticity in Ni-Ti nanopillars does not depend on crys-
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tal orientation [31]. Ishida and Sato showed that the transformation strain during

thermally induced martensitic phase transformation first increases and then decreases

for decreasing film thickness in polycrystalline Ni-Ti thin films with average grain size

of about 5 pm [48] . Soul et al. studied both strain-rate and size effects in the ten-

sion tests of Ni-Ti wires, and they observed that the stress hysteresis is maximized

at a specific strain-rate for each wire diameter and is larger in smaller wires at the

same strain-rate [103]. For Cu-Al-Ni micro- and nanopillars subject to compressive

loading, San Juan et al. observed a significant increase in the stress hysteresis be-

tween forward and reverse phase transformations for decreasing pillar diameter [96].

Similar effects were observed in oligocrystalline Cu-Al-Ni microwire tension tests by

Chen and Schuh [18], as well as in oligocrystalline Cu-Zn-Al microwire tension tests

by Ueland et al. [117, 116]. It was reported that the strain-hardening rate during

phase transformations (or transformation modulus) increases with decreasing grain

size in the tension tests of polycrystalline Cu-Zn-Al bars [102]. It was also reported

that both the stress hysteresis and the strain-hardening rate increase with decreasing

grain size in the tension tests of polycrystalline Cu-Al-Be bars [71], as well as Cu-

Al-Mn wires and sheets [109, 108]. Recent reviews of the experimentally observed

size-dependent responses of SMAs can be found in [123, 18, 38].

In [18], Chen and Schuh analyzed the experimental evidence of size-dependent

martensitic phase transformations in SMAs, and they classified the apparent size-

dependent effects into two groups. The first group of size effects results from the

thermomechanical coupling. The austenitic and martensitic phase transformations

are accompanied by the latent heat release and absorption, as well as the heat release

due to the internal friction. If there is not enough time for heat transfer, the accumu-

lated heat will increase the temperature of the material and stabilize the austenitic

phase, giving rise to an increase of the critical stress for the successive forward phase

transformation, i.e. a hardening effect. This situation is likely to occur in speci-

mens with a small surface to volume ratio, and also in experiments performed with

a relatively high strain rate. As a result, size effects in this group are inherently

dependent on the ambient temperature, surrounding materials, and the strain rate.
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The other group of size effects results from intrinsic properties of the materials. Since

the martensitic phase transformation is associated with a change in lattice structure,

the grain boundaries are obstacles to the growth of the martensitic phase within each

grain. Decreasing the ratio of grain size to specimen size leads to a stricter compat-

ibility requirement and thus inhibits the martensitic phase transformation. In fact,

the increase in the critical martensitic transformation stress O-Ms and the decrease in

the martensite start temperature Ms for decreasing grain size-to-specimen size ratio

were reported in [109, 122, 71, 120]. In addition, Chen and Schuh proposed another

intrinsic size-dependent effect. They argued that the size-dependent stress-hysteresis

observed in single-crystal Cu-Al-Ni compression tests [96] and oligocrystalline mi-

crowire tension tests of copper-based SMAs [18, 117, 116] can be attributed to the

enhanced rate-independent internal friction during phase transformations.

1.2 Previous work on SMA modeling

Two types of continuum models have been proposed: those aiming to describe the mi-

crostructures during phase transformations, e.g. the spatial distribution of austenite

and martensitic variants in the material; and those focused on simulating macroscopic

responses, e.g. the stress-strain relation.

For the work aiming at microstructures, important tools include the Bain matrix or

the transformation matrix, which is defined by the deformation mapping from the lat-

tice in austenite to the martensitic variant, and the kinematic compatibility condition,

i.e. the requirement for piecewise homogeneous deformation. With these tools and

the crystallographic information, researchers successfully predicted various patterns

of the austenite-martensite and martensite-martensite interfaces, and also calculated

the maximum transformation strain during uniaxial loading [8, 44, 49, 131, 62, 63, 11].

Bhattacharya summarized the efforts along this line in his book [10]. However, there

are some difficulties that limit the applications of this microstructural approach.

The multi-well potential energy resulting from the crystallographic symmetry is non-

convex [10, 119], which causes numerical issues like mesh dependence when solving
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the corresponding boundary value problems. Although some efforts have been at-

tempted through relaxing the multi-well energy [6, 70], it is still difficult to simulate

the evolution of microstructures and obtain macroscopic stress hysteresis that is com-

parable with experimental results. It is worth noting that the phase field method is

employed to study the microstructure evolution in SMAs, and in particular a gradient

term of the phase field is added to the multiwell potential energy for the purpose of

regularization [25, 26, 27, 125, 60, 58, 59].

For the work aiming at macroscopic responses, the kinetics of phase transforma-

tions is the most important concept. Tanaka et al. developed a thermomechanical

framework for martensitic phase transformations where the martensite is described

by a scalar, the martensitic volume fraction, as a function of stress and tempera-

ture. They also applied the framework to study superelastic and shape memory ef-

fects in uniaxial loading tests, where exponential hardening is assumed during phase

transformations [110]. Brinson improved Tanaka's model by allowing variable elastic

stiffness, as well as by introducing two internal variables that enable the separate de-

scription of thermally-induced and stress-induced martensitic volume fractions [14].

Abeyaratne and Knowles constructed an explicit tri-linear stress-strain relation, and

studied hysteretic responses by describing the phase transformation as a propagat-

ing discontinuity in strains [2, 3]. Abeyaratne et al. developed a kinetic law for the

transition between two martensitic variants under biaxial loading tests of Cu-Al-Ni

SMA [1]. In the three-dimensional thermomechanical modeling of SMAs, martensitic

phase transformations are usually described by a generalized J 2 -type plasticity the-

ory, where an extra yield surface is introduced for the reverse phase transformation

[64, 13, 7]. Considering numerical simulations, Brinson and Lammering implemented

the finite element calculations for Brinson's one-dimensional model and simulated

uniaxial loading tests [15]. Auricchio et al. implemented the three-dimensional finite

element calculations for the generalized plasticity theory of SMAs, and simulated

superelastic behaviors in four-point and three-point bending tests [7]. Qidwai and

Lagoudas evaluated the numerical implementations of thermomechanical SMA con-

stitutive models using return mapping algorithms [91]. Reese and Christ developed
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a three-dimensional finite deformation SMA constitutive model and implemented the

finite element calculations [94, 19]. For a thorough review of the macroscopic thermo-

mechanical modeling of SMAs, the reader is referred to the recent book of Lagoudas

[54]. In order to account for the orientation-dependent responses of single-crystal

and polycrystalline SMAs, researchers proposed crystal plasticity-like models where

slip systems are replaced by the prescribed martensitic phase transformation systems.

Thamburaja and Anand developed a polycrystalline SMA model to study the texture

effect where 24 transformation systems of Ni-Ti SMA are considered [113]. Later,

this model was extended by Anand and Gurtin to include 192 transformation sys-

tems as well as thermal effects [4]. Some other examples of crystalline SMA models

can be found in [101, 30, 37, 51, 85, 100]. It is important to note that introducing

multiple transformation systems requires nontrivial constitutive updates to determine

the active systems and their volume fraction changes. The computationally intensive

constitutive updates limit either the number of transformation systems that can be

considered or the simulation scale like the number of elements in a finite element

mesh. Patoor et al. reviewed the modeling work of single-crystal SMAs in [85], and

Lagoudas et al. reviewed the corresponding work of polycrystalline SMAs in [53].

Atomistic approaches have also been employed to study martensitic phase trans-

formations in binary SMAs like Fe-Ni [23, 73], Ni-Al [61, 82, 84, 115], Ni-Mn [45], and

Ni-Ti [72, 133, 134, 39]. With tools of molecular dynamics (MD) and density function

theory (DFT), researchers were able to investigate lattice structural changes as well

as the effect of free surface and various defects (dislocations, grain boundaries) during

martensitic phase transformations of SMAs. Through MD simulations of thermally

and stress induced martensitic phase transformations in Ni-Al SMA, Li et al. showed

that grain boundaries are not favorable for the martensite nucleation and they even

hinder the martensite growth [61]. Hildebrand and Abeyaratne investigated the ki-

netics of detwinning in Ni-Mn SMA using MD simulations, from which they obtained

an explicit formula for the continuum kinetic relation of detwinning [45]. Mutter and

Nielaba studied thermally-induced austenitic phase transformation in Ni-Ti nano-

particles, where they observed through MD simulations that the austenitic phase
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transformation initiates at the surface and then propagate into the interior of parti-

cles, and they also showed that the austenitic transformation temperature decreases

with decreasing particle size [72]. Ni et al. showed that the martensitic phase trans-

formation temperature decreases with decreasing grain size in nano-grained Fe-Ni

SMA [73]. It is important to note that although atomistic simulations can provide

insights of structural changes in SMAs, macroscopic responses like the stress-strain

relation obtained usually cannot be quantitatively compared with experimental obser-

vations due to the limited simulation timescale [134] and the accuracy of interatomic

potentials. A recent review of atomistic approaches for SMAs can be found in [52].

So far, there are few models that incorporate size-dependent effects of SMAs.

Sun and He proposed a two-dimensional strain gradient viscoelastic model to study

the grain-size dependence of the superelasticity in bulk nanocrystalline Ni-Ti SMAs

[107]. In their work, grain boundaries are assumed to be finite-thickness layers that

do not participate in martensitic phase transformations, and the strain gradient is

introduced to help regularize the multi-well strain energy and avoid numerical issues.

Their model captures the experimentally observed decrease in the stress hysteresis

with decreasing nanograin size. Petryk et al. developed a model of evolving mi-

crostructures, which considers explicitly the evolution of the austenite-martensite

interface and the twin boundaries [86, 87, 106]. In their work, a fraction (close to

one) of the interfacial energy stored during loading is assumed to be dissipated as the

interfaces diminish during unloading, and a single type of laminated microstructure

is assumed to expand within each grain. Their model is able to describe the increase

in the stress hysteresis for decreasing grain size. Waitz et al. investigated the sup-

pression of thermally-induced martensitic phase transformation in NiTi nanograins

[121]. With the nanograin modeled as an inclusion comprising twinned martensite

in austenite matrix, they calculated various energy contributions including the strain

energy and chemical energy, and obtained an energy barrier that increases for decreas-

ing grain size. Their model successfully predicts an experimentally observed critical

grain size, 50 nm, under which the thermally-induced martensitic phase transfor-

mation is completely suppressed. As mentioned in the previous paragraph, there
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are atomistic simulations that reveal size-dependent transformation temperatures in

nanoscale SMAs [72, 73]. Unfortunately, there is no experimental result that can

be compared with these simulations since the atomistic simulations were necessarily

performed with extremely small sizes, e.g. nanoparticles with diameter between 4

and 17 nm [72] and nanograins with grain size between 5 to 15 nm [73].

It is worth to note that there has been rich work on the study of size effects in

plastic deformation [104, 29, 105, 126, 38] and also the development of size-dependent

plasticity theories [28, 34, 46, 5, 41, 42, 40]. Anand et al. proposed a general frame-

work to incorporate size effects in plasticity theories by combining a virtual power

principle and restrictions of thermodynamics [5, 41, 42, 56, 57]. In their framework,

the gradient of the plastic strain and its time rate of change are introduced to ac-

count for the contribution from non-uniform plastic deformation to the free energy

and the energy dissipation, respectively. Associated with the gradients, various in-

ternal length scales are included, which enable the description of the size-dependent

yield strength and flow stress. There were a couple of attempts to combine gradient

plasticity theories with superelasticity, however the purposes are for the regularization

of numerical methods rather than size effects [114, 112, 22].

1.3 Thesis objectives and approach

As can be seen, there has been significant progress on SMA modeling. However, only

few models incorporate size effects, and there is in general a lack of three-dimensional

formulation for modeling size effects of SMAs. There has also been rick work on

the development of size-dependent plasticity theories, however there has not been

any attempt to adopt these theories in modeling size effects of SMAs. The overar-

ching goal of this thesis is to develop a computational framework for modeling size

effects of SMAs in three dimensions based on a sound formulation incorporating size

dependencies. Specific objectives are: 1) to develop a superelastic model for the size-

dependent strain hardening and stress hysteresis during phase transformations; 2) to

develop a large-scale three-dimensional computational framework for the simulations
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of size-dependent mechanical responses of SMAs; 3) to study the mechanism of size

effects due to internal and external constraints of phase transformations, and link

microscale mechanisms to macroscopic responses.

In order to achieve these objectives, I pursued a continuum approach by extending

the local thermomechanical formulation of superelasticity based on the martensitic

volume fraction and flow rules [13], and combining it with the gradient plasticity

theories of Anand et al. [5, 41, 42, 56, 57]. In this approach, both the displacements

and the martensitic volume fraction are treated as primary independent fields. To

account for the additional contribution from nonuniform phase transformations, the

gradient of martensitic volume fraction and its time rate of change are introduced in

the free energy and energy dissipation, respectively. Through the gradient terms, both

an energetic length scale and a dissipative length scale are included in the model. We

showed that this approach has the following benefits. First, the martensitic volume

fraction as an independent field facilitates the representation of constraints for phase

transformations. Secondly, a rich array of size effects can be described through the

two internal length scales. Thirdly, as a continuum approach, this model is suitable

for large-scale three-dimensional simulations, which enable the investigation of size-

dependent responses in SMAs with unprecedented resolution.

We initially developed a one-dimensional nonlocal superelastic model, and inves-

tigated the effects of the two internal length scales. The model was then applied to

simulate the size-dependent stress hysteresis in the compression tests of Cu-Al-Ni pil-

lars. The three-dimensional nonlocal superelastic model was developed in both small

strain and finite deformation. In order to solve the tightly coupled governing equa-

tions resulting from the nonlocal superelastic model, a variational formulation for the

incremental problem was proposed as well as a computational framework based on

this formulation. A robust and scalable solver, parallel dynamic relaxation method,

was adapted within the computational framework, and was shown to be more efficient

than staggered Newton methods for large scale problems. The computational model

was then applied to the study of the grain boundary constraint effect in polycrystalline

SMAs as well as the surface Ti oxide effect in single crystal NiTi pillars.
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As a separate effort, analytical solutions were investigated in order to better un-

derstand the model responses. For the model with only a dissipative length scale

(Appendix A), a minimization conjecture on the normalized plastic strain rate in [5]

was linked to the variational incremental formulation presented in this thesis, and

the existence of continuous minimizers was discussed. For the model with only an

energetic length scale (Appendix B), an analytical stress-strain relation was derived

for stress-controlled uniaxial loadings.
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Chapter 2

One dimensional nonlocal

superelastic model

Recently, San Juan et al. reported experimental observations of the superelastic

effect in Cu-13.7A1-5Ni (wt%)[93] micro- and nanopillars subjected to compressive

loading. Their observations exhibit a clear size dependence in damping capacity

upon unloading [95, 96]. More specifically, their uniaxial compression tests on [001]-

oriented Cu-Al-Ni single crystals show that the hysteresis loop in the stress-strain

curve for a nanopillar is significantly larger than that for a bulk single crystal. In

order to simulate this size-dependent effect, a one-dimensional nonlocal superelastic

model is developed in this chapter following the gradient plasticity theories [41, 5, 40].

Two internal length scales, an energetic length scale f, and a dissipative length scale

fd, are introduced in the free energy and the dissipation rate respectively, leading

to gradient terms on the martensitic volume fraction and its time rate of change.

The formulation leads to a coupled set of partial differential equations of macroscopic

equilibrium and micro-force balance, whose unknowns are the spatial distribution

of the displacement and the martensitic volume fraction. The model responses are

investigated with focus on the effects of the internal length scales. The model is then

applied to simulate the pillar compression tests and compared with the experimental

results.

27



2.1 Formulation

Consider a pillar with height h subject to the stress-induced martensitic phase trans-

formation under isothermal condition at temperature T. The martensitic volume

fraction is represented by . For small strains,

E = U, = ee + ,(2.1)

where u is the displacement, E is the total strain, Ee is the elastic strain, and rt is the

maximum transformation strain, which is a material constant.

The free energy per unit volume comprises an elastic, a chemical and a nonlocal

term
1 1 Q/2t\ 22

= E( )(E- t)2 - Aseq(T - Tq) + SOfe2 2 (2.2)
=2 2Jtkx

where E( ) EEm) is the effective Young's modulus [66, 65], Ea and Em areEm,+ (Ea-Em)

the Young's moduli in austenite and martensite respectively, Teq is the equilibrium

temperature between the two phases in the stress-free state, Aseq is the austenite to

martensite transformation entropy, and T is the temperature at which the experiments

are performed. The nonlocal term can be viewed as the interface energy between the

two phases. So is a model parameter with the dimension of stress and fe is an internal

(energetic) length scale.

The introduction of a gradient term on the volume fraction in the free energy

results in a separate (micro-force) equilibrium equation where the volume fraction is

the primary unknown. Consider any segment of the pillar {x E [X 1 , x2 11 0 < XI <

x 2 < h}. The internal power in this segment is defined as

fX2

pint(e , -- 1 e + k + k",x dx , (2.3)

where i is the rate of variable *, o is the stress, k and kn' are the work-conjugates to

the volume fraction and its gradient ,x respectively. The external power expended
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on this segment is defined as

pex t(it) = (, (2.4)

where i and k are, respectively, the applied boundary traction and volume fraction

force conjugate. At any fixed time r, the principle of virtual power requires

pint (e ) = pext (, U) (2.5)

for any generalized virtual velocity (t, e, ) satisfying the kinematic requirement

U, = E e + s*. Integration by parts leads to the variational statement

0 = - j ,xf dx + j (k - ae - k")ni dx
X1 X I

+ [(U - )] -+ [(k"' -I)

which yields

O= 0, (2.6)

k - - = 0, (2.7)

for x E (X1 , x 2 ), and a(xi, T) = i(xi, T), kn'(xi, 7) (Xi, T), i = 1, 2. Equations (2.6,

2.7) are valid for any x 1 , x 2 in the admissible range, and in particular, for the whole

pillar (x 1 = 0,x 2 = h).

Thermodynamic restrictions require that the temporal increase in the free energy

should not be greater than the external power expended on the material, i.e.

X dx < pCX
t (j, ) . (2.8)

From Eqn (2.5) it then follows that

- e - k - k"nl,2 < 0 (2.9)
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for x C (0, h). By applying the temporal derivative to the free energy density in Eqn

(2.2) and assuming the elastic response

o- =(2.10)

Eqn (2.9) is reduced to

0 < k O(E t)2 + Aseq(T - Te)0 2 O eq q

+ (k" - Sof2 ,X) , = D, (2.11)

where D is the rate of energy dissipated per unit volume. Inspired by the strain

gradient plasticity theories [5, 41, 40], k and k"' are defined as follows

k = O(E - se)2 - Aseq(T Te) + () , (2.12)
2 a+ 2 (+ f2

k so±2 ,+ , (2.13)
V()2 ± (Q ,1)2

where Y is a model parameter with the dimension of stress, and ed is an internal

(dissipative) length scale, which defines the influence of the nonuniform distribution

of on the dissipation. Indeed, it has been shown in [18] that in small samples of

SMA, the surfaces are likely pinning points for the transformation, which tend to

suppress the rate of transformation near them, relative to bulk regions away from the

surfaces. This provides a possible underlying mechanism for a gradient in (, which in

turn gives rise to the dissipative length scale ed. The dissipation function (per unit

volume) then takes the form

p = Y ( )2 + f2( ,x)2 , (2.14)

which is nonnegative as required by Eqn (2.11). It is clear that a nonuniform distri-

bution of and larger fd leads to more dissipation.
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The martensitic phase transformation occurs when the thermodynamic driving

force associated with the volume fraction reaches some critical value and stays at

that value until the transformation is complete [85, 54, 4]. Inserting Eqs. (2.12, 2.13)

in Eqn (2.7), we obtain

I OE
- (6 - (t)2 + Aseq(T - Teq) + Sof2 ,x

2 k(

( d (2.15)

which governs the evolution of the volume fraction . It should be noted that Eqn

(2.15) degenerates to O-st + Aseq(T - Tq) = sign( )Y, for # 0, which are the

constraints during phase transformation in the local model [4], if and are uniform

or both internal length scales fe and fd are zeros, and = 0.

2.2 Effects of energetic and dissipative length scales

Replacing the stress - from Eqn (2.10) in Eqs. (2.6, 2.15) leads to two coupled par-

tial differential equations governing the displacement u(x, t) and the volume fraction

distribution (x, t) with suitable initial and boundary conditions. In our experimen-

tal tests, the pillars are assumed to be initially in a stress-free austenitic phase, i.e.

u(x, 0) = 0, (x, 0) = 0 for x E [0, h]. On the boundary, u(0, t) 0, u(h, t) = f(t),

where it(t) is the prescribed displacement, while (0, t) = (h, t) = 0 which assumes

that the ends of the pillar are obstacles to the martensitic phase transformation. This

fully specifies the initial boundary value problem. The resulting equations are solved

using a finite element discretization.

The basic model response to compressive loading and unloading cycles is explored

for the following parameter values: E = 10 GPa, Em = 15 GPa, E' = -0.04,

Aseq(T - Tq) = -4 MPa, So = 0.1 GPa, Y = 1 MPa, h = 1 m. Figure 2-1 shows a

stress-strain cycle fixing fd =0 and varying t. The solid line corresponds to L = 0

(local model) and exhibits the typical superelastic response of bulk single crystal

31



25O
-I/ =0
- - - Ijeh=.01

.. I/h=0.03
2000

100-

50 -

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
Strain

Figure 2-1: Stress u vs macroscopic strain it(t)/h for 4e/h 0, 0.01, 0.02, 0.03, ed 0-
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Figure 2-2: Evolution of the martensitic volume fraction for the 4e/h = 0.03, ed = 0
case. Solid lines are used for loading, dashed for unloading.
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Figure 2-3: Stress a vs macroscopic strain ft(t)/h for ed/h = 0,0.1, 0.2,0.5, f= 0.
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Figure 2-4: Evolution of the martensitic volume fraction for the fd/h 0-5, fe = 0

case. Solid lines are used for loading, dashed for unloading.

SMAs. For increasing , the phase transformation stage exhibits increased hardening,

while the critical stress for the forward transformation and the energy dissipation are

not affected. During unloading, the reverse transformation starts earlier but ends at

the same point. The evolution of the martensitic volume fraction is plotted in Fig.

2-2 for the case e = 0.03. Because of the boundary constraints, the distribution

of the martensitic volume fraction along the pillar is nonuniform during the phase

transformation. This nonuniformity is responsible for the smooth transition in the

stress-strain curve at the end of the forward transformation and at the beginning of

the reverse transformation, in contrast with the sharp changes exhibited by the case

of L = 0. Figure 2-3 compares the role of the dissipative length scale ed fixing fe = 0.h

As L increases, the gap between the critical stresses for the forward and the reverse
h

transformation also increases, resulting in increased energy dissipation. Figure 2-4

demonstrates the evolution of the martensitic volume fraction for the case L = 0.5.h

It differs significantly from Figure 2-2, specifically during the unloading part, where

at first the reverse transformation occurs everywhere in the pillar, which leads to a

sharp change in slope in the stress-strain curve as in the case of d = 0. Close toh

the end of the reverse transformation, a pure austenitic domain first appears in the

center of the pillar and then gradually expands toward the specimen edges, leading

to a smooth segment in the stress-strain curve.
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Figure 2-5: Simulation of single crystal Cu-Al-Ni compression tests in comparison
with experimental results [95, 96].

2.3 Simulation of CuAlNi nano-pillar compression

tests

Subsequently, we explore the model's ability to describe the experimentally observed

response of single crystals for three different specimen sizes: (i) bulk single crystal

(h = 9 mm), (ii) micropillar (h = 5.1 pm, diameter 1.7 sum), and (iii) nanopillar

(h = 3.8 pm, diameter 0.9 pm) [95, 96]. The Young's modulus of the austenitic

phase, Ea = 22.1 GPa, was obtained from the measurement in [96], Em = 23.5

GPa is extracted from the slope of the initial unloading part of the stress-strain

curve in the case (ii), t = -0.05 is obtained from the calculation in [131]. Other

model parameters are calibrated to the case (ii), which furnishes the following values:

Aseq(T - Teq) = -7.6 MPa, So = 0.22 GPa, Y = 1 MPa, e = 0.1 pm, and fd =

3.5 um. Figure 2-5 shows the computed (solid) and experimental (circles) stress-

strain curves.The model captures a number of features of the response, including the

elastic loading and unloading in the two phases, the hardening during the forward and

reverse transformation, and the size of the hysteresis loop (dissipation). Considering

that temperature changes associated with the transformation were not experimentally

available, the thermal stress was held fixed at the calibrated value. This explains the

discrepancy in the stress levels predicted for the remaining cases. Regarding the
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negative slope in the experiment in the case (iii), we note that there are explanations

available in the literature for some superelastic materials [66], and in the present case

we believe this is an artifact of the mechanical test apparatus, which operates in a

condition that is neither exactly load- nor displacement-controlled.

In summary, we presented a nonlocal superelastic model for single-crystal SMAs

including both an energetic and a dissipative length scales. The agreement with

experimental observations suggests that the size-dependent effects in the hardening

and energy dissipation of single-crystal Cu-Al-Ni SMAs can be attributed to the

nonuniform evolution of the martensitic phase arising during the deformation.
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Chapter 3

Three dimensional nonlocal

superelastic model

In this chapter, a three-dimensional nonlocal superelastic model is developed in both

small strain and finite deformation formulations, following the strain-gradient plas-

ticity theories by Anand et al. [5, 56, 57]. The coupled governing equations resulting

from the nonlocal superelastic model are then discretized in time, leading to the for-

mulation of the incremental problem, which is then restated in a variational form and

fully discretized. A general algorithm is proposed to solve the fully-discretized incre-

mental problem. A specific solver, parallel dynamic relaxation method, is presented

in detail and compared with other solvers. Applications of the three-dimensional

nonlocal superelastic model will be presented in the next chapter.

3.1 Small strain formulation

Assume that the SMA solid occupies the volume B C R'. At each material point

x E B, the displacement field is denoted as u, and the strain tensor is

16 = -[Vu + (Vu) T ] , (3.1)
2
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where V denotes spatial derivatives and ()T denotes the transpose. The strain tensor

can be decomposed into an elastic part e' and a phase transformation part Et, i.e.

eee + Et . (3.2)

The evolution of the phase transformation strain tensor is assumed to follow the

relation

,t = A (3.3)

where A is the phase transformation flow direction. Following Boyd et al. [13], we

assume that A takes the following form:{ e , t 0 devo

A = 0,devl > (3.4)

2 IIEtZrII

where odev = a- - 1trace(a)l is the deviatoric part of the stress tensor, e is the

maximum transformation strain, etr is the phase transformation strain tensor upon

unloading, and 11 - 11 denotes Frobenius norm. The flow direction above differs from

isotropic J 2 plasticity theories in the reverse transformation part, and the specific

definition ensures that the phase transformation strain accumulated during the for-

ward phase transformation will diminish during the reverse phase transformation. In

[114], the flow direction contains an additional factor to account for the tension and

compression asymmetry, which we do not pursue in this work for simplicity.

Free energy

The free energy per unit volume comprises the elastic, chemical, hardening and non-

local terms, i.e.

1 11
(e, (, V() ( 2 ee) ' - Aseq(T - Teq) + H t 2 + I So2 2 . (3.5)

2 22 e
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In this free energy expression, is the martensitic volume fraction. The elastic moduli

W are defined as W = (1- - )A +e2M with eA and WM the elastic moduli of the pure

austenite and martensite, respectively. Tq is the equilibrium temperature between

the two phases in the stress-free state, ASeq is the austenite to martensite transfor-

mation entropy, and T is the temperature at which experiments are performed. The

hardening coefficient Ht with dimensions of stress accounts for the classic hardening

effect during phase transformations. So is a model parameter with dimensions of

stress, and Le is an internal (energetic) length scale.

Governing equations

Introducing the gradient of the martensitic volume fraction in the free energy (3.5)

leads to an extra governing equation besides the classic force balance equation. Prin-

ciple of virtual power is thus invoked to derive the governing equations. We define

the following work conjugates: o with respect to e k with respect to , and k"n

with respect to V . The internal power expended in any sub-domain V C B can be

expressed as follows

pit ) j o - e + k + k"n - V dV. (3.6)

The external power expended on this sub-domain can be expressed as

pext (n, J) = ii- + fkd dS ,(3.7)

where i is the applied traction, and k is the applied work-conjugate to d.

The principle of virtual power states that the internal power equals the external

power, i.e.

pint (e ) - pext (j, () . (3.8)
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for any generalized velocity (i , e, i) subject to the following kinematic requirements

e= e + A, (3.9)

1
= -[Vi + (Vi)T ] . (3.10)

2

With these kinematic requirements, the internal power in Eqn (3.8) can be reformu-

lated through integration by parts

pin = t a : e + k + kn -V dV

= o : (, -- A) + k - divki n'dV + k" -n dS
JV fa V

j -div(o-). i -+ (-o : A + k - div k") I dV + J( - n) - -+ (k"I - n) dS,

(3.11)

where n is the unit outer normal to the surface DV, and a is assumed to be symmetric.

Due to the arbitrariness of the generalized velocity, the principle of virtual power leads

to the classic force balance equation

div(a) = 0 , (3.12)

and the micro-force balance equation

a: A - k + div(k ') = 0 (3.13)

in the body, and also two boundary conditions:

a n = (3.14)

ki - n =. (3.15)
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Constitutive relations

Thermodynamic restrictions require that the increment of the free energy should not

be greater than the external power expended, i.e.

/ j dV (3.16)

With the expression of the free energy rate

ee + [I ee) : e' - Aseq(T - Teq) + Ht 1 + so v -V ,

Eqn (3.16) and the principle of virtual power (3.8) lead to the following inequality

(ree) : e + 2 (,W e) . E - ASeq(T - Teq) + Ht< + So2V . V dV

< j e + k + k 1 
. V dV,

JV

which then gives rise to

0 ( - We) : e

+ [k - (We") : ee + Aseq(T - Teq) - Ht ]

+ (kun - Sof2V ) . V. (3.18)

Eqn (3.18) imposes thermodynamic restrictions on the constitutive relations. In

order to satisfy Eqn (3.18), constitutive relations for the work conjugates 0-, k and

k are defined as follows:

Stress o, obeys Hooke's law

(7 = %e . (3.19)

k as the work conjugate to j is defined as

k =(Wee) - - 'Aseq(T - Teq) + H t  + ,
2 ()2 + iI 2
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where fd is an internal (dissipative) length scale, and Y with dimensions of stress is

the dissipative resistance to phase transformations.

k as the work conjugate to V is defined as

= SOf2 Ve + (3.21)
( )2 + lVilJ2

With the newly defined constitutive relations, the energy dissipation rate per unit

volume can be expressed as

D= k - I(,ee) : e + Aseq(T - Tq) - Ht] + (kun - Sof2pV) . V2 (3.22)
-Y (d)2 + V I 2 ,

which is always non-negative.

Microforce balance equation revisited

Using constitutive relations (3.20) and (3.21), the micro-force balance equation (3.13)

can be rewritten as

o- : A - (c6e") . ee + Aseq(T - Teq) - Ht ( + So 2 div(V )

-div. (Y) V (3.23)Y ~~ div d1

(2 +Ell2 (g 2 lvl2

which is in general nonlinear due to the presence of the dissipative length scale Ed. If

both internal length scales are zeros, Eqn (3.23) becomes

a- A - I(',e") : ee + Aseq(T - Teq) - Ht = sign()Y , (3.24)

which represents phase transformation conditions in classic superelastic models [54].

Therefore, the nonlocal superelastic model presented can be viewed as a nonlocal ex-

tension of classic superelastic models (local theory) in such a way that the martensitic

volume fraction , an internal variable in the local theory, becomes an independent
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variable whose evolution is governed by the partial differential equation (3.23).

3.2 Finite deformation formulation

The finite deformation version of the nonlocal superelastic model uses the multiplica-

tive decomposition of deformation gradient and a logarithmic strain measure. The

derivation follows the same approach as the one in the small strain formulation.

Assume that the deformation gradient F = Vu +I can be decomposed multiplica-

tively into

F = FeF t , (3.25)

where Fe and Ft are the elastic and the phase transformation deformation gradients,

respectively. The evolution of Ft is assumed to follow the relation

P t = ( A)F t , (3.26)

where A denotes the flow direction tensor, which will be defined later. The right

Cauchy-Green deformation tensor C, the phase transformation deformation tensor

Ct, and the elastic deformation tensor Ce are expressed as

C = FTF, Ct = F tTFt , and Ce = F"Fe = FtTCFtl. (3.27)

Applying polar decomposition to the deformation gradients leads to

Fe = ReUe , and Ft = RtU t , (3.28)

where Re and Rt are rotations, while Ue and Ut are positive-definite stretch tensors.

Assume that {A , r'} and {A , r}} are the eigenvalue and right eigenvector pairs of Ue

and Ut, respectively. Then the logarithmic elastic strain tensor is defined as

= log Ce = log(Ai)r! 0 ri , (3.29)
i=1
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and the logarithmic phase transformation strain tensor is defined as

13
E t = log C= log(At)rt & r. (3.30)

Free energy

The free energy per unit volume consists of elastic, chemical, hardening and nonlocal

terms

1 1 1
(WEe) : Ee - Aseq(T - Teq)( + Ht () 2 + 1SO12 1 2 .(3.31)

2 2 2Oe VI 2
.(31

The elastic moduli W are the arithmetic average of the two phases, i.e. W = (1 -

)WA ± WM with , the volume fraction of martensite. Teq is the equilibrium tem-

perature between the two phases in the stress-free state, Aseq is the transformation

entropy from austenite to martensite at Teq, and T is the temperature at which ex-

periments are performed. The hardening parameter Ht with dimensions of stress is

used to describe the classic strain-hardening during phase transformation. So is a

model parameter with dimensions of stress, and &, is an internal (energetic) length

scale.

Governing equations

Introducing the gradient of in the free energy leads to an additional governing partial

differential equation (micro-force balance) associated with the field . Principle of

virtual power is thus invoked to determine the governing equations. Consider any

sub-domain V of the solid. The internal power expended can be expressed as

pint (Ee, ) j Se : e + ki + k n - V dV (3.32)

where Se, k, k"' are the work-conjugates to Ee, 4, and V , respectively.
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The external power expended on this sub-domain can be expressed as

(3.33)

where i and k are the traction and micro-traction, respectively.

The principle of virtual power states that the internal power equals the external

power

pint (Ee, ) - pext(o, ) (3.34)

for any generalized velocity (ii, , E) subject to the kinematic requirements:

= Vii = eF t + Fep t

-e e

ace

OEe
ce = Ce

In order to simplify the derivation, we further define

C = FT F + FT# .

The first term in the internal power (3.34) can be rewritten as follows:

Se : Ee = S : (c : Ce)

eSe : [Ee
ace

: (-if

- Ft l(2Se : OEe)Ft
ace

= F'(2S' : OCe )F t T

Ce + Ft T Ft

1-T : - (-2 Ce(Se-
2

: F - [Ce(2 Se :

The internal power in (3.34) can be then reformulated using integration by parts
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,Pt = (A) Ft ,

(FeT Fe + Fe Fe)

(3.35)

(3.36)

(3.37)

- Ceft

(3.38)

P ext (nl J) = -n+ keddS

it = PtFt

.1

ace



Fe(2Se : Ee)Ft
aCe

: F - ICe(2Se :

+ J k + k"n1 -VdV
JV

T]
-div IFe(2Se= 

V

}dV
+ j { [Ce(2Se : Oe)] :

+ F(2 Se : aEe F
'V _F aCe F

n

where n is the unit outer normal to the surface &V.

Two stress tensors can be defined to simplify the notation in Eqn (3.39): first the

work conjugate to F,

and secondly

P = Fe(2Se : M)F
Mce

me = Ce (2Se : )e
aCe'

which provides the driving force for phase transformations.

Equation (3.39) and the principle of virtual power (3.34) result in two partial

differential equations in the body, i.e. the macroforce balance equation

div(P) = 0 , (3.42)

and the microforce balance equation

Me : A - k + div(k n) = 0 , (3.43)

as well as two boundary conditions on the surface:

P . n =t and k n - n = k . (3.44)
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as follows:

pint (ke, ) = V
) : A dV

ace_

- fidV

- f + k"n1 - n dS , (3.39)

(3.40)

(3.41)

: E )Ft-
ace

A+ k - div(kn1)



Constitutive relations

Thermodynamic restrictions require that the temporal increase in the free energy

must be no greater than the external power expended, i.e.

J OdV < Pext
(3.45)

With the rate of free energy per unit volume

a@
.E e e + + OV (3.46)

and the principle of virtual power (3.34), Eqn (3.45) then leads to

0 < (S e - )- Ee
.E + (k - + (k ' o~9 )9v~ V . (3.47)

In order to satisfy the restriction of Eqn (3.47), constitutive relations for the

work-conjugates are defined as follows:

Se as the work conjugate to E obeys Hooke's law

Ee E (3.48)

k as the work conjugate to is defined as

k = +
()2 + (ed )2 J VI 2

= (%E) : Ee - Aseq(T - Tq) + H + (3.49)Yd

()2 + l)2 gp

where fd is an internal (dissipative) length scale, and Y with dimensions of stress is

the dissipative resistance to phase transformations.
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k as the work conjugate to V is defined as

k = +

+ () 2 +(ed) 2 1 V 2

= Sof2V + .Yfd (3.50)
( )2 + (ed)2 1 2

Using Eqn (3.48), (3.49), and (3.50), the energy dissipation rate per unit volume

can be expressed as

D =(Se ): Ee + (k- )+ (k" n- ) -

y ()2 +IV I2 , (3.51)

which is always non-negative.

The expressions of stresses P and M', Eqn (3.40) and (3.41), involve derivatives

of the logarithmic elastic strain E , i.e.

M~e lalog Ce

DCe 2 DCe (3.52)

which can be computed straightforwardly using the explicit formula in [77].

When elastic responses are isotropic, P and M' can be obtained without the

calculation of derivatives of the logarithmic elastic strain. In this case, it can be seen

from Hooke's law (3.48) that Se is symmetric and it has the same right eigenvectors

{re} as Ee and Ce, i.e. Se can be written as

3

e S r! e re (3.53)

with eigenvalues s , for i = 1, 2, 3. Applying the formula for derivatives of the loga-

rithmic mapping in [77] to the symmetric tensor Ce (3.27) results in

a log Ce 3 (3.54
(qCe = : gij (ri (9 rg) (r i g (3.54)

ij=1
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where coefficients gij are defined as

Iij

if c $ cj

otherwise
(3.55)

with c = (A) 2 , for i = 1, 2, 3, the eigenvalues of Ce. Therefore, it can be deduced

that

Se: log Ce
S 0. Ce -

3

(ser% e re) : [gi (r! e re) 9 (r! e re)]
i,j,k=1

3

= segg 9(r e9 re) : (r re)] r e re
i j 1

=
5
ik jk

3e

k r1 Ck

It follows immediately that M' (3.41) can be simplified as

3e

Me = (ciri 0 re)( re 0 r%)
i,k=1 k

3

= e r e re = Se.

k=1

As a result, the expression for P can be rewritten as

P = Fe--rSeFt ,

which does not contain the derivatives of Ee either.
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Parameters Variables

elastic moduli (A, M) eA IeM

maximum transformation strain e
transformation resistance Y
temperature T
equilibrium temperature Teq
transformation entropy (A+ M) Aseq
hardening coefficient Ht
interfacial energy coefficient So
energetic length scale 4e
dissipative length scale fd

Table 3.1: Parameters of the nonlocal superelastic model.

Microforce balance equation revisited

With the newly derived constitutive equations, the micro-force balance equation

(3.43) can be rewritten as

Me : A - I (W E) : E' + Aseq(T - Teq) - H t + So0 2(V7. )

- div (
(2 + llv l2 (g)2 +Ell2

(3.59)

Similarly to Eqn (3.4), the flow direction tensor A is assumed to take the following

expression:
( tmedev

A =

2 t Et ,

for j > 0,

for < 0,
(3.60)

where Medev is the deviatoric part of M', E' is the maximum transformation strain,

and Etr is the logarithmic phase transformation strain tensor upon unloading.

Model parameters

The finite deformation formulation shares the same set of model parameters with the

small strain formulation. In Table 3.1, the parameters of the nonlocal superelastic

model are summarized. It is also interesting to note the strains and stresses corre-
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Finite deformation Small strain

total strain E e
elastic straine e

phase transformation strain Et t

work conjugate to elastic strain Se a
stress in macroforce balance equation P a-
stress in microforce balance equation M' a-

Table 3.2: Strains and stresses correspondences between finite deformation and small
strain formulations.

spondences between the small strain and finite deformation formulations, which are

listed in Table 3.2.

3.3 Numerical discretization

In this section, the coupled governing equations from the nonlocal model are first

discretized in time. Based on the temporal discretization, a variational incremental

problem is formulated in order to guide numerical applications. The macro- and

micro-force balance equations are characterized as the Euler-Lagrange equations of

an incremental functional, and the solution fields are characterized as the minimizer

subject to kinematic constraints. Later, spatial discretization is presented, followed

by the discussion of the fully discretized formulation. For simplicity, small strain

formulation is adopted in the derivations, nonetheless it is straightforward to extend

the derivations to finite deformation formulation with the correspondences presented

in Table (3.2).

3.3.1 Time discretization and variational incremental prob-

lem

The superelastic response considered in this thesis is quasistatic, and therefore time

t is not a variable. However, the martensitic phase transformation depends on the

loading history, and it is necessary to break the loading history into sequential load
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increments, and solve the discretized macro- and micro-force balance equations for the

increment of the displacement and martensitic volume fraction at each load increment.

It is also worth noting that the micro-force balance equation (3.23) is rate-independent

in the sense that multiplying the rate of martensitic volume fraction c by a positive

scalar does not change the equation. Nonetheless, the increment of martensitic volume

fraction for each load increment will be determined by solving the corresponding

boundary value problem. In the following derivation, load increments are described

by pseudo time intervals [t(n), t(n+')], for n = 0, 1, 2,... . And t(0 ) denotes the initial

state. For a general load increment [t(n), t(n+l)], variables evaluated at the beginning

and the end of this load increment are denoted as . () and .(n+), respectively.

Time discretization of variables

1. Increment of displacement is Au := u (n+1) - n) and consequently Auj =

U(n±1) _(Un)

2. Increment of martensitic volume fraction is A : (n+) _ (n) , and conse-

quently A, = n+1 _ n)

3. Increment of total strain is AEj := = (Auij + Auj,i).

4. Increment of inelastic strain is AE . := ,n+l) _- ) , and according to Eqn

(3.3), it is also linked to the flow direction tensor through

AEtj = A Aj . (3.61)

5. Increment of elastic strain is Ae - := e(n+l) - = Acij _ AE

6. The energy dissipation per unit volume during this increment is

DAt :y ()2 + el(A(,kA(,k) , (3.62)

which approximates t n1 DdT t( ') Y T(i, 7) + f ||V (xj, )|2dT.
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7. Increment of the free energy per unit volume is

V)At 0(n+1) _ n±1)

1 W kIl enl Eenl - Aseq(T - Teq) (fl)

+ IHt((n+))2 + sofi v (n+l) 2 _ O(n) (3.63)
22 e

with e(n+l) = (1 _ (n+))ceA _ (n+1)ceM

8. Flow direction tensor Aij according to Eqn (3.4) is expressed as

F3_ dev
ij for A > 0,

A {j =IAdViI , (3.64)

I2,t(n)II 7 for AZ < 0

where & is defined as

-:= (E + Etk). (3.65)

For isotropic elastic responses, the deviatoric part of & and that of (.(n+l) are

collinear.

In the constitutive updates of conventional macroscopic superelastic models

[13, 54], the increment of martensitic volume fraction and the flow direction ten-

sor are determined locally at integration points using yield conditions, provided

a strain input. In the gradient superelastic model presented, the martensitic

volume fraction is a primary unknown variable, so the flow direction tensor,

Eqn (3.64), depends on both strain (therefore displacement) and martensitic

volume fraction fields, which causes some implementation difficulties. First, the

dependency on the martensitic volume fraction can be problematic in the com-

putation since the flow direction changes abruptly as A changes sign. Second,

there is no yield condition in the presence of the dissipative length scale, because

the flow resistance depends on A and its gradient, which are unknown at t(n).

It is possible to enforce Eqn (3.64) weakly as a variational result. Details of this
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discussion are provided in Appendix C.4. Nonetheless, in order to avoid the

computational burden, we solve the macro-force balance equation completely

at the beginning of this increment, use the stress obtained to determine the

flow direction tensor at each integration point, and fix the flow direction tensor

in the rest of the solving process. The flow direction tensor in computation is

determined as follows: given the elastic trial stress &,

d V if |j&devjj > (n)dev 1 or Iet(n)Ij o
A- (3.66)

3 , otherwise.

It is worth noting that the determination of the flow direction tensor doesn't

necessarily lead to phase transformation along that direction, because the in-

crement of martensitic volume fraction can be zero, which yields an elastic

response.

In summary, for a general load increment, U (n), (n), et(n), and , (n) are assumed

known. The flow direction tensor A is obtained by solving the macro-force balance

equation with - (n) and applying Eqn (3.66). The increments of the primary

fields, Au and A are the unknowns that will be resolved by solving the incremental

boundary value problem. After the solution is obtained, U(n+l), (n+1), e(n+l), et(n+l),

and 0 (n+1) will be determined, and the simulation can be advanced to the next load

increment.

Temporally discretized governing equations

The governing equations can be written in temporally discretized form using the

identities above. The macroforce balance equation (3.12) evaluated at t(n+1) reads

1)_ = a' = (n e +1) (3.67)
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while the microforce balance equation (3.23) evaluated at t(n+l) reads

k +(n+1)

0 = -07(7+'AA- + _e n+l e +) - Aseq(T - Teq) + Ht -(n+1 _ Sf (n+l

(YA( D
V(A )2 + fd(,A ,kA ,k)

y2 A(,

V/(A)2 + f -(A ,,k)

It is interesting to see that those temporally discretized equations can be rewritten

compactly using the definitions of the energy dissipation (3.62) and the free energy

increment (3.63):

0 -

0= Dz ax 8at )
DDAt

A

(3.69)

(3.70)ax ( DA)Ox 04jt

Using the symmetry of the Cauchy stress tensor, it can be seen that

xi (DAUt

= _

Therefore Eqn (3.69) can be rewritten as

2 x (eg(n+1 e(n+1)) kikipq pq 0Agi

+ 36ik)1I

(3.71)0 = .D
Oxj Bau,j

The structure of Eqn (3.71) and Eqn (3.70) suggests that they could be Euler-

Lagrange equations of a certain functional with the following integrand

FAt := At + DAt (3.72)
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Incremental Functional

Assume that macro-traction (n+') and micro-traction k(n+l) are prescribed on DBN

and OBNg of the surface, respectively. Inspired by the structure of the temporally

discretized governing equations, we define the following incremental functional

fatAn, A) = * V (n+l) Aui dS - Ic(n+l) A( dS , (3.73)
B t9BNu aBN

where the integrand FAt (3.72) is defined as the summation of the free energy in-

crement and the energy dissipation during the time increment, which is quadratic in

Aujj, and nonlinear in A and AZj due to the formulation of the energy dissipation.

Statement of the incremental problem

Assume fi and are the prescribed displacement and martensitic volume fraction on

DBDu and aBD, of the surface, respectively. The incremental problem can be stated

as: to find the increment of the displacement Auj and the increment of martensitic

volume fraction AZ that minimize the incremental functional defined in Eqn (3.73),

and satisfy the Dirichlet boundary conditions:

AU n = n1+ _ ,n) on DBD , (3-74)

-=(n+) _ -(n) on &BDg , (3.75)

as well as the constraints for martensitic volume fraction:

-A - (n) < 0 (3.76)

A(+ (n") - 1 < 0 .(3.77)

Considering the constraints in Eqn (3.76) and Eqn (3.77), we introduce two mul-

tipliers A' and A" and construct the following Lagrange functional

L(Aui, A , A', Au) : = fAt(Auj, A )+ A (-A(-_(n))+Au (A +(n)-1) dV . (3.78)
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At a local minimum, multipliers satisfy the following complementary conditions:

(3.79)

(3.80)

A' ;> 0 Al(-A -±(n)) = 0 ,

Au > 0, Au (A + (n) - 1) = 0 .

The variation of L with respect to the field An2 leads to

a ____

09xj DAu)
Ox

= - - -
(=At 

0,
aAu ,j '

which is no other than the temporally discretized macro-force balance equation (3.71),

and also
OF~ =a__ = 0 (n+1) =(n+1) on OBN,

i.e. the macro-force balance on OBN,.

The variation of L with respect to the field A leads to

DFAt

aAz - Al + A" - (FA)= 0
09xj 09A(,j

in B

(3-82)

(3.83)

and also
&FAt 0OpAt D0 At

nj =+ -=k(n+ on &BN I (3.84)

i.e. the micro-force balance on &BN,. Eqn (3.83) can be rewritten as

OA ax (Ap N

0z( Oxyk Dz(,)

a (DaDAt)
Ox 9DA*j

Using the complementary equations, Eqn (3.79) and (3.80), it can be seen that

0 ,

A' - A" {
-AU < 0 ,

if - (n) < A < I - ("),

if A = -((n) ,

if A = I - (").

It follows immediately that the temporally discretized micro-force balance equation,

Eqn (3.68), is a special case where both the lower and upper constraints on the
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martensitic volume fraction are inactive, and when one of the constraints is active,

an inequality instead of the equality is obtained.

In [92, 78], Radovitzky and Ortiz derived a local variational formulation of con-

stitutive updates for a wide class of materials. The variational formulation gives rise

to a symmetric tangent and is also taken as a basis for the error estimation and

mesh adaptivity. In the multi-variant superelastic model of [51, 100], the constitutive

updates were performed through minimizing the local sum of the free energy incre-

ment and the energy dissipation. In [68, 69], Miehe et al. developed a multi-field

incremental variational framework for gradient extended models starting from gen-

eral expressions of the free energy density and the dissipation potential, which are

assumed to depend on the first order derivatives of the internal variables from local

theories. The incremental problem presented here falls into the two-field formulation

in their framework. A special benefit of the variational incremental formulation is

that it helps define the convergence criteria at the points where bound constraints

are active. In the strain gradient plasticity theory [5], Anand et al. proposed a mini-

mum principle for the normalized plastic strain rate, which we find can be linked to

our two-field incremental variational formulation (Appendix A).

3.3.2 Full discretization: time and spatial

Spatial discretization

Assume that domain B is triangulated as Bh by a set of elements Vh, e = 1 Ne,

where Nel is the number of elements, i.e. B ~ B = U Vhe. Denote Oa(x) as
e=1,...,Ne1

the nodal shape function at node a, for a = 1,..., Nnode, where Nnode is the number

of nodes. For simplicity, same discretization is chosen for the displacement and the

martensitic volume fraction fields. Denote Uia and a as the nodal values of the

displacement field and the martensitic volume fraction field, respectively. Then these
Nnode

fields can be represented as ui(x) ~, Uh(X) = 1 UjaiOa(x), and (x) ~~ (X) =
a= 1
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Nnode

E ha (X), and consequently the increment of these fields can be expressed as
a= 1

AUhi(x) = AUiaPa(X), (3-87)

AWh(X) = AaOPa(X) . (3.88)

Statement of fully discretized incremental problem

Assume that DBhDu, &BhD , OBhNu, and DBhN, are the correspondences to aBDU,

DBDg, aBN , and 9BN,, respectively. The fully discretized incremental problem can

be stated as: to find the increment of the displacement field AUhi and the increment

of the martensitic volume fraction field AZh that minimize the following function

JhAt(AUia, Ata) := FdV - (n+1 An dS - J I(n+±1)A ds.

Bh 'BhNu aBhN

(3.89)

and satisfy the boundary conditions:

f,n+) _ (n) on oBhD, , (3-90

-= n+0 _ n) on BhD, (3-90)

as well as the constraints of the martensitic volume fraction:

-Aa - (n) <0, (3.92)

Aa 1<0. (3.93)

The incremental functional in Eqn (3.73) now becomes a function of two real vec-

tors. The dependence on Uia alone is quadratic, whereas the dependence on AZa is

nonlinear due to the formulation of the elastic moduli and the energy dissipation.

Considering the bound constraints of the martensitic volume fraction, we intro-

'In order to simplify the notation, summation convention will be used when it does not cause

confusion.
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duce two multiplier vectors, A' and A", and construct the following Lagrange function

£h((AUia, A&a, Al, Au) := JA(Aia, A~a)

+ (b(-b - "n)) + A( + () - 1))
b

(3.94)

At a local minimum, the multipliers satisfy the following complementary condi-

tions:

A_ > 0, A'(-Aa - t(n)) = 0, Va , (3.95)

(3.96)Va ,

First order derivatives

The partial derivative of Lh with respect to Uia reads

_ JhAt

,9Au a

C(n+1) e(n
1) en ) dV -

I mnpq Epq D9 Vu
h Bh~i

4f(+1) a dS
JBh NU

-IC(n±1),e(nl)Imnpq pq
J h DAUja

- I 0 (n±1)5 (n~l)
I mnpq Epq

J h O&AUia

( (AUhm,n +

2(1(Umb Pb,n

/AUhn,m) ) dV -
JBhN,

+ Aunb(b,m) ) dV - JBhNu

- (n±l (1x
J n (n 1 imoab Ob,n + 6inhab(,m)) dV -

Bh 2

1 (n44)

2 in Pa,n-

(n+1) *dV
07i3 +0a, dVa

+ (n+) Pa,m)dV

f
J OB-~AT-

n+1 )Oa dS
- JBhN.

S(n+'l) dS( ,
JBh Nu

where 6 ij takes value of one for i = j, and zero for i # j; the symmetry of the Cauchy

stress tensor is also used in the derivation.

The partial derivative of Lh with respect to A~a reads

0Lh -_ A' + AU
(9A~aa a' (3.98)

60
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= B h

= 
B h

JBh

a dS

(3.97)

(n+ dsi Pa
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where

IB -o+ 1 )Aij +. -jClE e(n+1) E Z~s+) - Aseq(T - Teq) + I +1

+ SOek (a,k + Y

- h (n+l)a dS
JOBhN

(A\cPc)(Pa + (Ac Pc,k)(Pa,k dV
(\b O b ) 2 +±f~ £( A 4(b, k) d dpd,k)

(3.99)

First order necessary conditions for minimizer

A local minimizer of the function (3.89) has to satisfy the following necessary condi-

tions [91:

aLh 
0)

a=Uia
&Lh =01

(3.100)

(3.101)

and the complementary conditions for the multiplier vectors, Eqn (3.95) and Eqn

(3.96). These necessary conditions can be rewritten as

= 0
DiAUia

=0,

> 0 ,

<;0,

if _ n) n
af-(" < A~a < a - Il"

if Aa =

if Aga = 1 -

Second-order derivatives

It is straightforward to derive the second-order partial derivatives of the Lagrange

function 4 based on the first-order derivatives, Eqn (3.97) and (3.98). The second-

order partial derivative with respect to the increment of the displacement field can
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ITAt
1-/ h

09A a
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be derived as follows

02 Lh

0AZUiaaAUkb

192 Jha t

I a i $19 Ukb

= B h

-~ +1 f c m ne$
JB 

dV3m n aj dV

IBh ijmn Aumc,n + Unc6c,m) a,j dV

j Cjkn +7Oaj (b,n dV.
J Bh

The mixed partial derivative can be derived as follows

92 JA t

9ia0Ab
(n+1)

i PjdV

= f(0:'.' mn
J i jmn aA4b

= IBh b

+ .m EC en+l ) (a~j dV

OC)(nb)
+ jmn E en+l) )(PPj dV

Oa b
(3.105)

The second-order partial derivative with respect to the increment of the martensitic

volume fraction can be derived as follows

19 2 Ch

09AS$Ob

92 aJh t

19'R a 0A

= Bh ( ikl ii k1 - 2 k eCn+nAkl)2 ijk

+ Ht SaSOb + SOe a,kPb,k + Y( bCa + ld Sb,kCwak)

(A(h)2 + ed (A$h,k$h,k)1

Y(AhOa + EdLOh,0Pa,k)(A\hPb + $d hj Pbj)

[(z\I4h)2+ fd G(Ah,kA 2k

- 2 ) e(n+1) E e (n+

T
2

(3.106)
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where Ah is not expanded in order to simplify the notation. The Hessian matrix

takes the following blockwise form

a2 Lh a2 Lh1E 9
ZuiaOAukb aAUiaaA~q (3.107)

aA0pAUkb OApaA~cq

The positive definiteness of the Hessian matrix is crucial for numerical applications.

In general, the Hessian matrix, Eqn (3.107), may not be positive definite since the

dependence of the elastic moduli on the martensitic volume fraction can introduce

the nonconvexity. In practice, we can simplify the elastic moduli as constant during

the increment, i.e.

CijkI ~ CijkA )) . (3.108)

Under this simplification, we can test the positive definiteness of the Hessian matrix

with any pair of testing fields Vhi = Via SPa, and rnh = r71p, as follows:

[ 2
1Lh a2

LCh k
[Via, ( OZAUia9AUkb 09AUiaO k

LV a a2Lh a2 Ch7/

= Rh CijkI(Vhij- A r77h)(vhkl - Aki1h) dV

+ Ht (rh 2 + Sof2 (77kh, dV
B Bh f Y(q + f2dlhklhk

rh + T~rh,kr/h,k)
±~ 1 dV

JBh [(Ah )2 + f ( ,kA ,k)]

Y(A 7hrjh + dAh,h,k 2 dV . (3.109)
JB [(h)2 + de(A~hkAh h,k

The Hessian matrix is positive definite if the right hand side of Eqn (3.109) is greater

than zero. First, the symmetry and positive definiteness assumptions of the elastic

moduli [47] lead to

CijkI(Vhi, - Aijr7h)(vhkl - Akirnh) > 0
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Secondly, by applying Cauchy-Schwarz inequality, we can also obtain

(7h + fd7rh,krh,k)(A + nd(Ah,k Ah,k)) - (hAdh ± dh,k A ,k)2 0

It then follows that

[± ,Ch 02ILh iF 1
[Via 1, rp I 0 Uia A U kb O ZUiaDAiO kb

[Via,2L Ti] I 2Lh I
)2 + ~ 2[DAtP&Aukb (9AtpDsA~ .. i A

> J H t (rh)2 + S(Tih,kqih,k)dV 3-110)

Since the parameter group So0 is greater than zero, it is obvious that the Hessian

matrix is positive definite for Ht > 0, i.e. when the phase transformation does not

exhibit softening, and the Hessian matrix is strictly positive definite for Ht > 0, i.e.

when the phase transformation exhibits hardening. While for Ht < 0, the Hessian

matrix is positive definite if the inequality

SfBh Tihkih kdVHt + S2d > 0 (3.111)
fBh ihV -

holds for any test field Tih subject to ri dx > 0 and the boundary condition Tih = 0

on &BhD - In the case of aBhD, = OBh, the infimum of the fraction in Eqn (3.111)

f ihkTIh,kdV (3.112)
i f fBh hi d

is the finite element approximation to the smallest eigenvalue A of the following prob-

lem: {,kk = A7i in Bh (3113)

Ti = 0 on DBh.

In one dimension, it can be shown that the smallest eigenvalue of problem (3.113) is

(f)2 with L the size of the domain. In general, the infimum depends on the domain

Bh, the finite element discretization, and also OBhD, where the Dirichlet boundary

condition is applied. When this infimum is strictly greater than zero, the inequality
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(3.111) will hold for sufficiently large SOPC, and the Hessian matrix will be positive

definite.

Connection to the terminology in FEM for mechanical problems

It is straightforward to find the correspondences of the derivatives of the incremental

function to the common terminology in finite element methods for mechanical prob-

lems, e.g. the internal force, the external force, the residual force, and the stiffness

matrix.

The internal, external, and residual forces associated with the macro-force balance

equation can be expressed as

fint : j j+ P, dV , (3.114)
B Bh

fext / j(n+1lp)d , (3.115)
J Bh Nu (

ra fext ffut , (3.116)

while the internal, external, and residual forces associated with the micro-force bal-

ance equation can be expressed as

flflt:j (U +1A. + a e+1) e(n+l) - eq(T - Teq) ± Ht(n+1)

(A~c~pc(pa+ f 2 (Ag c)(
+ Sof$2 (na Pa,k + Y (A c0c)Oa + cOc,k)Pa,k dV, (3.117)

[(1A6(b ) 2 + f2(A6(Pb,k) (A~d(Pd,k)] .

fjex := f(n+1) a dS ,(3.118)
JRBh 

NC

f e - f I. (3.119)

It follows immediately that the residual forces are the negative gradients of the in-

cremental function (3.89), i.e.

&Sfh
rua = - (3.120)

0aDAUia
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and

"P - . (3.121)

The stiffness matrix is defined as the partial derivative of the internal force with

respect to the unknown field. In this two-fields coupled problem, it can be expressed

as

K Kia kb Kia , (3.122)
Kkb KpqJ

and the components are defined as

ofint 02 s
Kiakb m- :- t (3.123)

&9AUkb 1AUiaD9AUkb

Ofint 9 2JZt
Kiaq :- hAiat (3.124)

afint 92 IT.t
Kpkb :- b = (3.125)

&fl n t a2gst
Kpq = :- (3.126)

&" Agq &Z~p&~q~

It follows immediately that the stiffness matrix is the Hessian matrix of the incre-

mental function 3.89).

Due to the bound constraints for A , we can not expect rC, = 0 for the minimizer

of the incremental function. Instead, the previous discussion on the first order optimal

conditions suggests that the minimizer (Au*A, A*) satisfies

0 , if -- ( ) < * < 1 - "(n)

r( , = - (A*aA) ;, ) , (3.127)

> 0, if A * = 1 - ()
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Comments on the regularization

There are terms in the micro-force balance equation (3.23) including ( )2 + f211V 112

in the denominator. When 1 1 = edIIV~II = 0, the micro-force balance equation is not

well defined. Similarly, when A = fdA ,kA ,k = 0, derivatives of the incremental

function, Eqn (3.99) and (3.106), are not well defined. Therefore the incremental

function (3.89) is not smooth. In order to use numerical methods that require con-

tinuous derivatives of the incremental function, we add a small positive constant #

(typically 10-') in the expression of the energy dissipation rate, i.e.

DAt Y [(A )2 + E ± + ] f , (3.128)

so the incremental function becomes smooth. Some other schemes for regularization

can be found in a recent book by Han and Reddy [43].

3.3.3 A staggered algorithm for fully discretized incremental

problem

The fully discretized incremental problem has been formulated as a nonlinear con-

strained minimization problem of two vectors, Auia and A a. In numerical simula-

tions, Auia and A a that satisfy the first order necessary conditions, Eqn (3.102) and

(3.103), the Dirichlet boundary conditions, Eqn (3.90) and (3.91), and the bound

constraints, Eqn (3.92) and (3.93), are accepted as the solution to the incremental

problem.

Using the simplification of elastic moduli, Eqn (3.108), and the regularization

of energy dissipation, Eqn (3.128), the fully discretized incremental function can be
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expressed as

JhA(AUia, Ada) J
Bh

2 ijkl(6kl - AdhAkl - t)( -AhAij- Et

+ -ASeq(T - Teq)Afh +
Bh

+ SO(h) () + Ah)

Bh

- J n+1)AUhi dS -

DBhNU
I

&BhN

112 + Y (h)2 + f2 A~h,kA~h,k - / OdV

k(n+1 )h dS (3.129)

with A~h = AdaOa, AUhi AUiaOa and Eij = E) + (Aia(Pa,j + AUjaa,i).

As a result, the weak forms of the two governing equations, Eqn (3.102) and

(3.103), can be rewritten as follows: for macro-force balance, the residual force must

be zero, i.e.

rUa = - IBh Wijkl(Ekl-'AhAkl - etJ )paj dV + n+1) dS =0;
J BhNu

while for micro-force balance, the residual force is expressed as

-- jk ~ AcihAk1 -~ Et( )Aij - Aseq(T - Tq) + Ht((n) + ( h] n)

2 ,(n) AA ha -l A~h,kPa,k

V(A h)2 + £fAd h,kA~h,k + 0

(3.131)

which must satisfy

= 0, if - (n) < A a < - (n)

< 0 if A.a =-(n) , (3.132)

> 0 , if Aa =1-

Coupled terms in the weak forms of the macro-force and micro-force balance
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equations are highlighted in blue. It can be seen that these two equations are loosely

coupled in the following way: the macro-force balance equation requires the inelastic

strain Et = AhA + Et() to form the stress and also the martensitic volume fraction

to form the elastic moduli W = C( (")), while the micro-force balance equation needs

the total strain e to form the stress a- = %(e - et), and to provide a driving force

for phase transformations. It can also be seen that the bound constraints only act on

the micro-force balance equation, and the two equations have quite different stiffness

matrices, i.e. Eqn (3.104) and Eqn (3.106). Therefore, it is natural to consider a

staggered algorithm to solve these coupled equations.

A staggered algorithm for the fully discretized incremental problem includes the

following two steps:

1. Elastic predictor:

(a) apply displacement boundary conditions, Eqn (3.90);

(b) solve the macro-force balance equation r, = 0 (3.130) with Aa = 0;

(c) obtain stress &^, strain e; and determine the flow direction tensor A using

Eqn (3.66).

2. Iterative solutions of micro-force balance and macro-force balance equations

until convergence is achieved 2:

micro-force balance macro-force balance

receive e receive et

solve Eqn (3.131), (3.132) for A&a solve Eqn (3.130) for AUia

send et := A~hA + E() send e

The iteration above is described as block coordinate descent or nonlinear Gauss-

Seidel method in nonlinear programming. Convergence is guaranteed if the objective

function is smooth and the solution to each sub-problem is uniquely obtained during

2 A typical convergence criterion taken in the computation is max -a 10-6.
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iteration [9]. In our case, the objective function Jh, Eqn (3.129), is smooth, and it

is also convex for Ht > 0, so the convergence is guaranteed.

We have implemented a Newton-Raphson method with line search and also a

parallel dynamic relaxation method to solve the sub-problems. The latter is found

to be more efficient in both time and memory consumption, and therefore suitable

for large scale three-dimensional problems. The parallel dynamic relaxation method

is presented in detail in the following section, while a comparison of the solvers is

provided at the end of this chapter.

3.3.4 Parallel dynamic relaxation method

Dynamic relaxation method is an iterative method for solving static problems, espe-

cially those in structural mechanics [81, 83, 118]. The idea of this method is that a

static solution can be viewed as the steady state of a dynamic response. For instance,

a solid structure is in equilibrium when the residual force r is zero under a certain

displacement field u, i.e.

0 = r(u) , (3.133)

where u is the static solution. This solution can be viewed as the steady state of the

following dynamic response

pi + cpn = r(u) (3.134)

at which the acceleration and the velocity are both zeros. In Eqn (3.134), p is the ar-

tificial material density, and c > 0 is the damping coefficient. Once the displacement

boundary conditions are applied, the residual force is out of balance, and therefore it

generates a stress wave. As a result of the viscosity, the total energy of the dynamic

system will continuously decrease during the stress wave propagation until the accel-

eration and the velocity become zeros, i.e. a static solution is achieved. In practice,

mass lumping techniques and the explicit time integration (explicit Newmark) [47]

are employed to simulate the dynamic response.
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The spatial discretization of Eqn (3.134) can be written as

Ma + cMv = r(u) (3.135)

where M is the diagonal mass matrix from mass lumping, a and v are the acceleration

and velocity nodal fields.

The time integration follows the explicit Newmark algorithm. More specifically,

assuming that the time-step is T, a general temporal increment includes three steps

to obtain {u(k+l), v(k+l), a(k+l)} from {u(k), v(k), a(k)}

Predictor3:

u(k+l) U (k) + TV(k) + - (T) 2 a(k) , (3.136)
2

V (k) + I-ra(k) .(3.137)
2

Calculation of the residual force r(u(k+l)

Corrector 4:

a(k+l) : (M- 1r - ci)/(1 + -cT) , (3.138)
2

v(k+l) -- V - Ta(k+1) . (3.139)
2

The dynamic relaxation method for solving Eqn (3.133) can be stated as follows

1. Set the damping coefficient c, time-step T and mass matrix M. Set the tolerance

co, c, and the maximum number of iteration ka. Set k := 0.

2. Apply boundary conditions and initialize U(k). Set v(k) := 0, a(k) :_ 0.

3. Predictor.

4. Compute the residual force, and record I|r(k) . Check the convergence as follows:

3 1n practice, the intermediate velocity vector i. can be stored in v(k+l).
4 1t is possible to compute the acceleration on the fly without allocating memory. The acceleration

vector is remained here to fit into the general framework of simulating dynamic responses.
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If 1jr(0')J < co or |Ir(k) < r 0()J, exit with convergence;

else if k = kmax, exit without convergence;

else continue.

5. Corrector. k := k + 1. Go to 3.

Adaptive dynamic relaxation method

In order to accelerate the convergence, it is desirable to choose a time-step as large as

possible while keeping the simulation stable. For linear problems, the residual force

can be formulated as r(u) = fext - Ku, where the stiffness matrix K is assumed to

be symmetric and positive definite. The stability condition for the explicit Newmark

algorithm can be written as [47]

T VAmax(M-1K) < 2, (3.140)

where A"x() denotes the maximum eigenvalue. Since the dynamic response is only a

solution strategy, the density (and correspondingly the mass matrix) and the damp-

ing coefficient do not need to represent the physical quantities. By estimating the

convergence rate, Underwood [118] suggested the following expression of the damping

coefficient

c ~~ 2 Amin(M-1K) , (3.141)

where A" i() denotes the minimum eigenvalue. Inequality (3.140) and Eqn (3.141)

bring up two relations between T, c and M, which leaves a freedom to specify one of

them. It is popular to define a constant time-step, e.g. r := 1, and then determine the

diagonal mass matrix M to fulfill the stability requirement by invoking Gerschgorin

circle theorem [36]:

Theorem 3.3.1. Assume matrix A = [Aij] E CflX", and A(A) is the set of eigenvalues

of A. Then

A(A) c U Gi(A) (3.142)
i=1
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with Gi(A) = C: Iz-AjjI i Aj 3I , fori=1,2, ..., n.
j=1 I

A straightforward implementation of this theorem leads to

ndof

Amax(M-lK) < max ZM 1IKiI , (3.143)
16igndof

-- =1

where ndof is the size of the mass matrix. As a result, a diagonal mass matrix M

with the diagonal entry defined by

2 ndof

MNIj(K, r) := K (3.144)
j=1

for i=1, 2, ... , ndof, satisfies the stability condition (3.140), and in this case Anax <

The minimum eigenvalue in Eqn (3.141) can be estimated using Rayleigh quotient

with the current state of u [118], i.e.

Amin(M--K) ~ urKu (3.145)
uTMU(315

assuming UTMu > 0. Consequently, the damping coefficient can be defined as

2M ":" ifu TMu>OanduKu>0,

0, otherwise .

The mass matrix (3.144) and the damping coefficient (3.146) both require the

knowledge of the stiffness matrix, however assembling the stiffness is computationally

intensive and the storage of the stiffness matrix is memory consuming. In order to

avoid this burden, only the diagonal entries of the stiffness are considered, and they

can be obtained through the finite difference method, i.e.

[fii t (u(k+1 )) - fint(U(k))] / (3.147)
fKij : = (3.147)

0 ,i ,
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where iv is the intermediate velocity vector in the Predictor step. In the absence of

external force, i.e. no body force or surface traction, r = -fint, and it is equivalent

to write Eqn (3.147) as

{ [-r(u(k+1 )) + ri(u(k))] /( ,

0,

1 = J'

iij,
(3.148)

which can save the storage for the internal force.

The discussion above leads to an adaptive dynamic relaxation method:

1. Set the tolerance co, E, and the maximum number of iteration kmax. Set k := 0,

T := 1.

2. Apply boundary conditions and initialize U(k). Set v(k) :- 0, a(k) := 0.

3. Predictor.

4. Compute the residual force, and record |jr(k) |1. Check the convergence as follows:

If |jr(I3|| < co or 1jr(k) cflr(0 )JI, exit with convergence;

else if k = km ax, exit without convergence;

else continue.

5. Calculate the mass matrix, M(k, 1.1T), using Eqn (3.144), and the damping

coefficient (M, k) (3.146) using U(k+1) and stiffness (3.147). If > 4/T, set

c := 3.8/T. 5

6. Corrector. k := k + 1. Go to 3.

The algorithm above has an issue that the mass matrix for the first step can be

undetermined because in the computation of the stiffness (3.147) the velocity as

a denominator is initially zero. In practice, if the stable time-step can be easily

5Following the numerical treatments by Underwood [118], the mass matrix is evaluated at 1.1r
instead of r to secure the stability, and a is truncated since the sequence c ~ 2Vm < 2 Amax < 4/r
may be violated by the finite difference approximation of the stiffness matrix.
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estimated from the material model and the finite element mesh size, this stable time-

step and the lumped mass matrix based on the physical density can be used instead.

If it is not the case, the assembled stiffness can be used to ensure the stability under

constant time-step.

There are quite a few benefits to use dynamic relaxation method. First, the ex-

plicit formulation makes it easy to program. Secondly, the vectorized formulation

makes the parallelization straightforward [74, 75, 76], reduces the memory consump-

tion, and increases the efficiency of computation as vectorized operations can be

optimized by contemporary compilers and CPUs. Thirdly, it is convenient to treat

the local kinematic constraints like contacts or bound constraints, which can be di-

rectly applied in the Predictor step. There is no need for specific treatments like the

penalty or the line search to keep the current state of u admissible.

Parallelization of the dynamic relaxation method

It is convenient to parallelize the adaptive dynamic relaxation method and speed

up the computation. Based on the formulation of the adaptive dynamic relaxation

method, we have tried two ways to implement the parallelization. One way is to

use open multiprocessing (OpenMP), which requires small effort from programmers

while leaves most of work to compilers. In this way, the data structure does not need

to change, and the sequential code can be kept. Instructions (macros) are inserted

whenever there are intensive vectorized operations like looping nodal fields in the

Predictor and Corrector steps, so the compiler knows the work can be distributed over

multiple processors of the computer. The sequential code may need to be adjusted

slightly to take full advantage of this technique, e.g. changing the sequence of multi-

loops. The major limitation of this OpenMP approach is that the code only runs on

a shared memory machine, and the number of CPUs and the memory size impose the

threshold on the benefit from parallelization. A piece of code using OpenMP for the

Predictor step is posted below:

#ifdef WITHOPENMP
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#include <omp.h>

#endif

#ifdef WITHOPENMP

#pragma omp parallel f or

#endif

for (nt i = 0; i < nodes; ++i) {
for (int j = 0; j < dim; ++j) {

if (bc(i,j) == BCNEUMANN) {
u(i,j) += dt*v(i,j)+0.5*dt*dt*a(i,j);

v(i,j) += 0.5*dt*a(i,j);

}
else if (bc(i,j) == BCDIRICHLET) {

u(i,j) = _forces(i,j);
v(i,j) = 0.0;

}
}

}

Another way is to use Message Passing Interface (MPI), which requires more ef-

fort from programmers than that in the previous approach. In this approach, the

data storage and the computation load can be distributed over a large number of

computers, which could significantly increase the size of the problems that can be

solved. In the finite element code (SUMMIT) developed by our group, the original

finite element mesh for the undeformed solid is partitioned into sub-domains, i.e.

partitions. Examples of partitions are shown in Fig (3-1). Each processor takes one

partition and constructs locally the necessary computational data, e.g. u, v, a, M.

The dynamic relaxation algorithm is executed locally unless it requires information

from other partitions. More specifically, in the adaptive dynamic relaxation algo-

rithm, the initialization (Step 1, 2), predictor (Step 3), and corrector (Step 6) can be

completed in each partition without the information from other partitions, whereas

Step 4 and 5 require the communication with neighboring partitions or even all other

partitions. For nodal data like the diagonal mass matrix and the residual force, the

contribution of each partition is subject to summation. The communication for the

summation of nodal data is as follows: each partition sends out the locally assembled

value at its boundary nodes to adjacent partitions (neighbors), receive the values from
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Figure 3-1: Partitioned meshes: cylinder with 4500 elements is partitioned for 4
processes, while cube with 196608 elements is partitioned for 16 processes. Different
colors indicate different processes in the parallel finite element computation.

its neighbors, and add them to its local value. For the calculation of the damping

coefficient and the norm of the residual force, quantities like uTKu, uTMu and r'r

from each partition must be summarized and broadcast with special care to remove

duplicated counts of the nodes at the interfaces between partitions.6

Dynamic relaxation method for the coupled problem

The coupled macro-force balance equation (mech) and micro-force balance equation

(mpt) are solved using the staggered algorithm described in Section 3.3.3. Parameters

for the two sub-problems are specified as follows:

(mech): The physical density of the material p is used in calculating the lumped

mass matrix, and the stable time-step is estimated using the finite element mesh

size and the critical wave speed of the material, e.g. T = h/ A+2 ti for linear elastic
p

responses, where A and p are the Lam6 constants, and h is the minimum inner

radius of the elements in the mesh. The damping coefficient is estimated using the

approximated stiffness from finite difference.

(mpt): The stable time-step is fixed as r = 1, and the mass matrix is calculated

using the assembled stiffness, which could be updated after a period of iterations in

6 1f the physical stable time-step is in use, it has to be synchronized using the minimum value

of the stable time-steps from all partitions. If the mass matrix is based on the locally assembled
stiffness, it can be shown through the triangle inequality that the stability condition (3.140) is valid
after the communication.

77



order to reduce the computational expense. The damping coefficient is estimated

using the approximated stiffness from finite difference.

The (mech) sub-problem is solved as follows:

1. Set the tolerance co, c, and the maximum number of iteration kmax. Set k := 0.

Calculate T, and the lumped mass matrix.

2. Compute residuals:

Access the inelastic strain that is produced by (mpt). Compute the residual

force, and record Ijrmech(k) I,.

3. Check the convergence as follows:

If 1r mech (k) rmech(0) or irmech(o) 11 co holds, exit with convergence;

else if k = kmax, exit without convergence;

else continue.

4. Corrector.

5. Predictor.

6. k:= k +1. Go to 2.

The (mpt) sub-problem is solved as follows:

1. Set the tolerance c0, E, and the maximum number of iteration kmax. Set k := 0.

A((k) :- 0. Denote the current nodal field of the martensitic volume fraction

as prev. Set T := 1. Calculate the mass matrix with assembled stiffness, and

set a period T for updating the mass matrix.

2. Compute residuals:

Access the total strain that is produced by (mech). Recalculate the mass

matrix if n = round(n/T) x T. Compute the residual force and record

irmpt (k) ._ Mpt (k)2 , (3.149)
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where W is a set of nodal indices such that for any j E , d(k) u pt(k)

satisfies one of the following conditions: a) -prev < k) < 1 prev; b)

A k < -prev , and mpt(k) > 0 1C) A((k) _ I prev, and rmpt(k) < 0.3- >0 r) LAi

3. Check the convergence as follows:

If 1rmt(O)JI, < co or |Irmpt(k) * < EllrmPt(0)11* holds, exit with convergence;

else if k = kmax, exit without convergence;

else continue.

4. Corrector.

5. Predictor; and apply the constraints as follows:

_ p -rev mpt(k) := 0 and apt(k) := 0, if A (k) < prev.

Aak) mpt(k) 0 and ampt(k) := 0, if A (k) > 1 _ l prev

6. k := k + 1. Go to 2.

In the computation, parameters take the following typical values: 6O = 10-,

T = 100, and kmax equals the degrees of freedom.

Convergence study of dynamic relaxation method

We first investigate the convergence of the dynamic relaxation method for different

sizes of the load increment. Consider the uniaxial compression of a pillar with height

h = 1 m, and radius r = 0.1 m. The martensitic volume fraction at both ends is

confined as = 0. The displacement at the bottom of the pillar is fixed, while at

the top, u3 is prescribed such that U3 /h decreases to -0.05 and then increases to 0

with load increments: Au3 /h = -0.002, -0.001, -0.0005 in three tests, respectively.

Due to the symmetry, only quarter of the pillar is considered, and 3360 quadratic

tetrahedron element is used for discretization. In Fig (3-2), the nominal stress strain

responses from the three tests are shown. It can be seen that the three tests have

almost identical stress strain responses until the nominal strain reaches about 0.038.
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Figure 3-2: Stress-strain relations from simulations with different sizes of load incre-
ment.

Results with larger increment size then exhibit larger stiffness for the rest of loading

and the elastic unloading steps. Nonetheless, the reverse transformation occurs at

the same stress value, and the results converge for the rest of the unloading steps.

We then investigate the convergence of the dynamic relaxation method for spatial

refinement. Consider the uniaxial compression of a bar7 with height h = 1 m. The

cross-section is a square with side length 0.2 m. The martensitic volume fraction at

both ends is confined as = 0. The displacement at the bottom of the bar is fixed,

while at the top, U3 is prescribed such that u3/h decreases to -0.05 and then increases

to 0 with load increment Au 3/h = -0.001. Due to the symmetry, only quarter of

the bar is considered. In Fig (3-3), the nominal stress strain responses from the tests

with 188, 600, and 3536 quadratic tetrahedron elements are shown. These responses

are almost identical, which confirms the convergence of the method with respect to

the spatial refinement.

Material parameters for these convergence tests are EA = 10 GPa, EM = 15 GPa,

vA - vM = 0.3, Y = 1 MPa, Aseq(T - Teq) = -4 MPa, H' = 0 MPa, So = 0.1 GPa,

7A bar instead of a pillar is used in this test to avoid the difference caused by the resolution of
the cross-section.
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Figure 3-3: Stress-strain relations from simulations with different number of elements.

ee = 0.01 m, fd= 0.2 m.

3.3.5 Comparison of solvers

Since the superelastic loading procedure is considered quasi-static, the static solution

to the coupled macro- and micro-force balance equations has to be obtained for each

load increment.

The code in our group originally contained only a serial Gaussian elimination

(serial GE) solver for mechanical problems (macro-force balance equation) using

Cholesky decomposition and skyline storage. In order to take the full advantage

of the multi-core processors in the current computers, we have tried to use a third-

party solver, the Parallel Direct Sparse Solver (PARDISO) from Intel Math Kernel

Library [98], and we have also implemented a parallel dynamic relaxation (DR) solver

based on OpenMP. Details of the dynamic relaxation solver can be found in Section

3.3.4. These three solvers have been tested on the following mechanical problem.

Test 1. Assume that a cube with side length 1 m is confined at the bottom

and stretched at the top: ui IX3 o = 0 for i = 1, 2,3; uilx,=1 = 0 for i = 1, 2, and

U31X3=1 = 0.1 m. The material model is Neohookean extended to the compressible
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range. The strain energy function is w = (2Alog J - f) log J + 2f(Ii -3), where

J = AA 2 A3 and I1 = A + A2 + A2 with Ai the eigenvalues of the right stretch

tensor. Model parameters take the following values: A 122 GPa, and f = 81 GPa

in the tests. The cube is discretized with second order tetrahedron elements. The

convergence criterion is that the norm of the residual force is 10- of the original

value. Platform of the test is: (CPU) 2 Intel Xeon X5550A 2.67 GHz (8 cores in

total); (memory) 24 GB; (operation system) Ubuntu 10.04, Linux 2.6.32; (compiler)

gcc 4.4.3.

a
0
'U

a'
E

1=

104

101

100

102 104
Number of elements

Figure 3-4: Time usage versus the number of elements for serial
dynamic relaxation solvers in Test 1.

GE, PARDISO,

The time usage and memory consumption as a function of the number of elements

have been plotted in Fig (3-4) and (3-5), respectively. It is clear that the serial GE

solver is not efficient in either the time or the memory. PARDISO is fastest up to the

mesh size about 200K elements where it is surpassed by the DR solver. Both the serial

GE and PARDISO solvers consume significantly more memory than the DR solver.

For the largest mesh sizes, only DR solver works as its memory request does not

exceed the limit of the computer. From this simple test, it has been shown that the

DR method is promising for large-scale simulations. Nonetheless, the performance of

the DR method using OpenMP is still limited by the number of cores and the memory
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Figure 3-5: Memory usage versus the number of elements for serial GE, PARDISO,
dynamic relaxation solvers in Test 1.

size in a shared-memory machine. Therefore, we have eventually implemented the

distributed-memory version of the DR method using MPI (Section 3.3.4) so that the

program can run on multiple computers.

We have also tested the scalability of the dynamic relaxation method using MPI

for the two-field coupled problems that contain Dirichlet boundary conditions for the

micro-force balance equation.

Test 2. Assume that two tubes with length 1 m are subject to the following

boundary conditions: at one end (X 3 = 0 m), = 0 and ui = 0 for i = 1, 2, 3;

at the other end (x 3 = 1 m), ( = 0, ,= 0 for i = 1,2, and U3 is increased to

0.05 m and then decreased to 0 m in increments of 0.001 m, i.e. 100 increments in

total for the complete loading cycle. The material response is modeled by the small

strain nonlocal superelasticity with the following parameters: EA = EM = 10 GPa,

vA -- vM = 0.3, E' = 0.04, Ase(T - Te) = -4 MPa, Y = 1 MPa, H' = OMPa,

So = 0.1 GPa, fe = 0.03 m, and fd = 0.1 m. Tube A has an exterior radius 0.5 m and

an interior radius 0.4 m, which is discretized using 16320 linear tetrahedron elements.

Tube B has the same exterior radius but a larger interior radius 0.45 m, which is then

discretized using 163200 linear tetrahedron elements. The platform of this test is

83



10 4

03

10 10 1
Number of cores

102 10 3

Figure 3-6: Time usage versus number of cores for dynamic relaxation method using
MPI in Test 2.

our group's cluster, where each computational node contains two Intel Xeon E5520©

2.27GHz (8 cores) and 24 GB memory, the operation system is CentOS Linux 2.6.18,

and the compiler is gcc 4.1.2.

In Fig (3-6), the time usage of the test has been plotted against the number of cores

in use. It can be seen that the time usage decreases as the number of cores increases

in both cases. For Tube A with 16K elements, the time usage for the simulation with

k cores, tk, can be fitted into the following scaling relation with linear regression

tk ~ 1.4 x 0 k .93 [s] (3.150)

while for Tube B with 160K elements, it follows the scaling relation

tk ~ 2.4 x 10 5 k -0 .83 [s[] . (3.151)

We have also compared the dynamic relaxation method using MPI and a staggered

Newton method for a two-field coupled problem. In the staggered Newton method,

the macro- and micro-force balance equations are completely solved one by one at each
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total average of initial average of subsequent

30 increments [s] 12 increments [s] 18 increments [s]

staggered Newton 39589.2 202.8 2064.2

DR 64 cores 21404.9 225.4 1038.9

DR 128 cores 11998.2 121.4 585.7

Table 3.3: Time usage for the staggered Newton method and the dynamic relaxation

method in Test 3.

iteration, and the iteration continues until the difference of the martensitic volume

fraction between two consecutive iterations is significantly small. The Newton method

with Armijo line search is implemented to solve the nonlinear micro-force balance

equation, and PARDISO is used as a basic linear solver. The solution of the micro-

force balance equation is truncated in order to satisfy the bound constraints of the

martensitic volume fraction.

Test 3. Tube B from Test 2 is discretized using 163200 quadratic tetrahedron

elements. Material parameters and boundary conditions remain the same expect the

prescribed displacement u3 , which is increased to 0.03 m in increments of 0.001 m,

i.e. 30 increments in total. The test platform is our group's cluster, which has been

described in Test 2. The staggered Newton method utilizes OpenMP with only eight

cores, a limitation imposed by the machine.

As can be seen in Table (3.3), the staggered Newton method takes about twice as

much total time as the DR method with 64 cores (DR-64) does. At the initial elastic

loading (first 12 increments), the staggered Newton method takes about the same

average time as DR-64 does for a single step. However, at the subsequent steps that

involve the phase transformation and coupling, it takes about twice as much time as

DR-64 does for a single step. The DR method with 128 cores takes about half of the

time that DR-64 does, which indicates the scalability of the DR method.
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Chapter 4

Applications of the nonlocal

superelastic model

4.1 Grain size dependence of the stress hystere-

sis and the strain hardening in polycrystalline

SMAs

It has been reported that both the stress hysteresis and the strain-hardening rate

during phase transformations (or transformation modulus) increase with decreasing

grain size in the tension tests of polycrystalline Cu-Al-Be bars [71] and polycrystalline

Cu-Al-Mn wires [109]. As the first application of the three-dimensional nonlocal

superelastic model, we study these grain-size dependencies of the superelasticity in

polycrystalline SMAs.

4.1.1 Description of the numerical simulations

We have made the following assumptions of the polycrystalline SMA model: 1) The

geometry of grains is described as a truncated-octahedron. 2) The growth of grains

is not considered. 3) Grain boundaries are obstacles to martensitic phase transfor-

mations, and remain in the austenitic phase. In other words, the martensitic phase
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transformation is isolated, and Dirichlet boundary conditions are assumed for the

micro-force balance equation within each grain. 4) Elastic and superelastic responses

within each grain are isotropic.

It has to be admitted that the polycrystalline model is very idealized with the

assumptions above. Important crystalline responses including the anisotropy of the

elastic moduli and the orientation dependence of phase transformations are not con-

sidered. The polycrystalline model is in fact a solid that consists of a set of truncated-

octahedra subject to isolated martensitic phase transformations. The surface energy

is not considered in the nonlocal superelastic model. The outer boundary of the ma-

terial excluding grain boundaries is treated as traction free for the micro-force balance

equation. Despite these limitations, we can investigate the grain boundary constrain-

ing effects in polycrystalline SMAs with the two-field formulation of the nonlocal

superelastic model.

Grain modeled by truncated-octahedron

Following [132], the grain is described as a truncated-octahedron, which can be gen-

erated from a regular octahedron by removing six square pyramids, one from each

vertex. In Fig (4-1) and (4-2), we plot the top and side views of the parent octahedron

and the truncated-octahedron. Assume that the side length of the parent octahedron

is 3a. The truncated-octahedron then has the following geometry: it has 32 edges of

length a, and 14 faces (8 hexagons and 6 squares); its surface area is

A = 6 x a2 +8 X a2 = (6 + 12V/)a2 ~ 27a2 (4.)2

its volume is

1 2 / 1 22V = 2 x -3(3a)2 (3a) - 6 x aa2-a=8Va ~l 3 ; (4.2)

the surface to volume ratio is about 2.4/a, and the grain size d equals V1Oa (~ 3.2a).
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Figure 4-1: Top view of the octahedron and the truncated-octahedron.

Figure 4-2: Side view of the octahedron and the truncated-octahedron.

Grain in finite element mesh

One benefit of the truncated-octahedron grain model is that a larger number of grains

can be assembled seamlessly in a finite element mesh. More specifically, the truncated-

octahedron can be easily embedded into a cube in a finite element mesh. This cube

is then taken as a unit cell and replicated in space, which leads to a set of coherent

grains. Figure (4-3) shows a unit cell and the truncated-octahedron that sits in it.

The cube contains a complete truncated-octahedron at center, and eight incomplete

truncated-octahedra, one from a corner. Grain boundaries are highlighted by the

red color, which consist of the surface of the complete truncated-octahedron, and the

interfaces between the incomplete truncated-octahedra. Assume that the side length

of the cube is e. Then the edge length of the truncated-octahedron is a = Le, and4

the grain size is \/1i0a = ve ~ 1.le. Therefore, the grain size d in the finite element2

mesh is about the same as the side length of the unit cell.
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Figure 4-3: Left: a unit cell in finite element model. Right: grain boundaries of the
truncated-octahedron that sits in the unit cell, and eight incomplete octahedra, one
from a corner.

Setup of finite element simulations

A series of uniaxial stretch tests have been performed to investigate the role of grain

boundary constraints in the superelastic responses of polycrystalline SMAs. The solid

under concern is a cube with side length D. The uniaxial stretch is applied along

x3 direction. The boundary conditions are defined as follows: ui(x1, x 2 , 0) = 0 for

i = 1, 2, 3; ui(x1, x 2,D) = 0 for i = 1,2; and u3 (Xi, x 2 ,D) = u3 . The displacement

f 3 is applied in increments of 0.001D, and it first increases up to 0.05D and then

decreases to zero, which leads to a maximum strain 5%. = 0 is specified at grain

boundaries. The material parameters are EA = EM = 10 GPa, vA = VM = 0.3,

e = 0.04, So = 0.0 1EA, Aseq(T - Teq) = -4 MPa, and Y = 1 MPa. The classic

hardening term is ignored (H' = 0 MPa), so the strain-hardening effect is due to the

energetic length scale and nonlocal effect.

4.1.2 Results and discussion

Evolution of stress and martensitic volume fraction from a simulation

In Fig (4-4), we plot the stress along the loading direction (P 33) and the martensitic

volume fraction from a finite element simulation with D = 1 m, grain size d = 0.28

m, 4e = 0.01 m, ed = 0.1 m at several representative load increments. The load

increments correspond to the macroscopic strain values 1.5%, 5% during loading,
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Figure 4-4: (Left) stress P33 and (right) the martensitic volume fraction from finite
element simulation at load increments 15, 50, 60, 85 (from top to bottom). (D = 1
m, d = 0.28 m, 4e = 0.01 m, fd = 0-1 m)
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Figure 4-5: Macroscopic stress-strain relations for different grain sizes. (D = 1 m,
4e = 0.01 m, fd = 0.1 m)

and 4%, 1.5% during unloading. It can be seen that at strain 1.5% during loading,

the stress is uniform and the phase transformation has not happened yet. At strain

5% during loading, it is clear that the martensitic phase transformation has already

happened, and it gets pinned at grain boundaries (blue color in the figure), which

corresponds to our setup of the simulations. The stress is no longer uniform since

the constraint on the martensitic volume fraction leads to zero phase transformation

strains at grain boundaries, which distort the stress fields. At strain 4% during

unloading, the martensitic volume fraction remains unchanged, and the solid responds

elastically. Further unloading activates the reverse phase transformation, as shown

in the last row of the figure. The macroscopic stress-strain relation corresponding to

this simulation is plotted as the dashdot line in Fig (4-5).

Effect of grain size d

We first study the effect of the grain size, d, while keeping the solid size D and the

internal length scales {fe, £d} fixed. Figure (4-5) shows the stress-strain curves from

the simulations with three different grain sizes, i.e. d/D =1.12, 0.56, and 0.28. It

can be seen that the critical stress for the forward phase transformation increases

for decreasing grain size; the stress-hysteresis between the forward and reverse phase

transformations and the strain-hardening rate during phase transformations also in-
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Figure 4-7: Stress strain relations showing the effect of {fe/d, ed/d} with fixed d/D.

(d/D = 1.12)

crease for decreasing grain size. Therefore the simulations have reproduced the size-

dependent superelastic responses that were observed in the Cu-based polycrystalline

SMAs [109, 71]. Nonetheless, from the modeling perspective, it is not clear whether

the size effect originates from the relative grain size d/D or the internal constraints

{e/d, fd/d}, since both of them change as the grain size d changes.

Parametric study of d/D, and {e/d, fd/d}

In order to understand the contributions from the relative grain size d/D and the in-

ternal constraints {ee/d, ed/d} of the nonlocal superelastic model, another two sets of
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simulations have been performed. In one set, {f.e/d, fd/d} is fixed, while d/D changes;

in the other set, d/D is fixed, while {ee/d, fd/d} changes. In Fig (4-6), the stress-

strain curves from simulations with three different values of d/D have been shown,

where {fe/d, £d/d} is fixed in these simulations. It can be seen that the difference

between these curves is negligible, which implies that the relative grain size alone

will not affect the macroscopic stress-strain relation. In Fig (4-7), the stress-strain

curves from simulations with three different values of {4f/d, ed/d} have been shown,

where d/D is fixed in these simulations. It can be seen that the stress-strain curves

replicate the results shown in Fig (4-5), which means that the internal constraints

for each grain are really the cause of the size-dependent superelastic responses in the

polycrystalline SMA models.
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Figure 4-8: Stress-strain curves showing the saturated effect of {e/d, fd/d} with fixed
d/D. (d/D = 1.12)

We have further investigated the effect of internal constraints. Fig (4-8) shows

the stress-strain curves from simulations with five different values of {fe/d, ed/d}.

It can be seen that for increasing {e/d, ed/d}, the stress hysteresis first clearly in-

creases but then decreases to almost zero, whereas the strain-hardening rate increases

monotonically and approximates the purely elastic response. In Fig (4-9), we have

shown quantitatively the stress hysteresis and the strain-hardening rate during phase

transformations as a function of {e/d, fd/d}. The stress hysteresis is measured at the

strain value 2%. It can be seen that the strain-hardening rate increases monotonically,
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Figure 4-9: Stress hysteresis and strain-hardening rate as a function of {f4/d, fd/d}
with fixed d/D. (d/D = 1.12)

and eventually approaches the value of Young's modulus for increasing these ratios.

The stress hysteresis first increases but then decreases to zero as these ratios become

significantly large, which implies that the grain size dependence can be saturated for

very small grain sizes, and the material responds almost elastically throughout the

loading cycle. In reality, this limiting response is unlikely to occur since the plasticity

or fracture may have already played an important role once the stress is beyond the

elastic limit.

4.2 Loss of superelasticity in NiTi pillar compres-

sion tests

Compression tests on single crystal Ti-50.9 at.%Ni pillars have shown that the strain

recovered during unloading diminishes with the pillar diameter and is suppressed for

pillars with diameter smaller than about 200 nm [32]. Further study has revealed

that this trend of losing superelasticity at small pillar sizes does not depend on the

crystal orientations [31]. Different explanations of this size-dependent behavior have

been proposed. In-situ compression tests have provided evidence of stress-induced

martensitic phase transformation in NiTi pillars with diameter below 200 nm [129],

which rules out the possible explanation that stress-induced martensitic phase trans-
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Figure 4-10: Schematic cross-section of a NiTi pillar with Ti oxide layer and Ti-

depleted zone.

formation may be absent at this length scale. Focused ion beam (FIB) machining

that is commonly used to prepare these small pillars will leave a Ga+ implanted

outer layer about 10 nm in thickness, and it is hypothesized that this damaged layer

could significantly affect the mechanical response of NiTi pillars when this outer layer

thickness is comparable to the pillar diameters [32]. Unfortunately, the mechanical

properties of this Ga+ implanted NiTi layer are not available, which prevents further

quantitative investigation. Another explanation comes from the consideration of the

surface Ti oxide layer [32, 97], which has been shown to constrain the thermally in-

duced martensitic phase transformation in thin films [48, 33]. This Ti oxide layer

about 15 nm in thickness does not participate in the phase transformation, and also

creates a Ti-depleted zone about 50 nm in thickness [48, 124, 97], which has limited

ability for the phase transformation since the increase in the Ni content stabilizes the

austenitic phase [80, 111]. For very small pillars, Fig (4-10), the fixed-thickness Ti ox-

ide layer and Ti-depleted zone take most of the pillar volume, and the suppression of

superelasticity can be expected. In this section, we attempt to provide a model-based

quantitative study on how this Ti oxide layer affects the mechanical behavior of NiTi

pillars under compression, giving special emphasis to the size-dependent incomplete

strain recovery observed experimentally.

There have been a few papers addressing incomplete strain recovery for SMAs: Yu

et al. incorporated plasticity in their austenite model at high temperature when slip

becomes active [130]; Yan et al. incorporated plasticity in martensite to study the

stabilization of martensite due to slip [128]; Lagoudas et al. modeled the saturation
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of residual strain under cyclic loading, where the plastic strain rate was assumed to

be proportional to the rate of detwinned martensitic volume fraction [12, 55].

The modeling approach that we have adopted treats the NiTi pillars as a composite

material comprising a uncontaminated NiTi core, and an external Ti oxide layer. We

propose a nonlocal superelastic model for the NiTi core, and an elastoplastic model

for the Ti oxide layer. Through Voigt-average analysis and finite element simulations,

these models are used to investigate the quantitative influence of the Ti oxide layer

on the mechanical responses of NiTi pillars under cyclic compression loading. The

simulation results show that the plastic deformation in the Ti oxide layer constrains

the recovery of deformation in the whole pillar, and the effect becomes severe with

diminishing pillar size. The agreement with experimental results suggests that the

size-dependent strain recovery and the loss of superelasticity in small pillars are likely

to be associated with the plastic deformation in the Ti oxide layer.

4.2.1 Description of the NiTi-TiO 2 composite model

The NiTi pillar consists of a Ti oxide layer (mainly TiO 2 [20, 48]), a Ti-depleted

zone and an uncontaminated NiTi SMA core, Fig (4-10). The Ti-depleted zone is

expected to behave as a smooth transition from Ti oxide to NiTi SMA. Due to the

lack of material properties for this region, we investigate the two bounding cases in

which the Ti-depleted zone is either full NiTi or full TiO 2 . The TiO2 layer has,

respectively, a thickness of 15 and 65 nm. Material models for the NiTi SMA and

TiO 2 will be discussed in the following subsections.

NiTi SMA - nonlocal superelasticity

We assume for simplicity isotropic responses for both elastic and superelastic ef-

fects. Specifically, we ignore the dependency of the elastic moduli, the critical stresses

for phase transformation, the maximum phase transformation strain, and the phase

transformation strain-hardening on crystal orientation. For definiteness, we calibrate

our model parameters to one specific composition and orientation. In our model, dis-
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placement u and martensitic volume fraction are the two primary unknown fields,

and the formulation follows the small strain nonlocal superelastic model presented

in Section 3.1. As there is no clear evidence of the size-dependent stress hysteresis

in experiments, we exclude the dependence of the dissipative length scale £d for this

application. Therefore, the macro-force balance equation reads

V - 0- = 0 ,(4.3)

and the micro-force balance equation reads

1 ale
Ysign(d) = a: At - -( : ee) - e + Aseq(T - Tq)

2 a

-Ht + Sof2(,7 . V) 4.4)

Ti oxide - plasticity

The TiO2 layer is modeled as isotropic elastoplastic. The decomposition of the total

strain tensor now reads

e = E e , (4.5)

where eP is the plastic strain tensor. The evolution of eP follows the flow rule

ip = PAP , (4.6)

where P denotes the equivalent plastic strain rate, and AP is the plastic flow direction,

which takes the normality rule

AP adev(472 adev

The constitutive relations include Hooke's law,

a = Wo - ee . (4.8)
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where W2O is the elastic moduli of TiO 2, and the conventional J2 plastic yield condition,

e2 ladev 1-&=0(49

where &, is the compressive yield strength.

The plastic hardening of TiO 2 is ignored because it is expected to be much smaller

than the strain-hardening rate of NiTi SMA. The fixed-thickness TiO 2 layer is sup-

posed to dominate in the small pillars, while it has been observed that pillars with

diameter smaller than 200 nm exhibit less strain-hardening than pillars with larger

diameters, and the 162 nm [210] oriented pillar even shows a perfect plateau [31].

Model parameters

The values of the SMA model parameters are determined for [111] oriented Ti-

50.9at%Ni, for which the size dependence of the strain recovery is observed [32].

The elastic moduli are taken from the estimation of the corresponding bulk material

with the austenite Young's modulus EA = 59 GPa, and the austenite Poisson's ratio

vA = 0.3 [32]. The elastic properties of martensite are assumed to be the same as those

of austenite, i.e. EM = EA = 59 GPa, vM v VA = 0.3. The equilibrium temperature

Teq = 200 K, and the transformation entropy Aseq = -4.05 J.mol- 1 .K-1 /(a NA) =

-0.245 MPa-K- 1 are obtained from [111], where ao = 0.3015 nm is the lattice parame-

ter of the austenite NiTi at room temperature [79], and NA is the Avogadro constant.

The maximum transformation strain e = 0.036 is obtained from [99]. The transfor-

mation resistance, Y, is calculated through the 1D degenerate case of the micro-force

balance equation, Eq. (4.4),

Ysign() = - + Aseq(T - Teq) - H t  , (4.10)

where -is the stress along the loading direction. At T = 298 K, a stress value 800 MPa

has been reported as the point in which the forward martensitic phase transformation

initiates [99, 31]. Y = 4.6 MPa is then obtained by applying the values of the
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parameters above. The hardening coefficient Ht is derived from the experimental

strain-hardening rate in the following way. From Eq. (4.10), one obtains 2-- -

Ht9 = 0 by taking the derivative with respect to the total strain E. From Hooke's

law, one obtains ' = E(1 - Lse) with assumption E = EA = EM. Combining

these two equations leads to H t = ,(e)2/(1 - -L). By replacing L with the

experimentally reported value 20 GPa [31], Ht = 39.2 MPa is obtained.

The group of parameters So0 has the effect to enhance the strain-hardening rate

for nonuniform phase transformations [90]. In this study, the values, Scve= 0.01

nm 2 EA and 1 nm2 EA, will be adopted to study this effect.

Material parameters for TiO2 including the Young's modulus E0 = 287 GPa,

the Poisson's ratio vo = 0.268, and the compressive yield strength CTY= 3 GPa are

obtained from [17].

Composite Voigt-average model

In the analysis of composite materials, Voigt average, which assumes uniform strains,

is commonly used to estimate the stiffness and the stresses. In this work, we also

employ it to analyze the response of the composite NiTi/TiO2 pillars. Consider a

NiTi pillar with diameter D that contains a TiO 2 layer with thickness to. The strain

along the loading direction e is assumed identical in the two materials. Given a

strain history, the stress along the loading direction within each material, 0.NiTi and

UO, can be calculated independently using its constitutive relations. Figure (4-11)

plots the stress-strain curves of NiTi SMA and TiO 2 during a compressive loading

cycle with maximum strain 3%. Complete strain recovery and stress hysteresis in

the strain-loading cycle can be observed in the response of NiTi SMA. For TiO2 , one

can observe the typical strain-cycle response for an elastic perfectly-plastic material

leading to a residual stress when the strain goes back to zero. The reaction force from

the pillar cross-section, f, is the sum of the reaction forces from the two materials,

i.e.

f = r - t0) 0NiTi +r7[(D)2 (D _to) 2 0
. (4.11)
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Figure 4-11: Compressive stress-strain curves of NiTi SMA and TiO2 under a uniaxial
loading cycle with maximum strain 3%.

And the average stress response of the composite can be obtained as follows

a = f
2 = wjNiTi _ (1 O (4.12)

where the weight w is defined as

W= 1 -2 ( . (4.13)

The results using this model are shown in Section 4.2.2.

Finite element simulation

The composite model presented in the previous section does not consider the interac-

tion between the TiO 2 layer and the NiTi core, and in particular ignores the constraint

from the TiO 2 layer on the martensitic phase transformation in NiTi SMA. In ad-

dition, due to the locality of the constitutive models for the TiO2 plasticity and the

SMA superelasticity, the homogenized approach can only capture size effects through

the volume ratio of the two components but will be insensitive to a change of the

spatial scale.

In order to explore the role of the interaction between the two components includ-

ing gradient effects at the TiO 2-NiTi interface produced by the internal constraint to
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Figure 4-12: Quarter pillar for finite element calculations.

the phase transformation, three-dimensional finite element calculations are performed

using the full nonlocal SMA model. The pillar is modeled as a cylinder of diameter

D and height h. Due to symmetry, only a quarter of the pillar is considered in the

computation, Fig (4-12). In reality, the top surface is also covered by the TiO 2 layer,

which could significantly affect the mechanical response if the aspect ratio h/D is

small. It has been reported that the aspect ratio of all samples ranges between 1.6

and 3.9 [32], although no such information for individual pillar is provided. For sim-

plicity, we ignore this top TiO 2 layer, and focus on the size effect related to changes

in the diameter. A fixed pillar height h = 100 nm is then assumed for all the pil-

lars in the finite element simulations. Due to the gradient terms, the micro-force

balance equation for NiTi SMA, Eq. (3.59), is a partial differential equation of the

martensitic volume fraction, and is coupled with the macro-force balance equation,

Eq. (4.3). With proper boundary conditions, these two equations for NiTi SMA, and

the governing equation for TiO 2 (same as Eq. (4.3)), complete the formulation of the

pillar compression test boundary value problem. A finite element discretization with

a staggered coupled scheme is used to approximate the resulting coupled macro- and

micro-force balance equations in weak form.

4.2.2 Results and discussion

For both the composite Voigt-average and the finite element models, the experiments

are simulated as follows. Since both the superelasticity and the plasticity are history-
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Figure 4-13: Compressive stress-strain curves from (a) experiments [31] and (b) Voigt-
average analysis. Red and blue colors indicate the first and second loading cycles,
respectively.

dependent, the strain history is applied in increments of 0.1%, and at each strain

increment the constitutive models are integrated numerically. Following the experi-

mental conditions, the strain is first increased to -3%, and then decreased until the

reaction force becomes zero. The pillar is then reloaded to -5% strain, and unloaded

until the reaction force becomes zero again. The evolution of the stress, the marten-

sitic volume fraction (NiTi SMA) and the plastic strain (TiO 2) are recorded during

the entire procedure. The strain history is applied at a constant temperature T = 298

K.

Voigt-average model

In Fig (4-13), the stress-strain curves from the composite Voigt-average model are

compared to the experimental results for pillars with diameter 1030, 273, and 173

nm. In these calculations, the TiO2 layer thickness t0 is taken as 15 nm. The

simulations reproduce some important features of the experimental results. First,

the residual strain at the end of the first loading cycle increases significantly as the
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Figure 4-14: Comparison of experiments and Voigt-average of two extreme TiO2

thicknesses for the displacement recovery during the first loading cycle.

pillar diameter decreases. For the smallest diameter (173 nm) there is essentially no

strain recovery except for the elastic response, which indicates that in this case the

superelastic effect is suppressed. By contrast, the 1030 nm pillar almost completely

recovers its deformation. The medium-size pillar (273 nm) shows an intermediate

response between these two limits with some strain recovery. It can also be observed

that the stress hysteresis between the intermediate unloading and reloading clearly

decreases as the pillar diameter decreases.

Fig (4-14) shows a summary of the experimentally-observed displacement recovery

as a function of pillar diameter as well as the predictions from the Voigt model for two

extreme TiO2 layer thicknesses. Two values of the TiO2 layer thickness, 15 and 65

nm, are used as described in Section 4.2.1. It can be seen that the model captures the

decrease in the displacement recovery for decreasing pillar size and that the extreme

cases in which the Ti-depleted zone is considered as full NiTi and TiO2 provide nice

bounds for the experimental values. For very small pillar diameters, the two TiO2

layer thicknesses considered give an identical limit value of the recovered displacement

&y/(E03%) ~ 34.8%, which represents the response of pure TiO 2.

In order to gain more insight into the model response, in Fig (4-15) we plot

the stress and strain history experienced by each material component as well as

the macroscopic average value as a function of load increment for the case of the
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Figure 4-15: Evolution of the stresses (top) and the strains (bottom) for the 273 nm
pillar from Voigt-average analysis.

273 nm pillar with TiO 2 thickness 15 nm. Singular points in the load history have

been identified with letters to facilitate the discussion. During the first thirty load

increments in which the applied strain is increased up to -3%, we can first observe

the elastic loading up to point (a) ( -1% applied strain) when TiO2 starts to yield

plastically, followed by the onset of transformation in NiTi SMA at (b) ( -1.4%).

Continued loading promotes the development of the phase transformation strain and

the plastic strain until (c) where the applied strain reaches the prescribed maximum.

At point (c) when unloading begins both components experience elastic unloading

until (d) when the NiTi SMA starts the reverse phase transformation. It is worth

noting that at point (e) during the elastic unloading the stress in TiO2 vanishes before

the average stress does and becomes tensile with further decrease of the applied strain.

At (f), the average stress reaches zero and the first loading cycle is complete with a

residual strain of about -1.1%; residual stresses of about 2.5 GPa (tensile) and -0.6

GPa (compressive) remain in TiO2 and NiTi SMA, respectively; the residual plastic

strain in TiO 2 is about -2%, whereas the residual phase transformation strain in NiTi

SMA is about -0.1%. During the second loading cycle the applied strain is increased

from its residual value to -5% (i). There is first elastic reloading up to (g) where the

forward phase transformation begins, whereas TiO 2 continues to load elastically up

to (h) where plastic yielding starts again. Both the phase transformation strain and
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Figure 4-16: Residual martensitic volume fraction in NiTi SMA and the percentage
of displacement recovery at the end of first loading cycle.

the plastic strain continue developing until the applied strain reaches the prescribed

maximum at (i). Subsequent unloading from (i) proceeds elastically until the reverse

phase transformation of NiTi SMA starts at (j). At (k), the stress in TiO2 becomes

tensile as in the first loading cycle and grows to the point (1) where plastic yielding

under tension starts. At (m), the average stress eventually decreases to zero, and the

second loading cycle is complete with a residual strain about -2.1%; residual stresses

of about 3 GPa (tensile) and -0.78 GPa (compressive) remain in TiO2 and NiTi SMA,

respectively; the residual plastic strain in TiO2 is about -3.2%, whereas the residual

phase transformation strain in NiTi SMA is about -0.8%.

Further insights can be obtained from the Voigt-average model. For example, Fig

(4-16) shows the residual martensitic volume fraction in NiTi SMA and the displace-

ment recovery at the end of the first loading cycle as a function of the volume fraction

of NiTi SMA in the composite pillar, i.e. w defined in Eq. (4.13). It can be seen

that the residual martensitic volume fraction decreases as w increases, and eventually

vanishes at w = 0.85. For a fixed TiO2 thickness, it means that the stress-induced

martensite does not fully transform back to the austenite in small pillars; the amount

of the residual martensite decreases with increasing pillar size; and the reverse trans-

formation will be complete for pillars with the volume fraction of NiTi SMA above

0.85. It can also be seen that the displacement recovery increases monotonically with
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Figure 4-17: Compressive stress-strain curves of 100, 175, 400 nm pillars during the
first loading cycle, and the distribution of martensitic volume fraction along pillar
radius when first loaded to 3% strain.

w. When w = 0, the displacement recovery equals &y/(E03%), which represents the

pure Ti02 response. When w = 1, the displacement recovery is 100%, which rep-

resents the pure NiTi SMA response. The curve is steepest for w above 0.8, which

indicates that the displacement recovery is most sensitive within this range.

Finite element calculations

The following boundary conditions are adopted to simulate the pillar compression

tests: ui = 0 at xi = 0 for i = 1, 2, 3, and U3 = f13 at X3 = h. The displacement

ft3 is prescribed to match the strain history in the experiments. At the Ti02-NiTi

interface ((xi +2) 2 = D/2 - to), we constrain the martensitic phase transformation

with the boundary condition in the micro-force balance equation (3.43) by setting the

martensite volume fraction 0.

In Fig (4-17), stress-strain curves extracted from finite element simulations for

three pillar diameters with Ti02 thickness of 15 nm and the nonlocal energetic co-

efficient SO2 = 1nM2 EA are compared with the Voigt-average results. It can be

seen that the finite element model has also captured the feature of increasing residual

strain for decreasing pillar size, and the residual strains predicted are very close to

the Voigt-average results. It is also clear in both the finite element and Voigt-average
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Figure 4-18: Displacement recovery during the first loading cycle extracted from finite

element simulations in comparison with experiments and Voigt-average results.

results, that the apparent elastic modulus and the yield stress increase for decreas-

ing pillar size. This can be attributed to the increasing proportion of TiO2 , whose

Young's modulus and yield strength are larger than the Young's modulus and the

critical stress of the NiTi SMA, respectively. The finite element results also show an

enhanced strain-hardening compared to the Voigt-average results, as expected from

the nonlocal SMA model [90]. In Fig (4-17), we also plot the martensitic volume

fraction along the radial direction at the maximum applied strain. It can be seen

that the Voigt model has predicted an identical value about 0.3 for the three pillar

sizes, whereas the martensitic volume fraction predicted by the finite element model

decreases, and the relative area of influence of the TiO 2-NiTi interface expands for

decreasing pillar size.

In Fig (4-18), we summarize the displacement recovery at the end of the first

loading cycle predicted by the finite element model for a wide range of pillar diameters,

and compare it with the experiments and the predictions of the Voigt-average model.

It can be seen that the displacement recovery predicted by the finite element model

for the two representative values of Sof' is very close to and sometimes even coincides

with the corresponding prediction of the Voigt-average model. Since the nonlocal

energy and the interaction between the NiTi SMA and TiO2 are not considered in

the Voigt-average model, the match suggests that these two factors have a negligible
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Figure 4-19: Strain-hardening rate during the phase transformation extracted from
finite element simulations in comparison with experiments and Voigt-average results.

impact on the amount of the displacement recovery.

In [31], the experimental stress-strain curves have shown that the strain-hardening

rate during the phase transformation is highest for medium-size pillars with diam-

eter between 200 and 400 nm, and the differences in the strain-hardening rate are

attributed to the taper shape of the individual pillar. However, this explanation has

not been further quantified. In this study, we proceed to interpret the experimental

observations with our model, which suggests a pillar-size dependence on the strain-

hardening rate. In Fig (4-19), the strain-hardening rate extracted from the finite

element simulations with TiO2 thickness of 15 nm and two representative values of

SOf2 are compared with those extracted from the experiments and the Voigt-average

results. For the finite element simulations with SOf /EA = 1 nm 2 , it can be seen that

starting from large pillar sizes, the strain-hardening rate first increases for decreasing

pillar size, and at about 200 nm it starts to decrease with further decrease in the

pillar size, which is consistent with the experimental observations. It has been shown

in [90] that for pure SMA, the hardening effect increases for decreasing pillar size due

to the nonlocal term in the free energy and the constraint of phase transformations.

However, because of the presence of the TiO 2 layer, in smaller and smaller pillars,

the strain-hardening rate eventually drops as it approaches the perfect plastic re-

sponse. For the finite element simulations with much smaller Sof2, the enhancement
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of the strain-hardening rate due to the nonlocal energy is negligible, and the result

simply coincides with the prediction from the Voigt-average model, which decreases

monotonically with decreasing pillar size.

Conclusions

In this work, we have proposed an approach to model the NiTi nanopillars subject

to cyclic compressive loadings. The NiTi pillars have been treated as a composite

material comprising a NiTi SMA core, and a TiO 2 outer layer, whose thickness is

assumed to be fixed regardless of pillar sizes. A nonlocal superelastic material model

with the gradient of the martensitic volume fraction in the free energy has been used

for NiTi SMA, and an elastoplastic material model has been used for TiO 2. Composite

Voigt-average analysis and finite element calculations have been performed to study

the role of the TiO2 layer in the cyclic compression tests of NiTi pillars.

Both Voigt-average and finite element simulations have captured the experimental

observation of the loss of superelasticity in the small pillars. It has been shown that

the plastic deformation in the TiO2 layer prevents the complete strain recovery of the

pillar during unloading, an effect that is more noticeable for smaller pillar sizes, i.e.

as the TiO2 layer takes more of the pillar volume. This results in the increase of both

the residual strain and the residual martensitic volume fraction for decreasing pillar

size.

The finite element simulations have also provided an explanation of the exper-

imentally observed size dependence on the strain-hardening rate during the phase

transformation, where the strain-hardening rate first increases and then decreases

with decreasing pillar size. In large pillars, where NiTi SMA occupies most of the

volume, the nonlocal energy together with the confinement from the TiO 2 layer on

the phase transformation causes the increase of the strain-hardening rate for decreas-

ing pillar size. In very small pillars, where the TiO 2 layer occupies relatively more

volume, the response approximates the perfect plasticity, leading to the drop of the

strain-hardening rate.
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Chapter 5

Conclusions

5.1 Thesis contributions

In this thesis, we have developed a nonlocal continuum model to study size effects

in the superelasticity of SMAs. The modeling approach combines classic superelastic

models [13] with strain gradient plasticity theories [5, 56, 57]. Both the displacements

and the martensitic volume fraction are considered as independent fields. Associated

with the martensitic volume fraction gradient in the free energy and the rate of the

martensitic volume fraction gradient in the dissipation function, two internal length

scales, the energetic and the dissipative length scales, are incorporated in the model,

which allow the description of size dependent stress-strain responses.

The model responses have been investigated in detail with focus on the effects of

the two internal length scales in the one-dimensional case. It has been shown that the

strain-hardening rate increases as the energetic length scale increases, and the stress-

hysteresis increases as the dissipative length scale increases. The one-dimensional

model has been applied to simulate the compression tests of Cu-Al-Ni pillars, where

the increase in the stress hysteresis for deceasing pillar size has been successfully

captured.

We have derived a variational incremental formulation for the coupled macro- and

micro-force balance equations that result from the nonlocal model. The variational

formulation has been shown to help define the convergence criteria for the numerical
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simulations. Based on the variational formulation, a computational framework is

formulated and implemented. In particular, a robust and scalable iterative solver

(parallel dynamic relaxation) has been implemented, which enables the large-scale

three-dimensional study of the size effects in SMAs with unprecedented resolution.

By applying this computational model, we have explored different examples of the

size-dependent superelastic responses in SMAs. We have captured the increase of the

stress hysteresis and the strain-hardening rate for deceasing grain size, and attributed

them to the confining effect of grain boundaries in polycrystalline SMAs. We have

also captured the loss of superelasticity in NiTi pillar compression tests using Voigt-

average analysis and finite element simulations. The increase of the residual strain

after unloading has been attributed to the plastic deformation of the TiO2 outer layer.

Finite element simulations have suggested a size-dependent strain hardening effect,

which can not be seen from the Voigt-average analysis since it does not consider the

interaction between NiTi and the TiO2 layer. In sum, the computational model has

confirmed the influence of constraints like the grain boundaries and the surface Ti

oxide layer on the size-dependent superelastic responses.

As a separate effort, we have conducted analytical study of the nonlocal supere-

lastic model. In particular, we have linked the minimization conjecture on the nor-

malized plastic strain rate in [5] to the two-field variational incremental formulation

in this thesis. We have shown theoretically for o = 1 and numerically for a = 2

that there is no continuous minimizer for the minimization conjecture with effective

plastic strain rate Ep = [JP1 J&+ ld5%'X] a . In addition, a one-dimensional analytical

stress-strain relation has been derived for the stress-controlled uniaxial loading cycles

in the absence of the dissipative length scale.

5.2 Future work

The nonlocal superelastic model describes the martensitic phase transformation by

a scalar, the martensitic volume fraction, and the orientation dependencies of the

martensitic phase transformation are not incorporated. The model parameters in
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Table 3.1 are only calibrated into specific orientations and loading directions in the

simulations of single-crystal compression tests. This suggests an immediate extension

of the current work, i.e. to develop a nonlocal superelastic model for single crystalline

SMAs using crystallographic information. However, this extension requires significant

more experimental data like the anisotropic elastic moduli, transformation systems,

and the critical transformation stresses. A further extension could be to apply the

single crystal model to the study of size-dependent polycrystalline responses, and

especially to improve the setting of conditions for the phase transformation at grain

boundaries.

Another extension could be to investigate the size-dependent shape memory effect

by introducing the temperature as an independent field. A further extension along

this line could be to quantify the contribution from the strain rate effect and the

constraining effect like grain boundaries to the size dependencies of SMAs.
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Appendix A

Discussion on the strain gradient

plasticity formulation

In this chapter, the minimum principle proposed in Anand et al. [5] is linked to

the variational incremental formulation in Section 3.3.1. The existence of continuous

minimizers is studied for two formulations of the effective plastic strain rate. All the

discussions are based on the benchmark problem: shearing of a constrained infinite

layer. For simplicity, the energetic length scale Le is assumed to be zero throughout

this chapter.

Consider an infinite layer with thickness h aligned with y direction subject to

shearing along x direction. Denote the displacement along x direction as u, and

assume that the shear strain -y can be decomposed as follows

7 = UY = _Ye + _p , (A.1)

where -ye and -yP are the elastic and plastic shear strains, respectively. Assume further

that the free energy density contains only the elastic part, i.e.

t = e)2 (A.2)
2

where pa is the shear modulus. Define T, k, and k~' as the work conjugates to ye,

115



-yP, and -,, respectively. The following governing equations can be derived from the

principle of virtual power:

,y = 0, (A.3)

k - -r - k"nI = 0 , (A.4)

where the first equation (macro-force balance) implies that the shear stress T is uni-

form through the layer thickness. By imposing the free energy imbalance requirement,

Anand et al. [5, 41] defined the following constitutive relations

T = Aye , (A.5)

k = yo , (A.6)
EP

k"I = f2 , (A.7)
E P

where 4y is the yield (shear) strength, and EP is the effective plastic strain rate, which

is defined as

Er [( p)2 + (Vd p )2] (A.8)

with fd the dissipative length scale. Resulting from the constitutive relations, the

energy dissipation rate can be expressed as

D = kiy + k"nl9p = EP , (A.9)

which is always non-negative, and the micro-force balance equation (A.4) can be

rewritten as

k P - f ( = (A.10)
EP ty P
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A.1 Minimization conjecture and variational in-

cremental problem

Anand et al. [5] proposed a conjecture that the problem

f0 h
Inf h~/ :=

with r subject to 71(0) = r(h) = 0 and -fqr/ dy = 1, has a minimum,

(A.11)

and the

minimizing field r/* satisfies Eqn (A.10) with the flow stressr = F(r*).

We propose a minimization principle based on the incremental functional of the

coupled fields, and link it to the conjecture above. After time discretization, the

incremental problem for a generic increment [t(n), t(n+l)] can be stated as

Inf / (Au, AyP) := 1 h P (n) yp(n) ) 2 + O [ (A _p) 2  +I 1~~~)2] 12'dy

-2 n) _ n ) 2 + A +7 ) 2 + ( f d (A7 p 2

(A. 12)

with Au and A'jP subject to the boundary conditions

Au(0) = -AL/2, Au(h) = AL/2,

A-yP(O) = A-y(h) = 0 ,

(A. 13)

(A. 14)

where AL is the applied displacement increment. The Euler-Lagrange equations of

the incremental functional f can be expressed as

AUYY - AjY, + U - = 0,,y yy )

- 0Y (
,) = 0 ,

AEP

(A.15)

(A. 16)

where AEP := [(A7yp) 2 + (fd IAp 1)2 ]

Assume that the two-field problem has a minimum with minimizing fields (Au*,
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AYP*). Then the first Euler-Lagrange equation implies that the flow stress defined as

T* : (Au* - A79* + U (n) - YP(fn)) (A.17)

is uniform through the layer thickness, and the second Euler-Lagrange equation states

that

0 AEyP*Tvy AEP* (A.18)
dy AEP*)

with AEP* := [(AYP*) 2 + (ed I yA-,* )2] . Using the boundary conditions and inte-

grating by parts, we can obtain the following important equality

T* jAyP* dy = A AEP* dy.
0 0

(A.19)

On the one hand, if (Au*, Ap{P*) is known, we can define the following field

ShAYP*
0' :/P* dy

(A.20)

It is straightforward to show that ( satisfies ((0) = (h) = 0, f' ( dy = 1, T*

J((), and ((, T*) satisfies the micro-force balance equation (A. 10). Therefore field

( satisfies both the kinematic constraints and the Euler-Lagrange equation for the

minimization problem (A.11).

On the other hand, if minimizer q* for the problem (A.11) is known, we can define

the plastic strain increment

o := Agj* ,(A.21)

with the scalar multiplier defined as

A := u(n)(h) - u(n)(0) + AL - Io h
9#Th*)

PI

and also the displacement increment

y:= + 7p(n) + ody + u(n)(0) -- - (n)(Y)

(A.22)

(A.23)
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It is straightforward to verify that v and p satisfy the boundary conditions and the

Euler-Lagrange equations for the two-field minimization problem (A.12). It then

follows immediately that

p(V" + Un)_ = Y(r/*) . (A.24)

which means that the flow stress for the two-field problem is also F(r1*).

As a result, if the minimizing fields exist and are sufficiently characterized by

the Euler-Lagrange equations in each problem, the solution to the two-field problem

can be obtained by solving the one-field problem and then utilizing the displacement

boundary conditions. In particular, the flow stress in the two-field problem (A.17) is

independent of the displacement boundary conditions, which implies that the stress-

elongation curve from the two-field problem will be a perfect plateau after plastic

yielding, and the yield strength is simply the minimum of the one-field minimization

problem.

A.2 Effective plastic strain rate and existence of

minimizer

The effective plastic strain rate (A.8) can be generalized as

EP = [( P)" + (edjy )c] (A.25)

with parameter a > 0.

For a = 1, the constitutive equations can be expressed as

k = Tysgn(P) , (A.26)

k"' = fdTosgn (y') , (A.27)

which are associated with the rate-independent limit of the strain-gradient isotropic
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viscoplastic theory by Lele and Anand [56, 57.

propose the following minimization problem:

Similarly to Problem (A.11), we

Inf W(r/) := hI + fd I/1,y Idy (A.28)

with r/ subject to 7(0) = r(h) = 0 and _fI / >dy = 1. This problem has an infimum

r4(1+2d/h), but does not have any continuous minimizer, which is proved as follows.

For any continuous function T1, the kinematic requirements implies that q"max

> 1. Assume that 7 achieves the maximum value r/max at point Q. Then

9(r7) = roj dy + T1,dj I d

+h (J f h

=Tyo+ (7fd max ±1max

> -rYO (I + 2ed
h

-177y dy)

(A.29)

which leads to a lower bound of the infimum:

2ed
Inf >r) Ty (I (+ d)

h

Tin(y) :={

(A.30)

We can construct a series of continuous functions

h Y 0 < y < }

h< y < h(1 -

h(1 - ) y h

(A.31)

for any integer n> 2, where := _ is also the maximum value of function n. It

is straightforward to verify that % with n > 2 satisfies the kinematic requirements

and also

§(r/n) = Tr[1 + (A.32)

120

max 7
yE[O,h]

h(1 - ;



which leads to an upper bound of the infimum:

Inf !(I) < lim (rJ') = rn(I + 2fd (A.33)
n-*+oo h

The lower bound, Eqn (A.30), and the upper bound, Eqn. (A.33) are identical,

which means that TQ.(1 + 2) is the infimum of the minimization problem. However,

this infimum can not be achieved by any continuous function because of the strict

inequality, Eqn (A.29).

For a = 2, Anand et al. [5] obtained an upper bound for the infimum of the

one-field constrained minimization problem (A.11):

Inf _F (T/) 5 h (1 + 2fd (A.34)
h

Consider the existence of the minimizer. The integrand of functional 9 satisfies

[T12 + (fd r/,y) 2] d >_ ,y , (A.35)

so Y is coercive in Sobolev space W, 1 [24]. Nonetheless, this space is not reflexive,

and the classic existence theorem of the direct methods in the calculus of variation

is not applicable [21, 24]. In [21], Dacorogna showed that there is no continuous

minimizer for the same functional with r subject to rI(O) = 0, and rI(h) = 1. Further

theoretical study of the existence of the minimizer is not pursued in this thesis. In-

stead, we consider a numerical approximation of the problem using the finite difference

method described in [35]. The interval [0, h] is divided into n + 1 equal subintervals

by points

y = kAy , for k = 0,..., n + 1, (A.36)

with Ay = h/(n + 1). The function q (y) is approximated by a piece-wise linear func-

tion taking value r/k at each turning point Yk. Then Problem (A.11) is approximated
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Figure A-1: Profile of the minimizer for ed/h = 1.

by the following finite dimensional optimization problem:

Inf -F (70, r/1, ... %+1) :- = ,E V(kAy)2 +- e(k+ - ,)2 (A.37)
k=O

with (r0, r11 , ... , rJn+1) subject to 7o = r7n+1 = 0 and En- r/kAy = 1. The discretized

problem is then solved by MATLAB constrained minimization function 'fmincon' [67]

with the gradient of ah provided. h = 1 is assumed in the numerical tests.

In Fig (A-1), the profiles of the minimizer from three numerical approximations

are plotted for ed/h = 1. It is clear that at y = 0 and y = h, there are sharp boundary

layers, and the thickness of these boundary layers decreases as n increases. In the

case of n = 499, i.e. 500 subintervals, the boundary layers almost vanish, leading to

jumps of the function value at the two ends. These numerical results suggest that

the original problem (A.11) does not have any continuous minimizer. Meanwhile, the

minimum of the numerical problem is convergent as the number of degrees of freedom

(n) increases, which can be seen in Fig (A-2).

In Fig (A-3), profiles of the minimizer are plotted for different dissipative length

scales. It can be seen that as ed/h increases, the jump of the function value at the two

ends increases, whereas the total variation of the function decreases. In Fig (A-4),
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Figure A-4: Minimum of Problem (A.37) as a function of fd/h

upper bound 1 + 2fd/h. (n=499)
compared with the

the minimum of Problem (A.37) as a function of £d/h is compared with the upper

bound 1 + 2d/h obtained in [5]. It can be seen that this upper bound is not tight

for the range of ed/h shown, and the numerical results suggest that the infimum of

the original problem (A.11) is a nonlinear function of ed/h.
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Appendix B

One dimensional analytical

solution for energetic hardening

When the one-dimensional nonlocal superelastic model contains only the energetic

length scale, it is possible to obtain an analytical expression for the stress-strain

relation. To simply the problem, we further assume that the elastic moduli are the

same for the austenite and the martensite.

B.1 Uniaxial tension of a single crystal

The macro-force balance equation, Eqn (2.6), implies that the stress - is uniform.

Since the dissipative length scale is zero, the micro-force balance equation, Eqn (2.15),

can be written as

o- -o + r = Ysgn() , (B.1)

where B 0 := -Aseq(T - Teq) is defined to simplify the notation. Eqn (B.1) can be

viewed as a nonlocal yield condition, where the threshold is ±Y for the forward and

reverse phase transformations, respectively. Assume that the length of this single

crystal is h, and that the ends of the crystal are obstacles for phase transformations,

i.e.

6(0) = (h) = 0. (B.2)
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Also, the martensitic volume fraction should satisfy the constraints

0 < < I . (B.3)

The strain E = U/E+t is not uniform during the phase transformation, as the phase

transformation strain E' is pinned at the ends. Therefore, we define the following

average strain

f:= jhed, (B.4)

and explore the relation between a and E. It can be seen that the following equation

a-= F E - - f dx (B.5)
h 0

holds by applying the definition (B.4) and integrating Hooke's law - = E(E- t)

over the length of the crystal.

Consider a stress-controlled loading cycle where the applied stress - first increases

to a prescribed maximum value, and then decreases to zero. At first, the material

deforms elastically until the forward phase transformation occurs, i.e.

-E = , (B.6)

for 0< a< Y- BO

Continued loading promotes the development of the phase transformation strain.

Before the bound constraint < 1 is active, the distribution of the martensitic volume

fraction can be found by solving the ordinary differential equation

-- Bo + Sof ,X = Y (B.7)

with boundary conditions c(0) = (h) = 0. It is straightforward to obtain that

Y + BO - t h h2
2SO22
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and takes its maximum -- BOsm .tyh2 at h/2. As a result,

e
o- h2 (y + Bo - o-e)

S - - e 6 (B.9)E 12SOf2

for Y±tB < a < Y+BO+8Sofe/h 2 . At this stage, the strain-hardening rate is constant,

which can be expressed as

&u 1 1 hE2
- = -+ _ ( )2 .(B. 10)

OE E 12SO Be

Continued loading activates the bound constraint < < 1, and the distribution

of the martensitic volume fraction can be separated into three sections: the left

boundary layer [0, p] and the right boundary layer [h - p, h] with some point p < h/2

to be determined, and the flat interior [p, h - p] where equals 1. The martensitic

volume fraction within the left boundary layer can be obtained by solving the ordinary

differential equation B.7 with the boundary conditions (0) = 0 and '(p) = 0, where

the smoothness of , or equivalently the continuity of the microstress k"n = Sof (

(2.13), is assumed at p. It is then straightforward to obtain

Y = B o- [(X- p)2 p 2 ] , (B.11)
2Soe

for x E [0, p]. It can also be seen that ( takes its maximum (-Y2BOe

order to determine p, the continuity of ( is applied, i.e. (p) 1, which leads to

2SOf2 2
P = e (B. 12)

(-Y - BO + o-et

In sum, we obtain

o-2 2 Sof 2

E F - (B.13)

for o- > Y+Bo+8Sofe/h 2 . At this stage, the strain-hardening rate increases as the applied

stress increases, and approximates the Young's modulus E. Assume that E = En
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when the stress reaches the prescribed maximum max

Upon decreasing the stress, the material deforms elastically until the reverse trans-

formation occurs, i.e.

6 max+ U- max

E
(B.14)

for - 2 Y/ft + ,rmax < < ax, where the ending point of this stage is determined by

applying the nonlocal yield condition, Eqn (B.1).

The reverse phase transformation starts initially in the two boundary layers [0, q]

and [h - q, h] with some point q < h/2. Within the boundary layer [0, q], the marten-

sitic volume fraction can be obtained by solving the ordinary differential equation

t -Bo + So 2,= -Y (B.15)

with boundary conditions (0) = 0 and ('(q) = 0. It is straightforward to obtain the

solution
-Y + Bo - c-t

Se [(x - q 2]
(B.16)

for x C [0, q]. It can also be seen that takes its maximum at q. Applying

the continuity of at q ( (q) = 1) leads to

2S0 e2 2

Y - Bo + -st)
(B.17)

In sum, we obtain

2

3hE ( 2S 0f22 e I
Y - B0 + os

11
2J

(B.18)

for -Y+BO+8So( h)2 < < Y/t + umax, where the ending point of this stage is

determined by applying q = h/2 in Eqn (B.17).

Further loading promotes the reverse phase transformation in the entire crystal.

At this stage, the martensitic volume fraction can be obtained by solving Eqn (B.15)
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Figure B-1: Analytical stress-strain relation for £e/h = 0.03.

with boundary conditions (0) = (h) = 0. It is straightforward to obtain

-Y + BO - o-

2SOf2 [(x
h)2 h .

2 4]_
(B.19)

And consequently, we obtain

0 h2(-Y + Bo - B.2)
S= - - 12St (B.20)E 12S3f2

ee

for - Bt -YBt8 hg2 The reverse phase transformation is complete at

the end of this stage. Denote the average strain at this ending point as

The last part of the loading cycle is the elastic unloading in the austenite:

0- Y+BO

E = Er + (B.21)
E

for 0 < o < - Bg

It can be seen from Eqn (B.9), (B.13), (B.18) and (B.20) that the energetic length

scale Le appears in the stress-strain relations in a dimensionless form f4/h, which
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Figure B-2: Analytical strain-hardening rate versus energetic length scale, Eqn (B.10).

implies that it affects the mechanical response only through the ratio /h. In Fig

(B-i), we have plotted an example of the stress-strain curve using the expressions

just derived, and marked the turning points for different stages in the loading cycle.

In Fig (B-2), we plot the strain-hardening rate during the phase transformation as

a function of the energetic length scale using Eqn (B. 10). It can be seen that

increases monotonically from zero to the limit E for increasing 4e/h, and this effect

is most significant for 4e/h .< 0.2. In the calculations, model parameters take the

following values: E = 10 GPa, So = 0.1 GPa, st = 0.04, B6  2 MPa, Y = 1 MPa.

B.2 Uniaxial tension of a chain of grains

Using the results of the single crystal, it is straightforward to derive the stress-strain

relation for a chain of grains. Assume that a polycrystal contains a chain of n grains.

Assume further that for i = 1, ... , n, the length of ith grain is h(0 and the material

parameters of ith grain are E(z), st, fi), gt4i, B and Y(i. Given a stress-controlled

loading history, the average strain of each grain 5(i) can be obtained independently
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Figure B-3: Stress-strain relation for a chain of 1000 grains with varying maximum
transformation strain. KtMi/ft E [0.75, 1.251 for small variance, and 2(i)/ft E [0.4, 1.6]
for large variance.

using the results from the previous section since the condition ( 0 at the grain

boundaries isolates the phase transformation within each grain. As a result, the

average strain of the polycrystal reads

1 = Z5(h() . (B.22)

Z h(0 )=
i=1

Taking the previous single-crystal example as a reference, we first investigate the

effect of distributed maximum transformation strains. Assume that

where &s is a random number following the uniform distribution. Two cases are

considered. In the small variance case, cas takes its value in [0.75, 1.25], while in the

large variance case, A takes its value in [0.4,1.6]. In Fig (B-3), we plot the stress strain
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Figure B-4: Stress strain relation for a chain of 1000 grains with varying grain lengths.
h(')/h C [0.75,1.25] for small variance, and h(')/h E [0.4, 1.6] for large variance.

curve for a polycrystal with 1000 grains' in comparison with the reference single-

crystal result. It can be observed that the critical stress for the forward transformation

is lower in the polycrystal cases. This can be explained as follows. Since the critical

stress for each grain is -Ms(i) = Y+B ,the apparent low values for the polycrystal cases

can be attributed to the grain with largest &) that yields first. The critical stresses

are 0.8 x Y+BO for the small variance case, and 0.625 x Y+B for the large variance

case. It can also be seen that during the forward transformation polycrystal cases

show a much larger strain-hardening rate than the reference single crystal, whereas

the difference is not significant for the reverse transformation.

We also investigate the effect of distributed grain lengths. Assume that

h() = h x a, (B.24)

where a' is a random number following the uniform distribution. Two cases are

'The number of grains is sufficiently large to ensure the convergence. A small number of grains
will lead to stochastic results.
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considered. a' takes its value in [0.75,1.25] for the small variance case, and in [0.4, 1.6]

for the large variance case, respectively. In Fig (B-4), we plot the stress strain curve

for a polycrystal with 1000 grains in comparison to the result of the reference single

crystal. It can be observed that the polycrystal results are very close to the result

of the reference single crystal except that the polycrystal results are smooth at the

turning points where the bound constraint ; 1 is activated and deactivated.
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Appendix C

Variational incremental

formulation

In this chapter, the rate-independent isotropic plasticity, strain gradient plasticity,

and gradient superelasticity are presented in a variational incremental formulation.

In this formulation, the displacement increment, effective plastic strain increment, and

the flow direction are considered as unknown variables. The equilibrium (macroforce

balance equation), the normality rule, yield condition and Kuhn-Tucker conditions

(for local model and gradient models with only energetic length scales) will be derived

as variational results. When gradient models contain the dissipative length scale,

the variational result corresponding to the effective plastic strain increment can be

interpreted as a microforce balance equation rather than a yield condition. The

derivation follows the approach of Simo and Hughes [50] for local plasticity, and

Miehe [69] for gradient plasticity. It is worth noting that a mathematical framework

has been proposed by Han and Reddy for local and gradient plasticity models using

variational inequalities [43].
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C.1 Rate-independent isotropic plasticity

The functional that we want to minimize reads:

J(Au, Ay7, A) = + D dV,

where the traction on the outer surface is not considered for simplicity.

energy increment is

VA (E - EP(') _ A-yPA) : C : (E - EP(") - A-yPA)
2

- 1(E(n) - eP(n)) : C : ((n) - eP(n))2

and the energy dissipation during this increment is

DA = tAyP ,

where -r is the yield strength. The variables of the functional are subject to the

constraints: AyP > 01 A : A = 1, and trace(A) = 0. Also the displacement

increment Au satisfies Dirichlet boundary conditions on &DUV.

Corresponding to the inequality and equality constraints, we introduce three mul-

tipliers Ai, i = 1, 2, 3, and formulate the Lagrange functional

L(Au, A&yP, A, A, A2, A3) = J+ j A(-Ay7) + A2(A : A - 3) + A3trace(A) dV.

(C.4)

At a local minimum, the multipliers satisfy the following complementary condition

Ai(-A-y) = 0 and A > 0 .

'In this case, constraint A-yP > 0 is equivalent to the non-negative dissipation requirement:
DA > 0.

136

(C.1)

The free

(C.2)

(C.3)

(C.5)



The variation of L with respect to Au leads to

Div o(n+1) = 0 (C.6)

with .(n+1) := C : (, -,p(n) - AyPA) .

The variation of L with respect to A leads to

- a(n+0A_, + 2A IA31 = 0 . (C.7)

Taking the trace of this equation and using the constraint trace(A) = 0 lead to

1
A3 = -AYPtrace( (n+l))3

Insert the value of A3 in Eqn (C.7), and then we can see that A is collinear with the

deviatoric part of (n+1), n+1). Because of the equality constraint A : A = this2'

variation eventually gives rise to the normality rule

(n+1)

A = .3 0±0 (C.8)

The variation of L with respect to A-yP leads to

- a (n+1) : A + rfy - A1 = 0 . (C.9)

Eqn (C.9), (C.5) and (C.8) lead to the yield condition

- , = o(n+1 : A - t = ||,(n+ 1 _ ,Y < 0. (C.10)

and the Kuhn-Tucker condition

(C.11)

It is worth noting that the yield condition is an algebraic equation rather than
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a partial differential equation, and therefore it is not necessary to treat the effective

plastic strain increment as a primary unknown in computation.

C.2 Rate-independent gradient plasticity with en-

ergetic length scale

In this case, the free energy increment is

= (E - EP(") - AzPA) : C :(- ep) - AyPA) + I Sofp(n+1)12

- I(E(n) - eP(n)) : C : (,(n) - eP(n)) - Sof ||Vyp'")jj 2 . (C.12)
2 2 e

Following the same process, we can define three multipliers and construct a La-

grange functional. The first two variational results are the same as those in the local

plasticity model, while the variation of L with respect to A-yP now leads to

-(n+1 : A - SOf2V2 p(n+l + -r - A = 0, (C.13)

which can be rewritten as

-A o (n+1) : A + StV 27p(n+) - -Y

2 ,n+1 + SO- V27p(n+ -. (C.14)

Using Eqn (C.5), we can obtain

S(n+1) + 2 - -r' <0 , (C.15)

( on+1) + Sof2V2 ,p(n+ ) -1) = 0. (C.16)

Inequality (C.15) includes the Laplacian term, SOf2V27p(n+1, and thus can be viewed

as a nonlocal extension of the yield condition (C.10). Plastic deformation is possible
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if the elastic predictor stress 0 pre satisfies

3o I pre + sAV2p(n) ;> Y (C.17)

C.3 Rate-independent gradient plasticity with en-

ergetic and dissipative length scales

In this case, the free energy increment is the same as the purely energetic case, i.e.

2
ep(n) PA) : C : (E p(n) - AyPA) + 1So2llVyp(n+l) 12

(C.18)(1 ( ) - p(n)) : C : (,,(n ) _ ,p_ n)) _ SO_11V yp ) ,

2 2 e

while the energy dissipation during this increment is

DA = YV(Ap)2 + f2YAK&Y K.- (C. 19)

In order to simplify the notation, we define an auxiliary variable

dP = (A )2 + f. (C.20)

Following the same process as described in the local plasticity model, we can define

three multipliers and construct a Lagrange functional. The first two variational results

are the same as those in the local case, while the variation of L with respect to A-7 P

now leads to

o .(n+1) A ~ 2V -n+ Y [&p
0 A e +7[ - a(

OXj
(C.21)

dP
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which can be rewritten as

-A =(n+1) : A + SOf2V27p(n+l) - ' (P 'e dP axj dp

= 3 'n+1 + SOfV27p(n+1 _tY ) . (C.22)
S2 +dP X dP

Using Eqn (C.5), we can obtain

||,a(n+ l) I, + S Of2V 2,Yp (n+ ) _7 -r - ( < , C . 3
0Ion1I e __ fd <__ 0, (C.23)

2 [dP f3xj dP

|+ 27 +- -r( ') A = 0. (C.24)

Unlike the purely energetic case, inequality (C.23) cannot be viewed as a yield condi-

tion since lim -9 ( 'P) is unknown at the beginning of this load increment.

It is worth noting that for gradient plasticity models, the increment of effective

plastic strain is treated as a primary variable, its value will be an output of the

calculation, and Eqn (C.23) or the nonlocal yield condition (C. 15) for purely energetic

case will be satisfied weakly.

C.4 Gradient superelasticity

Macroscopic superelasticity models contain different transformation directions for for-

ward and reverse transformations [13]:

A = (C.25)

The transformation direction tensor for the reverse transformation is defined by the

transformation strain tensor at the beginning of this load increment. This special

treatment ensures that the transformation strain accumulated during the forward

transformation will vanish with decreasing martensitic volume fraction. It is worth
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noting that for mesoscopic superelasticity models, the transformation direction for

each transformation system is prescribed by crystallographic theories, and remains

the same for both forward and reverse transformations.

It is possible to derive a variational principle that incorporates the two transforma-

tion direction tensors in Eqn (C.25). For this purpose, we follow the technique from

Thamburaja [112], where the increment of martensitic volume fraction is decomposed

into a forward part A + and a reverse part A -, i.e.

A = A + + A- (C.26)

with A + > 0 and A - < 0. The increment of phase transformation strain tensor is

then expressed as

AEt = A +Af + A-Ar, (C.27)

where the direction Af will be the outcome of the variational principle, and the

direction A = t (n) is prescribed.

The functional that we want to minimize reads

J(Au, Az+, A -, Af) = 4V + D" dV . (C.28)

The increment of free energy is

In (E - E " -() AEt) : C : (E - ',t") - AEt) - (n() - (n")) C : (n() - (n))
2 2

- Aseq(T - TJ )(n+1 + Aseq(T - Te) (n)

1 2 1~2-7-nfI
+ IS 0 e 2 (n+1 2 _ 1 e2 I,(n)II2 , (C.29)

2 e2 e

where elastic moduli are assumed to be identical for the two phases, and the classic

hardening term is ignored in order to simplify the derivation.

The energy dissipation during this increment is

DA = Y (z() 2 + , .C-30)
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In order to simplify the notation, we define an auxiliary variable

= ()2 + fdA ,K A ,K - (C.31)

The variables of the incremental functional are subject to the following constraints:

A + > 0 ,

A - <; 0 ,

+ A < 1 - (n)

A + A -(n),

Af: Af = 3 (et)2
2

trace(Af) =0.

(C.32)

(C.33)

(C.34)

(C.35)

(C.36)

(C.37)

Corresponding to these constraints, we introduce six Lagrange multipliers, Ai, for

i = 1, 2, ... , 6, and construct the Lagrange functional

L(Au, +, jA-, A, A+)

-= 17+ IVA,(-A +) + AA-+ 3(A + + A - + (n) - 1) dV

+ j A(+ g- _ - + A5(Af : Af -

At a local minimum, the multipliers satisfy

A, (-A+) =0,

SA2-= 0,

A(A + + A - + (n) - 1) = 0,

A4(-A+ _ A- _ (n)) 0,

+ A6trace(Af) dV .
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A, 0,

A2  0,

A3 > 0,

A4 > 0.

(C.39)

(C.40)

(C.41)

(C.42)



The variation of L with respect to Au leads to

Div (n+1) - 0, (C.43)

where 0 (n+1) = C : (e - et(n) _ Aet)

The variation of L with respect to Af leads to

- -(n+l)A+ + 2A 5A' - A6 1 = 0 . (C.44)

Taking the trace of the equation above, we can see that A6 = trace(,(n+1)) +,

which implies that Af is collinear with the deviatoric part of 0 .(n+1). Therefore,

(n+1)

Af = 3 t e r

2 l _n l l
(C.45)

The variation of L with respect to A + leads to

0 = -0(n+1) :A- se(T - Te,) - Sof272(+1)

- A, + A3 - A4 .

As a result, Eqn (C.39) leads to

.(n+1) A Aseq(T - Te) Sof2(n+) _ y

j(n+1) + + Ase(T Tq) 2(n+) _ y A

L Adt ax dt J

a 
(3ax dt (A

- (A3 - A4 ) < 0 ,

(C.47)

- A4 )} = 0 .

(C.48)

If the dissipative length scale is zero (Vd 0), lim td0__
dt Oxj fJ)

(C.47) can be viewed as a nonlocal yield condition for forward transformation. The
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(C.46)

1 . Eqn

+ Y [A



forward transformation is possible if (n) < 1 2 and

3 tIIpre + Aseq(T - Teq) + SO&72 (n) - Y > 0. (C.49)
20

This is also the yield condition that has been used by Thamburaja in [112]. If the

dissipative length scale is not zero, lim d- is unknown at the beginning

of this load increment, and Eqn (C.47) cannot be viewed as a yield condition.

The variation of L with respect to A - leads to

0= --. (n+l) : A' - Ase(T - Te) - V2(n+ + y - ( J)

+ A2 + A3 - A4 - (C.50)

As a result, Eqn (C.40) leads to

o7(n+1) : Ar Aseq(T - Teq) + eY I + y -_ dJ) _ (A3 - A4 ) > 0,

(C.51)

{(n+1) Ar + ASq(T - Teq) + -l2[2t + a_ y (A3 - A4 ) = 0 .

(C.52)

If the dissipative length scale is zero, lim - ( ) = -9.Eqn (C.51)
A-+ dt &xj dt En(.1

can be viewed as a nonlocal yield condition for reverse transformation. The reverse

transformation is possible if (n) > 0 3 and

%t,.pre : + Aseq(T - Teq) + + Y < 0. (C.53)

If the dissipative length scale is not zero, lim A - g(__) is unknown at the
A +-dt axj dt'j sukona h

beginning of this load increment, and Eqn (C.51) cannot be viewed as a yield condi-

tion.

2Condition (n) < 1 results in lim A3 = im A4 = 0.
3Condition & ) > resu n 4 + A 4 +

3 Coditon (n)> 0 results in urn A3 =urn A4 =0.
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