ON UNITARY REPRESENTATIONS WITH REGULAR
 INFINITESIMAL CHARACTER

by

SUSANA A. SALAMANCA RIBA

Sc.B. Universidad Autonoma Metropolitana Mexico D.F. Mexico
(1980)

> Submitted in Partial Fulfillment
> of the Requirements for the
> Degree of Doctor of Philosophy
> at the
> MASSACHUSETTS INSTITUTE OF TECHNOLOGY
> MAY, 1986
© Susana A. Salamanca Riba

The author hereby grants to M.I.T. permission to reproduce and to distribute copies of this thesis document in whole or in part.

Signature of Author
Department of Mathematics
May 9, 1986

Certified by

Dedication

Dedico esta tesis a mis padres y hermanos por el amor, apoyo y féque me han prodigado durante toda mi vida, especialmente a mi hermana Lourdes con quien he compartido la misma experiencia de estudiantes en M.I.T. y que durante estos años fue mi ejemplo y mi apoyo y que generosamente me dió su tiempo, comprension y numerosos consejos para el desarrollo de mi investigación.

Acknowledgements

It is a pleasure for me to thank my advisor David Vogan for introducing me to representation theory, for teaching me how to do research, for being always willing to share his knowledge, and for being a source of support and enthusiasm.

I also want to thank all my friends for providing constant encouragement and support, and for teaching me how to do research, especially Jeff Adams, Jeremy Orloff, Roger Zierau, my sister Lourdes Salamanca Young, Devra Garfinkle, and Ranee Gupta. The latter three, together with Michele Vergne have been outstanding female models for me throughout the time I was a student at M.I.T. I also thank Dan Barbasch for helpful discussions and suggestions, and generous advice and interest in my work.

Thank you Luis Casian for patiently discussing with me numerous parts of my thesis as well as other interesting problems in mathematics, for continuous advice and understanding, and constant interest in my progress.

Thank you again Roger Zierau and David Vogan for making research in mathematics so much fun.

Finally I want to thank Phyllis Ruby for her constant interest and help during my stay at M.I.T., and Viola Wiley for her excellent work in typing this thesis.

INFINITESIMAL CHARACTER

by
SUSANA A. SALAMANCA RIBA

Submitted to the Department of Mathematics on May 2, 1986, in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

ABSTRACT

For $G=S L(n, \mathbb{R}), \quad S U(p, q)$, and $S P(n, \mathbb{R})$ we prove that every irreducible unitary representation of G with the same infinitesimal character as that of a finite dimensional, arises as cohomological parabolic induction from a one-dimensional unitary character. The techniques used involve case-by-case arguments that do not use any special features of these groups. So it seems reasonable to hope that these arguments could be extended in order to solve the problem for other groups.

For G as above let K be a maximal compact subgroup of $G, g_{0}=k_{0}+p_{0}$, the Cartan decomposition of $g_{0}=$ Lie(G), (π, H) an irreducible Hermitian representation of G on which $Z(g)$ acts as on a finite dimensional module, \mathscr{H}_{K} the Harish-Chandra module of π and (μ, V_{μ}) a lowest K-type of \mathscr{H}_{K}. We prove that either \mathscr{H}_{K} is isomorphic to a Zuckerman module $A_{q}(\lambda)$, for some θ-stable parabolic subalgebra $q=\ell+u \subseteq g$ and one-dimensional unitary character λ of $L=N_{G}(q)$, or else the Hermitian form restricted to $V_{\mu} \oplus\left(p \otimes V_{\mu}\right)$ is indefinite.

Thesis Supervisor: Dr. David A. Vogan, Jr.
Title: Professor of Mathematics

Contents

Abstract 4

1. Introduction 6
2. Notation and Main Results 12
2.1 Structure Theory 12
2.2 Harish-Chandra Modules 14
2.3 Parabolic Subalgebras 16
2.4 Derived Functor Modules 17
2.5 The Modules $A_{q}(\lambda)$ 36
2.6 Reduction Step for the Proof of Theorem 1.3 45
2.7 Methods to Detect Nonunitarity 59
3. $G=\operatorname{SL}(n, \mathbb{R})$ 66
3.1 Preliminary Notation 663.2 Construction of $\ell_{V}(X)$ for a Harish-Chandra Module X69
3.3 Lowest K-types of the Modules $A_{q}(\lambda)$ 72
3.4 Proof of Theorem 2.6.7 for $G=S L(n, \mathbb{R})$ 75
4. $G=\operatorname{SU}(p, q)$ 82
4.1 Preliminary Notation 82
4.2 Computation of $\ell_{V}(X)$ and $\lambda_{V}(X)$ for aHarish-Chandra Module X85
4.3 The Lowest K-types of the Modules $A_{q}(\lambda)$ 95
4.4 Parameters $\lambda_{V}\left(A_{q}(\lambda)\right)$ and $\ell_{V}\left(A_{q}(\lambda)\right)$ 100
4.5 Proof of Theorem 2.6.7 for $G=\operatorname{SU}(p, q)$ 104
5. $\quad G=\operatorname{SP}(n, \mathbb{R})$ 130
5.1 Preliminary Notation 130
5.2 Consruction of $\ell_{V}(X)$ for any Module X 133
5.3 Lowest K-types of the Modules $A_{q}(\lambda)$ 138
5.4 Proof of Theorem 2.6.7 for $G=S P(n, \mathbb{R})$ 142
Bibliography 154

Chapter 1. Introduction

The problem of classifying those irreducible unitary representations of a Lie group whose infinitesimal character is the same as that of an irreducible finite dimensional, has interested many people for many years. These representations are important because they appear in interesting applications like the theory of automorphic forms (see for example, Borel-Wallach [1980], ch. VII.5-VII.6). Here is an example:

If G is a semisimple Lie group, $\quad \Gamma$ a discrete subgroup such that $\Gamma \backslash G$ is compact, and F an irreducible finite dimensional G-module, then the right action of G on $L^{2}(\Gamma \backslash G)$ gives a Hilbert space decomposition, with finite multiplicities m(π, Γ),

$$
\mathrm{L}^{2}(\Gamma \backslash \mathrm{G})={\underset{\pi \in \hat{\mathrm{G}}_{\mathrm{u}}}{\oplus} \mathrm{~m}(\pi, \Gamma) \pi, ~}^{m}
$$

with \hat{G}_{u} the set of irreducible, unitary representations (π, \mathscr{H}) of G. Matsushima's formula (see Borel-Wallach [1980], p. 223) is

$$
\mathrm{H}^{*}(\Gamma, F)=\underset{\pi \in \hat{\mathrm{G}}_{\mathrm{u}}}{\oplus} \mathrm{~m}(\pi, \Gamma) \mathrm{H}^{*}\left(g, \mathrm{~K} ; \mathscr{H}_{\left.K \otimes \mathrm{~F}^{*}\right) .}\right.
$$

Here g is Lie(G) $\otimes \mathbb{C}$, and \mathscr{H}_{K} is the Harish-Chandra
module of (π, \notin). The relative Lie algebra cohomology groups on the right are non-zero only when the infinitesimal character of π is the same as that of F.

In Vogan-Zuckerman [1984], an algebraic construction of the modules \mathscr{H}_{K} with non-vanishing cohomology groups in terms of cohomological parabolic induction is given. The derived functor modules constructed this way are conjectured to exhaust a larger family of unitary representations described below.

We refer to chapter 2 for precise definitions of the terms used below.

Let G be a reductive Lie group, K a maximal compact subgroup, θ the corresponding Cartan involution, and $g_{0}=k_{0} \oplus p_{0}$ the Cartan decomposition of g_{0}.

Let $q=\ell+u \subseteq g$ be a θ-stable parabolic subalgebra (cf. 2.3), that is

$$
\begin{aligned}
\theta \ell & =\ell, & & \theta u=u, \\
\bar{\iota} & =\ell, & & \text { with } \quad-\quad \text { denoting complex conjugation }
\end{aligned}
$$

and $\bar{q} \cap q=\ell$.

Let L be the normalizer of q in G, and λ a onedimensional unitary character of L. $A(g, K)$-module $A_{q}(\lambda)$ is a Harish-Chandra module constructed as in Vogan [1981] Chapter 6 by cohomological parabolic induction from the
one-dimensional unitary character λ. (See Definitions 2.4.14, 2.5.2).

The conditions on the infinitesimal character mentioned above can be weakened to include a larger family of representations.

If X is a Harish-Chandra module with infinitesimal character x, and $h \subset g$ a Cartan subalgebra, then up to Weyl-group orbit considerations x corresponds to a weight $r \in h^{*}$. Choose a positive root system $\Delta^{+}(g, h)$ such that γ is dominant.

Conjecture 1.1. Suppose X is an irreducible unitary Harish-Chandra module such that $r-\rho$ is dominant for $\Delta^{+}(g, h)$. Then, there are a θ-stable parabolic subalgebra q and a unitary one-dimensional character λ of L such that

$$
X \cong A_{q}(\lambda)
$$

Some progress has been made when we assume that γ is regular and integral. Namely, for G a complex group, T. J. Enright [1979] proved that if $\boldsymbol{\gamma}$ is regular integral then there exists a (g, K) module $A_{q}(\lambda)$ isomorphic to X. Also, in Speh [1981], the same result for $G=\operatorname{SL}(n, \mathbb{R})$ is proved.

The following result is proved in this thesis.

Theorem 1.2. If G is $\operatorname{SL}(n, \mathbb{R})$, $\operatorname{SU}(p, q)$, or $\operatorname{SP}(n, \mathbb{R})$ and $\quad \gamma$ regular and integral, then, for some q and λ

$$
X \cong A_{q}(\lambda)
$$

The proof for $\operatorname{SL}(n, \mathbb{R})$ is new and quite different from Speh's original one.

The proof is by induction on the dimension of G. It involves choosing an appropriate proper subgroup L C G and embedding \mathscr{H}_{K} as the Langlands submodule of a derived functor module induced from a representation of L, in such a way that the information about unitarity or nonunitarity of the representation of L can be carried up to G and our representation H_{K}.

The thesis is organized as follows. In Chapter 2 we set up the notation and results needed to restate and prove the result in the following form:

Theorem 1.3. Suppose X is an irreducible Harish-Chandra module with regular integral infinitesimal character, equipped with a non-zero Hermitian form <, >. Then, either
a) $X \cong A_{q}(\lambda)$, for some q, λ as above, or
b) There are a lowest-K-type $\mathrm{V}_{\delta_{1}}$ and a K-type $\mathrm{V}_{\delta_{2}} \subseteq$ $V_{\delta_{1}} \otimes p, \quad$ such that

$$
\operatorname{Hom}_{\mathrm{K}}\left(\mathrm{~V}_{\delta_{i}}, \mathrm{X}\right) \neq 0 \quad i=1,2
$$

and the restriction of $\left\langle,>\right.$ to the sum $V_{\delta_{1}} \oplus V_{\delta_{2}}$ is indefinite.

Sections 2.1 through 2.4 are devoted to notation and the results that will be needed for the proof. The two main issues are the definition of the Zuckerman derived functor modules $\mathscr{R}_{q}(Y)$ and Vogan's embedding of any irreducible Harish-Chandra module into some Zuckerman derived functor module. We also give some useful properties of these modules.

In Section 2.5 we define the modules $A_{q}(\lambda)$ and prove some nice features that we will use in later chapters.

Sections 2.6 and 2.7 , and Chapters 3 and 5 are the actual proof of Theorem 1.3. The main results are Theorems 2.6 .7 and 2.6 .8 , which say that we can exhibit X as a submodule of a derived functor module $\mathscr{K}_{q}\left(X_{L}\right)$ in such a way that we can reduce the problem to the representation X_{L} of the group L. Chapters 3, 4 and 5 are the proof of Theorem 2.6.7.

We argue by contradiction: With the help of Vogan's embedding result we find another θ-stable parabolic subalgebra and another Zuckerman module containing X. We have to check several conditions that will ensure the
reduction, but mainly 2.6 .7 b) and c). Then assuming that the representation X_{L} is not isomorphic to module ${ }_{q}{ }_{\mathrm{O}}\left(\lambda^{0}\right)$ we prove non-unitarity on X_{L}. For this we use the properties of the $A_{q}(\lambda)$ modules discussed in 2.5 and some techniques discussed in 2.7, primarily Lemma 2.7.1.

Chapter 2

In this chapter we set up notation, state the basic results we will need and our main result, and provide a scheme for the proof.

For undefined terms in this section see, for example, Vogan [1981] Chapter 0.
2.1. Structure Theory

We will denote Lie groups by upper case roman letters such as G, H, L and complex Lie algebras by script letters such as g, h, l. We will make the distinction between the real Lie algebra of a Lie group and its complexification as follows:

$$
g_{0}=\operatorname{Lie}(G) \quad g=g_{0} \otimes \mathbb{C}, \quad \text { etc. }
$$

Let $U(g)=$ universal enveloping algebra of g and $Z(g)=$ center of $U(g)$.

Although we will eventually study connected real simple linear Lie groups, we will consider connected real reductive linear Lie groups. These are Lie groups satisfying:
a) G is connected
b) g_{0} is a real reductive Lie algebra
c) G has a faithful finite dimensional representation

Let θ be a Cartan involution of g_{0} and $g_{0}=k_{0} \oplus$ p_{0} the Cartan decomposition of g_{0} into the +1 and -1 eigenspaces of θ.

Fix once and for all a nondegenerate, invariant symmetric bilinear form on g_{0}. We will denote this and its various complexifications, restrictions and dualizations by ()). We may choose it so that the Cartan decomposition of g_{0} is orthogonal and

$$
\begin{aligned}
& \left.(,)\right|_{p_{0}}>0 \\
& \left.(,)\right|_{k_{0}}<0
\end{aligned}
$$

Let H be a Cartan subgroup of G. Denote by $\Delta=\Delta(g, h)$ the roots of h in g.

In general if s is an abelian reductive Lie subalgebra of g and V is an ad(1)-stable subspace of g then $\Delta(V, \mathcal{O}$) is the set of weights of \mathcal{A} in V (with multiplicities). For any $B \subset \Delta(V, \Delta)$ let $\rho(B)=\frac{1}{2} \sum_{\alpha \in B} \alpha$. When there is no confusion we will use $\Delta(\mathrm{V})$ for $\Delta(\mathrm{V}, \mathrm{s})$. If H is a θ-stable Cartan subgroup, then

$$
H=T A ; \text { with } T=H \cap K, \quad A=H \cap\left(\exp p_{0}\right)=\exp \left(h_{0} \cap p_{0}\right)
$$

and $\Delta(g, h)$ is θ-stable.

Let $W=W(g, h)$ be the Weyl group of h in g and

$$
W(G, H)=N_{G}(H) / H \cong N_{K}(H) / H \cap K .
$$

Let $\Delta^{+}=\Delta^{+}(g, h)$ be a set of positive roots of h in g, $b=h+n$, the corresponding Bore subalgebra and $\rho=$ $\rho_{g}=\rho(n)$.

Let $t_{0}^{c} \subseteq \kappa_{0}$ be a Carton subalgebra. Define h^{c} (resp. H^{c}) to be the centralizer in g (resp. G) of $t_{0}^{c} . H^{c}$ is θ-stable, so we can write

$$
H^{c}=T^{c} A^{c}, \text { with } T^{c}=H^{c} \cap K
$$

a Carton subgroup of K.
H^{C} is called the fundamental or maximally compact
Carton subgroup of G.
On the other extreme, if $a_{0}^{s} \subseteq p_{0}$ is a maximal abelian subalgebra and $h_{0}^{s}=t_{0}^{s}+a_{0}^{s}$ is maximal abelian then h_{0}^{s} is also a Carton subalgebra of g_{0}. Its centralizer H^{s} in G is a Carton subgroup of G, the maximally split one.
2.2. Harish-Chandra Modules

Let (π, \mathscr{H}) be a continuous complex Hilbert space representation and \mathscr{H}_{K} the subset of \mathscr{H} of K-finite
vectors. If (π, H) is admissible, that is, if all the K-isotypic components of \mathscr{H}_{K} are finite dimensional, then the limit

$$
\pi(x) v=\lim _{t \rightarrow 0} \frac{1}{2}(\pi(\exp t x) v-v)
$$

exists for all $x_{0} \in g_{0}$ and $v \in \mathscr{H}_{K}$ and defines a representation of g_{0} in \mathscr{H}_{K}.
\mathscr{H}_{K} is a (g, K) module since we can complexify the representation \mathscr{H}_{K} to a representation of $g \quad(\mathscr{H}$ being complex). Also \mathscr{H}_{K} is a representation of K. We call \mathscr{H}_{K} the Harish-Chandra module of (π, H) (cf. HarishChandra [1953].

Any irreducible unitary representation of G is admissible.

Denote by $\mathcal{M}(g, K)$ the category of ($g, K)$ modules and by $\mathscr{A}(g, K)$ the category of admissible ($g, K)$ modules.

An irreducible (g, K) module is automatically admissible.

A g module X is quasisimple if $Z(g)$ acts by scalars on X. Then we have a homomorphism

$$
x: Z(g) \longrightarrow \mathbb{C}
$$

$$
x(z) x=\pi(z) x
$$

called the infinitesimal character of X.
Any irreducible (g, K) module is quasisimple.
If $(\pi, X),\left(\pi^{\prime} . X^{\prime}\right) \in \mathcal{M}(g, K)$ we say that X and X^{\prime} are equivalent if there is an invertible map which is an element of the set of (g, K)-module maps defined by

$$
\operatorname{Hom}_{g, K}\left(\pi, \pi^{\prime}\right)=\operatorname{Hom}_{g, K}\left(X, X^{\prime}\right)=\{L: X \longrightarrow X \mid
$$

L is complex linear and $\left.\pi^{\prime} L=L \pi\right\}$.

Write \hat{G} for the set of equivalence classes of ir reducible ($g, \mathrm{~K}$) modules. If (π, H), ($\left.\pi^{\prime}, H^{\prime}\right)$ are representations of G we say they are infinitesimally equivalent if $\left(\pi, H_{K}\right)$, ($\pi^{\prime}, \mathscr{H}_{K}^{\prime}$) are equivalent.

2.3 Parabolic subalgebras

Let $\quad t_{0}^{c} \subseteq k_{0} . \quad$ Fix

$$
x \in i\left(t_{0}^{c}\right)^{*}
$$

We define a θ-stable parabolic subalgebra q as follows.
Let

$$
\begin{aligned}
\Delta(\ell) & =\Delta\left(\ell, t^{c}\right)=\left\{\alpha \in \Delta\left(g, t^{c}\right) \mid\langle\alpha, \mathrm{x}\rangle=0\right\} \\
\Delta(u) & =\Delta\left(u, t^{\mathrm{c}}\right)=\left\{\alpha \in \Delta\left(g, t^{\mathrm{c}}\right)|\langle\alpha, \mathrm{x}\rangle\rangle 0\right\} \\
\iota & =\underset{\alpha \in \Delta(\ell)}{\oplus} \mathbb{C} \mathrm{CX}_{\alpha}+t^{\mathrm{c}}, \quad u=\underset{\alpha \in \Delta(u)}{\oplus} \mathbb{C} \mathbb{X}_{\alpha}
\end{aligned}
$$

then $q=\ell+u$ is $\theta-s t a b l e$.

2.4. Derived Functor Modules

In this section we consider that part of the classification of Harish-Chandra modules that consists of attaching a certain set of parameters to an irreducible HarishChandra module. We are going to exhibit each irreducible (g, K) module as a submodule of a derived functor module.

We will first consider a particular set of irreducible (g, K) modules when G is quasisplit. To define these groups we need some notation.

Let $a_{0}^{s} \subseteq p_{0}$ be a maximal abelian subalgebra and A^{s} the corresponding connected subgroup of G.

Let $\quad M=K^{A}=$ centralizer of A^{s} in K.
Define $\Delta^{s}=\Delta\left(g /\left(m+a^{s}\right), a^{s}\right)=$ the nonzero roots of a^{s} in g.

Fix a positive system $\Delta^{+} \subset \Delta^{s}$ and let

$$
n_{0}=\underset{\alpha \in \Delta^{+}}{\oplus} \mathbb{R X}_{\alpha}
$$

and N the corresponding connected subgroup of G. Define $P^{s}=M A^{s} N$.

Definition 2.4.1. For a fixed representation (δ, V) of M and $v \in \hat{A}^{s}$, define the Hilbert space

$$
\begin{gathered}
H_{\delta, v}=\{f: G \longrightarrow V \mid f \text { measurable; } \\
f(\operatorname{gman})=a^{-(\nu+\rho)} \delta(m)^{-1} f(g) ; \\
\left.m \in M ; a \in A ; n \in N \text { and }\left.f\right|_{K} \in L^{2}(K)\right\} .
\end{gathered}
$$

The action of G on $\mathscr{H}_{\delta, v}$ given by

$$
\left(\pi_{\delta, v}(g)\right) f\left(g_{0}\right)=f\left(g^{-1} g_{0}\right)
$$

defines a representation $I(\delta \otimes v)=\operatorname{Ind}_{p_{s}}^{G}(\delta \otimes v)$, the induced representation of G.

Definition 2.4.2. G is quasisplit if $m_{0}+a_{0}^{s}$ is abelian.

Hence, if G is quasisplit $h_{0}^{s}=m_{0}+a_{0}^{s}$ is a Carton subalgebra of g_{0} and $H^{s}=M A^{s}=T^{s} A^{s}$ a Carton subgroup of G.

Therefore

$$
\hat{\mathrm{H}}^{\mathbf{s}}=\text { homomorphisms }: \mathrm{H} \longrightarrow \mathbb{C}^{\mathbf{x}}=\hat{\mathrm{M}} \times \hat{\mathrm{A}}^{\mathbf{s}} \cong \hat{\mathrm{M}} \times\left(a^{\mathbf{s}}\right)^{*}
$$

Definition 2.4.3. a) A representation $\delta \in \hat{M}$ is fine if $\mathrm{d} \delta$ is trivial on $m_{0} \cap[g, g]$.
b) Consider the set

$$
\bar{\Delta}=\left\{\alpha \in \Delta^{s} \left\lvert\, \frac{1}{2} \alpha \notin \Delta^{s}\right.\right\} .
$$

A root $\alpha \in \bar{\Delta}$ is real if $\alpha=\left.\beta\right|_{a^{s}}$ for some $\beta \in \Delta^{s}$ real.

Let $\quad a_{0}^{\alpha}=\left\{X \in a_{0}^{s} \mid \alpha(X)=0\right\} \quad$ and $\quad G^{A^{\alpha}}=M^{\alpha} A^{\alpha} ; K^{\alpha}=$ $M^{\alpha} \cap K$. Choose an injection

$$
\phi_{\alpha}: \Delta l(2, \mathbb{R}) \longrightarrow m_{0}^{\alpha}
$$

such that

$$
\begin{gathered}
\phi_{\alpha}\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right] \epsilon a_{0} \\
\phi_{\alpha}{ }^{\circ \theta}=\theta \circ \phi_{\alpha}
\end{gathered}
$$

$$
\phi_{\alpha}\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \in \alpha-\text { root space }
$$

Put

$$
\mathrm{Z}_{\alpha}=\Phi_{\alpha}\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right] \in \mathrm{k}_{0}^{\alpha}
$$

c) A representation $\mu \in \hat{K}$ is fine (for G) if
i) For $\alpha \in \bar{\Delta}$ real $\mu\left(i Z_{\alpha}\right)$ has eigenvalues
included in $\{0, \pm 1\}$.
ii) For each complex root $\alpha \in \bar{\Delta}$

$$
\left.\mu\right|_{\left(k_{0}^{\alpha} \cap\left[g_{0}, g_{0}\right]\right)} \quad \text { is trivial }
$$

d) If $\delta \in \hat{M}$ is a fine representation set $A(\delta)=\{\mu \epsilon$ $\hat{K} \mid \mu$ is fine, and δ occurs in $\left.\left.\mu\right|_{M}\right\}$.

Proposition 2.4.5. See Vogan [1981] 4.4.8.
Suppose G is quasisplit and $\mu \in \hat{K}$ is fine. Then the restriction of μ to M is a sum of fine representlions of M, each occurring with multiplicity one.

Say that $\mu \in A(\delta)$ for some δ fine. Let X be an irreducible (g, K) module containing the K-type μ.

Then there is a character $v \in \hat{\mathrm{~A}}^{s}$ such that

$$
\operatorname{Hom}_{g, K}(X, I(\delta \otimes v)) \neq 0 .
$$

For an arbitrary linear reductive Lie group we will define the notion of minimal (or lowest) K-type of a representation and attach to it certain parameters. In the next section we will then construct a (g, K) module with these parameters using a reduction to a quasisplit group. The irreducible representation with that lowest K-type is a subquotient of this module. For proofs of these results see Vogan [1981] Chapters 5 and 6.

Fix a Carton subalgebra t_{0}^{c} of k_{0}, a positive root system

$$
\Delta^{+}(k)=\Delta^{+}\left(k, t^{c}\right),
$$

and a $\Delta^{+}(k)$-dominant weight $\mu \in \hat{\mathrm{T}}^{\mathrm{c}}$; write $\mu \in\left(t^{\mathrm{c}}\right)^{*}$ for its differential. Define

$$
2 \rho_{\mathrm{c}}=2 \rho\left(\Delta^{+}(k)\right) \in\left(t^{\mathrm{c}}\right)^{*}
$$

Let $h^{\text {c }}$ as in 2.1. Then there exists a θ-stable positive root system $\Delta^{+}\left(g, h^{c}\right)$ which makes $\mu+2 \rho_{c}$ dominant. See for example, Vogan [1981], p. 239.

Fix a noncompact imaginary root $\beta \in \Delta\left(g, h^{c}\right)$. Write
X_{β} for a root vector for the root β. Put

$$
x_{-\beta}=\bar{x}_{\beta}
$$

$$
\begin{gather*}
Z_{\beta}=X_{\beta}+X_{-\beta} \in p_{0} \\
g_{0}^{\beta}=\text { centralizer of } Z_{\beta} \text { in } g_{0} \\
\left(h_{0}^{c}\right)^{\perp}=\left\{x \in h_{0}^{c} \mid \beta(x)=0\right\} \tag{2.4.6}\\
=\left(t_{0}^{c}\right)^{\perp} \oplus a_{0}^{c} \\
h_{0}^{\beta}=\left(h_{0}^{c}\right)^{\perp} \oplus\left\langle Z_{\beta}\right\rangle .
\end{gather*}
$$

Then g_{0}^{β} is reductive, the subgroup ${ }_{G}^{\beta} \quad$ of $\quad G$ with Lie algebra g_{0}^{β} is real reductive linear and h_{0}^{β} is a Cartan subalgebra of g_{0}^{β} and of g_{0}. See Vogan [1981], p. 235.

Proposition 2.4.7 (Vogan [1981], 5.3.3). For each $\Delta^{+}\left(k, t^{\mathrm{c}}\right)$-dominant weight $\mu \in \hat{\mathrm{T}}^{\mathrm{c}}$, there is a unique element $\lambda_{\mathrm{V}}(\mu)=\lambda_{\mathrm{V}}^{\mathrm{G}}(\mu) \epsilon\left(t^{\mathrm{c}}\right)^{*}$ having the following properties: fix a θ-stable positive root system $\Delta^{+}\left(g, h^{c}\right)$ making $\mu+2 \rho_{c}$ dominant; and write $\rho=\rho\left(\Delta^{+}\left(g, h^{c}\right)\right)$.
Then $\lambda_{V}(\mu)$ is dominant for $\Delta^{+}\left(g, h^{c}\right)$, and there is a set $\left\{\beta_{1}, \ldots, \beta_{r}\right\} \subseteq \Delta^{+}\left(g, h^{c}\right)$ of imaginary roots, satisfying
a) If we put

$$
c_{i}=\frac{-2\left\langle\beta_{i}, \mu+2 \rho_{c}\right\rangle}{\left\langle\beta_{i}, \beta_{i}\right\rangle},
$$

$$
v=\sum c_{i} \beta_{i},
$$

then

$$
0 \leq \mathbf{c}_{\mathbf{i}} \leq 1,
$$

and

$$
\lambda_{V}^{G}(\mu)=\lambda_{V}(\mu)=\mu+2 \rho_{c}-\rho+\frac{1}{2} v
$$

b) If $\alpha \in \Delta\left(g, h^{c}\right)$ is imaginary, and $\left\langle\alpha, \lambda_{V}(\mu)\right\rangle=0$, then $\left\langle\alpha, \beta_{i}\right\rangle \neq 0$ for some i.
c) The root β_{1} is noncompact; and either it is simple, or there is a complex simple root α of $\Delta^{+}\left(g, h^{c}\right)$ such that $\beta_{1}=\alpha+\theta \alpha$.
d) Either all $\mathbf{c}_{\mathbf{i}}=0$, or $\mathbf{c}_{1} \neq 0$.
e) Write

$$
g^{1}=g^{\beta_{1}}, \quad h^{1}=h^{\beta_{1}}
$$

as in equations (2.4.6). Then the positive system $\Delta^{+}\left(g, h^{c}\right) \cap \beta_{1}^{\perp} \cong \Delta^{+}\left(g^{1}, h^{1}\right)$ and its subset $\left\{\beta_{2}, \ldots, \beta_{r}\right\}$ satisfy these same conditions for g^{1} and the weight $\left.\mu\right|_{g}{ }^{1} \cap t$.

Definition 2.4.8. For a $\Delta^{+}(k)$-dominant weight $\mu \in \hat{\mathrm{T}}^{\mathrm{c}}$ let $q_{V}^{G}(\mu)$ be the parabolic defined by $\lambda_{V}^{G}(\mu)$ as dercribed in 2.3. If π is a K-type of highest weight μ we also define $q_{V}^{G}(\pi)=q_{V}(\mu)$.

Proposition 2.4.9 (Vogan [1981] §5.3). Suppose $\mu \in \hat{\mathrm{T}}^{\mathrm{c}}$ is $\Delta^{+}(k)$-dominant and $q_{V}(\mu)=\ell+u$. Then
(a) ℓ_{0} is quasisplit
(b) $q_{\mathrm{V}}^{\mathrm{L}}(\mu-2 \rho(u \cap p))=\ell$
(c) If $\pi \in \hat{K}$ has highest weight μ, then π is fine $\Leftrightarrow q_{\mathrm{V}}^{\mathrm{G}}(\mu)=g$.

We will now define a reordering on \hat{K}.

Definition 2.4.10.
a) If $\pi \in \hat{K}$ has highest weight $\mu \in \hat{\mathrm{T}}^{\mathrm{c}}$, put $\lambda=\lambda_{V}^{G}(\mu)$ as in proposition 2.4.6. Define

$$
\|\pi\|_{\text {lambda }}=\|\mu\|_{\text {lambda }}=\langle\lambda, \lambda\rangle .
$$

b) If X is a nonzero (g, K)-module define $X(\pi)$ to be the π-isotypic component of X. Then the set

$$
\left\{\pi \in \hat{K} \mid X(\pi) \neq 0 \text { and }\|\pi\|_{\text {lambda }} \text { is minimal }\right\}
$$

is nonempty. We define it to be the set of lowest K types. We will refer to such a π as an LKT.
c) Define $\lambda_{V}(X)=\lambda_{V}(\mu)$ for μ a highest weight of a LKT of X and let $q_{V}^{G}(X)$ be the parabolic associated to μ.

When there is no confusion we will refer to these parameters as ${ }^{q} V_{V}$ and λ_{V}.

Let ${ }^{\ell_{V}}$ be the Levi factor of ${ }^{q} V_{V}$, and L_{V} the normalizer of q_{V} in G.
$L_{V} \supset T^{c}$, so let π_{0} be the irreducible representdion of $L_{V} \cap K$ generated by the μ-weight space, inside $\pi \mid L_{V} \cap K$.

Let

$$
{ }_{\pi}^{\mathrm{L}_{\mathrm{V}}}=\pi_{0} \otimes\left[\Lambda^{\mathrm{R}}(u \cap p)\right]^{*} \in\left(\mathrm{~L}_{\mathrm{V}} \cap \mathrm{~K}\right)^{\wedge}
$$

(2.4.11)

$$
R=\operatorname{dim} u \cap p .
$$

Notice that $\mu-2 \rho(u \cap p)$ is a highest weight of ${ }_{\pi}{ }^{L} V$. By proposition 2.4 .9 b) and c)

Fix $H_{V}=T A$ a maximally split Carman subgroup of L_{V} and choose $\delta^{L} V \in \hat{T}$, fine occurring in ${ }_{\pi}{ }^{L} V_{T}$.

This triple $\left(q_{V}, H_{V}, \delta^{L} V^{\prime}\right)$ is, by definition a set of discrete $\theta-s t a b l e d a t a t a c h e d ~ t o ~ X . ~$

We have attached all these parameters to a representation X with LKT π.

Now with these parameters we will exhibit a ($g, \mathrm{~K}$) module that contains X as a subquotient. We need more definitions.

Definition 2.4.12. A set of θ-stable data for G is a quadruple (q, H, δ, v) with the conditions:
a) $q=\ell+u$ is a θ-stable parabolic subalgebra of g.
b) L is quasisplit, and $H=T A \subseteq L$ is a θ-stable maximally split Carton subgroup of L.
c) $\delta \in \hat{T}$ is fine for L and $v \in \hat{A}$.
d) If $\lambda^{L} \in t^{*}$ is the differential of δ and

$$
\lambda^{\mathrm{G}}=\lambda^{\mathrm{L}}+\rho\left(\Delta\left(u, t^{\mathrm{c}}\right)\right) \in t^{*} \subseteq h^{*}
$$

then
i) $\left.\left\langle\lambda^{\mathrm{G}}, \alpha\right\rangle\right\rangle 0$ for all $\alpha \in \Delta(u, h)$
ii) $\left\langle\lambda^{G}, \beta\right\rangle=0$ for all $\beta \in \Delta(\ell, h)$.

Notice that the discrete θ-stable data attached to some $X \in \mathcal{M}(g, K)$ together with any character $v \in \hat{A}$ are a set $\left(q_{V}, H_{V}, \delta^{L_{V}}, v\right)$ of $\theta-s t a b l e$ data for G.

In order to give a generalization of Proposition 2.4.5 for non-quasisplit groups we need to define the objects in which we are going to realize the Harish-Chandra modules of G .

Definition 2.4.13 Zuckerman Functors.
Let $q=\ell+u \subseteq q$ be a θ-stable parabolic
subalgebra as defined in 2.3 and $L \subseteq G$ the reductive Lie subgroup corresponding to ℓ_{0}.

Since G is connected, then so are K, T, L and $\mathrm{L} \cap \mathrm{K}$.

Let Z be any (q,LOK) module. Define

$$
\operatorname{pro}_{q}^{g}(Z)=\operatorname{pro}_{q, L \cap K}^{g, L \cap K}(Z)=\operatorname{Hom}_{q}(U(g), Z)_{\text {LOK-finite }} .
$$

This is a (g, LOK) module.
Now, if W is any ($g, L \cap K$) module define

$$
\Gamma W=\{v \in \mathbb{W} \mid \operatorname{dim} U(k) \cdot v<\infty\} .
$$

ΓW is a (g, K) module and $\Gamma: M(g, L \cap K) \longrightarrow M(g, K)$
is a left exact functor.
The Zuckerman functors $\left\{\left(\Gamma_{g, L \cap K}^{g}\right)^{i}\right\}_{i \geq 0}$ are the right derived functors of Γ (written Γ^{i}). That is, if W is a ($g, L \cap K$) module then W admits an injective resolution

$$
0 \longrightarrow I_{0} \longrightarrow I_{1} \longrightarrow \cdots
$$

then we have a cochin complex

$$
0 \longrightarrow \Gamma \mathrm{~W} \xrightarrow{\phi_{-1}} \Gamma \mathrm{I}_{0} \xrightarrow{\phi_{0}} \Gamma \mathrm{I}_{1} \xrightarrow{\phi_{1}} \ldots .
$$

Define $\quad \Gamma^{i} W=\frac{\operatorname{ker} \phi_{i}}{\operatorname{Im} \phi_{i-1}} . \quad$ So $\quad \Gamma^{O_{W}}=\Gamma W$.

Definition 2.4.14. Let $q=\ell+u$ and $L \subseteq G$ as in 2.3. Then L is a reductive linear (connected) Lie group and $\mathrm{L} \cap \mathrm{K}$ is a maximal compact subgroup of G .

We will define the i-th cohomological parabolic induction functor $\left(\mathscr{R}_{q}^{g}\right)^{i}: M(\ell, L \cap K) \longrightarrow \mu(g, K)$, as follows.

Let $V \in \mathbb{M}(\ell, L \cap K)$. We make $V \in \mathbb{M}(q, L \cap K)$ by letting u act trivially.

Let

$$
W=\operatorname{pro}_{q, \mathrm{~L} \mathrm{\cap K}}^{g, \mathrm{~L} \cap \mathrm{~K}}\left(\mathbb{V}_{\mathbb{C}} \Lambda^{\operatorname{dim} u_{u}}\right)
$$

then

$$
\begin{aligned}
\left(\mathscr{R}_{q}^{g}\right)^{i}(\mathrm{~V}) & =\mathscr{R}_{q}^{i}(\mathrm{~V})=\mathscr{R}^{i}(\mathrm{~V}) \\
& =\Gamma^{i}(\mathrm{~W}) .
\end{aligned}
$$

We are now in a position to state the generalization of Proposition 2.4.5. However, it is convenient at this moment to mention some properties of these derived functor modules that we will need later.

Suppose $q_{i}=l_{i}+u_{i}$ are two parabolic subalgebras such that

$$
\begin{gathered}
\iota_{1} \subseteq \ell_{2}, \quad u_{2} \subseteq u_{1}, \quad L_{1} \cap \mathrm{~K} \subseteq \mathrm{~L}_{2} \cap \mathrm{~K} \\
u=\iota_{2} \cap u_{1}
\end{gathered}
$$

set
then $q=\ell_{1}+u \subseteq \ell_{2}$ is a parabolic subalgebra of ℓ_{2}.

Proposition 2.4.15 (Zuckerman [1977]; Vogan [1981] 6.3.10). With notation as above if W is an ($\left.\ell_{1}, L_{1} \cap K\right)$ module such that for $q \neq q_{0}$

$$
\left.\left[\mathscr{R}_{q}^{l}\right]^{\mathrm{l}}\right]^{\mathrm{q}}=0
$$

then

$$
\left[\begin{array}{l}
\mathscr{R}_{q}^{g} \\
{ }_{2}
\end{array}\right]^{\mathrm{p}}\left[\left[\mathscr{R}_{q}^{l} 2\right]^{q_{0}}(W)\right] \cong\left[\mathscr{R}_{q_{1}^{g}}^{g}\right]^{p+q_{O}}(W) .
$$

Proposition 2.4.16 (Zuckerman [1977]; Vogan [1981] 6.3.11). Let $q=\ell+u$ be a θ-stable parabolic subalgebra; $h \subseteq$ ℓ, a Cartan subalgebra. Let Y be an ($\ell, L \cap K)$ module
with infinitesimal character $\lambda \in h^{*}$. Then

$$
\mathscr{R}_{q}^{i}(W) \text { has infinitesimal character } \lambda+\rho(u)
$$

Definition 2.4.17. Standard Representations.
Let (q, H, δ, v) be a set of θ-stable data for G (definition 2.4.12). Let $H=T A \subset L$ and choose $N \subseteq L$ such that $P=T A N$ is a minimal parabolic subgroup of L and for all α in the corresponding positive system $\Delta(n, a)$
$\langle\operatorname{Re} v, \alpha\rangle \leq 0$.

Let $I_{L}(\delta \otimes v)$ be the principal series representation $\operatorname{Ind}_{\mathrm{p}}^{\mathrm{L}}(\delta \otimes v \otimes 1)$. We define the standard (g, K) module with $\theta-s t a b l e$ data (q, H, δ, v) by

$$
\mathrm{X}_{\mathrm{G}}(q, \delta \otimes v)=\mathscr{R}_{q}^{\mathbf{s}}\left(\mathrm{I}_{\mathrm{L}}(\delta \otimes v)\right)
$$

as in 2.4.14 where $s=\operatorname{dim} u \cap k$.
We will now state some properties of these standard modules. Fix $t_{0}^{c} \subseteq \ell_{0} \cap \kappa_{0}$ a Cartan subalgebra containing $t_{0}=h_{0} \cap k_{0}$ and a positive root system $\Delta^{+}\left(\ell \cap k, t^{c}\right)$. Set $\Delta^{+}(k)=\Delta^{+}\left(\ell \cap k, t^{c}\right) \cup \Delta(u \cap k)$.

Proposition 2.4.18 (logan [1981] 6.5.9). Let (q. H, $\delta, v)$ be a set of θ-stable data for G, and $\lambda^{G}=d \delta+\rho(u)$ then
a) $\mathscr{R}_{q}^{S}\left(I_{L}(\delta \otimes v)\right)$ has infinitesimal character $\left(\lambda^{G}, v\right)$.
b) If π is a K-type occurring in $\mathscr{R}_{q}^{s}\left(I_{L}(\delta \otimes v)\right.$) with highest weight η then there exists an $L \cap K$-type π^{L} of highest weight η^{L} such that

$$
\left.\delta \subseteq \pi^{\mathrm{L}}\right|_{\mathrm{T}} \text { and } \eta=\eta^{\mathrm{L}}+2 \rho(u \cap p)+\sum_{\substack{\alpha \in \Delta(u \cap p) \\ n_{\alpha} \in \mathbb{N}}} n_{\alpha} \alpha
$$

c) Moreover if π is a LKT, then the last summation term is zero and η^{L} is fine for L.

Proposition 2.4.19 (Vogan [1981] 6.5.9 (g) and the proof of 6.5.12 (b)). Suppose X is an irreducible (g, K) module and $\left(q_{V}, H, \delta_{V}^{L}\right)$ a set of discrete θ-stable data attached to X. Then there is a character $v_{V} \in \hat{A}$ such that if $\mathscr{R}_{q_{V}}^{s}\left(\mathrm{I}_{\mathrm{V}}^{\mathrm{L}}\left(\delta_{\mathrm{V}}^{\mathrm{L}} \otimes v\right)\right)$ is the standard (g, K) module with parameters $\left(q_{V}, H, \delta_{V}^{L}, v_{V}\right)$, then $\operatorname{Hom}_{g, K}\left(X, \mathscr{R}_{q_{V}}^{s}\left(I_{V}^{L}\left(\delta_{V}^{L}{ }^{\mathrm{L}} v_{V}\right)\right)\right)$ is one dimensional.

Lemma 2.4.20. Let $q=\ell+u \subseteq g$ be a $\theta-$ stable parabolic subalgebra and Y an ($\ell, L \cap K)$ module. Write
$\mathbf{s}=\operatorname{dim} u \cap k, \quad \lambda_{V}^{L}=\lambda_{V}(Y) \quad$ and $\quad X=\mathscr{R}_{q}^{s}(Y)$. Assume $\left\langle\lambda_{\mathrm{V}^{+}}^{\mathrm{L}} \rho(u), \alpha\right\rangle>0 ; \alpha \in \Delta(u)$. Choose $\Delta^{+}(k)=\Delta^{+}(\ell \cap k) U$ $\Delta(u \cap k)$.

Suppose μ^{L} is the highest weight of a LKT (for $\mathrm{L} \cap \mathrm{K}$) of Y with respect to the positive system $\Delta^{+}\left(\ell \cap k, t^{\mathrm{c}}\right)$ and that we choose $\Delta^{+}(\ell)$ so that $\mu^{\mathrm{L}}+2 \rho \ell \cap k$ is dominant. Then
a) $\mu=\mu^{\mathrm{L}}+2 \rho(u \cap p)$ is dominant for $\Delta^{+}(k)$.
b) $\mu+2 \rho_{c}$ is dominant for $\Delta^{+}(g)$, where $\Delta^{+}(g)$ is compatible with $\Delta^{+}(k)$ and

$$
\Delta^{+}(g)=\Delta^{+}(\ell) \cup \Delta(u)
$$

Proof. $\mu+2 \rho_{\mathrm{c}}=\mu^{\mathrm{L}}+2 \rho(u \cap p)+2 \rho(u \cap k)+2 \rho_{\ell \cap k}$

$$
=\mu^{\mathrm{L}}+2 \rho_{\iota \cap k}+2 \rho(u)
$$

Suppose $\alpha \in \Delta^{+}(g)$ is simple, then
i) If $\alpha \in \Delta^{+}(\ell)$,

$$
\begin{aligned}
& \left\langle\mu+2 \rho_{c}, \alpha\right\rangle=\left\langle\mu^{\mathrm{L}}+2 \rho_{\imath \cap k}, \alpha\right\rangle+\langle 2 \rho(u), \alpha\rangle \\
& =\left\langle\mu^{\mathrm{L}}+2 \rho_{\ell \cap h}, \alpha\right\rangle+0
\end{aligned}
$$

ii) If $\alpha \in \Delta(u)$ then, for any simple root γ, $\langle\alpha, \gamma\rangle \leq 0$; hence $\langle\alpha, \beta\rangle \leq 0$ for $\beta \in \Delta^{+}(\ell)$.

$$
\text { Choose }\left\{\beta_{i}\right\} \subseteq \Delta(\ell \cap p) \text { as in Proposition 2.4.7, such }
$$

that

$$
\lambda_{\mathrm{V}}^{\mathrm{L}}=\mu^{\mathrm{L}}+2 \rho_{\ell \cap k}-\rho_{\ell}+\frac{1}{2} \sum_{0 \leq \mathrm{c}_{\mathrm{i}} \leq 1} \mathrm{c}_{\mathrm{i}} \beta_{i}
$$

then
(2.4.21) $\quad \mu+2 \rho_{c}=\lambda_{V}^{L}+\rho_{\ell}-\frac{1}{2} \sum c_{i} \beta_{i}+2 \rho(u)$
then

$$
\begin{aligned}
\left\langle\stackrel{\vee}{\alpha}, \mu+2 \rho_{c}\right\rangle & =\left\langle\stackrel{\vee}{\alpha}, \lambda_{V}^{\mathrm{L}}+\rho(u)\right\rangle+\left\langle\stackrel{\vee}{\alpha}, \rho-\sum c_{i} \beta_{i}\right\rangle \\
& \rangle 0+1 .
\end{aligned}
$$

This proves b) of the lemma.
For (a), it is enough to prove that if $\gamma \in \Delta^{+}(k)$ is simple, then

$$
\left\langle\stackrel{V}{\gamma}, \mu+2 \rho_{c}\right\rangle \geq 2 .
$$

i) If $r \in \Delta^{+}(\ell \cap k)$

$$
\begin{aligned}
\left\langle\stackrel{\vee}{\gamma}, \mu+2 \rho_{\mathrm{c}}\right\rangle & =\left\langle\stackrel{\vee}{\gamma}, \mu^{\mathrm{L}}+2 \rho(\ell \cap k)\right\rangle+\langle\stackrel{\vee}{\gamma}, 2 \rho(u)\rangle \\
& =\left\langle\stackrel{\vee}{\gamma}, \mu^{\mathrm{L}}+2 \rho(\ell \cap k)\right\rangle+0 \\
& \geq 2,
\end{aligned}
$$

since μ^{L} is dominant for $\Delta^{+}(\ell \cap k)$.
ii) If $r \in \Delta(u \cap k)$ then, as for $\left.b):\left\langle\stackrel{V}{\gamma}, \mu+2 \rho_{c}\right\rangle\right\rangle$ 1 , and it is an integer since $\mu+2 \rho_{c}$ exponentiates.
q.e.d.

Lemma 2.4.22. In the setting of Lemma 2.4.20, if μ is dominant for $\Delta^{+}(g)$, then $\lambda_{V}^{G}(\mu)=\lambda_{V}^{L}+\rho(u)$.

Proof. By 2.4.21, $\mu+2 \rho_{c}-\rho=\lambda_{V}^{L}+\rho(u)-\frac{1}{2} \sum c_{i} \beta_{i}$.
We claim that $\lambda_{V}^{L}+\rho(u)$ satisfies the conditions for $\lambda_{V}(\mu)$ in Proposition 2.4.7:

Condition (a) holds by the definition of $\lambda_{V}^{L}+\rho(u)$.
Since $\Delta(\bar{u})=-\Delta(u)$ and $\left.\left\langle\stackrel{V}{\alpha}, \lambda_{V}^{L}+\rho(u)\right\rangle\right\rangle 0$ for $\alpha \epsilon$ $\Delta(u), \quad 2.4 .7$ (b) holds because $\left\langle\alpha, \lambda_{V}^{L}+\rho(u)\right\rangle=0$ implies $\alpha \in \Delta(\ell)$.

But then, $\langle\alpha, \rho(u)\rangle=0$; hence $\left\langle\alpha, \beta_{i}\right\rangle \neq 0$ for some β_{i}.

Since simple roots for $\Delta\left(\iota, h^{c}\right)$ are simple for $\Delta\left(g, h^{c}\right), 2.4 .7$ (c) (d) (e) hold.
q.e.d.

In the setting of Lemma 2.4.20, let (π, Z) be a K-type occurring in X with highest weight η.

We want to estimate the lambda-norm of η.
Let $q_{V}^{L}=q_{V}^{L}(Y)=u_{1}+\iota_{1} \subseteq \ell$.

$$
q_{V}=\iota_{1}+u_{1}+u \subseteq q
$$

and $\left(q_{V}^{L}, H_{V}, \delta_{V}^{L}, v_{V}^{L}\right)$ a set of $\theta-s t a b l e d a t a$ for L attached to Y (Definition 2.4.12).

Let $\lambda^{G}=\mathrm{d} \delta_{V}^{L}+\rho\left(u_{V}\right)$ as in Definition 2.4.12.

Lemma 2.4.23. With notation as in Lemma 2.4.20
a) $\left(q_{V}, H_{V}, \delta_{V}^{L}, v_{V}^{L}\right)$ is a set of $\theta-s t a b l e d a t a$ for G.
b) If V_{η} is a K-type in X, then $\left\langle\lambda_{V}(\eta), \lambda_{V}(\eta)\right\rangle \geq$ $\left\langle\lambda^{G}, \lambda^{G}\right\rangle$.
c) If equality holds in b) then $\eta=\eta^{L}+2 \rho(u \cap p)$
for η^{L} a highest weight of a $L(L \cap K) T$ of Y and V_{η} is a LKT of X.
d) Conversely if $\eta=\eta^{L}+2 \rho(u \cap p)$, then V_{η} is a LKT of X and equality holds.

Proof. For (a) we only need to see that $\left.\left\langle\lambda^{G}, \alpha\right\rangle\right\rangle 0$ for all roots in $\Delta(u)$.

By hypothesis on $\left(q_{\mathrm{V}}^{\mathrm{L}}, \mathrm{H}_{\mathrm{V}}, \delta_{\mathrm{V}}^{\mathrm{L}}, v_{\mathrm{V}}^{\mathrm{L}}\right)$,

$$
\lambda_{\mathrm{V}}^{\mathrm{L}}=\mathrm{d} \delta_{\mathrm{V}}^{\mathrm{L}}+\rho\left(u_{1}\right)
$$

$$
\begin{aligned}
& \left\langle\lambda_{V}^{L}, \stackrel{V}{\alpha}\right\rangle>0 \quad \text { for } \quad \alpha \in \Delta\left(u_{1}\right) \text {, } \\
& H=T A \text { is maximally split Carton of } L_{1} \text { and } \delta_{V}^{L} \text { is fine. } \\
& \text { Now } \\
& \lambda^{\mathrm{G}}=\mathrm{d} \delta_{V}^{L}+\rho\left(u_{V}\right)=\mathrm{d} \delta_{V}^{L}+\rho\left(u_{1}\right)+\rho(u)=\lambda_{V}^{L}+\rho(u) . \\
& \text { If } \quad \alpha \in \Delta\left(u_{1}\right) \subseteq \Delta(\ell) \text { then } \\
& \left.\left\langle\lambda_{V}^{L}+\rho(u), \stackrel{V}{\alpha}\right\rangle=\left\langle\lambda_{V}^{L}, \stackrel{V}{\alpha}\right\rangle\right\rangle 0 . \\
& \text { If } \quad \alpha \in \Delta(u) \text {, by hypothesis in Lemma 2.4.20, } \\
& \left\langle\lambda^{G}, \underset{\alpha}{V}\right\rangle>0 .
\end{aligned}
$$

The proof for b) and c) is exactly the proof of Lemma 6.5 .6 in Vogan [1981].

$$
\mathrm{q} \cdot \mathrm{e} \cdot \mathrm{~d}
$$

2.5. The Modules $A_{q}(\lambda)$.

Let G be a connected real reductive linear Lie group,$\quad q=\ell+u \subseteq g \quad$ a $\quad q$ stable parabolic subalgebra and L the normalizer of q in G. Then $\ell_{0}=$ Lie (L).

Let $\lambda: \ell \longrightarrow \mathbb{C}$ be a one-dimensional representation of ℓ Assume that
(2.5.1)
a) λ is the differential of a unitary character of L (call it λ also). b) $\left\langle\left.\lambda\right|_{t}, \alpha\right\rangle \geq 0$ for all $\alpha \in \Delta\left(u, t^{c}\right)$.

```
We say that }\lambda\mathrm{ is an admissible representation of }\ell
```

Definition 2.5.2. With notation as above, we define the Harish-Chandra module $A_{q}(\lambda)$ by

$$
A_{q}(\lambda)=\mathscr{F}_{q}^{s}\left(\mathbb{C}_{\lambda}\right) \quad \text { (Definition 2.4.14) }
$$

with

$$
\mathbf{s}=\operatorname{dim} u \cap k .
$$

Fix positive root systems

$$
\begin{gathered}
\Delta^{+}(\ell \cap k) \text { and } \\
\Delta^{+}(\ell)=\Delta^{+}(\ell, t), \text { compatible with } \Delta^{+}(\ell \cap k) .
\end{gathered}
$$

Then

$$
\Delta^{+}(k)=\Delta^{+}(\ell \cap k) \cup \Delta(u \cap k)
$$

and

$$
\Delta^{+}(g)=\Delta^{+}(q)=\Delta^{+}(\ell) \cup \Delta(u)
$$

are positive t-root systems for k and g, respectively. Choose a fundamental Carton subalgebra $h^{c}=t^{c}+a^{c}$ and a
positive root system $\Delta^{+}\left(g, h^{c}\right)$ so that

$$
\left.\Delta^{+}\left(g, h^{c}\right)\right|_{t}{ }^{c}=\Delta^{+}(g)
$$

Then

$$
\rho=\frac{1}{2} \sum_{\alpha \in \Delta^{+}\left(g, h^{c}\right)} \alpha=\frac{1}{2} \sum_{\beta \in \Delta^{+}(g)} \beta .
$$

Proposition 2.5.3 (Vogan-Zuckerman [1984]. See also Speh-Vogan [1980] and Vogan [1981]). Regard $\left.\lambda\right|_{t} c$ as a weight in $\left(t^{c}\right)^{*}$. Let

$$
\mu=\left.\lambda\right|_{t} \mathrm{c}+2 \rho(u \cap p) \epsilon\left(t^{\mathrm{c}}\right)^{*}
$$

a) The (g, K) module $A_{q}(\lambda)$ is the unique irreducible module satisfying:
i) As a K-representation, $A_{q}(\lambda)$ contains the K-type with highest weight μ.
ii) $Z(g)$ acts on $A_{q}(\lambda)$ by the character
$x_{\lambda+\rho}: Z(g) \longrightarrow \mathbb{C} ;$ where $x_{\lambda+\rho}(z)=(\lambda+\rho)(\xi(z))$ and ξ is the Harish-Chandra homomorphism.
iii) Any K-type occurring in $A_{q}(\lambda)$ has a highest weight of the form

$$
\eta=\left.\lambda\right|_{t} \mathrm{c}+2 \rho(u \cap p)+\sum_{\substack{\beta \in \Delta(u \cap p) \\ n_{\beta} \in \mathbb{N}}} \mathrm{n}_{\beta} \beta
$$

b) Moreover μ is the unique LKT of $A_{q}(\lambda)$.

Proof. The infinitesimal character of the representation $\lambda: L \longrightarrow \mathbb{C}$ is $\lambda+\rho_{\ell}$. Then by Proposition 2.4.16 $A_{q}(\lambda)$ has infinitesimal character $\lambda+\rho_{\ell}+\rho(u)=\lambda+\rho$. So ii) holds.

If $\mu^{\mathrm{L}}=\left.\lambda\right|_{t} c$ then μ^{L} is the highest weight of the (lowest) $L \cap K$-type of \mathbb{C}_{λ}.

Choose $\Delta^{+}(\ell)$ making $\mu^{\mathrm{L}}+2 \rho \iota \cap k$ dominant. Then

$$
\begin{aligned}
\lambda_{\mathrm{V}}^{\mathrm{L}}=\lambda_{\mathrm{V}}^{\mathrm{L}}\left(\mu^{\mathrm{L}}\right) & =\left.\lambda\right|_{t} \mathrm{c}+2 \rho_{\ell \cap k}-\rho_{\ell}+\sum \mathrm{c}_{\mathrm{i}} \beta_{\mathrm{i}} \\
& =\left.\lambda\right|_{t} \mathrm{c}^{+Q}
\end{aligned}
$$

with Q a sum of roots in ℓ.
But $\left.\mu^{\mathrm{L}}\right|_{\Delta(\ell)} \equiv 0$ so $\Delta^{+}(\ell)$ can be chosen so that Q is dominant.

Then if $\alpha \in \Delta(u)$ is simple, $\left.\left\langle\lambda_{\mathrm{V}}^{\mathrm{L}}+\rho(u), \alpha\right\rangle\right\rangle 0$. In fact

$$
\begin{aligned}
\left\langle\lambda_{\mathrm{V}}^{\mathrm{L}}+\rho(u), \alpha\right\rangle & =\left\langle\left.\lambda\right|_{t} \mathrm{c}^{+\rho(u), \alpha\rangle \geq\langle\rho(u), \alpha\rangle}\right. \\
& >0 .
\end{aligned}
$$

By Lemmas 2.4.20, 2.4.22, and 2.4.23, i) and b) hold.

The irreducibility and uniqueness of $A_{q}(\lambda)$ take more work, and since we won't be using these facts we refer to Speh-Vogan [1980]. See also Vogan [1981].

By 2.5.4 and Theorem 1.3 in Vogan [1984], we have the following.

Proposition 2.5.5. In the above setting, the modules $A_{q}(\lambda)$ are unitarizable.

Proposition 2.5.6. Fix $\Delta^{+}(k)$. Let $q_{i}=\ell_{i}+u_{i} \subseteq g$; i $=1,2$, be θ-stable parabolic subalgebras such that $\Delta\left(q_{i}\right) \supseteq \Delta^{+}(k)$ and $\lambda_{i} \in t^{*}$ admissible one-dimensional representations of l_{i} (Definition 2.5.1). Then,

$$
\begin{gathered}
A_{q_{1}}\left(\lambda_{1}\right) \cong A_{q_{2}}\left(\lambda_{2}\right) \\
\Leftrightarrow \quad \lambda_{1}=\lambda_{2} \quad \text { and } \quad u_{1} \cap p=u_{2} \cap p
\end{gathered}
$$

Proof. We need a few lemmas:

Lemma 2.5.7. Suppose $\tilde{q}=\tilde{\imath}+\tilde{u}, q=\ell+u \subseteq g$, are $\theta-s t a b l e$ parabolic subalgebras, and $\lambda: \ell \longrightarrow \mathbb{C}$ admissible representations such that

1) $\tilde{q} \supseteq q$, that is, $\tilde{\imath} \supseteq \ell$ and $u \supseteq \tilde{u}$.
(2.5.8)
2) $\lambda \perp \Delta(\tilde{\ell})$.
3) $u \cap p=\tilde{u} \cap p$.

Then $\quad A_{q}^{\sim}(\lambda) \cong A_{q}(\lambda)$.

Proof. By induction by stages (Proposition 2.4.15),

$$
\left.\mathscr{F}_{q}^{s}\left(\mathbb{C}_{\lambda}\right) \cong \underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{\sim} \mathscr{R}^{\operatorname{dim}} \tilde{\ell} \sim(u \cap k)\left(\mathbb{C}_{\lambda}\right)\right)
$$

but $q \cap \tilde{\ell}=\ell+u \cap \tilde{\iota}$ and, by 3$), \quad u \cap \tilde{\ell} \subseteq k$ so

$$
\underset{q_{q} \cap \tilde{\iota}}{\operatorname{dim} u \cap \tilde{\iota}}\left(\mathbb{C}_{\lambda}\right) \cong \mathbb{C}_{\lambda} .
$$

Hence $\underset{q}{ } \mathscr{R}^{\mathbf{s}}\left(\mathbb{C}_{\lambda}\right) \cong \underset{\sim}{\sim} \underset{\sim}{\sim}\left(\mathbb{C}_{\lambda}\right)=A_{q}^{\sim}(\lambda)$ this proves the lemma.
q.e.d.

By this lemma, we may assume that both q_{i} 's in the proposition are maximal with respect to conditions 1) - 3).

Lemma 2.5.9. In the above setting

$$
\Delta\left(\iota_{i} \cap k\right)=\left\{\alpha \in \Delta(g) \mid\left\langle\alpha, \lambda_{i}+2 \rho\left(u_{i} \cap p\right)\right\rangle=0\right\}
$$

Proof. Suppose $\alpha \in \Delta^{+}\left(k, t^{c}\right)$ is a simple root so that
a) $\alpha \notin \Delta\left(\iota_{i} \cap k\right)$.
b) $\left\langle\alpha, \mu_{i}\right\rangle=0, \quad \mu_{i}=\lambda_{i}+2 \rho\left(u_{i} \cap p\right)$.

Let

$$
\begin{gathered}
\Delta(\bar{\iota})=\operatorname{Span}\left(\Delta\left(\iota_{\mathrm{i}}\right), \alpha\right) \cap \Delta(g) \\
\Delta(\bar{u})=\Delta\left(u_{\mathrm{i}}\right) \backslash \Delta(\bar{\iota}) \\
\bar{q}=\bar{\iota}+\bar{u} .
\end{gathered}
$$

We want to contradict the maximality of q_{i}.
Breaking up $\Delta\left(u_{i} \cap p\right)$ in maximal α strings

$$
\left\{\gamma_{0} ; \gamma_{0}+\alpha ; \ldots \gamma_{0}+\mathrm{r} \alpha\right\},
$$

$$
\text { (i.e. } \left.\quad \gamma_{0}-\alpha, \gamma_{0}+(r+1) \alpha \Perp \Delta\left(u_{i} \cap p\right)\right)
$$

and using representation theory of $\mathcal{s} \ell(2)$ we can conclude that

$$
\left\langle\alpha, 2 \rho\left(u_{i} \cap p\right)\right\rangle \geq 0
$$

and we have equality if and only if $u_{i} \cap p$ is invariant under the three dimensional subalgebra g^{α} that contains the α-root vector X_{α}.

But, by definition of $\lambda_{i},\left\langle\alpha, \lambda_{i}\right\rangle \geq 0$.

So, (a) and (b) imply that $u_{i} \cap p$ is invariant under g^{α} and

$$
\left\langle\alpha, \lambda_{i}\right\rangle=0=\left\langle\alpha, 2 \rho\left(u_{i} \cap p\right)\right\rangle
$$

Now we want to prove that
(2.5.10)

$$
\bar{u} \cap p=u_{i} \cap p
$$

If $\beta \in \Delta^{+}\left(g, h^{c}\right)$ and $\left.\beta\right|_{t} c^{c}=\alpha$ then

$$
s_{\alpha}\left[\left.\beta\right|_{t} c\right]=-\left.\beta\right|_{t} c
$$

If β is complex, then the non-compact root of $-\left.\beta\right|_{t} \mathbf{c}$ is not in $\Delta\left(u_{i} \cap p\right)$ so it contradicts invariance under g^{α}.

Hence α is an imaginary root of $\Delta^{+}\left(g, h^{c}\right) . \alpha$ is also simple for $\Delta^{+}\left(g, h^{c}\right)$. In fact, since α is simple for $\Delta\left(k, t^{c}\right)$, and $\alpha \notin \Delta(\ell \cap k)$ we can assume that if γ, δ $\epsilon \Delta^{+}\left(g, h^{\mathrm{c}}\right)$ and $\alpha=\gamma+\delta$ then

$$
r \in \Delta\left(u_{i} \cap p\right)
$$

say, and $\gamma-\alpha=-\beta \notin \Delta\left(u_{i} \cap p\right)$; contradicting invariance again.

Consider a simple factor $\ell_{0} \subseteq \bar{l}$, not contained in ℓ. Then ℓ_{0} is not orthogonal to α. Let $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{\ell}\right\}$ be a set of simple roots for ℓ_{0} containing α.

Say $\alpha=\beta_{i_{0}}$ and $\beta_{i_{0}+1}$ is adjacent to α.
Suppose $\ell_{0} \cap p \neq 0$. Then there is a non-compact root $\beta=\sum n_{i} \beta_{i}$ with some $n_{i_{0}+1}>0$ and such that

$$
\langle\alpha, \beta\rangle=\sum \mathrm{n}_{\mathrm{i}}\left\langle\alpha, \beta_{\mathrm{i}}\right\rangle\langle 0 .
$$

$\alpha+\beta=\delta$ is a non-compact root, and $\delta \in \Delta\left(u_{i} \cap p\right)$.
So the string through δ is not complete.
Hence ℓ_{0} is compact and $q(\subseteq \bar{q})$ is not maximal satisfying (2.5.8).

This proves Lemma 2.5.9.
q.e.d.

We are now able to prove Proposition 2.5.6.
By Lemma 2.5.9,

$$
\begin{aligned}
& \iota_{1} \cap k=\iota_{2} \cap k \\
& u_{1} \cap k=u_{2} \cap k
\end{aligned}
$$

hence $\lambda_{1}+2 \rho\left(u_{1}\right)=\lambda_{2}+2 \rho\left(u_{2}\right)$. But $\left\langle\lambda_{i} \beta\right\rangle=$ $\left\langle 2 \rho\left(u_{i}\right), \beta\right\rangle=0$ for all $\beta \in \Delta\left(\iota_{i}\right)$ and $\left.\left\langle 2 \rho\left(u_{i}\right), \alpha\right\rangle\right\rangle 0$, $\left\langle\lambda_{i}, \alpha\right\rangle \geq 0, \quad \alpha \in \Delta\left(u_{i}\right)$. So

$$
\begin{aligned}
& \Delta\left(\ell_{i}\right)=\left\{\beta \in \Delta\left(g, t^{c}\right) \mid\left\langle\lambda_{i}+2 \rho\left(u_{i}\right), \beta\right\rangle=0\right\} \\
& \Delta\left(u_{i}\right)=\left\{\alpha \in \Delta\left(g, t^{c}\right)\left|\left\langle\lambda_{i}+2 \rho\left(u_{i}\right), \alpha\right\rangle\right\rangle 0\right\}
\end{aligned}
$$

Hence

$$
u_{1} \cap p=u_{2} \cap p
$$

and

$$
\lambda_{1}=\lambda_{2}
$$

This proves Proposition 2.5.6.
q.e.d.
2.6. Reduction step for the proof of Theorem 1.3.

We are now in a position to prove the main result stated in Chapter 1. We will argue by contradiction and reduction to a proper subgroup $L \subseteq G$.

Suppose $X \in \mathscr{A}(g, K)$ is irreducible and has a Hermitian form < , >. We will assume X cannot be realized as an $A_{q}(\lambda)$ module, but will exhibit X as a Langlands submodule of some derived functor module induced from an ($\ell, L \cap K$) module X_{L}, making sure that this information can be carried over to G and X.

We need to keep track of the existence of Hermitian forms at different steps of induction as well as of their signatures on some finite sets of K-types.

Recall from Vogan [1984] (Definition 2.10) the Hermitian dual of a (g, K module Y

$$
\begin{aligned}
& Y^{h}=\{f: Y \longrightarrow \mathbb{C} \mid \operatorname{dim} U(k) \cdot f<\infty ; \\
&\left.f(\lambda x)=\bar{\lambda}_{f}(x), \quad \lambda \in \mathbb{C} \quad x \in Y\right\}
\end{aligned}
$$

Y^{h} is a $(g, \mathrm{~K})$ module.

Definition 2.6.1. An invariant, symmetric Hermitian form on a (g,K) module Y is a pairing

$$
\langle,\rangle: Y \times Y \longrightarrow \mathbb{C}
$$

such that
a) $\langle x, a y+b z\rangle=\bar{a}\langle x, y\rangle+\bar{b}\langle x, z)$

$$
\langle a x+b w, y\rangle=a\langle x, y\rangle+b\langle w, y\rangle
$$

for $a, b \in \mathbb{C}, x, y, z, w \in Y$.
b) $\langle(U+i V) x, y\rangle=-\langle x,(U-i V) y\rangle$

$$
U, V \in g_{0} \quad y, x \in Y
$$

c) $\langle\mathrm{k} \cdot \mathrm{x}, \mathrm{y}\rangle=\left\langle\mathrm{x}, \mathrm{k}^{-1} \cdot \mathrm{y}\right\rangle \quad \mathrm{k} \in \mathrm{K}$.
d) $\langle x, y\rangle=\overline{\langle y, x\rangle}$.

The radical of \langle,$\rangle is$

$$
\operatorname{Rad}(\langle,\rangle)=\{x \in Y \mid\langle x, Y\rangle=0\}
$$

It is clear that invariant symmetric Hermitian forms on Y are given by $(g K)$ maps $f: Y \longrightarrow Y^{h}$ such that $f=f^{h}: Y^{h} \longrightarrow Y$. Moreover we have

Proposition 2.6.2. Suppose $X \in \mathscr{A}(g, K)$ is irreducible. Then X admits a non-zero invariant Hermitian form if and only if

$$
x \cong x^{h}
$$

In this case the Hermitian form is non-degenerate and any two such forms differ by multiplication by a real constant.

Proposition 2.6.3. Let $X \in \mathscr{A}(g, K)$ be irreducible and $\left(q_{V}, H_{V}, \delta_{V}, v_{V}\right)$ a set of $\theta-s t a b l e d a t a \operatorname{tached}$ to X, so that

$$
\operatorname{dim}\left[\operatorname{Hom}_{g, K}\left(X, \mathscr{R}_{q_{V}}^{s}\left(I^{L} V^{\mathrm{V}}\left(\delta_{V} \oplus v_{V}\right)\right)\right]=1\right.
$$

(see Proposition 2.4.19). Let $H_{V}=T A$. Then $X \cong X^{h}$ if and only if there is an element

$$
\begin{aligned}
& \omega \in W(L, A) \text { such that } \\
& \omega \delta=\delta \quad \text { and } \quad \omega v=-\bar{v}
\end{aligned}
$$

In this case we get a Hermitian form on X from a form on $\left.\mathscr{R}_{q_{V}}^{s}\left(I^{L} V^{(\delta} V^{\oplus v_{V}}\right)\right)$.

This result is essentially due to Knapp and Zuckerman [1976].

A formulation close to this one is in Vogan [1984], Corollary 2.15.

Corollary 2.6.4. Let $X \in \mathscr{A}(g, K)$, irreducible, endowed with a non-zero Hermitian form < , >. Write $q_{V}=q_{V}(X)$. Let $q=\ell+u$ be a θ-stable parabolic subalgebra such that $\ell \supset \ell_{V}, \quad u \subset u_{V}$ and $\left(q_{V}, H_{V}, \delta_{V}, v_{V}\right), \quad$ a $\theta-s t a b l e$ data attached to X. Write

$$
X_{L}=\mathscr{R}_{l \cap_{q_{V}}}^{\ell}\left(I_{L_{V}}\left(\delta_{V} \oplus v_{V}\right)\right)
$$

Then

$$
\mathrm{X}_{\mathrm{L}}^{\mathrm{h}} \text { has a Hermitian form }\langle,\rangle^{\mathrm{L}}
$$

Proof. This is a formal consequence of Proposition 2.6.3. q.e.d.

Proposition 2.6.5. Fix $q=\ell+u \subseteq g$, a θ-stable parabolic subalgebra. Suppose $Y \in \mathcal{M}(\ell, L \cap K)$ is equipped with a (possibly degenerate) invariant Hermitian form $\langle,\rangle^{\mathrm{L}}$.

Then there is a natural invariant Hermitian form $\langle,\rangle^{\mathrm{G}}$ on $\left[\mathscr{R}_{q}^{\mathrm{s}}\left(\mathrm{Y}^{\mathrm{h}}\right)\right]^{\mathrm{h}}$.

Proof. Recall from Vogan [1981] Chapter 6, Definition 6.1 .5 the functors

$$
\begin{gathered}
\operatorname{ind}_{\frac{q}{q}}^{g}: M(\ell, L \cap K) \longrightarrow \mathcal{M}(g, L \cap K) . \\
\operatorname{ind}_{\bar{q}}^{g} Y=U(g) \otimes_{\bar{q}} Y .
\end{gathered}
$$

Write

$$
\begin{gathered}
\mathscr{L}^{j}: \mathbb{M}(\ell, L \cap K) \longrightarrow \mathcal{M}(g, K) \\
\mathscr{L}_{\frac{q}{q}}^{j_{Y}}=\mathscr{L}^{j} Y=\Gamma^{j} \operatorname{ind}_{\frac{g}{q}}^{g}\left(Y \oplus \Lambda^{\mathrm{top}} u\right)
\end{gathered}
$$

where $\Gamma^{j}: M(g, L \cap K) \longrightarrow M(g, K)$ are the Zuckerman's functors (cf. Definition 2.4.14). Set $\tilde{Y}=Y \oplus \Lambda^{\text {top }} u$.

By hypothesis, we have a map

$$
\phi^{L}: Y \longrightarrow Y^{h} .
$$

This induces a map

$$
\phi^{q}: \operatorname{ind}_{\frac{q}{q}}^{g}(\tilde{Y}) \longrightarrow \operatorname{pro}_{q}^{g}\left(\tilde{Y}^{h}\right)
$$

and

$$
\phi^{G}: \mathscr{L}_{q}^{\mathbf{S}} \mathbf{Y} \longrightarrow \mathscr{R}_{q}^{\mathbf{S}} \mathbf{Y}^{\mathbf{h}}
$$

By Theorem 5.3 (Enright-Wallach) in Vogan [1984]

$$
\mathscr{F}_{q}^{2 s-i}\left(Y^{h}\right) \cong\left(\mathscr{L}_{\frac{i}{q}}^{Y}\right)^{h}
$$

Let

$$
\langle,\rangle: \mathscr{L}_{\bar{q}}^{\mathbf{s}} \longrightarrow\left(\mathscr{L}_{\bar{q}}^{\mathbf{s}}\right)^{\mathrm{h}}
$$

be the natural pairing given by Definition 2.10 in Vogan [1984].

Define

$$
\langle u, v\rangle^{G}=\left\langle u, \phi^{G} v\right\rangle .
$$

This gives an invariant Hermitian form on $\mathscr{L}^{\mathbf{S}}(\mathrm{Y})$ (cfr. the proof of Corollary 5.5. Vogan [1984]).
q.e.d.

Definition 2.6.6. If $Z \in \mathcal{M}(g, K)$ and $\delta \in \hat{K}$, write

$$
\mathrm{Z}(\delta)=\operatorname{Hom}_{\mathrm{K}}\left(\mathrm{~V}_{\delta}, \mathrm{Z}\right)
$$

Then,

$$
\begin{equation*}
Z \cong \underset{\delta \in \hat{K}}{\oplus} \mathrm{Z}(\delta) \otimes \mathrm{V}_{\delta} . \tag{2.6.7}
\end{equation*}
$$

If we fix a positive definite form on $V_{\delta}, \quad Z(\delta)$ inherits a Hermitian form. Suppose Z is equipped with a non-zero Hermitian form < , >. Write p(δ) (resp. $q(\delta)$, $z(\delta))$, for the multiplicity of V_{δ} in the subspace of Z (δ) where < , > is positive (resp. negative or zero).

Write the signature of $\langle,>$ on $Z(\delta)$ as $\operatorname{sgn}\left(<,>\left.\right|_{Z(\delta)}\right)=(p(\delta), q(\delta), z(\delta))$.

Then write, formally

$$
\operatorname{sgn}(\langle,\rangle)=\sum_{\delta \in \hat{K}}(p(\delta), q(\delta), z(\delta))
$$

We will prove in the next chapters the following result.

Theorem 2.6.7. Let $G=\operatorname{SL}(n, \mathbb{R}), \operatorname{SU}(p, q)$ or $\operatorname{SP}(n, \mathbb{R})$ and $X \in \mathscr{A}(g, K)$ irreducible, endowed with a non-zero
invariant Hermitian form < , > and regular integral infinitesimal character.

If $X \cong A_{q} \cdot\left(\lambda^{\prime}\right)$, for any q^{\prime} and λ^{\prime}. Then there are a θ-stable parabolic $q=\ell+u$, an ($\ell, L \cap K)$-module X_{L} and (LnK)-types $\delta_{i}^{L} \quad i=1,2$ such that
a) X is the unique irreducible submodule of $\mathscr{R}_{q}\left(X_{L}\right)$, and X occurs only once as a composition factor of $\mathscr{R}_{q}\left(X_{L}\right)$.
b) X_{L}^{h} is endowed with a Hermitian form $\left\langle,>^{L} \neq 0\right.$.

Write (p_{L}, q_{L}, z_{L}) for its signature. Then

$$
\mathrm{p}_{\mathrm{L}}\left(\delta_{1}^{\mathrm{L}}\right) \neq 0 \quad \text { and } \quad \mathrm{q}_{\mathrm{L}}\left(\delta_{2}^{\mathrm{L}}\right) \neq 0
$$

c) Choose $\Delta^{+}(k)=\Delta^{+}(\ell \cap k) \cup \Delta(u \cap k)$. Then, if δ_{i}^{L} has highest weight $\mu_{i}^{L}, \quad \mu_{i}=\mu_{i}^{L}+2 \rho(u \cap p)$ is $\Delta^{+}(k)$ dominant.

Chapters 3, 4, 5 will be devoted to the proof of this result. Assume this for the moment.

Using this result, we want to prove non-unitarity of X. We need to check that the Hermitian form \langle,\rangle^{G} induced on $\mathscr{R}_{q}\left(X_{L}\right)^{h}$ by Proposition 2.6 .5 is a multiple of〈, > on X; that for the $L \cap K$ types satisfying c) of Theorem 2.6.7, the corresponding K types occur in X and that the signature of the form on these K-types is the same as that of \langle,\rangle^{L} on the δ_{i}^{L}.

Theorem 2.6.8. Suppose $X \in \mathscr{A}(g . K)$ is irreducible and has a nonzero Hermitian form < , >. Let $q=\ell+u$ be θ stable and X_{L} an ($\left.\ell, L \cap K\right)$ module such that X is the unique irreducible submodule of $\mathscr{R}_{q}\left(X_{L}\right), X$ occurs only once as composition factor in $\mathscr{R}_{q}^{s}\left(X_{L}\right)$ and X_{L}^{h} has a
 (LกK)-type of X_{L} with highest weight μ^{L} such that $\mu=$ $\mu^{\mathrm{L}}+2 \rho(u \cap p)$ is dominant for $\Delta(u \cap k)$ then if $\delta \in \hat{\mathrm{K}}$ has highest weight $\mu, \mathrm{X}(\delta) \neq 0$ and

$$
\operatorname{Sign}\left[\left.\langle,\rangle\right|_{X(\delta)}\right]=\operatorname{sgn}\left[\left.\langle,\rangle^{L}\right|_{X_{L}\left(\delta^{L}\right)}\right]
$$

Proof. Applying the appropriate definitions and results to K and $q \cap k$ we have maps

$$
\begin{aligned}
& \mathscr{R}_{q \cap k}^{\mathrm{i}}: M(\ell \cap k, L \cap K) \longrightarrow M(k, \mathrm{~K}) \\
& \mathscr{L}_{\frac{q}{\mathrm{q}} \cap k}^{\mathrm{j}}
\end{aligned}: \mathcal{M}(\ell \cap k, \mathrm{~L} \cap \mathrm{~K}) \longrightarrow \mathcal{M}(k, \mathrm{~K}) .
$$

If $Y \in \mathbb{M}(\ell, L \cap K)$ there are natural maps

$$
\begin{aligned}
& \operatorname{pro}_{q}^{g} \tilde{Y} \longrightarrow \operatorname{pro}_{q \cap k}^{k} \tilde{Y} \\
& \text { ind }_{\frac{q}{q} \cap k}^{k} \tilde{Y} \longrightarrow \operatorname{ind}_{\frac{q}{q}}^{g} \tilde{Y}
\end{aligned}
$$

These induce (k, K)-maps

$$
\begin{aligned}
& \mathscr{F}_{q}^{i} Y \xrightarrow{r} \mathscr{R}_{q \cap K}^{i} Y \\
& \mathscr{L}_{\frac{1}{j}}^{\mathbf{j}} \xrightarrow{\ell} \mathscr{L}_{\frac{j}{j}}^{j} .
\end{aligned}
$$

Then, the following diagram is commutative

The isomorphisms across are Theorem 5.3 in Vogan
[1984] for (G, q) and (K,qПk), respectively.
Arguing as in the Proof of 2.6 .5 (for K) we have maps

$$
\begin{aligned}
& \phi^{q \cap k}: \operatorname{ind}_{\bar{q} \cap k}^{\mathrm{k}} \mathrm{Y} \longrightarrow \operatorname{pro}_{q \cap k}^{k} \mathrm{Y}^{\mathrm{h}} \\
& \phi^{\mathrm{k}}: \mathscr{L}_{\bar{q} \cap k}^{s} \mathrm{Y} \longrightarrow \mathscr{R}_{q \cap k}^{\mathrm{s} \cap Y^{\mathrm{h}}} .
\end{aligned}
$$

and we have the following commutative diagram
(2.6.10)

And we have a Hermitian form on $\mathscr{L}_{\underset{q}{ }(\mathrm{~S} k}^{(\mathrm{Y})}$

$$
\langle x, y\rangle^{K}=\left\langle x, \phi^{K} y\right\rangle .
$$

Since $\phi^{K}=r \circ \phi^{G} \circ \ell$, and by Proposition 6.10 in Vogan [1984], ℓ is a unitary map,

$$
\begin{equation*}
\langle x, y\rangle^{K}=\langle\ell x, \ell y\rangle^{G} . \tag{2.6.11}
\end{equation*}
$$

(2.6.12) Write

$$
\begin{array}{ll}
\left.\operatorname{sign}(<,\rangle^{K}\right)=\left(p_{K}, q_{K}, z_{K}\right) ; & p_{K}, q_{K}, z_{K}: \hat{K} \longrightarrow \mathbb{N} \\
\left.\operatorname{sign}(<,\rangle^{G}\right)=\left(p_{G}, q_{G}, z_{G}\right) ; & p_{G}, q_{G}, z_{G}: \hat{K} \longrightarrow \mathbb{N}
\end{array}
$$

and again

$$
\left.\operatorname{sign}(<,\rangle^{L}\right)=\left(p_{L}, q_{L}, z_{L}\right) ; \quad p_{L}, q_{L}, z_{L}:(L \cap K) \wedge \longrightarrow \mathbb{N}
$$

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{G}}(\delta) \geq \mathrm{p}_{\mathrm{K}}(\delta) \\
& \mathrm{q}_{\mathrm{G}}(\delta) \geq \mathrm{q}_{\mathrm{K}}(\delta) \\
& \mathrm{z}_{\mathrm{G}}(\delta) \geq \mathrm{z}_{\mathrm{K}}(\delta) .
\end{aligned}
$$

The main ingredient in the proof of Proposition 2.6.8 is the following result due to T. Enright.

Proposition 2.6.13 (Enright [1984]). Let $q=\ell+u \quad \theta$ stable parabolic.

Let $\delta^{L} \in(\mathrm{~L} \cap \mathrm{~K})^{\wedge}$ with highest weight μ^{L}. Set $\mu=$ $\mu^{\mathrm{L}}+2 \rho(u \cap p)$.
a) If μ is not $\Delta(u \cap k)$-dominant, then

$$
\mathscr{L}_{q \cap k}^{s} Y\left(\delta^{L}\right)=0 .
$$

b) If μ is $\Delta(u \cap k)$ dominant, write $\delta \in \hat{K}$ for the representation of K with highest weight μ. Then

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{K}}(\delta)=\mathrm{p}_{\mathrm{L}}\left(\delta^{\mathrm{L}}\right) \\
& \mathrm{q}_{\mathrm{K}}(\delta)=\mathrm{q}_{\mathrm{L}}\left(\delta^{\mathrm{L}}\right) \\
& \mathrm{z}_{\mathrm{K}}(\delta)=\mathrm{z}_{\mathrm{L}}\left(\delta^{\mathrm{L}}\right) .
\end{aligned}
$$

For a proof of this result see Vogan [1984] 6.5-6.8.

Lemma 2.6.14. Suppose V is a module of finite length and S is irreducible.

Assume
a) $S \subseteq V$ occurs exactly once as a composition factor of V.
b) Any non-zero $W \subseteq V$ contains S.
c) S is equipped with a Hermitian form.

Then, up to scalars, V^{h} has a unique Hermitian form \langle,\rangle_{1} and

$$
S \cong \mathrm{v}^{\mathrm{h}} / \operatorname{rad}\left(\langle,\rangle_{1}\right)
$$

The proof of this lemma is standard. We can now prove Theorem 2.6.8. By Proposition 2.6.13 and 2.6.11

$$
\begin{equation*}
\mathrm{p}_{\mathrm{G}}(\delta) \geq \mathrm{p}_{\mathrm{L}}\left(\delta^{\mathrm{L}}\right) \tag{2.6.15}
\end{equation*}
$$

$$
\mathrm{q}_{\mathrm{G}}(\delta) \geq \mathrm{q}_{\mathrm{L}}\left(\delta^{\mathrm{L}}\right)
$$

and

$$
z_{G}(\delta) \geq z_{L}\left(\delta^{L}\right)
$$

Apply Lemma 2.6.14 to

$$
V=\mathscr{R}_{q}^{s}\left(X_{L}\right) \quad \text { and } \quad S=X
$$

We know that a) - c) hold in this Lemma since they are part of our assumptions on X. We also know that $\langle,\rangle^{G} \neq 0$ by 2.6.15.

Hence, we have the following result:

Proposition 2.6.16. In the setting of Theorem 2.6.8

$$
\begin{gathered}
\left.\langle,\rangle^{G}\right|_{X}=c\langle,\rangle \\
x \cong\left[\mathscr{K}_{q}^{s}\left(X_{L}\right]^{h} / \operatorname{rad}(<,\rangle^{G}\right) .
\end{gathered}
$$

So $\left.\langle,\rangle^{G}\right|_{X}$ is nondegenerate and has signature

$$
\operatorname{sgn}(<,>)=\left(p_{G}, q_{G}\right)
$$

q.e.d.

It is now straightforward to prove Theorem 1.3. Using Theorem 2.6.7, proved in chapters $3-5$ for our groups in question, we have that the hypotheses in Theorem 2.6.8 are true and by 2.6 .15

$$
\mathrm{p}_{\mathrm{G}}\left(\delta^{1}\right)>0
$$

and

$$
\mathrm{q}_{\mathrm{G}}\left(\delta^{2}\right)>0
$$

and the form <, > on X is indefinite too.
q.e.d.
2.7. Methods to detect non-unitarity.

To prove Theorem 2.6.7, we will need a few techniques that we will discuss here. Fix a positive root system $\Delta^{+}(k)$.

Lemma 2.7.1 (Parthasarathy's Dirac operator inequality. See Borel-Wallach [1980] II.6.1.1.) Let (π, H) be a unitary representation of G and \mathscr{H}_{K} its Harish-Chandra module.

Fix a positive trot system $\Delta^{+}(g)$ compatible with $\Delta^{+}(k)$ and a k-type δ occurring in \mathscr{H}_{K} with highest weight $\mu \in t^{c^{*}}$. Write

$$
\begin{aligned}
\rho & =\rho\left(\Delta^{+}(g)\right) \in\left(t^{c}\right)^{*} \\
\rho_{\mathrm{c}} & =\rho\left(\Delta^{+}(k)\right) \epsilon\left(t^{c}\right)^{*} \\
\rho_{\mathrm{n}} & =\rho\left(\Delta^{+}(p)\right)=\rho-\rho_{\mathrm{c}} \in\left(t^{c}\right)^{*}
\end{aligned}
$$

Let c_{0} be the eigenvalue of the Casimir operator of g acting on \mathscr{H}_{K}, and $\omega \in W(k, t)$ making $\omega\left(\mu-\rho_{\mathrm{n}}\right)$ dominant for $\Delta^{+}(k)$. Then

$$
\left\langle\omega\left(\mu-\rho_{\mathrm{n}}\right)+\rho_{\mathrm{c}}, \omega\left(\mu-\rho_{\mathrm{n}}\right)+\rho_{\mathrm{c}}\right\rangle \geq \mathrm{c}_{0}+\langle\rho, \rho\rangle .
$$

Lemma 2.7.2. Let $X \in \mathcal{M}(g, K)$ with a nonzero, invariant Hermitian form < , >. Suppose the Dirac inequality fails on a K-type δ, for some choice of $\Delta^{+}(p)$. Then

1) There is a k-type η occurring in $V_{\delta} \otimes p$ such that

$$
\langle,\rangle \mid \mathrm{v}_{\delta} \oplus \mathrm{V}_{\eta}
$$

is indefinite.
2) Suppose G / K is Hermitian symmetric with a onedimensional compact center, so that we can choose $z \in i k_{0}$ with the property that $g=k \oplus p^{+} \oplus p^{-}$is the decomposition of g into the eigenspaces $0,+1,-1$ of z, respectively.

Set $\rho_{\mathrm{n}}^{ \pm}=\rho\left(\Delta\left(p^{ \pm}\right)\right)$. Then, if the Dirac inequality fails on δ for $\rho_{n}^{ \pm}$, there is a k-type η^{\mp} occurring in $V_{\delta} \otimes p^{\mp}$ such that

$$
\left\langle,>\left.\right|_{\left(\mathrm{V}_{\delta} \oplus \mathrm{V}_{\eta^{\mp}}\right)}\right.
$$

is indefinite.

Proof. Recall from Borel-Wallach [1980], II §6, the definition of (r, $S(V)$), the space of spinors of a finite dimensional vector space V defined over \mathbb{R}, with a positive definite inner product <, >. Write <, > for the unitary structure on $S(V)$ such that

$$
\begin{gathered}
\langle\gamma(v) x, y\rangle_{S}=-\langle x, \gamma(v) y\rangle_{S} \\
v \in V \quad x, y \in S(v) .
\end{gathered}
$$

Recall also, the definition of the Dirac operator

$$
\mathrm{D}: \mathrm{H} \otimes \mathrm{~S} \longrightarrow \mathrm{H} \otimes \mathrm{~S}
$$

for (π, H) a unitary $\left(g_{0}, k_{0}\right)$-module and $S=S\left(p_{0}\right)$.
(2.7.3)

$$
D(v \otimes s)=\sum_{\alpha \in \Delta(p)} \pi\left(X_{\alpha}\right) v \otimes \gamma(X-\alpha) s .
$$

Since

$$
S=\Delta_{\Delta^{+}(g) \supseteq \Delta^{+}(k)}^{\oplus \cdot V} \rho\left(\Delta^{+}(g)-\rho_{c}\right)
$$

(where $m=2^{\left[\text {dim } a^{c} / 2\right]}$) (cfr. Borel-Wallach [1984] II §6) then $\omega\left(\mu-\rho_{n}\right)$ is the highest weight of a k-representation occurring in $V_{\delta} \otimes \mathrm{V}_{\rho_{\mathrm{n}}} \subseteq H \otimes \mathrm{~S}$.

Let $\xi=\mathrm{v} \otimes \mathrm{s}$ be a weight vector for $\omega\left(\mu-\rho_{\mathrm{n}}\right)$. Write also <, \rangle_{D} for the tensor product inner product on $H \otimes S$ then the proof of Lemma 2.7.1 shows that

$$
\begin{aligned}
& 0\rangle\langle D \xi, D \xi\rangle_{D}= \\
& \quad\left(\left\langle\omega\left(\mu-\rho_{\mathrm{n}}\right)+\rho_{\mathrm{c}}, \omega\left(\mu-\rho_{\mathrm{n}}\right)+\rho_{\mathrm{C}}\right\rangle-\mathrm{c}_{0}-\langle\rho, \rho\rangle\right)\langle\xi, \xi\rangle_{\mathrm{D}} .
\end{aligned}
$$

So $\quad D \xi \neq 0$ and

$$
D \xi=\sum_{\alpha \in \Delta(p)} \pi\left(X_{\alpha}\right) v \otimes r\left(X_{-\alpha}\right) s \in p \cdot V_{\delta} \otimes S \subseteq H \otimes S .
$$

This gives a nonzero map

$$
p \otimes \mathrm{~V}_{\delta} \xrightarrow{\sigma} p \cdot \mathrm{~V}_{\delta}
$$

So $\operatorname{Hom}_{k}\left(p \otimes \mathrm{~V}_{\delta}, \mathrm{H}\right) \neq 0$. Let $\mathrm{E}=\mathrm{Im} \sigma$. Since \langle,\rangle_{S} is positive definite this means that $\langle,>$ is indefinite on $V_{\delta} \oplus \mathrm{E}$.

This proves a) of the lemma.
For b) simply observe that $\mu-\rho_{\mathrm{n}}^{-}=\mu+\rho_{\mathrm{n}}^{+} ; \rho_{\mathrm{n}}^{+}=$ $\rho\left(p^{+}\right)$and p^{+}is a representation of k. Hence if $\beta \in$ $\Delta(k)$

$$
\left\langle\rho_{n}^{+}, \beta\right\rangle=0 .
$$

So $\mathrm{V}_{\rho_{\mathrm{n}}^{+}}$is one-dimensional. Since $\rho_{\mathrm{n}}^{+}+\alpha$ is not a weight of S, for $\alpha \in \Delta\left(\rho^{+}\right), V_{\rho_{\mathrm{n}}}$ is killed by $\gamma\left(\mathrm{X}_{\alpha}\right)$ and (2.7.3) becomes, for $\xi \in \mathrm{V}_{\delta} \otimes \mathrm{V}_{\rho_{\mathrm{n}}}^{-}$

$$
\mathrm{D} \xi=\sum_{\alpha \in \Delta\left(p^{+}\right)} \pi\left(\mathrm{X}_{\alpha}\right) \mathrm{v} \otimes r\left(\mathrm{X}_{-\alpha}\right) \mathrm{s}
$$

so $D \xi \in\left(p^{+}\right) \cdot V_{\delta} \otimes S \subseteq H \otimes S . S i m i l a r l y$ for ρ_{n}^{-}.
q.e.d.

Lemma 2.7.4. Let G be a connected, reductive linear Lie group. Assume that
rank $G=r a n k K$.

Then, any representation with real infinitesimal character has a Hermitian form.

Proof. By Proposition 2.6.3 it is enough to prove the lemma for G quasisplit and a Langland subrepresentation of a principal series $I(\delta \otimes v)$ with $\delta \otimes v$ a character of a maximally split Carton subgroup $H^{s}=T^{s} A^{s}$.

Since G is equal rank there is a subset $B=$ $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$ of strongly orthogonal simple real roots such that, since H^{s} is the maximally split Carton subgroup of G, then B spans $a_{0}^{s}=\operatorname{Lie}\left(A^{s}\right)$.

Hence if $\omega=s_{\alpha_{1}} \cdots s_{\alpha_{k}}$ is the product of simple reflections $s_{\alpha_{i}}, \quad \omega$ acts by -1 on A^{s} and by the identity on T_{0}^{s}.

Recall from Definition 2.4.3 the maps ϕ_{α} : $\Delta \ell(2, \mathbb{R}) \longrightarrow m_{0}^{\alpha}$. Consider the exponentiated map

$$
\Phi_{\alpha}: \operatorname{SL}(2, \mathbb{R}) \longrightarrow M^{\alpha}
$$

set

$$
m_{\alpha}=\Phi_{\alpha}\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right] \in M
$$

(cf. Vogan [1981] page 172). Then, since G is connected, T^{s} is generated by $T_{0}^{s} U\left\{m_{\alpha} \mid \alpha\right.$ real\}. Let $\omega \in M^{\prime} / M=W$, then there is $\sigma \in M^{\prime}$ such that

$$
\omega \cdot \mathrm{m}_{\alpha}=\sigma \mathrm{m}_{\alpha} \sigma^{-1}=\mathrm{m}_{\omega \cdot \alpha} .
$$

But $m_{\omega \cdot \alpha}=m_{-\alpha}=m_{\alpha}$.
Recall the elements $\delta \in \hat{M}$ and $v \in \hat{A}$. Then

$$
(\omega \delta)\left(m_{\alpha}\right)=\delta\left(\omega \cdot m_{\alpha}\right)=\delta\left(m_{\alpha}\right)
$$

and

$$
\left.\omega \cdot \delta\right|_{\mathrm{T}_{0}}=\delta
$$

Hence $\omega \delta=\delta$. Since $I(\delta \otimes v)$ is assumed to have real infinitesimal character, v is real.

Also since $\left.\omega\right|_{A}=-1$ then $\omega \cdot v=-v=-\bar{v}$.
This is the condition of Proposition 2.6.3 for the existence of a Hermitian form.
q.e.d.

Chapter 3. $G=\operatorname{SL}(\mathrm{n}, \mathbb{R})$
3.1. Preliminary Notation.

To fix notation consider $G=\operatorname{SL}(2 n, \mathbb{R})$; the odd case is similar.

$$
\mathrm{G}=\{\mathrm{g} \in \operatorname{GL}(2 \mathrm{n}, \mathbb{R}) \mid \operatorname{det} \mathrm{g}=1\}
$$

The maximal compact subgroup K of G is

$$
K=S O(2 n, \mathbb{R})=\left\{g \in G \mid g^{t} g=I\right\}
$$

The corresponding Lie algebras are

$$
\begin{gathered}
g_{0}=\{X \in g \ell(2 n, \mathbb{R}) \mid \text { trace } X=0\} \\
k_{0}=\left\{X \in g_{0} \mid X+{ }^{t} X=0\right\}=\Delta o(2 n, \mathbb{R}) .
\end{gathered}
$$

If θ is the Cartan involution defined by $\theta(X)=-{ }^{t} X$, then

$$
p_{0}=\left\{X \in g_{0} \mid X={ }^{\mathrm{t}} \mathrm{X}\right\}
$$

The Cartan subgroup of K is

$$
\mathrm{T}^{\mathbf{c}}=\left\{\left.\mathrm{g}=\left\{\begin{array}{lllll}
\mathrm{r}\left(\theta_{1}\right) & & & & \\
& r\left(\theta_{2}\right. & & & \\
& & . & & \\
& & & \cdot & \\
& & & & \\
& & & \\
& & & & \\
& & \left.\theta_{\mathrm{n}}\right)
\end{array}\right] \right\rvert\, \theta_{i} \in \mathbb{R}\right.
$$

$$
\left.r\left(\theta_{i}\right)=\left[\begin{array}{rr}
\cos \theta_{i} & \sin \theta_{i} \\
-\sin \theta_{i} & \cos \theta_{i}
\end{array}\right]\right\}
$$

and if
$A^{c}=\left\{\left.g=\left\{\begin{array}{lllllll}r_{1} & & & & & & \\ & r_{1} & & & & & \\ & & r_{2} & & & & \\ & & & r_{2} & & & \\ & & & & \ddots & & \\ & & & & & r_{n} & \\ & & & & & & r_{n}\end{array}\right] \right\rvert\, r_{i} \in \mathbb{R}\right.$ dent $\left.g=1\right\}$
then $H^{c}=T^{c} A^{c}$ is a maximally compact Carton of G.

$$
\alpha_{0}^{c}=\left\{\begin{array}{llllll}
a_{1} & & & & & \\
& a_{1} & & & & \\
& & a_{2} & & & \\
& & & a_{2} & & \\
& & & & \ddots & \\
& & & \\
& h_{0}^{c}=t_{0}^{c}+\alpha_{0}^{c}
\end{array}\right.
$$

Complexifying:

$$
g=s \ell(2 \mathrm{n}, \mathbb{C})
$$

and

$$
k=\operatorname{so}(2 \mathrm{n}, \mathbb{C})
$$

Define $\quad e_{j} \in i\left(t_{0}^{c}\right)^{*} \quad j=1,2, \ldots, n, \quad b y$

$$
e_{j}\left[\begin{array}{cccccccc}
0 & \theta_{1} & & & & & & \\
-\theta_{1} & 0 & & & & & & \\
& & 0 & \theta_{2} & & & & \\
& & -\theta_{2} & 0^{0} & & & & \\
& & & & & . & 0 & \theta_{n} \\
& & & & & & -\theta_{n} & 0
\end{array}\right]=i \theta_{j} .
$$

Then the roots of t^{c} in k, p and g are, respectiveely:

$$
\Delta\left(k, t^{c}\right)=\left\{ \pm\left(e_{j} \pm e_{k}\right) \mid 1 \leq j<k \leq n\right\}
$$

$$
\begin{aligned}
& \Delta\left(p, t^{c}\right)=\left\{ \pm 2 e_{\ell} ;\left(e_{j} \pm e_{k}\right) \mid 1 \leq \ell \leq n ; 1 \leq j<k \leq n\right\} \\
& \Delta\left(g, t^{c}\right)=\left\{ \pm 2 e_{\ell} ; \pm\left(e_{j} \pm e_{k}\right) \mid 1 \leq \ell \leq n ; 1 \leq j<k \leq n\right\}
\end{aligned}
$$

The multiplicity of $\pm \mathbf{e}_{\mathbf{j}} \pm \mathbf{e}_{\mathrm{k}}$ as a root in g is 2 .
Choose $\Delta^{+}\left(k, t^{c}\right)=\left\{e_{j} \pm e_{k} \mid 1 \leq j<k \leq n\right\}$. Then \hat{K} can be identified with the set

$$
\left\{\mu=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}\left|a_{1} \geq a_{2} \geq \ldots \geq a_{n-1} \geq\left|a_{n}\right|\right\}\right.
$$

3.2. Computation of $\ell_{V}(X)$ for a Harish-Chandra module X. Let $\mu=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in i t_{0}^{*}$ be the highest weight of a LKT of X. Fix a positive root system $\Delta^{+}(k)$ so that

$$
a_{1} \geq a_{2} \geq \ldots \geq\left|a_{n}\right|
$$

as in 3.1.
To obtain $\ell_{V}(X)=\ell_{V}(\mu)$ as in 2.4 .8 we need:

$$
2 \rho_{c}=(2 n-2,2 n-4, \ldots, 2,0)
$$

Let $\Delta^{+}\left(g, h^{c}\right)$ be a $\theta-s t a b l e$ positive system making $\mu+2 \rho_{c}$ dominant. After conjugating by an outer automorphism of K we may assume that $a_{n} \geq 0$. Then the restrictdion of $\Delta^{+}\left(g, h^{\mathrm{c}}\right)$ to t^{c} is

$$
\Delta^{+}\left(g, t^{c}\right)=\left\{\mathbf{e}_{j} \pm \mathbf{e}_{k} ; 2 \mathbf{e}_{\ell} \mid 1 \leq j, k, \ell \leq n ; j<k\right\}
$$

Write $\phi\left(g, t^{c}\right)$ for the set of simple roots restricted to t^{c}. Then

$$
\phi\left(g, t^{c}\right)=\left\{e_{1}-e_{2} ; e_{2}-e_{3} ; \ldots ; e_{n-1}-e_{n} ; 2 e_{n}\right\}
$$

Let

$$
\mu+2 \rho_{c}=\left(x_{1} x_{2} \cdots x_{n}\right)
$$

We can form an array with the coordinates of $\mu+2 \rho_{c}$ by grouping them into maximal blocks of elements decreasing by 2. That is, if
(3.2.1)

$$
\mu=(\underbrace{a_{1}, \ldots, a_{1}}_{r_{1}}, \underbrace{a_{2}, \ldots, a_{2}}_{r_{2}}, \cdots \underbrace{a_{t}, \ldots, a_{t}}_{r_{t}}, \underbrace{0, \ldots, 0}_{R \text { times }})
$$

where $a_{1}>a_{2}>\ldots>a_{t}>0$.
Then, since the coordinates of $2 \rho_{c}$ decrease by two, the array would look like

$$
\begin{equation*}
m_{1} m_{1}-2 \cdots m_{1}^{-2 p_{1}+1} \tag{3.2.2}
\end{equation*}
$$

$$
\mathrm{m}_{2}^{\mathrm{m}_{2}-2 \cdots \mathrm{~m}_{2}^{-2 p_{2}+1}} \cdots
$$

$$
2 \mathrm{R}-2, \ldots, 2,0
$$

Proposition 3.2.3. Suppose that $\mu \in i t_{0}^{*}$ is the highest weight of a representation of K and that the picture for $\mu+2 \rho_{\mathrm{c}}$ is as in 3.2.2. Then
a) $\lambda_{V}(\mu)=\lambda_{V}$ has the form

$$
\lambda_{\mathrm{V}}(\mu)=(\underbrace{\lambda_{1} \ldots \lambda_{1}}_{r_{1}}, \underbrace{\lambda_{2} \cdots \lambda_{2}}_{r_{2}} \cdots \underbrace{\lambda_{t} \cdots \lambda_{t}}_{r_{t}}, \underbrace{0 \ldots 0}_{R})
$$

where
i) $\lambda_{j}=a_{j}-1$
ii) $\lambda_{1}>\lambda_{2}>\ldots>\lambda_{t} \geq 0$.

So $\quad \lambda_{t}=0 \quad$ if $\quad a_{t}=1$.
b) $\left[\iota_{V}(\mu)\right]^{d}$ is isomorphic to, either

$$
s l\left(\mathrm{r}_{1}, \mathbb{C}\right) \oplus \Delta l\left(\mathrm{r}_{2}, \mathbb{C}\right) \oplus \ldots \oplus \Delta l\left(\mathrm{r}_{\mathrm{t}}, \mathbb{C}\right) \oplus s l(2 \mathrm{R}, \mathbb{R})
$$

if $\lambda_{t}>0$ or

$$
s l\left(r_{1}, \mathbb{C}\right) \oplus \ldots \oplus s l\left(r_{t-1}, \mathbb{C}\right) \oplus s l\left(2\left(R+r_{t}\right), \mathbb{R}\right)
$$

if $\quad \lambda_{t}=0$.

Proof. Notice that $2 \rho_{c}-\rho=(-1 .-1, \ldots,-1)$. Define

$$
\left\{\beta_{j}\right\}=\left\{2 \mathbf{e}_{\mathrm{n}-\mathrm{j}+1} \mid\left\langle\mu+2 \rho_{\mathrm{c}}-\rho, 2 \mathbf{e}_{\mathrm{n}-\mathrm{j}+1}\right\rangle=-\mathrm{c}_{\mathrm{j}} \leq 0\right\} .
$$

Then $\lambda_{\mathrm{V}}(\mu)=\mu+2 \rho_{\mathrm{c}}-\rho+\frac{1}{2} \Sigma \mathrm{c}_{\mathrm{j}} \beta_{\mathrm{j}}$ has the form (3.2.4), and the conditions a) - e) of Proposition 2.4.7 are obvious. Moreover the subset of simple roots orthogonal to $\lambda_{V}(\mu)$ is

$$
\begin{gathered}
\left\{e_{1}-e_{2} ; e_{2}-e_{3} ; \ldots e_{r_{1}-1}-e_{r_{1}}\right\} \cup\left\{e_{r_{1}}-e_{r_{1}+1} \ldots e_{r_{1}+r_{2}-1}-e_{r_{1}+r_{2}}\right\} \\
U . . \cup\left\{\ldots ; e_{n-1}-e_{n} ; e_{2 n}\right\} .
\end{gathered}
$$

This spans the root system

$$
\left.\left(A_{r_{1}-1} \oplus A_{r_{1}-1}\right) \oplus\left(A_{r_{2}}{ }^{\oplus A} r_{r_{2}}\right) \oplus \ldots\left(A_{r_{s}}\right) \oplus A_{r_{s}}\right) \oplus A_{2 k},
$$

since the roots $e_{i}-e_{j}$ involved are restrictions of complex roots and therefore occur twice in $\Delta\left(g, t^{c}\right)$. Now the proposition is clear.
q.e.d.
3.3. Lowest K-types of the modules $A_{q}(\lambda)$.

We will give some criteria to determine when a
representation of K is the LKT of one of the (g, K)
modules $\quad A_{q}(\lambda)$.

Recall from 2.3 that to construct a θ-stable parabolic subalgebra $q=\ell+u$ we need a weight $x \in i t_{0}^{*}$. Suppose

where

$$
x_{1}>x_{2}>\ldots>x_{t}>0
$$

Write $q=q(x)=\ell(x)+u(x)$ for the parabolic defined by x as in 2.3.

Clearly

$$
\begin{aligned}
& (3.3 .2)\left\{\begin{array}{l}
2 \rho(u \cap k)= \\
\\
\text { with } \underbrace{s_{1} s_{1} \ldots s_{1}}_{r_{1}}, \underbrace{s_{2} \ldots s_{2}}_{r_{2}}, \ldots, \underbrace{}_{r_{t}} \ldots s_{t}, \underbrace{0 \ldots}_{R} \\
\text { and } \quad 2 \rho(u \cap p)=
\end{array}\right. \\
& u_{j}=2\left(n-r_{1}-\ldots-r_{j-1}\right)-r_{j}+1 .
\end{aligned}
$$

Proposition 3.3.3. Let μ be as in (3.2.1) and suppose it is the highest weight of a representation of K. Then V_{μ} is the LKT of a (g, K)-module $A_{q}(\lambda)$ if and only if
a) $a_{i}-a_{i+1} \geq r_{i}+r_{i+1}$
and
b) $\quad a_{t} \geq 2 R+r_{t}+1$.

Proof. Suppose V_{μ} is the LKT of an $A_{q}(\lambda)$. Then $\mu=$ $\lambda+2 \rho(u \cap p)$ and λ is the weight of a one-dimensional character of L satisfying 2.5.1 a) and b). Hence λ is orthogonal to the roots of t^{c} in l and it is positive in the $t^{\text {c }}$-roots in u. That is,

$$
\lambda=(\underbrace{\lambda_{1}, \ldots, \lambda_{1}}_{r_{1}}, \underbrace{\lambda_{2}, \ldots, \lambda_{2}}_{r_{2}}, \cdots \underbrace{\lambda_{t}, \ldots, \lambda_{t}}_{r_{t}}, \underbrace{0, \ldots, 0}_{R})
$$

and

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{t} \geq 0
$$

Then

$$
\begin{aligned}
& \text { en } a_{j}=\lambda_{j}+2\left(n-r_{1}-\ldots-r_{j-1}\right)-r_{j}+1 \\
& a_{t}=\lambda_{t}+2\left(n-r_{1}-\ldots-r_{t-1}\right)-r_{t}+1 \geq 2 R+r_{t}+1 \\
& a_{j}-a_{j+1}= \\
& \quad \lambda_{j}-\lambda_{j+1}-r_{j}+1+2 r_{j}+r_{j+1}-1 \geq r_{j}+r_{j+1}
\end{aligned}
$$

Conversely, suppose μ is a weight satisfying a) and b) then we can define

$$
\begin{gathered}
q=q(\mu) \quad \text { and } \\
\lambda_{j}=a_{j}-2\left(n-r_{1}-\ldots-r_{j-1}\right)+r_{j}-1
\end{gathered}
$$

Then μ will be the LKT of $A_{q}(\lambda)$.
q.e.d.
3.4. Proof of Theorem 1.6.7 for $G=\operatorname{SL}(n, \mathbb{R})$.

Suppose $X \in \mathscr{A}(g ; K)$ is as in Theorem 2.6.7 with infinitesimal character $r \in\left(h^{c}\right)^{*}$ and $\mu \in\left(i t_{0}^{c}\right)^{*}$ the highest weight of a LKT of X. Write μ as in 3.3.1.

Considering what the weights in $V_{\mu} \otimes p$ look like, we will study 2 cases:

1. $2 R+r_{t}+1>a_{t}$.
2. $a_{t} \geq 2 R+r_{t}+1$.

By the conditions given in 3.3 , if V_{μ} is the LKT of an $A_{q}(\lambda)$, then μ is in case 2.

Therefore, the first thing we must do is verify that in case $1 \quad X$ is not unitary:

Case 1.
We will use the following result.

Lemma 3.4.1. Let μ be as in 3.3 .1 and suppose $a_{t}<2 R+$ $r_{t}+1$. Suppose that $a_{i}-a_{i+1}=1$. Then Dirac operator inequality fails for $s_{n}=(n, n-1, \ldots, 1)$.

Proof. The hypotheses on μ imply that

Note that $1 \leq x \leq 2 R+r_{t}$ implies that
(*)

$$
R+1-x \leq R \quad \text { and } \quad R+r_{t}-x \geq-R
$$

Now,

$$
\rho_{\mathrm{n}}=\left(\mathrm{n}, \mathrm{n}-1, \ldots, \mathrm{R}+\mathrm{r}_{\mathrm{t}}, \mathrm{R}+\mathrm{r}_{\mathrm{t}}-1, \ldots, \mathrm{R}+1, \mathrm{R}, \mathrm{R}-1, \ldots, 1\right)
$$

so

$$
\begin{aligned}
& \rho_{n}-\mu= \\
& \left(n-x-t+1, n-x-t, \ldots, R+r_{t}-x, R+r_{t}-x-1 \ldots, R+1-x, R, R-1, \ldots, 1\right) .
\end{aligned}
$$

By (*), the sequence of integers

$$
R+r_{t}-x, R+r_{t}-x-1, \ldots, R+1-x
$$

overlaps the sequence $R, R-1, R-2, \ldots,-R+1,-R$.
Clearly, the first $n-R$ coordinates of $\rho_{n}-\mu$ decrease by steps of at most one.

So if $\omega \in W_{K}$ is such that $\omega\left(\mu-\rho_{\mathrm{n}}\right)$ is dominant, then the coordinates of $\omega\left(\mu-\rho_{\mathrm{n}}\right)$ will be a sequence of integers decreasing by at most one, ending in 0 or ± 1; and in the latter case, there must be repetitions in the sequence.

Since

$$
\rho_{c}=(n-1, n-2, \ldots, R+1, R, R-1, \ldots, 2,1,0)
$$

it follows that

$$
\begin{gathered}
\left\langle\omega\left(\mu-\rho_{\mathrm{n}}\right), \rho_{\mathrm{c}}\right\rangle\left\langle\left\langle\rho_{\mathrm{n}}, \rho_{\mathrm{c}}\right\rangle\right. \\
\left\langle\omega\left(\mu-\rho_{\mathrm{n}}\right), \omega\left(\mu-\rho_{\mathrm{n}}\right)\right\rangle\left\langle\left\langle\rho_{\mathrm{n}}, \rho_{\mathrm{n}}\right\rangle .\right.
\end{gathered}
$$

Hence $\left\langle\omega\left(\mu-\rho_{\mathrm{n}}\right)+\rho_{\mathrm{c}}, \omega\left(\mu-\rho_{\mathrm{n}}\right)+\rho_{\mathrm{c}}\right\rangle\left\langle\left\langle\rho_{\mathrm{n}}+\rho_{\mathrm{c}}, \rho_{\mathrm{n}}+\rho_{\mathrm{c}}\right\rangle=\langle\rho, \rho\rangle\right.$.
q.e.d.

Now to prove nonunitarity for case 1 , take i_{0} to be the minimal integer in $\{1,2, \ldots, t\}$ such that $a_{i}-a_{i+1}=$ 1 for all $i>i_{0}$.

Let $\quad K=r_{i_{0}+1}+r_{i_{0}+2}+\ldots+r_{t}+R$
and

$$
\ell=s \ell\left(r_{1}+r_{2}+\ldots+r_{i_{0}}\right) \oplus s \ell(2 K, R)=\ell_{1} \oplus \ell_{2} .
$$

Then $\ell \subseteq \ell_{V}$ and by Proposition 2.4.15, if X is the Langland quotient of $\mathscr{R}_{q_{V}}^{g}\left(I_{L_{V}}\left(\delta_{V} \otimes v_{V}\right)\right)$ and if we set

$$
\mathrm{X}_{\mathrm{L}}=\mathscr{R}_{q_{\mathrm{V}} \cap \iota}^{\ell}\left[\mathrm { I } _ { \mathrm { L } _ { \mathrm { V } } } \left(\delta_{\mathrm{V}}{ }^{\left.\left.\otimes v_{\mathrm{V}}\right)\right),}\right.\right.
$$

then X is the Langland quotient of

$$
\mathscr{R}_{q}^{g}\left(X_{L}\right) \cong \mathscr{R}_{q_{V}}^{g}\left(I_{L_{V}}\left(\delta_{V}^{\otimes v_{V}}\right)\right)
$$

and a) of Theorem 2.6.7 holds.
Also, by Corollary 2.6.4, X_{L}^{h} has a Hermitian form $\langle,\rangle^{\mathrm{L}}$.

Write $\mu^{\mathrm{L}}=\mu-2 \rho(u \cap p)$. Then μ^{L} is a LKT of X^{L}. By 3.3.2,

$$
2 \rho(u \cap p)=
$$

So

$$
\left.\mu^{\mathrm{L}}\right|_{\mathrm{SL}(2 \mathrm{~K}, \mathbb{R})}=\left.\mu\right|_{\mathrm{SL}(2 \mathrm{~K}, \mathbb{R})}=\mu^{2}
$$

and by Lemma 3.4.1, the Dirac inequality fails on μ^{2}. By Lemma 2.7.2, there is a K-type $V_{\eta^{2}}$ in $V_{\mu}^{2} \otimes\left(\iota_{2} \cap p\right)$ that makes the Hermitian form < , > ${ }^{\text {L }}$ indefinite.

The roots in $\Delta\left(\iota_{2} \cap p\right)$ are

It is clear that if $\eta^{2}=\mu^{2}+\beta$ is dominant for some $\beta \in$ $\Delta\left(\ell_{2} \cap p\right)$ then, since $a_{i_{0}}-a_{i_{0}+1} \geq 2$ the K-type $\mu+\beta$ is also dominant for $\Delta(u \cap k)$. Hence Theorem 2.6.7 follows for case 1.

For case 2, note that if $a_{j}-a_{j+1} \geq r_{j}+r_{j+1}$, for all $j=1, \ldots, t$, then we have the LKT of an $A_{q}(\lambda)$ and there is nothing to prove.

So, assume that there is $i_{0}<t$ such that

$$
a_{i_{0}}-a_{i_{0}+1}<r_{i_{0}}+r_{i_{0}+1}
$$

Set $K=r_{1}+r_{2}+\ldots+r_{t}$ and

$$
\ell=s \ell(K, \mathbb{C}) \oplus s \ell(2 R, \mathbb{R})
$$

Note that $a_{t} \geq 2$. Hence $\iota_{V}=s \ell\left(r_{1}, \mathbb{C}\right) \oplus \ldots \oplus \Delta \ell\left(r_{t}, \mathbb{C}\right) \oplus$ $s \ell(2 R, \mathbb{R}), \quad \ell \supseteq \ell_{V}$ and we can find X_{L} s.t. (a) in Theorem 2.6.7 holds. In fact, if $q_{0}=\ell \cap q_{V}=\ell_{V}+\ell \cap$ u_{V} and $X_{L_{V}}=I_{L_{V}}\left(\delta_{V} \otimes v_{V}\right)$, as in Definition 2.4.17, we can
choose X_{L} to be

$$
X_{L}=\mathscr{R}_{q_{O}}^{l}\left(X_{L_{V}}\right),
$$

since then, by Proposition 2.4.15

$$
\mathscr{F}_{q}^{g}\left(\mathrm{X}_{\mathrm{L}}\right) \cong \mathscr{R}_{\mathrm{V}}^{g}\left(\mathrm{X}_{\mathrm{L}_{\mathrm{V}}}\right)
$$

where

$$
\Delta(u)=\Delta\left(u_{\mathrm{V}}\right) \backslash \Delta(\ell)
$$

and

$$
q=\ell+u .
$$

By Corollary 2.6.4. X_{L}^{h} admits a non-zero Hermitian form < , > ${ }^{\mathrm{L}}$.

Write X_{L} as the exterior tensor product $X_{L}=X_{L_{1}} \otimes$
$X_{L_{2}}$ where $X_{L_{i}}$ is an $\left(\ell_{i}, L_{i} \cap K\right)$ module,

$$
L_{1}=s l(K, \mathbb{C}) \quad \text { and } \quad L_{2}=S L(2 R, \mathbb{R})
$$

By Theorem 6.1 in Enright [1979], and especially its proof (pp. 518-523), if $X_{L_{1}}$ is not an $A_{q^{\prime}}\left(\lambda^{\prime}\right)$ then Dirac inequality fails on the lowest K-type. Write $\mu^{\mathrm{L}}=$ $\mu-2 \rho(u \cap p)$ and

$$
\mu^{1}=\left.\mu^{\mathrm{L}}\right|_{\mathrm{L}_{1}}
$$

By Lemma 2.7.2 there is an $\left(L_{1} \cap K\right)$-type $V_{\eta^{1}}$ with $\eta^{1}=$ $\mu^{1}+\beta$ for $\beta \in \Delta\left(\iota_{1} \cap p\right)$. If for all $i \neq i_{0}$
(3.4.1)

$$
a_{i}-a_{i+1} \geq r_{i}+r_{i+1} \geq 2
$$

Then $\mu+\beta$ is dominant.

$$
\begin{aligned}
& \text { Otherwise take } K^{\prime}=\sum_{i \in B}^{\sum} r_{i} \text { with } \\
& B=\{i=1, \ldots, t \mid 3.4 .1 \text { holds }\} .
\end{aligned}
$$

Then apply Enright's result to the rest.
q.e.d.

Chapter 4. $G=\operatorname{SU}(p, q)$
4.1. Preliminary Notation

Let $n=p+q$. Write I_{m} for the identity matrix in $\operatorname{GL}(m, \mathbb{C})$, and A^{*} for the conjugate transpose of the matrix A. We define

$$
\mathrm{G}=\left\{g \in \operatorname{SL}(\mathrm{n}, \mathbb{C}) \left\lvert\, g\left[\begin{array}{rr}
\mathrm{I}_{\mathrm{p}} & 0 \\
0 & -\mathrm{I}_{\mathrm{q}}
\end{array}\right] g^{*}=\left[\begin{array}{cc}
\mathrm{I}_{\mathrm{p}} & 0 \\
0 & -\mathrm{I}_{\mathrm{q}}
\end{array}\right]\right.\right\}
$$

Then the maximal compact subgroup K of G is

$$
K=\left\{g \in G \left\lvert\, g=\left[\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right]\right. ; \quad A \in U(p), B \in U(q)\right\} \text {. }
$$

Also, with the usual notation:

$$
\begin{array}{r}
g_{0}=\left\{X \in \Delta l(n, \mathbb{C}) \left\lvert\, X\left[\begin{array}{rr}
I_{p} & 0 \\
0 & -I_{q}
\end{array}\right]+\left[\begin{array}{cc}
I_{p} & 0 \\
0 & -I_{q}
\end{array}\right] X^{*}=0\right.\right\} \\
=\left\{\left.X=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \in \Delta l(n, \mathbb{C}) \right\rvert\, A \in u(p), D \in u(q)\right. \\
\left.\quad \text { skewhermitian; }-B^{*}=C\right\} \\
k_{0}=\left\{\left.X=\left[\begin{array}{ll}
A & 0 \\
0 & D
\end{array}\right] \in g_{0} \right\rvert\, A \in u(p), D \in u(q)\right\} .
\end{array}
$$

If θ is the Carton involution defined by $\theta(X)=-X^{*}$, and

$$
p_{0}=\left\{X \in g_{0} \mid \theta(X)=-X\right\}
$$

then

$$
p_{0}=\left\{\left.X=\left[\begin{array}{ll}
0 & B \\
B^{*} & 0
\end{array}\right] \right\rvert\, B \quad \text { arbitrary } p \times q \quad \text { matrix }\right\} .
$$

The compact Carton Subgroup of G is

$$
H^{c}=T^{c}=\left\{g=\operatorname{diag}\left(e^{i \theta_{1}}, \ldots, e^{i \theta_{n}}\right) \mid \sum_{j=1}^{n} \theta_{j}=0\right\}
$$

Then,

$$
t_{0}=\left\{\operatorname{diag}\left(i\left(\theta_{1}, \ldots, \theta_{n}\right)\right) \in i \mathbb{R}^{n} \mid \sum_{j=1}^{n} \theta_{j}=0\right\}
$$

Complexifying everything we have:

$$
g=s l(n, \mathbb{C})
$$

$$
k=s(g l(p) \oplus g l(q))=\left\{\left.X=\left[\begin{array}{ll}
A & 0 \\
0 & D
\end{array}\right] \in g \right\rvert\, A \in g \ell(p)\right.
$$

$$
D \in g l(q)\}
$$

$$
t=\left\{\operatorname{diag}\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n} \mid \sum_{j=1}^{n} z_{j}=0\right\}
$$

\widehat{K} can be identified with the space

$$
\begin{aligned}
& \left\{\mu=\left(a_{1}, \ldots, a_{p} \mid a_{p+1}, \ldots, a_{n}\right) \mid a_{1} \geq \ldots \geq a_{p}\right. \\
& \left.a_{p+1} \geq \ldots \geq a_{n} \sum a_{j}=0 \quad a_{i}-a_{j} \in \mathbb{Z}\right\}
\end{aligned}
$$

If we denote by $e_{j} \in \mathbb{R}^{*}, j=1, \ldots, n$, the elements of the dual basis in \mathbb{R}^{n}, then the roots of t in g correspond to the set

$$
\Delta(g)=\Delta(g, t)=\left\{e_{\ell}-e_{j} \mid \ell \neq j ; 1 \leq \ell, j \leq n\right\}
$$

Also

$$
\begin{aligned}
& \Delta(k)=\Delta(k, t)= \\
& \quad\left\{\mathbf{e}_{\ell}-\mathbf{e}_{j} \mid 1 \leq \ell, j \leq p\right\} \cup\left\{\mathbf{e}_{k}-\mathbf{e}_{m} \mid p<k, m \leq n\right\}
\end{aligned}
$$

the compact imaginary roots of t and g.

$$
\Delta(p)=\Delta(p, t)=\left\{ \pm\left(e_{\ell}^{-e_{p+j}}\right) \mid 1 \leq \ell \leq p ; 1 \leq j \leq q\right\}
$$

the noncompact imaginary roots of t in g.
4.2. Computation of $\ell_{V}(X)$ and $\lambda_{V}(X)$, for a HarishChandra module X.

Let $\mu=\left(a_{1}, a_{2}, \ldots, a_{p} \mid b_{1}, b_{2}, \ldots, b_{q}\right)$ be the highest weight of a lowest K-type of X. Fix the positive system $\Delta^{+}(k)$ so that

$$
a_{1} \geq \ldots \geq a_{p} ; b_{1} \geq \ldots \geq b_{q}
$$

We want to obtain an explicit expression of the parameters λ_{V} and ℓ_{V} attached to μ by 2.4 .7 and 2.4.8.

$$
2 \rho_{c}=(p-1, p-3, \ldots,-p+1 \mid q-1, q-2, \ldots,-q+1)
$$

Let

$$
\mu+2 \rho_{c}=\left(x_{1}, x_{2}, \ldots, x_{p} \mid y_{1}, y_{2}, \ldots, y_{q}\right)
$$

We can form an array of two rows with the coordinates of
$\mu+2 \rho_{c}$ so that they are aligned in decreasing order from left to right as follows: the x_{i} are in the first rows; the y_{j} are in the second; and terms decrease from left to right in the array. For example, if we have

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{i}}>\mathrm{y}_{\mathrm{j}}>\mathrm{x}_{\mathrm{i}+1}>\mathrm{y}_{\mathrm{j}+1}>\mathrm{x}_{\mathrm{i}+2}>\mathrm{x}_{\mathrm{i}+3} \cdots>\mathrm{x}_{\mathrm{k}}= \\
& \mathrm{y}_{\mathrm{j}+2}>\mathrm{x}_{\mathrm{k}+1}=\mathrm{y}_{\mathrm{j}+3} \ldots
\end{aligned}
$$

the array would look like:

This array gives a choice of positive roots $\Delta^{+}=$ $\Delta^{+}(g, t)$, compatible with $\Delta^{+}(k)$. That is, the simple roots are given by the arrows. In the preceding example, they would be

$$
\begin{aligned}
& \ldots e_{i}-e_{p+j} ; e_{p+j}-e_{i+1} ; e_{i+1}-e_{p+j+1}-e_{i+2} ; \\
& e_{i+2}-e_{i+3} ; \ldots \\
& \cdots e_{k}-e_{p+j+2} ; e_{p+j+2}-e_{k+1} ; e_{k+1}-e_{p+j+3} ; \cdots
\end{aligned}
$$

Because the terms in each row decrease by at least 2 , the entire array is a union of blocks of the following five types.
1.

r	$r-2$	\ldots	$r-2 k$
r	$r-2$	\ldots	$r-2 k$

2.

3.

4.

5.

From now on we will drop the arrows in the pictures, since the ordering of the roots is clear from the
arrangement of the coordinates of $\mu+2 \rho_{c}$, provided we agree on choosing the order prescribed in block 1. We will also refer to them as $\square, \square, \square$ etc.

Example. Let $p=7, q=8$, and

$$
\mu=(2,2,2,-2,-2,-2,-3 \mid 1,1,0,0,0,-2,-3,-3)
$$

then,

$$
\begin{aligned}
2 \rho_{c} & =(6,4,2,0,-2,-4,-6 \mid 7,5,3,1,-1,-3,-5,-7) \\
\mu+2 \rho_{c} & =(8,6,4,-2,-4,-6,-9 \mid 8,6,3,1,-1,-5,-8,-10) .
\end{aligned}
$$

We obtain the following picture

Using the picture of $\mu+2 \rho_{c}$ we can split the coordinates of μ as follows

$$
\mu=(\underbrace{g_{1} \cdots g_{1}}_{r_{1} \text { times }} \cdots \underbrace{g_{t} \cdots g_{t}}_{r_{t} \text { times }} \mid \underbrace{f_{1} \ldots f_{1}}_{s_{1}} \cdots \underbrace{f_{t} \ldots m e s}_{s_{t}}
$$

where r_{i} is the number of p-coordinates and s_{i} the number of q-coordinates making up the i-th block of the
array of $\mu+2 \rho_{c}$, and

$$
\begin{gathered}
g_{1} \geq g_{2} \geq \ldots \geq g_{t}, \quad f_{1} \geq f_{2} \geq \ldots \geq f_{t} \\
r_{i} \geq 0, \quad s_{i} \geq 0, \quad i=1, \ldots, t .
\end{gathered}
$$

Write

$$
\lambda_{V}=\lambda_{V}(\mu)=\lambda_{V}(X)
$$

as in Proposition 2.4.7 in chapter 2.

Proposition 4.2.1. 1. The expression for $\lambda_{V}(\mu)$ has the form

$$
\lambda_{V}=(\underbrace{\lambda_{1} \cdots \lambda_{1}}_{r_{1} \text { times }} \cdots \underbrace{\lambda_{t} \cdots \lambda_{t}}_{r_{t} \text { times }} \mid \underbrace{\lambda_{1} \cdots \lambda_{1}}_{s_{1} \lambda_{\text {times }}} \cdots \underbrace{\lambda_{t} \cdots \lambda_{t}}_{s_{t} \text { times }})
$$

where

$$
\lambda_{1}>\lambda_{2}>\ldots>\lambda_{t} .
$$

2. Let

$$
\begin{aligned}
\Delta\left(\iota_{\mathrm{V}}\right) & =\Delta\left(\iota_{\mathrm{V}}, t^{\mathrm{c}}\right) \\
& =\left\{\alpha \in \Delta \mid\left\langle\lambda_{\mathrm{V}}, \alpha\right\rangle=0\right\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\iota_{V}(X) & =\left(\oplus_{\alpha \in \Delta\left(\iota_{V}\right)} \mathbb{C} X_{\alpha}\right) \oplus t^{c} \\
& =\imath\left(u\left(r_{1}, s_{1}\right) \oplus \ldots \oplus u\left(r_{t}, s_{t}\right)\right) .
\end{aligned}
$$

Example. In our current example we have

$$
\mu=(\underbrace{2,2}_{\mathbf{r}_{1}}, \underbrace{2}_{\mathbf{r}_{2}}, \underbrace{-2}_{\mathbf{r}_{4}},-\underbrace{-2,-2}_{\mathbf{r}_{5}}, \underbrace{-3}_{\mathbf{r}_{6}} \mid \underbrace{1,1}_{\mathbf{s}_{1}}, \underbrace{0}_{\mathbf{s}_{2}}, \underbrace{0}_{\mathbf{s}_{3}}, \underbrace{0}_{\mathbf{s}_{4}}, \underbrace{-2,}_{\mathbf{s}_{5}} \underbrace{-3,-3}_{\mathbf{s}_{6}})
$$

Note $\quad r_{3}=0$.

$$
\text { Let } \begin{aligned}
\tilde{\lambda}_{V} & =\mu+2 \rho_{c}-\rho \\
& =(1,1,1,-1,-2,-2,-3 \mid 2,2,1,0,-1,-2,-3,-3) .
\end{aligned}
$$

Then

$$
\lambda_{\mathrm{V}}=[\underbrace{\frac{3}{2}, \frac{3}{2}}_{\mathbf{r}_{1}}, \underbrace{1}_{\mathbf{r}_{2}}, \underbrace{-1,}_{\mathbf{r}_{4}} \underbrace{-2,-2}_{\mathbf{r}_{5}}, \underbrace{-3}_{\mathbf{r}_{6}} \left\lvert\, \underbrace{\frac{3}{2}, \frac{3}{2}}_{\mathbf{s}_{1}}\right. ; \underbrace{1}_{\mathbf{s}_{2}}, \underbrace{0}_{\mathbf{s}_{3}}, \underbrace{-1}_{\mathbf{s}_{4}}, \underbrace{-2,}_{\mathbf{s}_{5}}, \underbrace{-3,-3}_{\mathbf{s}_{6}}]
$$

and

$$
\iota_{V}(X) \cong \imath(u(2,2) \oplus u(1,1) \oplus u(1) \oplus u(1,1) \oplus u(2,1) \oplus u(1,2))
$$

Proof. Take a block of the form 1. Then coordinatewise we have

$$
\begin{aligned}
& \mu+2 \rho_{c}=(\ldots, r, r-2, \ldots, r-2 k, \ldots \mid \ldots, r, r-2, \ldots, r-2 k, \ldots) \\
& \rho=(\ldots, s, s-2, \ldots, s-2 k, \ldots \mid \ldots, s-1, s-3, \ldots, s-2 k-1, \ldots) \\
& \tilde{\lambda}_{V}= \mu+2 \rho_{c}-\rho \\
&=(\ldots, r-s, r-s, \ldots, r-s \ldots \mid
\end{aligned}
$$

Let

$$
\left\{\mathrm{e}_{\mathrm{m}}-\mathrm{e}_{\mathrm{p}+\ell} ; \mathrm{e}_{\mathrm{p}+\ell} \mathrm{e}_{\mathrm{m}+1} ; \ldots ; \mathrm{e}_{\mathrm{m}+\mathrm{k}}-\mathrm{e}_{\mathrm{p}+\ell+\mathrm{k}}\right\}
$$

be the set of simple roots making up this block. Choose

$$
\left\{\beta_{i}=\mathbf{e}_{\mathrm{m}+\mathrm{i}-1} \mathbf{e}_{\mathrm{p}+\ell+\mathrm{i}-1} \mid \mathbf{i}=1 \ldots, \ldots \mathrm{k}+1\right\} .
$$

Then

$$
-c_{i}=-\left\langle\tilde{\lambda}_{V}, \beta_{i}\right\rangle=-1 .
$$

Also

$$
\left\langle\beta_{i}, \beta_{j}\right\rangle=\delta_{i j}
$$

and

$$
\left\langle\tilde{\lambda}_{\mathrm{V}}+\frac{\mathrm{c}_{\mathrm{i}}}{2} \beta_{\mathrm{i}}, \beta_{\mathrm{i}}\right\rangle=0
$$

Let $\left\{\beta_{1}, \ldots, \beta_{k_{1}}, \ldots, \beta_{k_{r}}\right\}$ be the subset of imaginary noncompact positive roots chosen this way from all blocks of the form 1. For blocks 2 we can choose the same kind of subset of simple roots. In this case

$$
c_{i}=-\left\langle\tilde{\lambda}_{V},{ }^{V} \beta_{i}\right\rangle=0
$$

since coordinatewise, we have

$$
\begin{aligned}
& \mu+2 \rho_{c}=(\ldots, r, r-2, \ldots, r-2 k, \ldots \mid \\
& \ldots \ldots, r-1, r-3, \ldots, r-2 k+1, \ldots) \\
& \rho=(\ldots, s, s-2, \ldots, s-2 k, \ldots \mid \ldots, s-1, s-3, \ldots, s-2 k+1, \ldots) \\
& \tilde{\lambda}_{V}=(\ldots, r-s, r-s, \ldots, r-s, \ldots \mid \ldots, r-s, r-s, \ldots, r-s, \ldots)
\end{aligned}
$$

simple roots of the form $e_{a}-e_{p+b}$ involved in blocks 3. For cases 4 and 5 choose all those of the form $e_{p+b}-e_{a}$. For all these subsets

$$
c_{i}=-\left\langle\tilde{\lambda}_{V}, \beta_{i}\right\rangle=0
$$

It is clear that the union $I I$ of these 5 kinds of subsets is a set of strongly orthogonal simple imaginary noncompact roots. Define

$$
\lambda_{v}=\tilde{\lambda}_{V}+\frac{1}{2} \sum_{\beta_{i} \in \Pi} c_{i} \beta_{i}
$$

a) - d) of Proposition 2.4.7 are clear.

Let

$$
\begin{gathered}
\left.\Delta^{+} \cap \beta_{1}^{\perp}=\alpha \in \Delta^{+} \mid\left\langle\alpha, \beta_{1}\right\rangle=0\right\} \\
=\Delta^{+} \backslash\left\{\mathbf{e}_{i}-e_{m} ; \mathbf{e}_{m}-\mathbf{e}_{j} ; \mathbf{e}_{i}-\mathbf{e}_{p+\ell} ; \mathbf{e}_{p+\ell}-\mathbf{e}_{j}\right\} \\
t_{0}^{1}=t_{0}^{\beta}
\end{gathered}
$$

then t_{0}^{1} can be identified with the set

$$
\left\{\left(x_{1}, \ldots, x_{p} \mid x_{p+1}, \ldots x_{n}\right) \in t_{0} \mid x_{m}=x_{p+\ell}\right\}=\beta_{1}^{\perp}
$$

So if $\mu^{1}=\left.\mu\right|_{t}{ }^{1}=\left.\mu\right|_{g}{ }^{1} \cap t$

$$
\mu^{1}=\left(a_{1}, \ldots, \frac{a_{m}+b_{l}}{2}, \ldots, a_{p} \mid b_{1}, \ldots, \frac{a_{m}+b_{l}}{2}, \ldots, b_{q}\right)
$$

To verify e) of proposition 2.4 .7 in chapter 2 we use the following lemmas.

Lemma 4.2.2 (Schmid [1975]) (see Vogan [1981] p. 247). If $\rho_{c}^{1}=\rho\left(\Delta^{+}\left(k^{1}, t^{1}\right)\right)$,

$$
\Delta^{+}\left(g^{1}, h^{1}\right)=\Delta^{+}(g) \cap \beta_{1}^{\perp}
$$

and

$$
\rho^{1}=\rho\left(\Delta^{+}\left(g^{1}, h^{1}\right)\right)
$$

then

$$
2 \rho_{c}^{1}-\rho^{1}=\left.\left(2 \rho_{c}-\rho\right)\right|_{t}
$$

So

$$
\begin{aligned}
\tilde{\lambda}_{\mathrm{V}}^{1} & =\mu^{1}+2 \rho_{\mathrm{c}}^{1}-\rho^{1} \\
& =\left.\tilde{\lambda}_{\mathrm{V}}\right|_{t} ^{1} \\
& =\tilde{\lambda}_{\mathrm{V}}+\frac{1}{2} c_{1} \beta_{1}
\end{aligned}
$$

Lemma 4.2.3 (Vogan [1981], p. 249). $\mu^{1}+2 \rho_{c}^{1}$ is dominant for $\Delta^{+}\left(g^{1}, h^{1}\right)$.

So 2.4.7, e) is clear.
Now it is straightforward to verify Proposition 4.2.1.
4.3. The Lowest K-types of the Modules $A_{q}(\lambda)$.

In this section we obtain necessary and sufficient conditions for a representation of K to be the LKT of one of the g-modules $A_{q}(\lambda)$.

If $x=\left(x_{1}, \ldots, x_{n}\right) \in i\left(t_{0}^{c}\right)^{*}$ we obtain a $\theta-s t a b l e$ parabolic subalgebra $q(x)=\ell(x)+u(x)$ as in 2.3. After replacing x by a conjugate under $W(K, T)$, we may assume it is of the form

$$
x=(\underbrace{x_{1}, \ldots, x_{1}}_{p_{1}}, \underbrace{x_{2}, \ldots, x_{2}}_{p_{2}}, \cdots, \underbrace{x_{t}, \ldots, x_{t}}_{p_{t}})
$$

such that

$$
\begin{gathered}
x_{1}>x_{2}>\ldots>x_{t} ; \quad p_{i}, q_{j} \geq 0 \quad \text { and } \\
\sum p_{i}=p \quad \text { and } \quad \sum q_{i}=q .
\end{gathered}
$$

Then

$$
\iota(x) \equiv \stackrel{\imath}{ }\left(u\left(p_{1}, q_{1}\right) \oplus u\left(p_{2}, q_{2}\right) \oplus \ldots \oplus u\left(p_{t}, q_{t}\right)\right)
$$

Clearly

$$
\begin{aligned}
& 2 \rho(u \cap p)=(\underbrace{r_{1}, \ldots, r_{1}}_{p_{1}}, \underbrace{r_{2}, \ldots, r_{2}}_{p_{2}}, \cdots, \underbrace{r_{t}, \ldots, r_{t}}_{p_{t}} \\
&\underbrace{s_{1}, \ldots, s_{1}}_{\mathbf{q}_{1}}, \underbrace{s_{2}, \ldots, s_{2}}_{q_{2}}, \cdots, \underbrace{s_{t}, \ldots, s_{t}}_{q_{t}})
\end{aligned}
$$

and

$$
\begin{aligned}
& 2 \rho(u \cap k)=(\underbrace{\mathrm{s}_{1}, \ldots, s_{1}}_{\mathrm{p}_{1}}, \underbrace{s_{2} \ldots \ldots s_{2}}_{\mathrm{p}_{2}}, \ldots, \underbrace{\mathrm{~s}_{\mathrm{t}}, \ldots, s_{t}}_{\mathrm{p}_{\mathrm{t}}} \\
& \underbrace{r_{1}, \ldots, r_{1}}_{q_{1}}, \underbrace{r_{2}, \ldots, r_{2}}_{q_{2}}, \cdots, \underbrace{r_{t}, \ldots, r_{t}}_{q_{t}}) .
\end{aligned}
$$

where

$$
\begin{aligned}
& r_{i}=-\left(q_{1}+q_{2}+\ldots+q_{i-1}\right)+q_{i+1}+\ldots+q_{t} \\
& s_{j}=-\left(p_{1}+p_{2}+\ldots+p_{j-1}\right)+p_{j+1}+\ldots+p_{t}
\end{aligned}
$$

Let $\mu \in i\left(\mathrm{t}_{0}^{\mathrm{c}}\right)^{*}$ be the highest weight of a representation of K.

Write $q \cap k=(q \cap k)(\mu) . \quad 2 \rho(u \cap k)$ as above, for $\mathrm{x}=$ μ, and $\mu^{\prime}=\mu+2 \rho(u \cap k)$. (Note that $q(\mu) \neq q\left(\mu^{\prime}\right)$ but their compact parts coincide.)

Write

$$
\left.\begin{array}{rl}
\mu^{\prime}= & \underbrace{z_{1}, \ldots, z_{1}}_{k_{1}}, \underbrace{z_{2}, \ldots, z_{2}}_{k_{2}}, \ldots, \underbrace{z_{2}, \ldots, z_{a}}_{k_{a}} \\
& \underbrace{z_{1}, \ldots, z_{1}}_{\ell_{1}}, \ldots, z_{a}^{z_{a}}, \ldots, z_{a}
\end{array}\right) . ~ l ~ \underbrace{}_{l_{a}} .
$$

Proposition 4.3.1. In the above setting, let $n_{i}=k_{i}+$ ℓ_{i}. Then μ is the LKT of an $A_{q}(\lambda)$ if $z_{i}-z_{i+1} \geq$ $n_{i}+n_{i+1}$.

Proof. Suppose that $\mu=\lambda+2 \rho(u \cap \rho)$ for some $q=\ell+u$ and $\lambda \in\left(t^{c}\right)^{*}$, the weight of a unitary admissible onedimensional character of L, satisfying 2.5.1 a), b). Then λ is orthogonal to the roots of t^{c} in ℓ and it is positive on the $t^{\text {c }}$-roots in u.

By Proposition 2.5 .6 and its proof we may assume that μ determines $q^{\prime} \cap k$ and μ^{\prime} determines q^{\prime}. So $q^{\prime}=$ $q\left(\mu^{\prime}\right)$ and if λ satisfies 2.5.1, then

$$
\begin{gathered}
\lambda=(\underbrace{\lambda_{1}, \ldots, \lambda_{1}}_{k_{1}}, \underbrace{\lambda_{2}, \ldots, \lambda_{2}}_{k_{2}}, \cdots, \underbrace{\lambda_{a}, \ldots, \lambda_{a}}_{k_{a}}) \\
\underbrace{\lambda_{1}, \ldots, \lambda_{1}}_{\ell_{1}}, \underbrace{\lambda_{2}, \ldots, \lambda_{2}}_{\ell_{2}}, \ldots, \underbrace{\lambda_{a}, \ldots, \lambda_{a}}_{\ell_{a}}) .
\end{gathered}
$$

with

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{t}
$$

Suppose that $\mu=\lambda+2 \rho(u \cap p)$, then $\mu^{\prime}=\lambda+2 \rho(u)$;

$$
z_{i}=\lambda_{i}+\left(-n_{1}-n_{2}-\ldots-n_{i-1}\right)+n_{i+1}+\ldots+n_{t}
$$

and

$$
z_{i}-z_{i+1}=\lambda_{i}-\lambda_{i+1}+n_{i}+n_{i+1} \geq n_{i}+n_{i+1}
$$

On the other hand if μ satisfies $z_{i}-z_{i+1} \geq n_{i}+n_{i+1}$, then let $\lambda_{i}=z_{i}+n_{1}+\ldots+n_{i-1}-\left(n_{i+1}+\ldots+n_{t}\right)$ and $q^{\prime}=q\left(\mu^{\prime}\right)$,

$$
\text { i.e. } \begin{aligned}
\Delta\left(q^{\prime}\right)= & \left\{\alpha \in \Delta\left(g, t^{c}\right)\left|\left\langle\mu^{\prime}, \alpha\right\rangle\right\rangle 0\right\} \cup \\
& \left\{\alpha \in \Delta\left(g, t^{c}\right) \mid\left\langle\mu^{\prime}, \alpha\right\rangle=0\right\} \\
= & \Delta\left(u^{\prime}\right) \cup \Delta\left(\iota^{\prime}\right)
\end{aligned}
$$

Then if

$$
\lambda=(\underbrace{\lambda_{1}, \ldots, \lambda_{1}}_{k_{1}} \cdots, \underbrace{\lambda_{t}, \ldots, \lambda_{t}}_{k_{t}}
$$

$$
\left\langle\lambda, \Delta\left(u^{\prime}\right)\right\rangle \geq 0
$$

$$
\left\langle\lambda, \Delta\left(\iota^{\prime}\right)\right\rangle=0
$$

and $\mu=\mu^{\prime}-2 \rho\left(u^{\prime} \cap k\right)=\lambda+2 \rho\left(u^{\prime} \cap p\right) . \quad$ q.e.d.
4.4. The parameters $\lambda_{V}\left(A_{q}(\lambda)\right)$ and $\ell_{v}\left(A_{q}(\lambda)\right)$

By definition $A_{q}(\lambda)=\mathscr{R}_{q}^{s}\left(\mathbb{C}_{\lambda}\right)$, where $s=\operatorname{dim} u \cap k$.
By definition 2.5.1, since λ is perpendicular to the roots of $\ell, \lambda \in[\text { center }(\ell)]^{*}$. The LKT of $A_{q}(\lambda)$ has highest weight $\mu=\lambda+2 \rho(u \cap p)$.

By Lemma 2.4.23, $\lambda_{V}^{\mathrm{G}}\left(\mathrm{A}_{q}(\lambda)\right)=\lambda_{\mathrm{V}}^{\mathrm{L}}\left(\mathbb{C}_{\lambda}\right)+\rho(u) . \quad$ Assume first that

$$
\lambda=(\underbrace{0 \ldots 0}_{\mathrm{p}} \mid \underbrace{0 \ldots 0}_{\mathrm{q}}) \text { and } \quad \iota=g
$$

then $\lambda+2 \rho_{c}=(p-1, \ldots-p+1 \mid q-1, \ldots, q+1)$ which gives a picture (say $p \geq q$)

(4.4.1)

$$
\text { (if } p=q+2 k)
$$

or else:

(if $p=q+2 k+1$)
(4.4.1)

Then

$$
\lambda_{V}(\mathbb{C})=\left\{\begin{array}{r}
\left\{\begin{array}{r}
\frac{p-q-1}{2}, \frac{p-q-3}{2}, \ldots, \frac{1}{2} \underbrace{0 \ldots 0}_{q}-\frac{1}{2}, \ldots, \left.\frac{-p+q+1}{2} \right\rvert\, \underbrace{0 \ldots 0}_{q}] ; \\
\\
(p \equiv q(\bmod 2)) \\
{[\frac{p-q-1}{2}, \ldots, 1 \underbrace{0 \ldots 0}_{q+1}-1, \ldots, \left.\frac{-(p-q-1)}{2} \right\rvert\, \underbrace{0 \ldots 0}_{q}] ;}
\end{array}\right. \\
(p \equiv q+1(\bmod 2))
\end{array}\right.
$$

So if $\lambda=(a, \ldots, a \mid a, \ldots, a)$ and $\ell=g, \lambda+2 \rho_{c}$ will give the same picture and

$$
\begin{aligned}
& \lambda_{V}\left(\mathbb{C}_{\lambda}\right)=[a+\frac{p-q-1}{2}, a+\frac{p-q-3}{2}, \ldots, a+\frac{1}{2}+\frac{\epsilon}{2} \underbrace{a \ldots a}_{q+\epsilon}, \\
& a-\frac{1}{2}-\frac{\epsilon}{2}, \ldots, a-\frac{(p-q-1)}{2} \underbrace{a \ldots a}_{q}] \quad p \equiv q+\epsilon \quad \epsilon=1,0 .
\end{aligned}
$$

Now suppose

$$
a_{1} \geq a_{2} \geq \ldots \geq a_{t}, \quad \iota=\imath\left(u\left(p_{1}, q_{1}\right) \oplus \ldots \oplus u\left(p_{t}, q_{t}\right)\right)
$$

and

$$
\begin{gathered}
\lambda=(\underbrace{a_{1}, \ldots, a_{1}}_{p_{1}}, \underbrace{a_{2}, \ldots, a_{2}}_{p_{2}}, \ldots, \underbrace{a_{t}, \ldots, a_{t}}_{p_{t}}) \\
\underbrace{a_{1}, \ldots, a_{1}}_{q_{1}}, \underbrace{a_{2}, \ldots, a_{2}}_{q_{2}}, \ldots, \underbrace{a_{t}, \ldots, a_{t}}_{q_{t}}) .
\end{gathered}
$$

Clearly

$$
\begin{gathered}
2 \rho_{\imath \cap k}=\left(p_{1}-1, \ldots,-p_{1}+1, p_{2}-1, \ldots,-p_{2}+1 \ldots, p_{t}-1, \ldots, p_{t}+1 \mid\right. \\
\left.\qquad q_{1}-1, \ldots,-q_{1}+1, \ldots, q_{t}-1, \ldots, q_{t}+1\right) .
\end{gathered}
$$

So on the $\left(p_{i}, q_{i}\right)$-coordinates we have a similar picture and

$$
\begin{aligned}
& \lambda_{V}\left(\mathbb{C}_{\lambda}\right)= \\
& {\left[\ldots a_{i}+\frac{p_{i}-q_{i}-1}{2}, \ldots, a_{i}+\frac{1+\epsilon_{i}}{2}, a_{i} \ldots a_{i}, a_{i}-\left[\frac{1+\epsilon}{2}\right] \ldots a_{i}-\frac{\left(p_{i}-q_{i}-1\right)}{2}\right.} \\
& q_{i}+\epsilon_{i} \\
& \mathrm{p}_{\mathrm{i}} \\
& \left.\ldots \mid \ldots a_{i} \ldots a_{i} \ldots\right] \\
& \mathrm{q}_{\mathrm{i}} \\
& \text { if say, } p_{i}=q_{i}+2 k+\epsilon_{i}, \quad \epsilon_{i}=0,1, k \geq 0 \text {. Also the } \\
& \text { picture for } \lambda+2 \rho \ell \cap k \text { will have pictures like (4.4.1) or, }
\end{aligned}
$$

if $\quad q_{i} \geq p_{i}$,

(4.4.2)

Now

$$
\rho(u)=(\underbrace{u_{1}, \ldots, u_{1}}_{p_{1}}, \ldots, \underbrace{u_{t}, \ldots, u_{t}}_{p_{t}} \mid \underbrace{u_{1}, \ldots, u_{1}}_{q_{1}}, \ldots, \underbrace{u_{t}, \ldots, u_{t}}_{q_{t}})
$$

So

$$
\begin{aligned}
\iota_{V}\left(A_{q}(\lambda)\right)=s\left[\prod _ { i = 1 } ^ { \mathrm { t } } \left[\left(u(1)^{\mathrm{d}_{\mathrm{i}}} \times u\left(\mathrm{r}_{\mathrm{i}}, \mathrm{~s}_{\mathrm{i}}\right)\right.\right.\right. & \left.\left.\times(u(1))^{\mathrm{d}_{\mathrm{i}}}\right]\right) \\
& \subseteq \prod_{\mathrm{i}=1}^{\mathrm{t}}\left(\left(u\left(\mathrm{p}_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}\right)\right)\right.
\end{aligned}
$$

where

$$
\begin{gathered}
r_{i}=\min \left(p_{i}, q_{i}\right)+\epsilon_{i} \\
\left(\epsilon_{i}=1 \quad \text { if } p_{i} \equiv q_{i}+1(\bmod 2) \quad \text { and } \quad p_{i}>q_{i} ; \quad \epsilon_{i}=0\right.
\end{gathered}
$$

otherwise)

$$
\begin{gathered}
s_{i}=\min \left(p_{i}, q_{i}\right)+\delta_{i} \\
\left(\delta_{i}=1 \text { if } p_{i} \equiv q_{i}+1 \text { and } q_{i}>p_{i} ; \quad \delta_{i}=0 \text { otherwise }\right) \\
2 d_{i}+r_{i}+s_{i}=p_{i}+q_{i} .
\end{gathered}
$$

4.5. Proof of Theorem 2.6.7. for $G=\operatorname{SU}(p, q)$.

Suppose $X \in \mathscr{A}(g, K)$ is as in Theorem 2.6.7, with infinitesimal character $r \in\left(h^{c}\right)^{*}$, and let $\mu \in\left(t_{0}^{c}\right)^{*}$ be the highest weight of a LKT of X.

Let's consider a slightly different splitting of the coordinates of μ than that of Section 4.2:

$$
\left.\begin{array}{rl}
\mu= & \underbrace{x_{1}, \ldots, x_{1}}_{p_{1}}, \underbrace{x_{2}, \ldots, x_{2}}_{p_{2}}, \cdots \underbrace{x_{t}, \ldots x_{t}}_{p_{t}}
\end{array}\right] .
$$

so that $x_{1}>x_{2}>\ldots>x_{t}$

$$
\mathrm{y}_{1}>\mathrm{y}_{2}>\ldots>\mathrm{y}_{\mathrm{s}}
$$

but here $p_{i}, q_{j}>0$, that is, this splitting is not necessarily compatible with the blocks given by $\mu+2 \rho_{\mathrm{c}}$.

It is convenient to draw a picture of the coordinates
of μ with the same blocks obtained from $\mu+2 \rho_{\mathrm{c}}$.
In the example of section 4.2 this means

But now, the splitting of μ is

$$
\mu=(\underbrace{222}_{\mathrm{p}_{1}} \underbrace{-2-2-2}_{\mathrm{p}_{2}} \underbrace{-3}_{\mathrm{p}_{3}} \mid \underbrace{1}_{\mathrm{q}_{1}} 1 \underbrace{000}_{\mathrm{q}_{2}} \underbrace{-2}_{\mathrm{q}_{3}} \underbrace{-3-3}_{\mathrm{q}_{4}}) .
$$

We are going to study what happens around the first p_{1} coordinates of μ.

We may assume that either

$$
\mathrm{x}_{1}+\mathrm{p}-1>\mathrm{y}_{1}+\mathrm{q}-1
$$

or

$$
\mathrm{x}_{1}+\mathrm{p}-1=\mathrm{y}_{1}+\mathrm{q}-1 \quad \text { and } \quad \mathrm{p}_{1} \geq \mathrm{q}_{1} \text {. }
$$

otherwise we can interchange p and q.

If $p_{1}<p$ we can have the following configurations for $\quad \mu$
1.

or

where $y_{i-1}>y_{i} \geq z$.
3. $x_{1} \cdots x_{1} \quad x_{1} \cdots x_{1} \quad x_{2} \cdots$

$$
\cdots \quad y_{i-1} \quad y_{i} \cdots y_{i} \quad z^{2}
$$

with $y_{i-1}>y_{i} \geq z$.
4. \(\begin{array}{ccccc}x_{1} \& \cdots \& x_{1} \& \cdots

\& \& y_{1} \& \cdots \& y_{1}\end{array}\)	x_{j}	\cdots	x_{j}
y_{1}	\cdots	y_{1}	\(\quad \begin{array}{llll}z \& \cdots

y_{2}\end{array}\)

$$
x_{1}>x_{j} \geq z
$$

$x_{1}>x_{j} \geq z$.

The blocks in these pictures are simple factors of ${ }^{\ell} V_{V}(X)$.

Note that if μ is the LKT of an $A_{q}(\lambda)$, we must be in case 1. So we have to check that we can find a reductive subgroup $L \subseteq G$, and embed X as the Langlands submodule of a Zuckerman module coming from a representation of L; but in such a way that, in the case of an $A_{q}(\lambda)$, the signature of the Hermitian form is preserved under the derived functor, and in the case when we don't have an $A_{q}(\lambda)$, Dirac inequality fails on μ^{L}, the LKT of the representation of L, and the (LOK)-types involved in the indefiniteness of the form on L, and occurring in $\mathrm{V}_{\mu} \mathrm{L}^{\otimes(\ell \cap \beta)}$ with highest weight $\quad \eta^{\mathrm{L}}=\mu^{\mathrm{L}}+\beta$ will be such that $\eta^{L}+2 \rho(u \cap p)$ is dominant.

On the other hand, for cases 2. - 5. we need to prove non-unitarity. In each case a group L will be found as in 1 , making sure that $a)$ - c) of Theorem 2.6 .7 hold.

All this will reduce the problem to the case $p_{1}=p$. In this case we have two configurations
6. $x_{1}\left(\begin{array}{llll}x_{1} & \cdots & x_{1} \\ y_{1} & \cdots & y_{1}\end{array}\right] \cdot x_{1} \cdots\left[\begin{array}{lll}x_{1} & \cdots & x_{1} \\ y_{k} & \cdots & y_{k}\end{array} \quad z \quad \cdots\right.$

$$
\mathrm{y}_{1}>\mathrm{y}_{\mathrm{k}} \geq \mathrm{z}
$$

Case 6. can be included in either 2. or 3. and case 7. will be dealt with similarly.

Note that as soon as we have shown that a) of Theorem 2.6.7 holds, then by Lemma 2.7.4 the representation of L in question, as well as its Hermitian dual, have a Hermitian form.

For 1 , let $\ell=s\left(u\left(p_{1}, q_{a}\right) \oplus u\left(p-p_{1}, q-q_{a}\right)\right)$, here q_{a} is either q_{1} or 0 .

Then $\ell \supseteq \ell_{V}$ and by Proposition 2.4.15, if $q_{0}=\ell \cap$ $q_{V}=\ell_{V}+\ell \cap u_{V}$,

$$
\mathscr{q}_{q}^{\mathscr{q}}\left[\mathscr{R}_{q_{0}}\left(X_{L_{V}}\right)\right) \cong \mathscr{q}_{V}^{q}\left(X_{L_{V}}\right) .
$$

Assume that $X_{L}=\mathscr{R}_{q_{O}}\left(X_{L_{V}}\right) \cong A_{q_{1}}(\lambda)$. Define q_{2} by $u_{2}=$ $u+u_{1}$

$$
q_{2}=q_{1}+u=\iota_{1}+u_{1}+u .
$$

Then

$$
\mathscr{R}_{q}^{g}\left(A_{q_{1}}(\lambda)\right) \cong \mathscr{R}_{q_{2}}^{g}\left(\mathbb{C}_{\lambda}\right),
$$

Proposition 2.4.15 again.
To see that $\mathscr{R}_{q_{2}}^{\mathbb{Z}}\left(\mathbb{C}_{\lambda}\right)$ is a module $A_{q_{2}}\left(\mathbb{C}_{\lambda}\right)$ we need to prove that $\langle\lambda, \alpha\rangle \geq 0$ for all $\alpha \in \Delta\left(u_{2}\right)$. But, by Lemma 2.4.22,

$$
\begin{aligned}
\lambda_{V} & =\lambda+\rho(u)+\rho_{m}^{\mathrm{L}} \\
& =\lambda+\rho(u)+\rho_{\ell}-\rho_{\ell}^{\mathrm{res}} \\
\lambda & +\rho=\lambda_{V}+\rho_{\ell}^{\mathrm{res}} .
\end{aligned}
$$

Hence

By Proposition 2.4.16, the infinitesimal character of $\mathscr{R}_{q}\left(X_{L}\right)$ is $\lambda+\rho$, and it is regular.

$$
\begin{aligned}
& \text { Hence, } \lambda \text { is dominant } \Leftrightarrow \lambda+\rho \text { is dominant } \Leftrightarrow \\
& \langle\lambda+\rho, \alpha\rangle=\left\langle\lambda_{V}+\rho_{\mathrm{L}}^{\mathrm{res}}, \alpha\right\rangle \geq 0 \text { for all } \alpha \text { positive. In } \\
& \text { particular, if } \alpha \in \Delta\left(u_{2}\right) \\
& \qquad\left\langle\lambda_{\mathrm{V}}+\rho_{\ell}^{\text {res }}, \alpha\right\rangle=\left\langle\lambda_{\mathrm{V}}, \alpha\right\rangle+\left\langle\rho_{\ell}^{\mathrm{res}}, \alpha\right\rangle \geq 0 .
\end{aligned}
$$

Now

$2 \rho(u \cap p)=$

Set

$$
\mu^{\mathrm{L}}=\mu-2 \rho\left(u \cap p_{0}\right)=
$$

with $u_{i}>u_{i+1}, \quad v_{j}>v_{j+1}$.
By c) of Lemma 2.4.23 μ^{L} is the highest weight of a LKT of the module X_{L}.

Since $p_{1}<p$ then $L \neq G$ and dim $L<\operatorname{dim} G$. Hence, by induction, Theorem 1.3 implies that there exists
an $L \cap$ K-type $V_{\eta} L$ in $V_{\mu} L^{\otimes}(\ell \cap p)$ such that, on $V_{\mu} L^{\oplus} V_{\eta}{ }^{L}$ the Hermitian form is indefinite. Now, the weights in $\ell \cap p$ are the roots

$$
\begin{aligned}
& \Delta(\iota \cap p)=\{ \pm(\underbrace{0 \ldots 0}_{p_{1}} 110 \ldots 0 \quad \underbrace{0 \ldots 0}_{p-p_{1}} \mid \underbrace{0 \ldots 0-1 \quad 0 \ldots 0}_{q_{a}} \underbrace{0 \ldots 0}_{q-q_{a}})\} \\
& u\{ \pm(\underbrace{0 \ldots 0}_{p_{1}} \underbrace{0 \ldots 0110 \ldots 0}_{p-p_{1}} \mid \underbrace{0 \ldots 0}_{q_{a}} \underbrace{0 \ldots 0-1 \quad 0 \ldots 0}_{q_{-}-q_{a}})\} \\
& \text { if } \\
& q_{a}=q_{1}
\end{aligned}
$$

or

$$
\Delta(\iota \cap p)=\{ \pm(\underbrace{0 \ldots 0}_{p_{1}} \underbrace{0 \ldots 01 \quad 0 \ldots 0}_{p-p_{1}} \mid \underbrace{0 \ldots 0-1 \quad 0 \ldots 0}_{q})\}
$$

if $\quad q_{a}=0$.
 then of the form $\mu^{L}+\beta$ for some $\beta \in \Delta(\ell \cap p)$. So the candidates for highest weights are the weights

$$
\begin{aligned}
& \eta^{L}=(u_{1}, \ldots, u_{1}, \ldots, u_{j}+1, \underbrace{u_{j}, \ldots, u_{j}}_{p_{j}-1} \ldots \mid \ldots \underbrace{v_{k} \ldots v_{k}}_{q_{k}-1} v_{k}-1 \ldots) \\
& p_{j} \neq p_{1} \quad q_{k} \neq q_{a}
\end{aligned}
$$

or

$$
\eta^{L}=(u_{1}+1, \underbrace{u_{1} \ldots u_{1}}_{p_{1}-1}, \ldots \mid \underbrace{v_{a} \ldots v_{a}}_{q_{a}-1} v_{a}^{-1} \ldots) .
$$

So

$$
\eta=(x_{1} \cdots x_{1}, \ldots x_{j}+1, \underbrace{x_{j} \cdots x_{j}}_{p_{j}^{-1}} \cdots \mid \ldots \underbrace{y_{k} \cdots y_{k}}_{q_{k}^{-1}} y_{k}^{-1} \ldots)
$$

or

$$
\eta=(x_{1}+1 \underbrace{x_{1}, \ldots x_{1}}_{p_{1}-1}, x_{2} \cdots \mid \underbrace{y_{1} \cdots y_{1}}_{q_{a}-1} y_{1}-1 \ldots)
$$

are dominant.
This completes the proof of Theorem 2.6.7 for this case.

To prove the result for cases 2. - 5 . we need the following lemmas.

Lemma 4.5.1. If $G=U(m, m)$ and $\mu=(a+1, \ldots, a+1 \mid a . . a)$, then the Dirac operator inequality fails for

$$
\rho_{n}^{+}=\left(\frac{m}{2}, \ldots, \frac{m}{2} \left\lvert\, \frac{-m}{2}\right., \ldots, \frac{-m}{2}\right) . \quad(\text { Cf. } 2.7 .1 .)
$$

Proof. Write μ as $\mu_{c}+\mu_{s}$ with

$$
\mu_{c} \in(\operatorname{center} g)^{*} \quad \mu_{s} \in g^{d}=[g, g] .
$$

And

$$
\mu_{\mathrm{s}}=(\underbrace{\frac{1}{2}, \ldots, \frac{1}{2}}_{\mathrm{m}} \left\lvert\,-\underbrace{-\frac{1}{2}, \ldots,-\frac{1}{2}}_{\mathrm{m}}\right.) \quad \mu_{\mathrm{c}}=(\underbrace{\mathrm{x} \ldots \mathrm{x}}_{\mathrm{m}} \mid \underbrace{\mathrm{x} \ldots \mathrm{x}}_{\mathrm{m}})
$$

$\omega\left(\mu_{\mathrm{s}}-\rho_{\mathrm{n}}^{+}\right)+\rho_{\mathrm{c}}=(0,-1, \ldots,-\mathrm{m}+1 \mid \mathrm{m}-1, \mathrm{~m}-2, \ldots, 1,0)$

$$
\begin{aligned}
& \left\langle\omega\left(\mu-\rho_{\mathrm{n}}^{+}\right)+\rho_{\mathrm{c}}, \omega\left(\mu-\rho_{\mathrm{n}}^{+}\right)+\rho_{\mathrm{c}}\right\rangle= \\
& \\
& \left\langle\mu_{\mathrm{c}}, \mu_{\mathrm{c}}\right\rangle+\left\langle\omega\left(\mu_{\mathrm{s}}-\rho_{\mathrm{n}}^{+}\right)+\rho_{\mathrm{c}}, \omega\left(\mu_{\mathrm{s}}-\rho_{\mathrm{n}}^{+}\right)+\rho_{\mathrm{c}}\right\rangle .
\end{aligned}
$$

If X is a (g, K)-module $w i t h$ infinitesimal character γ, then

$$
\langle\gamma, \gamma\rangle \geq\left\langle\mu_{c}, \mu_{c}\right\rangle+\langle\rho, \rho\rangle
$$

And

$$
\left\langle\omega\left(\mu_{\mathrm{s}}-\rho_{\mathrm{n}}^{+}\right)+\rho_{\mathrm{c}}, \omega\left(\mu_{\mathrm{s}}-\rho_{\mathrm{n}}^{+}\right)+\rho_{\mathrm{c}}\right\rangle\langle\langle\rho, \rho\rangle .
$$

Lemma 4.5.2. If $G=U(m+1, m), \quad \mu=(b+1, \ldots, b+1 \mid b \ldots b)$.

$$
m+1 \quad m
$$

Then Dirac operator inequality fails for

$$
\rho_{n}^{+}=(\underbrace{\frac{m}{2}, \ldots, \frac{m}{2}}_{m+1} \left\lvert\, \underbrace{\frac{-m-1}{2}, \ldots, \frac{-m-1}{2}}_{m}\right.) .
$$

Proof. Write

$$
\begin{gathered}
\mu_{s}=\left[1-\frac{m+1}{2 m+1}, \ldots, \left.1-\frac{m+1}{2 m+1} \right\rvert\,-\frac{m+1}{2 m+1}, \ldots,-\frac{m+1}{2 m+1}\right] \\
\mu_{c}=\left[b+\frac{m+1}{2 m+1}, \ldots, \left.b+\frac{m+1}{2 m+1} \right\rvert\, b+\frac{m+1}{2 m+1}, \ldots, b+\frac{m+1}{2 m+1}\right]
\end{gathered}
$$

and $\mu=\mu_{s}+\mu_{c}$ as in Lemma 4.5.1. By the same argument as in the preceding Lemma we only need to show that

$$
\left\langle\omega\left(\mu_{s}-\rho_{\mathrm{n}}^{+}\right)+\rho_{\mathrm{c}}, \omega\left(\mu_{\mathrm{s}}-\rho_{\mathrm{n}}^{+}\right)+\rho_{\mathrm{c}}\right\rangle\langle\langle\rho, \rho\rangle
$$

but

$$
\begin{array}{r}
\rho_{c}=\left[\frac{m}{2}, \left.\frac{m-2}{2} \ldots \frac{-m}{2} \right\rvert\, \frac{m-1}{2}, \ldots, \frac{-m+1}{2}\right] ; \\
\rho=(m, m-1, \ldots,-m)
\end{array}
$$

$$
\begin{array}{r}
\mu_{s}-\rho_{\mathrm{n}}^{+}+\rho_{\mathrm{c}}=(1,0,-1, \ldots,-m+1 \mid \mathrm{m}, \mathrm{~m}-1, \ldots, 1) \\
\\
+\left[\left.\frac{-(m+1)}{2 m+1} \ldots \right\rvert\, \ldots\left(\frac{-m+1}{2 m+1}\right]\right.
\end{array}
$$

this proves the lemma.
q.e.d.

Now, for each case 2 - 5 we will choose a subgroup L so that we can reduce the problem to the cases discussed in Lemmas 4.5.1, 4.5.2.
2. Remember that we have the following picture:

where $y_{i-1}>\mathrm{y}_{\mathrm{i}} \geq \mathrm{z}$.
Choose $\quad \ell=\triangleleft\left(u\left(p_{1}-r, q_{1}+\ldots+q_{i-1}\right) \oplus u(r, r) \oplus u\left(p-p_{1}, s\right)\right)$
obviously $\quad \ell_{V} \subseteq \ell$. Let $u^{\prime}=u_{V} \cap \ell$

$$
u=u_{V}-u^{\prime} \quad \text { and } \quad q=\ell+u .
$$

Let

$$
L=\text { Normalizer of } q \text { in } G \text {, then }
$$

$$
L \cong S\left(U\left(p_{1}-r, q_{1}+\ldots+q_{i-1}\right) x U(r, r) x U\left(p-p_{1}, s\right)\right)
$$

By Proposition 2.4.15 there is a representation X_{L}
of L such that X is the Langlands subrepresentation of the standard module $\mathscr{R}_{q}^{\text {dim }} u \cap k\left(X_{L}\right)$.

Now,
$2 \rho(\ell \cap p)=$

By Lemma 2.4.23 $\mu^{\mathrm{L}}=\mu-2 \rho(u \cap p)$ is the highest weight of a LKT of X_{L}.

We claim now that

$$
\mu_{\mathrm{L}} \mid \mathrm{U}(\mathrm{r}, \mathrm{r})=(\underbrace{\mathrm{x}+1, \ldots, \mathrm{x}+1}_{\mathrm{r}} \mid \underbrace{\mathrm{x}, \ldots, \mathrm{x}}_{\mathrm{r}})
$$

In fact

$$
\begin{aligned}
& \mu_{L \mid U(r, r)}= \\
& \begin{aligned}
\left(x_{1}, \ldots, x_{1} \mid y_{i}, \ldots, y_{i}\right)-\left(-q_{1}-\ldots-q_{i+1}+s, \ldots\right.
\end{aligned} \\
& \\
& \left.\quad-q_{1}-\ldots-q_{i-1}+s \mid p-p_{1}+r \ldots\right) \\
& =\left(x_{1}+q_{1}+\ldots+q_{i-1}-s, \ldots,\right. \\
& \left.\quad x_{1}+q_{1}+\ldots+q_{i-1}-s \mid y_{i}-p+2 p_{1}-r, \ldots, y_{i}-p+2 p_{1}-r\right) .
\end{aligned}
$$

We know from the picture for μ that

$$
\begin{array}{r}
x_{1}+p-2 p_{1}=y_{i}+q-2\left(q_{1}+\ldots+q_{i-1}+r\right)+1= \\
y_{i}+s-\left(q_{i}+\ldots+q_{i-1}+r\right)+1 .
\end{array}
$$

So $x_{1}+q_{1}+\ldots+q_{i-1}-s-y_{i}+p-2 p_{1}+r=1$.

Hence, by Lemma 4.5.1 and 2 of Lemma 2.7.2, ヨ $\beta \in$ $\Delta\left(u(r, r) \cap p^{-}\right)$such that the Hermitian form \langle,\rangle^{L} on $\mathrm{V}_{\mu} \mathrm{L}^{\oplus} \mathrm{V}_{\mu^{\mathrm{L}}+\beta}$ is indefinite. Now if $\mu^{\mathrm{L}}+\beta$ is dominant, necessarily

$$
\beta=(0 \ldots 0-1 \mid 10 \ldots 0) .
$$

Also $\mu+\beta=\left(x_{1}, \ldots, x_{1}, x_{1}-1, x_{2}, \ldots \mid y_{1}, \ldots, y_{i-1} y_{i}+1, y_{i} \ldots\right)$ is dominant for $\Delta(u \cap k)$.

This proves Theorem 2.6.7 for case 2.
For 3, the picture that we had is

Let $x=(a \ldots a \quad b \ldots b c \ldots c \mid a \ldots a b \ldots b c \ldots c) \in i t_{0}^{*}$

$$
\begin{array}{llllll}
\mathrm{p}_{1}-\mathrm{r}-1 & \mathrm{r}+1 & \mathrm{p}-\mathrm{p}_{1} & \mathrm{~d} & \mathrm{r} & \mathrm{q}-\mathrm{d}-\mathrm{r}
\end{array}
$$

define a θ-stable parabolic subalgebra as in 2.3 , and $L=$ Normalizer of q in G, then

$$
\ell \cong u\left(\mathrm{p}_{1}-\mathrm{r}-1, \mathrm{~d}\right) \oplus u(\mathrm{r}+1, \mathrm{r}) \oplus u\left(\mathrm{p}-\mathrm{p}_{1}, \mathrm{q}-\mathrm{d}-\mathrm{r}\right)
$$

Note that $\ell \nsupseteq \ell_{V}$. However, Proposition 8.2.15 of Vogan [1981] p. 545 gives us that $\left.Y=\mathscr{R}_{q}^{s}\left[\mathscr{R}_{q}^{\ell} \cap \ell\left(X_{L_{V}}\right)\right)=\mathscr{R}_{q_{V}}^{s} V_{L_{V}}\right)$, where $s_{V}=\operatorname{dim} u_{V} \cap k$. In fact, all we need to check is that if $\left(q_{V}, H_{V}, \lambda_{V}, v_{V}\right)$ is the $\theta-s t a b l e d a t a$ attached to ${ }^{\Re_{q}}{ }^{s} V_{V}\left(X_{L_{V}}\right)$ then $L \supseteq H_{V}$ and that q contains some Bored subalgebra of ${ }^{q} V_{V}$.

This is clear by the picture of $\mu+2 \rho_{c}$. Then the infinitesimal character of Y is $r=\left(\lambda_{V}, v\right) \in h_{V}^{*}$. Since
$\gamma+\theta \gamma=\left(2 \lambda_{V}, 0\right), \quad$ it is enough to show that $\left\langle\lambda_{V}, \alpha\right\rangle \geq 0$ for $\alpha \in \Delta(u)$. As before, it is straightforward to verify that if $\mu^{\mathrm{L}}=\mu-2 \rho(u \cap p)$ then

$$
\left.\mu^{\mathrm{L}}\right|_{U(r+1, r)}=(\underbrace{a+1, \ldots, a+1}_{r+1} \mid \underbrace{a \ldots a}_{r}) .
$$

Lemma 4.5.2 and 2) of Proposition 2.7.2 imply that the Hermitian form <, \rangle^{L} is indefinite on $\mathrm{V}_{\mu}^{\mathrm{L}}{ }^{\oplus} \mathrm{V}_{\mu}^{\mathrm{L}+\beta}{ }^{\mathrm{L}}$ with

$$
\beta=(0, \ldots, 0-1 \mid 1,0, \ldots, 0) \in \Delta\left(u(\mathrm{r}+1, \mathrm{r}) \cap \mathrm{p}^{-}\right) .
$$

Also, $\mu+\beta$ is again dominant for $\Delta(u \cap k)$. Hence Theorem 2.6.7 also holds for this case.

4 and 5 are solved in exactly the same way as 2 and 3 , using ρ_{n}^{-}and p^{+}.

So I have reduced the problem to the case

$$
\mathrm{p}_{1}=\mathrm{p}
$$

6 can be included in either 2 or 3 .
For 7 write $\mu=\left(a, \ldots a \mid b_{1} \ldots b_{1}, b_{2} \ldots b_{2} \ldots b_{t} \ldots b_{t}\right)$ the picture for μ is

$$
\begin{aligned}
& r_{1} \quad \mathrm{q}_{1}+\epsilon_{1} \quad \mathrm{r}_{2} \quad \mathrm{q}_{\mathrm{t}}+\epsilon_{\mathrm{t}} \quad \mathrm{r}_{\mathrm{t}+1} \\
& a \ldots a \text { a...a } a \ldots a \ldots a \\
& b_{1} \ldots b_{1} \quad b_{t} \ldots b_{t} \\
& \mathrm{q}_{1} \\
& q_{t}
\end{aligned}
$$

with $\quad \epsilon_{j}=0,1$

$$
\begin{gathered}
p=\sum_{1}^{t+1} r_{i}+\sum_{1}^{t} q_{j}+\epsilon_{j} . \\
q=\sum_{1}^{t} q_{j} .
\end{gathered}
$$

Then $\mu=(\underbrace{\mathrm{a} \ldots \mathrm{a}}_{\mathrm{p}} \mid \underbrace{\mathrm{a}+\mathrm{s}_{1} \ldots \mathrm{a}+\mathrm{s}_{1}}_{\mathrm{q}_{1}}, \underbrace{\mathrm{a}+\mathrm{s}_{2} \ldots \mathrm{a}+\mathrm{s}_{2}}_{\mathrm{q}_{2}} \cdots \underbrace{a+\mathrm{s}_{\mathrm{t}} \ldots \mathrm{a+s}_{t}}_{\mathrm{q}_{\mathrm{t}}})$

$$
\begin{aligned}
s_{k}=-\left(r_{1}+\ldots+r_{k}\right) & +\left(r_{k+1}+\ldots+r_{t+1}\right) \\
& -\left(\epsilon_{1}+\epsilon_{2}+\ldots+\epsilon_{k-1}\right)+\left(\epsilon_{k+1}+\ldots+\epsilon_{t}\right) .
\end{aligned}
$$

In fact, from the above picture for μ, we know that:

$$
\begin{gathered}
a+p-2\left(r_{1}+\ldots+r_{k}\right)-2\left(q_{1}+\epsilon_{1}+\ldots+q_{k-1}+\epsilon_{k-1}\right)-1 \\
=b_{k}+q-2\left(q_{1}+\ldots+q_{k-1}\right)-1+\epsilon_{k} \\
\Rightarrow b_{k}=a+p-q-2 \sum_{1}^{k} r_{i}-2 \sum_{1}^{k-1} \epsilon_{j}-\epsilon_{k} \\
=a-\left(r_{1}+\ldots+r_{k}\right)+\left(r_{k+1}+\ldots+r_{t+1}\right) \\
-\left(\epsilon_{1}+\ldots+\epsilon_{k-1}\right)+\left(\epsilon_{k+1}+\ldots+\epsilon_{t}\right) .
\end{gathered}
$$

Note that if $q_{i}=0$ for all $i>1$ this is case 1. So assume $t \geq 2$.

As before, I want to find a group L to which I can apply some reduction argument.
(*) Suppose $r_{t+1}>r_{1}$ set $s=r_{1}+q_{1}+\epsilon_{1}+r_{2}$.

Then let $\left.L=U\left(s, q_{1}\right) \times U(p-s), q-q_{1}\right)$. Note that $L_{V}=$ $U\left(r_{1}\right) \times U\left(q_{1}+\epsilon_{1}, q_{1}\right) \times U\left(r_{2}\right) \times \ldots \times U\left(q_{t}+\epsilon_{t}, q_{t}\right) \times U\left(r_{t+1}\right)$.

So $L \supseteq L_{V}$, and again, we can use Lemma 2.4.15 to verify a) of Theorem 2.6.7.

$$
2 \rho(u \cap p)=(\underbrace{q-q_{1}, \ldots, q-q_{1}}_{s}, \underbrace{-q_{1}, \ldots-q_{1}}_{p-s} \mid \underbrace{p-s \ldots p-s}_{q_{1}}, \underbrace{-s \ldots-s) .}_{q-q_{1}}
$$

By Lemma 2.4.22 and 2.4.23 if $r+\left(\lambda_{V}, v\right)$ is the infinitesimal character of $\mathscr{R}_{q}\left(X_{L}\right)$, then $r^{L}=\left(\lambda_{V}-\rho(u), v\right)$ is the infinitesimal character of X_{L}.

In fact, by definition of $\Delta\left(u_{\mathrm{V}}\right)$,
(4.5.3) $\left.\left\langle\lambda_{V}, \alpha\right\rangle\right\rangle 0$ for all $\alpha \in \Delta(u) \subseteq \Delta\left(u_{V}\right)$.

Write $L_{1}=U\left(s, q_{1}\right)$, then

$$
\left.\mu^{L}\right|_{L_{1}}=\left(a-q+q_{1}, \ldots, a-q+q_{1} \mid a+s_{1}-p+s \ldots a+s_{1}-p+s\right)
$$

For some values of r_{1}, r_{2} it could be possible to prove the failure of Dirac inequality as we have done before; that is, by simply using the minimal value of the restriction of v to the split part of the Carton of L_{1} that makes $\left.\quad{ }^{r_{L}}\right|_{L_{1}}$ regular integral.

However, this is not possible for all values of r_{1}, r_{2}. Therefore, we need to involve all of v instead. If $\quad \lambda_{V}=\lambda_{V}(\mu)$ then
$\lambda_{\mathrm{V}}=(\underbrace{\mathrm{x}, \mathrm{x}-1, \ldots, \mathrm{x}-\mathrm{r}_{1}+1}_{\mathrm{r}_{1}}, \underbrace{\mathrm{w}, \mathrm{w}, \ldots \ldots w}_{\mathrm{q}_{1}+\epsilon_{1}}, \mathrm{x}-\mathrm{r}_{1}-1, \mathrm{x}-\mathrm{r}_{1}-2 \ldots \mathrm{z} \mid$

where $x=a+p-1-\frac{(n-1)}{2}=a+\frac{s_{1}+\epsilon_{1}-1}{2}+r_{1}$

$$
\begin{aligned}
w & =a+\frac{s_{1}}{2} \\
z & =a-p+1+\frac{(n-1)}{2}=a-\frac{s_{1}+\epsilon_{1}-1}{2}-r_{1} .
\end{aligned}
$$

If $H^{\mathbf{S}}=T^{\mathbf{S}} A^{\mathbf{S}}$ is a maximally split Carton subgroup of L_{V} and $v \in A^{s}$, then

$$
\begin{aligned}
v=\left(0 \ldots 0 v_{1}^{1} v_{2}^{1} \ldots v_{\mathrm{q}_{1}}^{1}\right. & \underbrace{0 \ldots 0}_{\epsilon_{1}+\mathrm{r}_{2}} v_{1}^{2} \ldots v_{\mathrm{q}_{2}}^{2} \underbrace{0 \ldots 0}_{\epsilon_{2}+\mathrm{r}_{3}} \mid \\
& \left.-v_{\mathrm{q}_{1}}^{1} \ldots .-v_{1}^{1},-v_{\mathrm{q}_{2}}^{1}, \ldots,-v_{1}^{2} \ldots\right)
\end{aligned}
$$

To make $\left(\lambda_{V}, v\right)$ regular integral we need:

$$
\begin{aligned}
& a+\frac{s_{1}}{2}+v_{1}>\frac{a+s_{1}+\epsilon_{1}-1+r_{1}}{2}+r_{1} \\
& \left.\begin{array}{l}
a+\frac{s_{1}}{2}-v_{1}<\frac{a-\left(s_{1}+\epsilon_{1}-1\right)}{2} r_{1}
\end{array}\right\} \Rightarrow v_{1}>\max \left[\frac{\epsilon-1}{2}+r\right. \\
& s_{1}=-r_{1}+r_{2}+\ldots+r_{t+1}+\epsilon_{2}+\ldots+\epsilon_{t} . \\
& B y(*), s_{1} \geq 0 . \text { So } v_{1}>s_{1}+\frac{\epsilon_{1}-1}{2}+r_{1} .
\end{aligned}
$$

Let $\quad v_{1}=s_{1}+\frac{\epsilon_{1}-1}{2}+r_{1}+\delta \quad \delta=\frac{1}{2}, 1$

$$
v_{j}=v_{1}+j-1
$$

Now, $\left.\quad \rho(u)\right|_{L_{1}}=\left[\frac{\mathrm{n}-\mathrm{s}-\mathrm{q}_{1}}{2}, \ldots, \left.\frac{\mathrm{n}-\mathrm{s}-\mathrm{q}_{1}}{2} \right\rvert\, \frac{\mathrm{n}-\mathrm{s}-\mathrm{q}_{1}}{2}, \ldots, \frac{\mathrm{n}-\mathrm{s}-\mathrm{q}_{1}}{2}\right]$
$\left.\left(\lambda_{V^{-\rho}}-\rho(u)\right)\right|_{L_{1}}=$

We would like to prove that the K-type with Highest weight

$$
\eta=(a+1, \underbrace{a, \ldots, a}_{p-1}
$$

$$
\underbrace{a+s_{1}, \ldots, a+s_{1}}_{q_{1}-1} ; \underbrace{a+s_{1}-1}_{q_{2}}, \underbrace{a+s_{2} \cdots a+s_{2}}_{q_{t}} \cdots \underbrace{\left.a+s_{t} \ldots a+s_{t}\right)}_{t}
$$

occurs in the representation X and that the Hermitian form is indefinite on

$$
\mathrm{v}_{\mu} \oplus \mathrm{v}_{\eta}
$$

It is enough to prove the failure of Dirac operator inequality on

$$
\left.\mu^{\mathrm{L}}\right|_{\mathrm{L}_{1}} \quad \text { and } \quad \rho_{\mathrm{n}}^{-}\left(\iota_{1}\right)=\rho(\iota \cap k)=[\left.\underbrace{\frac{-\mathrm{q}_{1}}{2}, \ldots, \frac{-\mathrm{q}_{1}}{2}}_{\mathrm{s}} \right\rvert\, \underbrace{\frac{\mathbf{s}}{2}, \ldots, \frac{\mathrm{~s}}{2}}_{\mathrm{q}_{1}}] .
$$

So

$$
\begin{aligned}
& \mu^{\mathrm{L}} \mid L_{1}-\rho_{\mathrm{n}}^{-}\left(\iota_{1}\right)= \\
& \quad\left[a+q_{1}-q+\frac{q_{1}}{2}, \ldots, \left.a+q_{1}-q+\frac{q_{1}}{2} \right\rvert\, a+s_{1}+s-p-\frac{s}{2}, \ldots, a+s_{1}+s-p-\frac{s}{2}\right] .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \rho_{c}\left(\iota_{1}\right)=\rho_{\iota_{1} \cap k}=\left[\frac{s-1}{2}, \frac{s-3}{2}, \ldots, \frac{-s+1}{2} \left\lvert\, \frac{q_{1}-1}{2}\right., \ldots, \frac{-q_{1}+1}{2}\right] \\
& \left.\mu^{L}\right|_{L_{1}}-\rho_{n}^{-}\left(\iota_{1}\right)+\rho_{c}\left(\iota_{1}\right)= \\
& \\
& {\left[a+q_{1}-q+\frac{q_{1}+s-1}{2}, \ldots, \left.a+q_{1}-q+\frac{q_{1}-s+1}{2} \right\rvert\,\right.} \\
& \left.a+s_{1}-p+\frac{s+q_{1}-1}{2}, \ldots, a+s_{1}-p+\frac{s-q_{1}+1}{2}\right]
\end{aligned}
$$

Let $y=a+\frac{s_{1}}{2}+\frac{s+q_{1}-n}{2}$. Then if $\lambda_{1}=\left.\left(\lambda_{V^{-\rho}}-\rho(u)\right)\right|_{L_{1}}$
and

$$
{ }^{\gamma_{1}}=\left.(\gamma-\rho(u))\right|_{L_{1}}
$$

$$
\begin{aligned}
\lambda_{1}= & \underbrace{\left(\frac{\epsilon_{1}-1}{2}+r_{1}, y+\frac{\epsilon_{1}-1}{2}+r_{1}-1, \ldots, y+\frac{\epsilon_{1}-1}{2}+1\right.}_{r_{1}}, \\
& \underbrace{y, \ldots, y}_{q_{1}} \underbrace{y+\frac{\epsilon_{1}-1}{2}}_{\epsilon_{1}} \underbrace{\frac{\epsilon_{1}-1}{2}-1 \ldots y+\frac{\epsilon_{1}-1}{2} r_{2}}_{r_{2}}
\end{aligned} \underbrace{y \ldots y)}_{q_{1}}, ~ l
$$

If $w \in W_{K}$ such that $\omega \boldsymbol{\omega}$ is dominant, then

$$
\omega r_{1}=[\underbrace{y+s_{1}+\frac{\epsilon_{1}-1}{2}+r_{1}+\delta+q_{1}-1 \ldots y+s_{1}+\frac{\epsilon_{1}-1}{2}+r_{1}+\delta}_{q_{1}},
$$

$$
\underbrace{\mathrm{y}-\mathrm{s}_{1}-\frac{\epsilon_{1}-1}{2}-\mathrm{r}_{1}-\delta, \mathrm{y}-\mathrm{s}_{1}-\frac{\epsilon_{1}-1}{2}-\mathrm{r}_{1}-\delta-\mathrm{q}_{1}+1}_{\mathrm{q}_{1}}]
$$

Also

$$
\begin{aligned}
& \left.\mu^{L}\right|_{L_{1}}-\rho_{\mathrm{n}}^{-}\left(\iota_{1}\right)+\rho_{\iota_{1} \cap k}=[\underbrace{\mathrm{y}+\frac{\epsilon_{1}-1}{2}+\mathrm{r}_{1}+\mathrm{q}_{1}, \ldots, \mathrm{y}+\frac{\epsilon_{1}-1}{2}+\mathrm{r}_{1}+1}_{\mathrm{q}_{1}}, \\
& \underbrace{\mathrm{y}+\frac{\epsilon_{1}-1}{2}+\mathrm{r}_{1}, \ldots, \mathrm{y}+\frac{\epsilon_{1}-1}{2}+1}_{r_{1}}, \underbrace{\mathrm{y}+\frac{\epsilon_{1}-1}{2}}_{\epsilon_{1}}, \underbrace{\ldots, \mathrm{y}+\frac{\epsilon_{1}-1}{2}-\mathrm{r}_{2}}_{\mathrm{r}_{2}} \\
& \left.y-\frac{\epsilon_{1}-1}{2}-r_{1}-1, \ldots, y-\frac{\epsilon_{1}-1}{2}-r_{1}-q_{1}\right] .
\end{aligned}
$$

To prove what we want it is enough to prove that
(**) $\left\langle\omega \gamma_{1}, \omega \gamma_{1}\right\rangle-\left\langle\left.\mu^{L}\right|_{L_{1}}-\rho_{\mathrm{n}}^{-}\left(\iota_{1}\right)+\rho_{\iota_{1} \cap k}\right.$,

$$
\left.\left.\mu^{\mathrm{L}}\right|_{\mathrm{L}_{1}}-\rho_{\mathrm{n}}^{-}\left(\iota_{1}\right)+\rho_{\ell_{1} \cap k}\right\rangle>0
$$

But this is equivalent to

$$
\begin{aligned}
& \sum_{j=1}^{q_{1}}\left[\left[y+s_{1}+\frac{\epsilon_{1}-1}{2}+r_{1}+\delta+j-1\right]^{2}+\left[y-s_{1}-\frac{\epsilon_{1}-1}{2} \delta-j+1\right]^{2}\right. \\
& \left.-\left[y+\frac{\epsilon_{1}-1}{2}+r_{1}+j\right]^{2}-\left[y-\frac{\epsilon_{1}-1}{2} r_{1}-j\right]^{2}\right]>0 .
\end{aligned}
$$

Using that $(b+c)^{2}+(b-c)^{2}-(b+d)^{2}-(b-d)^{2}>0$ if $|c|>|d|$ we conclude that ($* *$) holds if

$$
\left|s_{1}+\frac{\epsilon_{1}-1}{2}+r_{1}+\delta+j-1\right|>\left|\frac{\epsilon_{1}-1}{2}+r_{1}+j\right|
$$

Since $q_{1}>0$ then $j>0$. Hence $\frac{\epsilon_{1}-1}{2}+r_{1}+\delta+$ $j-1 \geq 0$ and $s_{1}>0 \Rightarrow s_{1}+\frac{\epsilon_{1}-1}{2}+r_{1}+j>\frac{\epsilon_{1}-1}{2}+r_{1}+$ $\delta+j-1$.

$$
\begin{aligned}
& \text { Now if } r_{1}>r_{t+1} \text {, we choose } \\
& L=U\left(r_{t}+q_{t}+\epsilon_{t}+r_{t+1}, q_{t}\right) \times U\left(p-\left(r_{t}+q_{t}+\epsilon_{t}+r_{t+1}\right), q-q_{t}\right)
\end{aligned}
$$

and repeat the same argument for this case.

Note that, since $s_{1}=r_{1}+r_{2}+\ldots+r_{t+1}+\epsilon_{2}+\ldots+$ ϵ_{t}, then (**) will also hold if $r_{1}=r_{t+1}$ and some $\epsilon_{i}>$

0 or some $r_{j}>0 ; 1<j, i \leq t$.
So this reduces to the case

$$
\overbrace{a \ldots a}^{r} \overbrace{\underbrace{q_{1}+\epsilon_{1}}_{q_{1}}}^{\overbrace{\underbrace{}_{q_{2}} \ldots b_{1}}^{q_{1} \ldots a}} \overbrace{a \ldots a}^{q_{2} \ldots b_{2}} \quad q_{1}, q_{2}>0
$$

But by symmetry, using the case $r_{1}>r_{t+1}$, we can conclude that $\epsilon_{1}=0$.

But then we have

With which we have dealt before. This is solved in the same way as case 1 . for $p_{1}<p$.

This proves Theorem 2.6.7. for $G=S U(p, q)$.
q.e.d.

Chapter 5. $\quad G=\operatorname{SP}(n, \mathbb{R})$
5.1. Preliminary Notation

Let I_{m} be the identity matrix in $\operatorname{GL}(m, \mathbb{C})$. We define

$$
G=\operatorname{SP}(\mathrm{n}, \mathbb{R})=\left\{g \in \operatorname{SL}(2 \mathrm{n}, \mathbb{R}) \quad \left\lvert\, \quad \mathrm{t}_{\mathrm{g}}\left[\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right] g=\left[\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right]\right.\right\}
$$

The maximal compact subgroup K of G is

$$
K=S P(n, \mathbb{R}) \cap U(2 n) \cong U(n)
$$

Also

$$
g_{0}=s p(n, \mathbb{R})=\left\{X \in s l(2 n, \mathbb{R}) \left\lvert\,{ }^{\mathrm{t}} \mathrm{X}\left[\begin{array}{cc}
0 & I_{\mathrm{n}} \\
-\mathrm{I}_{\mathrm{n}} & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & I_{\mathrm{n}} \\
-\mathrm{I}_{\mathrm{n}} & 0
\end{array}\right] \mathrm{X}=0\right.\right\}
$$

that is

$$
g_{0}=\left\{\left.X=\left[\begin{array}{cc}
A & B \\
C & -t_{A}
\end{array}\right] \right\rvert\, A, B, C \in g \ell(n, \mathbb{R}), B, C \text { symmetric }\right\}
$$

and if θ is the Cartan involution defined by $\theta(x)=-{ }^{t} X$,

$$
\begin{aligned}
& k_{0}=\left\{X \in \Delta p(n, \mathbb{R}) \mid-{ }^{t} X=X\right\} . \\
& =\left\{\left.X=\left[\begin{array}{cc}
A & B \\
-B & A
\end{array}\right] \right\rvert\, A=-{ }^{t} A \quad B={ }^{t} B\right\} \cong u(n) \\
& p_{0}=\left\{X \in g_{0} \mid \theta(X)=-X\right\} \\
& =\left\{\left.X=\left[\begin{array}{ll}
A & B \\
B & -t^{t}
\end{array}\right] \right\rvert\, A, B \text { symmetric }\right\} . \\
& \text { If } d\left(\theta_{1}, \ldots, \theta_{n}\right)=\left[\begin{array}{lll}
\theta_{1} & . & . \\
& & \theta_{n}
\end{array}\right],
\end{aligned}
$$

Carton subgroup of G is

$$
H^{c}=\left\{\left.\left[\begin{array}{cccc}
\cos \theta_{1} \cdot & 0 & \sin \theta_{1} \cdot & 0 \\
0 & \cdot \cos \theta_{n} & 0 & \ddots \sin \theta_{n} \\
-\sin \theta_{1} . & & \cos \theta_{1} & 0 \\
& \ddots \cdot \sin \theta_{1} & 0 & \ddots \cos \theta_{n}
\end{array}\right] \right\rvert\, \theta_{i} \in \mathbb{R}\right\}=T^{c}
$$

and its Lie algebra is

$$
h_{0}^{c}=\left\{\left.X=\left[\begin{array}{cc}
0 & d\left(\theta_{1} \ldots \theta_{n}\right) \\
-d\left(\theta_{1} \ldots \theta_{n}\right) & 0
\end{array}\right] \right\rvert\, \theta_{i} \in \mathbb{R}\right\}=t_{0}^{c}
$$

$\mathrm{t}_{0}^{\mathrm{c}} \leftrightarrow \mathbb{R}^{\mathrm{n}}$.

$$
\begin{aligned}
g= & \Delta p(n, \mathbb{C})
\end{aligned}= \begin{cases}\left.X \in \Delta l(2 n, \mathbb{C}) \left\lvert\,{ }^{t} X\left[\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right] x\right.\right\} \\
=\left\{\left.X=\left[\begin{array}{cr}
A & B \\
C & -{ }^{t} A
\end{array}\right] \right\rvert\, B={ }^{t} B, C={ }^{t} C\right\} \\
k & \cong g \ell(n, \mathbb{C}) \\
h^{c}=t^{c}=\left\{\left.X=\left[\begin{array}{cc}
0 & d\left(z_{1} \ldots z_{n}\right) \\
d\left(z_{1} \ldots z_{n}\right) & 0
\end{array}\right] \right\rvert\, z_{i} \in \mathbb{C}\right\} \cong \mathbb{C}^{n} .\end{cases}
$$

\widehat{K} can be identified with the space

$$
\begin{aligned}
& \left\{\mu=\left(a_{1} \ldots a_{n}\right) \mid a_{1} \geq a_{2} \geq \ldots \geq a_{n} ; a_{i} \in \mathbb{Z}\right\} .
\end{aligned}
$$

Define, for $j=1,2, \ldots, n, \quad e_{j}(X)=i \lambda_{j}$. Then, the roots of t in g are

$$
\begin{aligned}
\Delta(g) & =\Delta\left(g, t^{c}\right) \\
& =\left\{ \pm e_{j} \pm e_{k} ; \pm 2 e_{e} \mid j, k, \ell=1,2, \ldots, n ; j<k\right\}
\end{aligned}
$$

also

$$
\Delta(k)=\Delta\left(k, t^{c}\right)=\left\{ \pm\left(e_{j}-e_{k}\right) \mid 1 \leq j<k \leq n\right\}
$$

the compact imaginary roots of t^{c} in g.

$$
\Delta(p)=\Delta\left(p, t^{c}\right)=\left\{ \pm\left(e_{j}+e_{k}\right) ; \pm 2 e_{\ell} \mid 1 \leq j<k \leq n ;\right.
$$

$$
1 \leq \ell \leq \mathrm{n}\}
$$

the non-compact imaginary roots of t^{c} in g.
5.2. Computation of $\ell_{V}(X)$ for any module X. As for the preceding cases, fix a positive root system $\Delta^{+}(k)$ so that if

$$
\mu=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \quad a_{1} \geq a_{2} \geq \ldots \geq a_{n}
$$

then μ is $\Delta^{+}(k)$-dominant and

$$
2 \rho_{c}=(n-1, n-3, \ldots,-n+3,-n+1)
$$

Let $\mu+2 \rho_{c}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
Choosing a positive Weyl Chamber for $\Delta\left(g, h^{c}\right)$ corresponds to forming an array of two rows with the
absolute value of the coordinates of $\mu+2 \rho_{c}$ so that they are aligned in decreasing order as follows:

$$
\text { If } x_{1} \geq x_{2} \geq \ldots \geq x_{r} \geq 0>x_{r+1} \geq \ldots \geq x_{n} \text { then }
$$

x_{1}, \ldots, x_{r} are in the first row $-x_{n},-x_{n-1}, \ldots, x_{r+1}$ in the second and they all decrease from left to right in the array.

For example, if we have

$$
\begin{aligned}
\ldots x_{i} & >-x_{j}>x_{i+1}>x_{i+2}>\ldots>x_{k}= \\
& -x_{j-1}>x_{k+1}=-x_{j-2}>\ldots>-x_{r+1}=x_{r-1}>x_{r}=0
\end{aligned}
$$

the array would look like

As for the case of $S U(p, q)$, the choice of arrows gives a positive root system $\Delta^{+}=\Delta^{+}\left(g, t^{c}\right)$, compatible with $\Delta^{+}(k)$.

Again, the entire array is anion of blocks of the following types.
1.

2.

3.

or

4.

or

$\left.\begin{array}{ccccc}\text { 5. } & \cdots & m & \cdots & 3 \\ & m-1 & \ldots & 2\end{array}\right]$,

(5 is a particular case of 4.)
6. All blocks of the five types discussed for $\operatorname{SU}(p, q)$, not containing 0 or 1 .

Again, using the picture, split the coordinates of μ by the blocks that $\mu+2 \rho_{c}$ determines as follows.

$$
\text { If } \mu+2 \rho_{c} \text { gives }
$$

5.2.1

with B a block of some type 1-5, set

$$
\mu=(\underbrace{a_{1} \cdots a_{1}}_{p_{1}} \cdots \underbrace{a_{t} \cdots a_{t}}_{p_{t} \text { times }} \underbrace{c_{1} c_{2} \cdots c_{m}}_{\text {entries }} \underbrace{b_{t} \ldots b_{t}}_{q_{t}{ }_{t i m e s}}, \ldots \underbrace{b_{1} \ldots b_{1}}_{q_{1}})
$$

where m is the total number of coordinates composing the block $B, \quad c_{1} \geq c_{2} \geq \ldots \geq c_{m}$.

Example: If
since

$$
\begin{gathered}
2 \rho_{c}=\left(\begin{array}{lllllllll}
8 & 6 & 4 & 2 & 0 & -2 & -4 & -6 & -8
\end{array}\right) \\
\mu+2 \rho_{c}=\left(\begin{array}{lllllllll}
10 & 8 & 6 & 3 & 1 & -1 & -3 & -5 & -9
\end{array}\right)
\end{gathered}
$$

this gives

Then

$$
\mu=(\underbrace{2}_{p_{1}} 22, \underbrace{2}_{m} 1 \begin{array}{lllll}
2 & 1 & 1 & 1 & 1
\end{array} \underbrace{-1}_{q_{1}})
$$

is the splitting that we want.

$$
\text { Write } \quad \ell_{V}=\ell_{V}(\mu) \quad \lambda_{V}=\lambda_{V}(\mu) \text { as in 2.4.7. }
$$

Proposition 5.2.2. If $\mu \in i\left(t_{0}^{c}\right)^{*}$ gives figure 5.2.1 then

$$
\lambda_{V}(\mu)=
$$

$$
(\underbrace{\lambda_{1} \ldots \lambda_{1}}_{p_{1} \text { times }} \underbrace{\lambda_{2} \cdots \lambda_{2}}_{p_{2} \text { times }} \cdots \underbrace{\lambda_{t} \ldots \lambda_{t}}_{p_{2} \text { times }} \underbrace{0 \ldots 0}_{m} \underbrace{-\lambda_{t} \ldots-\lambda_{t}}_{q_{t}} \cdots \underbrace{-\lambda_{1} \ldots \lambda_{1}}_{q_{1}})
$$

$$
\iota_{V}(\mu) \cong u\left(p_{1}, q_{1}\right) \oplus \ldots \oplus u\left(p_{t}, q_{t}\right) \oplus s p(m, \mathbb{R})
$$

with

$$
\lambda_{1}>\lambda_{2}>\ldots>\lambda_{t}>0
$$

Proof. Observe that

$$
\begin{gathered}
\text { a) If } \beta_{i_{0}}=e_{j_{0}}+e_{k_{0}} \epsilon \Delta^{+}\left(g, h^{c}\right) \text { is such that } \\
-c_{i}=\left\langle\mu+2 \rho_{c}-\rho, \beta_{i}\right\rangle=-1 \text { then } e_{j_{0}}-e_{k_{0}} \in \beta_{i_{0}}^{\perp} \text { and if } \\
\quad\left\langle\mu+2 \rho_{c}-\rho+\frac{1}{2} c_{i_{0}} \beta_{i_{0}}, e_{j_{0}}-e_{k_{0}}\right\rangle\langle 0
\end{gathered}
$$

then $e_{j_{0}}-e_{k_{0}}$ should be included in the set $\left\{\beta_{i}\right\}$ of Proposition 2.4.7.
b) Suppose that $a_{1}+p-1 \geq-b_{1}+q-1$. Then the root system generated by the roots involving the $\left(p_{1}, q_{1}\right)$ coordinates:

$$
\left\{e_{1}+e_{n} ;-e_{n}-e_{2} ; e_{2}+e_{n-1} ; \ldots\right\}
$$

is isomorphic to $A_{p_{1}+q_{1}-1}$. Since ${ }^{\ell} V$ centralizes an elliptic element then $t^{c} \subseteq \ell_{V}$. Hence the real form of $A_{p_{1}+q_{1}-1}$ is $U\left(p_{1}, q_{1}\right)$.

Except for these extra considerations, the proof of this proposition is analogous to the one for the corresponding result for $S U(p, q)$.
5.3. Lowest K types of the modules $A_{q}(\lambda)$. Let $x \in i\left(t_{0}^{c}\right)^{*}$. We may assume that it is of the form

$$
x_{1}>x_{2}>\ldots>x_{t}>0
$$

Write

$$
\begin{aligned}
\Delta(\ell) & =\left\{\alpha \in \Delta\left(g, h^{c}\right) \mid\langle\alpha, x\rangle=0\right\} \\
\Delta(u) & =\left\{\alpha \in \Delta\left(g, h^{c}\right)|\langle\alpha, x\rangle\rangle 0\right\}
\end{aligned}
$$

as in 2.3. Then
a) $\ell \cong u\left(p_{1}, q_{1}\right) \oplus u\left(p_{2}, q_{2}\right) \oplus \ldots \oplus u\left(p_{t}, q_{t}\right) \oplus \Delta p(m, \mathbb{R})$;

(5.3.1)

Set $n_{i}=p_{i}+q_{i}$.
d) $2 \rho(u)=(\underbrace{2 n-n_{1}+1 \ldots 2 n-n_{1}+1}_{\mathrm{P}_{1}}, \underbrace{2 n-2 n_{1}-n_{2}+1 \ldots 2 n-2 n_{1}-n_{2}+1}_{\mathrm{P}_{2}} \ldots$

Now suppose that $\mu \in i\left(t_{0}^{c}\right)^{*}$ is the highest weight of a representation of K.

By the proof of Proposition 2.5 .6 we may use μ to determine a compact parabolic subalgebra q \quad ($k=\ell \cap k+$ $u \cap k$.

Set $2 \rho(u \cap k)=2 \rho(\Delta(u \cap k))$. Suppose that $\mu+2 \rho(u \cap k)=$

Proposition 5.3.2. In the above setting, set $n_{i}=r_{i}+s_{i}$ then μ is the LKT of some $A_{q}(\lambda)$

$$
\Leftrightarrow \quad a_{i}-a_{i+1} \geq n_{i}+n_{i+1}
$$

and $\quad a_{t} \geq n_{t}+2 m+1$.

Proof. If $\mu=\lambda+2 \rho(u \cap p)$, then

$$
\lambda=\left(\lambda_{1} \ldots \lambda_{1} \ldots \lambda_{t} \ldots \lambda_{t} 0 \ldots 0-\lambda_{t} \ldots-\lambda_{t} \ldots-\lambda_{1} \ldots-\lambda_{1}\right)
$$

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{t} \geq 0
$$

hence the coordinates of $\mu+2 \rho(u \cap k)=\lambda+2 \rho(u)$ give
$\lambda_{i}+2 n-2\left(n_{1}+\ldots+n_{i-1}\right)-n_{i}+1-\left(\lambda_{i+1}+2 n-2\left(n_{i}+\ldots+n_{i}\right)-n_{i+1}+1\right)$

$$
=\lambda_{i}-\lambda_{i+1}+n_{i}+n_{i+1} \geq n_{i}+n_{i+1}
$$

and

$$
\lambda_{t}+2 n-2\left(n_{1}+n_{2}+\ldots+n_{t-1}\right)-n_{t}+1 \geq n_{t}+2 m+1
$$

Conversely, suppose we are given μ satisfying the conditions of the theorem. Let $q=\ell+u$ be the parabolic defined by $\mu+2 \rho(u n k)$. Set

$$
\lambda_{i}=a_{i}-2 n+2\left(n_{1}+\ldots+n_{i-1}\right)+n_{i}-1
$$

So

$$
\langle\lambda, \Delta(u)\rangle \geq 0,
$$

$$
\langle\lambda, \Delta(\ell)\rangle=0,
$$

and

$$
\mu=\lambda+2 \rho(u \cap p)
$$

q.e.d.
5.4. Proof of Theorem 2.6.7 for $G=S P(n, \mathbb{R})$.

Let X as in Theorem 2.6.7, with infinitesimal character $\quad \gamma \in\left(h^{c}\right)^{*} \quad \mu \in\left(t^{c}\right)^{*}$, the highest weight of a LKT of X. Suppose X is not a module $A_{q}(\lambda)$. Let
$\iota_{V}=\iota_{V}(\mu)=\left(u\left(p_{1}, q_{1}\right) \oplus u\left(p_{2}, q_{2}\right) \oplus \ldots \oplus u\left(p_{t}, q_{t}\right)\right) \oplus \Delta p(m, \mathbb{R})$ (fr. 5.2.2) and $p=\Sigma p_{i} \quad q=\Sigma q_{i} . \quad$ Set

$$
\iota_{1} \cong u(\mathrm{p}, \mathrm{q}), \quad \ell_{2}=\Delta p(\mathrm{~m}, \mathbb{R})
$$

then

$$
\iota=\iota_{1} \oplus \iota_{2} \supseteq \iota_{V}
$$

Define $u \subseteq u_{V}$ by $u_{V}=u+\left(u_{V} \cap \iota\right)$.

Then $q \supset q_{V}$ and by Proposition 2.4.15, a) of Theorem 2.6 .7 holds.

Now let X_{L} be an ($\left.\ell, L \cap K\right)$-module such that X occurs only as composition factor of $\mathscr{R}_{q}\left(X_{L}\right)$. We can see X_{L} as the exterior tensor product $\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{L}_{1}} \otimes \mathrm{X}_{\mathrm{L}_{2}}$ with
$X_{L_{i}} \quad$ an $\quad\left(\ell_{i}, L_{i} \cap K\right)$-module.
That X_{L}^{h} has a Hermitian form < , \rangle^{L} follows from Lemma 2.7.4.

Lemma 5.4.1. $\mathrm{X}_{\mathrm{L}_{1}} \cong \mathrm{~A}_{\mathrm{q}}{ }_{0}\left(\lambda^{0}\right)$, for some $q^{0} \subseteq \mathrm{~L}_{1} ; \quad \lambda^{0}$: $\iota_{0} \longrightarrow \mathbb{C}$.

Proof. By Theorem 2.6.7, b) and c) (proved for $\operatorname{SU}(\mathrm{p}, \mathrm{q})$) and Theorem 2.6.8, if $X_{L_{1}} \not \approx A_{q}(\lambda)$ then there are $\delta_{j} \epsilon$ $\left(L_{1} \cap K\right)^{\wedge}, j=1,2, \quad K$-types of $\quad X_{L_{1}}$ such that
$\langle,\rangle^{\mathrm{L}} \mid \mathrm{V}_{\delta_{1}} \oplus \mathrm{~V}_{\delta_{2}}$ is indefinite. Moreover, we know that if $\mu^{\mathrm{i}}=\left.\mu^{\mathrm{L}}\right|_{\mathrm{L}_{\mathrm{i}}}$ and $\mu^{\mathrm{L}}=\mu-2 \rho(\mu \cap \beta)$. Then there is $\beta \in$ $\Delta\left(\iota_{1} \cap p\right)$ such that \langle,\rangle^{L} is indefinite on the sum

$$
\begin{gathered}
\mathrm{V}_{\mu^{1} \oplus{ }_{\mu}^{\mathrm{V}} \mu_{+\beta}^{1}}^{\text {If } \mu=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{p}}, \mathrm{x}_{\mathrm{p}+1}, \ldots, \mathrm{x}_{\mathrm{p}+\mathrm{m}}, \mathrm{x}_{\mathrm{p}+\mathrm{m}+1}, \ldots \mathrm{x}_{\mathrm{m}}\right) \text { and }} \\
2 \rho(u \cap p)=(\underbrace{\mathrm{n}-\mathrm{q}+1, \ldots, \mathrm{n}-\mathrm{q}+1}_{\mathrm{P}}, \underbrace{\mathrm{p}-\mathrm{q}, \ldots, \mathrm{p}-\mathrm{q}}_{\mathrm{m}}, \underbrace{-1-\mathrm{n}+\mathrm{p} \ldots-1-\mathrm{n}+\mathrm{p})}
\end{gathered}
$$

then, since

$$
\Delta\left(\iota_{1} \cap p\right)= \pm\left\{\left(e_{i}+e_{j}\right) \mid 1 \leq i \leq p, p+m \leq j \leq n\right\}
$$

it is clear that if $\mu^{1}+\beta$ is dominant for $\Delta\left(\iota_{1} \cap k\right)$, then $\mu+\beta$ is dominant for $\Delta^{+}(k)$, unless $\mathbf{x}_{p}=x_{p+1}$ or $x_{p+m}=x_{p+m+1}$.

Suppose then that $x_{p}=x_{p+1}$.
Note that $\left.2 \rho\left(u_{V} \cap p\right)\right|_{L_{2}}=\left.2 \rho(u \cap p)\right|_{L_{2}}$ then $\left.\mu^{L^{v}}\right|_{L_{2}}=\mu^{2}$ and hence μ^{2} is fine and $X_{L_{2}}$ is a principal series.

$$
\text { So } \mu^{2} \in\{(0 \ldots 0) ;(1 \ldots 1,0 \ldots 0) ;(0, \ldots 0,-1,-1 \ldots-1)\} \text {. }
$$

Suppose that μ^{2} is of the form

$$
\mu^{2}=(\underbrace{1 \ldots 1}_{\mathrm{a}}, \underbrace{0 \ldots 0}_{\mathrm{m}-\mathrm{a}}) \text { with } a>0
$$

Then for $\eta^{2}=(\underbrace{0 \ldots 0}_{m-a}, \underbrace{-1 \ldots-1}_{a}), V_{\eta^{2}}$ is also a LKT of $X_{L_{2}}$, by Frobenius reciprocity.

So if $\eta=\mu^{1}+\eta^{2}+2 \rho(u \cap p), \quad V_{\eta}$ is a LKT of X. Since η is also dominant, it follows that $x_{p+m}-1 \geq$ x_{p+m+1}.

Suppose that $\mu^{1}+\beta$ is dominant for some $\beta \in$ $\Delta\left(\iota_{1} \cap p\right) \cap U\left(p_{t}, q_{t}\right) . \quad I f$

since $x_{p+m}-1 \geq x_{p+m+1}, \quad \mu+\beta$ is dominant. If

then, since $\left.\mu^{\mathrm{L}}\right|_{\mathrm{L}_{1}}=\left.\eta^{\mathrm{L}}\right|_{\mathrm{L}_{1}}$ then $\eta+\beta$ is a dominant candidate.

$$
\text { If } \mu^{2}=(\underbrace{0 \ldots 0}_{m-a}, \underbrace{-1 \ldots-1}_{a}) \text {, with } a>0 \text {, a similar }
$$

argument shows that $x_{p}-1 \geq x_{p+1}$.
If $\mu^{2}=(0 \ldots 0)$ then both differences $x_{p}-x_{p+1}$
and $x_{p+m}-x_{p+m+1}$ must be strictly positive. This is
clear from the pictures of $\mu+2 \rho_{c}$.
q.e.d.

Lemma 5.4.2. In the above setting, assume that $X_{L_{1}} \cong$
$\mathrm{A}_{\mathrm{q}}{ }^{0}\left(\lambda^{0}\right)$ for some $q^{0} \subseteq \iota_{1}$ and $\lambda^{0}: \iota^{0} \longrightarrow \mathbb{C}_{\lambda} O^{0}$
Then, Theorem 2.6 .7 is true if we assume that
(5.4.3)

$$
\left\{\begin{array}{c}
x_{p}-x_{p+1} \geq 2 \\
\text { and } x_{p+m}-x_{p+m+1} \geq 2
\end{array}\right.
$$

Proof. Suppose first that $\mu^{2}=(1,1, \ldots, 1,0 \ldots 0)$. Then if $\rho_{n}^{+}=\left[\frac{m+1}{2}, \ldots, \frac{m+1}{2}\right]$, an easy calculation shows

$$
\left\langle\mu^{2}-\rho_{\mathrm{n}}^{+}+\rho_{\ell_{2} \cap k}, \mu^{2}-\rho_{\mathrm{n}}^{+}+\rho_{\iota_{2} \cap k}\right\rangle\langle\langle\rho, \rho\rangle
$$

By 2) in Lemma 2.7.2, there is a

making $\mathrm{V}_{\mu}{ }^{2}{ }^{\oplus} \mathrm{V}_{\mu^{2}+\beta}$ into a space on which $\langle,\rangle^{\mathrm{L}}$ is indefinite.

Moreover $\mu+\beta$ is $\Delta^{+}(k)$-dominant, by (5.4.3).
Similarly if $\mu^{2}=(\underbrace{0 \ldots 0}_{m-a} \underbrace{1,-1, \ldots,-1)}_{a}$ then

$$
\beta \in\{(\underbrace{1,0 \ldots 0}_{\mathrm{m}-\mathrm{a}} \underbrace{10 \ldots 0}_{\mathrm{a}}) ;(2,0 \ldots)\} .
$$

Now, if $\mu^{2}=(0 \ldots 0)$ then the Dirac operator inequality fails for any choice of $\rho_{\mathrm{n}}=\rho\left(\Delta^{+}\left(\iota_{2} \cap_{p}\right)\right)$, unless $\left.\quad \gamma\right|_{\ell_{2}}=\rho_{\ell_{2}}$ in particular, if $\rho_{\mathrm{n}}^{+}=\left(\frac{\mathrm{m}+1}{2}, \ldots, \frac{m+1}{2}\right]$; and, obviously, $\mu+\beta$ is also dominant for $\beta \in \Delta\left(p^{+} \cap \iota_{2}\right)$.

Now if $\left.\quad \gamma\right|_{\iota_{2}}=\rho_{\ell_{2}}$, then, the Langland subquotient of $X_{L_{2}}$ is the trivial representation. (In fact, the representation $X_{L_{2}}=I\left(\delta_{V}^{L_{2}} \otimes v_{V}^{L_{2}}\right)$ is a principal series and $\delta_{V}^{L_{2}}=$ trivial; $\left.\quad \gamma\right|_{\iota_{2}}=\left.v_{V}\right|_{\iota_{2}}={ }_{v}^{L_{V}}{ }^{2}$.)

Hence the Langland submodule of

$$
\mathscr{R}_{q}\left(\mathrm{X}_{\mathrm{L}_{1}} \otimes \mathrm{X}_{\mathrm{L}_{2}}\right)=\mathscr{R}_{q}\left(\mathrm{X}_{\mathrm{L}_{1}}\right) \otimes \mathscr{R}_{q}\left(\mathrm{X}_{\mathrm{L}_{2}}\right)
$$

is

$$
\mathrm{X} \cong \mathscr{K}_{q}\left(\mathrm{~A}_{q}{ }_{\mathrm{O}}\left(\lambda^{0}\right)\right) \otimes \mathscr{R}_{q}(\text { trivial representation }) .
$$

By induction by stages, X is an $A_{q}(\lambda)$, contradicting our assumptions on X.

This proves the lemma..
q.e.d.

To finish the proof of Theorem 2.6.7, suppose now that $x_{p}-x_{p+1} \leq 1$.

Lemma 5.4.4. Under the hypothesis of Lemma 5.4.2, if x_{p} $x_{p+1}=1$ and $x_{p+m}-x_{p+m+1} \geq 2$, then Theorem 2.6.7 is true.

Proof. The assumptions on the coordinates of μ imply that the picture of $\mu+2 \rho_{c}$ around the coordinates involved is either

or

that is,

$$
\mu+2 \rho_{c}=(\ldots m+5 \quad m+3|m \quad m-2 \ldots-m+1|-m-4 \ldots)
$$

or

$$
\mu+2 \rho_{c}=(\ldots m+5 \quad m+3|m \ldots-m|-m-4 \ldots)
$$

Observe that $\mu^{L_{V}}=\mu-2 \rho\left(u_{V} \cap p\right)$ is fine and that the fine K-type that gives the picture

is $\mu^{2}=(1,1, \ldots, 1,0 \ldots 0)$ and the fine K-type that gives

m	$m-2$	\cdots
m	$m-2$	\ldots

is $\mu^{2}=(0 \ldots 0)$.
Arguing as in the proof of Lemma 5.4.2. we can find, in both cases

$$
\beta \in\{(0 \ldots 0-1,0 \ldots 0-1) ;(0 \ldots 0-2)\}
$$

as we want.
q.e.d.

Assume now that
(5.4.5) $\left\{\begin{array}{l}0 \leq x_{p}-x_{p+1} \leq 1 \\ 0 \leq x_{p+m}-x_{p+m+1} \leq 1\end{array}\right.$.

We want to contradict the assumption that the infinitesimal character γ is regular and integral.

Since we have an $A_{q}(\lambda)$-module for $L_{1}=U(p, q)$, we have some control on r.

Recall that $L=U(p, q) \times S P(m, \mathbb{R})$ and $L \supseteq L_{V}=$
$\left[\begin{array}{ll}\mathrm{t} & \left(U\left(p_{i}, q_{i}\right)\right)\end{array}\right] \times \operatorname{SP}(m, \mathbb{R})$. We may assume $p_{t} \geq q_{t} . B y$ $\mathrm{i}=1$
the computation in 4.3, either

$$
\begin{aligned}
& \lambda_{V} \mid U\left(p_{t}, q_{t}\right) \\
& =(\underbrace{\lambda_{t}+s, \lambda_{t}+s-1 \ldots \lambda_{t}+1}_{s} \underbrace{\lambda_{t} \ldots \lambda_{t}}_{q_{t}+1} \underbrace{\lambda_{t}-1 \ldots \lambda_{t}-s}_{s} \underbrace{\lambda_{t} \ldots \lambda_{t}}_{q_{t}})
\end{aligned}
$$

or

$$
\begin{aligned}
& \lambda_{V} \mid U\left(p_{t}, q_{t}\right) \\
& =(\left.\underbrace{\left(\lambda_{t}+s, \ldots \lambda_{t}+\frac{1}{2}\right.} \underbrace{\lambda_{t} \ldots \lambda_{t}}_{q_{t}} \underbrace{\lambda_{t}-\frac{1}{2} \ldots \lambda_{t}-s} \right\rvert\, \underbrace{\lambda_{t} \ldots \lambda_{t}}_{q_{t}})
\end{aligned}
$$

and

$$
v \mid U\left(p_{t}, q_{t}\right)=\left(0 \ldots 0 v_{1} \ldots v_{t} 0 \ldots 0 \mid-v_{1} \ldots-v_{t}\right)
$$

Inside $S P(n, \mathbb{R})$ this gives

$$
\begin{aligned}
& \left(\lambda_{t}+s, \ldots, \lambda_{t} \ldots \lambda_{t} \ldots \lambda_{t}-s \mid-\lambda_{t} \ldots-\lambda_{t}\right) \\
& \left(0 \ldots 0 v_{1} \ldots v_{q_{t}} 0 \ldots 0 \mid v_{1} \ldots v_{q_{t}}\right)
\end{aligned}
$$

If $\quad r$ is regular integral

$$
\lambda_{t}+v_{t}>\lambda_{t}+s
$$

$$
\lambda_{t}-s>0>-\lambda_{t}+v_{1} \geq-\lambda_{t}+q_{t}+v_{t}-1
$$

$$
\Rightarrow\left\{\begin{array}{l}
v_{\mathrm{q}_{\mathrm{t}}}>\mathrm{s} \\
\lambda_{\mathrm{t}}>v_{\mathrm{q}_{\mathrm{t}}}+\mathrm{q}_{\mathrm{t}}^{-1}
\end{array}\right.
$$

$$
\Rightarrow \quad \lambda_{t} \geq s+q_{t}
$$

Claim. If μ satisfies (5.4.5) then $\lambda_{t}-s \leq 1$.

Proof. The picture for $\mu+2 \rho_{c}$ around these coordinates can be of the following types.
1.

2.

3. $\ldots \ldots m \quad m+4$

4. ... m+4 m+2
.. $m+4 \quad m+2$

$m-1$	$m-3$	\cdots	or
$m-1$	$m-3$	\ldots	

\ldots	$m+3$
\cdots	$m+3$

m	\cdots
m	$\ldots .$.

5.

So we either have (considering that 5 and 2 , and 3 and 1 are symmetric)

$$
\mu+2 \rho_{c}=(\ldots m+k+2, m+k|\ldots|-m-k \ldots)
$$

and

$$
\rho=(\ldots m+k+2, m+k|\quad \ldots \quad|-m-k+1 \ldots)
$$

or

$$
\mu+2 \rho_{c}=(\quad \ldots m+2|\ldots|-m-3 \ldots)
$$

with

$$
\rho=(\quad \ldots m+1|\ldots|-m-2 \ldots)
$$

In both cases we get

$$
\lambda_{\mathrm{V}}=(\ldots 1 \quad 1 \quad 0 \ldots 0 \mid-1-1 \ldots)
$$

This proves the claim.

This reduces to the case when $\mathrm{q}_{\mathrm{t}}=0$. But then, $\mu+$ $2 \rho_{c}$ gives, at worst,

Because if $q_{i}=0, p_{i}=1$, since $U\left(p_{i}, q_{i}\right)$ is
quasisplit. So, we have $x_{p+m}-x_{p+m+1} \geq 2$!
This concludes the proof of Theorem 2.6.7.
q.e.d.

Bibliography

A. Borel-N. Wallach
[1980] "Continuous cohomology, discrete subgroups and representations of reductive groups". Annals of Mathematics Studies, $\underline{4}$ Princeton University Press.
J. Dixmier
[1977] "Enveloping algebras". North Holland Publishing Co., Amsterdam, N. Y., Oxford
T. J. Enright
[1979] "Relative Lie algebra cohomology and unitary representations of complex Lie groups". Duke Math. J. 46, 513-525.
[1984] "Unitary representations for two real forms of a semisimple Lie algebra: a theory of comparison", in Proc. Special Year in Harmonic Analysis, University of Maryland 1024, 1-29. Lecture Notes in Math., Springer-Verlag, Berlin-Heidelberg-New York-Tokyo.
A. Knapp-G. Zuckerman
[1976] "Classification theorems for representations of semisimple Lie groups", in non-commutative Harmonic Analysis. Lecture Notes in Math. 587, 138-159, Springer-Verlag, Berlin-Heidelberg-New York.
W. Schmid
[1975] "On the characters of discrete series (the Hermitian symmetric case)". Inventiones Math. 30, 47-144.
B. Speh
[1981] "Unitary representations of $\operatorname{SL}(n, \mathbb{R})$ and the cohomology of congruence subgroups". In noncommutative harmonic analysis and Lie groups 880 . 483-505, J. Carmona and M. Vergne (eds.), Lecture Notes in Math., Springer-Verlag, Berlin-Heidelberg-New York.
B. Speh-D. Vogan
[1980] "Reducibility of generalized principal series representations", Acta Math. 145, 227-229.
D. Vogan
[1981] "Representations of real reductive Lie groups", Birkhauser, Boston-Basel-Stuttgart.
[1984] "Unitarizability of certain series of representations", Annals Math. 120, 141-187.
D. Vogan-G. Zuckerman
[1984] "Unitary representations with non-zero cohomology", Compositio Mathematica 53, 51-90.
G. Zuckerman
[1977] "On construction of representations by derived functors." Handwitten Notes.

