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ABSTRACT

For G = SL(nR), SU(p,q), and SP(n,R) we prove

that every irreducible unitary representation of G with

the same infinitesimal character as that of a finite dimen-

sional, arises as cohomological parabolic induction from a

one-dimensional unitary character. The techniques used

involve case-by-case arguments that do not use any special

features of these groups. So it seems reasonable to hope

that these arguments could be extended in order to solve

the problem for other groups.

For G as above let K be a maximal compact subgroup

of G, 90 = k + P%, the Cartan decomposition of o=

Lie(G), (7il) an irreducible Hermitian representation of

G on which Z(g) acts as on a finite dimensional module,

WK the Harish-Chandra module of 7r and (ji,V ) a lowest

K-type of WK. We prove that either IK is isomorphic to

a Zuckerman module A (N), for some 8-stable parabolic

subalgebra q = t + u C g. and one-dimensional unitary

character X of L = NG(q), or else the Hermitian form

restricted to V G (p@V ) is indefinite.

Thesis Supervisor: Dr. David A. Vogan, Jr.

Title: Professor of Mathematics
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Chapter 1. Introduction

The problem of classifying those irreducible unitary

representations of a Lie group whose infinitesimal charac-

ter is the same as that of an irreducible finite dimension-

al, has interested many people for many years. These

representations are important because they appear in inter-

esting applications like the theory of automorphic forms

(see for example, Borel-Wallach [1980], ch. VII.5-VII.6).

Here is an example:

If G is a semisimple Lie group, F a discrete

subgroup such that F\G is compact, and F an irreducible

finite dimensional G-module, then the right action of G

on L2 (F\G) gives a Hilbert space decomposition, with

finite multiplicities m(7r,F),

L2 (\G) = * m(r,F)7r,

rEG
u

with G the set of irreducible, unitary representationsu

(irW) of G. Matsushima's formula (see Borel-Wallach

[1980], p. 223) is

H (F,F) = m (r,F)H*(g,K;WKOF

rEG
u

Here g is Lie(G) ® C, and WK is the Harish-Chandra
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module of (irt). The relative Lie algebra cohomology

groups on the right are non-zero only when the infinitesi-

mal character of r is the same as that of F.

In Vogan-Zuckerman [1984], an algebraic construction

of the modules XK with non-vanishing cohomology groups in

terms of cohomological parabolic induction is given. The

derived functor modules constructed this way are conjec-

tured to exhaust a larger family of unitary representations

described below.

We refer to chapter 2 for precise definitions of the

terms used below.

Let G be a reductive Lie group, K a maximal com-

pact subgroup, 0 the corresponding Cartan involution, and

90 = k 0 D the Cartan decomposition of go.

Let q = L + u C g be a e-stable parabolic subalge-

bra (cf. 2.3), that is

OL = L, OU = U,

L = L, with denoting complex conjugation

and q, n o = L.

Let L be the normalizer of q in G, and X a one-

dimensional unitary character of L. A (g,K)-module A (N)

is a Harish-Chandra module constructed as in Vogan [1981]

Chapter 6 by cohomological parabolic induction from the
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one-dimensional unitary character X. (See Definitions

2.4.14, 2.5.2).

The conditions on the infinitesimal character men-

tioned above can be weakened to include a larger family of

representations.

If X is a Harish-Chandra module with infinitesimal

character x, and h C g a Cartan subalgebra, then up to

Weyl-group orbit considerations x corresponds to a weight

-y E h . Choose a positive root system A+(g,h) such that

I' is dominant.

Conjecture 1.1. Suppose X is an irreducible unitary

Harish-Chandra module such that r - p is dominant for

A +(g,h). Then, there are a e-stable parabolic subalgebra

q and a unitary one-dimensional character X of L such

that

X A (M).

Some progress has been made when we assume that -r is

regular and integral. Namely, for G a complex group,

T. J. Enright [1979] proved that if i is regular integral

then there exists a (g,K) module A (N) isomorphic to

X. Also, in Speh [1981], the same result for G = SL(n,IR)

is proved.

The following result is proved in this thesis.
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Theorem 1.2. If G is SL(n,R), SU(p,q), or SP(n,R)

and -r regular and integral, then, for some q and X

X = A (N).

The proof for SL(n,R) is new and quite different

from Speh's original one.

The proof is by induction on the dimension of G. It

involves choosing an appropriate proper subgroup L C G

and embedding 9 K as the Langlands submodule of a derived

functor module induced from a representation of L, in

such a way that the information about unitarity or non-

unitarity of the representation of L can be carried up to

G and our representation IK'

The thesis is organized as follows. In Chapter 2 we

set up the notation and results needed to restate and prove

the result in the following form:

Theorem 1.3. Suppose X is an irreducible Harish-Chandra

module with regular integral infinitesimal character,

equipped with a non-zero Hermitian form < , >. Then,

either

a) X = A (X), for some q, A as above, or

b) There are a lowest-K-type V 6  and a K-type V 2

V ® p, such that
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HomK(V .,X) A 0 i = 1,2,
1

and the restriction of < , > to the sum V 5 G V is

indefinite.

Sections 2.1 through 2.4 are devoted to notation and

the results that will be needed for the proof. The two

main issues are the definition of the Zuckerman derived

functor modules 9 (Y) and Vogan's embedding of any

irreducible Harish-Chandra module into some Zuckerman

derived functor module. We also give some useful proper-

ties of these modules.

In Section 2.5 we define the modules A (X) and prove

some nice features that we will use in later chapters.

Sections 2.6 and 2.7, and Chapters 3 and 5 are the

actual proof of Theorem 1.3. The main results are Theorems

2.6.7 and 2.6.8, which say that we can exhibit X as a

submodule of a derived functor module I (XL) in such a

way that we can reduce the problem to the representation

XL of the group L. Chapters 3, 4 and 5 are the proof of

Theorem 2.6.7.

We argue by contradiction: With the help of Vogan's

embedding result we find another 0-stable parabolic sub-

algebra and another Zuckerman module containing X. We

have to check several conditions that will ensure the
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reduction, but mainly 2.6.7 b) and c). Then assuming that

the representation XL is not isomorphic to a module
OL

A O(N ) we prove non-unitarity on XL. For this we use
q

the properties of the A (N) modules discussed in 2.5 and

some techniques discussed in 2.7, primarily Lemma 2.7.1.
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Chapter 2

In this chapter we set up notation, state the basic

results we will need and our main result, and provide a

scheme for the proof.

For undefined terms in this section see, for example,

Vogan [1981] Chapter 0.

2.1. Structure Theory

We will denote Lie groups by upper case roman letters

such as G, H, L and complex Lie algebras by script

letters such as g, h, L. We will make the distinction

between the real Lie algebra of a Lie group and its

complexification as follows:

90 = Lie (G) 9 = 0 C , etc.

Let U(g) = universal enveloping algebra of g and

Z(g) = center of U(g.).

Although we will eventually study connected real

simple linear Lie groups, we will consider connected real

reductive linear Lie groups. These are Lie groups satisfy-

ing:

a) G is connected

b) go is a real reductive Lie algebra

c) G has a faithful finite dimensional representation



13

Let 8 be a Cartan involution of go and go = k0

00 the Cartan decomposition of go into the +1 and -1

eigenspaces of 8.

Fix once and for all a nondegenerate, invariant

symmetric bilinear form on go. We will denote this and

its various complexifications, restrictions and

dualizations by ( , ). We may choose it so that the

Cartan decomposition of go is orthogonal and

( , ) o

( , 1 k0

> 0

< 0.

Let H be a Cart

the roots of ht

In general i

subalgebra of g9

9 then A(V,o)

multiplicities).

When there

If H

is no

is a

an subgroup of

in g.

G. Denote by A = A(g,h)

f o, is an abelian reductive Lie

and V is an ad(a)-stable subspace of

is the set of weights of o, in V (with

For any B C A(V,o3) let p(B) = a.

aEB

confusion we will use A(V) for A(V,o).

8-stable Cartan subgroup, then

H = TA; with T = H n K, A = H n (exp po) = exp(t0fp 0)

is 8-stable.and A (g,k)
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Let W = W(g,h) be the Weyl group of f in g and

W(G,H) = NG(H)/H NK(H)/H n K.

Let A+ = A +(g,) be a set of positive roots of f in g,

& = h + n, the corresponding Borel subalgebra and p =

p = p(n).

Let t C k be a Cartan subalgebra. Define fc0 - 0

(resp. Hc) to be the centralizer in g (resp. G) of

c c
t0. H is 8-stable, so we can write

Hc TcAc with Tc = Hc n K

a Cartan subgroup of K.

H c is called the fundamental or maximally compact

Cartan subgroup of G.

On the other extreme, if a s p is a maximal

abelian subalgebra and h= ts + a is maximal abelian0 0 0

then ft is also a Cartan subalgebra of go. Its0

centralizer Hs in G is a Cartan subgroup of G, the

maximally split one.

2.2. Harish-Chandra Modules

Let (r,l) be a continuous complex Hilbert space

representation and *K the subset of W of K-finite
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vectors. If (irl) is admissible, that is, if all the

K-isotypic components of WK are finite dimensional, then

the limit

1
7r(x)v = lim (7r(exp tx)v-v) ,

t-+O

exists for all

representation

x0

of

E and v E AK and defines a

go in *K'

XK is a (g,K) module since we can complexify the

representation IK to a representation of g (W being

complex). Also AK is a representation of K. We call

WK the Harish-Chandra module of (r,l) (cf. Harish-

Chandra [1953].

Any irreducible unitary representation of G is

admissible.

Denote by A(g,K) the category of (g,K) modules and

by d(g,,K) the category of admissible (g,K) modules.

An irreducible (g,K) module is automatically

admissible.

A g module X is quasisimple if Z(g) acts by

scalars on X. Then we have a homomorphism

x : Z(g) -- 4 C
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x(z)x = V(z)x

called the infinitesimal character of X.

Any irreducible (g,K) module is quasisimple.

If (r,X), (r'.X') E A(g,K) we say that X and X'

are equivalent if there is an invertible map which is an

element of the set of (9,K)-module maps defined by

Hom9,K('r') = Homrn,K(X,X') = {L : X -- X I

L is complex linear and i'L = Lr}.

Write G for the set of equivalence classes of irreducible

(g,K) modules. If (r,g), (r',*') are representations of

G we say they are infinitesimally equivalent if (rr K)'

(7r',*') are equivalent.

2.3 Parabolic subalgebras

Let tc k Fix
0 - '

x E i(tc *

We define a e-stable parabolic subalgebra q as follows.

Let
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A(L) = A(ttC) = {a E A(g,tc) <a,x> = 0}

A(u) = A(.,tc) = (a E A(g,tc) <a,x> > 0}

t = D CX + t, CX
aEA(L) a aEA(u) a

then q = L + u is @-stable.

2.4. Derived Functor Modules

In this section we consider that part of the classifi-

cation of Harish-Chandra modules that consists of attaching

a certain set of parameters to an irreducible Harish-

Chandra module. We are going to exhibit each irreducible

(gK) module as a submodule of a derived functor module.

We will first consider a particular set of irreducible

(g,K) modules when G is quasisplit. To define these

groups we need some notation.

Let a C p0 be a maximal abelian subalgebra and As

the corresponding connected subgroup of G.

Let M = K = centralizer of As in K.

Define A s A(g/(i+as s,a) = the nonzero roots of as

in g.

Fix a positive system A+ C As and let
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0 = (D
0 +

aEA~

RX

and N the corresponding connected subgroup

Define Ps = MAsN.

of G.

Definition 2.4.1. For a fixed representation (6,V) of

define the Hilbert space

A6,V
= {f : G -- V I

f(gman) = a

m E M; a E A; n

The action of G on V

-(v+p)

f measurable;

6(m) f(g);

E N and f K
E

given by

= f(g 1g0 )

defines a representation I(6@v)
G

= Ind (60v),
p

the induced

representation of

Definition 2.4.2. G is quasisplit if a + a

abelian.

and ^s
S A ,

M

L2 (K)}.

G.

is

(T 6,V(g))f(gO)



19

Hence, if G is quasisplit k = i0 + a is a Cartan0 0 0

subalgebra of go and HS = MAs = TsAs a Cartan subgroup

of G.

Therefore

^S x ^ ^ s ^ s
H =homomorphisms : H -- + C M xA M x (a)

Definition 2.4.3.

d6 is trivial on

b) Consider

a) A representation 6 E M is fine if

a 0 n [g.

the set

A = {a E AS ! a f AS

A root a E A is real if a = s
for some 0 E As

real.

Let aa = {X E a | a(X) = 0} and GA

Ma n K. Choose an injection

: a
a 0

= MaAa; Ka =

such that

a 0 -1 E a0

Oa 0G = 00o
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0

Oa .0

Put

1

0]
E a-root space.

[0 1

a a -1 0
ka
0

c) A representatioi

i) For a E

included in {0,+1}

ii) For each

E K

real

is fine

p( iZa)

(for G) if

has eigenvalues

complex root a E i

fine representation

6 occurs in p I m

is trivial.

set A(b) = {i E

Proposition 2.4.5. See Vogan [1981] 4.4.8.

Suppose G is quasisplit and p E K is fine. Then

the restriction of p to M is a sum of fine representa-

tions of M, each occurring with multiplicity one.

Say that p E A(6) for some 6 fine. Let X be an

irreducible (g.,K) module containing the K-type ji.

Then there is a character V E As such that

Homg,K(XI(6 @v)) A 0.

Ifd)

K

6

is

E M

f ine,

is a

and|I

1(k a n 909 )
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For an arbitrary linear reductive Lie group we will

define the notion of minimal (or lowest) K-type of a

representation and attach to it certain parameters. In the

next section we will then construct a (g,K) module with

these parameters using a reduction to a quasisplit group.

The irreducible representation with that lowest K-type is

a subquotient of this module. For proofs of these results

see Vogan [1981] Chapters 5 and 6.

Fix a Cartan subalgebra t of kc , a positive root

system

A+(k) = A+(k,tc)

and a A+(k)-dominant weight T Cc; write i E (t )*

for its differential. Define

2pc = 2p(A+ k)) E (Cc)*

Let hc as in 2.1. Then there exists a e-stable

positive root system A+ (9,c) which makes p + 2p c

dominant. See for example, Vogan [1981], p. 239.

Fix a noncompact imaginary root E A(g9,hc). Write

X for a root vector for the root f. Put

x- 
-U =



22

Z P= X P+ X_ E 0g

= centralizer of Z in go

(hc)= {x E h | (x) = O} (2.4.6)

S= (t ) @ Z.

0t3 (ftc)' $ <Z13>.

Then 9 is reductive, the subgroup Gp of G with

Lie algebra 9P is real reductive linear and h is a

Cartan subalgebra of g and of go. See Vogan [1981], p.

235.

Proposition 2.4.7 (Vogan [1981], 5.3.3). For each

A+(k,tc)-dominant weight i C Tc, there is a unique ele-

Gment Xv(p) - E (tc M having the following proper-

ties: fix a e-stable positive root system A +(g,h )

making p + 2p dominant; and write p = p(A + ( ,.c))

Then XV(p) is dominant for A+(g,hc), and there is a set

.it ./.. ,3r} A(g,hc) of imaginary roots, satisfying

a) If we put

-2<p , p+2p c>
c>
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V = c p ,

then

o < c. < 1,

and

XV(p) = XV(p) = p + 2pc -p + v.2+v

b)

then <a

c)

simple,

such tha

d)

e)

If a E A

,P 1> 4 0

The root

or there i

t P1 = a

Either al

Write

(g,hC) is imaginary, and (aXv(p)> = 0,

for some i.

Pi is noncompact; and either it is

s a complex simple root a of A + (g,hc)

+ Oa.

1 C = 0, or c1 A 0.

ft = hP

as in equations (2.4.6).

A + (9.hc n+9 1, h 1

satisfy these same condi

" .1 t

)

t

Then the

and its

ions for

positive system

subset {P2''13d

g1 and the weight

1
g~ =~
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Definition 2.4.

G
let qV(p) be

cribed in 2.3.

we also define

8. For a A +(k)-dominant weight p E ^ c

G
the parabolic defined by XV(p) as des-

If v is a K-type of highest weight p

G
V(7r) - qV

Proposition 2.4.9 (Vogan [1981] §5.3). Suppose p E T is

A+(k)-dominant and qV(p) = L + a. Then

(a) L0  is quasisplit

L(b) V( i-2p(unp)) = t

(c) If r E K has highest weight p, then r is fine

G
q 'v(11)= .

We will now define a preordering on K.

inition 2.4.10.

If 7r E K has highest weight p E T

in proposition 2.4.6. Define

put N = C(

1111lambda lambda= X,>.

If X is a nonzero (gK)-module define X(ir) to be

r-isotypic component of X. Then the set

{r E K | X(r) X 0 and vI"l lambda is minimal}

Def

a)

as

b)

the
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is nonempty. We define it to be the set of lowest K-

types. We will refer to such a 7 as an LKT.

c) Define XV(X) = XV(p) for p a highest weight of a

G
LKT of X and let qV(X) be the parabolic associated to

11.

When there is no confusion we

parameters as qV and XV.

Let tL be the Levi factor o

normalizer of qV in G.

c
Li T , so let 7r be the

tion of L fl K generated by the

VL flK.

Let

Lv
V

will refer to these

f qV, and LV the

irreducible representa-

p-weight space, inside

= V 0 [A (R (Lfl4* E (L VfK)

(2.4.11)

R = dim u n o.

Notice that p-2p(uflp) is a highest weight of r V

proposition 2.4.9 b) and c)

L is fine for

By

Lv.

Fix H = TA a maximally split

and choose 6 E T, fine occurring

Cartan subgroup of L

in L
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This triple (qV,HV' VL) is, by definition a set of

discrete 0-stable data attached to X.

We have attached all these parameters to a

representation X with LKT 7r.

Now with these parameters we will exhibit a (9,K)

module that contains X as a subquotient. We need more

definitions.

Definitior

quadruple

a) q = L

b) L is

maximally

c)

d)

6 E T

2.4.12. A set of 0-stable data for G i

(q,H,b,v) with the conditions:

+ a is a 0-stable parabolic subalgebra of

quasisplit, and H = TA C L is a 0-stable

split Cartan subgroup of L.

is fine for L and v E A.

If XL E t is the differential of 6 and

XG = L + p(A(a,tc)) E t C h

then i) (G,a> > 0

G
ii )

Notice that

X E A(g,K)

Lv
(o,,VHV'b

for all a E A(a,h)

<X , > = 0 for all 13 E A(L,h).

the discrete 0-stable data attached to some

together with any character v E A are a set

) of 0-stable data for G.

s a
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In order to give a generalization of Proposition 2.4.5

for non-quasisplit groups we need to define the objects in

which we are going to realize the Harish-Chandra modules of

G.

Definition 2.4.13 Zuckerman Functors.

Let q = L + a C g be a 0-stable parabolic

subalgebra as defined in 2.3 and L C G the reductive Lie

subgroup corresponding to t0'

Since G is connected, then so are K, T, L and

L n K.

Let Z be any (q,LK) module. Define

pro (Z) = pro9,LnK (Z) = Hom (U(g),Z)KfiniteOd q LfK Q U9)ZLnfl t

This is a (g,LK) module.

Now, if W is any (g,LfK) module define

FW = {v E W I dim U(k)-v < }.

FW is a (g,K) module and F : A(9,LfK) -- A(9,K)

is a left exact functor.

The Zuckerman functors {(jflK 1 i are the right

derived functors of F (written r ). That is, if W is

a (g,LfK) module then W admits an injective resolution
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0 W 1 ---- 10

then we have a cochain complex

0 - FW 1I 0

FW=ker
Define m W i . So

Im _

00
F"l

0F W = FW.

Definition 2.4.14. Let q = t + u and L

Then L is a reductive linear (connected)

L n K is a maximal compact subgroup of G.

We will define the

induction functor (oq)i

follows.

Let V E A(L,LfK).

U act trivially.

Let

C G as in 2.3.

Lie group and

i-th cohomological parabolic

: A(L,LfK) -- A(g,K), as

We make V E A(q,LfK) by letting

prog.,LK VO Adim U)
q, LK C

then

()(V) = i(Q(V) = 9 (V)

= F i(W).

- 1 .
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We are now in a position to state the generalization of

Proposition 2.4.5. However, it is convenient at this

moment to mention some properties of these derived functor

modules that we will need later.

Suppose q = L + u are two parabolic subalgebras

such that

t t 2' 2 - 1 L 1 K C L2 n K;

set U= t2 n1

then = 1 + U C C2  is a parabolic subalgebra of L2.

Proposition 2.4.15 (Zuckerman [1977]; Vogan [1981] 6.3.10).

With notation as above if W is an (L ,L fK) module such

that for q X q

[2 ]qW =0

then

[ g [ g 2 ]qo0 ) pqq

q21 q 1pq()

Proposition 2.4.16 (Zuckerman [1977]; Vogan [1981] 6.3.11).

Let q = L + u be a 9-stable parabolic subalgebra; h C

L, a Cartan subalgebra. Let Y be an (L,LK) module
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with infinitesimal character X E h. Then

1 (W) has infinitesimal character X + p(u)

Definition 2.4.17.

Let (q,H,6,v)

(definition 2.4.12)

such that P = TAN

and for all a in

A(n,a)

Standard Representations.

be a set of 0-stable data for G

. Let H = TA C L and choose N C L

is a minimal parabolic subgroup of L

the corresponding positive system

(Re v,a> < 0.

Let IL(60v)

L
Ind (60vol).

p

0-stable data

be the principal series representation

We define the standard (g,,K) module with

(q,H,6,v) by

G(qv) = !q (IL(60v))

as in 2.

We

modules.

(0 = h0

A +(k) =

4.14 where s = dim a n k.

will now state some properties of these standard

Fix t C C0  kf a Cartan subalgebra containing

n k 0 and a positive root system A+ (Lfk,tc). Set

A + (tk,tc) u A(unk).
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Proposition 2.4.18 (Vogan [1981] 6.5.9).

be a set of 0-stable data for G, and

then

a) 1i(IL(6®v)) has infinitesimal chara

b) If 7r is a K-type occurring in D
q

highest weight 77 then there exists an

highest weight 7L such that

6 C 7rL IT

Let (q,H,6,v)

XG = d6 + p(u)

Gcter (N ,v).

(IL( 6 0v)) with

L n K-type rL

and p = pL + 2p(unp) + n aa.

aEA (A)
n EINa

c) Moreover

term is zero

if 7r is a

and 7 L is

LKT, then the last summation

fine for L.

Proposition 2.4.19 (Vogan [1981] 6.5.9 (g) and the proof of

6.5.12 (b)). Suppose X is an irreducible (9,K) module

L
and (oV,H,6V) a set of discrete 0-stable data attached

to X. Then there is a character V E A such that if

s (I (6 Lv)) is the standard (g,K) module with

parameters (qV,H,6 ,VV), then Homn,K(X, V( V)))

is one dimensional.

Lemma 2.4.20.

subalgebra and

Let q = C + a C g be a

Y an (L,LK) module.

0-stable parabolic

Write

of
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s = dim a n k, = XL (Y) and X = 9 (Y). Assume

<N +p(u),a> > 0; a E A(u). Choose A +(k) = A+(Lfk) U

A(unk).

Suppose L is the highest weight of a LKT (for

L n K) of Y with respect to the positive system

A+(tnk,tc) and that we choose A+(L) so that jL + 2 p Lfk

is dominant. Then

a) p = p L + 2p(fnp) is dominant for A+(k).

b) p + 2pc is dominant for A+(g), where A+(g) is

compatible with A +(k) and

A+(g) = A+(L) U A(U).

Proof. ji + 2pc = U + 2p(ufnp) + 2p(unk) + 2 p Lfk

= + 2p nk + 2p(u).

a E A +(g)

a E A + )

is simple, then

<4+2p c,a> = <p +2ptnk'a> + <2p(u),a>

= <pL+2p t, a> + 0

ii) If a E

<a,-r> 0; hence

A(u) then,

<a,P> 0

for any simple root r,

for 3 E A+(L).

Suppose

i) If
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Choose {fp,} C A(Lfp) as in Proposition 2.4.7, such

that

x L L + 2pxV tn12 ~fk -p + 1
Osc (1

then

(2.4.21) p + 2p = + 1 c 3 + 2p(a)

then

V V L V
<a , p + 2p c> = (a, .x + p(u.)> + (a,p - p

> 0 + 1.

This proves

For (a), it

simple, then

b)

is

of the

enough

lemma.

to prove that if r E A+(k) is

V
( ,4 + 2pc > 2.

i) If -Y E A+(tfk)

c 43
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< (,p + 2pc > = < ( , L

V L
<= ,1

+ 2p(Lfk)>

+ 2p(Lfk)>

> 2,

since L

ii)

1, and i

is dominant for

If -Y E A(ulk)

t is an integer s

A+(Lflk).

then, as for b): < ,p + 2pc

ince W + 2pc exponentiates.

q.e.d.

Lemma 2.4.22.

dominant for

In the

A +(g),

setting of Lemma 2.4.20, if p is

then Xv(pG) = x + p(U).

Proof. By 2.4.21, pi + 2pc - p
C

We claim that XL + p(U)

XV(p) in Proposition 2.4.7:

Condition (a) holds by the

Since A(u) = -A(u) and

A(u), 2.4.7 (b) holds because

a E A(L).

But then, <a,p(u)> = 0;

Since simple roots

A(g.,hc), 2.4.7 (c) (d)

=XL + P(U) -

satisfies the condi

definition of L

(V XL+
<aX + p(u)> > 0

V L(a, X + P(u)) = 0

c io .

tions for

+ p(a).

for a E

implies

Vhence <aP3.> A 0 for some

for A(,h c) are simple for

(e) hold.

q.e.d.

V+ r,2 u)

+ 0
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In the setting of

K-type occurring in X

We want to estima

L LLet qV= 06V(Y)=

Lemma 2.4.20, let (7r

with highest weight

te the lambda-norm of

a1 + 1 C L.

,Z) be a

T1

77.

QV = L1 + U1 + a C Q

and L

attached

Let

Hv L
H V, 6 ,

to Y

xG =

VV) a set of 8-stable data for

(Definition 2.4.12).

d 6L + p(V) as in Definition 2.4.
V+

Lemma 2.

a)

b)

G G( X>.

c)

for 77

a LKT of

d)

LKT of

4.23.

If

With no

L L
V , V V)

V is a

tation as in Lemma 2.4.20

is a set of 8-stable data for G.

K-type in X, then (<X(7 7 ),xV(n)>

If equality holds in b) then 77

a highest weight of a L(LfK)T

X.

Conversely if -q = 77L + 2p(unp),

X and equality holds.

= TL +

of Y

2p(ufnp)

and V is

then V is a

G V
Proof. For (a) we only need to see that <X ,a> > 0 for

all roots in A(u).

L L L
By hypothesis on (qryH'V, 6vy),

L = dL + p( )x

L

12.
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L V
( , a> > 0 for a E A(ul),

H = TA is maximally split

Now

Cartan of
L and 6 is fine.

G dL += L LX = v + P(aV) = d6 + + p(U) - + p(U).

If a E A(ul) 9 A(C) then

L V L V
(XV + p(U),a> = Xv, a> > 0.

If a E A(u), by hypothesis in Lemma 2.4.20,

G V
(X ,a> > 0.

The proof

6.5.6 in Vogan

for b) and c)

[1981].

is exactly the proof of

2.5. The Modules A (N).

Let G be a connected real reductive linear Lie

group, q = C + u C g a 0-stable parabolic subalgebra and

L the normalizer of q in G. Then L0 = Lie(L).

Let X : -- 4 C be a one-dimensional representation

of L. Assume that

Lemma

q.e.d.
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a) X is the differential of a unitary

character of L (call it X also).

L b) (XIc a> > 0 for all a E A(utc

We say that X is an admissible representation of L.

Definition 2.5.2. With notation as above, we define the

Harish-Chandra module A (X) by

A (N) = O () (Definition 2.4.14)

s = dim u n k.

Fix positive root systems

A +(Lfk) and

A +() = A+(L,L), compatible with A+(Lfk).

A +(k) = A+(Lfk) U A(unk)

A +() = A+(q) = A+(L) U A(U)

are positive t-root

Choose a fundamental

systems for k and g,

Cartan subalgebra hc

respectively.

c + ac and a

(2.5.1)

with

Then

and
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positive root system A+(g,hc) so that

A+(gh i c

Then P =

aEA+ (g,hc)

= A +(g-).-

1 P1.

I3EA'(g9)

Proposition 2.5.3

Speh-Vogan [1980]

weight in (tc)*.

(Vogan-Zuckerman [1984]. See also

and Vogan [1981]). Regard X c as a

Let

p = N ic + 2p(unp) E (tc )*

a) The (g,K) module A (N) is

irreducible module satisfying:

i) As a K-representation,

K-type with highest weight p.

ii) Z(g) acts on A (N) b

+p: Z(g) -- + C; where X (z) = (

is the Harish-Chandra homomorphism.

iii) Any K-type occurring in

highest weight of the form

the unique

A (N) contains the

y the character

X+p)(f(z)) and f

A (X) has a

+ 2p(up) +

PEA(up)
n EIN

T7 = X c n 0 P.
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b) Moreover i is the unique LKT

Proof. The infinitesimal character of

of A (M).

the representation

S:L -- C is X + pt. Then

has infinitesimal character X +

holds.

If L = Nl then

by Proposition 2.4.16

P + p(c) p.

L is the highest weight

A (X)

So ii)

of the

(lowest) L n K-type

4.

of C .

Choose A (L) making

L
xV

L (4L
= V(. ) = i

pL + 2 p tLk

c + 2ptk -

dominant.

Pt + c #i

with Q a sum of roots in

But i L so A(L) can be chosen so that

is dominant.

Then if a E A(u)

(L
<N + p(u),a>

is simple, (L
V

= ( c + p(a),a>

+ p(),a)

> <p(u),a>

> 0.

2.4.22, and 2.4.23,

Then

L.

IA(L) = 0

fact

Q

> 0. In

tc

|c

By Lemmas 2.4.20, i) and b) hold.
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The irreducibility and uniqueness of A (A)

work, and since we won't be using these facts we

Speh-Vogan [1980]. See also Vogan [1981].

By 2.5.4 and Theorem 1.3 in Vogan [1984], w

following.

take

refer

more

to

e have the

Proposition 2.5.5. In the above setting, the modules

A (A) are unitarizable.

Proposition 2.5.6. Fix A (k). Let = L. + U . C g;
1 1

i = 1,2, be 6-stable parabolic subalgebras such that

A(q .) Q A+(k) and A. E t admissible one-dimensional

representations of Li (Definition 2.5.1). Then,

A1(A ) A(2 2 )

A = X2
and U 1 nP = u2 n A.

Proof. We need a few lemmas:

Lemma 2.5.7. Suppose Q = L + U, q = t + U C g, are

6-stable parabolic subalgebras, and A : C -

admissible representations such that
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1) q 2 q, that is, t D L and a D a.

(2.5.8) 2) X . A(L).

3) a n = nafl .

Then A() ~to A (y

Proof. By induction by stages (Proposition 2.4.15),

Lf(unk)
S ) (dim (y)

but q f L = L + a n I and, by 3), u n L c

(Cx) .

Hence Ms(ex)
q

s(C) = A'~'(X) this proves the lemma.

q.e.d.

By this lemma, we may assume that both

proposition are

Lemma 2.5.9.

maximal with respect to conditions

In the above setting

A(ct ink) = (a E A(g)

k so

dim alt

qnfl

i 's in the

1) - 3).

).

I <a,A X + 2p(u op) > = 01}.
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Proof. Suppose a E

a) a f A(L.fk).

b) <a,pi.> = 0,

Let A(z)

We want to contr

Breaking up A(u

A+ (k,tc) is a simple root so that

p = X. + 2p(u .fln).
1 1 1

= Span(A(L.),a) n A(g.)

A(u) = A(u.)\A(T)

11

adict the maximality of qi

nilb) in maximal a strings
1*

{ 0; 0+a; . .. +ra},

(i.e. -y0 - a, -0 + (r+i)a f A(ulp))

and using representation theory of

that

<a,2p(u . Ap> >

oL(2) we can conclude

0

and we have equality if and onl

under the three dimensional sub

the a-root vector X
a

But, by definition of X.,
1

y if a 1

ialgebra
a

g.

is invariant

that contains

> 0.<a, A.>1



43

So, (a) and (b) imply that a. f P is invariant under

and

<a,X.> = 0 = <a,2p(u .lop)>.
1 w

Now we want to prove that

(2.5.10) n P = A.
1

If 1 E A+(g,hc) and P3

s [

tc
= a then

c'

If )3 is complex, then the non-compact root of -it

is not in A(u. flp) so it contradicts invariance under a

Hence a is an imaginary root of A+(g,he). a is

also simple for A+(g,hc). In fact, since a is simple

for A(k,t c), and a i A(Lfk) we can assume that if -, 5

E A+(g.,,c) and a = Y + 6 then

7 E A(u inP),

say, and -r - a = -e 6 A(u .lo); contradicting invariance
1

again.

a

n p.
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Consider a simple factor t0 g T, not contained in

L. Then L0 is not orthogonal to a. Let {p1,02'...'13

be a set of simple roots for L0 containing a.

Say a = P i and P 1+1 is adjacent to a.

Suppose t 0 n P A 0. Then there is a non-compact root

1 = n.P with some ni 0+1 > 0 and such that

<a,P> = n.<a,p .> < 0.

a + P = 6 is a non-compact root, and 6 E A(u i po).

So the string through 6 is not complete.

Hence t0 is compact and q (C q) is not maximal

satisfying (2.5.8).

This proves Lemma 2.5.9.

q.e.d.

We are now able to prove Proposition 2.5.6.

By Lemma 2.5.9,

ti n k - 62 n k

1 n k = 2 n k

hence X\ + 2p(a 1) - X2

<2p(u.),P> = 0 for all

(X. ,a> > 0, a E A(u .).1 1

+ 2p(u 
2 ).

P E A(L.)

So

But

and

(X .P> =

<2p(u.),a> > 0,
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A(Li) = {1 E A(g,,tc) < cX. + 2p(u.),P> = O}

A(ui) = {a E A(g,tc) (X + 2p(u.),a> > 0}.

Hence fl n = 2

and 
X - X2'

This proves Proposition 2.5.6.

q.e.d.

2.6. Reduction step for the proof of Theorem 1.3.

We are now in a position to prove the main result

stated in Chapter 1. We will argue by contradiction and

reduction to a proper subgroup L C G.

Suppose X E d(g.,K) is irreducible and has a

Hermitian form < , >. We will assume X cannot be

realized as an A (N) module, but will exhibit X as a

Langlands submodule of some derived functor module induced

from an (L,LK) module XL, making sure that this

information can be carried over to G and X.

We need to keep track of the existence of Hermitian

forms at different steps of induction as well as of their

signatures on some finite sets of K-types.
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Recall from Voga

Hermitian dual of a

n [1984] (Definition 2.10)

(9,K) module Y

If : Y -- ), C I dim U(k)-f

f(Nx) = Ef(x), X E C x E Y}.

is a (g,K) module.

Def inition

on a (g.,K)

2.6.1. An invariant, symmetric Hermitian

module Y is a pairing

< , > Y x Y-

such that

a) <x,ay+bz> = a(x,y> + b<x,z)

<ax+bw, y>

for a, b E C,

b) <(U+iV)x,y>

= a(x,y> +

x, y, z, w E Y.

= -<x,(U-iV)y>

c) <k-x,y> =

U, V E go

<x,k -y>

y, x E Y.

k E K.

d) <x,y> = <y,x>.

the

Yh = < 00 ;

form

b<w,y>
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The radical of < > is

Rad(, = {x E Y < (x,Y> = 0}.

It is clear that invariant symmetric Hermitian forms

on Y are given by (gK) maps f : Y - Yh such that

f = fh . Yh -- + Y. Moreover we have

Proposition 2.6.2. Suppose X E sd(g,K) is irreducible.

Then X admits a non-zero invariant Hermitian form if and

only if

h

In this case the Hermitian form is non-degenerate and

any two such forms differ by multiplication by a real

constant.

Proposition 2.6.3. Let X E d(g,K) be irreducible and

(4V,HV,5,vV) a set of @-stable data attached to X, so

that

dim Hom ,K(X, (I V( 6 @V)) = 1

(see Proposition 2.4.19). Let Hv = TA.

and only if there is an element

Then X Xh if
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w E W(L,A) such that

= 65 and WD = -v.

In this case we get a Hermitian

Lg (I V(6V(v )).
QV vV).

form on X from a form on

This result is essentially due to Knapp and Zuckerman

[1976].

A formulation close to this one is in Vogan [1984],

Corollary 2.15.

Corollary 2.6.4. Let X E 4(g,K), irreducible, endowed

with a non-zero Hermitian form < , >. Write qV =V(X).

Let q = t + u be a 0-stable parabolic subalgebra such

that L 3 L V, U C U and (qV,HV,6V,vV), a 0-stable

data attached to X. Write

X = 9 t q(IL (Vvv)).L - i

Then

xh has a Hermitian form < , >L

Proof. This is a formal consequence of Proposition 2.6.3.

q.e.d.
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Proposition 2.6.5. Fix q = L + u C g, a 8-stable

parabolic subalgebra. Suppose Y E A(L,LnK) is equipped

with a (possibly degenerate) invariant Hermitian form

L

Then there is a natural invariant Hermitian form

G s h h< > on [As(Y)]

Proof.

6.1.5

Recall from Vogan [1981] Chapter 6, Definition

the functors

ind

Q
: A(L,LfK) -- +* A(g,LfK).

ind9Y = U(g) 0_ Y.
Q 1%

Write

V : A(L,LfK) -- A(,K)

eiY = VY = p ind9(Y@A top a)

where yj A (g ,LfK) -- + A (g,K) are the Zuckerman's

functors (cf. Definition 2.4.14). Set Y = Y @ Atop .

By hypothesis, we have a map

L h0 :Y-*y
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This induces a map

ind(Y) - pro h

and

G s h

By Theorem 5.3 (Enright-Wallach) in Vogan [1984]

L2s-e h h

Let

< , > : VY + (VsY) h

be the natural pairing given by Definition 2.10 in Vogan

[1984].

Define

(u,v>G = <u,O v>.

This gives an invariant Hermitian form on f s(M

(cfr. the proof of Corollary 5.5, Vogan [1984]).

q.e.d.
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Definition 2.6.6. If Z E A(g,K) and 6 E K, write

Z(6) = Hom K(V 6 ,Z).

Then

Z 0 Z(6) 0 V .

6EK

If we fix a positive definite form on V 6 , Z(6)

inherits a Hermitian form. Suppose Z is equipped with a

non-zero Hermitian form < , >. Write p(b) (resp. q(6),

z(6)), for the multiplicity of V 6  in the subspace of

Z(6) where ( , > is positive (resp. negative or zero).

Write the signature of < , > on Z(6) as

sgn(< , >IZ(6)) = (p(b),q(6),z(6)).

Then write, formally

sgn(< , >) = (p(6),q(6),z(6)).

6EK

We will prove in the next chapters the following

result.

Theorem 2.6.7.

and X E A(g,K)

Let G = SL(n,R), SU(p,q) or SP(n,R)

irreducible, endowed with a non-zero

(2.6.7)



52

invariant Hermitian form < , > and regular integral

infinitesimal character.

If X = A ,(X'), for any q' and '. Then there

are a 0-stable parabolic q = t + u, an (L,LfK)-module

L
XL and (LfK)-types 6 i = 1,2 such that

a) X is the unique irreducible submodule of A (XL)'

and X occurs only once as a composition factor of

9 (XL).

h L
b) XL is endowed with a Hermitian form < , > L 0.

Write (pL'q LzL) for its signature. Then

L L
L ) x 0 and q 2 0.

c) Choose A+(k) = A+(Lfk) U A(unk). Then, if 6.

L L+has highest weight L1, P = p + 2p(n) is A (k)

dominant.

Chapters 3, 4, 5 will be devoted to the proof of this

result. Assume this for the moment.

Using this result, we want to prove non-unitarity of

X. We need to check that the Hermitian form < , >G

induced on q(XL)h by Proposition 2.6.5 is a multiple of

< , > on X; that for the L n K types satisfying c) of

Theorem 2.6.7, the corresponding K types occur in X and

that the signature of the form on these K-types is the

L L
same as that of < , > on the 6.

1*
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Theorem 2.6.8. Suppose X E d(9.K) is irreducible and has

a non-zero Hermitian form < . >. Let q = t + u be 0-

stable and XL an (L,LK) module such that X is the

unique irreducible submodule of q(XL), X occurs only

once as composition factor in Ots(X) and X has aQ L L
L Lnon-zero Hermitian form < > if 6 E (LfK) is an

(LfK)-type of XL with highest weight AL such that p
LL

L + 2p(ulp) is dominant for A(unk) then if 6 E K has

highest weight p, X(6) A 0 and

Proof.

K and

Sign ( , >IX(6)] = Sgn< , >L L

Applying the appropriate definitions and results to

q n k we have maps

91A : A(Lk,LfK)Qflk

vi : A(Lk,LK)
qfk

A A(k,K)

- A(k,K).

If Y E A(L,LfK) there are natural maps

pro Y -

indk Y ind9Y.
qflk Q

pro qnk
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These induce (k,K)-maps

i r i
qYq 4 k Y

.jY S e y

Then, the following diagram is

[i Y]h 

It h

commutative

2s-i h

r

i Y h _ ____ 912s-i h

qnk

The isomorphisms across are Theorem 5.3 in Vogan

[1984] for (G,q,) and (K,qk), respectively.

Arguing as in the Proof of 2.6.5 (for K) we have

qnk . k

kink* :~ Yn_
qflk

tk .2s Y
-nu

k h
Y pro Yqflk

- gs Yhqnk

and we have the following commutative diagram

maps
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G
es Y

(2.6.10)

K
s K

nk

And we have a Hermitian form on

<xy>K _

s h sY) h

I h

s h

;fnk

I r
ps Yh
(Qnk~h

I s (Y)
flk

K

= ro Got, and by Proposition 6.10 in Vogan

[1984],

(2.6.11)

(2.6.12)

L is a unitary map,

<x,y>K = (Lxy>G

Write

sign(< , > )

sign(< , > G

PK' q, ZK

G', qG, 'G

and again

sign(< , > ) = (PL q LzL); (LfK) > INzL

By 2.6.11,

Since 0K

-[ N

-4IN

= (PK'q K"zK)

=(G'q G"zG)
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ZG(6 ) > zK( 6 )

The main ingredient in

is the following result due

the proof of Proposition 2.6.8

to T. Enright.

Proposition 2.6.13 (Enright

stable parabolic.

Let 6L C (LnK) with

pL + 2p(unp).

a) If 4 is not A(u

[1984]). Let

highest weight L

1k)-dominant, then

2 Y(6) = 0.
0.flk

b) If w is A(unk)

representation of K with

dominant, write 6 E K for the

highest weight p. Then

L

qK = L(6 )

LzK06) = ZL( 6

q = L + a 0-

p =Set
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For a proof of this result see Vogan [1984] 6.5-6.8.

Lemma 2.6.14. Suppose V is a module of finite length and

S is irreducible.

Assume

a) S C V occurs exactly once as a composition factor

of V.

b) Any non-zero W C V contains S.

c) S is equipped with a Hermitian form.

Then, up to scalars, Vh has a unique Hermitian form

< , > and

S = Vh/rad(< , >1).

The proof of this lemma is standard. We can now prove

Theorem 2.6.8. By Proposition 2.6.13 and 2.6.11

(2.6.15) pG( L( 6  )

qG(6) L(L )

and zG(6) zL56 L

Apply Lemma 2.6.14 to

V = 9 (XL) and S = X.
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We know that a) - c) hold in this Lemma since they are

part of our assumptions on X. We also know that

< , >G X 0 by 2.6.15.

Hence, we have the following result:

Proposition 2.6.16. In the setting of Theorem 2.6.8

< , >GX = c< , >

X =- [p(X ]h /rad(< , >G

So ( , >GIX is nondegenerate and has signature

sgn(< , >) = (pG'qG )

q.e.d.

It is now straightforward to prove Theorem 1.3. Using

Theorem 2.6.7, proved in chapters 3-5 for our groups in

question, we have that the hypotheses in Theorem 2.6.8 are

true and by 2.6.15

p(G6 ) > 0

and qG(6 2 > 0
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and the form < , > on X is indefinite too.

q.e.d.

2.7. Methods to detect non-unitarity.

To prove Theorem 2.6.7, we will need a few techniques

that we will discuss here. Fix a positive root system

A+(k).

Lemma 2.7.1 (Parthasarathy's Dirac operator inequality.

See Borel-Wallach [1980] 11.6.1.1.) Let (r,A) be a

unitary representation of G and 9K its Harish-Chandra

module.

Fix a positive t-root system A+(g) compatible with

A+(k) and a k-type 6 occurring in WK with highest

weight p E t'c. Write

p = p(A+ (9)) E (C )*

PC= p(A(k)) E (tc)*

Pn = p(A+(A)) = P - PC (c)*.

Let C

g acting on

dominant for

be the eigenvalue of the Casimir operator of

IK' and w E W(k,t) making w(P-pn

A +(k). Then
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<W(A-pn) + Pc' (00Ln ) + Pc> > C0 + <P,P>.

Lemma 2.7.2. Let

Hermitian form <

on a K-type 6,

1) There is

X E A(g,K) with a non-zero, invariant

>. Suppose the Dirac inequality fails

for some choice of A+ (p). Then

a k-type ri occurring in V6 ® p such

that

S,>V6

is indefinite.

2) Suppose G/K is Hermitian symmetric with a one-

dimensional compact center, so that we can choose z E ik0

with the property that g = k @ P+ - is the

decomposition of g into the eigenspaces 0, +1, -1 of

z, respectively.

Set p = p(A(p±)). Then, if the Dirac inequality
n

fails on 6 for p-, there is a k-type rq occurring in

V 6 ® P such that

>I(V 6 V F)

is indefinite.



61

Proof. Recall from Borel-Wallach [1980], II §6, the

definition of (7,S(V)), the space of spinors of a finite

dimensional vector space V defined over R, with a

positive definite inner product < , >. Write ( , > for

the unitary structure on S(V) such that

(T(v)x,y> = - <x,((V)y>

v E V x, y E S(V).

Recall also, the definition of the Dirac operator

D : H 0 S H 0 S

for (Y,H) a unitary (go 0 ko)-module and S = S(PO).

D(ves) = r(Xa)v ® i(X-a)s.

aEA(k)

Since

m-V

A+ +(k)

(where m = 2 dim ac/2]) (cfr. Borel-Wallach [1984] II §6)

then o(p-pn) is the highest weight of a k-representation

occurring in V @ V n C H ® S.

(2.7.3)
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Let f = v ® s be a weight vector for G(p-p ).

Write also < , D for the tensor product inner

product on H @ S; then the proof of Lemma 2.7.1 shows

that

0 > <DE,Df>D D

(<W(p-pn) + Pc 'W(WPn)+Pc> - c 0 - PD'

So Df 0 and

Df = (Xa)v ® r(X-a)s E p.V 6 S C H ® S.
aEA(p)

This gives a non-zero map

p ® V. a pov6.

So Hom k(l V6, H) X 0. Let E = Im a. Since < >5 is

positive definite this means that ( > is indefinite on

V6 @ E.

This proves a) of the lemma.

For b) simply observe that p - p~n = p + pn; p n

p(p+) and + is a representation of k. Hence if 1 E

A(k)

<p ,P> = 0.
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is one-dimensional. Since p + a is not a

weight of S, for a E A(p+)' V+ is killed by r(X )
pn

and (2.7.3) becomes, for [ E V6 0 V _

Pn

Df = r(Xa)v ® (X-a )s

aEA(p )

so Df E (p ).V @ S C H @ S. Similarly for p~.

q.e.d.

Lemma 2.7.4. Let G be a connected, reductive linear Lie

group. Assume that

rank G = rank K.

Then, any representation with real infinitesimal character

has a Hermitian form.

Proof. By Proposition 2.6.3 it is enough to prove the

lemma for G quasisplit and a Langlands subrepresentation

of a principal series I(6@v) with 6 ® v a character of

s ssa maximally split Cartan subgroup H =T A

So V +

pn
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Since G is equal rank there is a subset B =

... ,ak} of strongly orthogonal simple real roots such

, since Hs is the maximally split Cartan subgroup of

then B spans a = Lie(A s

Hence if w = sa ... sa is the product of simple

ections s , w acts by -1 on As and by the
LL.

1

T .

from

a
ino.

Definition 2.4.3 the maps

Consider the exponentiated

Sa : SL(2,R) > Ma

0a

map

identity on

Recall

nA(2,R) -- +

1 0
m = E M.

a a 0 -1

(cfr. Vogan [1981] page 172).

connected, Ts is generated

w E M'/M = W, then there is

by

a

Then,

T M0

E M'I

-1O-m = a Ua a

since

U (m a

such

G

a

that

is

real}. Let

w-a

But m =m =m.
Ra -a a

Recall the elements 6 E M and v E A. Then

{ay,

that

G,

ref 1

set
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(w6)(ma) = 6(w-ma) = 6(ma

W-6 IT0
= 6.

Hence w5 = 6. Since I(60v) is assumed

infinitesimal character, V is real.

Also since o A = -1 then -Ov = -V

This is the condition of Proposition

existence of a Hermitian form.

to have real

= -V.

2.6.3 for the

q.e.d.

and
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Chapter 3. G = SL(n,IR)

3.1. Preliminary Notation.

To fix notation consider G = SL(2n,R); the odd case

is similar.

G = {g E GL(2n,R) I det g = 1}.

The maximal compact subgroup K of

K = SO(2n,R) = {g E G I gtg

The corresponding Lie algebras are

go = {X E gL(2n,R) I trace X = 0}

ko = X E X + tX = 0} = oa(2n,IR).

If 0 is the Cartan involution defined by O(X) = -tX,

then

p0 = {X E 90 I X _ tX}.

The Cartan subgroup of K is

G is
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rr(e1)

r(n)

10 E IR;

cosO. sin ."

-sin 0. cos 0.
1 l

and if

ri
ry

A = <

then Hc =TcAC is

C
0

0

-06

r
n

rn

r. E [R det g = 1
1

a maximally compact Cartan of G.

0

o 0 2

2

0 e
n

-0 0
n

0. E Rl>

T c



a
1

a
1

a
2

a
2

= x

= t0

an

2 a. = 0
1

a. E llR

Complexifying:

g = ot(2n,C)

k = oo(2n,C).

e. E i(t )*j 0
j = 1,2,.

0 0

-0 0

0 0
n

-0 0
n

Then the roots of tc in k, A and g are, respective-

ly:

1 1 < j < k < n}

68

Ca 0

an

h 0 + aCa0

and

Define .. ,n, by

e.

0 0
2g.

= jo..

A (k, t') = f±( i ±ek)
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A(t,tc) = {±2 e e; (e ±ek) | 1 < e < n; 1 < j < k < n}

A(,,tc) = {±2 e e; ±(e ±ek) I

The multiplicity of + e ± ek

Choose A +(k,tc) = {e e k

can be identified with the set

1 e < n; 1 < j

as a

1 1

root in

j< k ( n}.

< k < n}.

is 2.

Then K

{p = (a 1 a2 . . . . an) n a1  a 2 >...> a n-1 > IaI|}.

3.2. Computation of LV(X) for a Harish-Chandra module X.

Let Ii = (a,a 2 . . . an) E i be the highest weight

of a LKT of X. Fix a positive root system A +(k) so that

a 1 a2 2 ... |a ni

as in 3.1.

To obtain LY(X) = LV(p) as in 2.4.8 we need:

2pc = (2n-2,2n-4,...,2,0).

Let

p + 2pc

phism of

tion of

A +(qc) be a 8-stable positive system making

dominant. After conjugating by an outer automor-

K we may assume that an 0. Then the restric-

A+ (,hc) to tc is
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A+ (g t ) {e.; 2e±| 1 < j,k,O < n; j < k}.k' e

Write O(g.,tc)

t. Then

for the set of simple roots restricted to

*(gtc) = {e1 - e2 ; e2 - e 3;...; en-1 - en; 2e I.

Let

p + 2pc = (x1x2 -. n.).

We can form an array with the coordinates of

grouping them into maximal blocks of elements

2. That is, if

(3.2.1)

p + 2pc by

decreasing by

(a ,.. a.1, ,a2 ,...,a 2 a ... ,a 0 ... 0)

r 1 times r2 times rt times R times

where a1

Then

the array

> a2 >

since

would

...> at > 0.

the coordinates of 2pc

look like

decrease by two,

(3.2.2) in1 m1 -2 ... m 1-2p1 +1 m2 mi2 -2 ... m 2 -
2 p2 + .

2R-2,...,2,01.
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Proposition

weight of a

p + 2pc is

a) Xv(p) =

3.2.3. Suppose that

representation of K

as in 3.2.2. Then

x has the form

p E it 0

and that

is the highest

the picture for

r 1

i) X. = a.
.1 .

= 0 if
t

[yp()l d

' 2 ' 2 .. x t ...xt ,0... 0)

r 2 rt R

- 1

at= 1.

is isomorphic to, either

oA (r ,1 ) (D oA (r 2,C) (D...@ ( A (r tC) (D oA (2R.R),

> 0 or

A (r 1C) 0.... a t(rt , ) ( ot(2(R+rt ' '

S0.

Proof. Notice that 2pc - p = (-1.-,...,-1). Define

where

So

b)

if xt\

if xt

ii) x > x 2 >..>xt > 0.
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{ }I = {2e . I <p + 2p -p,2e > = -c. < 0}.{1n-}+=1{2en-j+l

Then XV(p) = p + 2p - p + - 2 c P. has the form2 i J

(3.2.4), and the conditions a) - e) of Proposition 2.4.7

are obvious. Moreover the subset of simple roots

orthogonal to Xv(p) is

{e 1 -e 2 ; 2 e3 'e' r -1~r 1 } U {er er1+1'..er +r2-1 r +r2

U...U {...;e n-1 en;e2d.

This spans the root system

(A r A ) D (A r A ) (.. A (Ar -l @A r ) CD A2k'r 1 r1 r2 2- rs 1 s1 2k

since the roots e - e involved are restrictions of

complex roots and therefore occur twice in A(g,Lc). Now

the proposition is clear.

q.e.d.

3.3. Lowest K-types of the modules A (M).

We will give some criteria to determine when a

representation of K is the LKT of one of the (g,K)

modules A (X).



73

Recall from 2.3 that to construct a 6-stable

parabolic subalgebra q = t + a we need a weight x E it.

Suppose

(3.3.1) x = (x 1 . . . . x

r 1 times

x x,

r2 times

... x t...,i x

r t times

0,. 0)

R times

where x1 > x 2

Write q = q(x) = L(x)

x as in 2.3.

Clearly

( 2p(ank) =

(3.3.2)

+ a(

t >0

x) for the parabolic defined by

r 2 r t

with

and

,0.. .0)

R

s. = 2(n-r 1-.. .-r j.) - r. - 1
J -

2p(ulp) =

(u .u ... u ... u ,0 ...0)

r r r R
I t

u = 2(n-r -..- r+)1 r +

(s 1s .. sy

r

2z
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Proposition 3.3.3. Let ji be as in (3.2.1)

is the highest weight of a representation of

is the LKT of a (g,K)-module A (X) if and

a) a - ai+ 1  r + r i+1

and

and suppose it

K. Then V

only if

b) at > 2R + rt + 1.

Proof. Suppose V is the LKT of an A (X). Then p =

X + 2p(unp) and X is the weight of a one-dimensional

character of L satisfying 2.5.1 a) and b). Hence X is

orthogonal to the roots of tc in t and it is positive

in the t C-roots in u. That is,

X = (X, . . . . , 2' ' '2'

r 2

.' .'.'I' t ,0 ,...,0)

r t R

x 1 x 2 .. t > 0.

a = X + 2(n-r -. .- r )
a j r l)-

at t + 2(n-r1 -.. .- rt-) -rt +

- r. + 1

1 > 2R + rt + 1

a. - a. =
SJ+l1

x - x
j j+1

- r + 1 + 2r + r.
j ,j j

- 1 > r. + r j+ .
- 3 J+

and

Then
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Conversely, suppose 4 is a weight satisfying a) and

b) then we can define

q = q(p) and

A. = a. - 2(n-r -r. ) + r. - 1.
J 31

Then p will be the LKT of A (A).

q.e.d.

3.4. Proof of Theorem 1.6.7 for G = SL(nR).

Suppose X E d4(g;K) is as in Theorem 2.6.7 with

infinitesimal character Y E (/c)* and p E (itc)* the

highest weight of a LKT of X. Write IL as in 3.3.1.

Considering what the weights in V ® t look like, we

will study 2 cases:

1. 2R + r + 1 > a.t

2. at > 2R + rt + 1.

By the conditions given in 3.3, if V is the LKT of

an A (A), then p is in case 2.

Therefore, the first thing we must do is verify that

in case 1 X is not unitary:

Case 1.

We will use the following result.
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Lemma 3.4.1. Le

r + 1. Suppose

inequality fails

t 1

that

for

be as in 3.3.1 and suppose at < 2R +

a. - a i+ = 1. Then Dirac operator1 11

s= (n,n-l,...,.1).

Proof. The hypotheses on p imply that

p= (x+t-l,..x+t-l,

rN

Note that 1 < x < 2R +

R + 1 - x R(4)

x+t-2,...,x+t-2.

r 2

..x...,x,0.. .0)

rt R

implies that

and R + r - x > -R.
t-

Now,

Pn = (n,n-l,...,R+rtR+rt-1,...,R+1,R,R-1....,.1),

so

pn

(n-x-t+ln-x-t....,R+rt- x R+rt x-1,...,R+1-x,R,R-1,...,1).

By (*), the sequence of integers

R + rt - x, R + rt - x - 1,....R + 1 - x
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overlaps the sequence R,R-1,R-2,...,-R+1,-R.

Clearly, the first n-R coordinates of pn -

decrease by steps of at most one.

So if W E WK is such that w(P-p ) is dominant,

then the coordinates of o(p-pn) will be a sequence of

integers decreasing by at most one, ending in 0 or +1;

and in the latter case, there must be repetitions in the

sequence.

Since

P = (n-l,n-2,...,R+1,R,R-1,...,2,1,0)

it follows that

W(4-P n.P ' < c n' Pc>

WA-P )(-n n><< n' Pn '.

Hence <w((-pn) + pc n)+Pc < Pn+p C'n+pC> = Pp>.

q.e.d.

Now to prove nonunitarity for case 1, take i0  to be

the minimal integer in {l,2,...,t} such that a. - a i+ =
1 +

1 for all i > i0 '
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Let K = r 0+1 + r 0+2 +...+ rt + R

S= ot(r 1+r 2 +...+ri ) @ ot(2K,R) = L@ L2*

Then L C

Langlands

L and by Proposition 2.4.15, if

quotient of E 1 (I6 OvVV)) and
QVL (6

X is the

if we set

XL = Snf[ILv(6V vY)),

then X is the Langlands quotient of

gg(X L V))

and a) of Theorem 2.6.7

Also, by Corollary

holds.

2.6.4,

< L

Write p L = p - 2p(unp).

By 3.3.2,

hXL has a Hermitian form

Then jL is a LKT of XL

2p(unp) =

(2n-(r 1 +.. .+ri )+l, ... ,2n-(r +.. .+r )+1,0,...,0).

r +r2+...+r 0  
K

So SL(2K,R) = ISL(2K,R) 2

and
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and by Lemma 3.4.1, the Dirac inequality fails on . By

Lemma 2.7.2, there is a K-type V 2 in V 2 2

that makes the Hermitian form < , >L indefinite.

The roots in A(L2 lp) are

{(0... . 1,0... 0 +1 0.. .0),(0... 0,+2,0...0)}.

K K

It is clear that if r = +

A(L2 lp) then, since a - ai

is also dominant for A(nlk).

for case 1.

For case 2, note that if

all j = 1...,.t, then we hav

there is nothing to prove.

So, assume that there is

a. 0 - ai + 1 < r + r0 +1'

Set K = r + r2 +...+ rt

P is dominant for some f3

+1 2 the K-type p +

Hence Theorem 2.6.7 follows

a.

e the

0

a, >
j+1 -

LKT of

t

r.
an

an

+j+1

A (X)

E

for

and

such that

and

t = at(K,C) @ oL(2R,R).

Note that at > 2. Hence t L

o L(2R,R), t ; LV and we can

Theorem 2.6.7 holds. In fact,

UL and XL= I L ( 6 V®VV), as

= OL(r 1,C) G... (D ot(rtC)

find XL s.t. (a) in

if oO = t n V = v + t

in Definition 2.4.17, we

n

can

C2 2)
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choose XL to be

XL = L

since then, by Proposition 2.4.15

(XL

where A(a) = A(v)\A(t)

and q = L + U.

hBy Corollary 2.6.4, X admits a non-zero HermitianL

form ( >L

Write XL as the exterior tensor product XL = XLL L
0

where XL.
1

L1 =

is an (Li,L fnK) module,

oc~(K,O) and L2 = SL(2R,R).

By Theorem 6.1 in Enright [1979], and especially its

proof (pp. 518-523), if XL is not an A ,(X') then

Dirac inequality fails on the lowest K-type. Write L =

p - 2p(unp) and

1 = L 1
M = 4 L1

XL2
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By Lemma 2.7.2 there is an (L 1fK)-type

1 + P for P E A(L 1lPL).

V 1
Ti

with r1 =

If for all i X 0

a. - a i+1 + ri+1 2.

Then p + P is dominant.

Otherwise take

B = {i =

Then apply Enright's

K' = 2 r

iEB

with

1,...,t | 3.4.1 holds}.

result to the rest.

q.e.d.

(3.4.1)
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Chapter 4.

4.1. Preliminary Notation

Let n = p + q. Write

GL(a,C), and A

G = SU(p,q)

Im for the identity matrix in

for the conjugate transpose of the

matrix A. We define

G = {g E SL(n, C)
pq,

[I=
0

0

I .
q

Then the maximal compact subgroup K of G is

K = {g E G

Also, with the

g0 = X E

= X

A
g =

0

0]
B;

BJ
A E U(p), B E U(q)}.

usual notation:

od.t(n,C) I

[A
C

B

D

p

0

E ot(nC) I

0

-I
q

= 0+

0

A E u(p). D E L(q)

skewhermitian;

I A E u(p),

-B *= C

D E u(q)}.
A

0
k0 = X E go

I0

|I
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If 8 is the Cartan involution defined

and

0 {X E go 0(X) = -X

then

0= X

L B

.B 0.
B

The compact Cartan Subgroup of

arbitrary p x q matrix .

G is

H c= Tc = g = diag(e
o1 e n

,e n) I

j=1

t = diag(i( 
1

..... n)) E , | I

j=1

everything we have:

by 8(X) = -X

Then,

0. = 0
J

8 = 0

I

Complexifying
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9 = o L(n,C)

k = o(gL(p) gL(q)) = {X =
0

0"

Di
A E gL(p),

D E g-L(q)

t = {diag(z ,...,zn
nn

j=1

identified with the space

= (al ,. . . ,ap I ap+1 ,. . . ,an)

zi = 0}.

I ai

a p+) ... > an a = 0 a. - aE Z.

If we denote by ej E

the dual basis in Rn

correspond to the set

IR j = 1,

then the

.r. . nf

roots of

the elements

t in g

A(9) = A(qt) = {e, - ej I t 9 J; 1 -, j n}.

Also

A(k) = A(k,t) =

{eL - e i 1 L, J p} U {ek - em I p < k, m n}

K can be

{1 aP;

of
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the compact imaginary roots of t

A(l) = A(,t) = (+ (e -e p+j) I

the noncompact imaginary roots of

4.2. Computation of LY(X) and

Chandra module X.

Let i = (a1 ,a2 ,. . . aplb 1 ,b 2,

weight of a lowest K-type of X.

A+(k) so that

and g.

1< e p; 1 j . q}

t in g-.

XY(X), for a Harish-

... ,b ) be the highest

Fix the positive system

a 1 > ... > a ; b > ... > b .

We want to obtain an explicit expression of the

parameters XV and L attached to pi by 2.4.7 and

2.4.8.

2pc = (p-l,p-3,....-p+lq-lq-2,...,-q+l).

Let

p + 2 pC = (xlx 2 '. . xp I3 1 'Y2''''Yq)

We can form an array of two rows with the coordinates of
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p + 2pc so that they are aligned in decreasing order from

left to right as follows: the x are in the first rows;

the y. are in the second; and terms decrease from left to

right in the array. For example, if we have

S j > >i+l j+1 >i+2 xi+3 > k

j+2 k+1 j+3..

the array would look like:

xi+l

y.y

i+2 ~~-* i+3 '''

+1

Xk Xk+l

yj+2 j+3

This array gives a choice of positive roots A+ =

A+(g,t), compatible with A+(k). That is, the simple

roots are given by the arrows. In the preceding example,

they would be

... ei - e ;+j; ep+j - i+1; e i+l

e i+2 e 1+3 ''.

... ek ~ ep+j+ 2 ;p+j+2 e k+l ;ek+1

... xi

e "p+j+1 -e i+2;
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Because the terms in each row decrease by at least 2, the

entire array is a union of blocks of the following five

types.

1.

2. r r-2 ... r-2k

r-1 r-3 ... r-2k-l

3. r r-2

r-l r-3

r-2

r-2k+l

r

rZr+1 r-l

r-2 ... r-2k

... r-2k+1

r

r+l

r-2

r-1 ... r-2k+l

r-2k

r -2k-

From now on we will drop the arrows in the pictures,

since the ordering of the roots is clear from the

r-2k

r r-2 ... r-2k

4.

5.
I

r-2r
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arrangement of the coordinates of p +

agree on choosing the order prescribed

also refer to them as |\ _

Example.

2pc, provided we

in block 1. We will

etc.

Let p = 7, q = 8, and

= (2,2,2,-2,-2,-2,-311,1,0,0,0,-2,-3,-3)

then,

2pc = (6,4,2,0,-2,-4,-617,5,3,1,-1,-3,-5,-7)

p + 2p c = (8,6,4,-2,-4,-6,-98,6,3,1,-1,-5,-8,-10).

We obtain the following picture

8 6 4 - 4 -6/ -9

8 6 3 -5 8 -10

Using the picture of p + 2p c we can split the

coordinates of p as follows

= (g .g 1

r 1 times

... ... g

rt times

f f

s1times

f .. f)t' t t

st times

is the number of p-coordinates and s.

q-coordinates making up the i-th block

where

number

r.

of

the

of the
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array of

Write

X -2=

9t 9 f 1 f 2> .. .
gt - 2

0, i = 1. t.

V1) = XV(X)

as in Proposition 2.4.7 in chapter 2.

Proposition 4.2.1. 1. The expression

form

V times

r 1 times rt times s times

t t t

sttimes

where

X1 > X2 t*

2. Let

p + 2p c, and

r. > 0,
1

s.
1

for XV(p) has the

I
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A(Ly) = A(Lv,

= {a E A

tv(X) (@EA(L
V

= o(u(r 1,s1 ) ( ... @ u(r t,sd)

Example. In our current example we have

= (2,2, 2 , -2,-2, -2, -3 | 1,1, 0 , ,

r1 r2

0 , -2, -3,-3)

r4 r5 r6 s1 s2 s3 s s5 s6

= 0.

Let X\ = p + 2pc 
- p

2,2,1,0,-i, -2.,-3, -3).

Then

-1, -2,-2, -3 | I ,0 1 ,
~Y2'2'

r2 r4 r5

0 , -1, -2,

r6 s1 s2 s3 s s5 s6

tc)

Then

I XV, a = 0}.

cxa)
)

Note r3

1

and

tv (X)

= (1,1,1,-l,-2,-2,-3|1

V2

r

-3,-3
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Proof. Take a block of the form 1. Then coordinatewise we

have

= (...,r,r-2,...,

p = (... ,s,s-2,..

r-2k,... I... ,r,r-2,...,r-2k,...)

.,s-2k,... I...,s-l,s-3,...,s-2k-1,...)

= p + 2pc - p

= (. ..,r-s,r-s,...,r-s...

...,r-s+l,r-s+1,...,r-s+1,...)

Let

e m-e p+;ep+em+1 .. ; "m+k e p++k}

be the set of simple roots making up this block.

{03i = e m -- e .m+1-1p+e+i-1 i = 1......k+1}.

Then

-c. = ->
1 V 1

p + 2pc

x V

Choose

|

I

= -1 .
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Also

<,6 P > = 6 j

and

c.

V 2 i i 0.

Let {(1..... 13k .'...'Pk } be the subset of imaginary
1 r

noncompact positive roots chosen this way from all blocks

of the form 1. For blocks 2 we can choose the same kind of

subset of simple roots. In this case

V

c. = -IV ,. = 0

since coordinatewise, we have

p + 2p = (...,r,r-2,...,r-2k,...|

... ,r-l,r-3,...,r-2k+1,..

p = (. . .,s,s-2....,.s-2k,..

Vy = .. ,r-s,r-s,...,.r-s,

.I ... ,.s-1,s-3,... s-2k+1

... |... ,r-s,r-s,

A similar situation occurs in cases 3-5. Choose all the

,...)
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simple roots of the form e a

For cases 4 and 5 choose all

For all these subsets

- ep+b involved in blocks 3.

those of the form ep+b - ea.

c = -<X (,9i > = 0.

It is clear

is a set of

roots. Def

that the union IT of these 5 kinds of subsets

strongly orthogonal simple imaginary noncompact

ine

+
V V 2

Pi Ell

c.fp..
1 1

a) - d) of Proposition 2.4.7 are clear.

Let

A + = a E A+ ja,p > = 0}

A A+ \{eiem;em-eji;e i-e p+e ;e +,-e.}i m m i p~ep+e

1 =
0 0

1
then t can be identified with the set

{(x . . . x Ix +x ) E t IXm =Xp+L = =
p p+1' n 0 p



1So if i

a +b
= (a1., . . ., .2 ,

a m+b

,apb..,..., 2 ,..,b).

To verify e) of proposition 2.4.7 in chapter 2 we use the

following lemmas.

Lemma 4.2.2 (Schmid [1975])

1 + 1 1
PC = p(A (k , t )),

A + 1 1A (g ,#L )

(see Vogan [1981] p. 247).

= A (g) n 13

and

1 + 11p = p(A+(g. , h ))

then

= (2p ) '

94

= it = A Ig

If

1 1
C

So
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~"1 1 1 1
x= 1 + 2pc - p

V

= V

it1

1+ -c
2 11

Lemma 4.2.3 (Vogan [1981],

for A + (q , ).

So 2.4.7,

Now it is

1 1
p. 249). p + 2p is dominant

c

e) is clear.

straightforward to verify Proposition 4.2.1.

4.3. The Lowest K-types of the Modules A (N).

In this section we obtain necessary and sufficient

conditions for a representation of K to be the LKT of

of the g-modules A (N).

If x = (x , . . . ,oxn) E i(t )* we obtain a 0-stabl

parabolic subalgebra q(x) = L(x) + u(x) as in 2.3. A

replacing x by a conjugate under W(KT), we may ass

it is of the form

one

e

f ter

ume
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x = (x 1,...,x ,x2''' x 2'

p1 P2

such that

x 1 > x 2 >'

Pi = p

> t '; P i ' q j - 0

and q =

L(x) = o(u(pj,qj) ( u(p 2 q 2 ) .. E D t't

Clearly

2p(aflt) = (rl,...,rl,r 2 ..... ,r , ...,rt ... ,r

S. 2 1t

s ,...,s ,1s ,...,'s ,...s , ...,s )

q1 q2 q t

and

Pt

and

Then

q.

x , .. x , .. x t'' ' t

qq Et
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2p(ank) = (sl,...,s ,s2.... s 2,. . ,st,...,st

p 2  Pt

rr,...,r ,r2 , . r2,. .t,...,.rt).

q q 2 q t

r = - +q2+..

S = -(pl+p
2 +..

.+q_) + q+1 +

.+p _) + pj+ 1 +

Let

represen

Wri

pi, and

their co

Wri

p E L(t0c) be the highest w

tation of K.

te q n k = (qfk)(W). 2p(unk)

p.' = p + 2p(ufk). (Note that

mpact parts coincide.)

te

eight of a

as above, for

Q(W) A 0'(W') but

' = (z,...,Z ,Z 2 ,...,z 2 , . . . . . Za,... za

k k2 ka

aaZ , .. Z ,. .. ,...,.

............................ )

Proposition 4.3.1. In the above setting, let

e.. Then p is the LKT of an A (N) iff z.
n +1

n. + n..1 i+1~

n. = k. +
1 1

i+1-

where S+ qt

+ Pt.



98

Proof. Suppose that w = X + 2p(ulp) for some a = L + a

and X E (tc *, the weight of a unitary admissible one-

dimensional character of L, satisfying 2.5.1 a), b).

Then X is orthogonal to the roots of t in L and it

is positive on the t c-roots in a.

By Proposition 2.5.6 and its proof we may assume that

p determines q' n k and p' determines C'. So ' =

a(p') and if X satisfies 2.5.1, then

X = (X , 1 , 2' '' x 2''''' a''''' a

k k2 ka

.., ,X a aX,1 1' .. .2' x a

2 a

with

x 1 x2 >..>xt'*

p = X + 2p(aup), then p' = X + 2p(u);

z. = N + (-n -n2-,..-n ) + ni+1 + ... + nt

and

z. -z = n. + n. n + n
I i+1 i i+1 1 i+1 i i+1*

Suppose that
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On the other hand

then let X.= z

o' = q(p'),

i f p satisfies

+ n1 +

z. - z > n. + n
I 1+1 - I 1+1'

... + n,_, - (n+ 1+. .. +nt) and

i.e. '= {a E A(g.,tc) I <p',a> > O} U

(a E A(, tc) I <p',a> = 0}

= A(U') U A(L').

Then if

k

, .t9. 9x tI

1 1
t

> 0

<X,A(L )> = 0

and p = p' - 2p(ua'k) q. e.d.= X + 2p(u'np).
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4.4. The parameters XV(A (X)) and tv (A (M))

By definition Aq (X) = g (C.), where s = dim a n k.

By definition 2.5.1, since X is perpendicular to the

roots of L, X E [center(L)]J. The LKT of A (X) has

highest weight ji = X + 2p(unfk).

GL
By Lemma 2.4.23, X v(A ()) = LV(CX) + p(a). Assume

first that

N = (0.. .010.. .0)

p q

and L = g

then X + 2p c

picture (say p

(p-1,.

q)

..- p+l|q-l,....-q+1) which gives a

... -q+1

... -q+1

p+

(if p = q+2k)

or else:

p-l p-3 ... q

/ q-1

q-2 q-4 ...

q-3

-q ... -p+

-q+1

(if p = q+2k+l)

(4.4.1)

p-i q-1

q-1

q-3

q-3

(4.4.1)

p-3.
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Then

p-q-1 p-q-3 1 0 0
2 2 2

q

1 -p+q+1
2'''.'.2 0 .-

q

(p = q (mod 2))

p- - 0.. 0

q+1

2

(p E q+1

0 ...O ;

q

(mod 2))

So if X = (a,...,ala,...,a)

give the same picture and

Xv(ex) = [a

1

and t = g, X + 2pc

+ 2 ,a + 2 a + +

S .. ...a

q

p q+e

will

a.. .a,

q+6

6 = 1,0.

Now suppose

a a t aI t = ... G

XV (C ) =

a) .. ( ( t'q t))a 1 a2 2 ..
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X = (a1. . . . ,a1 ,a 2 ,. . . ,. a2 ,. . . .at,...,ati

p1  p2  Pt

al,... ,a ,a 2,. . a 2 ... ,at,...,ad -

1 q 2 qt

'p t- 1 ,

q -1....,-ql+l,...

So on the (p ,q )-coordinates

and

xv c) -

I.

we have a similar picture

p.- q.i-1 1+6.1 1+6. (p.- q.i-1)1 1 1 Il 1 1.a.+ ,...a.+2  ,a....a,a- 2  ... -.. 2 .. .. a 1 1 . , - a -1 2 a 2

q +61

P.
1

qi

if say, p. = q.

picture for X +

+ 2k + e., 6. = 0,1, k > 0. Also the
1 1

2 pLflk will have pictures like (4.4.1) or,

and

Clearly

2 k = (pl-1,....-p. +,p2 ' ,-p t+1|

,q t-1

... |I... a .... a .i ... I
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if q1 p

.
z-1

2p 1 +
1

.. z-2p- ... -2 p- 3 ..z-2
y

(4.4.2)

z z-2

... z z-2

... z-2p +1

... z-2p +1 A...

p(a) = (u ,...,u ,...,Ut,...,ut|u ,.. ,u 1

.. Pt .11

.ut,....u t
q t

LY(Aq(X)) = (N)1
Sd.

(u(1) 1 x u(r ,s)

t
C '.

1=1

where

r = min(p ,q 1) + .

if p= q + 1 (mod 2) and p q> q 1; = 0

y y-2

Now

So

d.
X ((1)) ]

. . . z-

((U(Pitq i))

( F = 1
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otherwise)

s. = min(p.,q.) + 6.

(6. = 1 if p. q. + 1 and q. > p ; 6. = 0 otherwise)
1 1 1 1 1 1

2d + r. + s. = p. + q..i I 1 1 1

4.5. Proof of Theorem 2.6.7. for G = SU(p,q).

Suppose X E d(g,K) is as in Theorem 2.6.7, with

infinitesimal character r E (c) ), and let p E (Cc) be

the highest weight of a LKT of X.

Let's consider a slightly different splitting of the

coordinates of i than that of Section 4.2:

= (x 1. .. . . x 1 , x 2 '' ' 2 ' ' ' t' .. xt

p 2  Pt

y9 ... y ,y2  ' . . . .. .y 2 '. . . ys' ys)

q 1 q2 q s

so that x 1 > x 2  t ... >

Y1 > 2> s
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but here p , q > 0, that is, this splitting is not

necessarily compatibl'e with the blocks given by p + 2pC'

It is convenient to draw a picture of the coordinates

of p with the same blocks obtained from p + 2p C

In the example of section 4.2 this means

[ 2 A - -2

11 0 0 -2/

-3

-3 -3

But now, the splitting of p is

p = (2 2 2 -2 -2 -2 -3 | 1 1 0 0 0 -2 -3 -3)

Pi p2  p3 q1 q2 q3 4

We are going to study what happens around the first p1

coordinates of W.

We may assume that either

x + p-1 > y1 + q-1

or

x + p-1 = y1 + q-1 and p l qi,

otherwise we can interchange p and q.
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If p1 < p we can have

p1

x x 1**x x

Y1 ... Y
y q -1

the following configurations

x2 '.'

2 ' '

p1

x x1 x2 '

11 1Y1 ... Y

x x 1  ... x

y_1 y ... y.i-i 1

y. > y.i-i 1 > z.

... x1 x1

*... y _ y. ... y... i-i 1i 1

y. > y. > z.i-i 1 -

z

for p

1 .

Y2

or

2. xl

where

x2

z

xl3.

with

-- -

... x 1 x 2 ''



xl x ... x.

yi y ... y

x > x. > z
1 j

5. x ..

y1

. x

...
x ... x.

y 1 .. y

x > x > z.

The blocks in these pictures are simple factors of

LvX).-

Note that if ji is the LKT of an A (X), we must be

in case 1. So we have to check

reductive subgroup L C G, and

submodule of a Zuckerman module

tion of L; but in such a way

A (N), the signature of the He

under the derived functor, and

have an A (X), Dirac inequali

the representation of L, and

the indefiniteness of the form

V L o (Lfl) with highest weigh

that 7L + 2p(unp) is dominant

that we can find a

embed X as the Langlands

coming from a representa-

that, in the case of an

rmitian form is preserved

in the case when we don't

L
ty fails on p , the LKT of

the (LfK)-types involved in

on L, and occurring in

SIL = AL + P will be such

107

4. x

y1

z

y2

z

y2
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On the other hand, for cases 2. - 5. we need to prove

non-unitarity. In each case a group L will be found as

in 1, making sure that a) - c) of Theorem 2.6.7 hold.

All this will reduce the problem to the case p1 = p.

In this case we have two configurations

6. x 1  x 1 ... x .*** x 1... x *** x 1

y I ...- y yk' '' k z ...

Yi > yk > Z.

7. x x x x x

Y ... y ... ys . Y s

Case 6. can be included in either 2. or 3. and case 7. will

be dealt with similarly.

Note that as soon as we have shown that a) of Theorem

2.6.7 holds, then by Lemma 2.7.4 the representation of L

in question, as well as its Hermitian dual, have a

Hermitian form.

For 1, let t = o(u(pj,q a) a' a)), here qa

is either q, or 0.

Then L D L and by Proposition 2.4.15, if = L n

=V - Lv + L n av'
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DE[ (X ))
q Od0 Ly

Assume that XL ~ ®(XL ) A1 (N). Define Q2  by a2

a + au1

%2 ~ 41 + a = t + a1 + a.

Then

(A
O 1d

Proposition

To see

prove that

2.4.22,

2.4.15 again.

that 9 2(C.) is a module A2(ex)

(X,a> > 0 for all a E A(a 2 ). But,

we need to

by Lemma

xV - X + p(a)

= X + p(a) + p - res

+ res

Proposition

is N + P,

2.4.16, the infinitesimal character of

and it is regular.

+ P L
af

Hence

By

A (XL)

=A9, (X )
QV L V

ck2
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Hence, X\

KX+p,a> = (X +

particular, if

is dominant

res
pLre,a> > 0

a E A(u 
2 )

4-* X +

for all

p is dominant

a positive.

res<X V+P L , a>
= (X a> + <presa> 0.

Now

2p(nlp) =

(q- a**q-q a'-q............,- l-,......P-P1 'P 1 9 9Pl)

p1Qa '' p-p1'''9a l ' 1 l
Pi P-Pi q a -a

Set

p= L i-2p(unp) =

(U ,...,u ,...ut,...,utivi''''' 1''''' s,. , s)

Pi Pt q1 qs

with u 1 > ui+1' j >vj+

By c) of Lemma 2.4.23 pL is the highest weight of a

LKT of the module XL.

Since p1 < p then L A G and dim L < dim G.

Hence, by induction, Theorem 1.3 implies that there exists

In
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an L n K-type V L
77

V L L
11 77

in V L
1~1

o (Lfp) such that, on

the Hermitian form is indefinite.

Now, the weights in L n p are the roots

A(Llp) = ±(0.. .0 1 0...0 0.. .010.. .0 -1 0.. .0 0.. .0)

p- 1 qa q 4a

U {+(0... 0

Pi

0.. .0 1 0.. .0

P-Pi

10.. .0 0.. .0 -1 0...0)

qa a

qa = 1

A(Lflp) = (0.. .0

p1

0.. .0 1 0.. .010.. .0 -1 0.. .0)

P-Pi q

if q = 0.

A highest weight of an L n K-type in V L o (fl) is
t

then of the form pL + for some C A(tnp.). So the

candidates for highest weights are the weights

if

or
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.,u +1,u.,... u.... . . V V
3 q k - k

p.-1  q -.1k

L
TL = (u 1 +1,u ... u ,..p1i 1'

p1 -
1

.Iv ...va a

q -1a

v -1...).a

T7 = (x 1 . .. x 1 ,... x .+1 x x..

p .-1

Yk 1 '..

Ti = (x +1 x. ... ,x1,x
2 .'.

p- 1

are dominant.

This completes the proof of Theorem 2.6.7 for this

To prove the result for cases 2. 5. we need the

following lemmas.

L
77 ~ ( V k- ... )

p x p1  qk X qa

or

So

or

lyl. . .Yi

1 -
q a

yl
-1 ... )

case.

yk .. k
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Lemma 4.5.1.

then the Dirac

If G = U(m,m)

operator inequality fails

(Cfr. 2.7.1.)pPo = (,i.t.e. , .. a I

Proof. Write W as pc + As

(center 9)*

with

ps E d =

1 1 1 '
pI = ( ,..., | ,.. , )

m

= (x...xjx...x)
m m

m

+ P C

C(p~O-pn)

= (0,-i,...,.-m+ljm-1,m-2,...,.1,0)

+ p (OI-P+)+p >=
+ c n c

<c' c + -n~c' s n C'

If X is a (g,K)-module with infinitesimal character

then

(-,-(> > <P' c4 c> +

( s nP +)+p W P)+p>

and p = (a+1,..

for

Sc E

And

W(p -p )s n

And

(p, p>

< (p,p>.

q. e.d.
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Lemma 4.5.2. If G = U(m+1,m), w = (b+1,...,b+1lb...b).

m+1 m

Then Dirac operator inequality fails

+ m m -m-1 -m-1

m+1 m

Proof. Write

p s=F-:M.s 2

c = b + m+1
2m+1

4-1 m+1
1' '' 2m+ 1

b+ m+1
'''''2m+ 1

m+1 m+1
2m+l'.'.' 2m+l

b+ M+1 b+ m+1
2m+1'' 2m+1

and p = s + 4 as in Lemma 4.5.1.

as in the preceding Lemma we only need

( -p +) ( -P )+p >

By the same argument

to show that

< (Pp>

but

m m-2
pc ~ 2 ' 2

-m M-1 -m+1
. 2

p = (m,m- 1

for

,...,-m )
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11- P+ + P = (1,0,-i,s n c
.,-m+1 m,m-1,..1)

+ -(m+1) -m+1
2m+1 ' .. 2m+1

this proves the lemma.

q.e.d.

Now, for each case 2

so that we can reduce the

Lemmas 4.5.1, 4.5.2.

2. Remember that we have

- 5 we will

problem to

choose a

the cases

subgroup L

discussed in

the following picture:

xi ,.x 1 x 1...x x 2

y. y. y Z1-1 i y.

r

-y

s

where y _, > y > z.

Choose t = o(u(pl-r,ql+... _ )@u(r,r)Ou(p-pl,s))

obviously L C t. Let a' = u V n L

U = U V - U I and Q = t + U.

Let L = Normalizer of q in G, then

L = S(U(p 1 -r,ql+...+q_ )xU(r,r)xU(p-pl,s)).
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By Proposition

of L such that X

the standard module

Now,

2.4.15 there is a representation XL

is the Langlands subrepresentation of

Adim unk
Q (XL).

2p(tLnp) =

(a,....a b,...,b

p-r r

C,....,C

p-p1

d,...,d

ql+...+q 
_-1

e,...,e f,...,f).

r s

By Lemma 2.4.23 pLL = p-2p(anp) is the highest weight of a

LKT of XL.

We claim now that

pL U(r,r) = (x+l,...,x+1|x...,x).

r r

In fact

|I
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PLIU(rr) -

-ql-...-q. _+sjp-p1 +r...

= (x 1 +q1 +...+q _-s,...,

x 1 +ql+...+q._-sly-p+2p,-r,...,y.-p+2p,-r).

We know from the picture for A that

x + p - 2p 1 = y + q - 2(q 1 +...+q _1+r) + 1 =

y. + s - (q +.. .+q _1+r) + 1.

- s - y + p - 2p, + r = 1.

Hence, by Lemma 4.5.1 and 2 of Lemma 2.7.2,

A(u(r,r)fpl) such that the Hermitian form

V L D v L is indefinite. Now if L+ j

necessarily

3

is

p E

>L on

dominant,

P = (0.. .0 -1 1 1 0.. .0).

So x + q, +...+ ,_,
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Also A + P = (x, . . . ,. x 1,x 1-

is dominant for A(unk).

This proves Theorem 2.6

For 3, the picture that

1,x 2 '... 1y1 '''yi- 1yi+1,y....)

.7 for case 2.

we had is

yi-1

d

x1 x 1 -x

yi yi'' .y

r

p-p 1

x
2

z

q-d-r

i-1 > yi > > z.

Let x = (a.. .a

pl-r-1

b.. .b

r+1

c.. .c

p-p 1

a.. .a

d

b.. .b

r

define a 0-stable parabolic subalgebra as

Normalizer of q in G, then

C... c) E it* 0

q-d-r

in 2.3, and L =

Note that t / Lv. However, Proposition 8.2.15 of Vogan

LS
[1981] p. 545 gives us that Y = s, [ V f (XL)) =

where s = dim u fl k. In fact, all we need to check is

that if (q ,H X v 7 ) is the 0-stable data attached to
Y V V V~

S(X) then L 3 Hv and that
V V

subalgebra of qV.

This is clear by the picture

infinitesimal character of Y is

q contains some Borel

of

-T

+ 2p . Then the

= (X v) E hV. Since
V V.

I

t -- U(p1- r-1,d) (D u(r+1,r) (D u(p-pl,q-d-r).
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r + 07 = (2 Xv,0), it is enough to show that <X ,a> > 0

for a E A(u). As before, it is straightforward to verify

that if pL = p - 2p(unpl) then

pL U(r+1,r) = (a+l,. .. a+1Ia.. .a).

r+1 r

Lemma 4.5.2 and 2)

Hermitian form < , >

of

is

Proposition 2.7.2

indefinite on V L

imply th

( L +P

at the

with

P = (0,...,0 -111,0,...,0) E A(u(r+l,r)fpl).

Also, p + P is again dominant for

2.6.7 also holds for this case.

4 and 5 are solved in exactly th

using p and +

So I have reduced the problem to

A(unk). Hence Theorem

e same way as 2 and 3,

the case

pi = p.

6 can be included in either 2

For 7 write W = (a a.. .alb 1 ..

the picture for W is

or 3.

.b ,b 2..b2...bt...bt
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r1  q1 +6 r2

a.. .a a.. .a a.. .a

b .b

qt+st rt+ 1

. t...a a.. .a

t . t

with e. = 0, 1
J

t+1

p=

t

r. + q.

1

t

1

qj-

Then = (a.. .ala+s ... a+s ,

1 q

p

a+s .. .a+s .
2

.. a+s ... a+s )

qt

sk = -(r 1 +.. .+rk) +

- ( 1+62+.. .+F k1) + (ek+1 +. .. +6 td.

In fact, from the above picture for p,

+ 6 .

(r k+1+. ..+r t+1)

we know that:
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a + p-2(r 1 +...+rk) - 2(q 1 +61+
+6 k-1)-1

= bk + q-2(q1 +...+qk-1)-1+Ek

k

Sbk = a + p-q - 2 r

1

= a - (rl+...+rk)

k-i

2

1

+ (rk+I

(61+...+6k-1)

Note that if

assume t > 2.

q = 0 for all i > 1 this is case 1.

As before, I want to find a group

apply some reduction argument.

(*) Suppose

L to which I

r t+1 > r 1 set s = r 1 + q + 61
+ r

Then let L = U(s,q
1) x U(p-s),q-q1 ). Note that LV

U(r1 ) x U(q1 +el,q 1 )

So L 3 LVs

x U(r
2 )

x...x U(qt+Ft'qt ) x U(rt+1)-

and again, we can use Lemma 2.4.15 to

verify a) of Theorem

2p(alp) = (q-q1 ,..q-q1 ,-q 1 . . .. -q

s p-s

Ip-s ... p-s,-s...-s

qi q-q 1

6 j - Fk

+...+r t+1l

+ (Fk+ 1 +...+Et d .

So

can

2.6.7.
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By Lemma 2.4.22 and 2.4.23 if Y + (N ,V)

infinitesimal character of 9 (XL), then L

is the infinitesimal character of XL'

In fact, by definition of A(uv),

(X Ia> > 0

Write L 1 = U(s,q),

L L1 = (a-q+q ,

is the

(Nv-P(L),v)

for all a E A(u) C A(uv).

then

... ,a-q+qlja+s1 -p+s ... a+sl-p+s).

For some values of r 1, r2  it could be possible

prove the failure of Dirac inequality as we have done

before; that is, by simply using the minimal value of

restriction of V to the split part of the Cartan of

that makes -TLIL regular integral.

However, this is not possible for all values of

r2 . Therefore, we need to involve all of v instead.

If V XV(p) then

to

the

Lr

r ,1

x = (x,x-l,...,x-r 1+1,w,w,...,w,x-r - 1,x-r -2.. .z

r_1 q 1+e1

x-r 1....x-r ... )

q1

(4.5.3)
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where x = a + p - 1 (n-1) = a
2 =

s +6 -1
+ 2 +

s1
w = a + -

2

z = a - p +

If Hs = TsAs

svyEA

+ (n-1)
2

= a -

is a maximally split

s 1+6 1-1

2 r .

Cartan subgroup

then

1 1
D = (0...0 0 v .

1 2*

1-v 1

... 
-1) ,

regular integral

1
-q2

2
1

we need:

a+s +6 -1+r1

+ v 2 Ir

a-(s 1 +e1 -1)

V 1 2 r

=> V 1
> max[2i r

6 -11, s +72+

s = -r 1 + r 2 +...+ rt+1

By (+*), si 0. S

+ 62 +.. .+ Et*
611

1) > si + 1+

and

of Lv

1v
q

2
v 1 .0.. 0

61 +r
2

2
.. 0.. .0

62 +r
3

To make (Xv, D)

a + 1

2

s
a + 2

r

r 1

|

0 r 1.
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6L- +Let vl=~ 1 + 2 + r1

V. = V
J1 + j

2'

n-s-q
1Now, p (U) IL 2 ' '

n-s-q1 n-s-q

' 2 2

n-s-q

'''''2

(XV-P(U))jL 
=

s 1 -1 s+q 1 -n s 1 - s+q2-n
a+ 2 2- Ir+ 2 ,..a+T 2 1+ 2 '

r1

s s+q 1 -n s s+q 1 -n
a+2 2 2 2

q 1

s 6 -1 s+q -n s1 s+q -n s s+q n

+ 2 2 ,aT 2 1. . + 2 -2

1 +r2

s1 s+q 1 -n s s+q 1 -n
a +-2+ 2 ...... ,a+- 2

We would like to prove that the K-type with Highest weight
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= (a+1,a,...,a

p- 1

a+s ,... a+s 1, a+s -1,a+s 2 ... a+s a+s ... a+s )
q, q t

q1 -l 24

occurs in the representation X and that the Hermitian

form is indefinite on

V @ V.
11 77

It is enough to prove the failure of Dirac operator

inequality on

and p (t ) = p(Lfk) - 2 ''

s q

L
IL P 

1

q 1 q1 s s
a+ql-q+2, . . . , a+ql-q+-2 a+s +s-p-,...,a+sl+s-p-

Since

L
p1 1

So
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= L nk
s-1 s-3

2 ' 2
-s+ 1 ql-1 -q 1 +11

''' 2 2 2

L
A IL ( 1 ) + Pc(L) =

1

q1 +s-1
a+q 1 -q+ 2 ,...,

q1-s+1
a+ql-q+ 2

s+q.-1 s-q +1

a+s 1 -p+ 2 a+s-p 2

y = a + 2+
s+q1 -n

2 . Then if X = ( v-PG ))

and - (-da)) ,

6 - 1 6 -1 6-1
1S - + 2-+r1 ,y+ 2 r 1 ,..y

r 1

6 -1
y .... y Y+ 2

6

6 -1 65-

2 ... y+ 2 2

r 21

If w E WK such that wY is dominant, then

Let
IL1

y . y)

q 1
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6 -1 6 -1
(0'r, = + y + - 2 ir 1 + +ql-1... y+s 1+ 2 1 +5,

1

6-16- -1-1 11 6 -1

y+ 2 'r1,. . ..  2+ 1,y+ 2 2 1,...,y+ 2 2

r r2

y-s - 2 r 1-6,y-s1- 2 r -6-q +1J

Also

4 L ) + p+ flk y+ 2 i +qI,..,y+ 2 r'' +1,

1

6 -1 6 -1 6 -1 6 -1
y+ -2 r , + - ,+ 2 2

r r2

2 - 2

To prove what we want it is enough to prove that



< l' W r1 >

But this is equivalent to

ty+si
+ 2 1+ 1+-+2 r 1+6+ji-l1

Using that (b+c)2 +

> |d I we conclude

(b-c) 2 - (b+d)2 - (b-d)2 >

that (**) holds if

6-1
+ 2 ir

1 +6+j-l
6 -1

> 2 t

Since > 0 then j > 0.

- 1 > 0 and s 1 > 0 * s 1

H

6 -1
+ 

2

6 -1
ence 2

e 1

+ry + j > 2
1 21

1.

Now if r. > r t+1,
we choose

L = U(r t+q t+e t+rt+1'qt) x U(p-(r t t+F t+rt+1 ' -qt)

and repeat the same argument for

(~EA4)

128

k'p )

ILi

+ P

Pn
1 )

L
+ Pt ink > > 0.

I
j=1

2 6 -1
- 2 6-+ Lys

2 -

1+j

Ic I

6
-2 r1-j

> 0.

0 if

s1 1 +j 
.

j

6 + j -

+ 6 +

+
1

< IL i

this case.

[ 1 2 'r
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Note that, since s = r + r

then (**) will also hold if

some r. > 0; 1 < j, i - t.

So this reduces to the case

ql+e 1

a.. .a

1 b

q 1

r

a.. .a

... + rt+1 + 62 +...+

= r t+1 and some 6. >

q 2 r

a.. .a a.. .a

b ... b
2 2

q, q2 > 0

But

conclude

But

by symmetry, using

that e 1= 0.

then we have

r

a...a

the case r 1 > r t+1'

q

a.. .a

b.. .b

q

r

a.. .a

With which we have dealt before.

the same way as case 1. for p1 < p.

This proves Theorem 2.6.7. for G

This is solved in

= SU(p,q).

q.e.d.

6tI
0t

0 or

we can

2 +

r 1
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Chapter 5. G = SP(n,IR)

5.1. Preliminary Notation

Let Im be the identity matrix in GL(a,C).

def ine

G = SP(n,R)

The maximal

= {g E SL(2n, IR)

compact subgroup

tg 0

.- I n

K

nI
I0 J =.0 1n}

11 0

of G is

K = SP(n,[R) n U(2n) 2 U(n).

9' = oP(n,IR) = X E oC(2n,R) It Kn

.-- I n

that is

B A

tA A,B,C E
A

= C
gt(n,IR), B, C symmetric

and if 0 is the Cartan

We

Also

I
nj

0
+0

n

= 0

g'0 = X

= -tX,

n

involution defined by (x)
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= {X C o p(n,R) | - tX = X}.

A

-B

B]

A

go

A

B

= -tAA B t B

1 8(X) = -X

B"

t A.
A, B symmetric}.

then the compact

nn

Cartan subgroup of G is

cos 8

0

-sin 8

0
1.

cos 6
n

1.

-sin 81

sin 81

0

cos 81

0

0

sin 8
n

0

cos 8

and its Lie algebra is

0

= X

d( . .. )

0

C nl
t ++ [R

The complexification of these Lie Algebras

= {x

A0 = X

= {X

If d(O ,

H = 8. E lRl = Tc

hc0

-d( 81 ... 0n

0 R = tc
0

= U(n)

|I

. n) =

gives



g = op(n,C) = {X

= x =

E oL(2n,C)

A

C
B = tB,

k 2 gt(n,C)

h _ = x

0

d(z1 .

K can be identified with the

{p = (a1 .. .an)

0

d(z .. .z )

0

space

a 1 a2

x 1

-N 1

n

0

Define, for j = 1,2,...,n, e.(X) = ix..
3 3

Then, the roots

of t in g are

A(g)= A(,,tc)

I J,k,e = 1,2,...,n;
-2e

132

tX
-I

Ii
n

0]
+ 0

n

I }

0n X

C = tC

z. E C , n

If

. . a n; a.1
E Z}.

cn

I

= {±e e k; j < k}
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also

A(k) = A(k,tC)

the compact imaginary

A(P) = A(p,tc) =

= t(e j-ek) 1

roots of tc in

{±(e +ek); ±2 e, |

j < k < n},

1 < j < k ( n;

1 < e < n},

the non-compact imaginary roots of tc in g.

5.2. Computation of LY(X) for any module X.

As for the preceding cases, fix a positive root system

A+(k) so that if

A = (a 1 1a 2 . . . . .an) a1  a 2  ... an'

then is A+(k)-dominant and

2p = (n-1,n-3,...,-n+3,-n+1).

Let Ii + 2 p c = (xx2' .. ''n).

Choosing a positive Weyl Chamber for A(g.,hc)

corresponds to forming an array of two rows with the
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absolute value of the coordinate

are aligned in decreasing order

If x 1 x 2  ... > X > >

x ,...,x r are in the first row

the second and they all decrease

array.

s of + 2p

as follows:

so that they

xr+1 ... >xn then

_x n _x n,'*- x r1 in
xn' en-1' t r+1 in

from left to right in the

For example, if we have

X... > -x.
1

> xi+1 > i+2 k ~

-x.j- > x+ '= -x.- > ... > -x r1= x r1> x r= 0
t-1 k+1 -rj-2 r+1 - r- r

the array would look like

. x. xi+1

x

) Xi+2 Xk xk+1 .. Xr-1

J-1 j-2 r+1

As for the case of SU(p,q), the choice of arrows

gives a positive root system A+ = A+ ( c), compatible

with A +(k).

Again, the entire array is a union of blocks of the

following types.

1. m

m

... 20

... 2 /

0

m-2

m-2
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m m-2 ... 1

m m-2 ... 11

m+3 N*/ m m-2 ... 2

... m+2 m m-2... 2

or m+2 m ... 2

M +3.m .. /

4. ... m+3 m ... 1

n+2 m 1

.. m+2 m ...

m+3m .. 1

5. ... m ... 3 1,

m-i ... 2/

or ... m ... 4 2

m-1 ... 3

(5 is a particular case of 4.)

6. All blocks of the five types discussed for SU(p,q),

not containing

Again, using the picture

by the blocks that p + 2pc

, split the coordinates

determines as follows.

If p + 2pgc

2.

3.

or

0 or 1.

of

gives
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p1 entries

q entries

with B a block of some

Pt entries

qt entries B

type 1-5, set

= (a ... a1 . .at.. .at c 1 c2.Cm

p1 times pt times m entries

btibts

q t times

where m

block B,

Examp e:

is the total number

CI c2 ' cm.

if

of coordinates composing

= (2 2 2 1 1 1 1 1 -1),

2p c= (8 6 4 2 0 -2 -4 -6 -8),since

= (10 8 6 3 1 -1 -3 -5 -9)

this gives

6Z 
3 

1

3 1

Then

5.2.1

...b ...b1 )

a. times

the

A + 2 pc

U 
1
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= (2 2 2 1 1 1 1 1 -1)

p1
m

is the splitting that we want.

Write t -=Y11) x= - yp as in 2.4.7.

Proposition 5.2.2. If p i E i(c gives figure 5.2.1 then

xv (4) =

(NJ... 1

p1 times times p2 times

0.. .0

m

-x t'' t-
-x 1 . N1 )

with

x1 > x2 t > 0.

Proof. Observe that

Se. + ek

- p. p

E A + ( tc)

- 1 then e.

i c P32i i

is such that

0 10

ek > < 0,

a) If P

-c i = (p + 2pc

<p + 2pC - p +

and if

A2***' 2*' A t'''. t

P2

t (p) 2- a (p 1, q 1) (D...@ (D (pt'qt) (D op(m, R)
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then eo - ek should be included in the set

Proposition 2.4.7.

b) Suppose that a + p - 1 > -b + q - 1.

root system generated by the roots involving the

coordinates:

{f P} of

Then the

(pi, ql)

{ei+en n -e ;e+ene+;- 2 2 n-1'

is isomorphic to Ap.+ql-1. Since L centralizes an

elliptic element then t C L. Hence the real form of

Ap 1 +q 1i is U(p 1 ,ql).

Except for these extra considerations, the proof of

this proposition is analogous to the one for the

corresponding result for SU(p,q).

5.3. Lowest K types of the modules A

Let x E i(tc) . We may assume that

(N).

it is of the form

x = (x.. .x 1. . . . ,. x t' .xt 0.. .0

p Pt m

-x t .. -'* -x" 1

q t q1

x > xx2 > ' t > 0.
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Write

A(L) = {a C A(g.,hc) I <a,x> =

A (U)

as in 2.3.

= (a E A(,,hc) I (a,x> >

Then

a) L ' u(pl,ql) 19 u 2 2'2) (9...G 1 b t'qt) (D oMp(m,IR);

b) 2p(ufnp) = (n-q 1 +1. . .n-ql+1,n-2q1 -q 2 +1 ..n-2q,-q 2 +1...

1 P2

(5.3.1)

n-2(qi+. . . N t-1 n- 2 (q +...+qt )-qt+1, p-q,...,p-q

P t m

-1-n+2(p 1+. .. +pt-1 t. ..-1-n+2(p. +... .+pt-1t .

q t

-1-n+p 1*, . 1-n+p )

q 1
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c) 2p(unk) = (n-p1 .. .n-p 1 , n-2p1 -p 2. . .n-2p1 -p 2 ...

P1 p2

n-2(pl+. . . pt_ )-pt ,. . . ,n-2(p l+. ..+pt_ )-p ,q-p,. . ..q-p

Pt m

-n+2(q 1 +. . .+q t 1 )+qt.. .-n+2(ql+. ..+q t-)+qt...,-n+q . n+q

-t t1

Set n = p + q .

d) 2p(u) = (2n-n +1... 2n-n +1,2n-2n -n +1 ... 2n-2n -n +11 * 1 2 1 2

P 1  P 2

2n-2(n1 +n 2. .+nt-)-nt+,...,2n-2(n 1+n 2 .. .+nt 1 )-nt+1,

Pt

0 .. .0,-2n+2(n 1 +.. .+n -)+n t-l.. .-2n+2(n +...+nt_,)+nt-1 ...

m
t

-2n+n -1...-2n+n -1)

q 1

Now suppose that 4 E i(tc)* is the highest weight of

a representation of K.



141

By the proof of Proposition 2.5.6 we may use

determine a compact parabolic subalgebra q n k =

n f k.

Set 2p(ank) = 2p(A(unk)). Suppose that

p + 2p(alk) =

(a,... a.

r

.. at...at 0 ... 0 -at...-at...-a .-- a,).

r t m s t si

Proposition

then pi is

and

5.3.

the

2. In

LKT of

the above setting, set n.

some A (N)

a - aii+1 n + ni+1

a > nt + 2m + 1.

Proof. If p = X + 2p(W1p),

... x > 0

hence the coordinates of i + 2p(ank) = X + 2p(u) give

p to

t n k +

= r + s.

then

X = N 1 x - x ***x t0..

x1 -
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X + 2n - 2(n 1 +...+ni _)-n+1-(X.+1+2n-2(n +...+n. )-n +1+1)
11+

1 Ni ~ i+1 + n
+ ni+1 > n + ni+1

xt + 2n - 2(n + .+ nt-) - nt + 1 > n +

Conversely, suppose we are given A satisfying

conditions of the theorem. Let q = t + a be the

parabolic defined by p + 2p(alk). Set

the

S= a. - 2n + 2(n +...+n ) + n

<X,A(u)> > 0,

<xA(t)> = 0,

= A + 2p(unp).

q.e.d.

5.4. Proof of Theorem 2.6.

Let X as in Theorem

character -r E (h ) A E

LKT of X. Suppose X is

7 for G = SP(nR).

2.6.7, with infinitesimal

(tc ), the highest weight of a

not a module A (A). Let

and

2m + 1

So

and
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LV = Yi) = ( '(pl9q1 ) U (p 2 'q 2 ) $...

(cfr. 5.2.2) and p = 1 p q = 2 q1 .

t 1 = u(p,q),

S(pt , q ,

Set

t2 =O (m,[R)

t = L1 @ 2LV

Define a C uV by u = U + (uvnt).

Then q D qV and by Proposition

2.6.7 holds.

Now let XL be an (L,LfK)-modul

occurs only as composition factor of

XL as the exterior tensor product XL

2.4.15, a) of Theorem

e

31

such

(XL).

=XL

XL. an (t ,L ifK)-module.
1

That Xh has a Hermitian form < > L
L

Lemma 2.7.4.

that

We

0 X

L 2

X

can see

with

Lemma 5.4.1. XL ~ A X 0

L 0 A C. )1

L - D

Proof. By Theorem 2.6.7, b) and c)

and Theorem 2.6.8, if XL/ A (N)

(LinK) , j = 1,2, K-types of XL1

for some q0 C L1 ; X 0

(proved for SU(p,q))

then there are 6. E

such that

then

follows from
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< ,> IV 1V 2is indefinite. Moreover, we know that if

i L L
4= 4 L. and i = - 2p(ulp). Then there is P E

A(L lp) such that < ,>L is indefinite on the sum

V 1 E V 1 .

If = (x . . .,x , xp+1 ' .'. x p+m xp+M+1'' ' m) and

2p(unp) = (n-q+l,...,n-q+1,p-q....,p-q,-l-n+p...-1-n+p)

p m q

then, since

it is

then

p+m

A(L 1 no) = ±{(ei+e )

clear that if + 

+ P is dominant for

- p+m+l*

Suppose then that xp

Note that

and henc

So

Suppose

2p(u p) IL2

e p is fine and XL

p2 C ((0.. .0);(l... 1,0.

that i 2 is of the form

1 i < p, p + m < j n}

is dominant for

A (k), unless

xp+
1 '

= 2p(alp)I then
s aL2

is a principa

A(L fk),

x = x or
p p+1

L 2

l series.
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= 1.. .1,0.. .0)

a m-a

with a > 0.

Then for
2

TI = (0.. .0,-1...-1),

m-a

V 2 is also a LKT of

a

, by Frobenius reciprocity.

So if 77 = A 1 + T2 + 2p(unp),

17 is also dominant,

V
1?

is a LKT o

it follows that xp+m

f X.

- 1 >

p+m+1

Suppose that i I + P3 is dominant

If

'B = (0.. .0 1

P-pt

0... 00...0

mPt

1 0...0),

q

p + P is dominant.

13 = (0.. 0 ... 0 0 -1

p

then, since pL

candidate.

= 17L

0.. .0 0.. .0 -1 0.. 0

m qt q~ +t

then Tj + is a dominant

If Ap2

m-a

a > 0, a similar

argument shows that x -1
p

If 2

xp+1*

= (0... 0) then both differences

xp+m ~ xp+m+l must be strictly positive.

x - xp p+1

This is

2

XL2

Since

for some 3 E

since xp+m - 1>
p+m+l1 If

with

a

A(L 1np) n U(pt'q t).

=(0 ... 0,-1...-1),9

and
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clear from the pictures of p+ 2pC

q.e.d.

Lemma 5.4.2.

0
A o(N ) for

q

In the above setting,

0some q &

assume that XL

and X : C o.

Then, Theorem 2.6.7

3)

and x

is true if we assume

- xp p+1i

p+m p+m+1

Proof. Suppose first that
2

(1,1,..... 1,0.. .0).

m+1 m+1
2 ' ' ' ' ' 2 ] , an easy calculation shows

2 +
- n(

2 +
+ pL 2lk' n + Pt 2nk>

By 2) in Lemma 2.7.2, there is a

f3 E {(0. ..0 -1

a

0.. .0 -1),

m-a

(0,0.. .0 -2)}

m

making V 2

indefinite.

2
p. +j3

into a space on which

Moreover A + P is A +(k)-dominant, by (5.4.3).

Similarly if 2

m-a a

(5.4.

that

> 2

2.

.+
if P

Then

( (p, P>.

( is

then

t 1
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( E ((1,0...0 1 0.. .0);(2,0...

m-a a

Now,

inequalit

unless r

and, obvi

Now

of XL

if j2 = (0... 0) then the Dirac operator

y fails for any choice of pn p(A+(t 2 t)),

2  2 in particular, if p = m+1 m+1

ously, p + f is also dominant for P E A(t+ l 2).

if Yit2 = , then, the Langlands subquotient

is the trivial representation. (In fact, the

representation 
XL

and 6 = trivial;
V

Hence the Lang

L2 L2
I(6, V ) is a principal

y = vIt =

lands submodule o

series

L 21) .

V

f

A(XL 1XL2 ) (XL

0X = d(A 0(X )) ® M (trivial
q q

By induction by stages,

contradicting our assumptions

This proves the lemma..

X

on

is

X.

Q(XL2

representation).

an A (N),

is

q.e.d.
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To finish the proof of Theorem 2.6.7, suppose now that

x - x < 1.

Lemma 5.4.4. Under the hypothesis of Lemma 5.4.2, if x -
p

x = 1 and x p+m- Xp+m+ > 2, then Theorem 2.6.7 is

true.

Proof. The assumptions on the coordinates of Ii imply

that the picture of ji + 2pc around the coordinates

involved is either

... m+3 m m-2 ...

... m+4 m-1

or

... M+ m m-2 ...

... m+4 Im m-2 ...

that is,

p + 2pc = (...m+5 m+3 m m-2 ... -m+1 | -m-4 ... )

or

p + 2 pc = (...m+5 m+3 | m ... -m | -m-4 ... )
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Observe that L V

K-type that gives

= - 2p(a np)

the picture

is f ine and that the fine

m M-2 ...

rn-i ...

= (1,1,....,.1,0. .0) and the fine K-type that gives

m m-2 ...

m m-2 ...

= (0...0).

Arguing as in the proof of Lemma 5.4.2. we can find,

in both cases

P E ((0.. .0 -1,0.. 0 -1);(0...0 -2)}

as we want.

q.e.d.

Assume now

(5.4.5)

that

0 x - xp+1 1I

p+m x x p+m+1

is p 2

is p2
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We want to contradict the assumption that the

infinitesimal character -r is regular and integral.

Since we have an A (X)-module for L = U(pq), we

have some control on -Y.

Recall that L = U(p,q) x SP(m,R) and L ; L =
t
TI (U(p.,q.))J x SP(m,IR). W

i=1

the computation in 4.3, either

e may assume pt qt. By

V U(ptqt)

S(X t+s,X t+s-1...X t+1 X t''* X tX t -l...X t-s It.'X t)
s qt+1 s qt

or

XV U(pt'qt

1 1
t+s, ...Xt+ t*' t t 2 t-st t

q t q t

and

V U(pt ,qt )
= (0...0 v 1. Vt 0... 0 | -v 1 ...- d

Inside SP(n,R) this gives



(Xt+s,.. . Xt-' t

(0...0 v 1 ... v
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.'x' t-s I -Nt** x~ t)

v0 , .. *v1*

-Y is regular integral

xt + t t
+ s,

- s > 0 > -Nt + v -x

v >s
qt

S> v + q
t at

x xt > s + qt

Claim. If p satisfies (5.4.5) then x - s < 1.
t-

Proof. The picture for

can be of the following

1. . . . m+2

.-- m+2

2 . . . . m

. ... n+3

m

i + 2pc around these coordinates

types.

m-2

m-1 . . .

rn-i .. .

m m-2

If

xt t , '*t t
+ 11 -1

0

M m-2
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3. ... m+4 m+

... m+4 m+2 / m-2 ...

4. ... m+4 m+2 m-1 m-3 ...

... m+4 m+2 m-1 m-3 ...

or . . r+3

... m+3

5. ... m+3

... m+4 i+

m 1

\rn-i

m-2 ...

So we either have (considering that 5 and 2, and 3 and

are symmetric)

p + 2pc = (...m+k+2,m+k

p = (... m+k+2,m+k

-m-k...)

-m-k+1...)

... m+2 |

... m+1 | -m-2...)

cases we get

x V = (.. .1 1 0.. .0 -1 -1...).

This proves the claim.

m ...

m ...

1

and

or

A + 2pC = (

with

In both
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This reduces to the case when q = 0. But then, p +

2pc gives, at worst,

m+2 M-1 ...

... m+4 m

Because if q. = 0, p. = 1, since U(p.,q.) is

quasisplit. So, we have x p+m - xp+m+ > 2!

This concludes the proof of Theorem 2.6.7.

q.e.d.
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