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Abstract
63 Cu and 170 nuclear magnetic resonance (NMR) and nuclear quadrupole resonance
(NQR) experiments are reported on copper-oxide compounds related to high tem-
perature superconductors that are nearly ideal realizations of spin 1/2 Heisenberg
antiferromagnets with different geometries of the magnetic interactions: 1 dimen-
sional spin chains, 2 dimensional planes, two coupled chains (two-leg ladder), and
three coupled chains (three-leg ladder). Comparison of the spin-lattice relaxation
rate, 1/T 1 , for 6 3Cu and 170 reveals the wave-vector, q, dependence of low-energy
magnetic fluctuations, and 1/T 2G, the Gaussian spin-spin relaxation rate provides in-
formation about the electron spin correlation length, . In the Id material, Sr 2 CuO 3,
171/T 1 (q = 0) oc aT + bT 2 over the whole temperature range 10 to 700 K. Frequency
dependence measurements show that diffusive contributions dominate T1 (q r 0) for
the double chain id material, SrCuO 2. For the undoped 2d copper oxide material,
Sr 2 CuO 2 Cl2 , we demonstrate that 170 1/T 1 measures the spin wave damping in the
undoped antiferromagnet for short wavelengths. We find that the spin wave damping
is small, clarifying one of the unique properties of these 2d copper-oxide antiferromag-
netic materials: there is a wide temperature range where short range spin excitations
exist with long lifetimes, without long range 3-dimensional order. The two-leg ladder
materials, SrCu 20 3 and A14 Cu 24 0 4 1 (A = La,Sr,Ca), have a large energy gap for spin
excitations. There is a crossover in magnetic fluctuations from temperatures below
the spin gap to above the spin gap. For the doped two-leg ladders, the effective doping
of the ladders changes with temperature, and this temperature is correlated to the
magnetic spin gap energy. The three-leg ladder material, Sr 2 Cu 3 0 5 , demonstrates a
crossover in the temperature dependence of the spin correlation length, 6. At high
temperatures, we find the 6~ 1/T behavior characteristic of a id structure (isolated
three-leg ladders). At lower temperatures, the spin correlation length diverges expo-
nentially, which suggests that weak coupling between ladders is creating an effective
2d system.
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Chapter 1

Introduction

High temperature superconductivity was discovered by Bednorz and Miller in 1986

[1]. Before the discovery of high temperature superconductivity, the highest supercon-

ducting transition temperature (Tc) of known materials was less than 25 K. Following

the initial discovery of La 2-,Ba2CuO 4 with T, ~ 30 K, many related copper oxide

superconducting materials were found with even higher superconducting transition

temperatures. Within just a few years, copper oxides were discovered with transi-

tion temperatures well above the boiling point of liquid nitrogen (77 K), for example

HgBa 2 Ca 2 Cu 30, (T, = 133 K). Because liquid nitrogen is much less expensive than

cooling to lower temperatures with liquid helium, this greatly expands the applica-

tions of superconducting materials. High temperature superconducting materials are

used in such applications as radiofrequency switches for cellular phone base stations

and sensitive SQUID magnetic field sensors.

The high transition temperature also challenges the effort to explain the super-

conductivity in these materials.' The Bardeen-Cooper-Schrieffer (BCS) theory [2]

explained conventional superconductors based on pairing of electrons by the electron-

phonon coupling. However, the BCS theory is not expected to be able to explain

superconductivity which occurs at such high temperatures. As a result, interest in

determining the mechanism behind high T, superconductivity is high.

The material properties of the high T, superconductors are also very different

from the conventional BCS superconductors. Conventional BCS superconductors are
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normal metals above the superconducting transition temperature. The behavior of

high temperature superconductors is much more difficult to describe by conventional

condensed matter theory. An important common feature of the high T, superconduc-

tors is a 2 dimensional CuO 2 layer [3]. In the undoped compounds, the copper atoms

each have a hole in the 3d2_Y2 orbital, leaving one unpaired electron spin. From a

simple non-interacting electron band picture, these materials would be metallic be-

cause of the half-filled 3d band. However, the undoped materials are not metallic

presumably because of strong Coulomb repulsion between the electrons. The un-

doped materials are insulators with an unpaired electron spin localized on the copper

atoms. Experiments [4, 5, 6] have shown that these unpaired electron spins have

strong antiferromagnetic interaction with one another. The strong magnetism of the

copper-oxide superconductors is unusual in contrast to conventional superconductors,

where magnetic impurities disrupt the superconductivity. The undoped CuO 2 planes

have been shown to be a nearly ideal experimental realization of the 2 dimensional

spin 1/2 Heisenberg antiferromagnet on a square lattice [6, 3]. The copper electron

spins have an isotropic antiferromagnetic interaction with their nearest neighbors in

the square lattice CuO 2 plane with exchange coupling, J 1500 K.

W = JE Si - s (1.1)
i,6

Such a strong antiferromagnetic interaction raises the possibility that the mag-

netism is associated with the superconducting pairing. The phase diagram as a func-

tion of temperature and hole doping is shown in figure 1-1 for a typical high Tc

superconductor, La 2-2SrCuO 4. The undoped material is an antiferromagnetic in-

sulator, but doping only x = 5% of holes is enough for superconductivity to occur.

The occurence of superconductivity for such a small amount of doping is suggestive

that the magnetism is important for the superconductivity. This argument is also

supported by the fact that superconductivity disappears if the doping is too high

(~ 25% for La 2-xSrxCuO 4 ). The increased hole doping could destroy spin correla-

tions needed for superconductivity. Antiferromagnetic spin fluctuations persist even
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Figure 1-1: Basic phase diagram of La2-.. SrCuO4 , typical high T, superconductor.

in the region of doping where superconductivity occurs [7, 8]. It seems very likely

that the spin correlations are important for high T, superconductivity.

A non-rigorous but suggestive example of the possibility of how the antiferro-

magnetic spin correlations could promote a superconducting pairing interaction is

shown in figure 1-2 [9]. In a lattice with antiferromagnetically ordered spins, one

hole hopping through the lattice disturbs the antiferromagnetic order. The electron

spins along the path of the hole have ended up pointing in the same direction as

their neighbors, which is the higher energy state. However, if a second hole follows

the same path through the lattice, the antiferromagnetic order is restored. This sug-

gests the possibility that hole pairing may be promoted by the antiferromagnetic spin

correlations.

Understanding the low-dimensional antiferromagnetism of various copper-oxide

materials in low dimensions may help in describing the mechanism of high tempera-

ture superconductivity. This thesis describes nuclear magnetic resonance (NMR) and
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Figure 1-2: Qualitative mechanism for hole pairing in antiferromagnetic lattice.
(a),(b),(c): One hole hopping across an antiferromagnetically ordered lattice of
spins leaves behind unfavorable (high-energy) ferromagnetic spin bonds (marked with
dashed ovals). (d),(e): If a second hole follows the same path across the lattice, the
antiferromagnetic ordering is restored.[9]
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nuclear quadrupole resonance (NQR) experiments on undoped copper-oxide materi-

als similar to high temperature superconductors. The primary interest is in studying

the magnetism of these materials over a wide temperature range. These materials are

very good experimental realizations of low-dimensional spin 1/2 Heisenberg antifer-

romagnets with different geometries of the magnetic interactions. Figure 1-3 shows

the different magnetic geometries studied in this thesis: 1 dimensional spin chain, 2

dimensional plane, two-leg ladders (two coupled chains), and three-leg ladders (three

coupled chains).

The outline of this thesis is as follows. The next chapter (Ch. 2) will describe

nuclear magnetic resonance measurements. Chapter 3 gives a brief summary of the

overall results and discusses common aspects of the crystal structure of these mate-

rials. Then, the following chapters will each focus on the materials with a specific

geometry of the magnetic interaction. Chapter 4 describes the 1 dimensional spin

chain materials, Sr 2 CuO 3 and SrCuO 2 . Chapter 5 describes the 2 dimensional mate-

rial, Sr 2 CuO 2 Cl 2. Some experiments on doped (La,Sr)2 CuO 4 are discussed. Chapter

6 covers the two-leg ladder materials, SrCu 2 0 3 and A1 4 Cu 2 4 0 4 1 (A = La,Sr,Ca). The

effects of doping are discussed for the A14 Cu 24 0 4 1 compounds. Chapter 7 describes

the three-leg ladder material, Sr 2 Cu3 O5 . Chapter 8 summarizes the conclusions of

this thesis.
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Figure 1-3: Magnetic structures studied in this thesis: (a) 1-d spin chain, (b) 2-d
plane, (c) 2-leg ladder, (d) 3-leg ladder.
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Chapter 2

Nuclear Magnetic Resonance and

Nuclear Quadrupole Resonance

Nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) are

techniques used to manipulate and measure the behavior of the magnetic moment

(spin) of the atomic nuclei. The magnetic moment and quadrupole moment of the

nucleus are local probes, allowing measurement of the magnetic field and electric field

gradient, respectively, at the position of the nucleus. Because NMR and NQR probe

magnetic and electric fields at the position of the nucleus, comparison of measure-

ments for different atomic nuclei will show the microscopic structure of charge and

spin. This is a major strength of NMR and NQR because it provides answers to ques-

tions about where in the crystal structure do the doped holes or unpaired electron

spins reside. Also, we can discover what roles the carriers play in connection with the

macroscopic electronic properties.

For the NMR and NQR experiments described in this thesis, the atomic nuclei are

used as probes into the static and dynamic properties of the electron spin and charge

system. As described below, the nuclear magnetic resonance frequency provides infor-

mation about the static magnetism, while the nuclear quadrupole frequency measures

the charge environment. Dynamic properties are reflected in the nuclear spin-lattice

relaxation rate, 1/T 1. T1 is the time scale for the nuclear spin system to return to

thermal equilibrium. This time scale reflects the density of low energy fluctuations of
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the electronic system. The Gaussian component of the nuclear spin-spin relaxation

rate, 1/T2G reflects the coupling between the nuclear spins. In these copper oxide

materials, the coupling between the copper nuclear spins is enhanced by the strong

magnetic correlations between the electron spins.

2.1 NMR/NQR Frequency (Knight shift)

For nuclear magnetic resonance, we apply an external magnetic field, H (typically in

our experiments 9 Tesla). This magnetic field interacts with the nuclear magnetic

moment, ,a, as

WHmagnetic = -A - Hiocal (2.1)

where Hocai is the magnetic field at the position of the atomic nucleus. This in-

teraction produces 21 + 1 energy levels for nuclear spin I as shown in part (a) of

figure 2-1 for spin I = 3/2. The 21 transitions between these energy levels all have

energy, E = hWn = pHIocal/I with the resonance frequency w,. We note that while

these transitions have the same energy from the magnetic interaction, the nuclear

quadrupole interaction can alter the energies.

The difference between the local magnetic field, Hocai, and the applied magnetic

field, H, is a measure of the local magnetic susceptibility of the material. This dif-

ference is usually referred to as the Knight shift, K, so that Hlocat = (1 + K)H. The

Knight shift, K, (frequency shift) accounts for the fact that the internal magnetic field

at the position of the nucleus, Hocai, will be slightly different than the applied exter-

nal magnetic field, H. The Knight shift measures the magnetic susceptibility of the

material at the position of the nucleus in response to the uniform applied field. The

contributions to the uniform magnetic susceptibility can be broken into three parts.

Most important for our purposes is the electron spin susceptibility, X'(q = O)sn.

Also, contributing to the susceptibility are the electron orbital (Van Vleck) and dia-

magnetic susceptibility [10]. The diamagnetic susceptibility is a quantum mechanical

effect that arises from the diamagnetic shielding current of the electrons [10]. The

diamagnetic susceptibility does not have any temperature dependence. The orbital
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NQR energy levels and resonance spectra
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Figure 2-2: NQR energy levels and resonance spectra for spin I=3/2.

susceptibility arises from the mixing of the atomic energy levels in the presence of

the magnetic field. In a particular crystal structure, the atomic energy levels are split

by the crystal electric field splitting. In the presence of a perturbing magnetic field,

these atomic orbitals are no longer eigenstates and a small amount of mixing of these

atomic orbitals occurs. From perturbation theory, the orbital susceptibility is [10]

Xorita -N | < 0|1 (L + goSz) in > 12(2)Xorbital = 2 p2 En - E(2.2)
n

The important fact is that because the energy separation between the atomic or-

bitals, En - E0 , caused by the crystal field is about an eV = 11, 600 K, the orbital

susceptibility will not have significant temperature dependence. Thus, the only part

of the susceptibility with temperature dependence is the electron spin susceptibility,

x'(q = 0),pin. The susceptibility is related to the Knight shift as [11],

K = F(q = 0) x'(q = O)spin + Korbital + Kdia (2.3)
NA pB
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Korbital and Kdia are the Knight shifts arising from the orbital and diamagnetic sus-

ceptibility, respectively. F(q = 0) is the hyperfine coupling between the electron spin

and the nuclear spin with wavevector q = 0. We can extract the hyperfine coupling

by using the fact that only the electron spin susceptibility has significant temperature

dependence. Therefore, any temperature dependence of the Knight shift arises from

the spin susceptibility and the hyperfine coupling can be expressed as,

F~q= 0 =AK

F(q = 0) = NA)LB (2.4)

If we plot the Knight shift as a function of the bulk uniform susceptibility, X', with

temperature as an implicit parameter, the slope corresponds to the hyperfine coupling,

F(q = 0). The hyperfine coupling between the electron spin and the nuclei spin

expresses how much interaction energy there is between the spins, or alternatively,

how much magnetic field is produced at the location of the nucleus by an electron

spin.

2.2 Nuclear Quadrupole Interaction

In addition to magnetic interactions, the atomic nucleus will also interact with the

charge environment through the charge of the nucleus. The simplest way to express

the charge interactions is by the multipole expansion of the charge distribution in

spherical harmonics of order 1. Obviously, the nuclei has a charge monopole moment

(1 = 0), Ze, which interacts with the electric field. However, this interaction is

independent of the direction of the spin of the nucleus, so the spin transitions do

not show this interaction. The next moment, an electric dipole moment (1 = 1),

is prohibited by the fact that nuclear states have well-defined parity. In fact, this

prohibits any charge multipoles with odd 1.

The quadrupole moment (1 = 2), Q, is allowed and is defined as [12]

eQ = (3z2 - r 2 )p(r)d3 X (2.5)
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where p(r) is the charge distribution of the nucleus in its I, = I state. Physically,

the quadrupole moment represents the deviation of the charge distribution of the

nucleus from spherical symmetry. A "pancake" shaped charge distribution will have

a negative quadrupole moment, while a "rocket-ship" shaped charge distribution will

have a positive quadrupole moment.

Higher order moments of the charge distribution probably do exist, but the inter-

action effects become smaller very rapidly for higher orders. The interaction strength

is expected to decrease roughly as [13]

~e (10-) (2.6)

where Rn is the radius of the nucleus and Re is the radius of the electron distribution.

This very rapid decrease in the interaction strength is clearly seen in the comparison

of the 1 = 0 monopole and 1 = 2 quadrupole interactions. The monopole interaction

between the charge of the nucleus and the electrons will be of order 10 eV, while a

typical quadrupole interaction is of order 10 MHz ~ 10' eV.

The quadrupole moment of the nucleus interacts with the electric field gradient

at the position of the nucleus, and thus probes the local charge environment. The

nuclear quadrupole Hamiltonian is [13]

IIQ = hv/4[3I - I(I + 1) + r7(1i + 12)] (2.7)

-z e2qQ (2.8)
Q =h41(2I - 1)

where Q is the quadrupole moment of the nucleus and I is the spin of the nucleus

(1=3/2 for 63,65 Cu, 1=5/2 for 17O). eqz is the electric field gradient at the site of

the nucleus along the principle axis z of the tensor, i.e. eqz = 6
2
V, where V is the

electrostatic potential. The electric field gradient along the three principle axes of the

tensor will sum to zero, because of the Laplace equation for the electrostatic potential.

62 V 62V 62 V
cx y2 + z2
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This implies that the three principle components of the quadrupole interaction will

also sum to zero. The asymmetry parameter, 77, is the deviation of the electric field

gradient tensor from axial symmetry.

VX- vY
Q = /6 1 2(2.10)

In nuclear quadrupole resonance (NQR), we do not apply any magnetic field and

use just the quadrupole interaction. The resonance frequency for an NQR experiment

for I=3/2 is given by the separation of the two eigenstates of eq. 2.7 (figure 2-2)

VQ = VQ + 7/3 (2.11)

where z is the principle axis of the electric field gradient tensor.

For nuclear magnetic resonance (NMR), where a magnetic field is applied, the

quadrupole interaction is still present and changes the resonance frequencies from

the purely magnetic Zeeman splitting. The first order and second order perturbation

effects on the energy levels of a nuclear spin I = 3/2 are shown in figure 2-1. We note

that the exact solution can be derived fairly easily by diagonalizing the 4x4 matrix (for

example, the results are given in Pennington's thesis [14]). The dramatic effect of the

quadrupole interaction is to split the single Zeeman transition energy into different

energies for each transition. This splitting is equal to the quadrupole interaction for

the axis of the applied field. Hence, for either NMR or NQR, measurement is possible

of the quadrupole interaction which is proportional to the electric field gradient. NMR

offers the advantage that the quadrupole interaction along the different crystal axes

can be measured by applying the magnetic field along the desired axis.

2.3 1/T 1 , Spin Lattice Relaxation Rate

Besides the NMR and NQR frequencies, we can measure the spin lattice relaxation

rate, 1/Ti. 1/T1 represents the rate for the nuclear spin system to return to thermal

equilibrium after it has been excited as shown in figure 2-3. Processes that cause
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pulse Ti process

I= +1/2

Figure 2-3: In order to measure 1/Ti, we first excite the nuclei to a higher energy
state with an RF pulse and then monitor the relaxation of the nuclei back to ther-
mal equilibrium. Energy is transferred out of the nuclear spin system by magnetic
fluctuations at the resonance frequency.

nuclear spin-lattice relaxation must involve energy transfer out of the nuclear spin

system. To measure 1/T 1 , we excite the nuclear spin system with a magnetic field

pulse at the resonance frequency. Then, the magnetisation of the nuclear spin system

is monitored as it returns to equilibrium. The pulse sequence used to measure 1/T 1

is shown in figure 2-4. A sample measurement of 1/Ti is shown in figure 2-5.

As long as the nuclear spin system may be described by a spin temperature, 1/T 1

may be written in terms of the transition rates Wmn between the nuclear states with

energy Em and E, [15]

1 (1/2) Em, Wmn(Em - En) 2  (2.12)
T, E E2

The transition rate Wmn is determined by the external perturbations on the nuclear

spin system. In these strongly magnetic copper-oxide materials, typically the most

important contribution to 1/Ti is from the electron-nuclear spin interaction.

With the assumption that the electron-nuclear spin interaction is the dominant

contribution, 1/T is related to S(q, w) = X"(q, w)/(1 - exp(-hw/kBT)), where

x" (q, w) is the imaginary part of the dynamical electron spin susceptibility, as [16]

(I) - 7n2' (F,j(q)2 + FL,2(q)2)S(q, wn) (2.13)
B q

where wn is the NMR frequency, yn = p/Ih is the nuclear gyromagnetic ratio. F±(q)

is the wave vector dependent hyperfine form factor [17] perpendicular to the applied

magnetic field, which will be described below. S(q, w) is the space-time Fourier
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Figure 2-4: RF pulse sequences used for measuring 1/Ti and 1/T2G.
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Figure 2-5: Example of T 1 measurement. (a) Exponential recovery of equilibrium

nuclear magnetization, 1/Ti = 4.1 sec- 1. (b) Normalized deviation from equilibrium

on a log scale showing the multiple exponential form of the relaxation (eq. 2.17).

(170 in Sr 2 CuO 2 Cl2 for HI1c at 290 K)
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transform of the spin-spin correlation function, S(r, t) =< S(0, 0)S(r, t) >,

S(q, w) =0 < S(O, O)S(r, t) > ei(-wt) dt (2.14)

where the sum 1 is over the lattice positions of the spins. Since the NMR frequency

is very low (hwfl/kB ~ 1 ImK), 1/T 1 probes the q-summation of the low energy part

of the elementary excitation spectrum, or slow spin dynamics.

Potentially, the nuclear spins could also be perturbed by the interaction of the

nuclear spin with the electron orbital magnetic moment. However, in these copper-

oxide materials, fluctuations of the orbital magnetic moment will not be significant

because all of the ions have closed shell configurations except for copper, which has

one hole in the 3dX2_ 2 orbital. Even for copper, the 3d2_,2 orbital can only couple

to the 3dyz and 3dxz orbitals, which is suppressed by the large crystal field splitting

(a 2 eV) of these orbital states (see figure 3-5). Thus, in these materials, the po-

tential orbital magnetic moment fluctuations are at very high energies and will not

affect 1/T 1 . Additionally, the nuclei can interact with charge fluctuations through the

quadrupole interaction. The difference between relaxation by the quaarupole inter-

action and the magnetic interaction can be used to distinguish these two mechanisms

in several different ways. One possible check is to measure the isotope dependence

of 1/T 1 . For magnetic interactions, 1/T 1 is proportional to the magnetic moment

of the nucleus squared (1/T 1 oc -'), while for charge interactions, this is replaced

by the quadrupole moment, (1/T 1 oc Q2). For Cu NMR/NQR, there are two com-

mon isotopes of Cu, 3 Cu (69% natural abundance) and 6 Cu (31%), which have

different values of the magnetic and quadrupolar moment of the nucleus. Thus, we

expect the ratio (6 1/T1)/(6 31/T) = (65 'yn/ 63 'yn) 2 = 1.148 for magnetic interactions

or (65Q/ 63Q) 2 = 0.860 for quadrupolar interactions.

An additional method to confirm if magnetic interactions are dominating 1/Ti

is to check if the return of the nuclear magnetization to thermal equilibrium fits

the expected exponential form for magnetic relaxation [18]. For example, for the
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= 1/2 ++ -1/2 transition for nuclear spin I = 3/2, we expect

M(t).r=3/2,1/2*-1/2= M(t = oo) + (M(t = 0) - M(t = oo)) - (2.15)

0.9 exp (6T)+ 0.1 exp

for magnetic relaxation. Also, the 1/T 1 value obtained for the central (1/2 - -

1/2) transition from the magnetic relaxation fit should agree with the values for the

satellite (3/2 -+* 1/2 and -1/2 + -3/2) transitions.

M(t)I=3/2,±3/241/2 = M(t = oc) + (M(t = 0) - M(t = o0)) - (2.16)

0.4 exp 6t) + 0.5 exp (3t) + 0.1 exp (-)]
(T1 T, T1

We should note here that for all of the experiments described in this thesis, the

ratio of 1/T 1 for the Cu isotopes, 63 and 65, was checked at selected temperatures

covering the full temperature range of the experiments. Except where noted (doped

two-leg ladders) that the ratio did not correspond to magnetic relaxation, the ratio

of 63,'6 1/T 1 indicated magnetic relaxation is dominant and 1 3,'6 1/T 1 had a good fit

to the expected exponential form. For oxygen NMR, unfortunately, there is only one

isotope with a nuclear spin, 1"0, with spin I = 5/2. However, the typical quadrupole

interaction of 170 (~ 700 kHz) is ~ 30 times smaller than that of 6 3,65 Cu (10 to 30

MHz). Since quadrupolar contributions to 1/T 1 oc vQ, any quadrupolar 1/T 1 will be

~ 900 times smaller in 170 than 13, 6 5Cu. Thus, the dominance of magnetic relaxation

in Cu 1/Ti also suggests that magnetic relaxation will dominate 0 1/T 1 . In fact,

we found that the fit to the following magnetic relaxation curves for I=5/2 was very

good.

M(t)I=5/2,1/24-1/2= M(t = 00) + (M(t = 0) - M(t = 00)) - (2.17)

[0.7936 exp (,15) + 0.1778 exp (v6) + 0.0286 exp
( T0 T1 T1

M(t).r=5/2,±3/244±1/2 = M(t = 00) + (M(t = 0) - M(t = 00)) -(2.18)
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25 (-15t) 25 exp (-10t 1 exp (-6t)
56 (T, 56 - T, 40 T,

+-expQ t ) + Iexp (-t)]
56 (T1 35 T1

M(t)I=5/2,±5/2<±3/2 = M(t = oo) + (M(t = 0) - M(t = o)) - (2.19)

[exp -15t) + 2exp (-10t) + 2exp (-6t)
1xp( T1 7 T1 5 T,

+- exp (3t) + - exp (-)]
14 (T1 35 T,

2.4 Hyperfine form factor

The hyperfine form factor, F(q), arises from the geometry of the hyperfine couplings

between the electron spins and the nuclear spin. Typically, the nuclear spin has

significant hyperfine interaction only with the electron spin of its atom and nearest

neighbor atoms. The hyperfine form factor is just the Fourier transform of the local

hyperfine interactions. This is defined as [17]

F(q) = ZAe (2.20)

where the summation is over all electron spins, i, with hyperfine interaction, Ai, and

ri is the vector from the atomic site of the electron spin to the nucleus.

In the NMR community, the hyperfine interactions, Ai, are usually given in the

units of kOe/pUB. This can be understood as the amount of magnetic field (kOe) at

the site of the nucleus produced by one Bohr magneton (AB) of bulk electron spin

susceptibility. This method of specifying the hyperfine interaction has the advantage

that it is a property of the electronic structure alone and does not depend on the

nucleus used to measure the field. In other areas of physics research (such as atomic

physics), the hyperfine interactions are commonly quoted in terms of energy, but

conversion simply involves the nuclear magnetic moment as stated in appendix C. A

typical hyperfine interaction in these copper-oxide materials is 100 kOe/pB, which
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corresponds to ~ 10-6 eV.

The hyperfine form factor is important because it determines what wavevectors, q,

of spin fluctuations, 1/T 1 is sensitive to. Differences in the hyperfine form factors for

different nuclear sites can be used to obtain information about the wavevector depen-

dence of the spin susceptibility. In these antiferromagnetic copper oxide compounds,

the spin susceptibility at low energies is strongly peaked at the antiferromagnetic wave

vector, Q = (ir, 7r) [19, 20, 21]. If the hyperfine form factor at the antiferromagnetic

wave vector, Q, is non-zero, then 1/Ti is sensitive to the antiferromagnetic spin fluc-

tuations. But if the hyperfine form factor is 0 at Q = (7r, 7r), then antiferromagnetic

fluctuations do not affect 1/T 1 . Typically in these copper oxide materials, copper
63 ,65 1/T 1 does measure antiferromagnetic electron spin fluctuations, but for oxygen

in the copper oxide planes, 17 1/T 1 does not.

This can be seen by looking at the typical hyperfine form factors for copper and

oxygen in these materials, as shown in figure 2-6. For a copper nucleus, a hyperfine

field, A, is produced by the onsite electron spins. The hyperfine interaction between

the electron spins and the nucleus can be divided into four different contributions

[22, 23].

A = Acontact + Ac + Adipolar + Aspin-orbit (2.21)

The first contribution is the contact interaction, Acontact, which expresses the interac-

tion for s-like orbitals, which have some probability for the electron to be at the site of

the nucleus. This leads to a relatively large interaction proportional to the probability

for the electron to be at the nucleus site. The second contribution, Ac,, is from core

polarization. Even if the electron spins are not in an s-like orbital, the polarization of

the outer electrons may cause a small polarization of the inner (core) electrons, which

interact with the nucleus. Typically, this core polarization effect is negative because

the core electrons are polarized opposite to the outer electron spins. These first two

contributions are usually isotropic because s-like orbitals have an isotropic probability

distribution. The last two effects from non-s orbitals will in general be anisotropic.

The third effect is the dipolar interaction between the electron and nuclear spins,
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Adipola,. The fourth interaction, Aspin-orbit arises from the spin-orbit interaction of

the electron spin magnetic moment and the electron orbital magnetic moment. This

interaction polarizes some of the orbital magnetic moment when the electron spin

is polarized and this orbital magnetic moment interacts with the nuclear spin. The

hyperfine interactions are discussed in more detail for the particular crystal structure

of the copper oxides in the next chapter (Ch. 3).

In addition, the nearest neighbor copper spins also contribute a significant hyper-

fine field, B. This hyperfine field from the nearest neighbor copper spins is discussed

by Mila and Rice [22] as arising from the hybridization of the copper electron orbitals

to include the 4s orbital of the nearest neighbor copper ions. This means that the

copper electrons spend some time on the 4s orbital of the neighboring copper ions,

thus providing an isotropic contact hyperfine interaction, B, with the neighboring

copper nuclei. It is this contribution from the off site electron spins which creates a

wavevector dependence in the hyperfine form factor. It is simple to see from figure

2-6 that for wavevector q = 0 where all the electron spins point the same direction,
6 3,6 5F(q = 0) = A + 4B. For antiferromagnetic wavevector Q where the electron

spins alternate directions, 6 3 ,6 5F(q - Q) = A - 4B. The full wavevector dependence

is

63,65F(q) = A + 2B(cos(q,) + cos(qy)) (2.22)

The oxygen atoms in the copper oxide planes usually are located in the middle

between two copper atoms. These two copper atoms both contribute a hyperfine

field, C, at the oxygen nuclear site as shown in figure 2-6. For wavevector q = 0,
17F(q = 0) = 2C. For antiferromagnetic wavevector Q where the electron spins

alternate directions, 17F(q Q) = 0. The full wavevector dependence is

17F(q) = 2C(cos(q,)) (2.23)

where the Cu-O-Cu bond is along the x axis. Because of the symmetrical arrangement

of the oxygen nucleus in between two copper atoms, the hyperfine form factor is zero at

the antiferromagnetic wavevector and the 171/T 1 is insensitive to antiferromagnetic
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Figure 2-6: Typical hyperfine form factors, F(q), for copper and oxygen atoms in

the copper-oxide materials. Left hand side illustrates F(q=0) and right hand side

illustrates F(q=7r). Full wavevector dependence given in equations 2.22 and 2.23.

spin fluctuations. As a result, comparison of 1/T 1 for copper and oxygen reveals

wavevector dependence of the electron spin susceptibility. Copper 1/Ti reflects the

dominant antiferromagnetic fluctuations, while Oxygen 1/Ti reflects spin fluctuations

away from antiferromagnetic.

2.5 1/T 2 , Spin-Spin Relaxation Rate

1/T 2 , the spin-spin relaxation rate, measures the relaxation of the transverse compo-

nent of the nuclear spin. Shown in figure 2-4 is the pulse sequence used to measure

1/T 2. First, an rf pulse is used to create the transverse magnetization. Then at a time

t = r later, another rf pulse is applied to create a spin echo at time 2r to measure

the remaining transverse magnetization. By using this sequence with varying r, we

measure the Lorenztian (exponential) (T2L) and Gaussian (T2G) parts of T2 as

(-) =exp (2.24)
=T2L ) 2T(2G24
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Figure 2-7: Example of relaxation of the transverse component of the nuclear spin,
1/T 2. (a) Echo integral on a logarithmic scale as a function of 2r. The curvature of
the graph shows the non-exponential relaxation. Solid line is a fit to the Gaussian
component of 1/T 2 with the Lorentzian (exponential) component calculated from
1/T 1 . (b) Normalized Gaussian component of echo integral as a function of (2-) 2

(M(2r)/Mo exp(-2r/T2 L), where T2L = 13 msec- as determined by 1/T1,NQR = 3.0
msec. 1, 1/T1,ab/1/T1,c = 3.4i0.2 and equations A.30 and A.18). Solid line shows the
expected linear dependence of the echo integral on the logarithmic scale. (Example is
taken from three-leg ladder material, Sr 2 Cu 30 5 , at 325 K measured by NQR. Result
from fit is 1/T 2G = 39 msec 1 )

An example of transverse relaxation, 1/T 2 , that is dominated by the Gaussian term is

shown in figure 2-7. The curvature of the echo integral as a function of 2r in part (a)

of the figure indicates non-exponential relaxation. Part (b) of the figure confirms the

Gaussian nature of the relaxation by graphing the echo integral as a function of (2T) 2.

The important difference between 1/T 2 and 1/Ti is that the transverse component

of the nuclear spin can decay (the T2 process) without any change in the energy of

the nuclear spin system. On the other hand, spin-lattice relaxation, 1/Ti, requires

energy to be removed from the nuclear spin system.

However, the same processes that cause spin-lattice relaxation, 1/T1 can also

cause transverse relaxation, 1/T 2. The projection of the nuclear magnetization in

the xy-plane is reduced by magnetic field fluctuations perpendicular to the nuclear
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magnetization. These processes will cause Lorenztian (exponential) relaxation. In

fact, for magnetic relaxation, we can calculate the expected value of the exponential

component of T 2 , T2L, from T1 using Redfield theory [15]. The result is [14]

= + + 3 (2.25)TLz Z MQ 2 T,x 1yT,
T1 11+12 = 1 1XT'YT

- - + + 2 (2.26)
T2L,z i32+l2 2T, 1yT1,z

where the subscripts, x,yz, refer to the crystal axes. This calculation applies for spin

I = 3/2 and both NMR and NQR when r7 = 0. For NQR when 7 # 0, the calculation

is outlined in appendix A

(T2,[=(3 + 3) [ 2) +6 (2.27)
T2, NQR 3 27zy T,

Since T2L provides similar information as T 1, it is not so interesting. In fact,

we usually fit the spin echo decay using the value for 1/T2L calculated from 1/T 1

measurements. In contrast, the Gaussian spin-spin relaxation rate, T2G, provides in-

formation on the real part of the wavevector (q) dependent electron spin susceptibility,

X'(q) in these materials. The Gaussian spin-spin relaxation arises from interaction

between the nuclear spins. The dipole moment of one nuclear spin produces some

magnetic field at the site of a neighboring nucleus. This direct dipolar interaction

is not very strong because the magnetic field of a nucleus at a distance of several

Angstroms will be only a few gauss [13]. In antiferromagnets, the indirect interaction

of the nuclei via the electron spins can be much larger [24, 25]. The indirect nuclear

spin-spin coupling, between nuclear spins, I, at sites r1 and r 2 , can be expressed as

[26]

1112 = -(Yh) 2 ZIz(r2 )F(r2 , r')X'(r', r)F(r, r)Iz(ri) (2.28)
r',r

where F(r, r') and X'(r', r) are the hyperfine form factor and real part of the electron

spin susceptibility in real space. This Hamiltonian can be understood as shown in

figure 2-8. One nucleus at position r1 is coupled to its local electron spin at r by the
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Figure 2-8: Indirect nuclear spin-spin coupling: nuclear spins are coupled through
their interaction with the antiferromagnetically correlated electron spins.

hyperfine interaction, F(r, r1 ). Since the electron spins have such a strong antiferro-

magnetic correlation, the polarization of the local electron spin by the nucleus affects

the nearby electron spin at position r' according to the electron spin susceptibility,

X'(r', r). This electron spin will interact with the nucleus of its own atom at posi-

tion r2 via the hyperfine interaction, F(r2 , r'). As a result, the nuclei are indirectly

coupled. The nuclear spin-spin coupling, a 2 , is determined by the correlations of the

electron spin system. Taking the Fourier transform of the real space expression,

712 = ai2 Iz(ri)I.(r 2 ) (2.29)

a iq.(r2-rF(q)2X (q) (2.30)
q

For a single nuclear spin-spin coupling, a, the time dependence of the nuclear

magnetization is

M(t) = M(0) cos(at) (2.31)

The Gaussian relaxation term is an approximation for the combination of many dif-

ferent spin-spin couplings. Expanding the cosine terms to second order, the decay of

the nuclear magnetization can be approximated as a Gaussian decay determined by
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Figure 2-9: Example of indirect nuclear spin-spin coupling. The coupling strength a' 2

in rad/sec between the labeled nucleus and the nucleus at (0,0) for an electron spin
correlation length, = 3. The coupling is antiferromagnetic and decreases with a
distance scale determined by the correlation length. (These calculations are based on
a model q-dependent spin susceptibility proposed by Millis, Monien, and Pines[137]
and are from Pennington and Slichter[27])

the sum of the squares of the spin-spin couplings.

M(t) = M(0) cos(ait) (2.32)

M(0) (1 - 2

i Ea

~M(O) (1 - ( ?22
2

~ M(0)e~(ia )

Thus, the Gaussian spin-spin relaxation rate for the I_ = 1/2 + -1/2 or ±3/2 -

±1/2 transitions for 1 3Cu (I = 3/2) NMR is [26, 27, 28]

6 2G NMR -82r2r 1 22

where 0.69 is the natural abundance of the 63Cu isotope. We note that the above

equation assumes that the three transitions, 1/2 ++ -1/2, 3/2 + 1/2, and -3/2 +

-1/2, are split by the quadrupole interaction. This fact and the following discussion
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are treated in more detail in appendix B.

The dependence of 1/T 2G on the isotope abundance and nuclear spin I arises

because the Gaussian nuclear spin-spin relaxation occurs only for coupling between

like spins. In order to form the spin echo, the transverse nuclear magnetization is

flipped 180 degrees at time r as shown in figure 2-4. If the nearby interacting nuclear

spin is not also flipped, the extra precession from time t = 0 to r due to the interaction

is cancelled by the the opposite precession from time t = r to 2r. So, only "like spins"

contribute to the Gaussian spin-spin relaxation, 1/T2G, where like spins are defined

as those flipped by the rf pulse. This points towards the importance in measurements

of 1/T2G of ensuring that all of the nuclear spins considered "like" in a spectrum

are flipped by the rf pulse. For measurements of 1/T2G, the strength of the rf pulse

is varied to ensure that 1/T2G is measured with a spin-flip pulse strong enough to

eliminate any effect of the rf pulse on the measured value.

In addition, this creates a difference between 1/T 2G as measured by NMR or

NQR. For NQR, because the sign of the spin does not matter, there are twice as

many like spins as there are for NMR. Another small correction for NQR occurs

when the measurement is done on unaligned powder samples. Because the crystal

axes of the powder are not aligned with the rf magnetic field of the spin-flip pulse,

the amount of spin transitions will differ depending on the orientation of the crystal

axes. As derived in appendix B,

T 2G1 (2.34)
\T 2G powderNQR 7\T2G/ NMR

As seen from equations 2.30 and 2.33, the Gaussian nuclear spin-spin relaxation

rate, 1/T2G, measures the real part of the electron spin susceptibility at zero frequency,

x'(q) [27]. Thelen and Pines [28] simplified the expression for 13 1/T 2G from eqs. 2.30

and 2.33 to provide ease of calculation by dependence on wavevector q, rather than
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in real space.

6(1_)2 8.9(yh2  )4X/'\2 /1 )X
3I 0.692 F(q)X(q) - F(q)x'(q) (2.35)

where the factor 0.69 is the isotope abundance of 63Cu.

The electron spin correlation length, , gives a simple picture for understanding

how the Gaussian spin-spin relaxation rate, 1/T2G, measures the correlation length.

The spin correlation length, , is defined as [30]

e-r/C 1
OC (-1)r-+ry z 33+- (2.36)

n

in the limit when r -+ oo, and A = (d - 1)/2 where d is the dimensionality. The

electron spin correlation length, , gives a length scale over which the unpaired Cu

electron spins are antiferromagnetically correlated. As long as the electron spins are

correlated, the indirect nuclear spin-spin interaction will be significant. Therefore,

a nuclear spin will be coupled to other nuclear spins in a region of length scale, .

This can be seen clearly in figure 2-9 from Pennington and Slichter [27] which shows

calculations of the individual 63Cu nuclear spin-spin couplings for a electron spin

correlation length, = 3 lattice spacings. As the electron spin correlation length

increases, a nuclear spin is indirectly coupled to more nuclei which increases the

Gaussian spin-spin relaxation rate, 1/T2G-

2.6 NMR Electronics

To conduct these NMR and NQR measurements, we constructed the electronics for

the spectrometer. The electronics, shown in figure 2-10, are required to do two major

things. First, they send out the radio frequency (RF) pulses to excite the nuclei in

the sample and later when the spin echo occurs, the much smaller signal is acquired.

Our NMR spectrometer is based around the Aries spectrometer by Tecmag, which

communicates with the Macintosh computer. The general flow of the electronics is as
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follows. The RF frequency source (PTS 310 or 500) produces continuous RF which is

gated into pulses by the TTL signals from the Aries spectrometer. These RF pulses

are then amplified by the power amplifier (Kalmus LP1000, 1 kW). We should note

that the TTL signals from the Aries are protected using simple logic circuitry to

prevent the possibility of continuous RF being fed to the power amplifier in the case

of power failure or a computer crash. The Aries spectrometer has an alarming habit

of leaving all TTL lines high when the computer crashes. The amplified RF pulses

are fed through paired diodes into the NMR probe. The NMR probe consists of two

adjustable capacitors and an inductive coil. This allows the circuit to be tuned to the

chosen RF frequency and also matched to 50 ohms impedance. The sample is placed

inside the inductive coil, and is thus exposed to the radio frequency oscillations of

the magnetic field of the inductor. The next two parts beyond the NMR probe help

shield the sensitive signal amplifiers from the large RF pulses. A quarter-wavelength

cable is inserted between the NMR probe and paired diodes that are grounded. The

grounded diodes prevent the large voltages of the RF pulses from entering the signal

amplifiers. Since a quarter-wavelength is the distance between the zero voltage point

of the wave and the peak voltage, the quarter-wavelength cable allows the voltage to

be large at the NMR probe while the voltage is small at the grounded diodes.

For acquiring the signal, the same inductive coil also provides an induced voltage

from the nuclear spin precession. The signal is not attenuated by the grounded diodes

as long as the signal is below the threshold voltage of the diodes (--0.6 V). So the

signal is amplified by the RF signal amplifiers (LN-2L or LN-2M by Doty, or AU-1467

by Miteq). Generally, we have two Doty amplifiers which are separated by a pair of

RF mixers (Mini-circuits ZAD-1) which we use as switches. The switches are only

turned on when we want to acquire the signal to avoid unnecessary saturation of

the amplifiers. We used the RF mixers because we already had them, another option

would be to use pin diode switches. For the third RF amplifier, we use a Mini-circuits

ZFL-500LN. This amplified signal is then split (Mini-circuits ZFSC-2-1W) and mixed

with the original continuous RF with two different phases, 0 and 90 degrees (phase

splitters such as Mini-circuits ZSCQ2-180B). This is referred to in the NMR literature
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Figure 2-10: Schematic of electronics for NMR spectrometer, Imai Labs.
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as quadrature detection. Mixing with the two different phases essentially allows us

to get both the cosine and sine components of the signal at the chosen frequency (or

equivalently the real and imaginary parts of the Fourier transform). After mixing

with the original RF, the signal is close to DC. We amplify the signal once more with

an op-amp (AD521) based circuit with a gain of 100 and a complementary bandwidth

of ~100 kHz. This final signal can be viewed on an oscilliscope and is digitized by the

Aries spectrometer. In addition to the software provided with the Aries spectrometer,

we wrote some additional functions to provide the data analysis that we need.

A NMR technique that is crucial for separation of the small spin echo signal from

the decay (ringdown) of the RF pulses is phase cycling [14]. In our resonant circuit

(Q~40 - 100), the RF pulses require some time to decay and can obscure the spin echo

signal. The pulse sequences shown in figure 2-4 are repeated with different phases for

the RF pulses in order to cancel the decay of the RF pulse. For example, for the spin

echo sequence, we use four different phases and add or subtract the resulting signal

based on the sign of the echo:

90, T 180 T echos Add

90-_ T 180, r echo_, Subtract

90-, T 180, r echoy Add

90, 180, r echo-Y Subtract

where 90 and 180 refer to the 90 degree and 180 degree pulses with the subscript

indicating the phase of the RF pulse. In this sequence, any ringdown of the 90 degree

or 180 degree pulses is cancelled. For the T1 sequence, we have an additional 180

degree pulse. We repeat the above four phase sequence twice, once with 180X for the

first 180 degree pulse, and again with 180-x. In addition to cancelling any ringdown

of the pulses, this also cancels the stimulated echoes that can occur with three pulses

[14]. The phase cycling technique dramatically helps to measure the spin echo at

short r.
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2.7 Summary

In summary, NMR and NQR uses the atomic nuclei as local probes into materi-

als. This thesis is primarily concerned with the ability of the nuclei to probe the

electronic structure. The magnetic resonance frequency reveals the local uniform

magnetic susceptibility, x'(q = 0). The quadrupole resonance frequency measures the

electric field gradient, which reflects the charge environment. Low energy excitations

of the electron spin system, X"(q, w7 ), are seen in 1/Tj, the spin lattice relaxation

rate. The Gaussian spin-spin relaxation rate, 1/T2G, is dominated by the indirect

nuclear-nuclear spin coupling which measures the real part of the static electron spin

susceptibility, x'(q, w = 0). The electron spin susceptibility can be expressed in terms

of the spin correlation length, .
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Chapter 3

Summary and Crystal Structure

This thesis describes NMR and NQR experiments in several copper-oxide materials.

These materials have crystal structures that are only slightly different, but the mag-

netism is dramatically different. The dramatic changes in the magnetism result from

the changes in the dimensionality of the magnetic interactions. The temperature

dependence of the spin-lattice relaxation rate, 1/T 1 (figure 3-1), and the Gaussian

spin-spin relaxation rate, 1/T2G (figure 3-2), for 63Cu are shown to differ dramati-

cally between these materials. In general, these results can be understood in terms

of the different behavior of the electron spin correlation length, , as a function of

the dimensionality of the magnetic interactions. Monte Carlo results for the spin

correlation length, , are shown in figure 3-3. Both 1/T 1 and 1/T 2G are, in general,

related to the spin correlation length. For the three-leg ladder, Sr 2 Cu 30 5 , and the 2d

square lattice, Sr 2 CuO 2 Cl 2 , the results show a qualitatively similar divergence with

decreasing temperature, but the three-leg ladder 1/T1 diverges at a lower tempera-

ture than the 2-D material. In contrast, the two-leg ladder material, SrCu 2O 3, has

a spin excitation gap [29]. The spin excitation gap, A, of the 2-leg ladder is seen

in the gapped behavior of 1/T 1 (1/T1 I exp(-A/T)) below T ~ 425K. The spin

correlation length becomes constant at low temperatures as the Monte Carlo results

show. As a consequence, 1/T2G for the two-leg ladder also becomes roughly constant

for T < 100K. Finally, the id Cu-O chain material, Sr 2 CuO 3 , has a much weaker

temperature dependence of 1/T 1 and 1/T 2G than the other materials. This is primar-
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Figure 3-1: Summary of 6 3Cu 1/Ti. U Sr 2 CuO 2 Cl 2 (2d square lattice), A Sr 2 CuO 3
(1d), A SrCu 2 0 3 (two-leg ladder), * Sr 2Cu 3 0 5 (three-leg ladder). Measurements for
HL to Cu-O layer, scaled from NQR measurements for the ladder materials (see app.
A).

ily a result of the fact that in 1 dimension, the dependence of 1/Ti and 1/T 2G on the

correlation length almost completely cancels out. These results will be discussed in

more detail in the individual chapters on each material.

3.1 Crystal Structure

Despite the very different magnetic interaction geometries, the basic crystal struc-

tures of the undoped copper oxides described in this thesis are similar. Their three

dimensional structure is made up of 2 dimensional Cu oxide layers which are sepa-

rated by layers of Sr (or La,Ca) oxide layers. The copper-oxide layers have copper

ions which are surrounded by a square of four oxygen ions. This is shown in figure

3-4 for the 3-leg ladder material, Sr 2 Cu 30 5 . This material will be used as an example

to explain the crystal properties which are common to these copper oxide materials.
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Figure 3-2: Summary of "3Cu 1/T2G. N Sr 2 CuO 2 Cl 2 (2d square lattice), A Sr 2 CuO 3

(1d), A SrCu 2 O 3 (two-leg ladder), 9 Sr 2 Cu3 O5 (three-leg ladder). Measurements for

NQR, scaled from NMR measurements for Sr 2 CuO 3 (see app. B).

,D

V

IV .V
0

0

ik

Sr 2CuO 2CI 2
Square Lattice

n,=5
n =4
n =3
no =2
n =1

n.

U

U
U

0 0.2 0.4 0.6 0.8 1.0
T

Figure 3-3: Monte Carlo data from Greven, et al. [30] for the spin correlation length,
6, in the spin 1/2 Heisenberg antiferromagnet with different numbers, n,, of isotrop-
ically coupled chains. Corresponding to the structures of the copper-oxide materials
studied are U 2d square lattice (El neutron experiment for Sr 2 CuO 2 Cl2 ), A Id (single
chain), A two-leg ladder (two chains), e three-leg ladder (three chains).
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Figure 3-4: Structure of the copper-oxide layer of the 3-leg ladder, Sr 2 Cu3 O5 , with
the important electron orbitals shown.
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Figure 3-5: Electron energy levels for Cu 3d orbitals. [31]

The undoped materials are antiferromagnetic insulators. The atoms Sr, Cu and

0, have electronic configurations Sr: [Kr]5s 2 , Cu: [Ar]3d 104s, and 0: [He]2s 2 2p4 .

Strontium and Oxygen have only one typical valence, which creates a closed shell

configuration. Strontium will have valence 2+ ([Kr]) and Oxygen will have valence 2-

([He]2s 22p 6 = [Ne]). In order for the compounds, such as Sr 2 Cu305, to have charge

neutrality, the Cu atoms will be 2+ with configuration [Ar]3d'. The Cu 2+ ions have

one hole in the 3d electron shell, while the rest of the ions have closed electron shells.

Crucial to the chemistry of these compounds is the Cu 3d orbital in which the

hole resides. This is determined by the crystal field energy splittings shown in figure

3-5. The hole in the Cu 3d electron shell resides in the highest electron energy state,

the 3dX2-Y2 orbital. This copper 3d orbital is the one which has lobes which point

towards the neighboring oxygen atoms in the x,y plane, as shown in figure 3-4. The

reason for this is simple. The hole, as an effective positive charge, has a lower energy

when near the negatively charged oxygen 2- ions. These oxygen ions in the x,y plane

are closer to the copper ion than the neighboring ions in the z direction.

The geometry of the Cu 3dX2-,2 orbital creates the strong antiferromagnetism in

these materials by the superexchange interaction. The half-filled Cu 3dX2_,2 orbital

contains an unpaired spin 1/2 electron. Because the lobes of the 3d,2_y2 orbital extend

towards the nearest neighbor oxygen atoms in the plane, this orbital can hybridize
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Figure 3-6: Superexchange mechanism. (a) Some electron down spin in oxygen 2p

orbital hybridized with Cu orbital with up spin, so in (b) for remaining up spin in

oxygen 2p orbital to hybridize with other Cu requires the Cu spins to be opposite.

with the 0 2p, orbitals of oxygen as shown in figure 3-6. The antiferromagnetism

arises from the superexchange mechanism as described by P. Anderson [32]. The

hybridization between the copper and oxygen orbitals results in an electron of the

oxygen 2p, orbital having some probability for being in the Cu 3d,2_y2 orbital. Be-

cause of the Pauli principle, the spin of this electron must be opposite to that of

the Cu electron spin. The net result is that some of the unpaired electron spin of

the Cu atom is transferred to the oxygen 2p orbital. This is also true for the other

neighboring Cu atom of the oxygen. When the Cu-0-Cu bond angle is 180 degrees,

both Cu spins are transferred into the same oxygen 2p orbital. By the Pauli exclu-

sion principle, the two spins in the same 2p orbital must be opposite. So, the 180'

Cu-0-Cu bonds result in strong antiferromagnetic coupling between the unpaired Cu

electron spins.

The large superexchange interaction of these copper oxides, J ~ 1500 K, implies

that the hybridization of the copper 3d,,2_2 orbital with the oxygen 2p- orbitals

is large also. Indeed, we shall estimate for the 2d compound, Sr 2CuO 2 Cl 2 , that

~ 13% of the unpaired Cu spin actually resides on the oxygen 2pc- orbital (section

50



5.3). This value is larger than estimates from fluoride antiferromagnets, such as

KNiF 3 (3.5% spin transfer) [33, 34], which has a much smaller value of J = 45 K

[35]. The large hybridization of the orbitals in these copper oxides indicates that the

electron wavefunction of the Cu electron is very extended. This large extension of the

wavefunction suggests that these copper oxide materials are nearly metallic. If the Cu

electrons were strongly localized, they would not have such strong antiferromagnetic

interactions with one another.

In the spin ladder materials, there are also Cu-0-Cu bonds with roughly 90 degree

bond angle. In contrast to the 180 degree bonds, these 90 degree bonds are expected

to provide a ferromagnetic coupling that is only about one-tenth as strong as the 180

degree bonds [36, 32]. The strength of the 180 degree Cu-0-Cu antiferromagnetism

relys on the Pauli exclusion principle when both Cu spins are transferred into the

same oxygen 2p orbital. For a Cu-0-Cu bond with an angle close to 90 degrees, the

unpaired Cu spins are transferred into different oxygen 2p orbitals. As a result, the

unpaired spins interact only by the much weaker Hund's coupling, which is ferro-

magnetic. In addition, in these materials, the 90 degree magnetic interactions are

frustrated. As shown in figure 3-4, the 90 degree interactions occur in pairs. Each

copper spin has two 90 degree interactions and those two spins have a strong 1800

antiferromagnetic bond. This triangle of two weak ferromagnetic interactions and one

strong antiferromagnetic interaction cannot be fully satisfied and is thus frustrated.

In the spin ladder materials, the 1 dimensional ladder structures have these frustrated

interactions between them. However, experimentally these materials show little effect

from the frustrated interactions, and are nearly ideal two-leg and three-leg spin 1/2

antiferromagnets.

NMR and NQR are local probes of the environment of the nuclei. The local

electronic structure of these materials is evident in NMR measurements in three

main ways. These three ways are the quadrupole interaction, and the anisotropy of

the orbital and spin Knight shifts. The quadrupole interaction measures the electric

field gradient at the position of the nucleus (eq. 2.7). The contributions to the electric

field gradient, eq, can be divided into two main contributions, based on a standard
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ionic picture [37],

eq = eqhoje + (1 - y)eq1,ttiCe (3.1)

The first contribution, eqhole, arises from holes in orbitals of the ion itself [15, 23]. An

isotropic distribution of charge, such as from a filled electron shell, will not produce

an electric field gradient, but unfilled shells can. For the undoped compounds, the

oxygen 2- ions have closed electron shells, so no contribution to the electric field

gradient from eqhol,. On the other hand, the Cu 2+ ions have one hole in the 3d,2_,2

orbital. From electron-spin-resonance studies, Bleaney et al.[23] demonstrated that

a single hole in the 63 Cu 3d,2_,2 orbital produces an axially symmetric electric field

gradient of about 70 MHz. Shimizu [38] studied the quadrupole interaction data on a

number of copper-oxide compounds and used the results to estimate the contribution

of the Cu 3d hole. One hole in the Cu 3d,2_Y2 orbital produces the nuclear quadrupole

interaction ~ (-38.5, -38.5, 77) MHz.[39, 38]

The second contribution to the electric field gradient in equation 3.1, eqtatice,

arises from the charges of the other ions of the crystal. This electric field is then

modified by the distortion which it creates in the electronic orbitals of the observed

ion itself. This effect is accounted for by the Sternheimer antishielding factor, 'Y. For

CuO 2 planes in high Tc superconductors, the value of 7 is estimated as 63 y ~ -20 and

177 ~ -9 for 6 3 Cu and 170, respectively.[38, 41] We estimate the lattice contribution

to the electric field gradient by using point charge lattice summations. We treat all

the neighboring ions, i, as having their ionic charge, ei, as a point charge at their

position in the crystal structure. Then, we just sum the contributions to the electric

field gradient at the chosen nucleus position from all the other ions.

(3z? - r?)
eq =eattice ei r§ (3.2)

i

With a computer program, it is easy to do the summation out to a radius (-' 100

A) where any further summation does not significantly alter the result. With this

information, we can estimate the quadrupole interaction for both 13,6 5Cu and 170

from the crystal structure.
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The second way NMR can provide information about the electron orbitals is by

the anisotropy in the orbital component of the Knight shift, Korb (eq. 2.3). The

orbital Knight shift is proportional to the electron orbital susceptibility of the ion

(eq. 2.2).
1

Korb= 2 < > Xorb (3.3)

where < 1/r' > is the expectation value of 1/r 3 for the electron orbital. When the

ion has only full electron shells, there is no significant orbital susceptibility. This

implies that there is no orbital Knight shift for oxygen NMR. The copper ions, on

the other hand, have one hole in the 3dx2_2 orbital. The theoretical expressions for

Cu Korb are [39, 15]

K ~~~16pi2 34
Korbi Cu-O plane (z) -~ E r1B

Korb,11 Cu-O plane (xy) E < 3> (3.5)
Korbil r

where Exy,xzyz is the crystal field energy difference between the 3d 2 _Y2 orbital and

the 3dxyxz,yz orbitals respectively. . The important result is that the orbital Knight

shift perpendicular to the Cu-O plane is 4 times larger than the orbital shift in the

Cu-O plane assuming the 3dxy,xz,yz orbitals have the same energy [31].

Anisotropy of the spin Knight shift can also reveal where in the crystal structure

the unpaired electron spin resides. This derives from the form of the dipole-dipole

coupling between spins [13]. In this case, we have the hyperfine coupling between the

electron spin, S, and nuclear spin, I.

?i dip P 3 -n__ -fen (3.6).
di r3 r

e-n e-n

The dipolar coupling depends on the direction of the vector, r' n, between the nucleus

and the electron. As a consequence, the anisotropy of the coupling can tell us which

orbitals contain unpaired electrons. For example, if we want the dipole hyperfine

coupling along the z axis, only the z component of the spins is important. The
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coupling is

-dip,z - IS 1 -3 Z 37e )
e-n -/

where the average < (z/r)2 > is taken over the electron orbital. Symmetric expres-

sions apply to the x and y axes. For a d,2_,2 orbital, < (x/r)2 >=< (y/r)2 >= 3/7

and < (z/r)2 >= 1/7. Thus, the dipolar hyperfine field at the nucleus is

4ILB (r- 3 ) (< S' >, < SY >, -2 < S, >) (3.8)
7e

So, unpaired spin in the Cu 3d,2_,2 orbital provides a negative hyperfine field along

the z axis and a positive hyperfine field along x and y that is half as big. Similarly,

for a pz orbital [33, 40, 41],

For the p orbital, the largest hyperfine field is along the direction of the orbital

and is positive. Note that the dipolar hyperfine interaction is always traceless, the

components sum to zero. For an isotropic s orbital, the dipolar hyperfine interaction

cancels to zero. However, since an electron in a s orbital has a finite probability

of being at the nucleus position, there is a large contact hyperfine interaction. The

contact interaction magnetic field is always positive and is expressed as [15]

Hint = 8pBR2(r = 0) (3.10)
3

where Rf (r = 0) is the probability for the electron to be at the nucleus (r = 0). This

contact interaction can be two orders of magnitude larger than the dipole interactions

from the p and d orbitals. Thus, any tiny amount of unpaired spin in an s orbital

can give positive contributions to the hyperfine field. So, the contact interaction

is expected to be positive and isotropic. In contrast, the core polarization effect is

typically negative. This is a consequence of that the polarization of inner (core)

electron spins in response to the outer electron spin polarization is typically in the
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opposite direction. The resulting hyperfine field is thus negative with respect to the

outer electron spin polarization.

All of the copper-oxide materials described in this thesis have the same basic

local crystal structure, Cu ions surrounded by a square of oxygen ions. As discussed

in the following chapters, the NMR/NQR experiments do show results consistent

with the accepted picture of the electron orbital structure for these materials. That

picture is that there is one hole in the Cu 3d orbital which resides in the 3d2_2

orbital and this Cu orbital strongly hybridizes with the oxygen 2p- orbitals. The

strong antiferromagnetic interaction is a consequence. The main focus of this thesis

is the effect of the dimensionality of the magnetic interactions on the temperature

dependence of the magnetic correlations.
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Chapter 4

id S=1/2 Heisenberg

Antiferromagnet

One-dimensional antiferromagnetic spin chains have been studied extensively in the

past several years because of interest in the strong influence of quantum fluctuations

on their properties. In addition, the 1-d systems are the simplest among various quan-

tum Heisenberg antiferromagnets. The ground state of the 1-D spin 1/2 Heisenberg

antiferromagnetic chain,

?i = J E Si . Si (4.1)

where J is the exchange interaction, has been well understood for a number of years

[42]. The ground state does not have long range order even at T = 0 because the

Neel (long range ordered) state is disrupted by quantum fluctuations. Instead there is

short range order with power law decay of the spin correlations [43]. Recent interest in

low dimensional magnetism has been promoted by the discovery of high T, supercon-

ductivity in doped copper-oxide materials. Similar copper-oxide materials have been

discovered which have nearly ideal 1 dimensional electron spin interactions. For com-

parison to experiments in these materials, recent calculations have been made of the

finite temperature static and dynamic spin behavior in the 1 dimensional Heisenberg

antiferromagnet [44, 45, 21, 46, 47, 48].

In this chapter, we report 170 and 61Cu nuclear magnetic resonance (NMR) mea-
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surements up to high temperatures on Sr2 CuO 3 and SrCuO 2 , nearly ideal 1-d spin

1/2 Heisenberg antiferromagnets. Using 170 NMR, we reveal the wave-vector, q,

dependence of the low energy spin excitations and separate the q = 0 and q = 7r

contributions. Thus, we can measure the q = 0 contributions to low energy spin

excitations in the 1-d spin 1/2 Heisenberg antiferromagnet and test the theoretical

predictions. We find that in Sr 2 CuO 3 the chain oxygen 1/T 1 (q = 0) oc aT + bT 2

over the whole temperature range 10 to 700 K. The low temperature limit of these

experimental results is in reasonable agreement with the low T scaling theory of

Sachdev,[44] 1/T 1 (q = 0) = aT where a = Fj2 (q = 0) y, but even at the lowest

temperatures measured T = 10K (T/J ~ 0.005), 1/T 1 does not show the expected

linear temperature dependence. Frequency dependence measurements show that dif-

fusive contributions dominate T1 (q ~ 0) for SrCuO 2 . High temperature 13 Cu 1/T 1

measurements in Sr 2 CuO 3 and SrCuO 2 also show the increase in contributions to

1/T 1 from q = 0 at high temperatures. The double chain compound, SrCuO 2, shows

1-d behavior analagous to that of Sr 2 CuO 3 in the NMR measurements above 10 K,

implying that the frustrated interactions between the pairs of chains do not affect the

spin dynamics above 10 K.

4.1 Crystal Structure of Sr 2 CuO 3 and SrCuO2

In this chapter, two closely related copper oxide compounds, Sr 2 CuO 3 and SrCuO 2

[49], are described. These materials have a 1 dimensional Cu-0 chain structure

(figures 4-1 and 4-2). Sr 2 CuO 3 has copper-oxygen chains along the b axis, with

180 degree Cu-0-Cu bonds which are expected to result in strong antiferromagnetic

superexchange.[50] Motoyama, et al. measured the bulk susceptibility of Sr 2 CuO 3

and found a good agreement to the theoretical prediction for the S=1/2 1-d spin

chain [46, 47] with the exchange interaction, J ~ 2200K.[51] Sr 2 CuO 3 is a very good

experimental model for the 1-d Heisenberg antiferromagnet because long range or-

dering only takes place at TN ~~ 5K.[52] This implies that the interchain interaction,

J', is very small in comparison to the intrachain interaction, J, J'/J ~ 10-3.[52] As
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a result, Sr 2 CuO 3 should reveal ideal 1-d behavior over a wide range in temperature.

The structure of SrCuO 2 has copper-oxygen chains similar to Sr 2 CuO 3, but has

a pair of these copper-oxygen chains along the c axis. The pair of copper-oxygen

chains are coupled by 90 degree Cu-0-Cu bonds with frustrated exchange interaction,

J' < 0. The magnitude of the exchange, J', is expected to be much smaller than the

intrachain exchange interaction, J, J' = 0.1 -0.21 J.[50] Thus, at high temperatures,

SrCuO 2 would be expected to behave like two uncoupled chains. In fact, the bulk

susceptibility[51] of SrCuO 2 shows a good fit to the theoretical 1-d susceptibility[46,

47] with J ~ 2100K. A spin freezing transition occurs at 5 K, only ~ 3 x 10- 3J/KB

[53, 54]. In addition, long range three dimensional order does not appear down to

the lowest temperature studied, 0.3 K [53]. This implies that any effective inter-

double chain coupling is very small or inter-double chain frustration suppresses long

range order. In fact, Zaliznyak et al.[53] found that the spin correlation length in the

direction of the frustrated double chain interaction (b axis) is only 2 lattice spacings

in the "spin frozen" state, while the correlation length is much larger for the other

two axes, - 60 for a axis and > 200 for c axis. Both SrCuO 2 and Sr 2 CuO3 are very

ideal models for the 1-D spin 1/2 Heisenberg antiferromagnet, with the difference

that SrCuO 2 has a frustrated interaction between pairs of chains which may affect

low temperature behavior.

For our experiments, we used single crystals of the two compounds, Sr 2 CuO 3 and

SrCuO 2 , which were grown by F.C. Chou at MIT. Laue x-ray scattering was used in

addition to NMR measurements to confirm the directions of the crystal axes in the

samples. In both of these samples, there is only one copper atomic site, but there are

two oxygen sites as shown in figure 4-2. One of the oxygen sites, which I will call the

O(1) chain oxygen site, is in between copper atoms along the Cu-O chain. The other'

oxygen site, the 0(2) apical oxygen site, is bonded to only one copper atom and sits

off to the side of the Cu-O chain. The oxygen NMR spectra are shown in figures

4-3 (Sr 2 CuO 3) and 4-4 (SrCuO 2). The two oxygen sites seen in the spectra can be

unambiguously assigned to the structural sites by using the symmetry of the electric

field gradient (quadrupole interaction) and Knight shift tensors. The experimentally
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SrCuO2 Sr2CuO3

0

0 .

C
0-a

Figure 4-1: Crystal structure of SrCuO 2 and Sr 2 CuO 3. Solid circles Cu atoms, open
circles 0 atoms, shaded circles Sr atoms. (from Motoyama, et al.[51])

measured quadrupole interactions and the calculated values from point charge lattice

summation are shown in tables 4.1 and 4.2. The point charge lattice summations

show the relative size of the quadrupole interactions, but do not include the effect

of the electrons of the atom where the nucleus is located. For oxygen 2- ions, the

distortion of the on-site electrons magnifies the electric field by about a factor of

10 [41]. In general, for the oxygen sites, point charge lattice summations indicate

that the largest electric field gradient is along the copper-oxygen bond. Similarly,

as discussed below, the oxygen Knight shift for these samples is axially symmetric

around the copper-oxygen bond direction with the largest value along the copper-

oxygen bond direction. These symmetries of the quadrupole interaction and Knight

shift are common to all of these related copper-oxide materials discussed in this thesis.

Additionally, for Sr 2 CuO 3, there are twice as many apical oxygens as chain oxygens,

giving twice the intensity to the apical oxygen resonance lines. Symmetry of the

Knight shift and NMR intensity provide confirmation of the site assignment.
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Sr2 CuO 3 , single Cu-0 chain

C C F

0 Cu

S0(1) Chain 0

* 0(2) Apical 0

FChain 2 = (2C)2 cos2(qa/2)

FApical2 - F2

0 q Ic

SrCuO 2 , double Cu-0 chain

C C F

D T

FChain 2 = (2C)2 cos2 (qa/2) + D2

FApical 2 = F2

Figure 4-2: Detailed structure of the Cu-0 chains
and SrCuO 2 (double Cu-0 chain). Hyperfine transf

q 7

of Sr 2CuO3 (single Cu-0 chain)

ers to oxygen sites are also shown.

Table 4.1: Magnitude of quadrupole interaction [kHz] measured at room temperature

Sr 2CuO 3  a b c

0(1) chain 764 972 198
0(2) apical 526 383 146

Cu 2,370 3,700 1,330

SrCuO 2 a b c

0(1) chain
0(2) apical

Cu

538
127

6,512

74
461

1,878

610
333

8,393
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Figure 4-3: 170 NMR spectra for Sr 2 CuO 3 . H = 9 T 11 a axis, room temperature.

51 51.5
Frequency

Figure 4-4: 170 NMR spectra for SrCuO 2. Solid line: Chain oxygen site, dashed line:

Apical oxygen site. H = 9 T 11 a axis, room temperature.
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Table 4.2: Calculated quadrupole interaction point charge [kHz]

Sr 2 CuO 3  a b c
0(1) chain 52.8 -67.9 15.1
0(2) apical -41.1 23.9 17.2

SrCu0 2 a b c
0(1) chain
0(2) apical

72.8 -9.2
71.9 -161

4.2 Knight shift

The Knight shift reflects the local magnetic susceptibility. The overall results are

shown for Sr 2 CuO 3 170 and 63 Cu (figures 4-5 and 4-6) and for SrCuO 2 
170 and 3Cu

(figures 4-7 and 4-8). As discussed in chapter 2 on NMR measurements, the Knight

shift from the electron spins is proportional to the uniform spin susceptibility (eq.

2.3). The proportionality measures the hyperfine form factor at q = 0, F(q = 0).

Using K-X plot analysis to compare the Knight shift and the bulk magnetic suscep-

tibility [51], the hyperfine form factor is determined (eq. 2.4). For these materials,

since the temperature dependence of the susceptibility and Knight shift are so small,

determining accurate hyperfine interactions is difficult. Covering a wide range of tem-

perature up to as high as 800 K is essential. We present the plots of Knight shift as a

function of bulk susceptibility for Sr 2 Cu0 3 (figures 4-9 and 4-10) and SrCuO 2 (figures

4-11 and 4-12). Even with the difficulty of very small Knight shift changes, the results

for the 170 hyperfine couplings in table 4.3 clearly reflect the crystal structure of the

materials. All of the oxygen sites show the largest hyperfine interaction when the

magnetic field is applied along the Cu-0 bond direction. This reflects the covalent

bonding between the Cu 3d.,2 orbital and the 0 2p, orbital (eq. 3.9). We note that

the uncertainty in the Cu hyperfine couplings is large because of the large changes

in linewidth (figure 4-13) and quadrupole interaction (figure 4-15) in relation to the

total change in the Knight shift over the entire temperature range ~ 10 kHz. We

emphasize that the Knight shift for Cu is calculated using the full Hamiltonian for

nuclear spin I=3/2 to account for the quadrupole shift of the central line. For oxygen,
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Figure 4-5: 10 Knight shift Sr 2 CuO 3 for chain oxygen (filled symbols)
oxygen (open symbols) for a (e), b (0), and c axes (A).

and apical

Table 4.3: Oxygen hyperfine couplings (q=0) [kOe/BI

Sr 2 CuO 3  a b c

0(1) chain 45±30 95±30 44t30
0(2) apical 75+30 23+30 14±30

SrCu0 2 a b c
0(1) chain
0(2) apical

110±30
35±30

142t30
76±30

142±30
3±30

the quadrupole shift of the central line is calculated with second order perturbation

theory. The quadrupole interaction for oxygen is much smaller than that for copper

and temperature independent, so temperature dependence of the quadrupole shift is

not significant.

In addition to the hyperfine couplings, comparison of the bulk susceptibility and

the Knight shift also provides an estimate of Khem. Kchem includes the contributions

to the Knight shift which are not from the spin portion of the susceptibility, but rather

from the diamagnetic, Kdia, and orbital susceptibility, Kob. Estimating Kchem =

Kdia + Kob requires extrapolating the linear fit of Knight shift as a function of spin

63

0 0 C
0 0

A

0I 0E

ppoie.

kA& A
AA

i~J
A

I

I



01

C,

-C,

-E

0
co,
CD

1

0.8

0.6

0.4

0.2

0
0 200 400 600 800

T [K]

Figure 4-6: 63Cu Knight shift Sr 2 CuO 3 for a (e), b (0), and c axes (A).
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Table 4.4: Copper hyperfine couplings at q=0 [kOe/tB]
a b c
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Figure 4-8: "3Cu Knight shift SrCuO 2 for a (0), b (0), and c axes (A).

susceptibility to the zero of spin susceptibility. Essentially, Kchem represents the

Knight shift when the spin susceptibility is zero. This also requires the estimation of

the diamagnetic and orbital contributions to the bulk susceptibility. Motoyama, et al.

[51] estimated the diamagnetic susceptibility as 10.7 x 10-' emu/mole for Sr 2 CuO 3

and 6.6 x 10-, emu/mole for SrCuO 2 and the orbital susceptibility as shown in table

4.5. Using these estimates, the chemical Knight shift, Khem, is also shown in table

4.5. For the oxygen 2- ions, since they have a closed shell configuration, orbital

susceptibility is negligibly small. As a result, the magnitude of Kchem for oxygen is

quite small. For the Cu 2+ ions, there is a hole in the 3d,2_.2 orbital, which causes

significant orbital susceptibility. The symmetry of the Cu 3d,,2_2 orbital is reflected

by a large Kchem in the direction perpendicular to the plane of the Cu-O bonds. The

theoretical expressions are given in equations 3.4 and 3.5. The important result is that

the chemical shift perpendicular to the Cu-O plane is 4 times larger than the chemical

shift in the Cu-O plane assuming the 3dyr,,yz orbitals have the same energy. This is a

reasonable approximation for the CuO octahedra in the high T, cuprates. In these id

materials, the ratio of the chemical shifts for copper is somewhat larger, ~ 7 + 2. The

magnitude of the chemical shifts, K.Lc-o,11 2 = 0.895 and Kllcu-o,u2 = 0.121,0.130,
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Figure 4-9: Knight shift as a function of bulk susceptibility for "70 in Sr 2 CuO 3. Slope
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are smaller than those for related high T, copper-oxides, K1 = 1.28 ± 0.01% and

KII = 0.28 ± 0.01% for YBa 2 Cu3 O7 [39] and Sr 2 CuO 2 Cl 2 . This suggests that the

crystal field energy splitting is larger in these ld copper-oxide materials than in the

2d materials. This is logical because these id compounds have only a CuO4 square

structure with no oxygen nearest neighbor in the z direction. This will more strongly

favor the orbitals along x and y, which increases the crystal field splitting, and makes

E , < Ez,yz. This is exactly what we see experimentally; using < 1/r 3 > = 6 atomic

units[14], we obtain Ex, = 3.9 eV and Ez,y, = 6.7-7.2 eV.

Besides providing information about the structure of the electron orbitals, the

Knight shift can also be compared to theoretical results for the spin susceptibility of

the spin 1/2 1d Heisenberg antiferromagnet. The Knight shift for the chain oxygen

in Sr 2 CuO 3 along the a axis is shown in figure 4-16. The Knight shift has two

main features: first a temperature dependence much weaker than related copper-

oxide materials with higher dimensionality of the spin interactions as described in

this thesis. Second, below 20 K, the Knight shift sharply decreases. Both of these
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Table 4.5: Kchem [%]

Sr 2 CuO 3  a b c
0(1) chain 0.02+0.05 0.05±0.05 0.00t0.05
0(2) apical -0.01+0.05 0.01+0.05 0.02±0.05

Cu 0.036±0.08 0.072+0.08 0.725+0.08
Xorb (Motoyama) 10-5 emu/mole 3.4 3.3 7.2

SrCuO 2 a b c
0(1) chain
0(2) apical

Cu
Xorb (Motoyama) 10" emu/mole

-0.06t0.03
-0.02+0.02
0.895+0.05

7.9

-0.03±0.05
0.00±0.04
0.121±0.05

2.3

0.02+0.05
0.03t0.02
0.130±0.05

2.3

characteristics are expected of a 1 dimensional Heisenberg antiferromagnet. In figure

4-16, the Knight shift is compared to a high temperature analytic calculation for the

spin susceptibility by Takahashi, et al. [47] based on the Bethe ansatz. Agreement is

good with J = 2200 K and the parameters from above, hyperfine coupling 2Ca = 45

k0e/pB, and Ka,chem = 0.024%.

The sharp decrease in the susceptibility of Sr 2 CuO 3 at low temperatures, T < 20

K, can be seen more clearly in figure 4-17. This sharp drop in susceptibility is seen

in the chain oxygen Knight shift for all three crystal axes. It was also seen in the

bulk susceptibility measured by Motoyama et al.[51], but the presence of the large

Curie contribution at low temperature makes quantitative comparison of the bulk

susceptibility difficult. For the copper and apical oxygen NMR, strong line broadening

at low temperatures prevents accurate measurement of the Knight shift (figures 4-

13 and 4-14). A sharp drop in the susceptibility at low temperatures is expected

in theories for the spin 1/2 Id Heisenberg antiferromagnet. This is shown in figure

4-17 by the solid line showing the conformal field theory calculation of Eggert, et al.

[46]. This calculation, in agreement with Bethe ansatz methods, shows a logarithmic

decrease in the susceptibility at low temperatures [46].

1
J7r2 X(T) 1 + 2 (4.2)

2 ln(To/T)
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Figure 4-16: Knight shift of "70 chain site of Sr 2 CuO 3 (M) compared to analytic
calculations of Takahashi, et al. [47] (A) for J = 2200 K, hyperfine coupling 2C = 45
kOe/lB, and Khem = 0.024%.

where To ~ 7.7J from comparison of the field theory and Bethe ansatz calculations.

Strikingly, this form for the susceptibility has the same qualitative features as the

experimental data, a slow decrease of the susceptibility with a steep decline at low

temperatures. However, as can be seen from figure 4-17, this theoretical calculation

deviates markedly from the experimental results below about 25 K. The experimental

results show a steeper decline at higher temperatures than expected. This could

imply that To has been underestimated. Also, the actual material, Sr 2 CuO3 , has

some small inter-chain coupling and long range order occurs at TN ~ 5 K [52]. These

inter-chain interactions may alter the susceptibility close to TN. The effect of the 3d

long range ordering can be clearly seen in the increase of apical oxygen 1/Ti at 4.2 K

(figure 4-17(b)). However, the increase in 1/Ti is only seen at the lowest temperature

point, 4.2 K, and the value of 1/T 1 at 10 K is not significantly higher than the higher

temperature values. This suggests that the decrease in the susceptibility which begins

at about 25 K is truly a 1 dimensional phenomenon and is not caused purely by 3
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dimensional ordering. We should note that this low temperature decrease in the

susceptibility does not occur for SrCuO 2 [51], presumably because the frustrated

interactions between the pairs of chains mask the logarithmic term.

4.3 Oxygen T1 in Sr 2CuO 3

With the spin-lattice relaxation rate, 1/T 1 , we probe the low energy spin fluctuations.

Figure 4-18 clearly shows the striking difference in the temperature dependence of

1/(T1 T) for the two oxygen sites of Sr 2 CuO 3 . The apical oxygen shows 1/(T1 T)

~~ 1/T or nearly constant 1/T 1 . The chain oxygen on the other hand, shows the

strongly increasing temperature dependence 1/(T1 T) oc T. This different tempera-

ture dependence arises because the two oxygen sites measure the spin fluctuations in

different regions of wavevector because of the wavevector dependence of the hyperfine

form factors.

As mentioned in chapter 2, the sensitivity of the iT0 nuclear spin-lattice relaxation

rate, 1/T 1 , to the Cu electron spin fluctuations at a particular wavevector, q, depends

on the geometry of the hyperfine interactions between the electron and nuclear spins.

The two oxygen sites in these materials have very different hyperfine form factors.

Using the hyperfine couplings as shown in figure 4-2, the hyperfine form factors for

Sr 2 CuO 3 are

17 F (q)chain2 1 3 = 2C, cos(q/2) (4.3)

17Fa(q)apical =Ea (4.4)

63 Fa(q) = Aa + 2B cos(q) (4.5)

where the subscript, a, refers to the crystal axis direction. The chain oxygen hyperfine

form factor has an important property, 17F(q = 7r)chain213 = 0. This is important

because in these antiferromagnetic materials, the antiferromagnetic spin fluctuations

(q = ir) will be dominant at low temperatures. This can be seen theoretically by

Monte Carlo results for the spin fluctuations at low energy (w -+ 0) by Starykh, et

al. [45] (figure 4-19). However, there are also low energy spin fluctuations around
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Figure 4-18: 170 1/(T1 T) for Sr 2 CuO 3, a axis. Chain oxygen site (o), Apical oxygen
site (0), Monte Carlo for chain oxygen (A), Monte Carlo for apical oxygen (Ii) [21].
Dotted line shows low T prediction of Sachdev [44] for q ~ 0 (Chain oxygen). Solid
line q = 7r theory of Starykh, et al. [48] (o Apical oxygen) for perpendicular hyperfine
couplings 11.5 kOe/LB.

q = 0. Since the chain oxygen hyperfine form factor is 0 at q = 7r, chain oxygen 1/T 1

is not sensitive to the antiferromagnetic spin fluctuations. Therefore, we get a picture

of the wavevector dependence of the spin fluctuations with apical oxygen and copper

1/T 1 dominated by q = 7r and chain oxygen 1/T 1 reflecting q = 0.

Several theoretical estimates of 170 1/T 1 can be made. Sachdev predicted based

on the quantum critical scaling limit that the susceptibility for wavevectors q near 0,

[44]
c2

X(q, w) = c q2 (4.6)
') 27rh c2q2 - (W + iE)2

where c = 7rJ/(2h) is the spin wave velocity and e is a positive infinitesimal. Using

equation 2.13, we can derive the expression for 1/Ti for q e 0,

(q 0) =E[FT (q) + F12(q)] (4.7)
T, ~h 4rh

76



(a) (b)

% of Max.
100

50

0

T/J=1.0

C.0 13.5 1.0
k/h

4 T

T/J-0.5

0)

0.0

Co

0.0

0.5 1'.0

0.5
k/7&

o.0

% of Max.
100

5

0

3.0

2.0

1.0

0.0.
1.5

1.0

0.5

0.0

1.5

1.0

0.5

0.0
3.0

2.0

1.0

0.0

3.0

2.0

1.0

0.0
0.

% of Max.

I 100

50

0

0 0.5
k/7c

1.0

Figure 4-19: Quantum Monte Carlo results for the S=1/2 Id Heisenberg antiferro-
magnet from Starykh, et al.[45]. (a) The spin excitation spectrum (dynamic spin
structure factor S(q, w) as a function of temperature. (b) The spin structure factor,
S(q, w = 0), as a function of # = J/T. 1/Ti is proportional to S(q, W = 0), weighted
by the hyperfine form factor.

77

-

Ip=4 I
S.

- - -

* -* -

- 3=8-

6P

.0.

a



A
1.5 - R=_O

a R=-0.25
a R=-0.50

AA R=+O.10
A R=+0.25

1.0
7 A

A A

44 A

AA A A A A

0.5 - 0
0 0 0 0 0 0 0

0.0
0.0 0.2 0.4 0.6 0.8 1.0

T/J
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A, (R = B/A). (from Sandvik [21])

This expression for 1/Ti is proportional to temperature, so 1/(T1 T) is predicted

to be a constant. For the hyperfine parameters of Sr 2 CuO 3 , this implies 170 Chain

1/(T1 T)a = 0.029 ± 0.017 sec-'K- 1. This is reasonable agreement with our data at

low temperature, for at 10 K 170 Chain 1/(T1 T) = 0.046 ± 0.02. But the exper-

imental 1/(T1T) increases linearly with temperature, rather than being constant as

predicted. Thus at finite temperatures, 1/(T1 T) increases strongly and is much larger

than Sachdev's low temperature prediction. Sachdev notes that his expression does

not show any damping of the peaks of the susceptibility even at finite temperature

[44]. Corrections to the scaling limit would be expected to produce some damping,

suppressed by powers of T/J [44]. This lack of damping also implies that there is not

any spin diffusion. The increase of 1/(T1 T) suggests that damping and spin diffusion

are important at finite temperatures, even at temperatures as low as T/J ~ 0.005.

Monte Carlo calculations of the spin structure factor, S(q, W = 0), have been done

by Starykh, et al. as shown in the figure 4-19. Results for 1/T 1 are obtained by taking

the summation of these results over wavevector q with the appropriate hyperfine form

factor. The results shown on figure 4-18 are in good agreement for the apical oxygen
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site, but underestimate 1/(T1 T) for the chain oxygen site. Calculating S(q, w = 0) is

difficult for q e 0 in these calculations because a finite number of atomic sites is used

(here, 64) which determines a minimum wavevector value, q = 7/64. The diverging

wavevector dependence as q -+ 0 may not be well represented by the finite wavevector

Monte Carlo data.

For the apical oxygen 1/T1, the hyperfine form factor is uniform over wavevector

and 1/T 1 will be dominated by q = 7r. Theoretically, Sachdev predicted based on

the scaling analysis that 1/T 1 (q = 7r) should be independent of temperature and

that 6 31/T2G OC 1/v 7 [44]. This prediction was refined by Starykh, Singh, and

Sandvik, [55, 48] to include a marginally irrelevant operator. This modification adds

a logarithmic divergence at low temperatures to both 1/T 1 (q = r) and 63 1/T2G. The

full expressions for 1/T 1 and 63 1/T2G are [48]

1 = 25 / 2 2 AF 2 (r)2D sin(27rA)Ii (A) In1/2(To/T) (4.8)
T1 r2 hJ

T2G - r3 /2 (J/h 1/ 2  sin(2wA) 2 (1 - 2A)1 2 (A) In 1/ 2 (To/T) (4.9)

with A = (1/4)[1-21( ]1, Ii(A) = f dx , ,and I22 (A) -4 f0 dx j{-x 4

Comparison with Quantum Monte Carlo results indicated To a 4.5J and D = 0.075.

This theoretical result is shown to follow the apical oxygen 1/T 1 reasonably well in

figure 4-18 with F(r) = 11.5 kOe/P.B. We should note however that the apical oxygen

1/T 1 deviates from this theory with the onset of long range order at - 5 K. Near the

spin ordering temperature, 1/T 1 of the apical oxygen site increases dramatically to

1/T 1 = 21 sec-1 at 4.2 K, compared to only 9.2 sec-1 at 10 K.

4.4 Oxygen T1 in SrCuO 2

The oxygen T1 of SrCuO 2 offers another striking view of the contrast between the

antiferromagnetic susceptibility (q = r) and the susceptibility away from antiferro-

magnetic (q - 0). Because SrCuO 2 has a structure with pairs of chains, the chain
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Table 4.6: 1/T 1 for different crystal axes [sec- 1]

Sr 2 CuO 3  a b c
0(1) chain (150 K) 15.1±0.8 7.5+0.8 17.9±1.9
0(2) apical (150 K) 9.4+0.9 59+2 56+2

SrCuO 2 a b c
0(1) chain (150 K) 92±3 58+2 96±3
0(2) apical (150 K) 63+2 9.0+0.5 67±2

oxygen sites are also "apical" oxygen sites for the other Cu-0 chain of the pair. So,

the chain oxygen site for SrCuO 2 has a different form factor from Sr 2 CuO 3.

17 Fa(q)chainhl2 = 2Ca cos(q/2) + Da (4.10)

The other hyperfine form factors are the same for SrCuO 2 as Sr 2 CuO 3 . The additional

term in the hyperfine form factor arises because the chain oxygen can have a hyperfine

coupling, D, with the neighboring chain. Assuming that the Cu electron spins on the

two chains are uncorrelated, we can ignore the interference of the hyperfine fields.

With this assumption, there are no cross terms between C and D. The chain oxygen

is in an "apical" oxygen position with respect to the neighboring chain. Indeed, we

do find that this symmetry is experimentally true with D ~ E.

In addition to measuring the q = 0 susceptibility of its own chain, the chain

oxygen also sees fluctuations of all wavevectors in the neighboring Cu-0 chain. This

is clearly illustrated in the 171/T 1 data shown in figure 4-21. For each crystal axis,

the chain oxygen and apical oxygen sites have nearly equal 1/T 1 at low temperatures.

At higher temperatures, the chain oxygen site 1/T 1 increases while the apical oxygen

1/T 1 is roughly constant. These results can be simply understood as follows. At low'

temperatures, q = 7r antiferromagnetic excitations are much larger than any q = 0

spin excitations, as indicated by Sr 2CuO 3 above. The fact that 1/Ti is the same for

the apical and chain oxygen sites indicates that the hyperfine interactions follow the

symmetry suggested by the crystal structure. That is, the hyperfine couplings to the

"apical" oxygen sites does not depend on whether that oxygen atom is also in its own
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Cu-O chain (D ~ E). So, because the chain oxygen site is also an "apical" oxygen

for the neighboring chain, the chain oxygen site has the same hyperfine coupling at

q = w as the apical oxygen site. This explains why the two oxygen sites have the

same 1/T 1 at low temperatures.

At high temperatures, 1/Ti of the two oxygen sites have a very different tempera-

ture dependence. The chain site 1/Ti increases, showing the temperature dependence

of the q = 0 spin fluctuations. To a good approximation, the temperature dependence

of the apical 1/T 1 reflects the q = r spin excitations, while the difference between the

chain and apical 1/T 1 reflects the q = 0 spin excitations. Plotted in figure 4-21(d) is

this difference, (chain oxygen 1/T 1 ) minus (apical oxygen 1/T 1 ). This difference is

also shown divided by temperature, 1/(T1 T), in figure 4-22 for comparison with the

figure for Sr 2 CuO 3 (4-18). The q = 0 component of 1/T 1 of SrCuO 2 does not increase

with temperature as much as Sr 2CuO 3 , and the low temperature value at 100 K is

about 3 times larger even though the hyperfine couplings are about the same. While

a linear increase in 1/T 1 was predicted in the scaling limit by Sachdev, the magnitude

of 1/(T1 T) for SrCuO2 is 3 to 7 times larger than the scaling limit prediction. We

will show later that instead diffusive contributions dominate 1/T 1 (q=O) in SrCuO2

at finite temperatures.

Of course, the approximation that apical oxygen 1/T 1 is completely dominated

by the q = ir excitations will not hold at high temperatures. The chain oxygen

1/T 1 clearly shows that q = 0 spin excitations increase strongly with increasing

temperature. At some temperature, q = 0 excitations will be significant in comparison

to q = 7r excitations. At what temperature this occurs depends on the relative

strength of the hyperfine interactions at q = 0 and 7r. In figure 4-20, Monte Carlo

calculations by Sandvik [21] show the clear influence of q = 0 spin excitations and

the dependence on the hyperfine form factor. If the hyperfine form factor includes

only q ~ 7r (R = -0.5), 1/Ti show a logarithmic decrease. On the other hand, if

the hyperfine form factor is significant at q = 0, at high temperatures, 1/Ti strongly

increases with temperature. In figure 4-23, apical oxygen 1/Ti for Sr 2 CuO 3 and

SrCuO 2 are shown along with a fit to the q = 7r theory at low temperatures. Clearly
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at high temperatures, 1/T 1 increases slightly, rather than decreasing as the q = 7r

theory. This can be explained by the importance of q = 0 spin excitations. The

apical oxygen site has no wavevector dependence in the hyperfine form factor, so the

hyperfine coupling to excitations at q = 0 and q = ir are the same. In Sandvik's

notation, this corresponds to R = 0. The Id spin chain Monte Carlo results do show

a similar temperature dependence to the data, suggesting that the increase is due

to the influence of q = 0 fluctuations. Apical oxygen 1/Ti demonstrates that for a

uniform hyperfine interaction, q = 0 excitations are important even at temperatures

as low as T - 0.15J.

4.5 Copper T1 and T2G

Copper 1/T 1 is similar to 1/Ti of the apical oxygen because the hyperfine form factor

will be sensitive to spin fluctuations at both q = 0 and q = ir, but with the additional

complication that O3F(q = 0) $63 F(q = 7r) because of the transferred hyperfine

coupling, B. In figure 4-24, we show the 61Cu 1/T 1 results for Sr 2 CuO 3. 1/T 1 for

copper is nearly constant with temperature, but shows an upturn at low temperatures

(below 100 K) and also increases at higher temperatures for the a and b axes. These

results can be compared to the theory for q = 7r and Monte Carlo results. The

low temperature data (T < 300 K) on 13 Cu 1/T 1 and 1/T2G have been compared

previously by Takigawa, et al. [48] and he showed good agreement. Takigawa, et

al. estimated the hyperfine interaction at q = ir from impurity effects on the copper

lineshape as (62, 73, -220) kOe/PB for the crystal axes a, b, and c respectively, in

Sr 2 CuO 3 for J=2200 K [56]. For the high temperature copper 1/Ti measurements,

for the c axis with slow 1/T 1 , the q = ir temperature dependence is followed even

up to 800 K. On the other hand, for the other two directions, 1/Ti increases at high

temperatures. The same behavior is seen in the SrCuO 2 1/T 1 results (figure 4-26).

As suggested by the Monte Carlo results [21], this indicates that the q = 0 spin

excitations become significant at high temperatures. On the other hand, why the

q = 0 contribution is significant only for the b and c axes is not clear. As shown
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in table 4.4, the q = 0 hyperfine for 3Cu in SrCuO 2 is largest for the b and c axes.

Since 1/Ti measures spin fluctuations for the two perpendicular axes, this suggests

that the a axis 1/T1 should have the largest contribution from q = 0. We do not

understand why this is not the case. One possibility is a dependence of the q = 0

spin diffusion on the magnetic field direction.

6 3 1/T 2 G reflects the q = 7r spin susceptibility at zero frequency, X'(q = 7r, w =

0). Results for Sr 2 CuO 3 and SrCuO 2, respectively, are shown in figures 4-25 and

4-27. From the theory for the q = ir susceptibility by Starykh, et al. [48], 1/T2G is

expected to be oc 1/v-T with the same logarithmic corrections found for 1/T 1 (eq.

4.9). The results for SrCuO 2 and Sr 2 CuO3 are well represented by the q = 7r theory

and by Monte Carlo results using the same hyperfine interaction as used for the 1/T 1

comparison. The q = 7r scaling ansatz of Starykh, et al. [55] quantitatively reproduces

63 1/T 2G because these comparisons do not have any adjustable parameters.

Unfortunately, poor fits of the spin echo decay as a function of T for Sr 2 CuO 3

limited the high temperature range of measurement of 1/T2G. We speculate that this

may be caused by the sample quality. Annealing the sample at high temperatures to

introduce 170 could possibly add excess oxygen or other defects. At low temperatures,

the limit to measuring accurate values of 1/T2G is the rapidly increasing linewidth

with decreasing temperatures. The strength of the spin excitation pulse needs to

cover the entire linewidth, otherwise 1/T2G will be systematically underestimated.

Low temperature (T < 300 K) measurements of 1/T 2G were conducted previously for

Sr 2 CuO 3 by Takigawa, et al. [48]

4.6 Spin diffusion

Since oxygen NMR has revealed the spin fluctuations away from q = 7r, it is natural

to ask what the nature of these spin fluctuations are. We find strong evidence that

the spin fluctuations away from q = 7r are dominated by q = 0 diffusive fluctua-

tions, especially for SrCuO 2. Spin diffusion is based on the argument that at high

temperatures, the modes of the system may be treated as independent, Gaussian
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kOe/pB-
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fluctuations [57, 58]. One result of this is that at infinite temperature, a spin that

obeys a conservation law will have a correlation function with a long time behavior,

[57]

S(t) ~, t-d/2 (4.11)

for dimension, d. In our case, the total component of spin along a particular axis

such as z, E Sz, commutes with the 1-d spin 1/2 Heisenberg Hamiltonian, so it is a

conserved quantity. By taking the Fourier transform of the long time behavior, the

low frequency behavior for diffusive dynamics is

S,(w) W 112 for w -+ 0 (4.12)

This diffusive behavior will only be important at low frequencies (W < J/h). In

addition, in any real material, there may be small interactions which limit the one

dimensional diffusive behavior by violating the above assumptions of conservation of

the total component of spin or the one-dimensional nature of the interactions. These

interactions would include any interchain coupling or anisotropic spin interactions.

As a consequence, below a "cutoff" frequency determined by these interactions, Sz(w)

should become practically frequency independent [59].

The question of whether spin diffusion is expected in the 1-d spin 1/2 Heisenberg

antiferromagnet has been discussed theoretically in several papers [44, 60, 57]. In

general, these papers have suggested that the low frequency dynamics will not follow

the diffusive form. Sachdev [44] indicated that in the low temperature limit, there

was no diffusive dynamics, in fact no frequency dependence at all. This, however,

does not exclude that spin diffusion could occur at finite temperatures. Narozhny

[60] suggested that any spin diffusion in actual materials would be caused by ex-

tra interactions not present in the Heisenberg hamiltonian, such as electron-phonon

interaction.

To test for spin diffusion, we need to measure the frequency dependence of 1/Ti,

or equivalently the magnetic field dependence since w = 7H. For the 1-d antiferro-
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magnet, the spin diffusion component to 1/T1 should be [59, 48]

d [F(q = 0)2 + F(q = 0)2 gBhD8 H (4.13)
T1 dif 2h/2gpLBhDsH

where Ds is the diffusion constant. In figures 4-28 and 4-29, we show the dependence

of 1/T 1 on magnetic field for the oxygen and copper in SrCuO 2 and Sr 2 CuO3 at room

temperature. Clearly the chain oxygen sites which are dominated by q ~ 0 show the

most significant field dependence. We can separate the diffusive and non-diffusive

components of 1/T 1 by fitting the field dependence of 1/T 1 with

(-) = A + B (4.14)

where A represents the non-diffusive component of 1/T 1 and B the diffusive compo-

nent. The results for SrCuO 2 chain - apical oxygen 1/T 1 indicate that the diffusive

component dominates 1/TI(q ~ 0) at least for measurements with H 11 b. The spin

diffusion constant, D, is estimated as D11 2 = 7 x 1015 - 8 x 10" sec- 1. The field

dependence results for Sr 2 CuO 3 have larger uncertainty. For Sr 2 CuO 3 chain oxygen,

the non-diffusive and diffusive components are roughly equal at room temperature

and D 2 1 3 ~ 3 x 10"- sec- 1. These values for D fall within the range estimated by

Takigawa based on Cu NMR in Sr 2 CuO 3 at 280 K, D = 1 x 1016 - 4 x 1017 [48].

These values for the spin diffusion constant are ~ two orders of magnitude larger

than the high temperature limit for Ds in the classical 1-d Heisenberg antiferromag-

net, Ds = (J/h)V/27rS(S+ 1)/3 = 3.6 x 1014 sec-' [59]. We should note that this

formula was found to be of the correct order of magnitude (within - 50%) for a spin

5/2 1-d chain at T/J = 300/6.5 = 46 [59]. It is perhaps not surprising that the

spin diffusion constant is much higher than the high temperature limit. The diffu-

sion constant would be expected to increase strongly with decreasing temperature.

Ds oc 1 + C2 (J/kBT) at high temperatures [59, 44]. Experimentally, an increasing

diffusion constant with decreasing temperature has been measured in a spin 1 ld

antiferromagnet [61].
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From the 1/T 1 data on Sr 2 CuO 3 , it is evident that there is little or no diffusive

behavior at low temperatures, as predicted by Sachdev. However, 1/T 1 deviates from

the prediction beginning even at the lowest temperatures measured. In addition,

presuming that the T 2 temperature dependence of 171/T 1 for the chain oxygen site of

Sr 2 CuO 3 is dominated by diffusive contributions, this indicates that the spin diffusion

constant is roughly Ds - 1/T 2 . In contrast, the '7 1/T 1 for SrCuO 2 would indicate a

spin diffusion constant with little temperature dependence. This difference between

the two materials may be caused by the frustrated interchain interactions in SrCuO 2

which may affect the spin diffusion.

4.7 id summary

Using 170 NMR, we can probe the q ~ 0 low energy spin fluctuations in these nearly

ideal 1-d spin 1/2 Heisenberg antiferromagnetic materials. In Sr 2 CuO 3 , 1/T 1 (q ~

0) oc aT + bT 2 from 10 K up to 700 K. This striking temperature dependence is

different from theoretical predictions, probably because of the significance of the

diffusive component to T 1. This leads to the speculation that D oc 1/T 2 . 171/T 1 of

SrCuO 2 shows the w-1 12 frequency dependence characteristic of spin diffusion. The

spin diffusion constant is estimated to be rougly two orders of magnitude larger at

room temperature (T/J ~ 0.13J) than the high temperature value for the classical

Id spin chain.

We have extended measurements of 13Cu 1/Ti up to 800 K. For the magnetic field

applied perpendicular to the Cu-0 squares (long T1), the results follow the theoretical

prediction for q = 7r. For the other two directions, which have much shorter T1

values, 1/Ti increases above room temperature, indicating the importance of q = 0

contributions at high temperatures.

Comparison of the results between SrCuO 2 and Sr 2 CuO 3 show that SrCuO2, even

though it has two copper-oxide chains physically close together, has similar low energy

spin fluctuations to the single chain of Sr 2CuO 3. The uniform susceptibility differs

only at very low temperatures (T < 15 K), where Sr 2CuO 3 Knight shift and x[ 5 1]
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chains in SrCuO 2 , the two Cu-O chains in SrCuO 2 act as independent id chains at

high temperatures.
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Chapter 5

2 dimensional S=1/2 Heisenberg

Antiferromagnet

The discovery of high T, superconductivity in hole-doped CuO 2 planes has focused

strong interest on the spin S = 1/2 two-dimensional (2d) Heisenberg antiferromag-

net, H = J E Si - Sj where J(~ 1500 K) is the exchange interaction [62, 3]. The

fact that the CuO 2 planes of high T, superconductors are nearly ideal 2d Heisenberg

antiferromagnets has suggested that the magnetism may be connected to the mech-

anism for high T, superconductivity. Supporting this idea is the high energy of the

exchange interaction, J ~ 1500 K, which could provide the energy necessary to sup-

port superconductivity at such high temperatures (-~ 100 K). As a result, there has

been significant theoretical and experimental effort to understand the two-dimensional

magnetism. Perhaps with an understanding of how the undoped antiferromagnetic

insulators behave, this can lead to the discovery of how superconductivity occurs in

these materials when doped holes are introduced.

In this chapter, some recent theoretical work on the S=1/2 2d Heisenberg antifer-

romagnet is reviewed. 13,1 5Cu and 170 NMR and NQR experiments on the undoped

2d copper oxide material, Sr 2 CuO 2 Cl2 , are described [63]. We demonstrate that 170

NMR measures the spin wave damping in the undoped antiferromagnet for short wave-

lengths. The spin wave damping is small even at temperatures as high as T = 0.4J,

well above TN. This clarifies one of the unique properties of these 2d copper-oxide
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antiferromagnetic materials: there is a wide temperature range where short range

spin excitations exist with long lifetimes, without long range 3-dimensional order.

Finally, the magnetic properties of the undoped material are compared to previous

results for doped samples.

5.1 Theoretical Studies

Because of the discovery of high T, superconductivity in CuO 2 planes, new theoretical

work has been done on the 2 dimensional spin S=1/2 Heisenberg antiferrromagnetic

model,

Wf = ES, -S' (5.1)
i~j

where nearest neighbor spins, S,, interact isotropically on a 2 dimensional square

lattice.

The dimensionality of the magnetic interactions has a strong influence on the

spin ordering of the material. The Hohenberg-Mermin-Wagner theorem [64] showed

that in 2 dimensions, long range order will not occur at any finite temperature in

a Heisenberg system. In actual materials, even a very small coupling in the third

dimension will drive 3d long range order when the 2 dimensional correlations become

long enough. Three dimensional ordering will occur at a temperature, TN, roughly

when the two dimensional spin correlation length, , satisfies [65]

kBTN _ jc2(N0 /S) 2  (5.2)

where Jc is the exchange coupling between the 2d CuO 2 planes and (No/S) is the

reduction of the T = 0 staggered moment by the 2d quantum fluctuations.

The 2 dimensional spin 1/2 Heisenberg model on a square lattice has been studied

by numerous techniques including: spin wave theory [66], quantum nonlinear o model

[65], quantum Monte Carlo [67], high temperature expansion [68]. Here, the quantum

nonlinear -model will be discussed. The results for this model and the other methods

will be compared with the experimental data when appropriate.
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5.1.1 Quantum nonlinear a- model

Chakravarty, Halperin, and Nelson (CHN) proposed a continuum field theory de-

scribed by creating a quantum mechanical generalization of the classical nonlinear

- model [65]. This quantum nonlinear o model is expected to have the same low

energy, long wavelength behavior as the quantum Heisenberg model. The model is

characterized by two independent parameters, such as the spin stiffness, ps, and the

uniform susceptibility perpendicular to the direction of the local staggered magneti-

zation, XI. Since this is a continuum model, the exchange interaction J is replaced

by the spin stiffness, ps oc J, of the continuous spin structure. The spin wave velocity,

c, is related to the spin stiffness, 2 wps oc (hc/a).

Even though this system is disordered at all finite temperatures in 2 dimensions,

they identify three regions in the phase diagram (figure 5-1) which are characterized

by the behavior of the correlation length as a function of temperature. The phase

diagram is given as a function of the dimensionless coupling constant, g = go/ge,

and the temperature scale, i = kBT/(27rpos). The dimensionless coupling constant, ,

depends only the dimensionality and spin S of the system. The critical coupling con-

stant, gC, defines the zero-temperature transition between the ordered and disordered

states. As a result, for g > 1 the T = 0 state is quantum disordered, while for 9 < 1

the T = 0 state is ordered. The temperature scale is defined by the unrenormalized

spin stiffness, 27rps, which is 21rJS 2 [65] for the limit of large spin S.

The three regions of the phase diagram are the quantum disordered region, the

renormalized classical region, and the quantum critical region which separates them.

These different regions arise from the approach to different T = 0 ground states and

have very different behaviors of the spin correlation length, .

The quantum disordered region is dominated by the approach to the quantum

disordered ground state with a finite energy gap. The quantum disordered ground

state will have a finite correlation length. In the quantum disordered region (g > 1 +),

the temperature dependence of the correlation length is expected to be weak. This is

characteristic of a gap in the excitation spectrum, and CHN suggest the possibility
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Figure 5-1: Phase diagram for the quantum nonlinear a- model by Chakravarty,
Halperin, and Nelson [65].

of a gap A/~ - 1 for #j> 1 [65].

The renormalized classical region is where the approach to the ordered ground

state is dominant. In the renormalized classical regime (y < 1 + i), the correlation

length diverges exponentially with lowering temperature [65, 69, 70]

e hc 2_s_ T
= hexp I - T + O(T2) (5.3)8 27rps (T ) 47rpsI

This region of the phase diagram is called renormalized classical because this expo-

nential dependence of the correlation length is also the expectation for a classical

model. The quantum effects are contained in the altered (renormalized) values of the

spin stiffness, ps = 0.18J, and spin wave velocity, c = V/ZcJa/h where Z, = 1.18

[68].

Between the quantum disordered and renormalized classical regions is the quantum

critical region where the system behavior is dominated by the quantum critical point

at g = 1. In the central quantum critical region (1 + t > go > 1 - t), asymptotically
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as T -+ 0, [71, 65]

g hc (5.4)
kBT

where Co is a constant of order unity. The experimental consequences of this quantum

critical region have been theoretically studied extensively by Chubukov, Sachdev, and

Ye [71].

Chakravarty, Halperin, and Nelson argue that the CuO 2 planes have a coupling

weaker than the critical coupling, g < 1 [65]. Their argument is based on the idea

that if the CuO2 planes had a quantum disordered ground state, a large interlayer

coupling, J', would be necessary to account for the 0.5pB staggered magnetization

seen at low temperatures [72]. Thus, the non-linear o- model predicts a temperature

dependence of the spin correlation length for the undoped CuO 2 plane corresponding

to line (1) on figure 5-1, quantum critical at high temperatures, and renormalized

classical at lower temperatures.

5.1.2 Classical-based models

Another approach to the Heisenberg antiferromagnet model is to start with the clas-

sical spin model and then to attempt to put in the effects of quantum fluctuations.

As mentioned above, the classical spin model for the 2d square lattice Heisenberg an-

tiferromagnet has an exponential temperature dependence of the correlation length

[65] just as in the renormalized classical regime of Chakravarty, Halperin, and Nelson.

T 2reT
= 0.0125- e2 ./T 1 - bi + O(T2) (5.5)

27rpel I 27rpelI

The spin stiffness, p.t = J, for classical unit vector spins. For large spin S, the

classical limit is approached smoothly when the temperature is measured in units of

JS(S+ 1) [6, 3]. This suggests that for finite spin S, pcI should be taken as JS(S+ 1)

[6]. The result is that for S=1/2, the classical temperature scale, 27rpeI = 4.7J,

while the renormalized classical result is 27rps = 1.13J. This large difference in ps

distinguishes the classical and renormalized classical behaviors, especially since ps
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determines the exponential temperature dependence.

Cuccoli et al. [73] proposed a model by which they attempt to correct the clas-

sical model for quantum fluctuations. Their approach is called the purely quantum

self-consistent harmonic approximation, and they renormalize the temperature scale

of the quantum expression for the correlation length in order to account for quantum

fluctuations. Since the temperature scale is set by the spin stiffness, Pdj, renormal-

ization of the temperature scale amounts to a renormalization of the spin stiffness.

This approach is naturally most appropriate when the quantum corrections are less

important. In fact, this approach gives results for the correlation length that are very

similar (< 20% different) to the renormalized classical model for the high tempera-

ture region ( r 2 to 15). This indicates that the crossover from the low temperature

renormalized classical regime of Chakravarty, Halperin, and Nelson to a high tem-

perature regime is smooth. In addition, this implies that the renormalized classical

results for the correlation length are reasonable even when the correlation length is

as small as ~- 2.

5.2 Crystal structure of Sr 2 CuO 2 Cl 2

For the study of the undoped CuO2 plane, the material Sr 2 CuO 2 Cl2 has several

advantages over other undoped high T, materials. First, this material has been seen

in previous experiments to be a very ideal realization of a two-dimensional S=1/2

Heisenberg antiferromagnet. The three dimensional spin ordering temperature, TNd-

257 K [74], is low relative to the strong exchange interaction, J = 1450 K [75].

Neutron scattering results on Sr 2 CuO 2Cl 2 showed that the magnetic anisotropy is

very weak (Je/J~' 10-4 [5]) so that the isotropic 2D Heisenberg behavior is robust

even down to ~ 280 K [5, 74]. The spin correlation length, 6, was found to agree

quantitatively with the prediction of the renormalized classical regime of the non-

linear sigma model over the temperature range T = 275 up to 600 K, (( ~ 6 to 200)

for J= 1450 K [5].

For our NMR and NQR measurements, Sr 2 CuO 2 Cl 2 has the additional advantage
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of having only one copper atomic site and one oxygen atomic site, which precludes any

possibility of superposition of the resonance lines. The structure of Sr 2 CuO 2 Cl2 as

shown in figure 5-2 is like that of the prototypical superconductor, La 2 CuO 4 , but with

Cl instead of 0 in the apical positions above and below the Cu atoms. In addition,

unlike La 2 CuO 4 , Sr 2 CuO 2 Cl2 does not have a structural phase transition to the low-

temperature orthorhombic phase, so the crystal structure is tetragonal down to the

lowest temperatures measured (T < 10 K) [72]. The lack of the tetragonal distortion

prevents the Dzyaloshinski-Moriya spin interaction which disturbs the Heisenberg

state in La 2 CuO 4 [3]. However, Sr 2 CuO 2 Cl 2 is very difficult to dope. Superconducting

samples of Ca 2 -,NaCuO 2 Cl 2 (T, < 28 K) have been made only using high pressure

synthesis [76]. This is a benefit for the experiments on the undoped compound because

of the reduced risk of unwanted doping. Excess oxygen doping is known to alter the

NMR properties of La 2CuO 4 with as little as 0.035 excess oxygen [7]. On the other

hand, because of the difficulty of doping Sr 2CuO 2 Cl 2 , the doped experiments we use

for comparison were conducted on (La,Sr) 2CuO 4 [7].

5.2.1 Sr 2CuO 2C 2 sample preparation

The powder sample of Sr 2 CuO 2Cl 2 was prepared by solid state synthesis from SrCO 3

(99.999%), CuO (99.995%), and SrCl2 (grade 1 Johnson-Matthey), based on a sug-

gested recipe of F.C. Chou. First, the SrCO3 and CuO were ground together with

mortar and pestle and pre-reacted at 800 C for 24 hours. Then, the SrCl 2 was ground

in after being dried at 110 C to remove any water. This mixture was baked at 700 C

for about 48 hours. The sample was completed with two repetitions of grinding and

baking at 900 C. The samples for 170 NMR were annealed at 900 C in 1702 gas for

one to three days.

The single crystal samples of Sr 2CuO2 Cl2 were prepared at MIT by Young Lee

by the melt-growth method in a Pt crucible. He made them by slow cooling from

the liquid and mechanically removing the crystals that formed on the surface of the

melt. Some experiments used powder samples that were uniaxially aligned along the

c axis in epoxy (Stycast 1266). Applying a high magnetic field (9 T) while the epoxy
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Figure 5-2: Crystal structure for Sr 2 CuO 2 Cl2 (2d square lattice). (from Miller, et
al. [77])

dries aligns the crystallites of the powder along the c axis because of the larger bulk

susceptibility for field applied along the c axis. Since Stycast is not stable above ~500

K, some measurements were also performed for powder loosely aligned by shaking it

in high magnetic field.

The sample quality was checked with x-ray scattering to determine the crystal

structure and by 35C1 NMR and susceptibility to determine the N6el temperature,

TN, for 3 dimensional magnetic ordering. We determined the bulk N~el temperature

as Td = 257 K, in agreement with Suh, et al.[74]. The 35 C1 NMR linewidth and

relaxation rate, 1/T 1 , show clear signs of the 3d ordering transition (figure 5-3). The
35 C1 linewidth is broadened in the magnetically ordered state by the static hyperfine

field of the electron spins. The spin-lattice relaxation rate, 3 5 1/T 1 , shows a sharp

increase at the Neel temperature caused by the slow spin fluctuations in the nearly

ordered state. Note that in the figure the applied magnetic field of 9 Tesla shifts the

N~el temperature up to 266±4 K, as also seen by Suh, et al. [74]. The interaction

of the applied magnetic field with the electron spins provides a small anisotropic
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Figure 5-3: (a) 35 C1 NMR central transition (-1/2, +1/2) linewidth, (b) 3 1C1 NMR
1/T 1 (H = 9 T) for Sr 2 CuO 2 Cl2 . Line is a guide for the eye.

interaction, < 6 K ~ 4 x 10- 3J, which can cause 3 dimensional ordering at a slightly

higher temperature.

5.2.2 NMR/NQR lineshapes

The '3, 65Cu NMR and NQR lineshapes are shown in figures 5-4 and 5-5. The NQR

frequency of "3Cu is 26.55 MHz at 500 K. From high field NMR, we found that the

electric field gradient is axially symmetric about the c axis (r = 0) as expected from

the symmetry of the crystal structure around the Cu site. The 170 NMR lineshape
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is shown in figure 5-6. In this case, the crystal structure is not axially symmetric

around the oxygen site. The quadrupole interactions are (±841, T5 7 7, -F264) kHz

for the Cu-0 bond direction, the direction with H.ICu-0 bond in the ab plane, and

the c axis, respectively (rq = 0.37).

These values for the quadrupole frequencies of "3Cu and 170 compare well with the

expectations for undoped CuO 2 planes with one hole in the Cu 3d,,2_2 orbital. Point

charge calculations for the electric field gradient at the oxygen site yield quadrupole

interactions of (1 - 7)(-5 9 .2 , 38.6, 20.6) kHz for the Cu-0 bond direction, the di-

rection with HICu-0 bond in the ab plane, and the c axis, respectively. These

calculations provide the correct symmetry of the quadrupole interactions and imply a

value for the Sternheimer antishielding factor (1 - 7) of ~ 14. A value of 10 was pre-

viously estimated for the doped compound YBa 2Cu 3 O7 by Takigawa, et al. [41]. The

quadrupole interaction allows us to distinguish the two crystal axes in the ab plane.

The quadrupole interaction is much larger along the Cu-0 bond direction than for

the direction perpendicular to the Cu-0 bond in the ab plane. This is simply because

of the electric field gradient produced at the oxygen atom by the nearest neighbor

copper 2+ ions.

5.3 Knight shift

The Knight shift was measured for both 63Cu (figure 5-8) and 170 NMR (figure 5-7).

As discussed in the chapter 2, Knight shift measures the local uniform spin suscep-

tibility, X'(q=O). Since Sr 2 CuO 2 Cl 2 has the basic CuO 2 square lattice structure, the

hyperfine form factors for Sr 2 CuO 2 Cl 2 are those discussed in the NMR chapter.

63F(q) = A, + 2B[cos(q,) + cos(qy)] (5.6)

17F(q) = 2C, cos(qc-obond/2) (5.7)
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Figure 5-6: 170 NMR lineshape for Sr 2 CuO 2 Cl2 at 290 K. H = 9 T c, aligned
powder sample.

where the subscript a refers to the axis of the applied magnetic field.

_Aa + 4B,
6 3 K - A= 4 X'(q = 0) +63 Ka,chem (5.8)

_2Ca

17K a = X'(q = 0) +17 Ka,chem (5.9)

63,1 7Ka,chem is the temperature independent chemical shift. In order to determine the

chemical shifts, we need to know the magnitude of the spin susceptibility. To establish

the magnitude of the spin susceptibility, we use a value for 17Kb,0 d = 0.04% found

for YBa 2Cu3O6 .6 3 [78]. In order to determine the other chemical shifts, we compare

the Knight shifts for the other axes with the Knight shift for the Cu-O bond axis and

extrapolate to 17Kband = 0.04% as shown in figure 5-9. The results are summarized

in table 5.3 and compared with other results for another 2d copper-oxide material,

YBa 2Cu 3 0 6+ [79]. The oxygen chemical shift values are all small as expected from

the closed shell electron configuration of the oxygen 2- ions. Notably, the chemical

shift of the Cu-O bond direction and the perpendicular direction in the ab plane are
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Figure 5-7: 170 Knight shift for Sr 2 CuO 2 Cl2 . c c axis, E 11 to Cu-O bond, O I to
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Table 5.1: Oxygen hyperfine coupling at q=0, (2C) [kOe/pn]

Oxygen Cu-O bond I Cu-O bond c
Sr 2 CuO 2 Cl 2  166±14 106±22 80±8

YBa 2 Cu3 0 6± [79] 158 98 90

close. The large difference in the Knight shift for these directions (see figure 5-7) is

primarily from the difference in the local spin susceptibility.

The hyperfine parameters can be estimated by applying standard K-X plot anal-

ysis (figure 5-10) [11] to Sr 2 CuO 2 Cl2 . The Knight shift and bulk susceptibility are

plotted with the temperature as an implicit parameter. The hyperfine interaction

determines the slope of the linear relation between the spin susceptibility and the

Knight shift. The hyperfine parameters are summarized in tables 5.1 and 5.2 along

with comparisons to other high T, copper oxides [79, 39].

The Knight shift and bulk susceptibility results can be compared to various theo-

retical results. In figure 5-11, theoretical spin susceptibility results are shown for the

2d spin 1/2 Heisenberg model calculated by spin wave expansion [66], high tempera-

ture expansion [68], Monte Carlo [81], and renormalized classical [65]. The theoret-
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Table 5.2: Copper hyperfine couplings [kOe/AB]

ab c
Sr 2 CuO 2 C 2 (q=O) = A, + 4B 180±32 65+16
Sr 2 CuO 2 Cl2 (q=7r) =A, - 4B -112±10 -250±20

La 2 CuO 4 (q=7r) [7] -120±10 -300±20
YBa 2 Cu 307_5 (q=7r) [80] -129 -335

Aab Ac B
Sr 2 CuO 2 C 2

YBa 2 Cu 307_J [80]
34
38

-92
-167

Table 5.3: Chemical Knight shifts [%]

i-1~~ I-~ 1~

38
42

Oxygen Cu-u ond -L Cu-U Dond c
Sr 2 CuO 2 Cl 2  0.04 -0.02±0.04 -0.01±0.07

Sr 2 CuO 2 Cl 2 matched 0.015 -0.035+0.04 -0.02+0.07
YBa 2 Cu3 0 6+x [79] 0.08 0.03 -0.008

Cu ab c
Sr 2 CuO 2 Cl2

YBa 2 Cu3O7 [39]
0.27±0.02

0.28
1.47±0.07

1.28
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ical results are in agreement that at high temperatures the susceptibility follows a

Curie-Weiss-like temperature dependence. As the temperature decreases and antifer-

romagnetic spin correlations increase, the spin susceptibility is suppressed. The peak

in the spin susceptibility occurs at around J. For Sr 2 CuO 2 Cl 2 , we have data over a

wide temperature range from the Neel temperature, 257 K to 800 K (T/J = 0.18 to

0.55 for J = 1450 [75]). Over this temperature region, the spin susceptibility is linear

with temperature with the expectation that the slope decreases at higher tempera-

tures. Figure 5-12 shows the spin susceptibility as measured by bulk susceptibility,

and oxygen and copper Knight shift using the orbital Knight shifts and hyperfine

couplings determined above. For comparison, the theoretical Monte Carlo result of

Makivic and Ding [81] is shown. The slope of the theoretical results is the same, but

they are about 1 x 10- cm 3/mole larger in magnitude. This is not surprising because

this amount of change in the magnitude would correspond to a small overestimate of

Kchem. In figure 5-12 and table 5.3, we show that a small adjustment of Kchem that is

well within error can match the theoretical spin susceptibility. If we choose '7K bond

= 0.015 % instead of 0.04 %, the theoretical and experimental spin susceptibilities

match. Thus, the uniform susceptibility of Sr 2 CuO 2 Cl 2 fits the expectation for the

spin 1/2 2d Heisenberg antiferromagnet for a wide temperature range, 276 K to 800

K (T/J = 0.19 to 0.55).

Because Knight shift is a measure of the local susceptibility (the susceptibility at

the nucleus position), the Knight shift can provide additional information about the

local electronic structure. Figure 5-7 shows the oxygen Knight shift of Sr 2 CuO 2 Cl2

as a function of the direction of the applied magnetic field. The most striking fact is

that the Knight shift for the applied field along the Cu-O bond is much larger than

for the other two crystal axes. The Knight shift of the other two crystal axes is very

similar. It should be noted that the Cu-O bond direction can be distinguished from

the orthogonal direction in the ab plane by the quadrupole interactions.

The reason why the Knight shift is larger with the magnetic field along the Cu-O

bond is based on the theory of Abragam and Pryce [33, 40] and has been discussed

by Takigawa, et al. [41] for the specific case of these copper oxides. A larger Knight
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shift in the Cu-O bond direction gives support to the idea that the copper and oxygen

atoms bond by the hybridization of the Cu 3d,2y2 orbital with the oxygen 2p,

orbital. The hybridization results in some spin transfer into the oxygen 2p, orbital,

which points along the Cu-O bond. A spin in a p, orbital gives an axial Knight shift,

2A (- < Sx >, - < Sy >, 2 < S, >) where A = B<r 3 >[40, 41]. < r - 3 > is

the average of r- 3 over the p orbital. A, = 91k Oe/B using < r-3 >= 3.63 atomic

units which is 70% of the free oxygen 2p value [82, 41]. This gives us an estimate of

the hyperfine interaction expected from an electron spin in the oxygen 2p orbital.

Since the hyperfine interactions have been measured, we can estimate the amount

of spin transferred to the oxygen 2p orbital. However, there is one obvious difference

between the measured hyperfine interactions and the predicted values for a p orbital.

For the p orbital, the hyperfine interactions are traceless, that is the sum over all

three crystal axes equals zero. The measured hyperfine interactions are all positive.

So far, we have not mentioned any effect of the s oxygen orbitals on the hyperfine

interactions. In fact, the s orbitals can have a large contribution to the hyperfine

interactions because they have a finite probability for the electron to be at the position

of the nucleus (eq. 3.10). For oxygen, Hisi - 4000 kOe/PB using an estimate for

the probability of the electron being at the nucleus, R ,(0) of 7.5 [40]. Any unpaired

electron spin in the 2s orbital has an almost 50 times larger effect than in the 2p

orbital, 91 kOe/PB. The s orbitals have isotropic spacial structure, so their hyperfine

interactions will also be isotropic. This suggests a way to separate the effect of s and

p orbitals on the hyperfine interactions: the s interactions are isotropic, while the p

interactions have no isotropic component. So, we separate the hyperfine interactions,

1
Ciso = - [Cond + C + Cc] (5.10)

3

CaXi = - [Oond - (C + Cc) (5.11)3 2

For Sr 2 CuO 2 Cl2 , we get C, 0 = 59 kOe/PB and Caxi = 12 kOe/pUB. The isotropic

hyperfine interaction implies f~ 1.5% of the total unpaired electron spin in the

oxygen 2s orbital, or a tiny -- 0.03% in the is orbital. On the other hand, the axial
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hyperfine interaction requires a significant amount of the unpaired spin to reside in

the oxygen 2p, orbital, f. ~ 13%. These values are larger than estimates from other

fluoride antiferromagnets, such as KNiF 3 (fs ~- 0.5%, f. - 3.5%) [33, 34], reflecting

a larger hybridization with the oxygen 2p orbital.

These oxygen Knight shift results confirm that the copper 3d,2-2 orbital is

strongly hybridized with the oxygen 2p, orbital. As a result, a large amount of the

unpaired electron spin of Sr 2 CuO 2Cl 2 actually resides on the oxygen orbital. This

accounts for the very large exchange interaction J = 1450 K between the Cu electron

spins because the spins from nearest neighbor Cu atoms are hybridizing with the same

oxygen 2p, orbital. To be specific, Owen and Thornley [40] derived an expression for

J based on P. Anderson's superexchange model [32].

J = f 2 4(Ed E) 2  (5.12)

where Ed and Ep are the energies of the Cu 3d and 0 2p orbitals and U is the

Coulomb repulsion energy, the energy required to put two holes on the same Cu ion.

As a rough quantitative estimate, if we take (Ed - Ep) = 3 eV and U = 3 eV [83]

and insert f, = 0.13, then J = 0.2 eV = 2350 K. This is a reasonable estimate in

comparison to the measured J = 1450 K for this simple model of J. Qualitatively,

in order to both hybridize with the same orbital, the two spins must have opposite

spins because of the Pauli exclusion principle. As a result, the Cu nearest neighbor

spins are strongly antiferromagnetically coupled.

5.4 Copper 1/Ti and 1/T2G

The relaxation rates for copper, 63 1/T 1 and 63 1/T2G, both reflect the spin correlation

length. Qualitatively, both increase strongly with lowering temperature (figure 5-13),

which corresponds to the increase in the correlation length. Very thorough 6 3 Cu NMR

experiments have been previously done on La 2 CuO 4 by Imai, et al. [7, 26], so we can

compare the results for Sr 2 CuO 2 Cl 2 and La 2 CuO 4. In addition, we can compare the
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Figure 5-13: 631/T 1 (., right axis) and 6 3 1/T2G (0, left axis) for Sr 2 CuO 2 Cl 2.

results with the expectations from the renormalized classical regime of the quantum

non-linear a model discussed above and other theoretical results.

For the renormalized classical regime of the non-linear a model, the exponential

temperature dependence of the spin correlation length directly results in a primarily

exponential temperature dependence of 1/T 1 [84] and 1/T2G [26, 69].

1 1 0.8 T 23/2 1r 2

T1 Ti.o a Ze 2,7rps 1 + T / 2,rps

1 F(q = 7r) 2 \Frh (5.14)
T10 h2 (V14

where 27rps = 1.13J, Z, = 1.18 [68]. For 1/T2G [28]

(I-G)F q[x F F(q(q)( F(q)2x'(q (5.15)

For the renormalized classical regime, X'(q) is expressed as [69]

x'(q) = x'(q = 7r)f((q - 7r)() (5.16)
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, Bs~2 No2
X (q = Br) =2O (5.17)kBT[(2 ps/T) + 1]2

1+ !Bf ln(1 + X2)f(X) 2 (5.18)1 + x 2

where Bs ~ 90 [85], Bf = (47r/Bs), and No ~ 0.3. The important thing to note is

that both 1/T 1 and 1/T 2G are proportional to the correlation length, . To the lowest

order in T/27rps, the temperature dependencies are

1
oc T3/ 2 exp(27rps/T) (5.19)

oc T exp(27rps/T) (5.20)
T2G

To test whether this exponential dependence with inverse temperature is true, 1/(T1

T3/2 ) and 1/(T2G T) are plotted as a function of inverse temperature in figure 5-14.

On the logarithmic scale, we expect linear behavior with the slope equal to 27rps.

The renormalized classical behavior is only expected to be valid for T/27rps < 0.5

[65]. Indeed, the experimental results do show this renormalized classical behavior

with J = 27rps/1.13 = 1450 K and we obtained hyperfine couplings Fab(q = 7r) =

Aab - 4B = -112 ± 10 kOe/PB and Fe(q = 7r) = A, - 4B = -250 ± 20 kOe/ pB.

These results are very similar to those found for La 2 CuO 4 [7, 26]. Figures 5-

15 and 5-16 show the comparison between Sr 2 CuO2 Cl 2 and La 2 CuO 4 for 1/T 1 and

1/T2G. In order to directly compare the materials, we must consider the difference

in the magnitude of J. J of La 2 CuO 4 has been found to be slightly larger, J2 1 4 =

1530 [20], than Sr 2 CuO 2 Cl 2 (J2 1 2 2 = 1450 [75]). The temperature scale is set by

J. In addition, both 1/T 1 and 1/T 2G are oc 1/J as can be seen for the renormalized

classical expressions above. So, we graph J/T1 and J/T2G because these values will be

independent of J. There is also the possibility that the hyperfine couplings of the two

materials may be different. For 1/T1, the temperature dependence and magnitude

are very similar for the two materials. This implies that the hyperfine coupling along

the ab axes are similar for the two materials. Indeed, the fits to the renormalized

classical form yield Fab(q = 7r) = -120 t 10 kOe/pB for La 2 CuO 4 , in comparison to
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spin wave theory for 1/T 1 described in the text (eq.5.22).

-112±10 kOe/AB for Sr 2CuO 2 Cl2. (I should note that this value for La 2CuO 4 differs

from the value, -139±10 kOe/pB given in Imai, et al. [7] because of the use here of the

new calculation of the correlation length [70] and J = 1530 rather than J = 1590.)

For 1/T2G, the two materials do not have the same magnitude, suggesting that the

hyperfine couplings along the c axis are different by ~ 20% (Fc,214(q = 7r) = -300± 20

kOe/AB, Fc,2122 (q = 7r) = -250 ± 20). These results are summarized in table 5.2

along with a comparison to another 2d material, YBa 2 Cu3 0; [80]. The agreement

between the results for Sr 2 CuO2 Cl 2 and La 2 CuO 4 assures us that the behavior of 1/Ti

and 1/T2G is characteristic of the Cu-O planes, and is not specific to any particular

material.

One curious fact about this analysis of 1/Ti and 1/T2G based on the renormalized

classical regime is that the renormalized classical fit to 1/T2G is reasonable over the

entire temperature range (400 to 800 K). On the other hand, 1/Ti clearly deviates

at high temperatures. In fact, 1/Ti at high temperatures is constant (figure 5-13). A

very likely reason for the high temperature behavior of 1/Ti is the importance of spin

excitations for q # 7r as discussed by Sokol, Gagliano, and Bacci [86]. The renormal-
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ized classical regime of the non-linear o model just considers q ~~ ir. As discussed in

the previous chapter on id Heisenberg antiferromagnets, at high temperatures, spin

excitations at other wavevectors besides ir become important. Qualitatively, theo-

retical results show (figure 5-17) that there will be some region of weak temperature

dependence for 1/T 1. At low temperatures, 1/Ti rapidly decreases with temperature.

High temperature expansion [68] predicts an increasing 1/T 1 with temperature. In

between we may expect a region of weak temperature dependence. Indeed, Sokol,

Gagliano, and Bacci [86] calculated the contribution to 1/Ti from q ~~ 0 excitations

and showed that the total temperature dependence of 1/T 1 is expected to be weak

(figure 5-18). Such a weak temperature dependence seems to depend on the wavevec-

tor dependence of the hyperfine form factor. Monte Carlo results by Sandvik [67]

indicate that a form factor that is constant over wavevector produces an increasing

1/T1 at high temperatures (left graph of figure 5-19), while including the significant

transferred hyperfine interaction of the Cu site suppresses the temperature depen-

dence of 1/Ti (right graph of figure 5-19). However, this explanation depends on the

details of the hyperfine interaction which does not seem to account for why 1/Ti is

constant over such a wide range of temperature for various copper-oxide materials.
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ized Classical [65], Dashed line - Quantum Critical [71], Dotted line - high tempera-
ture expansion [68], 0 Quantum Monte Carlo [67]. (J = 1450, Fb(q = ir) = -112
kOe/uB).

Constant 3Cu 1/T 1 at high temperatures also occurs for the 3-leg ladder Sr 2 Cu 30 5 ,

and also hole-doped materials such as doped 2-leg ladders and 2d La 2-,SrCuO 4 .

Another explanation offered for constant 631/T 1 is the existence of the quantum

critical region in the non-linear o- model [71]. As seen in figure 5-17, this region would

be expected to have a constant 1/T 1 . However, the quantum critical region is also

predicted to have 1/T dependence in 1/T2G [71, 67]. For 1/T2G, we find that the

renormalized classical prediction fits well over the entire temperature range (figure

5-20). In contrast, the temperature dependence of the quantum critical prediction is

too weak. Hence, it is not clear that any temperature region exists in the spin 1/2

2d Heisenberg antiferromagnet that corresponds to the quantum critical region of the

non-linear - model.
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Figure 5-19: Quantum Monte Carlo results from Sandvik and Scalapino [67]. Left
graph shows results for a hyperfine form factor with constant wavevector dependence
(dots). Right graph shows the results for hyperfine ratio A/B = 0.84 (solid dots).
Open symbols are experimental data [7].
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Figure 5-20: 63 1/T 2G for Sr 2 CuO 2 Cl 2 (o). Theoretical results: Solid line - Renormal-
ized Classical [65], Dashed line - Quantum Critical [71], L Quantum Monte Carlo
[67]. (J = 1450, Fc(q = 7r) = -250 kOe/pB).

To summarize the results on 6 3Cu NQR/NMR, 63 1/T 1 and 6 31/T2G of Sr 2 CuO 2 Cl 2

have good agreement with the expectations of the renormalized classical regime of

the non-linear - model at low temperatures. The behavior for Sr 2 CuO 2Cl2 is the

same as for the prototypical undoped copper-oxide material, La 2 CuO 4 . This provides

confidence that the low energy spin excitations around q = ir in these copper-oxide

materials are well-described.

5.5 Oxygen 1/Ti

170 1/(T1 T) is shown in figure 5-21. Most notably, the temperature dependence

of the oxygen spin-lattice relaxation is completely different from that of copper. As

discussed in the previous section, because of the critical slowing down of the long

wavelength, antiferromagnetic spin fluctuations at q ~ Q, 63 1/T for the undoped

2d Heisenberg antiferromagnet diverges exponentially toward T = 0 (= Td) fol-

lowing 631/T 1 e T .5 exp(1.13J/T) [7, 84]. On the other hand, the oxygen atom
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Figure 5-21: 7 1/(T1 T) for Sr 2 CuO 2 Cl2 , HI|c (.). Theoretical results: Solid line -
low T expansion [87], Dashed line - high T expansion [68], L Quantum Monte Carlo
[67].

sits in between two copper atoms which results in a hyperfine form factor, 17F(q) =

2C cos(q,/2). Since 17F(q = Q) = 0, 171/T1 is insensitive to the long wavelength criti-

cal dynamics around q = Q[17], and senses the short wavelength mode (1/s < q < Q)

of S = 1/2 Cu spin fluctuations. This can be seen theoretically by comparing the

expectations from Quantum Monte Carlo [67] for the contributions to 13"7 1/T 1 as a

function of wavevector (figures 5-22 and 5-23).

According to the renormalization group analysis, the elementary excitations at

short wavelengths in 2d Heisenberg antiferromagnets are spin waves with asymptotic

freedom[65, 88]. This property allowed Chakravarty, Kopietz et al. to use a spin wave

expansion to calculate 171/T1 at TN <T < J as [89, 87

17 -- 2rC2a (T) [1±+ C() (T) + O(T2)] (5.21)
T1 3h2C hC * 27r p,
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Figure 5-22: Quantum Monte Carlo results [67] showing (a) w -+ 0 spin susceptibility
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(a)x(b) Contribution to 1/Ti for "3Cu (solid line) and 17O (dashed line). Contribution
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Figure 5-23: Monte Carlo results for the spin structure factor combined with the
oxygen form factor, S(0) cos2 (q,/2) Oc 171/T 1 [67]. Note that qy has been summed
over in order to show the contributions from the whole 2 dimensional Brillouin zone
in this plot.

where c = V/2ZcJa/h is the spin wave velocity with Ze ~ 1.18, and CO2) ~ -1.88

[87]. This theoretical prediction is shown in figure 5-21 (solid line) together with

a high temperature expansion (dashed line) by Singh and Gelfand [68] and Monte

Carlo results (open squares) by Sandvik and Scalapino [67]. These parameter-free

theoretical predictions agree well with our data.

Our results of 17 1/T 1 indicate that free spin waves are indeed a good description

of the quasi-particle excitations at short wavelengths even at T > Tkd. Even without

long range order, the short wavelength excitations can be described as free spin waves

because of the significant short range order in the 2d Heisenberg antiferromagnet.

Using the results for 171/T 1, we can deduce the effective thermal damping F of the

spin waves at finite temperatures from 171/T 1 as follows. For damped spin waves, we

can express X"(q, w) as,

x'(q, w) = x'(q) wF (q) + wP(q) (5.22)
( P - w(q))2 + IP(q)2 (w + u)(q))2 + IP(q)2

where w(q) = 2JZ f/l - (cos(q,) + cos(qy)) 2 /4 is the spin wave dispersion (> W),

and 1(q) represents the spin wave damping[20, 90, 69, 91]. The spin wave dispersion

and damping for the 2d spin 1/2 Heisenberg antiferromagnet is shown in figure 5-24
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as calculated by Makivid and Jarrell based on quantum Monte Carlo. For the q-

dependence of X'(q), an isotropic spin wave calculation provides an analytical form

[85],
+ 2( 1 + 4(2[ 8 ] 7X '(q ) = C 1 + 4 2(5 .2 3 )1+262(2 + cos(q.) + cos(qy))

The normalization C is determined by using the results for the uniform susceptibility,

X'(q = 0), in figure 5-12. We should note that near q = 7r, both this form for X'(q)

and the renormalized classical form have the same Lorentzian q dependence.

Then the only unknown parameter in eq. 5.22 is 1(q). However, Monte Carlo

results by Makivic and Jarrell (figure 5-24) and analytic results by Kopietz indicate

that 1(q) shows little dependence on the wave vector q in most of the Brillouin zone

except near q = 0 and Q [90, 87]. Therefore, we let r(q) = r be independent of q

except for the regions near q = 0 and Q, and consider P as the wave vector averaged

damping at short wavelengths. The q-dependence of 1(q) used for the calculation is

shown schematically in figure 5-25. Near q = Q where the dynamical scaling form of

the damping -y(q) [69] satisfies -y(q) < F, we let r(q) = -y(q).

Y(x) = (5.24)
[1 + O ln(1 + (X)2)] 3/2

where the scaling variable x = (q - Q)6 and the parameters Ia = 0.85 and 0 = 0.23

[90]. This guarantees that the same form of X"(q, w) used to fit 171/T 1 reproduces

the low temperature behavior (T < J) of 31/T 1 as shown in figure 5-15, consistent

with the earlier finding for La 2 CuO 4 [7].

The other unusual region is for q ; 0. In the limit of q = 0, eq.5.22 is not valid,

instead we expect a diffusive contribution, 17 1/T1,diff Oc (1/D(T)) ln(1/wn) [89]. How-

ever, Chakravarty et al. predicted that this contribution is small because the diffusion

constant D(T) diverges exponentially at low temperatures[65]. Experimentally, the

value of 171/T 1 for both Sr 2 CuO 2 Cl2 and La 2-. SrCuO4 (x = 0.035) at room tem-

perature was the same at 14.1 Tesla (w, = 81.4 MHz), and 9 Tesla (w, = 52.0 MHz),

indicating no diffusive enhancement at 9 Tesla. Therefore, for the region near q = 0,

we neglect the contribution from q < 1/6. Monte Carlo calculations by Sandvik and
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Figure 5-24: Quantum Monte Carlo results for spin-wave
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wave energies shown by solid line.

125

2.5

2. .0

rIZ4

size 84X64
T=0.35
'o e(k)-
x 7(k)
03 EXP

x

xx

),Xw/, / OW, x x ~ ~x X

0,0 7!r/2,7r/2 ir,0 0.0

1.5

1.0

0.5

0.0

CD
E

C:wU

0



Scalapino[67] indicate that this contribution is < 25% at T = 0.5J and decreases

with lowering temperature (< 10% at T = 0.4J). Including this contribution would

lower our calculated value of the damping I" by the amount of the contribution (but

within the error bars).

The fact that q = 0 diffusive contributions do not dominate oxygen 1/T 1 in 2d is

one clear difference between the low energy spin excitations of the 2 dimensional and

1 dimensional Heisenberg antiferromagnets. For the id magnetism discussed in the

previous chapter, we found that q = 0 diffusive behavior was significant for oxygen

1/Ti. Here, in 2 dimensions, we find that q = 0 is at most a minor contribution, and

the short wavelength region in between q = 0 and q = ?r is significant because of the

greater phase space available in the 2 dimensional area of the wavevector space. This

contrast between 2d and id can be seen graphically in the comparison of the Monte

Carlo results of Sandvik, et al. (figure 5-23 2d and figure 4-19 1d) [67, 21].

Essentially, we are measuring the damping r by the fact that the size of the tail

of X"(q, w) at w = w, ~ 0 is determined by the energy width r. This is illustrated in

figure 5-26. In the short wavelength region, the peak of X" (q, w) is at high energies.

1/Ti measures the contribution at very low energies (- 10-4 K), so a large width

F provides more contribution at low energy. The energy width, F, increases the

low energy contributions by broadening the peak of X"(q, w). The contribution to

17 1/(T1T) is oc 1 for the short wavelength region. We note that the deviation of

X"(q, w) from the Lorentzian form of eq.5.22 can change our estimate of the magnitude

of F, but this does not affect the conclusions. For example, using a squared Lorentzian

form for X"(q, w) barely changes the half-width F of X"(q, w) derived from 170 for T >

500 K, though the derived F increases up to a factor - 3 at the lowest temperatures.

We plot the temperature dependence of F deduced from eq. 5.22 in Fig. 5-27.

We emphasize two key findings. First, the damping r is smaller than the highest

excitation energy w(q) ~ 0.3 eV[20] of the short wavelength magnons in the entire

temperature range we studied. This observation establishes that magnons are well

defined (long lifetime) elementary excitations for short wavelengths even in the para-

magnetic state up to T ~ 0.4J in S=1/2 2d quantum Heisenberg antiferromagnets.
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Figure 5-26: Solid line marks the peak of spin wave energy spectrum for wavevector q
= (q,q). Dashed line shows the w dependence of the dynamic susceptibility X" (q, w)
with width F' = 80 meV for q = (37r/4,37r/4) (The zero of dynamic susceptibility is
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Figure 5-27: Spin wave damping, F, for Sr 2 CuO 2 Cl2 estimated from 171/T 1 (e). Solid
line - low temperature expansion [87], 0 Monte Carlo [90].

Second, the value of F is in good agreement with theoretical predictions based on

low temperature analytic calculations, hF-~ 3J(T/J)3 , and high temperature Monte

Carlo simulations [87, 90].

We should mention that in addition to the damping, F, changing as a function of

temperature, the peak of the magnon dispersion, w(q), may also change with temper-

ature. Our calculations kept the peak of the magnon dispersion fixed as a function

of temperature. A second note about these results is that since 1/Ti measures the

low energy excitations, we are measuring the damping F as seen from the low energy

side of the magnon dispersion. Thus, our results do not exclude the possibility of a

"spinon" continuum on the higher energy side of w(q) (as is seen for example, in 1

dimension, figure 4-19).
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5.6 Doped CuO2 planes

Next, we would like to address another fundamental question; how do the elementary

excitations evolve when we dope holes into the CuO2 planes and transform the system

to metallic behavior? Figures 5-28[7] and 5-29 show the doping dependence of copper

and oxygen 1/T 1 . Cu 631/T 1 is dominated by the long-wavelength spin fluctuations

around q = Q. Cu 63 1/T 1 increases at low temperatures from the critical slowing

down of the spin fluctuations with short range ordering. This behavior persists even

for doping levels where superconductivity occurs (x = 0.075, T, = 23 K). Also notable

is the fact that the high temperature constant 63 1/T 1 is independent of doping within

~12%.

171/T 1 is better suited to probing the excitations of the doped materials, because
170 NMR may be sensitive to the electron-hole pair excitations at the Fermi surface,

while 6 31/T 1 is dominated by the divergently large, long-wavelength collective spin

dynamics at q ~ Q. The measurements of 17 1/(TT) in hole-doped La 2-xSr CuO4

(x = 0.025 and 0.035) [93] were conducted by A.W. Hunt and T. Imai, and are
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Figure 5-30: Inverse of spin correlation length, -', for lightly doped La2-.SrxCuO 4
measured by neutron scattering (Keimer, et al.) [92].

compared with the results of undoped Sr 2CuO 2Cl2 in figure 5-29. At these doping

levels, previous studies established that the resisitivity is linear in temperature down

to Toc(< 300 K)[94, 92], where holes begin to localize, followed by the spin-glass

transition at Tg (a 10 K)[95, 96]. We identified T10c as ~ 250 K from the onset of

the dramatic increase of 17 1/T1,Ape, at the apical oxygen sites. At Tg, '71/T1 ,Apex

diverged (see Fig. 5-29 for the results observed for x=0.035). In what follows, we

will focus our attention on the temperature dependence of 17 1/(T 1T) at the planar

site above T10c, where carriers are mobile and resistivity is roughly proportional to

temperature.

The temperature dependence of 171/(T1T) is surprisingly similar for the undoped

and lightly hole-doped samples, but with a weakly temperature dependent increase

of '7 1/(TT) for the doped samples. We estimate this increase as 17 1/(TlT)eh =

0.05 - 0.065 sec- 1K-1 and 0.06 ~, 0.085 sec- 1K-1 for x=0.025 and 0.035, respec-

tively. It is also interesting to recall that Reven et al. observed 171/(T 1T) ~ 0.4

sec-1 K- 1 at T < 300K in optimally doped La1 .8 5 Sro.15 CuO 4 [97]. The increase in
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spin wave excitations as a function of wavevector q. Energy scale is in units of the
exchange interaction, J. (calculation for part a by Allen Hunt.)

171/(T1T) appears to be proportional to the amount of hole-doping x. Angle resolved

photo emission experiments for undoped Sr 2CuO 2 Cl 2 by Wells et al. show that the

highest occupied band is peaked at q = (t'r/2a, ±ir/2a) = Q/2 with a bandwidth

(2.2 ± 0.5) J[98]. Therefore, the simplest interpretation is that the electron-hole pair

(Stoner) excitations with wave vectors, (0,0), (±r/a, 0), (0, t7r/a), (±7r/a, tir/a),

connecting the hole pockets at Q/2 give rise to an additional contribution to 171/(TT)

without changing the spin wave contribution. However, our calculations (see figure

5-31) based on the rigid band picture showed that the Stoner continuum is very close

to the spin wave dispersion over most of the Brillouin zone except near q = (±r/a, 0)

and (0, ±7r/a) because the width of the spin wave dispersion f 2.36J is within exper-

imental error equal to the bandwidth, (2.2 ± 0.5)J. The conventional wisdom for the

spin waves in metals is that the electron-hole pair excitations damp the spin waves

if the dispersion of the spin wave merges into the Stoner continuum[99]. This sug-

gests that the magnons and the electron-hole pair excitations will interact strongly,

perhaps resulting in complete renormalization of the damping, F(q). We note that

the temperature T and doping x dependence of 17 1/(TT) is quite similar to that of

1/ (T, x) observed by Keimer et al.[92] (figure 5-30). Knowing that 171/(TT) oc F,

comparison of figures 5-29 and 5-30 suggests the speculation that the renormalized

quasi-particle damping, F(T, x), is related to (T, x) as L'(T, x) oc c/(T, x).
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5.7 2d summary

To summarize, we deduced the effective damping F of the short wavelength magnons

of the S = 1/2 2d Heisenberg antiferromagnet in a broad range of temperature

(0.2 < T/J < 0.5), contrary to the prevailing perception in the community that P

was not measurable with current technology [3]. Our results establish the temperature

dependence of the spin wave damping. These experiments demonstrate an interesting

property of the 2d Heisenberg antiferromagnet: there is significant short range order

without long range order. The short wavelength spin waves are very weakly damped

over a wide temperature range even though there is not long range order.

The low energy excitations in the hole-doped, weakly-metallic CuO 2 planes show

a similar temperature dependence to the undoped sample, but with a weakly tem-

perature dependent increase from the addition of electron-hole pair excitations. We

suggest that the spin waves may interact strongly with electron-hole pair excitations.
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Chapter 6

2-leg Spin Ladders

Spin ladders consist of several 1 dimensional chains with antiferromagnetic exchange

interaction, Ji1 ~ 1500 K, coupled by an interchain antiferromagnetic exchange inter-

action, J1 , as shown in figure 6-1, forming a structure that is in between the single

1 dimensional chain and a 2 dimensional plane. However, because of the quantum

nature of the spins, the magnetic properties of spin ladders do not vary continuously

between 1-d and 2-d. Instead, as predicted by Haldane [100], the properties of spin

1/2 spin ladders depend on whether the number of coupled chains (legs of the ladder)

is even or odd. For an even number of coupled chains, the ground state is a many-

body singlet state [101, 102, 36]. This many-body singlet state has been theoretically

described as a resonance valence bond (RVB) state [101]. The spin singlet formation

of the resonance valence bond state was originally proposed for T, superconductors

by P. Anderson [103, 104]. Studying the effect of doping on the spin singlet state in

the two-leg ladder may indicate whether this mechanism is also involved in the doped

2d materials. The origin of the singlet state in the two-leg ladder is clear in the strong

coupling limit where J1 > J11. In this case, the two spins S=1/2 coupled on each

rung of the ladder will form a singlet ground state. Above this ground state, the

excitation spectrum is gapped. Perhaps surprisingly, the singlet ground state with an

energy gap still persists even with Ji1 ;> J [36, 105, 30]. For the two-leg spin ladder,

the minimum of the energy gap, the spin gap A is -- 0.5J1, and is at the antiferro-

magnetic wavevector, q = (7r, 7r) (see figures 6-2 and 6-3) [101, 105]. In contrast, for
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Figure 6-1: Structure of Cu-0 layer for 2 leg ladder materials. The two oxygen sites
are labeled: 0(1) ladder site, and 0(2) rung site. Hyperfine couplings between the
Cu electron spin and the oxygen nuclear spin are marked.

E

continuum of two-magnon states

3 one-magnon branches

-2A

0 (c)

0 k

Figure 6-2: Qualitative picture of magnon dispersion of the 2 leg ladder for J11 = J.
Note spin gap A at q = wr. (from Troyer, Tsunetsugu, and Wurtz [105])

an odd number of coupled chains, there is no spin excitation energy gap. Thus, spin

ladders with even or odd numbers of legs have different magnetic properties. Besides

the study of these quantum magnetic properties, interest in the two-leg spin ladder

has increased with the discovery of superconductivity at 12 K under high pressure in

hole-doped A14Cu 240 41 [106].

In this chapter, NMR/NQR experiments on undoped and doped two-leg S=1/2

spin ladder materials, SrCu 2 0 3 and A14 Cu 240 4 1 (A = La,Sr,Ca), are described. Pre-

vious Cu NMR and NQR measurements have been reported for SrCu 2 0 3 [108] and

A14Cu 240 41 [109, 110, 111, 112, 113]. However, because the spin gap A is generally

> 300 K for these materials, the earlier experiments mostly probed the properties

in the low temperature limit below the spin gap temperature. Estimates of the spin
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Figure 6-3: Dynamical spin structure factor, S(q, w), for the undoped 2 leg ladder.
Note that the lowest energy excitations are at q = (7r, 7r) with energy ~- 0.5J. (Calcu-
lated for a 10 rung ladder using Lanczos diagonalization in Troyer, Tsunetsugu, and
Rice [101].)

gap A were obtained from fitting the NMR results to exponential activated behavior,

exp(-A/kBT). However, the resulting estimates of the spin gap, A, differed by 50%

between susceptibility and 1/Ti measurements [108]. Experiments to clearly show

the crossover from the low temperature spin-gapped regime to the high temperature

regime were needed.

Reported here are the first 170 NMR results as well as 6 3Cu NMR/NQR not only

in the gapped low temperature regime, but also in the high temperature paramagnetic

regime. We can demonstrate the crossover in spin dynamics from temperatures below

the spin gap to temperatures above the spin gap. Comparison of Cu and 0 NMR

results provides wave vector dependent information about spin excitations. Oxygen

NMR can also allow us to estimate JI/J11. In the doped two-leg ladder materials,

A14 Cu 24 041, the crossover of the spin excitations from the spin gapped regime to the

paramagnetic regime is accompanied by changes in the charge properties.
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6.1 Structure & Experimental Details

For the experiments on undoped 2-leg ladder, we used a polycrystalline sample of

SrCu 2O 3 that was prepared using high pressure synthesis at Kyoto University. The

structure of SrCu 2 0 3 is shown in figure 6-4. This material has stacked Cu 20 3 two-leg

ladder layers separated by Sr ions. Even though SrCu 2 0 3 is an ideal 2-leg ladder,

hole-doping this material is very difficult.

To look at the properties of two-leg ladders as a function of hole doping, the

A 14 Cu 240 41 material was used which has a much more complicated structure. For-

tunately, the physical properties of undoped Cu 2 0 3 layers in La6 Ca8 Cu 2 4 0 41 are

virtually identical with those of SrCu 2O 3 as we demonstrate below. The A1 4 Cu 2 40 4 1

material was studied with several different combinations, A1 4 = La 6 Ca8 , Sr 1 4 , Srl1 Ca3 ,

and Sr 6 Ca8 . La 6 Ca8 Cu 2 4 0 4 1 is an undoped material, with a nominal copper valence

of 2+. Because the A14Cu 240 41 material has both a Cu 20 3 two-leg ladder layer and

a CuO 2 chain layer (figure 6-5), the doped holes could reside in either layer. The

amount of doping (PL) in the two-leg ladder layer of this material has been studied

by optical conductivity [114] with estimates for Sr 1 4 Cu 24 0 4 1 (PL 0.06 per ladder

Cu site), Sr11Ca 3 Cu 24 0 4 1 (PL ~ 0.12), and Sr 6Ca8 Cu 24 0 4 1 (PL ~ 0.17) at 300 K.

Since the expected valence of Sr (2+) and Ca (2+) are the same, substituting Ca for

Sr does not change the total number of holes in the material. However, the smaller

ionic radius of Ca causes the lattice parameters to decrease with Ca doping [115]

which transfers some of the holes to the ladder layer.

Single crystal samples of La6 Ca8 Cu 2 4 0 41 and Sr 1 4 Cu 2 4 0 4 1 were grown at MIT

by Dr. F.C. Chou using the floating zone technique. For Srj 1Ca 3Cu 2 4 0 41 and

Sr 6 Ca8 Cu 2 4 0 4 1 , polycrystalline powder samples were uniaxially aligned in epoxy along,

the b axis by K.M. Shen. As shown in figure 6-5, A14 Cu 24 0 4 1 has two copper-oxide

layers, a Cu 2 O3 two-leg ladder layer and a CuO 2 chain layer. Because NMR/NQR is

a local probe, we can separately detect the NMR signal from the ladder and chain

Cu sites and the 0(1) ladder and 0(2) rung sites, as shown in figure 6-1, and from

the additional oxygen site in the CuO 2 chain layer [112]. To illustrate the different
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Figure 6-4: Crystal structure of SrCu2 03. Cu-O layers with the 2-leg ladder structure
are separated by Sr layers.

NMR/NQR signals from different crystal sites, figures 6-6 and 6-7 show examples

of Cu and 0 NMR lineshapes for A1 4 Cu2 4 0 4 1 and figure 6-8 shows the 3Cu NQR

lineshape for SrCu 20 3. The samples of A14 Cu 2 4 0 4 1 were enriched with 170 isotope

by annealing in 1702 gas at 900'C. Most of the NMR experiments were done in 7 or

9 T magnetic field. Many of the experiments on A 14 Cu 2 4 0 4 1 were conducted by Kyle

Shen for his undergraduate thesis and also by Prof. Takashi Imai [107].

6.2 Knight shift

In figure 6-9, the 170 Knight shift for the A14 Cu24 0 41 materials is presented. The

Knight shift is a local probe of the uniform susceptibility, XL, of the Cu 20 3 ladder

layer, while bulk susceptibility measurements are dominated by the CuO 2 chain layer

because of the order of magnitude smaller J of the chains. A prediction for the

uniform susceptibility of the undoped two-leg ladder was made by Troyer, et al. [101]

XL(T)Oc exp (B) (6.1)
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ladder Cu2 0 3 and chain CuO 2 layers separated by Sr layers. (b) CuO 2 chain layer.

(c) Cu2 0 3 2-leg ladder layer.
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Figure 6-9: 170(2) rung site Knight shift for undoped La 6 Ca8 Cu 2 4 0 4 1 [o], and
Sr 14 Cu 24 0 41 [A] and Srj 1 Ca 3 Cu 24 0 41 [P].

This expression fits the Knight shift data well and results in AX = 510 t 40 K. This

value of AX is somewhat larger than AX = 420 K deduced by Azuma et al. [29] for

SrCu 2 O 3 from a bulk susceptibility measurement.

For the doped materials, the Knight shift increases strongly with temperature for

lower temperatures, and has a change in the slope of the temperature dependence at

higher temperatures. This change in the temperature dependence casts doubt on the

validity of a fit based on Troyer's expression for the undoped ladder. Still, we can

identify the onset of the saturating tendency of 17K(1, 2)* as the spin gap Ax. The

result is AX = 325 t 25 K for Sr 14 Cu 2 4 0 4 1 and AX = 225 ± 25 K for Srl 1Ca 3Cu 2 4 0 4 1 .

We will present additional evidence for a magnetic crossover at AX from 1/T 1 .

For Sr 6 Ca8 Cu 2 4 0 4 1 , accurate Knight shift data is not available because of broader

170 linewidths at lower temperatures. In addition, 63 Cu NMR in Sr 6 Ca8 Cu 2 4 0 41 has

a decrease in measured intensity around 50 K, which makes measurement difficult.

This is perhaps a result of the fact that Sr 6 Ca8 Cu 2 4 0 4 1 is on the border between

insulating and metallic behavior [115]. This may cause slow charge fluctuations from

hole movement at low temperatures.
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In addition to information about the susceptibility, comparing Oxygen Knight

shift for the two oxygen sites, we can estimate the ratio of JI/J11. Because the su-

perexchange interaction between the Cu electron spins is mediated through the bond-

ing oxygen atom, the amount of spin transfer to the oxygen orbital is related to the

strength of the superexchange. From equation 5.12 [40] J = 4f2(Ed - Ep) 2 /U, where

f, is the fraction of unpaired spin density of the Oxygen ligand orbital along the ex-

change path. As noted in equation 2.3, 17KPi" is proportional to the oxygen hyperfine

coupling. The oxygen hyperfine coupling, in units of kOe/PB, represents the magnetic

field at the nucleus that results when there is one electron spin, AB, of bulk spin sus-

ceptibility (see app. C). The size of the oxygen hyperfine coupling is determined by

the distance, r, of the unpaired electrons that account for the bulk spin susceptibility

from the oxygen nucleus, because the dipole interaction oc 1/r 3 (eq. 3.7). Unpaired

electrons that are located in the oxygen orbitals will provide the dominant contribu-

tion to the oxygen hyperfine coupling. Thus, the oxygen hyperfine coupling is propor-

tional to the amount of unpaired spin density residing in the oxygen orbital, f,. So,

the unpaired spin density in the oxygen orbital, f,, is proportional to the oxygen spin

Knight shift, 17 KsPin. Because the spin contribution to the Knight shift has the only

significant temperature dependence, we can find the ratio of the spin contributions

to the Knight shift as the ratio of the temperature dependence of the Knight shift for

corresponding crystal axes, 17 K(2)sPin/17K(1)sPin = d17K(2)a/d17 K(1)c. The Knight

shift along the Cu-O-Cu bond direction is chosen because it is the largest and should

be the direction most strongly affected by transferred spin. The experimental result,

d17K(2)a/d 17K(1)c ~ 0.7, for both La6Ca8 Cu 24 0 41 and Sr 14 Cu2 4 0 4 1 (figure 6-11),

implies that JI/J [f,(2)/fa(1)]2 ~ (0.7)2 - 0.5 in both undoped and hole-doped

ladders. Comparison with the results for the square-lattice system, Sr 2 CuO 2 Cl2 , pro-

vides an estimate of the magnitude, J1 = 950 ± 300 K. To my knowledge, this was

the first microscopic measurement of J 1,± in the undoped Cu 2 03 two-leg ladder. The

result is consistent with neutron scattering results JI/J 11 -- 0.5 and J± ~ 57 - 72 meV

~ 660 - 840 K [116, 117] and also consistent with calculations based on local density

approximation [118].
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6.3 T 1 & T2G

In figure 6-10 the temperature dependence of the spin-lattice relaxation rates, 63 1/T 1 ,

are shown for the undoped two-leg ladder materials, SrCu 2 0 3 and La6 Ca8 Cu 2 4 0 4 1 .

Both materials show quantitatively similar gapped behavior of 131/T 1 at low temper-

atures. The magnitude of 1/Ti is the same. The figure (6-10) is shown with the scale

for SrCu 20 3 multiplied by 1.5 to account for the difference between 1/T 1,c(NMR)

and 1/T 1 (NQR). For SrCu2 0 3 , 1/T 1 (NQR) = 1.5+0.1 1/T 1,c(NMR) for the mea-

sured 7 = 0.68 and anisotropy of T 1, (1/T1,ab) / (1/T 1 ,c) = 3.8+0.2. The relationship

between 1/Ti from NMR and NQR for SrCu 2 0 3 was confirmed experimentally with'

1/T 1 (NQR) = 1.59±0.06 1/T,c(NMR). The small peak in 1/Ti for La 6 Ca8 Cu 2 4 0 4 1

at low temperatures is caused by magnetic ordering in the chain layer at 12.2 K [119].

1/T 1 measures spin excitations which are suppressed at low temperatures be-

cause of the energy gap, A, above the ground state. At low temperatures, 1/Ti

for copper shows the expected exponentially activated temperature dependence ~
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exp(-A/kBT). There is a clear crossover in the Cu T1 to a high temperature regime

with 631/T 1 oc T above 425 K. For both materials, we therefore estimate a spin gap

from this crossover AT, = 425 ± 25, in good agreement with Ax = 420 K deduced

by Azuma et al. [29] for SrCu2 0 3 from a bulk susceptibility measurement. For

La 6 Ca8 Cu 2 4 0 4 1 , this is in reasonable agreement with the Ax = 510 ± 40 K from the

Knight shift.

In figure 6-12(a), the results of 631/T 1 are shown for the ladder site of the undoped

and doped A14 Cu 240 41 materials. Clearly, the spin gap A decreases with increasing

doping. In addition, a dramatic crossover occurs from the low temperature gapped

regime to the high temperature paramagnetic regime. From the crossover temperature

of T 1, the spin gap is estimated as AT, = 325 t 25, 225 ± 25, and 160 t 25 K

for Sr 14 Cu 2 4 0 4 1 , Srj 1 Ca 3 Cu 24 0 41 , and Sr 6 Ca 8 Cu 24 0 41 , respectively, in comparison to

425 ± 25 K for the undoped La 6 Ca8 Cu 2 4 0 41 and SrCu 2 0 3.

These results for the magnitude of the spin gap are in good agreement with recent

neutron scattering measurements for the undoped two-leg ladders, A = 33 meV (380

K) for SrCu2 O 3 [120] and 35 meV (406 K) for La 6 Ca8 Cu 24 0 41 [117]. However, there

is one obvious discrepancy between neutron and NMR results. Neutron measure-

ments on doped samples [120, 116, 121] have indicated that the spin gap energy stays

constant with doping even up to Sr 2 .5Caj. 5 Cu 2 4 0 4 1 [121], rather than decreasing as

clearly demonstrated by NMR. This discrepancy can be understood as arising from

the difference in what is actually measured by neutron scattering and NMR, as dis-

cussed by Azuma et al.. The NMR/NQR relaxation rate 1/T 1 measures low energy

spin fluctuations (w ~ 10- K), while the neutron scattering measurements detect

the peak of the density of states for spin excitations at the spin gap energy, A ~ 425

K. Therefore, NMR 1/Ti is sensitive to any transfer of spin excitations from above

the spin gap to lower energies, but in neutron scattering, lower energy excitations are

masked by large elastic scattering backgrounds. So, the neutron scattering and NMR

results are consistent if hole doping transfers density of states from the peak at the

spin gap to lower energies. In fact, this is exactly what Azuma et al. [120] found in

their neutron studies of Zn doped SrCu2 0 3, that the density of states at the peak
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at the spin gap energy decreases with Zn doping, and presumably these excitations

are occuring at lower energies instead as suggested by NMR. An additional difference

between the neutron and NMR measurements is that the neutron measurements are

typically done at very low temperatures where the doped holes may be immobile or

microscopically segregated.

By comparing 170 1/T 1 with 61Cu 1/Ti, we can obtain information about the

wavevector dependence of the spin excitations. This relys on the fact that the form

factors for the Cu and 0 site are significantly different. The important difference is

whether the nuclei are sensitive to the antiferromagnetic fluctuations with wavevector

q ~ (7r, 7r). As shown in figure 6-1, since the oxygen atoms sit in between two copper

atoms, they are not sensitive to antiferromagnetic fluctuations in that direction. To

be more quantitative, the form factors will be

6 3 Fa(q) = Ac (6.2)

0(1)1 7F(q) = 2CQ cos( ) + D, (6.3)
2

0(2) 17F,(q) = 2F,,cos( ) (6.4)

where A, is the onsite hyperfine interaction for Cu, and small supertransferred hy-

perfine fields, B, have been neglected for simplicity. For the 0(1) leg site, it has a

nearest neighbor copper atom in the neighboring 2-leg ladder which contributes the

D terms to the hyperfine form factor. In the above expression for the 0(1) form

factor, we have assumed that the spin fluctuations of neighboring 2-leg ladders are

not correlated, so there is no interference of the C and D terms. The important con-

siderations are that '71/T 1 (2) is insensitive to fluctuations with wavevector qy ~ 7r

and 171/T 1 (1) is mostly insensitive to fluctuations with wavevector q-, ~ 7r because

D2 < 4Ca.

The comparison of 170 and 6 3Cu 1/Ti is shown for each sample in figures 6-13.

As can be clearly seen in figure 6-14 where 6 3,171/T 1 are normalized to match the

magnitude at low temperature, the temperature dependence below the spin gap is
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the same, but above the spin gap 131/T 1 becomes constant in the doped samples,

while 17 1/T 1 continues to strongly increase. This leads to several conclusions. First,

at temperatures below the spin gap, the spin excitations are dominated by those

with nearly zero momentum transfer q ~ (0,0) as predicted [101]. In contrast, at

high temperatures, the difference between the temperature dependence of 13 1/T 1 and

both oxygen 17 1/T 1 indicates that 631/T 1 is dominated by processes with wavevector

q ~- (7, 7r), mostly likely the direct magnon process, in agreement with Monte Carlo

results by Sandvik, Dagotto, and Scalapino [122].

A calculation by D.A. Ivanov and P.A. Lee [123] showed that in the weak coupling

limit, the contribution to 1/Ti from q - (7, ir) processes is very similar to the behavior

of the doped samples, nearly constant at temperatures above the spin gap. This is in
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Figure 6-14: 63 Cu 1/Tib [o], 170 1/Tib for 0(1) ladder [A] and 0(2) rung [0] sites
for (b) Sr 14Cu 240 41 (PL ~ 0.06), normalized to match magnitude below spin gap.

strong contrast to the 1/T, ~ T seen in the undoped samples.

This contrast between the doped and undoped samples is not understood. The

undoped samples have 63 1/T 1 oc T above the spin gap, while the doped samples

have constant 63 1/T 1 at high temperatures. Perhaps, it is associated with the pres-

ence of additional holes in the chain layers that could be mobile at high tempera-

tures. Preliminary experiments on lightly doped materials, La 5Sr 1Ca8 Cu 240 41 , and

La 4CaioCu 240 41, suggested that the lightly doped La series of samples have 63 1/T 1

similar to the undoped La 6 Ca8Cu 240 41 (figure 6-15). However, these lightly doped

samples may have all the doped holes residing in the chain layer and thus have effec-

tively undoped ladder layers. This is suggested by the fact that Osafune, et al.[114]

found a very small number of holes in the ladder layer (- 2%) for a sample with

slightly higher doping, SrllY 3Cu 240 41.

The Gaussian spin-spin relaxation rate provides a measure of the electron spin

correlation length. As predicted by Monte Carlo and analytic calculations [30, 122],

the electron spin correlation length will saturate to a constant at low temperatures

(T < A), causing 1/T2G to also saturate. This behavior is seen in both the un-
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doped SrCu 2 0 3 and the slightly doped Sr 1 4Cu 2 4 041 (figure 6-16). The NMR results

for 1/T 2G are very similar for the two materials. This would imply that the correla-

tion length has a similar temperature dependence with the assumption that the Cu

hyperfine couplings are the same. The hyperfine couplings cannot be directly mea-

sured for A14 Cu 24 0 4 1 because of the dominant contribution of the chain layer to the

bulk susceptibility. Unfortunately, direct measurement of 1/T2G for La6 Ca8 Cu 2 4 0 4 1

is not possible due to the large linewidth caused by the distribution in quadrupole

interaction.

6.4 Charge Effects

In addition to the decrease in the spin gap, charge effects are seen in the doped

two-leg ladders with NMR. The most dramatic effect is the large change in the oxy-

gen quadrupole interaction as seen in figure 6-12(b). This figure presents the b-axis

component of the oxygen nuclear quadrupole interaction, 17 vQ[b], for the 0(1) leg
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NMR does not agree with the NMR results in this case.

site. The nuclear quadrupole interaction measures the electric field gradient at the

nuclear site. A dramatic change in 17vQ occurs only for the doped samples, while the

undoped La 6 Ca8 Cu 2 4 0 41 exhibits a minor decrease of 17 vQ due to thermal expansion.

We define the temperature where this dramatic change begins as T* and estimate

T* = 210 K, 140 K, ~ 0 K for Sr 14 Cu 2 4 0 4 1 , Srl 1Ca 3Cu2 4 0 4 1 , and Sr 6 Ca8 Cu 2 4 0 4 1

respectively. We also observed a similar temperature dependence at the 0(2) rung

site for these samples (figure 6-17) and for 63 vQ at the copper site in Sr 1 4 Cu 2 4 0 4 1 (fig-

ure 6-19).[111, 112] Extremely broad 3Cu NMR lineshapes in La 6 Ca8Cu 2 40 41 and

Sr 14-xCaxCu 2 4 0 41 have prevented us from measuring 63 vQ accurately, so the compar-

ison between 63 Cu and 170 has not been made.

In order to understand the dramatic temperature dependence of 17vQ, we consider

the electric field gradient, eq, based on a standard ionic picture, [37]

eq = eqhole + (1 - t)eqlattice (6.5)
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The first contribution, eqhoje, arises from holes in orbitals of the ion itself. An isotropic

distribution of charge, such as from a filled electron shell, will not produce an electric

field gradient, but unfilled shells can. If there is one hole in an oxygen 2p orbital, the

electric field gradient at the nucleus is axial with the largest component along the

lobe of the p orbital, VQ = ( )(j)e2Q < r-3 > [13]. For our calculations, we take

< r- 3 >= 3.63 atomic units, which is 70% of the value for a free atom.[82, 41] This

results in a nuclear quadrupole interaction of (2.66, -1.33, -1.33) MHz for 170 2pX, for

example. The second contribution to the electric field gradient, eqlattice, arises from

the charges of the other ions of the crystal. This electric field is then modified by the

distortion which it creates in the electronic orbitals of the observed ion itself. This

effect is accounted for by the Sternheimer antishielding factor, Y.

Thus, in principle, the observed change in electric field gradient could arise from

changes in one or more of the three parts of equation (2), eqattice, '7, and eqhtoe. A

change in the lattice contribution, eqlattice, would be caused by a change in the crys-

tal structure or lattice parameters as a function of temperature. As discussed by

Carretta et al.,[111] the change in lattice parameters as a function of temperature

from 293 K to 520 K can account for less than 1% change in 63 vQ, while the exper-

imental change is about 15% (figure 6-19). Similarly, we found that the change of

lattice parameters would indicate a change of any component of 17vQ of 1.5% or less,

while the experimentally observed change is as much as 20%. Clearly, the change

in lattice parameters cannot account for the change in quadrupole interaction. An-

other option is that there is a local distortion in the crystal structure. Using point

charge calculations, we attempted to reproduce the experimentally observed changes

in 63 , 7 vQ by shifting the ionic positions in the lattice. We did not find any local lattice

distortions that could produce the experimentally measured sign of the temperature

dependence for both the copper and two oxygen sites. Qualitatively, the increase in

the quadrupole interaction for copper requires that the Cu-0 bond length increase

with temperature, while the increase in the quadrupole interaction for the oxygen

sites requires a decrease in the Cu-0 bond length. This contradiction indicates that

lattice changes are not responsible for the large change in electric field gradient.
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A second possible source for a change in electric field gradient is a change in

the Sternheimer antishielding factor, -y. For CuO 2 planes in high T, superconduc-

tors, the value of -y is estimated as 63 -y t -20 and 17 y ~ -9 for 63 Cu and 170,

respectively.[38, 41] Shimizu[38] showed that 637 = -20 for copper does not vary sig-

nificantly between copper oxide materials with doping and temperature. Lattice point

charge calculations of the electric field gradient for La 6 Ca8 Cu 2 4 0 4 1 were done with

ionic charges of +2.429 for the (La,Ca) site (the average of La 3+ and Ca 2+), +2 for

Cu, and -2 for 0. Oxygen results for y = -8 are in units of kHz (-193, +564, -371)

for the 0(1) ladder site and (-713, +331, +381) for the 0(2) rung site, in reasonable

agreement with the experimental values (+60, t516, -F54 0 ±40) and (-F6 9 0, ±170,

±540+40) at 291 K. For the copper ladder site, using y = -20 and an axial electric

field gradient from the hole of 77 MHz, point charge calculations give (+1.1, +16.9,

-17.9) MHz in rough agreement with (-F3 .3 , +16.8, -F13.5) MHz from measurements

at room temperature. This implies that 63,17 7 are not significantly different from other

high T, materials. To reproduce the experimental temperature dependence of 17vQ of

as much as 20% would require an equal change (20%) of -y. Since -y is a property of

the structure of the electron orbitals of the ion and therefore, of electron-volt energy

scale, we do not expect significant temperature dependence. Therefore, we conclude

that temperature dependent 63,17- in hole-doped ladders is very unlikely.

The third and only remaining possibility is that a change in the hole concentration

in the ladder Cu 20 3 layer changes eqhoje of the doped samples. In the following, we

will estimate the change in local hole concentration in the Cu2 03 ladder required to

account for the changes in the electric field gradient.

Additional holes affect the electric field gradient in two ways. First, a hole pro-

duces an electric field gradient at the nuclear site of its own atom through eqhole of

eq.(2). Second, a hole changes the charge of the ion, altering the charge environment

of neighboring atoms. This changes the lattice electric field gradient, eqattice, for

neighboring atoms. We calculate the effect of the holes on the neighboring atoms by

point charge lattice summations using the values of - estimated for La6 Ca8 Cu 2 4 0 4 1 .

For our calculations, we consider the possibility of holes in the oxygen 2p orbitals of
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Table 6.1: Magnitude of quadrupole interaction [kHz] measured at room temperature

La 6 Ca8 Cu 24 0 41  a b c
0(1) ladder 60 516 550±40
0(2) rung 690 170 550+40

Cu 3,300 16,800 13,500

Sr 14 Cu 2 4 0 4 1 a b c
0(1) ladder
0(2) rung

Cu (350 K)

60
770

560
170

14,900

605
630

both oxygen sites and in the copper 3 da2-c2 or 3d3b2-,2 orbitals. The subscripts, a,

b, and c, refer to the crystal axes where b is perpendicular to the ladder layer, a is

along the rungs of the ladder, and c is along the ladder direction. We determined the

amount of doped holes in each oxygen and copper orbital from 1 3 vQ and the tensor

components of 17vQ (1, 2) considering consistently both the direct effect of a hole on its

own nucleus and the indirect effect of a hole on nearby atoms. The nuclear quadrupole

interactions are given in table 6.1 for La6 Ca8 Cu 2 4 0 41 and Sr 14 Cu 2 4 0 4 1 . For the other

uniaxially aligned powder samples, we have only measured b axis quadrupole fre-

quency and we assumed that the distribution of holes between the oxygen and copper

orbitals was the same as in Sr 14 Cu 2 4 0 4 1 .

We summarize the total number of additional holes required in the ladder Cu 203

layer to produce the experimentally observed changes of 17 ,13 vQ in Figure 6-12(c),

and the distribution of the holes between the oxygen 2p orbitals and Cu 3d orbitals

in table 6.2 for Sr 1 4 Cu 24 0 41 at 500 K. Primarily, the holes go into the oxygen 2pu

orbitals, the 0(1) leg site 2 pa(1) and 2pc(1) and the 0(2) rung site 2pa( 2 ). There is

possibly also some hole transfer to the ladder copper site, but there is much larger.

uncertainty in the calculation of the holes on the copper site. The larger uncertainty

for the copper site arises from the wider copper linewidths and larger Sternheimer

anti-shielding factor, -y (637 r -20, 177 e -8). Also, we cannot estimate the absolute

number of holes in the ladder Cu 20 3 layer because of the uncertainty in the nearly

temperature independent contribution of eqlajttce to the electric field gradient.
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Table 6.2: Additional holes in ladder layer orbitals of Sr14Cu 24O41 at 500 K deduced
from temperature dependence of vQ

0 2pa(1) 0 2p,(1) 0 2p,(2) 0 2pc( 2 ) Cu 3da2-c2

1.3±0.3 % 1.3±0.3 % 1.0±0.3 % 0.3±0.3 % 0.9±0.6 %

We emphasize that figure 6-12(c) just shows the additional holes necessary to

account for the temperature dependence of the electric field gradient. The low tem-

perature region of vQ for Sr 14 Cu 24 O 4 1 was taken as a starting point from which the

additional holes necessary to account for the temperature dependence of 17,63 VQ are

calculated. This is done to avoid uncertainties in the lattice contribution to the

electric field gradient. Lattice point charge calculations are clearly a simplified ap-

proximation which prevents an absolute determination of the hole concentration in

the ladder Cu 20 3 layer. We emphasize however that the physical picture given by

this analysis, that holes are transferred into the ladder layer as temperature increases

above T*, primarily into the ladder oxygen 2po- orbitals, is independent of the lat-

tice point charge calculation and the value of 7. That the holes reside in oxygen

2p- orbitals is consistent with other copper oxide materials, such as YBa 2Cu3 0 7 and

(La,Sr) 2CuO 4.[124, 41] The symmetry of the electric field gradient changes, as shown

by r7 for Sr 14 Cu 24O 4 1 in figure 6-18, supports the idea that holes are responsible for

the vQ changes.

Other measurements of these A14 Cu 24 0 4 1 materials also point towards changes

in hole concentration at T*. Optical conductivity measurements[114] of the Drude

peak at low frequency are attributed to carriers in the ladder layer. The tempera-

ture dependence of the integral of that peak, which represents N/m* (carrier number

over effective mass), is similar to that of the electric field gradient. Charge trans-

port [119, 125] shows a peak in the effective activation energy (inset to figure 6-20).

The temperature of this charge anomaly is very close to the temperature T* for the

onset of the change of the quadrupole interaction. The charge anomaly is noted as

Ttr.a for several doping levels as summarized in figure 6-23. In addition, magnetic

susceptibility[119, 125] indicates that the ladder layer contributes to the susceptibility
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Ttran) decreases with Ca doping.

only above T*.

These changes in the electric field gradient are correlated with the magnetic

changes seen in the nuclear spin lattice relaxation rate, 1/Ti, for 63Cu.[107] The

onset of the change in the electric field gradient, T*, is at the beginning of the

crossover from the low temperature gapped regime to the paramagnetic regime. In

addition, for Sr 1 4 Cu 24 0 4 1, Takigawa et al.[112] and Carretta et al.[111] noted that

for T < 225 K, the fit of the nuclear magnetization decay to the standard solu-

tion of the rate equations becomes poor, and the ratio (65 1/T 1 ) / (631/T 1 ) decreases

from (65-y/ 63'y) 2 = 1.15 indicating that charge fluctuations are contributing to the

relaxation. The quadrupolar relaxation is maximum at about 100 K for Sr 14 Cu240 41

indicating that charge fluctuations have slowed down to the NMR frequency.[112, 111]

As shown in Figure 6-21, we found that quadrupolar relaxation is significant below

T ~ AT1 for all hole doped samples. Most likely, these charge fluctuations are asso-

ciated with hole motion in the ladder plane.

The most likely source of additional holes doped into the Cu 203 ladder above T*

is holes transferred from the CuO 2 chain layer. This scenario is quite plausible, in

view of the fact that 63Cu nuclear spin lattice relaxation rate, 63 1/T 1 , at the chain site
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for Sr 14 Cu 24 0 41 (A, PL ~ 0.06), Srj1 Ca3 Cu 24 0 4 1 (L, PL ~ 0.12), Sr 6Ca8 Cu 24 0 4 1

(e, PL - 0.17). Dotted lines show theoretical expectations for magnetic and charge
relaxation.
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Figure 6-22: Temperature dependence of chain 63Cu 1/T 1 from Takigawa, et al. [112].

dramatically increases above T* (figure 6-22) and the holes in the chain delocalize at

around T* for Sr14Cu240 41.[112] Alternatively, the hole concentration in the Cu 20 3

ladder below T* can be smaller for the majority of the Cu and 0(1,2) sites, if holes

are localized within the NMR time scale (~., psec) below T*. The anomalies in charge

transport and magnetic susceptibility measurements have been interpreted as charge

localization at T*,[125] but this does not seem to account for the NMR results. This

scenario requires NMR line broadening or splitting around T* due to the localization

of holes, but we did not observe any significant broadening of the NMR lineshape

around T*. Some NMR quadrupole satellite lines are slightly split, but the size of

the splitting is temperature independent (shown by r7 in figure 6-18) for the entire

temperature range with no apparent change around T*. Additionally, the peak in

quadrupole relaxation for Sr 14Cu240 41 implies that the hole motion slows down to the

NMR frequency only at around 100 K, so the charge dynamics at higher temperatures

such as T*=210 K should be faster than the NMR time scale, not slower. Therefore,'

this "self-doping" scenario does not seem consistent, but we cannot completely exclude

it.
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Figure 6-23: T* (o), Ttran (x, after Ref. [119]), AT, (A), and Ax (U, from Ref.
[125]) for various room temperature hole-doping levels PL [Ref. [114]], La 6Ca8 Cu 24 0 41

(PL = 0), Sr 1 4 Cu 24 0 4 1 (PL ~ 0.06), Srl 1Ca 3 Cu2 4 0 41 (PL ~ 0.12), and Sr 6 Ca8 Cu24 0 41

(PL - 0.17). Crosshatched region indicates where hole transfer occurs.

6.5 Summary

Figure 6-23 gives a summary of the magnetic and charge results for the two-leg

ladder materials. The prototypical undoped 2-leg ladder, SrCu 2 0 3, and the undoped

La6 Ca8 Cu 24 0 41 , show nearly identical results for 6 31/T 1 . The results for Knight shift,

1/T 1 , and 1/T2G exhibit the crossover from the low temperature gapped regime to the

high temperature paramagnetic regime. This provides concrete estimates of the spin'

gap, A. The changes in '"0 quadrupole interaction clearly show that in the doped

two-leg ladder material, A14 Cu 240 4 1 , the doped holes are mobile above a temperature

scale, T*, which is correlated with the spin gap energy scale. The effective doping of

the measured oxygen sites increases with increasing temperature.
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Chapter 7

Three-leg ladder, Sr 2Cu 3O 5

In this chapter, NQR and NMR experiments on the three-leg S=1/2 spin ladder

material, Sr 2Cu3 0 5 , are described. The behavior of S=1/2 spin ladders depends

strongly on the number of chains coupled together. As discussed in the previous

chapter, for a two-leg spin ladder, a large spin excitation gap exists. However, for

the three-leg ladder, the excitation spectrum is expected to be gapless. Unlike the

two-leg ladder, the three spin 1/2 of the rung cannot form a singlet ground state.

Another important reason to study the undoped three-leg spin ladder is because

of its possible direct importance to high T, superconductivity. Under-doped high T,

superconductors show a stripe structure [8, 126] (figure 7-1) which has been proposed

as undoped three-leg spin ladders coupled across rivers of doped holes. Studying the

magnetic behavior of three-leg ladders may help understand this stripe phase and

high T, superconductivity. Concentrated theoretical effort is underway to reproduce

the stripe phase based on the anisotropic non-linear sigma model [127]. This extends

the fundamental importance of spin ladders beyond the field of magnetism to the

mechanism of high T, superconductivity.

For Sr 2 Cu3 O5 , spin susceptibility by Azuma, et al. [29] and pioneering high field

63Cu NMR between 100 K and 300 K by Ishida, et al. [108] revealed the qualita-

tive difference of magnetic properties between two- and three-leg ladders in the low

temperature limit. However, the nature of spin correlations at finite temperatures re-

mains largely untested, despite recent theoretical developments [128, 30, 129, 36, 122].
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Figure 7-1: Proposed stripe order of charge and spin in high T, superconductors at
1/8 doping [8]. Undoped three-leg spin ladders are separated by rivers of doped holes.

The large exchange interaction J = 1300-1600 K in copper-oxide ladders [29, 130,

107, 116] makes measurements of spin-correlations at elevated temperatures essential

to understanding the statistical properties at finite temperatures.

We report the first 63Cu NQR measurements of the 63Cu nuclear spin-lattice re-

laxation rate 1/T 1 and the Gaussian component of spin-spin relaxation rate 1/T2G for

the three-leg ladder Sr 2 Cu3 0 5 from 83 K up to 725 K. The Gaussian component of the

63 Cu nuclear spin-spin relaxation rate, 1/T2G, probes the spin-spin correlation length,

, as demonstrated earlier for the 2d square-lattice[27, 26] and the id spin-chain[48].

We present evidence that the spin-spin correlation length in the three-leg ladder

follows the id form ~ 1 above 300 K. To our surprise, however, we found that weak

inter-ladder coupling along the c axis results in dimensional crossover to a quasi-2d

regime below 300 K, where 6 diverges exponentially, ~ exp 27- (27rp,=290±30 K is

the effective spin stiffness). The anisotropic non-linear sigma model [127] successfully

describes the static and dynamic NQR/NMR properties in the quasi-2d regime. To

the best of our knowledge, this is the first experimental demonstration of the validity
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of the anisotropic non-linear sigma model in a quantum Heisenberg antiferromagnet.

7.1 Structure & Experimental Details

The polycrystalline sample of the three-leg ladder, Sr 2 Cu 30 5 , was grown at Kyoto

under high pressure [29]. Technically, the present NQR approach used for Sr 2 Cu30 5 is

much harder than the high field NMR method, because the low resonance frequency of

NQR (11.32 MHz at 300 K for the edge chain in Sr 2Cu 3 O5 ) makes the signal intensity

two orders of magnitude weaker. However, NQR allows us to conduct measurements

at elevated temperatures limited only by sample decomposition. For our NMR exper-

iments, the powder sample is uniaxially aligned along the c axis in epoxy. The epoxy

will decompose at elevated temperatures, limiting the NMR measurements to below

500 K. In addition, the three-leg ladder structure shown in figure 7-2 has two different

copper sites, the atoms in the central chain and those in the two edge chains. Unlike

earlier NMR measurements by Ishida, et al.[108], our NQR and NMR experiments

measure the relaxation times for the two sites separately without line superposition.

The Cu NQR and NMR lineshapes with the resonance lines from the two different

sites labeled are shown in figures 7-3 and 7-5. The quadrupole interactions for 6 3Cu

are (Va,b=±2.845, ±4.045, v0=F6.89) MHz for the central chain site and (Va,b=±1.89,

±8.69, vc=-F10.58) MHz for the edge chain site at 300 K. The two Cu NMR lines can

be assigned to the specific sites by comparing the intensity (2:1 for edge chain:central

chain) (see figure 7-6). Also, the quadrupole interactions are very close to those for

similar sites in other materials: the edge chain site is similar to the site in the two-leg

ladder SrCu2 0 3 (±1.65, ±8.75, -F10.40) MHz, and the central chain site is similar to

the infinite layer compound (Ca,Sr)CuO 2 vQ ~ 6.7 MHz [131].

Separation of the two signals is essential because the two copper sites do not

necessarily have the same values of 1/Ti and 1/T2G. In fact, the magnitude of 1/Ti

is very different for the two sites, (1/Tc)central chain / (l/Tc)edge chain = 2.3

and (1/T2G)central chain / (1/T2G)edge chain ~ 1.03. Even though the magnitude of

1/T 1 is very different, the temperature dependence of 1/T1 and 1/T2G at the two sites
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Figure 7-2: Structure of three leg ladder material, Sr 2 Cu3 O5 , (a) top view, (b) side
view, and (c) effective structure in anisotropic 2d regime below 300 K.

167

(a) yb



10.4 10.6 10.8

Frequency [MHz]

Figure 7-3: 63 ,6 5Cu
K.

NQR lineshape for the edge chain copper site of Sr 2 Cu 3 O5 at 293

12.5
N

a>
C

C1

121

1.51-

11
0 200 400 600 800

T [K]

Figure 7-4: Temperature dependence of the 3Cu edge chain NQR resonance.
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Figure 7-7: 63Cu 1/Tj, for the edge chain site [, left axis] and central chain site [c,
right axis] of Sr 2 Cu 3 O5 .

is similar, as shown in figures 7-7 and 7-8. The simplest explanation for the similar

temperature dependence, but different magnitude is that the hyperfine coupling is

smaller for the edge chain Cu site, but that the magnetic susceptibility is the same

at the two sites. Different hyperfine couplings for the two Cu sites is logical because

the two sites have different local environments. Most notably, the edge chain site

has only 3 Cu nearest neighbors, while the central chain site has 4 neighbors. The

experimental fact that the two Cu sites have similar temperature dependence of the

susceptibility is in contrast to a theoretical hint [132] that the central chain might

even have a gapped form of the electron susceptibility.

We can confirm that the hyperfine couplings are different at wavevector q = 0

by comparing the Knight shift for the two sites. The Knight shift for the c axis at

room temperature is 1.13% for the edge chain site and 1.30% for the central chain

site. Knight shift for the a and b axes is ~ 0.26% for the edge chain site. Line

superposition prevents any better measurement of the Knight shift along a and b.

The q = 0 c axis hyperfine couplings (temperature dependence of Knight shift) are

-90 ±20 KOe/paB for the edge chain site and -35 ±25 KOe/pL for the central chain
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Figure 7-8: 3Cu 1/T 2 G for the edge chain site [o] and central chain site [El] of
Sr 2Cu 30 5 .

site.

7.2 1/T 1 and 1/T2G

For this sample, Sr 2 Cu3 0 5 , 1/T 1 and 1/T 2 G have been measured below room tem-

perature with both NQR and NMR. In addition to probing at different frequencies

(NQR ~ 11 MHz and NMR ~ 100 MHz), NQR and NMR have slight differences

in what is measured by 1/T 1 and 1/T2G. For 1/T 1 , their are two major differences.

First, the form of the exponential relaxation curve will be different. Second, for NMR

the quantization axis of the spin is chosen by the applied magnetic field. However, for

NQR the quantization axis is determined by the electric field gradient. As discussed

in appendix A, if the electric field gradient is not symmetric about a crystal axis

(r $ 0), then (1/T1)NQR is a combination of (1/T)NMR for different axes.

)NQR ~ )[4 2 (9_2) (7.1)
Ti 9 + 372 Tlab Tic
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Figure 7-9: 63Cu 1/Ti from NQR [0, left axis] and 63Cu 1/Tjc from NMR [e, right
axis] for the edge chain site of Sr 2Cu3O5 .

where subscript ab and c denote the direction of magnetic field.

The nuclear quadrupole interaction tensor vQa at the copper sites in ladders is

not axially symmetric with respect to the c axis, ?7 = (vga - vQb)/vQc=0.64 and

0.17 for the edge and central chain of ladders, respectively [108]. For the edge chain

site, we measured 1/T 1 with both NQR and high field NMR as shown in figure 7-9,

and confirmed the consistency of the experimental ratios, Tic/Tiab = 3.4 t 0.2 and

Tc/T1,NQR = 0.70 i 0.03 with the theoretical expression, Tic/T1,NQR = 0.72 ± 0.02.

This implies that there is no significant frequency dependence in 1/Ti between 11

and 100 MHz. For the purpose of systematic comparison with other materials, we

multiplied a factor 0.70 to the NQR results to deduce !.Tic

The theoretical comparison of 1/T2G for NMR and NQR is discussed in appendix B

and the experimental comparison for Sr 2 Cu30 5 is shown in figure 7-10. Theoretically,

(1/T2G NQR) = 2V6/7 (1/T2G NMR) = 1.31 (1/T2G NMR) [26]. The factor of

- arises from the fact that for nuclear spin 3/2, there are twice as many same

spin neighbors for NQR than for NMR. The small correction of V6/7 is from the

measurement in a unaligned powder sample as compared to measurement in a crystal
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Figure 7-10: 63Cu 1/T2G from NQR [0, left axis] and from NMR [e, right axis] for
the edge chain site of Sr 2 Cu3 O5 .

or aligned powder. Experimentally, (1/T2G NQR) = 1.33±0.03 (1/T2G NMR), in

good agreement with the theoretical expectation.

The 1/T 1 and 1/T2G results for the three-leg ladder, Sr 2 Cu 30 5 , both show diverg-

ing behavior with decreasing temperature. Qualitatively, this shows that the spin

correlation length, , is increasing strongly as the temperature decreases. This is as

expected, in strong contrast to the 2-leg ladder, SrCu 2 0 3, which has a large spin gap

and constant at low temperatures.

For a more quantitative understanding, we can compare the results with recent

theoretical results. According to recent weak coupling continuum theory by Burago-

hain and Sachdev[128], which is applicable 25 K < T < 500 K for J = 1500 K, the

spin structure factor is given as

S(q) 1 T _ _2
X(q)= oc ( )((1( (q2(7.2)

B kBT Ams 1 (q - 7r2(2)

with the cutoff, AMS, roughly predicted as 25 K. AMs ~ Jexp(-27r/g) with the
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coupling constant, g, given by [128]

Sd 2[1+ (1 - (7.3)
SP P J

where p is the number of legs of the ladder. Inserting this expression into eq. 2.33,

the leading order temperature dependence of 1/T2G is given as 1/T 2G OCc f/T, with

logarithmic corrections that become significant at low temperatures. Since the spin-

spin correlation length in a three-leg ladder is given as 6 ~ 1 [128, 30], we expect

1/T2G T 3 / 2 . Indeed, as shown in figure 7-11, we found power law behavior with

exponent -1 above 300 K. We should note that this theory by Buragohain and
2

Sachdev should also apply to the two-leg ladder at temperatures above the spin gap,

A ~ 425 K for SrCu 2 0 3. Indeed, 1/T 2G for the two-leg ladder at high temperatures is

very similar to 1/T 2G for the three-leg ladder and does approach a T- 3/2 temperature

dependence. Comparison of 1/T 1 with the analytic theory is more difficult because we

cannot estimate the large diffusive (i.e. q = 0) contributions in the quasi-id regime.

As in 2d copper-oxides, 1/Ti is constant at high temperatures (T ~ f).

In contrast with the mild temperature dependence at elevated temperatures, the

divergence below 300 K is quite surprising. As shown in figure 7-12, the temperature

dependence is exponential, similar to the case of the 2d square-lattice. The linearity

in the semi-logarithmic plot extends for an order of magnitude. Within the framework

of an isolated three-leg ladder, we expect that at T < J the exchange interaction

along a rung strongly couples the three S = 1 spins into an effective Se =

forming a Seff = 1 chain. Therefore, an isolated three-leg ladder would exhibit

1/T2G OC 1/v/I and 1/Ti ~ constant at low temperatures [45] as observed for id

spin-chain Sr 2CuO 3 [48]. This clearly contradicts with the exponential divergence we

find. Three-dimensional spin freezing observed at TSF = 52 K [133] is unlikely to

be the origin of the observed divergence, either, because the onset of the exponential

divergence (-~-' 300 K) is nearly a factor of 6 higher than TSF = 52 K. Furthermore, the

temperature dependence is exponential rather than the ordinary power law divergence

of 1/T and 1/T2G expected near 3d orderings. The lack of 3d character is consistent
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Figure 7-12: 1/(T 1iT
3/ 2 ) (circles) and 1/(T 2GT) (triangles) versus 1/T for three-leg

Sr 2 Cu 30 5 (solid symbols) and 2-d Sr 2 CuO 2 Cl2 (open symbols). The fit to renormal-
ized classical (exponential) behavior for Sr 2 Cu3 0 T < 225 K gives 27rp"f = 290 ± 30
K, implying anisotropy a = 0.16 ± 0.02 for J = 1500 K.

with the fact that the exchange coupling along the b axis is frustrated due to opposing

pairs of 900 Cu-0-Cu bonds, which suppresses 3d correlations [36]. In a recent inelastic

neutron scattering measurement for SrCuO 2 [53], which contains the same frustrated

local structure, the spin correlation length along the direction equivalent to the b-axis

in the present case (figure 7-2) is only 2.2 lattice spacings even at T=0.35 K. The

frustrated interactions seem to prevent long range ordering in the direction of the

frustrated interactions.

The key point to note is that, along the c axis, the three-leg ladders are stacked

directly on top of one another as shown in figure 7-2(b). We recall that the so-

called infinite layer compound Ca0 .85 Sr 0.1 5CuO 2 has 2d square-lattice layers with a

similar c-axis stacking, and has an equivalent structure to Sr 2 Cu30 5 except for the

line defect between adjacent three-leg ladders. In Ca0 .8 5 Sr 0 .1 5CuO2 , Neel ordering

driven by the large c axis coupling, Jc, occurs at extremely high temperature, 539 K,

and the dimensional crossover from isolated 2d square-lattice behavior to 3d behavior

occurs as high as 600 K [131]. This was demonstrated by R. Pozzi, et al. (figure 7-13)
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Figure 7-13: .3Cu 1/Ti = 2 We for infinite layer compound, Cao. 85Sro. 15CuO 2 showing
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1/Ti oc [(T - TN) TN]w, w = -0.33). (N6el temperature, TN = 540 K.) From R.
Pozzi, et al.[131]

showing that 63 1/T 1 deviates from the exponential divergence expected of isolated 2d

layers at ~600 K and instead follows a 3d power law divergence. This evidence for

strong c-axis coupling between the Cu-O layers in Cao.8 5 Sro.1 5CuO 2 suggests that the

three-leg ladders in Sr 2 Cu3O5 will also couple strongly along the c-axis.

The existence of strong c-axis coupling in Sr 2 Cu3 O5 is supported by two sets of

recent Monte Carlo simulations. First, Greven and Birgeneau showed that inter-

layer coupling J, along c-axis was essential to understand the 3d long-range order

of Zn-doped two-leg ladder SrCu 2 0 3 [134, 135]. Second, more recent Monte-Carlo

simulations by Y.J. Kim et al. showed that inter-ladder coupling two-orders of mag-

nitude smaller than J is sufficient to induce dimensional crossover from quasi-id

behavior of an isolated three-leg ladder to anisotropic 2d behavior of coupled three-

leg ladders [129]. In the present case, the inter-ladder coupling along c-axis is large,

jffI/J - (0.15 - 0.22) using estimates Jc ~ 75 - 110 K [136, 134], and J = 1500 K.

Coupled along the c-axis, the stacked three-leg ladders form a tri-layered 2d system

with anisotropic exchange interactions, J along the ladders (a axis) and Jc (c axis).

Since we do not have any theoretical treatment of such a complicated system, we
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approximate the tri-layered system as a single layer system. This should be a good

approximation for low temperatures where the spin correlation length along the

legs of the ladders is greater than the width of the ladders (( > 3). Both the 1-d

ladder theory by Buragohain and Sachdev and our following anisotropic 2-d analysis

show that we expect e 4 to 5 at 250 K, where the crossover occurs. Below this

temperature, the stacked three-leg ladders form an effective 2d plane of Seff = 1 with

anisotropic exchange interactions, J along the a axis and the effective c axis coupling

for the 2d model, JIff ~ 3Jc, as shown in figure 7-2(c).

7.3 Anisotropic 2d model

This anisotropic 2 dimensional Heisenberg antiferromagnet has been studied theoret-

ically with the anisotropic non-linear a model [127, 129]. The anisotropic non-linear

u model is the same non-linear - model discussed in chapter 5 [65], but with dif-

ferent exchange interactions for the two directions in the 2d plane. The non-linear

- model is a continuum field theory which should have the same long wavelength,

low energy behavior as the Heisenberg antiferromagnet [65]. The anisotropic non-

linear - model has been discussed in recent papers [127] as a possible model for the

magnetism of the stripe structure in doped high T, superconductors. As shown in

figure 7-1, the proposed stripe structure has undoped three-leg ladders separated by

lines of doped holes. It has been suggested that the stripe structure would be well

described by an anisotropic 2d model because the exchange interaction between the

ladders is weakened by the line of doped holes compared to the exchange interaction

along the ladders. However, we are not aware of any previous experimental evidence

in an actual material that provides clear support for the relevance of the anisotropic

non-linear c- model. In the following, we show that 1/Ti and 1/T 2G of the three-leg

ladder material, Sr 2 Cu 3 O5 , are completely consistent with the anisotropic non-linear

sigma model at low temperatures.

Theoretically, the anisotropy a = Jgff/J of the exchange interaction introduces

anisotropy in the spin wave velocity co and spin-spin correlation length for the two
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orthogonal directions, and reduces the isotropic spin stiffness 27rp, to an effective

27rp'ff [127].

c11(ce) = /(1+a)/2-co (7.4)

c((a) = VScII(a) (7.5)

21rp*ff = (1 - go(1)/g,(a)) /&27rp, (7.6)

where gc(a) is the critical coupling constant, and go(1) is the bare coupling constant

for a = 1 [127]. The dependence of gc(a) on a is given by [127]

9c (a) =47r V2

-\ /1 + a [1 + (2) {sinh- 1 (- ./a)/ + In(1 + v1 + -a) - ln(V/ [1 + ]2)
(7.7)

The critical coupling constant, gc(a), determines the boundary between the renor-

malized classical and quantum disordered phases of the non-linear sigma model (see

figure 5-1). Otherwise the theoretical framework of the renormalized classical regime

in isotropic 2d square lattice [84, 26], which was successfully employed to analyze 63Cu

NQR/NMR relaxation rates in 2d square-lattice La 2CuO 4 [7, 26] and Sr 2 CuO 2 Cl 2 [63],

is applicable to the anisotropic case. The renormalized classical regime will be valid

for low temperatures, about T < 27rp'ff. For this renormalized classical regime of

the non-linear sigma model, we have [127, 84, 26]

T13/ e 2 T (7.8)

1 T3c2 27rp*

T c hJ L exp ( (7.9)
T2GT (27rp'f f) 3T

One important idea to note from these two equations is that the temperature de-

pendencies of 1/T 1 T 3/2 and 1/T 2GT are both exponential in 27rpeff. By fitting

1/T 1T 3/ 2 and 1/T 2 GT in figure 7-12 to exponential form, we obtain the same slope

for both, 27rp'f 1 = 290 t 30 K. This implies an anisotropy, a = 0.16(0.17) t 0.02 for

J = 1500(1300)K, hence Jgff = 230 ± 30 K. The obtained value of a = jeffJ =
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0.16 ± 0.02 is consistent with the estimate of 0.15 - 0.22 in the previous section.

Another idea to note from equations 7.8 and 7.9 is that 1/(T1 T3/2 ) and 1/(T2G

T) have prefactors to the exponential that depend differently on c1l,1 and p'ff, and

thus depend differently on a. We can use this to test the consistency of the preceding

renormalized classical analysis by estimating a based on a different method that does

not require knowing J. We will compare the prefactors to the exponential by taking

the ratio, R, of 1/(T1 T3/2 ) and 1/(T2G T), which will cancel out the exponential

term.

R(a, 27rptf) = (T1 T 3/ 2)/(T2GT) - (Fab(r)/Fc(7r))2  (7.10)

0c /(h2cii(a)cc(a)/27rplff) - (Fab(7r)/Fe(7r) )2

Sf (a) 27rp7V - (Fa(7r)/F (7r))2

where the function of a, f (a), is

1.48 f(1-i+ a)/2
f (a) = .8( -a/ (7.11)

al/4 (1 - go(1)/gc(a))

In the low-temperature renormalized classical limit, we expect the ratio, R, to be

independent of temperature. The ratio of hyperfine form factors, Fab(7r)/F(7r), can

be determined experimentally as 0.42 ± 0.02 from Tlc/Tlab = 3.4 t 0.2. This results

from the fact that 1/T 1 from NMR measures the hyperfine form factors for the two

axes perpendicular to the applied field, for example 1/Tic oc Fa(7r)2 + F(7r)2 . The

hyperfine form factors for the a and b axes are the same within the experimental error.

For 27rp'ff, we take 27rpeff = 290 ± 30 K from the fit in figure 7-12. In addition,

we use the expression for co in terms of 27rp, co = /fZcJa/h where Ze = 1.18 [68].

and 21rpo = 1.13J. As a result, hco/a = 1.4827rpo. 27rpo can be expressed in terms of

2irpilf and a (eq. 7.6). This leaves a as the only unknown parameter in R(a, 27rpif).

Shown in figure 7-14, the ratio R(a, 27rp'ff) indeed approaches a constant 61±5 at low

temperatures, which implies a = 0.15 ± 0.03, in agreement with our earlier estimate,

0.16 + 0.02.
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Figure 7-14: Ratio R(a, 2irpsff) = (TlcT 3/2 /T 2GT) - (F2l/F2) for three-leg Sr 2 Cu 3 0 5 .
The ratio should be constant in the low temperature limit deep inside the renormal-
ized classical regime. The solid line shows the value of R(a, 27rp'ff) calculated for
Sr 2 Cu 3 O5 (a = 0.15, 27rpeff = 290 K).

From the fit of 1/(T1 T 3/2 ) and 1/(T2GT) to the renormalized classical form, we

obtain IFa,b(7r)I = lAa,b- 3BI ~ 65 KOeIAB and IFe(r)I = IA, - 3B ~ 160 KOe/pB

for the edge chain copper site. Together with the values for the q = 0 hyperfine

coupling, Fa,b(0) = Aa,b + 3B ~ +60 KOe/1 pB [108] and F,(0) = A, + 3B ~ -90

KOe/AB, these values are consistent with a small transferred hyperfine coupling,

B ~ 10 - 20 KOe/puB, as suggested by Ishida, et al. [108] and onsite hyperfine

couplings, Aab ~ 0 and A, ~ -125 KOe/AB. These can be compared to results for,

2d materials, such as Sr 2CuO 2Cl 2 discussed earlier in this thesis, [80, 7], A, ~ -90

to -170 kOe/pB, Aab ~ 38 kOe/pB, and B ~ 40. Most notably, the transferred

hyperfine coupling is much smaller in the three-leg ladder, Sr 2 Cu 30 5 , than in the 2d

materials.

To conclude, we demonstrated that the temperature dependence of the spin-spin
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correlation length in Sr 2 Cu 30 5 is consistent with the isolated three-leg ladder be-

havior ~ - from 300 K to 725 K (~ J/2). Below 300 K, we discovered dimensional

crossover to anisotropic 2d regime, where spin correlations diverge exponentially. Our

result is the first experimental demonstration of the validity of the anisotropic non-

linear sigma model, which was recently proposed for the stripe phase of high T,

cuprates, in a S = 1 quantum Heisenberg antiferromagnet. This should encourage

further theoretical analysis of the stripe physics of high T, cuprates based on the

anisotropic non-linear sigma model.
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Chapter 8

Conclusions

In this chapter, we summarize the conclusions from the NMR/NQR measurements

on the copper-oxide materials. All of the copper oxide materials show symmetry

of the quadrupole interaction and Knight shift that supports the accepted picture

for the crystal chemistry of these materials. This picture is that there is one hole

in the Cu 3d,2-2 orbital, which is strongly hybridized with the neighboring oxygen

2pc- orbitals. In general, we use the comparison of 170 and 3Cu 1/T 1 to reveal the

wave-vector, q, dependence of the low energy electron spin excitations.

For the 1 dimensional compounds, Sr 2 CuO 3 and SrCuO2 , we can separte the q = 0

and q = 7r contributions to 1/T 1 using 170 NMR. We find that in Sr 2 CuO 3 the chain

oxygen 1/T 1 (q = 0) oc aT + bT 2 over the whole temperature range 10 to 700 K.

The low temperature limit of these experimental results is in reasonable agreement

with the low T scaling theory of Sachdev,[44] 1/T 1 (q = 0) = aT where a = Fl(q =

0)Jy2, but even at the lowest temperatures measured T = 10K (T/J ~ 0.005), 1/T 1

does not show the expected linear temperature dependence. Frequency dependence

measurements show that diffusive contributions dominate T1 (q = 0) for SrCuO 2. The

spin diffusion constant is estimated to be rougly two orders of magnitude larger at

room temperature (T/J ~ 0.13J) than the high temperature value for the classical

id spin chain. High temperature (up to 800 K) 6 3 Cu 1/T 1 measurements in Sr 2 CuO3

and SrCuO 2 also show the increase in contributions to 1/T 1 from q = 0 at high

temperatures. However, the increase in 1/T1 at high temperatures is only seen for
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the magnetic field applied in the plane of the Cu-0 square for both materials. 1/Ti for

the magnetic field perpendicular to the Cu-0 plane seems to follow the expectations

of the theory for q = r by Starykh, et al. [45]. We do not understand why this is

the opposite of what one would expect theoretically based on the relative sizes of

the hyperfine interactions at q = r and q = 0. The Knight shift of Sr 2 CuO 3 for

the oxygen chain site shows a sharp decrease at low temperatures (T < 25 K). This

provides solid confirmation of the bulk susceptibility measurement [51] which also

shows a sharp decrease, partly obscured by the impurity Curie susceptibility. Such

a sharp decrease in the spin susceptibility is predicted theoretically for the spin 1/2

id Heisenberg chain. However, the decrease does not agree quantitatively between

experiment and theory, with the experimental decrease of the spin susceptibility being

larger and beginning at higher temperatures. The double chain compound, SrCuO 2 ,

shows 1-d behavior analagous to that of Sr 2 CuO 3 in the NMR measurements above

10 K, implying that the frustrated interactions between the pairs of chains do not

affect the spin dynamics above 10 K.

For the 2d material, Sr 2 CuO2 Cl 2 , we demonstrated that "3Cu 1/T 1 and 1/T2G

have the exponential temperature dependence expected for the renormalized classical

regime of the quantum non-linear sigma model [65]. This was previously shown for

La 2 CuO 4 [7, 26]. We also show that 170 NMR measures the spin wave damping, F,

in the undoped antiferromagnet for short wavelengths [63]. We deduced the effective

damping F of the short wavelength magnons of the S = 1/2 2d Heisenberg antiferro-

magnet in a broad range of temperature (0.2 < T/J < 0.5), contrary to the prevailing

perception in the community that F was not measurable with current technology [3].

The spin wave damping is small even at temperatures as high as T = 0.4J, well above

TN. This clarifies one of the unique properties of these 2d copper-oxide antiferromag-

netic materials: there is a wide temperature range where short range spin excitations

exist with long lifetimes, without long range 3-dimensional order. The low energy,

short wavelength excitations in the hole-doped, weakly-metallic CuO 2 planes show

a similar temperature dependence to the undoped sample, but with a weakly tem-

perature dependent increase from the addition of electron-hole pair excitations. We
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suggest that the spin waves may interact strongly with electron-hole pair excitations.

For the two-leg ladder, we have NMR/NQR experiments on both undoped, SrCu2 03

and La 6 Ca8 Cu 2 4O 4 1 , and doped materials, A1 4 Cu 2 4 0 4 1 (A = La,Sr,Ca). By measur-

ing 63 Cu 1/Ti and 1/T2G to temperatures well above the spin gap, A < 425 K,

we demonstrate the crossover in spin dynamics from the gapped low temperature

regime (1/T 1 ~ exp(-A/kBT)) to the high temperature paramagnetic regime. This

allows the spin gap, A, to be well-determined as well as exploring the temperature

dependence in the paramagnetic regime. Curiously, we found that the temperature

dependence of 1/T 1 in the paramagnetic regime differs for the undoped and doped

2-leg ladder samples. At temperatures above the spin gap, for the undoped samples,

1/T 1 oc T, while the doped samples show constant 1/Ti. This new finding has not

been understood theoretically [123, 122]. Also reported are the first 170 NMR re-

sults in these materials. Comparison of Cu and 0 NMR results provides wave vector

dependent information about spin excitations. Oxygen NMR can also allow us to

estimate the exchange couplings for the ladder, JI/J11.

In the doped two-leg ladder materials, A14 Cu 24 0 41 , the crossover of the spin exci-

tations from the spin gapped regime to the paramagnetic regime is accompanied by

changes in the charge properties. The changes in 170 quadrupole interaction clearly

show that in the doped two-leg ladder material, A 14 Cu 2 4 041, the doped holes are

mobile above a temperature scale, T*, which is correlated with the spin gap energy

scale. The effective doping of the measured oxygen sites increases with increasing

temperature.

For the three-leg ladder Sr 2 Cu 30 5 , we report the first "3Cu NQR measurements of

the 13Cu nuclear spin-lattice relaxation rate 1/T and the Gaussian component of spin-

spin relaxation rate 1/T2G from 83 K up to 725 K. From the Gaussian component-

of the 3Cu nuclear spin-spin relaxation rate, 1/T 2G, we present evidence that the

spin-spin correlation length in the three-leg ladder follows the id form ~ 1

above 300 K. To our surprise, however, we found that weak inter-ladder coupling

along the c axis results in dimensional crossover to a quasi-2d regime below 300 K,

where diverges exponentially, ( exp 2P-i (27rp,=290+30 K is the effective spin
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stiffness). The anisotropic non-linear sigma model [127] successfully describes the

static and dynamic NQR/NMR properties in the quasi-2d regime. To the best of our

knowledge, our result is the first experimental demonstration of the validity of the

anisotropic non-linear sigma model, which was recently proposed for the stripe phase

of high T, cuprates, in a S = 1 quantum Heisenberg antiferromagnet. This should

encourage further theoretical analysis of the stripe physics of high T, cuprates based

on the anisotropic non-linear sigma model.
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Appendix A

1/Ti and 1/T2L for NQR, r 7 0,

1=3/2

In this appendix, I will discuss how 1/Ti and 1/T2L differs when measured by NMR

versus NQR. The difference arises from the difference in the axis for the interaction

of the nuclear spin. For NMR, the applied magnetic field determines the axis for the

nuclear spin interactions. For NQR, the electric field gradient tensor of the crystal

defines the geometry of the quadrupole interactions. In general, 1/T 1 as measured by

NMR and NQR are sensitive to magnetic fluctuations in different directions. If there

is anisotropy in the magnetic fluctuations that cause the relaxation of the nuclear

spin, there can be a difference in the measured 1/T 1 values. First, we will derive

the expectation for 1/T 1 measured by NQR and we relate that to 1/T 1 from NMR

measured along the crystal axes. Second, we will use the result for 1/T 1 to also

provide the contribution to 1/T 2 from these T1 processes, 1/T2L. All of the following

results are specific for I=3/2 and relaxation via fluctuation of magnetic fields.

For r7 = 0, the spin eigenvectors for NQR are not along any of the crystal axes.

As a reference, these calculations were done for r = 1 in Pennington's thesis [14]. For

NQR, we have the hamiltonian [13],

4 31z2- I(I + 1) + 1 (I+ + (A.1)
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The X, Y, and Z axes are the principle axes of the electric field gradient tensor defined

so that the components of the electric field gradient,

IVzzI |Vyy| Vxx|, eq = Vzz (A.2)

(A.3)vxx - vyy77 VZ Z

By choosing the basis of spin states as [-+ 3 / 2L, -+1/ 2 Z, -1/2Z, -3/2Z] for

Iz, the hamiltonian in matrix form for the spin quantization axis along Z is

e2qQ

41(21-1)

3 0 V/1r, 0

0 -3 0 V77

-/v77 0 -3 0

0 V/577 0 3

(A.4)

Since this is only a 4x4 matrix, finding the eigenvalues and eigenvectors is not too

difficult. The eigenvalues are

S 2 qQ
41(21- 1)

(3 1+ R)

with eigenvectors a, b, c, d

a : -( 0,

b : -( 0,

C : -( V/5 - V3 +n72,

d : -( v/+ /3 +2,

-vF 3 - 3+ r2,

-v3 + V3 +n2,

0,

0,

where the normalization constants, N1 ,2 are

N1 = 6+ 2r2+

N 2 = 6+2r72-

2WV/3+ 772

2v/5 3+ i2
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0, 77 )
0, 77 ) (A.6)
77, 0 )
77, 0 )

(A.7)
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Figure A-1: NQR energy level diagram for the I=3/2 eigenstates with transition rates,
Wkm shown.

When r = 0, (d) is -+3/2Z, (a) is -+1/2Z, (c) is -1/2L, (b) is -3/2Z.

The energy level diagram with the possible transitions between the levels is shown

in figure A-1. For the rest of these calculations, we will be following the procedure of

Slichter, p. 190-198 [15] and Pennington's thesis p. 119 [14].

We need to calculate the transition probabilities, Wkm, between the energy levels,

k, m. For correlation time, ro, of the magnetic fluctuations much shorter than the

NQR or NMR time scale 1/w, [15]

Wkm = Z-yh 21 < mIqk > 12 2To (A.9)
q

where hq is the magnetic field of the fluctuation and the sum is over the crystal axes

(q). With this definition,

= 2W 1/2 ,-1/ 2  (A.10)
TI N MR

Applying this formalism, for NMR with the magnetic field applied along the z axis,

(T1,z)N = NM r (hx + h2) (A.11)

We will use this result (and the symmetric results for the other axes) for comparison

with the derivation for NQR 1/T 1 .

Now we need to know the transition probabilities shown in figure A-1. Actually,
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we do not need to know all of them, just the ones which transition between the

different energy levels. Using eq.A.9 and the eigenvectors,

Wab = 27yro h2 (A.12)
(3 + 772

Wad = 2 + [(3 +( 3) 2 h + (3 - h (A.13)

Also, Wcd = Wab and Wbc = Wad as might be expected by symmetry. As we expect

Wab -* 0 as n/ -+ 0, because this transition is not allowed for 7 = 0.

The differential equation for these energy levels is [14],

a -(1+2+3) 1 2 3 a

d b 1 -(1+3+4) 3 4 b

d- 2 3 -(1+2+3) 1 c

d 3 4 1 -(1+3+4) d
(A.14)

where 1 Wab, 2 Wac, 3 Wad, 4 Wbd.

In an NQR T1 experiment, we reverse the populations of the higher and lower

energy states, so the initial condition (the difference between the excited state and

thermal equilibrium) is

(1, -1, 1, -1) (A.15)

This is an eigenvector of the transition matrix with eigenvalue -2(Wab + Wad). This

means that the NQR relaxation is a single exponential with spin-lattice relaxation

rate,

= 2 (Wab + Wad) (A.16)
T1 NQR

()NQR 7 - { ( ) [ (3 2 h2 +(3 _ 772 + ( 2]) h2 (A.17)

Using eq. A.11, we can write 1/T1,NQR in terms of the values that would be obtained
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for 1/T 1 by NMR with the magnetic field applied along each of the crystal axes.

-) = (2j( q - 3) 1 + 27(7 + 3) + (9- r72)T1 (A.18)
T1)NQ R (3 + 72 T1,z T1,y T1,z

where 1/T,, refers to the value for NMR with the magnetic field applied along the

axis a.

We remind the reader that this applies only to I=3/2 and magnetic relaxation.

This formula has the correct limiting behavior as 7 = 0,

( 1=3T (A.19)
T1 NQR,(n=O)

A.1 1/T2L for '7 # 0

The same processes that cause spin-lattice relaxation, 1/Ti also cause transverse

relaxation, 1/T 2. These processes will cause Lorenztian (exponential) relaxation,

1/T2L. In fact, for magnetic relaxation, we can calculate the expected value of the

exponential component of T 2, T2L, from T, using Redfield theory ([15] section 5.4-

5.11). We can use the above results for 1/Ti to also calculate the contribution to

1/T 2 from these T1 processes, 1/T2L.

To calculate for NQR when q = 0, we follow the density matrix calculations

strategy laid out in Slichter chapter 5 [15].

1= Raw' pay (a'|Ixla) (A.20)

where a, a', 0,3' refer to the quantum states and pp1 , is the density matrix.

1
R a p [Ja.0,1(01 ' - 3')+ Japalta(a - /) (A.21)

ZC, J-y#7a( - a E3 - Z 'c~'rn' (b -0'
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Jaa/A3,(W) = j (aIHf (t) Ia')('Hf(t + T)j13) exp(-iT)d T

where Hf is the fluctuating magnetic field causing the relaxation.

We should note that it is also possible to calculate 1/T1 this way, but this would

be the hard way.

=1( (A.23)

For example, for NMR these expressions simplify quite a bit.

1
2= R -

T2L C't
(A.24)

1/T2L has been previously calculated for I = 3/2 for NMR, and for NQR when 77 = 0

[14].

+

2= T
(T2L,z as2 12 2 1X

+3
T1,)

+ 2 (
T1,Z

where 1/T 1, refers to the value of 1/Ti for NMR when the magnetic field is applied

along the direction a.

When r; # 0, unfortunately many terms that were previously zero are no longer

obviously zero, so the calculation involves many JQ&~pi,(w) terms. For example,

Jba,b,a = (7 2 _ h2kZZ (wn)
(3 + q2)

Jdbac - 77(n7 3) h2kx2(0)(3+ q72)
+ -7(n + 3) h2kyy(0)

(3 +772)

(A.27)

(A.28)

where the states a,b,c,d were defined at the beginning of this appendix. These terms

are obviously zero when 17 = 0.

Summing up all the relevant Rcaigg, terms, we derive results for 1/T2L. Using the

formalism of Slichter [15],

(T2L NQR
= ( 1 ) [(15+3772 )h2+(h2 )ro + (3+3772)h2,ro]

3 +7 022 YZI
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(A.25)

(A.26)

(A.29)

Raa, 00, Ami (a'| Iz Ia)

T2L,z) 1/2+-1/2 2 T1,'



Using eq. A.11,

(i= ( 1 2) [(3 + 3-r2) 1+ 6 1 (A.30)
T2LNQR ~ 3 + / TLy TzJ

We remind the reader that 1/T1,a refers to the NMR results for the field along the axis

a. This means that NQR 1/Ti alone is not enough to specify 1/T2L. The anisotropy

for 1/T 1 by NMR along the different axes needs to be known or estimated. We should

note that the change in 1/T2L as a function of 'r is not that strong because all three

crystal axes are included in the original expression. In contrast, the difference between

1/T 1 measured by NMR and NQR can be considerable. This happens because non-

zero qr adds an h, component to NQR 1/Ti. In these copper-oxides, there is a large

anisotropy in the magnetic field fluctuations at the copper nucleus with h, > h , ~ hy.

As an example, we take the edge chain copper site of Sr 2 Cu 30 5 , which has a large

r7 = 0.64 and an anisotropy of 1/T 1 , (1/T 1 ,2,/1/T1 ,,) = 3.6. 1/T2L differs from the

71 = 0 value by only 15%, while 1/T 1 from NQR is 43% larger than 1/T 1 ,z from NMR.

As a final note, then, it is crucial to remember that the 1/T 1 values on the right hand

side of equation A.30 are the NMR values. Also, it is interesting to note that this

result for 1/T2L can be more easily derived from the result that we obtained above

for 1/T 1 .
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Appendix B

1/T 2 0 NQR for unaligned samples

In a two spin system, the Gaussian nuclear spin-spin relaxation rate, 1/T2G, measures

the coupling, a, between nuclear spins.

( 1 2- _2_2 (B. 1)
T2G 4

= azzI(1)Iz(2) (B.2)

This nuclear spin-spin relaxation occurs even with a spin echo pulse sequence. This

happens because both nuclei that are interacting are flipped by the 7r pulse, so the

spin dephasing is not canceled by the spin echo pulse sequence. If the second nuclei

spin, I (2), is "different" from the first, in the sense that the second spin is not flipped

by the 7r pulse that flips the first spin, the spin dephasing caused by the spin-spin

interaction will cancel out. Deriving the coupling constant between the nuclei spins

from the experimental value of l/T 2G relys on accurate knowlege of how many of the

coupled nuclei can be consider as "like" nuclei. "Like" nuclei are defined by the fact

that their spins are flipped by the applied rf 7r pulse.

Our goal in this calculation is to calculate what the measured value of l/T2G is

for NQR when the sample is unaligned, so the crystal axes are random with respect

to H1, the rf magnetic field applied for the spin flip pulses. The overall plan is to

calculate the measured 1/T2G for an arbitrary angle, 0, between the principle axis

of the quadrupole interaction and H1. Then, at the end, we will average over 0 to
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account for the random distribution of angles. We shall assume that rj = 0, so the

spin eigenvectors for NQR are quantized along the principle axis of the quadrupole

interaction. As an added bonus, along the way we shall determine the relative NQR

intensity for an unaligned sample versus an aligned sample with H1 perpendicular to

the principle axis of the quadrupole interaction.

For this calculation, I will use a spin 1/2 model. This is appropriate because here

we are dealing with NQR which is effectively a two state system, ±1/2 and +3/2. Of

course, using a two state system simplifies the calculation immensely. The quantum

state of any two state system, like spin 1/2, can be represented as a unit vector in

three-dimensional space. The transformations that we apply can be represented by

rotations in three-dimensional space (for reference see Slichter, back cover [15]).

The pulse sequence used to measure 1/T2G is 7r/2 pulse-r-w pulse-r-echo where

the delay time r is varied to measure the r dependence of the echo integral, M(2r).

M(2r) = M(0) exp ( 2)exp ( 2) (B.3)

The length of the two pulses are designed to "rotate" the spin through an angle of 7r/2

and 7r. Experimentally, the pulse lengths are chosen to maximize the echo integral. In

an unaligned sample, it is not clear a priori that this criteria corresponds to the same

pulse lengths as would be used in an aligned sample. In the end, we shall find that

the peak of intensity in an unaligned sample corresponds to the same (7r/2-r) pulse

lengths as used in an aligned sample, but for the calculations we shall use arbitrary

angles h and 2h for the rotation angles of the first and second pulses respectively.

To demonstrate the method of calculation, I will first show the calculation of the

intensity for the unaligned sample relative to an aligned sample without any spin-spin

coupling. Once the nuclear spin-spin coupling is added, the calculation follows the

same format, only the complexity increases.

The calculation essentially follows the pulse sequence. We start with the initial

conditions with a net spin aligned with the quadrupole axis. Then, we apply the

appropriate transformations in sequence. The transformation that we need is for
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VZ

H1

X

Figure B-1: Geometry of H1 and the quadrupole interaction for this calculation. The
axes X,YZ, are defined by the quadrupole interaction with Z being the principle axis.
H1 lies in the Z-X plane at an angle 0 with the Z (quadrupole) axis.

rotation around the z axis by an angle x,

cos(X) - sin(x) 0

Rz[x]= sin(x) cos(x) 0 (B.4)

0 0 1

The other tool that we need is the change of coordinates transformation between

the quadrupole axes and the axis of H1. Since we have assumed that 'r = 0, we are

free to choose H1 as being in the z-x plane and having an angle 0 with the principle

quadrupole axis (figure B-1).

cos(O) 0 sin(9)

RtoH1= 0 1 0 (B.5)

-sin(9) 0 cos(0)

Note that there is a fundamental difference between these two different transforma-

tions. The Rz matrix represents the actual rotation around the z axis of the nuclear

spin with an applied magnetic field along the z axis. The RtoHl matrix just repre-

sents a coordinate transformation. For this pseudo-spin 1/2 system, however, we do

not need to distinguish between the two different types of transformations. So, we
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take the initial condition of spin along the quadrupole z axis,

Iinitial = (0, 0, 1) (B.6)

and apply the appropriate transformations,

Ifinal = Rz[QT]-RtoHl 1- .Rz[2h]-RtoH1.Rz[Qr]-RtoHl 1- -Rz[h]-RtoHl-'initia (B.7)

This implements the pulse sequence: 7r/2 pulse - rotation angle h, dephasing angle

ir, 7r pulse - rotation angle 2h, and another dephasing angle QT. Note that the

combination of transformations, RtoH1-1 -Rz[h] - RtoH1, rotates the spin around H1

by an angle h. At the end, the spin is in the coordinate system of the quadrupole

interaction.

We integrate the final spin over the dephasing angle Qr. We assume that this

dephasing magnetic field is uniformly distributed over the entire range from Qr = -7r

to 7r.

Iav If inal dQr (B.8)

The results for Ia, are

Ix,av 8 cos(0) sin3 (0) cos 2 (h/2) sin4(h/2) (B.9)

Iy,av = - sin 3 (0) sin3 (h) (B.10)

The z component, I, is not important since it will be static and will not contribute

to the intensity.

Now, we want to derive the intensity. For an aligned experiment, where 0 = 7r/2

and h = 7r/2 , the intensity is maximized and equals I, = -1. The negative sign just

arises from our choice of phase for the pulses which puts the nuclear magnetization

pointing along the negative y-axis. For the unaligned experiment, we need to average

over 9. The spin will precess around the axis of the quadrupole interaction (in the

x-y plane), but the intensity is measured with a inductive coil with the axis in the
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VZ

sinO

X
Figure B-2: Probability for the angle 9 between H1 and the crystal Z axis. The
relative probability for any angle 9 is the circumference of the circle shown, 27r sin 9.

direction of H1. The component of the precessing magnetic field along the inductive

coil will be oc sin 9. Also, the distribution of the angle 9 for the crystallites in the

powder will be (figure B-2)
2wr sin 9d9 1fn = 2 sin 0 (B.11)

f dO 2

So, to derive the overall intensity, we integrate over the possible angles, 9, between

the crystallites Z axis and H1.

Intensity = j I, sin2 ()d9 (B.12)

The result is

Intensity, = 0 (B.13)

Intensity -16 sin3 (h) (B.14)

The spin along the x direction cancels out, but the y direction gives us a maximum

intensity of 16/30 for h = r/2. So, NQR in unaligned powder will use the same pulse

length as in a sample with H, .L Z, but the intensity will be roughly half (16/30).

Now, a similar procedure of calculation is used for the change in 1/T2G in unaligned

powder. The nuclear spin-spin interaction is added during the times r. The nuclear

spin interaction is

= (B.15)
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where I have called the two nuclear spins, I and S, just for bookkeeping purposes.

The spin-spin interaction transformation on spin I is [15]

cos(a-r/2) -2S, sin(aT/2) 0

S-S = 2S_ sin(ar/2) cos(aT/2) 0 (B.16)

0 0 1

The complicated part arises from the fact that the components of the nuclear spin,

S, also transform in the same way that the components of the spin, I, do when rf

pulses are applied. We make the approximation that only the z-component (along

the quadrupole axis) of the spin-spin interaction is important. This is a reasonable

approximation in the copper-oxide materials because the hyperfine coupling to the

electron spin is 2-3 times stronger along the z axis, so a,, > ax, ay [27]. This helps

simplify the calculations because then this spin-spin interaction commutes with the

dephasing interaction. We can ignore the fact that both of these interactions occur

simultaneously, and apply them in whatever order we wish.

In order to make things look a little simpler, we define the interaction, Rpulse[h] =

RtoH1-1 -Rz[h] -RtoHl. This interaction then implements the entire pulse of length

h, including the coordinate transformations to and from the H1 coordinates. So the

interactions we apply are

Ibefore r pulse = S-S, -Rz1 [QiT] -Rpulse[h] * Initial (B.17)

'final = Rzs[QsT] - Rz1 [Qrr] - S-Ss -S-S, - Rpulses[2h] -Rpulsel[2h] -Ibefore 7 pulse

(B.18)

where the subscript I or S denotes which nuclear spin the interaction is applied to.'

Also, the random dephasing interaction will in general be different for the two spins,

so the rotation angle is IrT for spin I and QSr for spin S. As before, we integrate

over the random dephasing interactions, Qr and Qsr. In addition, we take the trace

over the spin S. This is done because the spin S has nearly equal probability to be

in any particular direction before the pulse sequence begins. The polarization of the
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nuclear spins is very tiny at our experimental temperatures, -104 at 5 K. We also

use our result from the previous part of this calculation that the intensity is maximum

for h = r/2. The result is

Iay = Trs J dQTr j d)sr Ifinal (h = 7r/2) (B.19)

Iy,av = - sin3 9 [(1 - cos 2 9) cos(a-r) + (cos 9 - cos 3 9) sin(ar) + cos 2 9] (B.20)

We can see here that for 9 = 7r/2, the interaction dependence is cos(aT) as we expect

and the intensity is unity (-1). Now, we integrate this expression over the random

distribution of the crystal axes as before,

fr 1 2 161
Spin-spin intensity = IY,av sin (0)d= - - (1 + 6 cos(ar)) (B.21)

In the Gaussian approximation for T2G, we match the second moments.

-(2)2 (2T) 2  (B.22)
exp 2T22G 2TG(.

cos(ar) 1 (aT)2  (B.23)
2

In this case, we have
1 6 (aT)2  ( 5
(1+ 6 cos(a)) ~ 1- 2 (B.25)

1 )2 6 1 )2 (B.26)

T2G powder 7 T2G , axis

In order to compare between 1/T2G for NQR and NMR, we need to also include the

factor of v/2 which arises from the fact that for NQR there are twice as many "like"

spins [27, 26]. For NQR, both the +3/2&-+1/2 and the -3/2++-1/2 transitions have

the same frequency, so the nuclei are flipped for all values of I,. For NMR with a

quadrupole interaction, the transitions all have different frequencies. So, if 1/T2G is

measured using the +1/2+-1/2 transition, the spins with I = +3/2 or -3/2 are not
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flipped. Therefore, for NMR, equation B.1 requires another factor of 1/2 on the right

hand side.
1a 22 -2 (B.27)

T2G NMR,I=3/2 8

- v 2 1.31(B.28)T2G NQR powder 1.1G NMR,Z axis 2G NMR,z axis

where the Z axis is defined both as the principle axis of the quadrupole interaction

with 7 = 0 and the important spin component of the nuclear spin-spin interaction. Of

course, this calculaton only applies to spin I=3/2. This result is in good agreement

with recent experiments, such as the experiments on the three-leg ladder, Sr 2 Cu 30 5 ,

described in this thesis where the ratio of 1/T2G from NQR versus NMR is 1.33+0.03.

However, the results for the two-leg ladder, SrCu 2 0 3, are not in such good agreement

with the ratio being 1.5 + 0.1. Also, these materials have 77 : 0, but the effect of this

on the measured NQR 1/T2G should be small since it is a slight alteration in the 7%

effect of the calculation described in this appendix.

We should note that the ~ 7% effect (N6/~7) calculated here is different from

previous calculations done several years ago which arrived at a 3% effect [26]. The

difference is that the previous calculations only considered the effect of the component

of H1 perpendicular to the Z axis. This approximation is perfectly valid as long as

the nuclear spin is close to the Z axis (which would correspond to very short pulses).

However, for the 7r pulses that we are considering, there is a significant difference in

the resulting nuclear spin direction. To be specific, for example, if H1 makes an angle

of 45 degrees with the z axis, then a wr pulse leaves the nuclear spin only 90 degrees

away from the z axis. Approximating H, by its perpendicular component would give

the result, 180 sin(45) in degrees, or 127 degrees.

Of course, we should emphasize the limitations of this calculation also. This

calculation applies only to I=3/2 and r = 0. In addition, it assumes that the Z

axis is both the principle axis of the quadrupole interaction and the only important

direction for the nuclear spin-spin indirect coupling. However, these assumptions

seem well fulfilled for 13Cu in high T, copper-oxides.
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Appendix C

NMR/NQR units notes

For conversion of hyperfine interactions from kOe/p to energy units,

hyperfine in eV = () (y.-h)(hyperfine in kOe/pB) (C.1)
JIB

For a specific conversion [137],

hyperfine in eV = (2) (yh in J/gauss)(6.24 x 10 2 1)(hyperfine in kOe/stB) (C.2)

For 63Cu,

hyperfine in eV = (9.3610- 9)(hyperfine in kOe/LB) (C.3)

For 170

hyperfine in eV = (4.7410- 9)(hyperfine in kOe/pB) (C.4)

This is really a conversion between two different quantities. The hyperfine given

in k0e/PB is the magnetic field created at the nucleus per Bohr magneton of electron

spin. The advantage of this formulation is that it is independent of the nucleus

involved. To convert this into an energy requires the interaction energy of the nucleus

with this magnetic field. The energy units provides the energy of interaction of the

electron spin-nuclear spin system, A.

e-n = AI -S (C.5)
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For conversion of susceptibility to Knight shift [79],

A
KnPin = NAPB Xspin (C.6)

where A is the hyperfine coupling and NA is Avogadro's number.

A in kOe/IB = 5.580 Kn,,in (C.7)
(Xspin in cm 3 /mole)

For calculations involving 1/T 1 , it is easiest to use the hyperfine interaction in

units of electron volts. However, the equation given in chapter 2 is written for kOe/pB

since that is conventional in NMR. Converting the earlier equations (eq. 2.13) shown

here,

( ) (F,1(q)2 + F, 2 (q)2 )S(q, Wn) (C.8)

S(q, w) = X"(q, w)/(1 - exp(-hw/kBT)) (C.9)

The result for the equation of 1/T 1 for the hyperfine in terms of electron volts and

using the imaginary electron susceptibility, x", instead of the spin structure factor,

S.
1 kT E(F,(q)2 +F±, 2 (q)2)X"(qw) (C.10)
T1  2(Yeh)2h2wn q

For this equation, the units used are electron volts for kT, Wn, and hyperfine coupling

F. The units for h are eV-sec and for X"(q, wn) is the full susceptibility with the

factor (g11B)
2 . To simplify calculation with the susceptibility, often the susceptibility

has the factor (g1tB) 2 which cancels the factor of ('ye h) 2 in the denominator of the

expression for 1/T 1 . With this simplification,

1 kT
2h2  (F,1(q)2 + F±,2 (q)2)x"(q, wn) (C.11)

and the imaginary susceptibility is in units of states/(eV spin).

The susceptibility in terms of states/(eV spin) can easily be converted to conven-
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tional experimental units, cm 3/mole.

X (in cm 3/mole) = (gpB)2NAx (in states/(eV spin)) (C.12)

Often, theoretical results for the susceptibility are given without any units specified.

The energy scale in the susceptibility is set by the problem (in this case the exchange

coupling J), so the units are states/(J spin) [66].
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