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Abstract

Boosting methods are highly popular and effective supervised learning methods which com-
bine weak learners into a single accurate model with good statistical performance. In this paper,
we analyze two well-known boosting methods, AdaBoost and Incremental Forward Stagewise
Regression (FSε), by establishing their precise connections to the Mirror Descent algorithm,
which is a first-order method in convex optimization. As a consequence of these connections
we obtain novel computational guarantees for these boosting methods. In particular, we char-
acterize convergence bounds of AdaBoost, related to both the margin and log-exponential loss
function, for any step-size sequence. Furthermore, this paper presents, for the first time, precise
computational complexity results for FSε.

1 Introduction

Boosting is a widely popular and successful supervised learning method which combines weak
learners in a greedy fashion to deliver accurate statistical models. For an overview of the boosting
approach, see, for example, Freund and Schapire [5] and Schapire [18,20]. Though boosting (and in
particular AdaBoost [5]) was originally developed in the context of classification problems, it is much
more widely applicable [6]. An important application of the boosting methodology in the context of
linear regression leads to Incremental Forward Stagewise Regression (FSε) [4,7,8]. In this paper, we
establish the equivalence of two boosting algorithms, AdaBoost and FSε, to specific realizations of
the Mirror Descent algorithm, which is a first-order method in convex optimization. Through exact
interpretations of these well-known boosting algorithms as specific first-order methods, we leverage
our understanding of computational complexity for first-order methods to derive new computational
guarantees for these algorithms. Such understanding of algorithmic computational complexity is
also helpful from a statistical learning perspective, since it enables one to derive bounds on the
number of base models that need to be combined to get a “reasonable” fit to the data.
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Related Work, and Contributions

We briefly outline some of the main developments in the complexity analysis of AdaBoost and FSε
that appear to be closely related to the topic of this paper.

AdaBoost and Optimization Perspectives: There has been a lot of interesting work connecting
AdaBoost and related boosting methods to specific optimization problems and in understanding
the computational guarantees of these methods with respect to these optimization problems. In
particular, much of the work has focused on two problems: maximizing the margin and minimizing
the exponential loss. Mason et al. [9] develop a general framework of boosting methods that
correspond to coordinate gradient descent methods to minimize arbitrary loss functions, of which
AdaBoost is a particular case with the exponential loss function. For the problem of minimizing the
exponential loss, Mukherjee et al. [10] give precise convergence rates for the version of AdaBoost
with step-sizes determined by a line-search, see also Telgarsky [22]. Schapire et al. [19] show that
the margin is inherently linked to the generalization error of the models produced by AdaBoost,
thus it is highly desirable to maximize the margin in order to build predictive models. Several
variants of AdaBoost have been developed specifically with this goal in mind, and these methods
have been shown to converge to the maximum margin solution at appropriate rates (Ratsch and
Warmuth [15], Rudin et al. [17], Shalev-Shwartz and Singer [21]).

Under the assumption that the weak learner oracle returns the optimal base feature (also called
weak hypothesis) for any distribution over the training data, we show herein that AdaBoost cor-
responds exactly to an instance of the Mirror Descent method [2, 11] for the primal/dual paired
problem of edge minimization and margin maximization; the primal iterates wk are distributions
over the examples and are attacking the edge minimization problem, and the dual iterates λk are
nonnegative combinations of classifiers that are attacking the maximum margin problem. In this
minmax setting, the Mirror Descent method (and correspondingly AdaBoost) guarantees a certain
bound on the duality gap f(wk) − p(λk) and hence on the optimality gap as a function of the

step-size sequence, and for a simply chosen constant step-size the bound is
√

2 ln(m)
k+1 .

In the case of separable data, we use a bound on the duality gap to directly infer a bound on the
optimality gap for the problem of maximizing the margin. We show precise rates of convergence
for the optimal version of AdaBoost (without any modifications) with respect to the maximum
margin problem for any given step-size rule. Our results seem apparently contradictory to Rudin
et al. [16], who show that even in the optimal case considered herein (where the weak learner always
returns the best feature) AdaBoost may fail to converge to a maximum margin solution. However,
in [16] their analysis is limited to the case where AdaBoost uses the originally prescribed step-size

αk := 1
2 ln

(
1+rk
1−rk

)
, where rk is the edge at iteration k, which can be interpreted as a line-search

with respect to the exponential loss (not the margin) in the coordinate direction of the base feature
chosen at iteration k (see [9] for a derivation of this). Our interpretation of AdaBoost in fact shows
that the algorithm is structurally built to work on the maximum margin problem, and it is only
the selection of the step-sizes that can cause convergence for this problem to fail.

In the case of non-separable data, a maximum margin solution is no longer informative; instead,
we show that the edge f(wk) at iteration k is exactly the ℓ∞ norm of the gradient of the log-
exponential loss evaluated at the current classifier, and we infer a bound on this norm through
the bound on the duality gap. This bound quantifies the rate at which the classifiers produced
by AdaBoost approach the first-order optimality condition for minimizing the log-exponential loss.
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Although precise objective function bounds on the optimality gap with respect to the exponential
loss were given in [10], their analysis is limited to the case of step-sizes determined by a line-
search, as mentioned above. The step-sizes suggested by our Mirror Descent interpretation are
quite different from those determined by a line-search, and furthermore although our bounds are
specific to either the separable or non-separable case, the step-sizes we suggest do not depend on
which case applies to a particular data set.

Forward Stagewise Regression and Optimization Perspectives: The Incremental Forward
Stagewise algorithm [4,7,8] (FSε) with shrinkage parameter ε is a boosting algorithm for the linear
regression problem that iteratively updates (by a small amount ε) the coefficient of the variable
most correlated with the current residuals. A principal reason behind why FSε is attractive from a
statistical viewpoint is because of its ability to deliver regularized solutions (24) by controlling the
number of iterations k along with the shrinkage parameter ε with proper bias-variance tradeoff [8].
The choice of the step-size plays an important role in the algorithm and has a bearing on the
statistical properties of the type of solutions produced. For example, a step-size chosen by exact line-
search on the least-squares loss function leads to the well known Forward Stagewise Algorithm—a
greedy version of best subset selection [8]. Infinitesimal Incremental Forward Stagewise Regression
(FS0, i.e., the limit of FSε as ε → 0+) under some additional conditions on the data leads to a
coefficient profile that is exactly the same as the LASSO solution path [7, 8]. It is thus natural
to ask what criterion might the FSε algorithm optimize?, and is it possible to have computational
complexity guarantees for FSε — and that can accommodate a flexible choice of steps-sizes? To the
best of our knowledge, a simple and complete answer to the above questions are heretofore unknown.
In this paper, we answer these questions by showing that FSε is working towards minimizing the
maximum correlation between the residuals and the predictors, which can also be interpreted
as the ℓ∞ norm of the gradient of the least-squares loss function. Our interpretation yields a
precise bound on this quantity for any choice of the shrinkage parameter ε, in addition to the
regularization/sparsity properties (24).

1.1 Notation

For a vector x ∈ Rn, xi denotes the i
th coordinate; we use superscripts to index vectors in a sequence

{xk}. Let ej denote the jth unit vector in Rn, e = (1, . . . , 1), and ∆n = {x ∈ Rn : eTx = 1, x ≥ 0}
is the (n − 1)-dimensional unit simplex. Let ∥ · ∥q denote the q-norm for q ∈ [1,∞] with unit ball
Bq, and let ∥v∥0 denote the number of non-zero coefficients of the vector v. For A ∈ Rm×n, let
∥A∥q1,q2 := max

x:∥x∥q1≤1
∥Ax∥q2 be the operator norm. For a given norm ∥ · ∥ on Rn, ∥ · ∥∗ denotes the

dual norm defined by ∥s∥∗ = max
x:∥x∥≤1

sTx. Let ∂f(·) denote the subdifferential operator of a convex

function f(·). The notation “ṽ ← argmax
v∈S

{f(v)}” denotes assigning ṽ to be any optimal solution

of the problem max
v∈S
{f(v)}. For a convex set P let ΠP (·) denote the Euclidean projection operator

onto P , namely ΠP (x̄) := argminx∈P ∥x− x̄∥2.
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2 Subgradient and Generalized Mirror Descent Methods: A Brief
Review

Suppose we are interested in solving the following optimization problem:

(Primal): min
x∈P

f(x) , (1)

where P ⊆ Rn is a closed convex set, Rn is considered with the given norm ∥ · ∥, and f(·) : P → R
is a (possibly non-smooth) convex function. Recall that g is a subgradient of f(·) at x if f(y) ≥
f(x) + gT (y − x) for all y ∈ P , and we denote the set of subgradients of f(·) at x by ∂f(x). We
assume with no loss of generality that ∂f(x) ̸= ∅ for all x ∈ P . We presume that computation of
a subgradient at x ∈ P is not a burdensome task. Furthermore, we assume that f(·) has Lipschitz
function values with Lipschitz constant Lf , i.e., we have |f(x)− f(y)| ≤ Lf∥x− y∥ for all x, y ∈ P .

We are primarily interested in the case where f(·) is conveyed with minmax structure, namely:

f(x) := max
λ∈Q

ϕ(x, λ) , (2)

where Q ⊆ Rm is a convex and compact set and ϕ(·, ·) is a differentiable function that is convex in
the first argument and concave in the second argument. In the case when P is bounded, we define
a dual function p(·) : Q→ R by

p(λ) := min
x∈P

ϕ(x, λ) , (3)

for which we may be interested in solving the dual problem:

(Dual): max
λ∈Q

p(λ) . (4)

Let f∗ denote the optimal value of (1). When P is bounded let p∗ denote the optimal value of (4),
and the compactness of P and Q ensure that weak and strong duality hold: p(λ) ≤ p∗ = f∗ ≤ f(x)
for all λ ∈ Q and x ∈ P . The choice to call (1) the primal and (4) the dual is of course arbitrary,
but this choice is relevant since the algorithms reviewed herein are not symmetric in their treatment
of the primal and dual computations.

The classical subgradient descent method for solving (1) determines the next iterate by taking
a step α in the negative direction of a subgradient at the current point, and then projecting the
resulting point back onto the set P . If xk is the current iterate, subgradient descent proceeds by
computing a subgradient gk ∈ ∂f(xk), and determines the next iterate as xk+1 ← ΠP (x

k − αkg
k),

where αk is the step-length, and ΠP (·) is the Euclidean projection onto the set P .

Note that in the case when f(·) has minmax structure (2), the ability to compute subgradients
depends very much on the ability to solve the subproblem in the definition (2). Indeed,

if λ̃k ∈ argmax
λ∈Q

ϕ(xk, λ) , then gk ← ∇xϕ(x
k, λ̃k) ∈ ∂f(xk) , (5)

that is, gk is a subgradient of f(·) at xk. This fact is very easy to derive, and is a special case of
the more general result known as Danskin’s Theorem, see [3].

In consideration of the computation of the subgradient (5) for problems with minmax structure
(2), the formal statement of the subgradient descent method is presented in Algorithm 1.
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Method 1 Subgradient Descent Method (for problems with minmax structure)

Initialize at x0 ∈ P , k ← 0

At iteration k:
1. Compute:

λ̃k ← argmax
λ∈Q

ϕ(xk, λ)

gk ← ∇xϕ(x
k, λ̃k)

2. Choose αk ≥ 0 and set:

xk+1 ← ΠP (x
k − αkg

k)

The Mirror Descent method [2, 11] is a generalization of the subgradient descent method. The
Mirror Descent method requires the selection of a differentiable “1-strongly convex” function d(·) :
P → R which is defined to be a function with the following (strong) convexity property:

d(x) ≥ d(y) +∇d(y)T (x− y) +
1

2
∥x− y∥2 for all x, y ∈ P .

The function d(·) is typically called the “prox function.” The given prox function d(·) is also used
to define a distance function:

D(x, y) := d(x)− d(y)−∇d(y)T (x− y) ≥ 1

2
∥x− y∥2 for all x, y ∈ P . (6)

One can think ofD(x, y) as a not-necessarily-symmetric generalization of a distance metric (induced
by a norm), in that D(x, y) ≥ 1

2∥x − y∥2 ≥ 0, D(x, y) = 0 if and only if x = y, but it is not
generally true (nor is it useful) that D(x, y) = D(y, x). D(x, y) is called the Bregman function
or the Bregman distance. With these objects in place, the Mirror Descent (proximal subgradient)
method for solving (1) is presented in Algorithm 2.

The sequence {λk} constructed in the last line of Step (2.) of Mirror Descent plays no role in
the actual dynamics of Algorithm 2 and so could be ignored; however λk is a feasible solution to
the dual problem (4) and we will see that the sequence {λk} has precise computational guarantees
with respect to problem (4). The construction of xk+1 in Step (2.) of Mirror Descent involves
the solution of an optimization subproblem; the prox function d(·) should be chosen so that this
subproblem can be easily solved, i.e., in closed form or with a very efficient algorithm.

Note that the subgradient descent method described in Algorithm 1 is a special case of Mirror
Descent using the “Euclidean” prox function d(x) := 1

2∥x∥
2
2. With this choice of prox function,

Step (2.) of Algorithm 2 becomes:

xk+1 ← argmin
x∈P

{(
αkg

k − xk
)T

x+
1

2
xTx

}
= ΠP (x

k − αkg
k) ,

(since D(x, xk) = (−xk)Tx+ 1
2x

Tx+ 1
2∥x

k∥22), and is precisely the subgradient descent method with
step-size sequence {αk}. Indeed, the sequence {αk} in the Mirror Descent method is called the
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Method 2 Mirror Descent Method (applied to problems with minmax structure)

Initialize at x0 ∈ P , λ0 = 0, k = 0

At iteration k:
1. Compute:

λ̃k ← argmax
λ∈Q

ϕ(xk, λ)

gk ← ∇xϕ(x
k, λ̃k)

2. Choose αk ≥ 0 and set:

xk+1 ← argmin
x∈P

{
αk(g

k)Tx+D(x, xk)
}

λk+1 ←
∑k

i=0 αiλ̃
i∑k

i=0 αi

“step-size” sequence in light of the analogy to subgradient descent. Below we present an example
of a version of Mirror Descent with a prox function that is not Euclidean, which will be useful in
the analysis of the algorithm AdaBoost.

Example 2.1. Multiplicative Weight Updates for Optimization on the Standard Simplex
in Rn

Consider optimization of f(x) on P = ∆n := {x ∈ Rn : eTx = 1, x ≥ 0}, the standard simplex in
Rn, and let d(x) = e(x) :=

∑n
i=1 xi ln(xi)+ln(n) be the entropy function. It is well-known that e(·)

is a 1-strongly convex function on ∆n with respect to the ℓ1 norm, see for example [13] for a short
proof. Given any c ∈ Rn, it is straightforward to verify that the optimal solution x̄ of a problem of
format min

x∈P

{
cTx+ d(x)

}
is given by:

x̄i =
exp(−ci)∑n
l=1 exp(−cl)

i = 1, . . . , n . (7)

Using the entropy prox function, it follows that for each i ∈ {1, . . . , n}, the update of xk in Step
(2.) of Algorithm 2 assigns:

xk+1
i ∝ exp(−(αkg

k −∇e(xk))i) = exp(1 + ln(xki )− αkg
k
i ) ∝ xki · exp(−αkg

k
i ) ,

which is an instance of the multiplicative weights update rule [1].

We now state two well-known complexity bounds for the Mirror Descent method (Algorithm 2),
see for example [2]. In the general case we present a bound on the optimality gap of the sequence
{xk} for the primal problem (1) that applies for any step-size sequence {αk}, and in the case when
P is compact we present a similar bound on the duality gap of the sequences {xk} and {λk}. Both
bounds can be specified to O

(
1√
k

)
rates for particularly chosen step-sizes.
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Theorem 2.1. (Complexity of Mirror Descent [2, 12, 14]) Let {xk} and {λk} be generated
according to the Mirror Descent method (Algorithm 2). Then for each k ≥ 0 and for any x ∈ P ,
the following inequality holds:

min
i∈{0,...,k}

f(xi)− f(x) ≤
D(x, x0) + 1

2L
2
f

∑k
i=0 α

2
i∑k

i=0 αi

. (8)

If P is compact and D̄ ≥ max
x∈P

D(x, x0), then for each k ≥ 0 the following inequality holds:

min
i∈{0,...,k}

f(xi)− p(λk+1) ≤
D̄ + 1

2L
2
f

∑k
i=0 α

2
i∑k

i=0 αi

. (9)

These bounds are quite general; one can deduce specific bounds, for example, by specifying a
step-size sequence {αk}, a prox function d(·), a value of x in (8) such as x = x∗, etc., see Propositions
2.1 and 2.2 where these specifications are illustrated in the case when P is compact, for example.

Proposition 2.1. Suppose we a priori fix the number of iterations k of Algorithm 2 and use a
constant step-size sequence:

αi = ᾱ =
1

Lf

√
2D̄

k + 1
for i = 0, . . . , k . (10)

Then

min
i∈{0,...,k}

f(xi)− p(λk+1) ≤ Lf

√
2D̄

k + 1
. (11)

Proof. This follows immediately from (9) by substituting in (10) and rearranging terms.

Indeed, the bound (11) is in fact the best possible bound for a generic subgradient method,
see [11].

Proposition 2.2. Suppose we use the dynamic step-size sequence:

αi :=
1

Lf

√
2D̄

i+ 1
for i ≥ 0 . (12)

Then after k iterations the following holds:

min
i∈{0,...,k}

f(xi)− p(λk+1) ≤
Lf

√
1
2D̄ (2 + ln(k + 1))

2(
√
k + 2− 1)

= O

(
Lf

√
D̄ ln(k)√
k

)
. (13)

Proof. Substituting (12) in (9) and rearranging yields:

min
i∈{0,...,k}

f(xi)− p(λk+1) ≤
Lf

√
1
2D̄
(
1 +

∑k
i=0

1
i+1

)
∑k

i=0
1√
i+1

.
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The proof is completed by using the integral bounds

1 +

k∑
i=0

1

i+ 1
≤ 2 +

∫ k+1

1

1

t
dt = 2 + ln(k + 1) ,

and
k∑

i=0

1√
i+ 1

=
k+1∑
i=1

1√
i
≥
∫ k+2

1

1√
t
dt = 2

√
k + 2− 2 .

Finally, consider the subgradient descent method (Algorithm 1), which is Mirror Descent using
d(x) = 1

2∥x∥
2
2 in the case when the optimal value f∗ of (1) is known. Suppose that the step-sizes

are given by αk := f(xk)−f∗

∥gk∥22
, then it is shown in Polyak [14] that for any optimal solution x∗ of (1)

it holds that:

min
i∈{0,...,k}

f(xi)− f∗ ≤
Lf∥x0 − x∗∥2√

k + 1
. (14)

3 AdaBoost as Mirror Descent

We are given a set of base classifiers (also called weak hypotheses) H = {h1, . . . , hn} where each
hj : X → {−1, 1}, and we are given training data (examples) (x1, y1), . . . , (xm, ym) where each
xi ∈ X (X is some measurement space) and each yi ∈ {−1,+1}.1 We have access to a weak learner
W(·) : ∆m → {1, . . . , n} that, for any distribution w on the examples (w ∈ ∆m), returns an index
j∗ of a base classifier hj∗ in H that does best on the weighted example determined by w. That
is, the weak learner W(w) computes j∗ ∈ argmax

j∈{1,...,n}

∑m
i=1wiyihj(xi) and we write “ j∗ ∈ W(w) ”

in a slight abuse of notation. Even though n may be extremely large, we assume that it is easy
to compute an index j∗ ∈ W(w) for any w ∈ ∆m. Algorithm 3 is the algorithm AdaBoost, which
constructs a sequence of distributions {wk} and a sequence {Hk} of nonnegative combinations of
base classifiers with the intent of designing a classifier sign(Hk) that performs significantly better
than any base classifier in H.

Algorithm 3 AdaBoost

Initialize at w0 = (1/m, . . . , 1/m),H0 = 0, k = 0

At iteration k:
1. Compute jk ∈ W(wk)

2. Choose αk ≥ 0 and set:

Hk+1 ← Hk + αkhjk

wk+1
i ← wk

i exp(−αkyihjk(xi)) i = 1, . . . ,m, and re-normalize wk+1 so that eTwk+1 = 1

1Actually our results also hold for the more general confidence-rated classification setting, where hj : X → [−1, 1]
and yi ∈ [−1, 1].
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Notice that AdaBoost maintains a sequence of classifiers {Hk} that are (nonnegative) linear
combinations of base classifiers in H. Strictly speaking, a linear combination H =

∑n
j=1 λjhj of

base classifiers in H is a function from X into the reals, and the classifier determined by H is
sign(H); however, for simplicity we will refer to the linear combination H as a classifier, and we
say that the coefficient vector λ ∈ Rn determines the classifier H.

3.1 AdaBoost is a Specific Case of Mirror Descent

Here we show that AdaBoost corresponds to a particular instance of the Mirror Descent method
(Algorithm 2) applied to the particular primal problem of minimizing the edge in the space of
“primal” variables w ∈ ∆m which are distributions over the training data; and through duality,
maximizing the margin in the space of “dual” variables of normalized classifiers represented by
vectors λ ∈ Rn of coefficients which determine classifiers

∑n
j=1 λjhj . We also show that the edge

of wk is exactly the ℓ∞ norm of the gradient of the log-exponential loss function. Utilizing the
computational complexity results for Mirror Descent (Theorem 2.1), we then establish guarantees
on the duality gap for these duality paired problems. When the data are separable, these guarantees
imply that the sequence of classifiers {Hk} constructed in AdaBoost are in fact working on the
problem of maximizing the margin, with specific computational guarantees thereof for any step-
size sequence {αk}. When the data is not separable, these guarantees imply that the classifiers {Hk}
are in fact working on the problem of driving the ℓ∞ norm of the gradient of the log-exponential loss
function to zero, with specific computational guarantees thereof for any step-size sequence {αk}.
Let us see how this works out.

For convenience define the feature matrix A ∈ Rm×n componentwise by Aij := yihj(xi), and
let Aj denote the jth column of A, and define ϕ(w, λ) = wTAλ where we use w instead of x to
represent the primal variable. For any distribution w ∈ ∆m, wTAj is the edge of classifier hj with
respect to w, and

f(w) := max
j∈{1,...,n}

wTAj = max
λ∈∆n

wTAλ = max
λ∈∆n

ϕ(w, λ) (15)

is the maximum edge over all base classifiers, and we call f(w) the edge with respect to w. The
optimization problem of minimizing the edge over all distributions w is:

(Primal): min
w∈∆m

f(w) . (16)

Here (15) and (16) are precisely in the format of (2) and (1) with P = ∆m and Q = ∆n. We can
construct the dual of the edge minimization problem following (3) and (4), whereby we see that
the dual function is:

p(λ) := min
w∈∆m

ϕ(w, λ) = min
w∈∆m

wTAλ = min
i∈{1,...,m}

(Aλ)i , (17)

and the dual problem is:
(Dual): max

λ∈∆n

p(λ) . (18)

The margin achieved by the λ on example i is (Aλ)i, whereby p(λ) is the least margin achieved
by λ over all examples, and is simply referred to as the margin of λ. Because p(λ) is positively
homogeneous (p(βλ) = βp(λ) for β ≥ 0), it makes sense to normalize λ when measuring the margin,

9



which we do by re-scaling λ so that λ ∈ ∆n. Therefore the dual problem is that of maximizing the
margin over all normalized nonnegative classifiers. Note also that it is without loss of generality
that we assume λ ≥ 0 since for any base classifier hj ∈ H we may add the classifier −hj to the
set H if necessary. Consider the classifier Hk constructed in Step (2.) of AdaBoost. It follows
inductively that Hk =

∑k−1
i=0 αihji , and we define the normalization of Hk as:

H̄k :=
Hk∑k−1
i=0 αi

=

∑k−1
i=0 αihji∑k−1
i=0 αi

. (19)

In addition to the margin function p(λ), it will be useful to look at log-exponential loss function
L(·) : Rn → R which is defined as:

L(λ) = log

(
1

m

m∑
i=1

exp (−(Aλ)i)

)
. (20)

It is well-known that L(·) and p(·) are related by: −p(λ)− ln(m) ≤ L(λ) ≤ −p(λ) for any λ.

We establish the following equivalence result.

Theorem 3.1. The sequence of weight vectors {wk} in AdaBoost arise as the sequence of primal
variables in Mirror Descent applied to the primal problem (16), using the entropy prox function
d(w) := e(w) =

∑m
i=1wi ln(wi) + ln(m), with step-size sequence {αk} and initialized at w0 =

(1/m, . . . , 1/m). Furthermore, the sequence of normalized classifiers {H̄k} produced by AdaBoost
arise as the sequence of dual variables {λk} in Mirror Descent, and the margin of the classifier H̄k

is p(λk).

Proof. By definition of the weak learner and (15) combined with (5), we have for any w ∈ ∆m

j∗ ∈ W(w)⇐⇒ j∗ ∈ argmax
j∈{1,...,n}

wTAj ⇐⇒ ej∗ ∈ argmax
λ∈∆n

wTAλ⇐⇒ Aj∗ ∈ ∂f(w) ,

whereby Step (1.) of AdaBoost is identifying a vector gk := Ajk ∈ ∂f(wk). Moreover, since
gki = yihjk(xi) = Ai,jk , the construction of wk+1 in Step (2.) of AdaBoost is exactly setting
wk+1 ← arg min

w∈∆m

{
αk(g

k)Tx+D(w,wk)
}
(where D(·, ·) is the Bregman distance function arising

from the entropy function), as discussed in Example 2.1. Therefore the sequence {wk} is a sequence
of primal variables in Mirror Descent with the entropy prox function. Also notice from Step (1.)
of AdaBoost and the output of the weak learner W(wk) that ejk ∈ argmax

λ∈∆n

(wk)TAλ, which gives

the correspondence λ̃k = ejk at Step (1.) of Mirror Descent. Let {λk} denote the corresponding
sequence of dual variables defined in Step (2.) of Mirror Descent; it therefore follows that:

λk :=

∑k−1
i=0 αiλ̃

i∑k−1
i=0 αi

=

∑k−1
i=0 αieji∑k−1
i=0 αi

,

whereby H̄k defined in (19) is precisely the classifier determined by λk, and it follows that the
margin of H̄k is p(λk).
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Let {λ̂k} denote the sequence of coefficient vectors of the un-normalized classifiers {Hk} pro-
duced by AdaBoost, where λ̂k =

∑k−1
i=0 αieji . We also have the following relationship concerning

the norm of the gradient of log-exponential loss function.

Lemma 3.1. For every iteration k ≥ 0 of AdaBoost, the edge f(wk) and the un-normalized clas-
sifier Hk with coefficient vector λ̂k satisfy:

f(wk) = ∥∇L(λ̂k)∥∞ .

Proof. By our assumption that the set of base classifiers H is closed under negation, we have for
any w that f(w) = max

λ∈∆n

wTAλ = max
λ:∥λ∥1≤1

wTAλ = ∥ATw∥∞. It remains to show that −ATwk =

∇L(λ̂k). To do so, first note that

∇L(λ̂k)j =

∑m
i=1−Aij exp(−(Aλ̂k)i)∑m

ℓ=1 exp(−(Aλ̂k)ℓ)
.

Thus, defining a vector ŵk ∈ ∆m by

ŵk
i :=

exp(−(Aλ̂k)i)∑m
ℓ=1 exp(−(Aλ̂k)ℓ)

,

then we have that ∇L(λ̂k) = −AT ŵk. Clearly, we have ŵ0 = w0. By way of induction, supposing
that ŵk = wk, then by the update in step (2.) of AdaBoost we have that

wk+1
i ∝ wk

i exp(−αkAijk)

= ŵk
i exp(−αkAijk)

∝ exp(−(Aλ̂k)i − αkAijk)

= exp(−(A(λ̂k + αkejk))i)

= exp(−(Aλ̂k+1)i) .

Since both wk+1 and ŵk+1 are normalized, we have that wk+1 = ŵk+1. Therefore, we have that
−ATwk = ∇L(λ̂k) for all k ≥ 0, and in particular ∥ATwk∥∞ = ∥∇L(λ̂k)∥∞.

The equivalences given by Theorem 3.1 and Lemma 3.1 imply computational complexity results
for AdaBoost for both the margin p(λ) and the gradient of the log-exponential loss function, for a
variety of step-size rules via Theorem 2.1, as follows.

Theorem 3.2. (Complexity of AdaBoost) For all k ≥ 1, the sequence of classifiers {Hk}, with
coefficient vectors {λ̂k}, and their normalizations {H̄k}, with coefficient vectors {λk}, produced by
AdaBoost satisfy:

min
i∈{0,...,k−1}

∥∇L(λ̂i)∥∞ − p(λk) ≤
ln(m) + 1

2

∑k−1
i=0 α2

i∑k−1
i=0 αi

. (21)

If we decide a priori to run AdaBoost for k ≥ 1 iterations and use a constant step-size αi :=

√
2 ln(m)

k
for all i = 0, . . . , k − 1, then:

min
i∈{0,...,k−1}

∥∇L(λ̂i)∥∞ − p(λk) ≤
√

2 ln(m)

k
. (22)

11



If instead we use the dynamic step-size αi :=
√

2 ln(m)
i+1 , then:

min
i∈{0,...,k−1}

∥∇L(λ̂i)∥∞ − p(λk) ≤

√
ln(m)

2 [2 + ln(k)]

2(
√
k + 1− 1)

. (23)

Proof. By weak duality and invoking Lemma 3.1 we have p(λk) ≤ ρ∗ ≤ min
i∈{0,...,k−1}

f(wi) =

min
i∈{0,...,k−1}

∥∇L(λ̂i)∥∞. By Lemma A.1, we have that f(·) has Lipschitz function values with Lips-

chitz constant Lf = ∥A∥1,∞ = 1, and by Lemma A.2, we have that max
w∈∆m

D(w,w0) = ln(m). Thus

(21) follows directly from (9) in Theorem 2.1. The bounds (22) and (23) follow from (11) and (13),
respectively.

Let us now discuss these results. Let ρ∗ := max
λ∈∆n

p(λ) be the maximum margin over all normal-

ized classifiers. Since we are assuming that the set of base classifiers H is closed under negation, it
is always the case that ρ∗ ≥ 0. When ρ∗ > 0, there is a vector λ∗ ∈ ∆n with Aλ∗ > 0, and thus
the classifier determined by λ∗ separates the data. In this separable case, it is both intuitively and
theoretically desirable [19] to find a classifier with high margin, i.e., one that is close to the optimal
value ρ∗. For any k ≥ 1, by weak duality, we have that ρ∗ ≤ min

i∈{0,...,k−1}
∥∇L(λ̂i)∥∞, whereby the

bounds in (21), (22), and (23) hold for ρ∗−p(λk), and thus provide exact computational guarantees
that bound the optimality gap ρ∗ − p(λk) of the classifier H̄k produced by AdaBoost.

When ρ∗ = 0, then the data is not separable, and achieving the maximum margin is trivial; for
example the classifier 1

2h1 +
1
2(−h1) achieves the optimal margin. In this case the log-exponential

loss function L(·) is a metric of algorithm performance. For any k ≥ 1, by weak duality, we have
that 0 = ρ∗ ≥ p(λk), whereby the bounds in (21), (22), and (23) hold for min

i∈{0,...,k−1}
∥∇L(λ̂i)∥∞

- 0 and hence provide exact computational complexity bounds for the ℓ∞ norm of the gradient
of L(·) thereby guaranteeing the extent to which the classifiers Hk (equivalently λ̂k) produced by
AdaBoost satisfy the first-order optimality condition for minimizing L(·).

4 FSε as Subgradient Descent

Here we consider the linear regression model y = Xβ+e, with given response vector y ∈ Rn, given
model matrix X ∈ Rn×p, regression coefficients β ∈ Rp and errors e ∈ Rn. In the high-dimensional
statistical regime, especially with p ≫ n, a sparse linear model with few non-zero coefficients is
often desirable. In this context, ℓ1-penalized regression, i.e., LASSO [23], is often used to perform
variable selection and shrinkage in the coefficients and is known to yield models with good predictive
performance. The Incremental Forward Stagewise algorithm (FSε) [7, 8] with shrinkage factor ε is
a type of boosting algorithm for the linear regression problem. FSε generates a coefficient profile2

by repeatedly updating (by a small amount ε) the coefficient of the variable most correlated with
the current residuals. A complete description of FSε is presented in Algorithm 4.

2A coefficient profile is a path of coefficients {β(α)}α∈α where α parameterizes the path. In the context of FSε,
α indexes the ℓ1 arc-length of the coefficients.
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Algorithm 4 Incremental Forward Stagewise algorithm (FSε)

Initialize at r0 = y, β0 = 0, k = 0

At iteration k:
1. Compute:

jk ∈ argmax
j∈{1,...,p}

|(rk)TXj |

2. Set:

rk+1 ← rk − ε sgn((rk)TXjk)Xjk

βk+1
jk
← βk

jk
+ ε sgn((rk)TXjk)

βk+1
j ← βk

j , j ̸= jk

As a consequence of the update scheme in Step (2.) of Algorithm 4, FSε has the following
sparsity property:

∥βk∥1 ≤ kε and ∥βk∥0 ≤ k . (24)

Different choices of ε lead to different instances; for example a choice of εk := |(rk)TXjk | yields the
Forward Stagewise algorithm (FS) [8], which is a greedy version of best-subset selection.

4.1 FSε is a Specific Case of Subgradient Descent

We now show that FSε is in fact an instance of the subgradient descent method (algorithm 1)
to minimize the largest correlation between the residuals and the predictors, over the space of
residuals. Indeed, consider the convex optimization problem:

min
r∈Pres

f(r) := ∥XT r∥∞ (25)

where Pres := {r ∈ Rn : r = y −Xβ for some β ∈ Rp} is the the space of residuals. One can also
interpret the value of the objective function f(r) in (25) as measuring the ℓ∞ norm of the gradient
of the least-squares loss function L(β) := 1

2∥y−Xβ∥22 at some (possibly non-unique) point β ∈ Rp.
We establish the following equivalence.

Theorem 4.1. The FSε algorithm is an instance of the subgradient descent method to solve problem
(25), initialized at r0 = y and with a constant step-size of ε at each iteration.

Proof. f(r) measures the maximum (over all columns j ∈ {1, . . . , p}) absolute value of the correla-
tion between Xj and r, and so f(·) has the following representation:

f(r) := ∥XT r∥∞ = max
j∈{1,...,p}

|rTXj | = max
β∈B1

rTXβ , (26)

thus by (5) for any r ∈ Rn we have:

j∗ ∈ argmax
j∈{1,...,p}

|rTXj | ⇐⇒ sgn(rTXj∗)Xj∗ ∈ ∂f(r) . (27)

13



It therefore follows that Step (1.) of FSε is identifying a vector gk := sgn((rk)TXjk)Xjk ∈ ∂f(rk).
Furthermore, Step (2.) of FSε is taking a subgradient step with step-size ε, namely rk+1 := rk−εgk.
By an easy induction, the iterates of FSε satisfy rk = y −Xβk ∈ Pres whereby rk+1 := rk − εgk =
ΠPres(r

k − εgk).

As with the Mirror Descent interpretation of AdaBoost, we use the subgradient descent inter-
pretation of FSε to obtain computational guarantees for a variety of step-size sequences.

Theorem 4.2. (Complexity of FSε) Let βLS ∈ argminβ ∥y−Xβ∥22 be any least-squares solution
of the regression model. With the constant shrinkage factor ε, for any k ≥ 0 it holds that:

min
i∈{0,...,k}

∥XT ri∥∞ ≤
∥XβLS∥22
2ε(k + 1)

+
ε∥X∥21,2

2
. (28)

If we a priori decide to run FSε for k iterations and set ε := ∥XβLS∥2
∥X∥1,2

√
k+1

then

min
i∈{0,...,k}

∥XT ri∥∞ ≤
∥X∥1,2∥XβLS∥2√

k + 1
. (29)

If instead the shrinkage factor is dynamically chosen as ε = εk :=
|(rk)TXjk

|
∥Xjk

∥22
(this is the Forward

Stagewise algorithm (FS) [8]), then the bound (29) holds for all values of k without having to set k
a priori.

Proof. Let rLS := y − XβLS be the residuals of the least-squares solution XβLS , and it follows
from orthogonality that XT rLS = 0 if and only if βLS is a least-squares solution, hence the optimal
objective function value of (25) is f∗ = f(rLS) = 0 and r∗ := rLS is an optimal solution of (25).
As subgradient descent is simply Mirror Descent using the Euclidean prox function d(r) = 1

2r
T r

on the space of the residuals r ∈ Pres, we apply Theorem 2.1 with r = r∗ = rLS . We have:

D(r∗, r0) = D(rLS , r
0) =

1

2
∥rLS − r0∥22 =

1

2
∥rLS − y∥22 =

1

2
∥XβLS∥22 .

By Lemma A.1, f(·) has Lipschitz function values (with respect to the ℓ2 norm) with Lipschitz
constant Lf = ∥X∥1,2 = max

j∈{1,...,p}
∥Xj∥2. Using these facts and f(rLS) = f∗ = 0, inequality (8) in

Theorem 2.1 implies (28). Setting ε := ∥XβLS∥2
∥X∥1,2

√
k+1

and substituting into (28) yields (29). Finally,

the step-size εk :=
|(rk)TXjk

|
∥Xjk

∥22
is just the step-size used to yield (14), and in this context Lf = ∥X∥1,2

and ∥r0 − r∗∥2 = ∥XβLS∥2 from which (29) follows again.

The computational complexity bounds in Theorem 4.2 are of a similar spirit to those implied by
Theorem 3.2, and can be interpreted as a guarantee on the “closeness” of the coefficient vectors {βk}
to satisfying the classical optimality condition ∥XT r∥∞ = 0 for the (unconstrained) least-squares
minimization problem.

Note that in the high-dimensional regime with p > n and rank(X) = n, we have that y = XβLS ,
thus the selection of ε to obtain (29) does not require knowing (or computing) βLS . Furthermore,
we can always bound ∥XβLS∥2 ≤ ∥y∥2 and choose ε optimally with respect to the resulting bound
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in (28). The interest in the interpretation given by Theorem 4.1 and the consequent complexity
results in Theorem 4.2 is due to the sparsity and regularization properties (24) combined with the
computational complexity, in contrast to βLS which is not guaranteed to have any such sparsity
or regularization properties. Indeed, due to Theorem 4.2, FSε now has the specific advantage of
balancing the sparsity and regularization properties (24) and the complexity guarantees given by
Theorem 4.2 through the choices of the shrinkage parameter ε and the number of iterations k.

A Appendix

Lemma A.1. Suppose that f(·) : P → R is defined by f(x) := max
λ∈Q

xTAλ. Then f(·) has Lipschitz

function values with Lipschitz constant Lf := max
λ∈Q
∥Aλ∥∗. In particular, if Q ⊆ B♯ := {λ : ∥λ∥♯ ≤

1} for some norm ∥ · ∥♯, then Lf ≤ ∥A∥♯,∗ where ∥A∥♯,∗ is the operator norm of A.

Proof. Let x, x′ ∈ P and let λ̃ ∈ argmax
λ∈Q

xTAλ , λ̃′ ∈ argmax
λ∈Q

(x′)TAλ. Then

f(x)− f(x′) = xTAλ̃− (x′)TAλ̃′

≤ xTAλ̃− (x′)TAλ̃

= (x− x′)TAλ̃

≤ ∥Aλ̃∥∗∥x− x′∥
≤ Lf∥x− x′∥ ,

and symmetrically we have f(x′)− f(x) ≤ Lf∥x′ − x∥. Clearly if Q ⊆ B♯, then

Lf = max
λ∈Q
∥Aλ∥∗ ≤ max

λ∈B♯
∥Aλ∥∗ = ∥A∥♯,∗ .

Lemma A.2. Let e(·) : ∆n → R be the entropy function, defined by e(x) =
∑n

i=1 xi ln(xi) + ln(n),
with induced Bregman distance D(·, ·), and let w0 = (1/n, . . . , 1/n). Then, we have max

w∈∆n

D(w,w0) =

ln(n).

Proof. Clearly e(w0) = ln(1/n) + ln(n) = 0 and since ∇e(w0)i = 1 + ln(1/n) = 1− ln(n), we have
for any w ∈ ∆n:

∇e(w0)T (w − w0) = (1− ln(n))
n∑

i=1

(wi − 1/n) = (1− ln(n))(1− 1) = 0 .

Thus we have:

D(w,w0) = e(w)− e(w0)−∇e(w0)T (w − w0) = e(w) =
n∑

i=1

wi ln(wi) + ln(n) ≤ ln(n) .

Furthermore, the maximum is achieved by e1 = (1, 0, . . . , 0).
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