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Abstract

Unplanned employee absences are estimated to account for a loss of 3% of scheduled labor
hours. This can be costly in railroad dispatcher scheduling because every absence must be filled
through overtime or a qualified extra dispatcher. One factor that complicates this problem is the
uncertainty of unplanned employee absences. The ability to predict unplanned absences would
facilitate effective scheduling of extra dispatchers and help reduce overtime costs. This thesis
uses data from a railroad company over a four year period to examine company-wide factors
thought to impact the number of unplanned absences among dispatchers. Using Poisson
regression, we identify several factors that provide statistical evidence of influencing the number
of unplanned absences. These factors are month, snowstorms, shift, and certain holidays.
Despite these findings, the overall predictive capability of our regression model is very weak.
Instead, we model the number of unplanned absences by shift as a -Andom process with a
Negative Binomial distribution and use Monte Carlo simulation to explore the impact on
overtime costs of increasing the number of scheduled extra dispatchers and increasing the
number of positions on which each employee is qualified to work. Our results show that
increasing the number of extra dispatchers has a.greater effect on reducing overtime, but the cost
savings from ledtcing overtime expenses afe not enough to offset the additional labor costs of
having more employees on staff. Our results provide insight regarding the relationship among
extra staff, higher levels of qualification among employees, and the willingness to use overtime
in handling unplanned absences.

Thesis supervisor: Anthony J. Craig
Title: Postdoctoral Associate

2



Table of Contents

List of Tables........................................................................................................ 5

List of Figures ....................................................................................................... 6

1 Dispatcher Scheduling in the Railroad Industry..................................... 7
1.1 S ch edu ling at R ailC o...................................................................................................................7

1.2 M otiv ation .................................................................................................................................... 8

2 Literature Review ..................................................................................... 10
2.1 Causal Factors of Employee Absenteeism.......................................................................... 10

2.2 Scheduling Replacements: The Assignment Problem........................................................ 12

3 M ethods ..................................................................................................... 13
3.1 Evaluating Count Data: Introduction ................................................................................ 15

3.1.1 The Binomial Distribution............................................................................................ 15

3.1.2 The Poisson Distribution .............................................................................................. 16

3.1.3 The Negative Binomial Distribution............................................................................ 17

3.1.4 Goodness of Fit Tests ................................................................................................... 18

3.2 M od el S election .......................................................................................................................... 19

3.3 Generalized Linear Regression Models............................................................................... 21

3.3.1 Goodness of Fit Tests for Generalized Linear Regression Models ........................... 22

3.4 Inputs for Sim ulation ................................................................................................................ 22

3.4.1 Distributions of Employee Qualifications ................................................................... 23

3 .5 O p tim ization .............................................................................................................................. 28

3 .6 S im u latio n .................................................................................................................................. 32

4 Data Analysis: Regression.................................................................... . 35

4.1 Statistically Significant Parameters......................................................................................37

4 .1.1 M o n th ................................................................................................................................. 37

4 .1.2 S h ift.....................................................................................................................................3 8

4 .1.3 H olid ay s..............................................................................................................................38

4 .1.4 S n ow storm s........................................................................................................................40

3



4.1.5 Planned Absences..............................................................................................................41

4.2 Statistically Insignificant Factors ....................................................................................... 41

4.2.1 Hunting Season..................................................................................................................41

4.2.2 Football Gam es..................................................................................................................42

4.2.3 Day of the week and Day of the M onth ....................................................................... 42

4.3 M arginal Effects ........................................................................................................................ 44

4.4 Significance of M odel................................................................................................................45

4.5 Goodness of Fit for Negative Binomial Regression ............................................................ 46

4.6 Other Considerations: Yearly Trends and Absences by Employee................................. 47

5 D ata A nalysis: Sim ulation ........................................................................ 48
5.1 Slide Cost .................................................................................................................................... 50

5.2 Overtim e Cost............................................................................................................................ 51

5.3 Extra Cost..................................................................................................................................53

5.4 Current Cost..............................................................................................................................55

6 Csion .....................................................Cu.............................................56

6.1 Other Considerations in Employee Staffing ....................................................................... 57

6.2 Future Research........................................................................................................................60

7 B ibliography .............................................................................................. 6 1

4



List of Tables

T able 1: Shift start and end tim es............................................................................................................13

T able 2: Sam ple absence codes ................................................................................................................ 14
Table 3: Goodness of fit tests for absences by shift............................................................................20
Table 4: Statistics for distributions of extra board qualifications ................................................... 26
Table 5: Statistics for distributions of incumbent qualifications ...................................................... 28
Table 6: Number of positions for each day and shift ........................................................................ 34
Table 7: Mean and standard deviation of each employee type ........................................................ 34
Table 8: Average qualifications per employee................................................................................... 35
Table 9: Possible factors that influence unplanned absences.......................................................... 36
Table 10: Regression statistics for month .......................................................................................... 37
Table 11: Regression statistics for shift...............................................................................................38

Table 12: Nine most common paid Holidays ..................................................................................... 39
Table 13: Regression statistics for Holidays ....................................................................................... 40
Table 14: Regression statistics for snowstorms ................................................................................ 40
Table 15: Regression statistics for planned absences........................................................................ 41
Table 16: Regression statistics for hunting season ............................................................................ 42

Table 17: Regression statistics for football games............................................................................ 42

Table 18: Regression statistics for days of the month........................................................................43

Table 19: Regression statistics for day of the week.......................................................................... 44
Table 20: Summary of actual effects of statistically significant parameters ................................... 45
Table 21: Comparison of results from Poisson and Negative Binomial regression.............46

Table 22: Average planned absences...................................................................................................49

5



List of Figures

Figure 1: Example positions by day and shift...................................................................................... 7

Figure 2: Irregularity of unplanned absences in 2012..........................................................................9

Figure 3: Probability Distribution of Absences ................................................................................. 15

Figure 4: Sample Binomial Distributions based on varying values of n and p ................................. 16

Figure 5: Sam ple Poisson distributions based on varying values of )...............................................17

Figure 6: Sample Negative Binomial distributions based on varying values of r and p ................. 18

Figure 7: Distribution of unplanned absences compared to sample distributions ........................... 19

Figure 8: Samples from data tables ......................................................................................................... 24

Figure 9: Distributions of qualifications for extra board employees............................................... 25

Figure 10: Distributions of qualifications for incumbent employees............................................... 27

Figure 11: Qualification M atrix...............................................................................................................29

Figure 12: Cost M atrix ............................................................................................................................. 30

Figure 13: Solution M atrix.......................................................................................................................32

Figure 14: Total absences by year ....................................................................................................... 47

Figure 15: Cum ulative absences by year............................................................................................ 48

Figure 16: Slide cost..................................................................................................................................50

Figure 17: Overtim e cost .......................................................................................................................... 51

Figure 18: Overtim e cost by qualifications .......................................................................................... 53

Figure 19: Extra cost.................................................................................................................................54

Figure 20: Slide cost, overtim e cost, and extra cost ............................................................................ 55

Figure 21: Effect of changing extra board size or qualification........................................................ 56

Figure 22: Total labor cost ....................................................................................................................... 58

Figure 23: Total labor cost, extra cost, and extra board cost............................................................ 59

6



1 Dispatcher Scheduling in the Railroad Industry

RailCol operates several thousand miles of track across the United States. The department that

directs traffic across this network employs over four hundred dispatchers and operates 24 hours a

day, 7 days a week, 365 days a year. The daily assignment of these four hundred dispatchers

across their unique positions combined with the scheduling of employee vacations requires the

labor of eight full-time employees. These scheduling employees are required to follow strict

scheduling rules that govern how employees are qualified to work in specific positions, when

employees can take vacation time, and how employees are disciplined for being absent from

work.

1.1 Scheduling at RailCo

RailCo has three shifts of approximately ninety positions that must be staffed every day. Each of

these positions is associated with a length of track over which the dispatcher directs railroad

traffic. Before a dispatcher can work on a position he must be trained and receive the

corresponding qualification for that position. The dispatcher that is regularly assigned to a

certain position is called the "incumbent" for that position. Figure 1 shows an example of how

positions are allocated by day and shift.

Saturday Sunday Monday Tuesdy Wednesday Thursda Friday
1st Shift (6:30-14:30)
2nd Shift (14:30-22:30)
3rd Shift (22:30-6:30) Position 5

Figure 1: Example positions by day and shift
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If an incumbent for any position is absent from work, for either planned or unplanned reasons,

his/her position must be staffed by an alternate employee who has been pre-qualified to work in

that position. RailCo maintains a group of extra employees without regular assignments, called

"extra board," that can fill in these incumbent vacancies.

The RailCo dispatcher workforce is unionized and has strict rules that govern their schedules and

work positions. If no extra board employee is available and qualified to staff an incumbent

vacancy, then an incumbent from another position can be moved from his position in what is

called a "slide." The vacancy created by sliding the incumbent can then be filled by an extra

board employee qualified on that position. This process of sliding employees is repeated until all

positions are staffed with qualified employees. If it is not possible or feasible to fill vacancies by

sliding employees, then RailCo can call an employee from home and pay him/her overtime to fill

the position.

Because of union rules, each time an incumbent is moved from his/her regular position in a slide

he/she must be paid time and one half for that day, and each time an employee is called from

home he/she must be paid a full day and one half extra. Because of these union agreements,

RailCo has little flexibility in how they make assignments and schedule their employees without

incurring extra cost. This scheduling problem is further complicated by unplanned employee

absences.

1.2 Motivation

The number of unplanned absences on any given day occurs in unpredictable patterns. On

seemingly random days during the year there are an unusually high number of employees that

call in sick. Figure 2 shows the irregularity of unplanned absences by day during 2012.
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Figure 2: Irregularity of unplanned absences in 2012

Because RailCo cannot predict when these spikes in absenteeism will occur they are forced to

keep a high number of extra board dispatchers on their payroll to cover worst case scenarios.

Extra board dispatchers earn a full-time salary even if they do not have a specific assignment

every day.

If RailCo could predict when days of unusually high absences would occur, they would be able

to make adjustments to planned vacation allotments and training schedules in order to minimize

employee slides and overtime pay. More accurate prediction of employee absences would also

allow management to respond more quickly and accurately to employee requests for days off.

The first part of our research aims to answer the question of what factors influence unplanned

dispatcher absences, and by using these factors is it possible to build a model that will predict

how many absences will occur on any given day and shift. This knowledge will give RailCo the

ability to make better decisions about staffing levels and make allotments for planned vacation

days, and will have a significant impact on the both the profits and employee relations of RailCo.

A further part of our research will apply simulation techniques to help RailCo find the most

appropriate number of extra board employees and the optimal number of qualifications that each
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dispatcher on the extra board should have. Both of these factors will affect the total labor costs

for RailCo. The more qualifications that each extra board dispatcher has, the more flexibility

RailCo will have in their scheduling, and the less likely RailCo will be to incur the extra costs

associated with sliding employees between positions or calling in people from home.

2 Literature Review

Most of the research conducted on employee absenteeism focuses on predicting absences based

on the traits of the individual employee, or based on large scale economic factors that affect the

entire population. Our research is somewhat unique in that it focuses on factors that affect

absences on a company-wide scale. This includes factors such as shift, day of the week, month,

holidays, as well as events that are specific to RailCo's geographical region. As RailCo gains the

ability to predict absenteeism based on these factors, they will be able customize the size of their

labor force. As a background to our research, we will now review the literature that has been

done on predicting absenteeism and the methods available for scheduling replacements for

absent employees.

2.1 Causal Factors of Employee Absenteeism

In 2010 it was estimated that the total cost of absenteeism in the United States was $118 billion

(Weaver, 2010). A Mercer study estimated that the total costs of these unplanned absences were

as high as 8.7% of payroll (Carpenter & Wyman, 2010). It has also been estimated that

unplanned absences account for a loss of approximately 3% of scheduled labor hours (Bureau of

Labor Statistics, 2011). The high cost of absenteeism has motivated studies aimed at predicting

employee absenteeism in the healthcare, manufacturing, and service industries.
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In 1998, a twenty year review of studies on absenteeism concluded that in the mid-term and long

term, factors such as gender, age, health, and job satisfaction are all significant predictors of

absenteeism (Harrison & Martocchio, 1998). Data published by the Bureau of Labor Statistics in

support many of these conclusions; for example, in 2011, women were almost twice as likely to

be absent from work as men, and older employees were found to have slightly higher instances

of absenteeism than younger employees (Bureau of Labor Statistics, 2011).

Other studies have examined more limited predictive factors on absenteeism. One study

(Hausknecht et. al, 2008) found a negative correlation between local unemployment rates and

absenteeism. Another study, of 514 security guards, found that employees that perceive their

employer as being unfair have slightly higher rates of absenteeism (De Boer et. al, 2002). Other

studies show that unplanned absences are higher among union employees than non-union

employees (Carpenter & Wyman, 2010; Chaudhury & Ng, 1992).

Several factors cause absences in the short term, the most common being illness. However, as

many as half of unplanned absences can be attributed to factors other than illness, such as doctor

appointments, problematic relationships, and vehicle repairs (Prater & Smith, 2011). Weather is

another cause of absenteeism, although this is generally limited to regions where snow and other

winter conditions are common (Bureau of Labor Statistics, 2012)

In our research we evaluated some of the factors detailed above, but most of our analysis focused

on macro factors specific to RailCo's work conditions and geography. This is because RailCo's

primary objective was to understand the causes of variation in unplanned absences for the

company as a whole and not for individual employees.
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2.2 Scheduling Replacements: The Assignment Problem

Whenever an incumbent for a position is absent for unplanned reasons, another employee with

the appropriate qualification must be assigned to fill that vacancy. A substantial amount of

literature exists that addresses how to solve this so-called assignment problem.

Kuhn (1955) defined the problem this way: "...personnel-assignment asks for the best

assignment of a set of persons to a set of jobs, where the possible assignments are ranked by the

total scores or ratings of the workers in the jobs to which they are assigned." Kuhn developed

what he called the Hungarian Method, based on work done by D. KOnig (1936) and E. Egerviry

(1931), as a way to solve the assignment problem. In this method, employees and jobs are

arranged in a matrix where the rows of the matrix represent employees, the columns represent

jobs, and each row/column combination contains the corresponding value of that employee being

assigned to that job. An algorithm is then applied to the matrix which produces the optimal

solution based on the value in each cell of the matrix. This optimization method has been used

by many researchers. For example James Munkres (1957) used it to solve transportation

problems, and more recently, Hultberg and Cardoso (1997) employed this method to assign

teachers to subjects in school

In our application of the assignment problem to RailCo's scheduling problem, we will create a

matrix where the rows represent employees, the columns represent positions, and each cell

describes the cost of that employee working in that position. Solving the assignment problem

will then produce the minimum cost solution of assigning incumbents, extra board employees,

and overtime workers to the positions.
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3 Methods

In our analysis of employee absences we used data from January 1, 2009, to December 31, 2012;

each absence during this four year period had a corresponding date, time, employee number and

reason for the absence. As a precursor to analyzing these absences, we first had to determine the

shift on which they occurred and if they were planned or unplanned.

Because dispatchers start work at different times during the day, shifts were divided into eight

hour blocks based on the earliest start time possible under union rules, which is 5:00 AM. Table

1 shows the start and end times for each shift. All start times between 12:00 AM and 4:59 AM

were assigned to the third shift of the previous day.

Table 1: Shift start and end times

Start Time End Time
Shift 1 5:00 AM 12:59 PM
Shift 2 1:00 PM 8:59 PM
Shift 3 9:00 PM *4:59 AM

*the following day

The next step in our analysis was to determine how RailCo differentiated between planned and

unplanned absences. RailCo uses several description codes in their scheduling operations to

label each individual absence. A partial list of codes is shown in Table 2.
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Table 2: Sample absence codes

Code Description Planned
AD ALT DISCIPLINE Yes
AO ABSENT WITHOUT LEAVE No
BL BEREAVEMENT LEAVE No
CB COMPANY BUSINESS Yes
FB FMLA BIRTH Yes
FD FIT FOR DUTY--CAN'T WORK No
FE FAMILY EMERGENCY No
FF FMLA FAMILY No
FH EXEMPT DISP FLOAT HOLIDAYS Yes
FI FRML INVESTIGATION No

Generally, an absence was considered "unplanned" if the scheduler was not aware the employee

would not arrive more than 24 hours in advance and as a result would not have the opportunity to

adjust schedules before the work day started. For series of unplanned absences from one

employee lasting longer than one day, absences were counted as "unplanned" for the first five

consecutive days, and then "planned" for any remaining days. This is because after several days

of consecutive unplanned absences the schedulers would presumably be able to adjust their plans

appropriately to account for the previously "unplanned" absence. By categorizing all absences

by day and shift, we created 4 years x 365 days x 3 shifts = 4,383 day/shift combinations. A

probability distribution of these absences is shown in Figure 3.
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Figure 3: Probability Distribution of Absences

3.1 Evaluating Count Data: Introduction

The number of absences that occur on any given shift is categorized as count data, which are

defined as values that are both non-negative and integers. There are several models that can be

employed to evaluate count data; we will discuss the three most common, namely, Binomial,

Poisson, and Negative Binomial.

3.1.1 The Binomial Distribution

The Binomial distribution is the simplest model used to evaluate count data arising from a series

of independent and identical trials that result in either a success or a failure. The probability

mass function for Binomial distributions is given by the equation:

P(X = k) = npk(1 - p)--k (1)

Where n = the number of trials, p = the probability of success of each trial, and k = the number of

successes. As an example of how this would be applied to RailCo, n would represent the number

of employees that are scheduled to work on a given day or shift, p would represent the
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probability that each employee would be absent from work, and k would represent the number of

employees that were absent on that given day.

Figure 4 shows sample Binomial distributions based on varying values for n and p.

30.0%

25.0%

20.0%

15.0%

10.0%

5.0%

0.0%

- n=15, p=.4

-n=15, p=.8

- n=40, p=.4
1 62

1 6 11 16 21 26 31

Figure 4: Sample Binomial Distributions based on varying values of n and p

This model is generally used for simple distributions where the probability of success is known.

Because in our research the probability of success is unknown and varies from employee to

employee, this model is not sufficient to analyze the absences that occur at RailCo.

3.1.2 The Poisson Distribution

The Poisson distribution is the most common model used to evaluate count data (Winkelmann,

2008). It is derived from the Binomial distribution as the number of trials increases towards

infinity while holding the probability of success constant. The probability mass function of the

Poisson distribution is:

Ake-
P(X = k) = k! (2)
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Where X = E(X) = Var(X) and e = the base of the natural logarithm (2.71828...). Example

probability distributions based on different values of X are shown Figure 5.

Figure 5: Sample Poisson distributions based on varying values of k

The Poisson distribution is most useful if the mean and variance for the data being analyzed are

the same. If the variance of a given set of data is greater than the mean, called over-dispersion,

or smaller than the mean, called under-dispersion, then other models that are more flexible

should be used. The amount of under/over-dispersion is simply the ratio between the variance

and the mean. The distribution of unplanned absences by shift is slightly over-dispersed, so the

Poisson distribution is not the best model for our data, but it will prove useful later in our

analysis.

3.1.3 The Negative Binomial Distribution

The Negative Binomial distribution is a more flexible model than the Poisson distribution and is

a good alternative for modeling count data that is over-dispersed (Winkelmann, 2008) because it

allows the variance to take on a value different from the mean. The probability mass function for

the Negative Binomial distribution is given by the equation:

17
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(3)P(X = k) = (krl!(1 - p)rpk

Where k = the number of successes, r = the number of failures, and p = the probability of a

success.

The greater flexibility of the Negative Binomial distribution is illustrated in Figure 6, below,

which shows three different distributions based on varying values of r and p.

1 3 5 79 1113151719212325

- r=15, p=.3

- r=10, p=.5

r=5, p=.7

Figure 6: Sample Negative Binomial distributions based on varying values of r and p

We will use the Negative Binomial distribution extensively to model the data we evaluated in

our research. The number of unplanned absences by shift, the number of extra board

qualifications by day/shift, and the number of incumbent qualifications by day/shift can all be

effectively modeled using Negative Binomial distributions.

3.1.4 Goodness of Fit Tests

Goodness of Fit Tests are used to determine how well a distribution approximates the sample

data in question. A common goodness of fit test for the Poisson and Negative Binomial

distributions is the Pearson Chi Square test, which is given by the equation:
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2_ e(-fe)2

Xk-P-1= EK f (4)

Where f0= the observed frequency, fe = the expected frequency, k = the number of categories,

and p = the number of parameters estimated from the data. We will use the Pearson Chi Square

test to evaluate the goodness of fit for our data to both the Poisson and Negative Binomial

distributions.

3.2 Model Selection

Using the mean and variance as parameters, we fit the distribution of absences to the Poisson

distribution and the Negative Binomial distribution, and tested the degree of fit using the Pearson

Chi Square test. A visual comparison of the distribution of absences by shift to the Poisson and

Negative Binomial distributions is shown in Figure 7.

Poisson Distribution

Distribution
of Absences

- Poisson
Distribution

0 1 2 3 4 5 6 7 8 9 10 11 12

Negative Binomial Distribution

0.3

0.25

0.2

0.15

0.1

0.05

0
0 1 2 3 4 5 6 7 8 9 10 1112

Figure 7: Distribution of unplanned absences compared to sample distributions

The Pearson Chi Square goodness of fit tests for our sample data are shown in Table 3.
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Table 3: Goodness of fit tests for absences by shift

Negative Binomial
Parameter Estimate Lower 95% Upper 95%

Average k 2.67351 2.6228 2.7249
Overdispersion cy 1.1110 1.0653 1.1599

Chi Square Prob<Chi Square
Chi Square 9.33961 0.7468

Poisson
Parameter Estimate Lower 95% Upper 95%

Average I 2.67351 2.62541 2.7222

Chi Square Prob<Chi Square
Chi Square 43.76981<.0001

As seen in Table 3, the chi square value for the Poisson distribution is 43.77. Given that there

are eleven degrees of freedom in this Chi Square test, the resulting probability value is less than

.0001, from which we conclude the data is not from the Poisson distribution. The Chi Square

value for the Negative Binomial distribution is 9.34, producing a probability value of .74, from

which we conclude the Negative Binomial distribution is appropriate to model the number of

unplanned absences.

Fitting the distribution of unplanned absences to distributions of known parameters such as

Poisson and Negative Binomial allows us to use what are known as Generalized Linear Models

to perform regression analysis. Poisson regression and Negative Binomial regression are both

GLMs. Because Poisson regression is the most common GLM for count data, and because it is

robust to over-dispersion and other variances in the data (Winkelmann, 2008), we conducted our

analysis using Poisson regression. Later we will show that the results of using Poisson

regression on our data set are virtually identical to the results of using Negative Binomial

regression.
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3.3 Generalized Linear Regression Models

Regression analysis is a common tool used to explain the variance in a dependent variable, y,

using independent variables, x. The most common form of regression analysis, Ordinary Least

Squares, is not appropriate for our model for a number of reasons. First, OLS assumes that the

residuals are normally distributed, which is not true in our case. Second, OLS is not suitable for

count data because count data must take on positive integer values (Winkelmann, 2008). For this

reason, count data is generally evaluated using GLMs with a link function, such as a logarithm,

which forces the variables to be positive. The Poisson Regression Model is an example of a

GLM; a comparison of the Poisson regression to OLS regression is shown below.

Ordinary Least Squares Regression

9 = flo + fi1x1 + fi2X2 + -- + #kXx

Where y = the dependent variable, xj= the independent variables, and fli=the effect of the

independent variables on the dependent variable.

Poisson Regression

Z = exp(fl0 + /31 x1 + /32x2 + -- + /3kXk) = efto+#1x1+#2x2+--+#kxk

Where A = the dependent variable, xj= the independent variables, fli=the effect of the

independent variables on the dependent variable, and e= the natural log (2.718...).

The Negative Binomial Regression Model is a GLM like the Poisson Regression Model, and also

uses a log link function.
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GLMs are also different from OLS models in that they have no equation to determine the effect

of independent variables on the dependent variable. Instead, they rely on Maximum Likelihood

Estimations, in which parameters for the model are determined so as to maximize the probability

that the observed data was generated by the given model (Winkelmann, 2008). Maximum

likelihood estimations are computed by mathematical algorithms employed by statistical

software programs.

3.3.1 Goodness of Fit Tests for Generalized Linear Regression Models

One final difference between OLS regression and GLM regression is what methods are used to

measure how well the regression equation fits the actual data, or how effectively the independent

variables predict the value of the dependent variable. OLS regression uses R 2 to determine the

level of fit, which is a measure of the percentage of variance in the dependent variable that is

attributable to the variation in the dependent variable. Because GLMs are computed using

Maximum Likelihood Estimators, they do not use the OLS R2 to determine fit, but instead use

other tools that provide a measure of fit that is similar to what R2 is to OLS. The most common

measure of fit for GLMs, used for its robustness, is the McFadden R2 (Veall & Zimmermann,

1996); we will use this measure to assess the fit of our regression models.

3.4 Inputs for Simulation

One purpose of our research was to help RailCo understand the tradeoffs between the number of

extra board employees, the number of qualifications of each employee, the amount of overtime

required, and total labor costs. To understand the relationships between these variables we used

Monte Carlo Simulation. In Monte Carlo Simulation, a number of inputs that each obeys a

specific probability distribution are defined and used to find a solution deterministically. By
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running many iterations of this simulation you can gain an understanding of the best solution to

the overall problem (Metropolis, N.; Ulam, S. 1949). In our case with RailCo, the inputs that

obey a probability distribution are the number of absences on a given shift, the number of

qualifications of incumbent employees, and the number of qualifications of extra board

employees. After defining these inputs we assigned dispatchers to positions by using an

optimization solver that was designed for our type of assignment problem. By changing

qualification levels and the number of extra board employees and running simulation iterations

we were able to investigate the impact of varying the number of extra board employees and

qualifications on costs. We will now explain the specific inputs and the optimization portion of

our simulation model.

3.4.1 Distributions of Employee Qualifications

The first step in building a simulation model was to determine the distribution of qualifications

by day/shift of incumbent employees and the distribution of qualifications by day/shift of extra

board employees. To do this, we used three relational database tables provided by RailCo, which

are "Current Assignments," "All Qualifications," and "Qualifications by Day/Shift." Sample

data from these three tables are shown in Figure 8.
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Current Assignments
Employee Position

1103' 6264
1104 6436

1106 6192

1359 6333

1361 6149
-1364 '6215

All Qualifications
Employee Qualification

1103 6147

1103 6150

1103 6152

1103 6156

Qualification by Day/Shift
Qualification DOW Shift

6072 MON I

6072 WED I

6072 FRI I

Figure 8: Samples from data tables

The Current Assignments table indicates each employee's number and the position for which he

or she is the incumbent, the All Qualifications table lists every position that each employee is

currently qualified to work on, and the Qualifications by Day/Shift table shows the

corresponding day and shift of each qualification. Some qualifications are used during all seven

days of the week, others are used only for five days, and a few are used on only two days.

Using the data in from these tables we created a distribution of employee qualifications for each

day/shift combination. The distributions for extra board employees are shown in Figure 9,

below.
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Figure 9: Distributions of qualifications for extra board employees

As is evident from Figure 9, each day/shift produces a similar distribution; we fit each of these

distributions to a Negative Binomial distribution using a maximum likelihood estimator and

tested the degree of fit using the Pearson Chi Square test. The statistics that describe each

day/shift distribution and its level of fit to a Negative Binomial distribution is shown in Table 4.
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1st Shift

2nd Shift

Table 4: Statistics for distributions of extra board qualifications

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Average 3.847 3.847 3.847 3.847 3.847 3.647 3.647
Overdispersion 1.431 1.431 1.431 1.431 1.431 1.324 1.324
Chi Square 11.750 11.750 11.750 11.750 11.750 9.045 9.045
P-Value 0.896 0.896 0.896 0.896 0.896 0.959 0.959
Average 3.753 3.753 3.753 3.753 3.753 3.694 3.658
Overdispersion 1.107 1.107 1.107 1.107 1.107 1.122 1.145
Chi Squa 1 14.110 14.110 14.110 14.110 14.110 17.090 16.560
P-value 0.722 0.722 0.722 0.722 0.722 0-517 0.554

We see in Table 4 that the average number of qualifications that each extra board employee has

on Monday first shift is 3.847. The over-dispersion is 1.431, and the Chi Square value for the

Monday first shift distribution is 11.75, which, given sixteen degrees of freedom, produces a p-

value of .896, from which we can conclude that the number of qualifications for extra board

employees on Monday first shift can be appropriately modeled by a Negative Binomial

distribution. Indeed, every day/shift combination produces a p-value above .05, and

consequently can be modeled effectively by a Negative Binomial distribution.

We repeated this process of creating distributions for each day/shift for incumbent employees

with a few minor variations. Unlike extra board employees, who can fill any position on any day

without incurring extra cost, incumbent employees can only be scheduled on the unique day and

shift to which they are assigned. For this reason, the incumbent's qualifications were only

counted on the days and shift when the incumbent was normally scheduled. The distributions for

incumbent employee qualifications are shown in Figure 10, below.
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Figure 10: Distributions of qualifications for incumbent employees

As seen in Figure 10, the distributions of qualifications of incumbent employees by day/shift

have more variation than the distributions of qualifications of extra board employees. We

deducted one from each incumbent employee's count of qualifications and fit the remaining

number to Negative Binomial distributions. We deducted one from every incumbent's count of

qualifications because incumbent employees must have the qualification for the position to

which they are assigned, but we were interested in knowing how many qualifications they had in

addition to their regular assignment. The statistics for incumbent employees and their level of fit

to Negative Binomial distributions is contained in Table 5.
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Table 5: Statistics for distributions of incumbent qualifications

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Average 3.891 3.846 3.833 4.114 4.023 4.175 4.241

Overdispersion 5.437 5.799 5.735 6.008 5.599 3.358 3.550

Chi Square 34.600 22.370 18.159 17.096 27.303 14.110 29.830

0.023 0.321 n r77 I 6d7 I 177 I ) R7i5 0096

Table 5 shows only four out of twenty-one day/shift p-values (Monday first, Monday second,

and Saturday third, and Sunday second) that are below .05 when fit to Negative Binomial

distributions. Friday third shift has the highest p-value of .934. The sum of p-values for Friday

third shift is .934+.968=1.902, which is the highest sum for any day/shift combination; we

selected Friday third shift for our simulation for this reason.

3.5 Optimization

We will now explain the optimization portion of our simulation model. To find a solution that

minimizes cost we used a pre-programmed optimization solver that was designed for assignment

problems like ours. This optimization problem is written mathematically as:

(5)Mm ZN+E+l Z5 ='J 1Y~ein =1E+ 1 Cii

Subject to:

xij 1,<

ZN+E+lXj = 1

i N + E (6)

(7)j:5 N
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xij 5 ati (8)

a 1, xu E (0,1) (9)

Where cij is the cost of assigning person i to jobj; xij = 1 if person i is assigned to job j at a

certain time and 0 otherwise; aij = 1 if person i is qualified for job j and 0 otherwise. N is both the

number of positions on any given day and shift, and the number of incumbent employees; E is

the number of extra board dispatchers.

In solving this problem, we generated two matrices, the first of which is shown in Figure 11.

Position

1 2 3 4... N

S1

o 2
.
E 3

4
.a

. N 1 0 1 1 --- 1

N+1
-

Mi N+2
0

II N+E

Employee from Home N+E+1

Figure 11: Qualification Matrix

In Figure 11, the 1's represent the qualifications of each employee. The horizontal numbers from

1 to N represent positions and the vertical numbers, going from 1 to N, represent individual

employees. For example, incumbent employee 2 is qualified for position 2 but not qualified for
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position 1. The diagonal of the matrix is filled with 1's, which represents the incumbent

employees in their regular positions.

Rows from N+1 to N+E represent the extra board employees; the 1's and O's in these rows also

represent qualifications. For example, extra board employee N+2 is qualified on position 3 and 4,

but not qualified on positions 1 and 2, etc.

The last row represents the pool of dispatchers that can be called from home and paid overtime

to work in any position. These are all 1's because we are assuming any position on any given day

and shift can be filled by an employee that can be called from home.

The second matrix is the cost matrix, shown in Figure 12.

03

E
U.'

.0
E

0

Ei e

Employee from Home

1

2

3

4

N

N+1

N+2

N+E

N+E+1

Position

1 2 3 4 .... N

Figure 12: Cost Matrix

The matrix in Figure 12 has an identical structure to Figure 11; the horizontal numbers from 1 to

N represent positions and the vertical numbers from 1 to N represent employees. Each cell in this
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matrix represents the cost of assigning the employee of that row to the position of that column.

An "X" in a cell indicates that employee is not qualified for that position and cannot be assigned

there. For example, if employee 2 is assigned to position 4, the overtime cost will be 0.5, but if

that employee is assigned to position 2, which is her scheduled position, there is no extra cost;

employee 4 cannot be assigned to position 1 or 3, and therefore the corresponding cells are filled

with X's. In the actual simulation program, cells with X's will be assigned a large number that

will force the optimization software not to pick any of those cells.

In Figure 12, the rows from N+1 to N+E represent extra board employees, and according to the

company policy, there is no overtime cost to assign an extra board employee to a position that

he/she is qualified for, and so the cells in these rows will be either X or 0.

The last row in Figure 12 represents the pool of dispatchers that can be called from home and

paid overtime to work in any position. According to RailCo policy, employees that are called

from home must be paid time and a half per day.

Now that we have established a matrix of qualifications and a matrix of costs, we can use the

solver to find the optimal solution. As the solver is employed it will generate a third matrix that

represents the assignments that lead to a minimum cost. An example of what this will look like

is shown in Figure 13.
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Position

1 2 3 4... N

1 0 0 ... 0

0 0 0 0 --- 0

0 0 1 0 ... 0

0 0 0 0 ... 0

. N 0 0... I

N+1

i N+2

wU N+E

Employee from Home N+E+1

Figure 13: Solution Matrix

In this solution matrix, 1's represent the assignment of employees to positions. For example,

positions 1 and 3 are filled by the incumbent employee, position 2 is filled by extra board

employee N+1, and position 4 is filled by an employee called from home. The sum of the values

in each column must be 1, meaning that every position must be filled by exactly one person, and

the sum of each row that represents incumbent employees and extra-board employees must be 1

or 0, indicating that each person can only be assigned to a maximum of one position. The last

row, which represents employees called from home, can have a sum of zero, one, or any number

greater than one up to N, meaning that any number of employees could be called from home to

fill vacant positions.

3.6 Simulation

We will now give a summary of the simulation using all the parameters described above. The

steps to the final simulation are as follows:
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1. Generate a qualification matrix with N+ E+ 1 rows and N columns, each cell having

values of O's or 1's, with 1 representing the corresponding employee qualification and 0

signifying that employee is not qualified on that position. Each incumbent employee has

the qualification for his/her regular position plus some number of qualifications that is

generated using the parameters of the Negative Binomial distribution for any chosen

day/shift that is shown in Table 5. Each extra board employee is assigned some number

of qualifications that is generated using the parameters of the Negative Binomial

distribution for any chosen day/shift shown in Table 4. For both incumbent and extra

board employees, the positions for which they receive qualifications are randomly

distributed, with each position being equally likely. The last row of the assignment

matrix is filled with 1's because any position can be filled by someone called from home.

2. Generate a cost matrix of identical size to the qualification matrix, in which each entry in

the matrix represents the cost associated with that employee working in that position.

3. Generate a certain number of absences based on the parameters of the Negative Binomial

distribution for unplanned absences that is shown in Table 3, and randomly assign those

absences to incumbent and extra board employees, with every employee having an

equally likely chance of being absent. To indicate an absence in our simulation we

included a constraint in the matrix, namely, that the sum of the row for an absent

employee must be zero.

4. Use a linear program solver to make assignments for all positions in a way that

minimizes the total cost that results from the number of slides that occurred and the

number of employees that were called from home.
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5. Run 10,000 iterations of this simulation in which each iteration generates a new

qualification matrix, a new set of absences, a new solution matrix, and a resulting total

cost. This simulation will produce an expected cost given the pre-determined number of

extra board employees and the pre-determined average number of qualifications.

6. Adjust the number of extra-board employees and the average number of the qualifications

and repeat the simulation starting with step 1.

This simulation could be used to simulate any combination of day/shift, number of extra board

employees, and average number of qualifications. We chose to model Friday third shift in our

analysis; the corresponding "N" for our model was eighty-five, as seen in Table 6, which shows

the number of regular positions that must be filled for each day and shift.

Table 6: Number of positions for each day and shift

M ON WVED FRI SUN
Shiftl 1 2 I3 112 131 3 11 2 13

Number of Positions ,96 90 85 96- 9085 99085 88875

In our simulations we varied the number of extra board employees from zero to twenty, and used

eight different qualification levels for extra board employees. The average qualification level of

incumbent employees was not varied during our simulations. The average number of

qualifications of extra board employees and incumbent employees is shown in Table 7.

Table 7: Mean and standard deviation of each employee type

Mean Standard Deviation
Normal Extra Normal Extra
12.101 11.224 10.196 6.636
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The average number of qualifications of extra board employees is 11.22, while on each day and

shift their average number of qualifications is 3.6756. Therefore, if every extra board employee

receives an average of one more qualification, the average number of qualifications per shift

increases by 0.327, which is 11.22 divided by 3.6756. In our simulation we will add or deduct a

multiple of 0.327 to increase or decrease of the average level of qualifications per employee.

Table 8 shows the eight qualification levels we used in our simulation and the overall

qualification levels they represent.

Table 8: Average qualifications per employee

Average Qualifications Average Qualifications
per employee per employee per shift

9.22 2.852

11.22 3.506

13.22 4.160

15.22 4.814

4 Data Analysis: Regression

Our analysis aimed to construct a model that would allow RailCo to predict the number of

absences that would occur on any given shift. To test whether such a model was possible, we

identified several factors that might influence the number of absences on a company-wide scale.

We compiled this list of possible factors after considering previous work in the literature and

suggestions by RailCo scheduling management. Table 9 shows the list of factors considered in

the construction of our model.
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Table 9: Possible factors that influence unplanned absences

Day of the Month

Shift

Football Games

Snow Storms

We evaluated these parameters using backward stepwise regression, in which all the parameters

were included in the model, and then insignificant parameters were eliminated one at a time until

only statistically significant factors remained. The null hypothesis in this case is that the effect of

the parameters is zero, and the alternative hypothesis is that the effect is non-zero. Parameters

with p-values above .05 were not considered to provide enough evidence to reject the null

hypothesis (i.e., they were not considered to contribute significantly to unplanned absences).

These factors included day of the month, day of the week, planned absences, hunting season, and

football games. The parameters that produced p-values less than .05 were assumed to exhibit

evidence sufficient to reject the null hypothesis of non-significance. The parameters considered

significant included shift, month, selected holidays, and snow storms. The next section describes

how we constructed and evaluated the parameters contained in the model. We will conclude our

data analysis by examining two trends that are apparent over the four year period that we

evaluated, which are the number of absences by year and the number of absences attributable to

specific employees.
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4.1 Statistically Significant Parameters

The four parameters that produced p-values of less than .05 were month, shift, holidays, and

snowstorms.

4.1.1 Month

From our regression analysis it is apparent that month does have an impact on the number of

unplanned absences at RailCo. July has the lowest average of unplanned absences so it was

taken as the base value to which the other months were compared. Table 10 gives a breakdown

of each month and its respective p-value.

Table 10: Regression statistics for month

Month Coef. Actual Effect Std. Err. z P>z Lower 95% int Upper 95% int

feb 0.251001 0.671053 0.050121 5.01 <.0001 0.152766 0.349235

apr 0.245267 0.655723 0.047538 5.16 <.0001 0.152094 0.338440

jun 0.092801 0.248105 0.047902 1.94 0.053 -0.001085 0.186687

sep 0.003406 0.009106 0.049479 0.07 0.945 -0.093571 0.100383

nov 0.043576 0.116500 0.049186 0.89 0.376 -0.052827 0.139978

As seen in Table 10, January, February, March, April, October and December all display p-

values below the .05 level, from which we conclude that these months do have a non-zero effect

on unplanned absences. May, June, August, September, and November do not produce values

that are statistically different from July, the lowest month. There may be many factors that

contribute to this difference of absences among months, such as the weather, seasonal variations

37



in sickness among the workforce, the number of allotted planned absences, or other idiosyncratic

factors not evaluated in our model.

4.1.2 Shift

Shift also has a non-zero effect on the number of unplanned absences that occurred over the four

year period. RailCo can expect a slightly higher number of absences on second and third shifts

as compared to first shifts. These findings are in Table 11. It makes intuitive sense that third

shift would have the highest number of unplanned absences given that it starts sometime between

the hours of 9:00 PM and 4:59 AM.

Table 11: Regression statistics for shift

Shift Coef. Actual Effect Std. Err. z P>z Lower 95% int Upper 95% int
shift2l 0.066634' 01S A 0 X264 .4 OQ~ O12~ 0.83
shift3 0.101265 0.270733 0.023696 4.27 <.0001 0.054822 0.147709 A

4.1.3 Holidays

The Holidays we evaluated in our regression model were selected based on a 2010 study

conducted by Worldatwork. This study found that the average number of paid holidays in the

United States is 8.7. This study also presented a list of the most common paid holidays, from

which we took the top nine, which are displayed in Table 12.
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Table 12: Nine most common paid Holidays

New Years Day

Labor Day

hIdependence Day

Day after Thanksgiv n

Presidents Day

For New Year's Day we combined the third shift of New Year's Eve because it technically runs

into New Year's Day. In addition to these nine paid holidays, we created one other holiday

parameter called "Federal Holidays," which is a combination of Martin Luther King Jr. Day,

Columbus Day, and Veterans Day. These three days are Federal Holidays but were not included

in the top nine Holidays cited in the Worldatwork study.

The results, shown below in Table 13, indicate that the most popular Holidays have the

somewhat surprising effect of lowering the number of absences for any given day. This is true

for New Year's, President's Day, Independence Day, Thanksgiving, Christmas Eve, and

Christmas. The remaining holidays, Labor Day, Memorial Day, the Friday after Thanksgiving,

and the combination of Federal Holidays, are not significant.
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Table 13: Regression statistics for Holidays

Holiday Coef. Actual Effect Std. Err. z P>z Lower 95% int U er 95% int

presidents -0.420272 -1.122878 0.206649 -2.03 0.042 -0.825297 -0.015248

independence -0.916658 -2.448851 0.303559 -3.02 0.003 -1.511622 -0.321694

thanksgiving -1.171696 -3.104133 0.335387 -3.49 <.0001 -1.829043 -0.514350

christmaseve -0.841878 -2.248154 0.260941 -3.23 0.001 -1.353313 -0.330443

federal 0.010323 0.000000 0.101771 0.10 0.919 -0.189144 0.209790

Based on the values in Table 13, RailCo can expect two to three fewer absences on shifts on

popular holidays. While these results may be somewhat counter-intuitive, it seems reasonable

that the stigma of calling in sick on a holiday is great enough to give dispatchers extra motivation

to arrive at work. It may also be that employees are extra-motivated to come to work on

holidays because of the negative effect it has on other employees that are forced to fill in for the

absent employee.

4.1.4 Snowstorms

One final parameter that shows a high degree of significance in contributing to unplanned

absences is snow storms. Twenty shifts included in our model were noted as having had

significant snowstorms; data on snow storm dates and severity was taken from list of snow

events compiled by the National Weather Service for the local area. The effect of snowstorms

on absences is shown in Table 14. According to our analysis, RailCo can expect an extra 2.16

absences on shifts that have snowstorms.

Table 14: Regression statistics for snowstorms

Event Coef. Actual Effect Std. Err. z P>z Lower 95% int Upper 95% int
snow 0.810674 26jS46 0NQ90i67 1 ,933558 987790

40



This finding is not particularly helpful in predicting future absences in the long range because it

is difficult to accurately forecast the weather, but it may be helpful for RailCo in their short term

planning.

4.1.5 Planned Absences

There were three types of planned absences included in this parameter: scheduled vacation, float

vacation, and personal days. These planned absences did not have a significant effect on

unplanned absences by themselves, as seen in Table 15. However, removing them from the

model it has the effect of lowering the statistical significance of other parameters and reducing

the overall predictive capability of the model. This effect of parameters being influenced by

each other is known as co-linearity. For this reason, it is useful to consider planned absences as a

significant factor even though their p-value, at .106, is slightly higher than .05.

Table 15: Regression statistics for planned absences

Parameter Coef. Std. Err. z P>z Lower 95% int Upper 95% int

4.2 Statistically Insignificant Factors

There are a number of parameters that do not give us enough evidence to conclude that their

effect on absences is not zero. These include football games, day of the month, and day of the

week. We will now discuss these parameters in detail.

4.2.1 Hunting Season

Hunting season in the local area, begins every year on the first Sunday in November and ends on

the first Sunday in January. For the purposes of our analysis, we assigned the "beginning of

hunting season" parameter to the first two days of hunting season every year, and the "end of
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hunting season" parameter to the last two days of hunting season each year. As seen in Table 16,

the beginning of hunting season was found to be insignificant regarding absences, with a p-value

of .493, and the end of hunting season was insignificant with a p-value of .08. The data do not

provide sufficient evidence to conclude that the effect of hunting season in November and

December is greater than zero.

Table 16: Regression statistics for hunting season

Parameter Coef. Actual Effect Std. Err. z P>z Lower 95%int Upper95% int
Beg Hunt Season -0.0965931 0.0(d0 0L4t805 -069 0493 4372566 .179380
End Hunt Season 0.217245 0.580145 0.124163 1.75 0.080 -0.026110 0.460601

4.2.2 Football Games

We evaluated two types of football games: the Super Bowl and regular season NFL games. The

"NFL" parameter in Table 17 includes all dates on which NFL games were played, and the

"Super Bowl" parameter includes all shifts of the days on which the Super Bowl was played.

From the p-values of .702 and .284 for NFL and Super Bowl, respectively, there is insufficient

evidence to conclude that NFL football games or the Super Bowl affect unplanned absences.

Table 17: Regression statistics for football games

Parameter Coef. Std. Err. z P>z Lower 95% int Upper 95% int
NFL AW IB4 4. 04 T 0Z 47~ ~~3

Super Bowl -0.19899 0.18556 -1.07 0.284 -0.562688 0.164712

4.2.3 Day of the week and Day of the Month

The data for day of the month is shown in Table 18. The first day of each month was used as the

base number to which all the other days of the month were compared. There are a few days of

the month that would be significant at the .05 level, but given that there are thirty-one days of the
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month to be considered, we used a .01 test of probability for this parameter. At this level of

significance there were no days of the month that showed significance.

Table 18: Regression statistics for days of the month

DaV Coef. Std. Err. z P>z Lower 95%int Upperin5%tnt

3 -0.12347 0.07218 -1.71 0.087 -0.264952 0.018007

5 -0.09289 0.07223 -1.29 0.198 -0.234458 0.048668
__OWA5 04M36 021 =-~ot -O2

7 -0.04398 0.07161 -0.61 0.539 -0.184337 0.096377
8 0~~i1-.7i 0.4 0~5 ~ 7~c .10737

9 -0.00183 0.07017 -0.03 0.979 -0.139356 0.135698

11 -0.09151 0.07222 -1.27 0.205 -0.233062 0.050052
1 -0. O.0746 .7w 0073 -Z71$36 0.QZ22O3
13 -0.12053 0.07256 -1.66 0.097 -0.262744 0.021689

15 -0.14450 0.07323 -1.97 0.048 -0.288020 -0.000977

17 -0.09610 0.07218 -1.33 0.183 -0.237561 0.045369
$ -0.06988 007167 -029 ______ 0.070605
19 -0.12545 0.07265 -1.73 0.084 -0.267853 0.016944

21 -0.08126 0.07183 -1.13 0.258 -0.222041 0.059530

23 -0.09835 0.07206 -1.36 0.172 -0.239597 0.042891

25 -0.08073 0.07422 -1.09 0.277 -0.226193 0.064734

27 -0.14174 0.07316 -1.94 0.053 -0.285130 0.001650

29 -0.08360 0.07325 -1.14 0.254 -0.227158 0.059957

31 -0.03626 0.08357 -0.43 0.664 -0.200044 0.127532

Day of the week also showed no statistical significance when evaluated at the .05 level. Table

19 details the p-values for each day of the week using Monday as the base.
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Table 19: Regression statistics for day of the week

Da Coef. Std. Err. z P>z Lower95% int Upper 95% int

Tue. b025 05~ .413 ~0005

Wed 0.00673 0.03549 0.19 0.850 -0.062832 0.076288

Fri 0.01388 0.03560 0.39 0.697 -0.055904 0.083655

Sun 0.04180 0.03736 1.12 0.263 -0.031413 0.115019

4.3 Marginal Effects

Table 20 is a summary of all the parameters that we have discussed that show statistically

significant impact on the number of absences. Any parameters not listed in this table did not

provide enough evidence to indicate significance at the .05 level. As a reminder, the actual

effect of any given parameter will vary from day to day, so the numbers listed here are the

average effect over the range evaluated. For example, in the month of April, RailCo can expect

to have an average of .57 more absences than the base of July on any given shift, and .17 more

absences on second shifts as compared to first shifts.
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Table 20: Summary of actual effects of statistically significant parameters

Parameter Avg. Effect Std. Err. z P>z Lower 95% int Upper 95% int

feb 0.67105 0.13414 5.00 0.000 0.40814 0.93396

apr 0.65572 0.12724 5.15 0.000 0.40634 0.90510

dec 0.32114 0.13089 2.45 0.014 0.06460 0.57768

shift3 0.27073 0.06340 4.27 0.000 0.14647 0.39500

_________ ____L&mt 000 169220 2.64249

newyears -1.93072 0.55983 -3.45 0.001 -3.02797 -0.83348
i2ts Q -2M591 -0.0385

independence -2.44885 0.81188 -3.02 0.003 -4.04011 -0.85759

thanksgiving U 410413 0.89692 3.46 0 001 -4.86207 -1.34620
christmas -2.03518 0.67619 -3.01 0.003 -3.36048 -0.70988
thistmaseve -22415. QX6079. .2Z UL -3.616M -0.88022

4.4 Significance of Model

Even though many parameters are statistically significant in their effects on unplanned absences,

the overall model is not a reliable predictor of the number of absences that will occur on any

given shift. The final model has a McFadden Pseudo R2 value of only .0179. For perspective,

an OLS model with a value of .0179 would mean that less than 2% of the variance in the

dependent variable is attributable to variations in the independent variables. The McFadden

Pseudo R 2 value of .0 179 is not an exact percentage like the OLS R2 , but it has similarly low

predictive ability. In short, the model is useful to give a general idea of a few factors that

contribute to unplanned absences, but it will not produce accurate predictions for unplanned

absences. Unplanned absences occur in a random pattern and there does not appear to be a

satisfactory manner to accurately predict their fluctuation.
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4.5 Goodness of Fit for Negative Binomial Regression

Because the Negative Binomial distribution was a slightly better fit for the distribution of

unplanned absences, we compared the results of Negative Binomial regression to our Poisson

regression results. The list of parameters that were statistically significant was identical, and the

Pseudo R2 actually decreased when using a Negative Binomial regression. Table 21 compares

the coefficients of the parameters between the Negative Binomial and Poisson regression.

Table 21: Comparison of results from Poisson and Negative Binomial regression

Poisson regression
Pseudo R2: 0.0183

Parameter Coef. P>z
jan _________

feb 0.25073 0.000

mar _.__4____ _____

apr 0.24529 0.000

jun 0.09287 0.057

sep 0.00347 0.945

nov 0.04372 0.382
dec
shift2 0.06681 0.012

plannedabsences -0.00496 0.112
snow
endhuntingseason 0.21598 0.089

presidents -0.41983 0.045

independence -0.91596 0.003

christmaseve -0.84171 0.001
christmas -79 OQ3

Negative binomial regression
Pseudo R2:

Parameter
0.0170

Coef. P>z

fe b 0.25100 _.

ar
apr 0.24527 0.000

jun 0.09280 0.053

sep 0.00341 0.945

nov 0.04358 0.376

shift2 0.06663 0.011

plannedabsences -0.00496 0.106

endhuntingseasor 0.21700 0.080

presidents -0.42000 0.042

independence -0.91597 0.003

christmaseve -0.84090 0.001

________ 0t7624 O0XI5
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4.6 Other Considerations: Yearly Trends and Absences by Employee

It is important to note that there is a large difference in unplanned absences by year. Year 2012

had a smaller number of absences when compared to every other year, as seen in Figure 14.

Figure 14: Total absences by year

According to RailCo, the total number of employees from 2009 to 2012 did not change,

however, there were slight union agreement modifications that may have contributed to this

marked decrease in 2012 unplanned absences. An additional insight is illustrated in Figure 15,

which shows the cumulative absences from 2009 to 2012. The more gradual slope of the 2012

curve indicates not only that there were fewer absences that year but also that there were fewer

employees that had high numbers of absences.
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Figure 15: Cumulative absences by year

5 Data Analysis: Simulation

Our purpose in this section is to investigate the relationship among extra board size, average

qualification level of extra board employees, and labor costs; this will form the basis for

RailCo's hiring and training strategies. In our analysis we made the assumption that RailCo is

able to fill all incumbent planned vacations with extra board employees without sliding

employees or calling employees from home. It should be noted that planned vacation vacancies

vary by day and shift; the average number of planned vacations by day and shift is shown below

in Table 22. Our analysis does not take into account any cost associated with assigning extra

board employees to the planned vacations represented in this table.
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Table 22: Average planned absences

1st Shift 2nd Shift 3rd Shift
Sun 1056 6.3 1 0. 34

Mon 14.77 5.17 9.83
Tt* 1.66 62 9.67

Wed 14.40 8.11 10.50

Fri 13.89 7.87 7.98
k- :t 10.3 9 7.3 821

One Key Performance Indicator that RailCo uses in their scheduling management is the percent

overtime. This is calculated as the extra cost divided by the cost of filling each position with an

incumbent employee. For example, if over the course of a year there were 5,000 slides and 500

employees called from home, and we assume 90 positions on each of 3 shifts, 365 days a year,

then the percent overtime would be (.5*5000 + 1.5*500)/365*3*90 = 3.3%. In our discussion of

costs, we will use the following terms as defined below:

" "Slide cost" is defined as the total amount paid to slide incumbent employees from their

regularly assigned position. Under union rules, RailCo must pay an additional .5 of

employee's normal daily salary for every slide occurrence.

" "Overtime cost" is defined as the cost of calling dispatchers from home to fill a position.

Under union rules RailCo must pay employees called from home 1.5 times his/her normal

daily salary.

" "Extra cost" is the combined total of slide cost and overtime cost.

The section below explains our analysis of each of these costs change based on varying levels of

extra board employees and the average number of qualifications of extra board employees. As

stated earlier in section 3.6, we included extra board size from zero to twenty, and eight different
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qualification levels, from three below the current average to four above. We used Friday third

shift in our simulation as explained in section 3.4. From Table 4 we see the current average

number of qualifications of extra board employees for Friday third shift is 3.506.

5.1 Slide Cost

Figure 16, below, illustrates the change in slide cost with different sizes of extra board and

varying averages of qualifications. The vertical axis represents the cost of the slides, which is

one half the number of slides. The horizontal axis is the number of extra employees above those

used to fill planned vacation days, and each line shows a different level of qualifications.
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Figure 16: Slide cost

We can see when we begin to add people on extra board from 0, the slides cost increase sharply.

This is because the maximum number of slides is limited to the number of extra board

employees. The slide cost reaches its peak when the extra board size is about five for any
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qualification level we tested, after which it decreases gradually because the more extra board

employees we have, the more likely it is that we can fill the absence directly with the extra

board. We can also see slide costs are slightly higher when the qualification level is lower. This

is because if employees have more qualifications, they will be more likely to have the

qualifications needed to fill each position.

5.2 Overtime Cost

Figure 17, below, shows overtime cost, or the cost of calling employees from home.
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Figure 17: Overtime cost

The total overtime cost drops sharply as we add extra board employees. The fact that all the

lines representing the different qualification levels are close to each other indicates that varying

the number of qualifications does not make a large impact on the number of employees that must
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be called from home. (It is important to note that this is based on the assumption that additional

qualifications are randomly assigned.)

Another illustration of this relationship is shown in Figure 18, below. For lower numbers of

extra board employees, total costs gradually decrease as qualifications increase. As the number

of extra board employees increases, the qualification level does not play an important role in

overtime cost (i.e., the slope of the line becomes flat).
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Figure 18: Overtime cost by qualifications

5.3 Extra Cost

Figure 19, below, shows the total extra cost as we add more people to the extra board for each

qualification level.
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Figure 19: Extra cost

Extra cost always decreases when there are more people on extra board, and the effect is

significant, especially when the extra board size is smaller.

The relationship between slide cost and overtime cost as the extra board increases is shown in

Figure 20.
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Figure 20: Slide cost, overtime cost, and extra cost

5.4 Current Cost

We will now evaluate RailCo's current extra board size and number of qualifications. Currently,

RailCo has eighty-five extra board employees and each of them work on five shifts a week. By

summing the data in Table 22 we found that the average number of planned absences in a week

is 208, so the number of shifts that extra board employees work above what is needed to fill

planned absences is 85*5-208=217. Given that there are 21 shifts every week, the average

number of extra board employees per shift after accounting for planned absences is

217/21=10.33. We also know from Table 8 we know that the average number of qualifications

of extra board employees is 11.22. To illustrate the change of costs associated with increasing

extra board employees or qualifications we will use 10 as the number of extra board employees,
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and 11 as the average number of qualifications for extra board employees. Figure 21 shows the

current situation given those numbers.
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Figure 21: Effect of changing extra board size or qualification

In Figure 21, point 0 on the horizontal axis represents the current situation, and moving along the

graph to the right or left shows the cost change from increasing or decreasing the number of

extra board employees or qualifications.

6 Conclusion

The purpose of our research was to determine what factors, if any, could be used to predict

unplanned dispatcher absences. Through Poisson regression analysis, we have shown that there

are several factors that do influence the number of absences that occur on any given shift. The

factors that show statistical evidence of increasing the expected number of absences are
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snowstorms, second and third shifts (when compared to first shift), and the months of January,

February, March, April, and December (using July as the base month). The factors that show

statistical evidence of decreasing the number of expected absences are holidays including New

Year's Day, President's Day, Independence Day, Thanksgiving, Christmas Eve, and Christmas.

The factors that do not provide statistical evidence of affecting the number of unplanned

absences are day of the month, day of the week, football games, and hunting season.

Even though we successfully identified factors that influence the number of unplanned absences,

the Mcfadden R 2 value of our final regression model was only .0 174, which suggests that the

combination of all the variables studied do not lead to a satisfactory way to predict expected

absences. However, we have shown that unplanned absences by shift can be effectively modeled

with a Negative Binomial distribution.

Through Monte Carlo simulation we have shown that extra costs decrease as the number of extra

board employees increases. This decrease is greater when the number of extra board employees

is lower. Overtime costs decrease sharply as the number of extra board employees increases, and

slide costs are highest when there are approximately five extra board employees above the

number needed to fill all planned absences, and then gradually decrease as extra board size

increases. Furthermore, increasing the number of qualifications of each extra board employee

makes a small impact on decreasing slide and overtime costs; this impact becomes almost

negligible when the size of the extra board is large.

6.1 Other Considerations in Employee Staffing

While our analysis has focused on slide and overtime costs, RailCo may also consider the total

labor costs associated with increasing extra board employees or the average number of

57



qualifications. RailCo can decrease slide and overtime costs by hiring extra board employees,

but they must pay each of these employees a full salary even if they do not have an assignment

every day. We can define "total labor cost" as the total cost above what RailCo would pay in an

ideal scenario where every incumbent worked their regular position and there was no need for

extra board employees, slides, or overtime. Figure 22, below, shows total labor cost as the

number of extra board employees increases.
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Figure 22: Total labor cost

Figure 21 shows that regardless of qualification level, it will always cost more overall to increase

the size of the extra board. Figure 23 shows the cost of staffing extra board employees, total

labor costs, and extra costs.

58



25

20

15

0

10

5

0

4-0
'.041 - Average of Total Labor

Cost

- Average of Extra Cost

- Extra Board Cost

0 1 2 3 4 5 6 7 8 9 10111213141516171819

Extra Board Size

Figure 23: Total labor cost, extra cost, and extra board cost

As seen in Figure 23, adding extra board employees will decrease slide and overtime costs, but

the amount of decrease is much less than the added labor costs from having more employees.

Even though the lowest total labor cost will be achieved when there are just enough extra board

employees to fill planned absences, but not more than that, there are several other factors that

RailCo must take into account in their hiring strategy. For example, a smaller extra board will

make it necessary to call people from home more often, which may have adverse effects on

employee morale and labor union relations. RailCo may also need to consider that if they have a

lower number of employees there may have rare occasions when they cannot fill a position with

a qualified employee from home because of labor rules.
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6.2 Future Research

Further areas of research for RailCo may include using factors that influence employee absences

on an individual scale, such as age and job satisfaction, to aid them in predicting absences,

although the costs associated with aggregating this kind of data are likely to exceed the benefits.

This thesis was also only concerned with one company in one geographical location, so further

research examining different companies in different locations may not produce similar results

because of cultural, geographic, and demographic differences. RailCo may also explore the

impact of variability in absences on costs, and the impact on costs of one additional absence.

RailCo may also want to investigate the cost associated with training employees, and how that

would change their ideal mix of qualifications and extra board size. RailCo may also investigate

the importance of non-cost factors in their staffing strategy, such as employee morale and union

agreements. Understanding these relationships will allow them to build an optimal staffing

strategy based on their unique parameters.
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