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Abstract

The first part of this thesis outlines the details of a computational program to identify
genes and their coding regions in human DNA. Our main result is a new algorithm for
identifying genes based on comparisons between orthologous human and mouse genes.
Using our new technique we are able to improve on the current best gene recognition
results. Testing on a collection of 117 genes for which we have human and mouse
orthologs, we find that we predict 84% of the coding exons in genes correctly on both
ends. Our nucleotide sensitivity and specificity is 95% and 98% respectively.

Most importantly, our algorithms are applicable to large scale annotation prob-
lems. The methods are completely scalable. We are able to take into account multiple
or incomplete genes in a genomic region, splice sites without the usual GT/AG con-
sensus, as well as genes on either strand. In addition to our algorithmic results, we
also detail a number of computational studies relevant to the biological phenomena
associated with splicing. We discuss the implications of directionality in splice site
detection, statistical characteristics of splice sites and exons, as well as how to apply
this information to the gene recognition problem.

The second part of the thesis is devoted to combinatorial problems that originate
from domino tiling questions. Our main results are upper and lower bounds for forcing
numbers of matchings on square grids, as well as the first combinatorial proof that
the number of domino tilings of a 2n x 2n square grid is of the form 2n(2k + 1)2. Our
approach to both problems is concrete and combinatorial, relying on the same set of
tools and techniques. We also discuss a number of new problems and conjectures.

Thesis Supervisor: Bonnie A. Berger
Title: Associate Professor of Applied Mathematics
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Overview

This first part of this thesis outlines the results of an investigation undertaken to
identify and annotate genes in human DNA. Even though most of the work described
was initiated with this goal in mind, many of the results obtained are of independent
biological interest.

We begin in Chapter 1 by reviewing the relevant biology. Much of the discussion
is simplified so that the introduction is accessible to persons not familiar with biology
(specifically, mathematicians). Additional information may be found in books by
Lodish et al., Watson et al. [58, 89], or Lander & Waterman [56]. Readers not
familiar with biology jargon might find the glossary by Rieger et al. [73] to be a
useful reference. We then proceed to outline the issues and problems addressed in
this thesis. We discuss both the overall goals of gene annotation, as well as the
particular aspects of various subproblems such as splice site recognition.

Chapter 2 contains a survey of previous related work.
In Chapter 3 we discuss distinguishing features of introns and exons that we dis-

covered computationally. We survey some well known characteristics (e.g. length
distributions), and also present some new results of our own. In particular, we de-
scribe a new statistical technique for distinguishing introns and exons based on frame
preference, as well as novel methods for splice site prediction. Our splice site tech-
niques are applied in subsequent chapters for the purpose of exon prediction.

Chapter 4 presents the framework of our gene recognition program. We describe
our use of dynamic programming as a basic framework within which to do gene
recognition. The various statistical tests and computational techniques we describe in
the subsequent chapters are integrated within the dynamic programming framework
to find "optimal" solutions to the various problems we address.

The "dictionary approach" described in Chapter 5 is an efficient way to score exons
in a dynamic programming. It is based on finding matches of an input sequence to
sequences in a database.

Chapter 6 describes an intriguing new approach to gene recognition based on an
analogy of the Rosetta stone deciphering idea. Instead of using computational tech-
niques to predict biological signals in one organism alone, information from another
organism is used simultaneously with the first to enhance the signals. The motiva-
tion behind this approach is the observed fact that mouse genomic sequence exhibits
high similarity to human genomic sequence in coding exons, but this similarity is
less apparent in introns and other noncoding regions. We begin by describing a new
alignment procedure designed for aligning large genomic regions from the human and
mouse. The alignment algorithm represents a breakthrough over previous approaches
in speed and accuracy. For example, we show how to align entire 400kB BACs in
minutes. We then proceed to show how a good alignment can be used to find coding
exons in genes by looking simultaneously at human and mouse aligning fragments.
The approach once again uses dynamic programming, as well as many of the same
ingredients used in the dictionary approach in Chapter 5; however, the combination
of signals in the human and mouse allows for much more accurate predictions.
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Chapter 1

Biology Background and Goals

1.1 The Genetic Dogma

The field of biology has been rapidly changing during the past century, largely due
to remarkable discoveries in molecular biology. Perhaps more important than the
many significant contributions that have been made, is the collective understanding
that there is a framework underlying all of biology. The foundation of this framework
is made of genes that form the blueprints for a massively parallel, self regulating,
dynamical system. This system is incredibly complex, but despite this fact biologists
have started to understand it in considerable detail, and one of the principles that
have been discovered is that of the genetic dogma. This has been an understanding
of how the system operates on a large scale. This chapter is intended to introduce
the reader to some of the biology and terminology that is used throughout this thesis.
Readers with only a mathematical background will find it useful to refer to more
general texts such as Lodish et al. [58], or introductory chapters on biology (written
for mathematicians) such as Chapter 1 in Lander & Waterman [56].

For the purposes of our discussion, we will define a gene (see Figure 1-1) to be
a single, contiguous region of genomic DNA that encodes for one protein (it will be
convenient to also consider the flanking regions that contain promoter signals, etc.
as also being part of the gene). There are four different nucleotides that make up
a sequence of DNA. These are Adenine (A), Cytosine (C), Guanine (G) and
Thymine (T). For our purposes, we will think of DNA as being a string on an
alphabet of size 4 (A,C,G,T). DNA physically exists in the form of a double helix
(containing two strands, and a gene can be a subsequence occurring on either strand.
When a gene is expressed, it is first copied in a process known as transcription. This
forms a product known as RNA, which is a working template from which a protein is
produced in a process known as translation. Before translation, the RNA undergoes
a splicing operation [79] conducted by certain enzymes, which typically delete most
of it, leaving certain blocks of the original strand of RNA intact. These blocks are
called exons and the parts that are removed are called introns. The result of this
pruning is the "mature" RNA (mRNA), which is used during translation to make
the protein. The protein consists of a sequence of amino acids linked together. During
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DNA 5'.

Transcription

RNA 5,

.... AGACGAGATAAATCGATTACAGTCA ..... 3'

- - - AGACGAG UCGAUUACAGUCA .....

Translation

Protein .... - DEI-

" Protein Folding
Problem

Splicing

Exon Intron Exon Intron Exon

Protein

Figure 1-1: A schematic view of the transcription-translation process.
During translation the T nucleotide becomes a U (Uracil). In this example, the
boxed UAA triplet is not a codon and therefore does not end translation. Rather,
the in-frame codons are "...GAC GAG AUA...". These are translated into "...D E
I..." (D=Aspartic Acid, E=Glutamic acid, I=Isoleucine). Splicing occurs before
translation. The translated amino acid sequence is folded into a protein.
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translation, each amino acid is produced by a triplet of consecutive nucleotides, known
as a codon, according to a known map that is called the genetic code (see Table
A.1). This defines the coding frame of the gene.

The gene actually has a "start" translation signal (ATG) and a stop translation
sequence (TAA, TAG or TGA) both within exons; the sequence within exons between
these forms the coding part of the sequence which contains all the information used
to make the protein. The rest of the gene consists of introns, initial and final "non-
coding exons" (these are exons that are glued together with the coding exons, but
that are not used for making protein), as well as flanking regions containing biological
signals of various sorts. Notice that a gene has directionality; it can appear either
on the forward direction, or in opposite strand in which case it is traversed in the
opposite direction, hence reverse complement. The directionality of a gene is
always annotated as 5' -+ 3', that is, the gene is traversed from the 5' to the 3'
direction. The splice sites on the 5' end of an intron are known as donor splice
sites. On the 3' end they are known as acceptor splice sites.

1.2 The Splicing Cycle

The mechanism by which introns are spliced from human genes is not completely
understood at this time. Nevertheless, a large number of pieces of the puzzle have
been discovered, and while they cannot all be put in place at this time, enough is
known to present a general picture of the process.

The components responsible for executing various stages of the splicing process
are called spliceosomes. These are for the most part RNA-Protein complexes. We
discuss some of the more important ones in the following sections, although we em-
phasize that it is widely believed at this time that not all the spliceosomes have been
discovered. The splicing cycle is summarized in Figure 1-21 in pictorial format.

In order for introns to be properly spliced a number of conditions must be met:
There have to be functional splice junction sequences in the pre-mRNA. These are
alluded to below, and discussed in more detail in Chapter 3. Secondly, activity of at
least three small nuclear ribonucleoprotein particles (abbreviated snRNPs and
pronounced "snirps", these are spliceosomes) is required. The critical snRNPs are
called U1, U2, U5, U4, and U6 (see Figure 1-3 1). Finally, the presence of ATP is
necessary.

Figure 1-2 shows how an intron is excised in a sequence of steps. U1 attaches at
the donor splice site by "recognizing" a consensus sequence around the dinucleotide
GT. The recognition is accomplished, in part, by the complementarity of the RNA in
the snRNP to the sequence. The precursor mRNA is cleaved at the 5' site and a lariat
(loop) structure is formed between the G at the 5' site and an A further downstream
in the intron. This A is part of a small subsequence known as the branchpoint
which is recognized by the U2 snRNP. Finally, the 3' exon junction is cleaved and the

'From: MOLECULAR CELL BIOLOGY by Lodish et al. (c) 1986, 1990, 1995 by Scientific
American Books Inc. Used with permission by W. H. Freeman and Company.
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exons are ligated together.
The discussion above omits a number of critical, although contested issues in

splicing biology. One of the important issues, is the role of mRNA secondary structure
in the spliceosome interactions with the sequence. Evidence in this regard ranges
from specific experiments affirming the role of secondary structure (e.g. Coleman
and Roesser [19]), to counterarguments based on purely theoretical evidence such
as extremely long introns (which would suggest that local structure may not play a
large role). The exact role of secondary structure in splicing remains to be determined.
Also, we have ignored some rare and different splicing interactions, where the GT may
not be present in the splicing consensus, or other spliceosomes are involved (Sharp &
Burge [80]).

1.3 Biological Signals and Patterns in DNA

The extent and variability of consensus sequences associated with biologically relevant
signals largely determine the applicability of the signals for exon prediction. We briefly
review the important biology associated with commonly used biological signals, and
the consensus sequences associated with them.

Promoters

A Promoter is a DNA sequence that directs RNA polymerase to bind and initiate
specific transcription of genes. Although promoters should, in principle, significantly
aid in the distinction of genes (by indicating their exact beginning), the complex
nature of the sequences, and their variability, makes the identification of promoters
and unsolved problem. In eukaryotes, there is usually a conserved AT-rich region
TATA (known as the Goldberg-Hogness or TATA box). Promoters are not analyzed
in this thesis, in part because their computational recognition is very difficult given
the current biology that is known about them. Nevertheless, we acknowledge that
future work should, and will, include promoter recognition.

Kozak Consensus

The translation process described in the first section is executed by a ribosome which
begins at an initiator codon. The initiator codon is usually ATG (methionine), and
is surrounded by a relatively weak consensus known as the Kozak consensus [53].
The Kozak consensus is the sequence CCRCCATGG. ATG is the preferred initiation
codon (and appears in all of our learning and test genes), there are exceptions to this
"rule". In humans, the codons ATA and ATT also appear as initiation codons and
in mice there is also ATC. Because of the rarity of these occurrences, we have not
allowed for the possibility of such initiation codons in this thesis, although a careful
study of them and their consensus sequences is clearly necessary in future work.
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Figure 1-3: Some of the snRNPs and their interactions
The figure shows how the U4 and U6 snRNPs interact with each other, as well as the

complex interaction between U2, U5 and U6. U1 is complementary to the consensus

sequence CAGGTAAGT at the donor splice site in introns. Notice that the triplet
CAG at the beginning of the donor splice site consensus is in the exon.
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Signal Peptide

Also known as the leader sequence or signal sequence, this is a region of DNA
following the initiation codon that initiates and mediates translocation of membrane
and secretory proteins across the cell membrane or endoplasmic reticulum. The region
is translated at the beginning of protein synthesis into a polypeptide that is recognized
by protein-RNA complexes (and later cleaved). The region is characterized by a 7-15
long amino acid chain of hydrophobic residues. The cleavage site consists of a more
polar C-terminal region.

Splice Sites

Of the many biological signals involved in splicing, the splice sites themselves are
the best studied, and many results have been obtained regarding specific consensus
patterns, as well as biologically relevant features in the neighborhoods of the splice
sites. The biologically relevant characteristics of splice sites vary greatly between
species, in what follows we discuss the specific case of humans:

Donor splice sites are characterized by a strong consensus of GGTRAG. About
half the splice sites obey this consensus. The interaction of the U1 snRNP with
this splice site is complex, and many results have been obtained about how and why
specific sequences deviate from the consensus. Even though the 9 nucleotides adjacent
to the GT seem to be the most important in determining an intron's propensity for
splicing, the region adjacent to the splice site in the intron (up to 20 basepairs) seems
to also play an important role in splice site selection. In particular, as outlined by
McCullough and Berget [63], G triplets play an important role in splicing in certain
introns. Surely there are many more such biologically important phenomena.

The acceptor splice site exhibits a much smaller consensus than the donor splice
site. Indeed, CAG is the most common ending, with the nucleotide after the AG
also having some significance. The region immediately preceding the acceptor splice
site is known to enhance splicing when it is rich in pyrimidines (the nucleotides C
or T). The pyrimidine rich region is usually of length about 20, and is known as the
pyrimidine tract.

Branch Points

The branch point or branch site is the site at which the 5' end of the intron be-
comes covalently attached near the 3' end of the intron during splicing. The branch
point is usually somewhere between 20-40 basepairs to the left of the acceptor splice
site, and often appears right before the pyrimidine tract. The branch point has a
strong consensus in yeast, conforming to the specific sequence TACTAAC. In hu-
mans, the consensus is much weaker, usually YNYURAY, although of the many
variants CTGAC is common.
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Poly A Signal

The poly A signal appears after the stop codon of a gene and signifies the site for
the initiation of polyadenylation. Polyadenylation is an mRNA processing event in
eukaryotes characterized by the addition of 50 to 250 adenosine residues to the 3' end
of the mRNA (known as the poly(A) tail). The poly A signal consists of a pattern of
four to six bases of DNA, for example AATAAA. This consensus pattern (and other
consensus sequences) at the end of genes can be used for gene identification, however
their identification and application is not explored in this thesis.

Repeats

Repeats are repetitive sequences of DNA that occur throughout eukaryotic genomes.
They form approximately 30% of the DNA. Their importance derives from the fact
that they are usually not found in coding exons, and therefore their recognition and
annotation is of key importance in gene identification. The origin and role of repeats
in human DNA is only partially understood, and is the source of much current research

(see Smit [81]).
Repetitive DNA sequences can be classified into four main groups:

1. Repeated Genes.

2. Interspersed repetitive sequences.

3. Tandem highly repetitive sequences.

4. Inverted repeat or foldback sequences.

The interspersed repeats fall into two subcategories: short period interspersed repeats

(called SINEs), and long interspersed repeats (called LINEs). The SINEs are usually
about 300 bp long sequences, are repeated inside longer DNA segments of a few
kilobases, and show high variation (e.g. Alu repeats). The LINEs, on the other hand,
are long repeats, often more than a few kilobases, that are more homogeneous than
their SINE counterparts. Examples include the Li repeat sequences. Tandem repeats
are short sequences of repeated DNA (such as CACACACACA ... ). These may occur
in coding exons, and are also known as low complexity repeats.

The wide variation in types of repeats, as well as the differences in homogeneity
between the different classes, makes them very difficult to identify. Indeed, this is an
area of ongoing research, and highly specialized packages such as RepeatMasker [97]
have been developed for this purpose. In this thesis, we used RepeatMasker to mask
repeats, although we also investigated the applications of the dictionary for repeat
masking (discussed in Chapter 5).
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1.4 What do you do with 100KB of human ge-
nomic DNA?

Recent advances in DNA sequencing technology have led to rapid progress in the
Human Genome Project. Within a few years, the entire human genome will be
sequenced. The rapid accumulation of data has opened up new possibilities for biol-
ogists, while at the same time unprecedented computational challenges have emerged
due to the mass of data. The questions of what to do with all the new informa-
tion, how to store it, retrieve it, and analyze it, have only begun to be tackled by
researchers (for an excellent discussion about these issues see Lander [55]). These
problems are distinguished from classical problems in biology, in that their solution
requires an understanding not only of biology, but also of mathematics and computer
science. Of the many problems, it is clear that the following tasks are of importance:

" Finding genes in large regions of DNA.

" Identifying protein coding regions within these genes.

" Understanding the function of the proteins encoded by the genes.

The important third problem, namely understanding the function of a newly se-
quenced gene, requires the solution of the second problem, identification of critical
subregions which code for protein. Protein coding regions have different statistical
characteristics from noncoding regions, and it is primarily this feature which enables
us to distinguish them. An important aspect of work on the problem is the need to
characterize these statistical differences and possibly explain their biological under-
pinnings.

1.5 The Computational Challenges in Gene Anno-
tation

The computational task we are concerned with is that of determining from an experi-
mentally determined sequence of nucleotides, of length on the order of 100,000, where
the genes are, and what proteins these genes produce. We may also be interested
in further annotations, describing specific features of the genes, such as repetitive
regions, or sites of biological significance. This endeavor has three parts, though in
practice one handles them together: the first two are determining where each gene is,
and determining which parts of its sequence are exons and which are introns. Con-
currently, it is necessary to annotate regions in an attempt to find features useful for
the first two problems. In this thesis we focus on the problem of distinguishing exons
from introns, although along the way we address some of the other annotation issues
that arise.

Fortunately, we are not restricted to using only the obvious biological signals avail-
able to nature. Of primary importance is the use of repeats, which occur throughout
the human genome, but very rarely in coding exons (see biology background above)
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Secondly, the codons (and consequently amino acids) that code for protein, are not
uniformly distributed, and their distribution differs from the distribution triplets in
introns. This can help in distinguishing introns from exons. We can also use informa-
tion from other organisms to enhance our signals (Chapter 6). Other restrictions such
as consistency in coding frame between exons greatly reduces the number of possible
parses in a given gene. Indeed, even though in principle the number of parses is
exponential in the number of potential splice sites identified (Chapter 4), in practice
many genes exhibit only a few possible parses after these numerous constraints are
introduced.

1.5.1 Exon Prediction

In this section, we suggest a number of alternative definitions of what the exon pre-
diction problem constitutes. The range of possible problems one might try to solve,
combined with the vast differences in their difficulty, makes the selection of a goal an
important issue. Indeed, results can vary greatly with the same test data depending
on assumptions that have been made. The following assumptions are ones that may
be appropriate in certain contexts:

1. Consists of one complete gene on the forward strand.
2. Consists of multiple complete genes on the forward strand.
3. Consists of multiple complete genes on either strand.
4. May consists of multiple complete genes, perhaps with

partial genes on the ends, on either strand.

Table 1.1: Assumptions about the DNA in which one is to find coding exons

Solutions to the exon prediction problem have tended to concentrate on the model
in which one can assume that there is only one complete gene. While this is useful
in many cases, the technology by which genes are sequenced results in large genomic
fragments which contain all the generalities listed above (in other words one has to
assume that there are multiple genes, pseudogenes, etc.) In this thesis we have de-
signed solutions based on different assumptions. For example, the dictionary method
in Chapter 5 is based on the "one complete gene" assumption, whereas the compar-
ative genomics chapter deals with the more general problem.

1.5.2 Other Problems

The exon prediction problem is complicated by a number of biological phenomena,
many of which lead to interesting annotation problems in their own right:
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Pseudogenes

A pseudogene is defined to be a DNA sequence significantly homologous (75 to 80%)
to a functional gene, which has been altered so as to prevent any normal function.
Pseudogenes can be classified into two categories, those that possess all the structural
features of a gene (promoters, exons, introns, etc.) but have been mutated so that
they are no longer functional (often a result of duplication of a gene and its silencing),
and those that lack introns but do have a poly A tail. The latter type are believed
to be the result of reverse transcription of mRNA, followed by integration of the
resulting cDNA into a chromosomal site. In Chapter 5, we discuss the possibility of
detecting reverse transcribed pseudogenes, by finding two adjacent regions in a gene
that look like exons, but that cannot be frame consistent unless they have an intron
in between them (of length not 0 modulo 3).

Alternative splice sites

Many genes can be spliced into a number of different variants, depending on envi-
ronmental or developmental conditions in the gene. Often, alternative splicings lead
to diseases or defects in an organism. Alternative splicing happens when a partic-
ular splice site can be selected in a different position, or when it is not used at all.
Examples are given in Chapter 5.

The presence of an alternative splice site in a gene, renders the exon prediction
problem ill-defined. Since there is no "correct" solution to how a gene is parsed, it
makes no sense to try an return a predicted answer.

Thus, annotation of possible alternative splice sites is of great importance, espe-
cially since they seem to be abundant.

Branchpoints

The weak consensus of branch points in higher eukaryotes was mentioned in the bi-
ology background section of this chapter. This weak consensus makes it difficult to
annotate branchpoints, or to effectively use them for exon prediction. The computa-
tional problem of annotating branchpoints is unsolved.
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Chapter 2

Previous Work on Gene
Annotation

Many computational methods have been developed for the purposes of gene annota-
tion (Batzoglou et al. [7]). The different approaches that have been undertaken in an
attempt to solve the gene recognition problem can be broadly classified as statistical

(some may prefer the term AI/learning based) or homology based. In the past few
years, the growing abundance of EST (expressed sequence tag) and protein data has
resulted in a combination of both approaches being used in newer programs. In what
follows, we attempt to provide a brief summary of the techniques that have been
used in the past so that the reader can place our work in the appropriate context.
In particular, we mention that the dictionary approach in Chapter 5 is an attempt
to bridge the gap between statistical and homology based approaches. The work in
Chapter 6 represents a novel way of tackling the gene recognition problem; we have
coined a new term for it, comparative prediction.

2.1 Similarity Searching and Gene Annotation

Of the many applications of computer science in biology, perhaps the most successful
has been the implementation of algorithms for finding similarities between sequences
(for a discussion see Waterman [88]). The most widely used program developed for
this purpose is BLAST developed by Altschul and others [3, 4], which is an alignment
tool. BLAST is often manually applied for the purposes of gene annotation, including
exon prediction and repeat finding. Other similarity search approaches include the
FLASH [74] program which is an example of a clever use of a hash table to keep track of
matches and positions of pairs of nucleotides in a database. The resulting information
can be used to extract close matches to a given sequence. Nevertheless, neither of
these search approaches have been designed for gene annotation.
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2.2 Statistical Approaches

The vast number of exon prediction programs in existence precludes the possibil-
ity of providing a comprehensive survey without an extended discussion. Our aim
here is to merely point out some of the more popular programs. Statistically based
programs include GENSCAN [12), GENIE [54], GENEMARK [61], VEIL [36] (all based on
hidden Markov models [HMM's]), FGENEH [83] (an integration of various statistical
approaches for finding splice sites, exons, etc.), GRAIL [91] (based on neural networks)
and GeneParser [82] (based on dynamic programming and neural networks) . Other
approaches include language based techniques such as GenLang [25].

These programs have a number of characteristics in common, perhaps the most
important being their reliance on a training set (to learn transition probabilities in
the case of HMM's, or weights for neural networks). The problem of understanding
the implications of this fact and its relationship to the performance of the programs
is very difficult due to the relatively small amounts of publicly available data. We
briefly discuss this in the results section that follows.

2.3 Homology Approaches

Homology based approaches exploit the fact that protein sequences similar to the
expressed sequence of a gene are often in databases. Using such a target, one can
successfully identify the coding regions of a gene. The idea is to find the "best" way
to parse an input gene so that it best matches the given target after translation.
The alignment based PROCRUSTES [28, 86, 64] program represents a very successful
implementation of this idea. When a related mammalian protein is available, this
program gives 99% accurate predictions and guarantees 100% accurate predictions
37% of the time; however, the user supplies the target protein sequence.

It is important to note that there are a number of current difficulties that arise
in the implementation of homology based approaches. The first problem is the iden-
tification of good targets. This problem has begun to be addressed (Section 2.4).
Additionally, the databases used to find targets were not designed with gene recog-
nition as a goal, and so are not easy to use. For example, the cDNA databases are
not always properly oriented. The protein databases may contain translated repeats.
These are all issues that need to be dealt with when looking for good targets.

2.4 Hybrids

The difficulty of finding good targets for the homology approach is addressed in a
recent approach [38]. Specifically, the AAT tool addresses this by automatically using
BLAST-like information from protein or EST databases for exon prediction. The INFO
program [57] is based on the idea of finding similarity to long stretches of a sequence in
a protein database, and then finding splice sites around these regions. Such programs
are becoming more important as the size of protein and EST databases increase.
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2.5 Results

The analysis and benchmarking of gene recognition tools has become a science in
and of itself. Of the many articles addressing these issues, we mention the excellent
surveys of Burset and Guig6 [13, 30]. With the exception of GENSCAN, the non-
homology based algorithms are not sufficiently accurate to be relied upon. Accuracy
claims range from 60-90 percent per nucleotide, and 30-80 percent per entire exon
with exact numbers dependent on who is making the claim. Table 2.1 is from the
GENSCAN website, containing statistics obtained by GENSCAN [11] as well as Burset-
Guig6 [13]. The programs were tested on the Burset-Guig6 dataset (abbreviated as
the BG dataset, see Appendix B). For definitions of the different statistics computed
(such as Sensitivity, Specificity, etc.), see [13]:

Accuracy per nucleotide Accuracy per exon
Method Sn Sp AC Sn Sp ME WE
GENSCAN 0.93 0.93 0.91 0.78 0.81 0.09 0.05
FGENEH 0.77 0.85 0.78 0.61 0.61 0.15 0.11
GeneID 0.63 0.81 0.67 0.44 0.45 0.28 0.24

GeneParser2 0.66 0.79 0.66 0.35 0.39 0.29 0.17
GenLang 0.72 0.75 0.69 0.50 0.49 0.21 0.21

GRAIL II 0.72 0.84 0.75 0.36 0.41 0.25 0.10
SORFIND 0.71 0.85 0.73 0.42 0.47 0.24 0.14
XPound 0.61 0.82 0.68 0.15 0.17 0.32 0.13

Table 2.1: Accuracy statistics for programs on the BG dataset

These numbers are probably very optimistic compared to the performance ob-
served in practice [30]. The alarming aspect of the current state of the field is that
these programs perform much worse when tested on new data, namely genes that have
been sequenced, whose intron/exon structure is known experimentally. Indeed, on a
new sequence set, the programs identified about 1 in 6 genes correctly and completely
missed the exons in 25 percent of the sequences. This poor performance is probably
due to a number of factors, the most significant of which is that current "learning"
takes place on small data sets which are often filled with errors since they have been
annotated by the very same programs that are learning from them! Furthermore, the
learning sets are often redundant and are not really true representatives of genes in
entire genomes.

In practice, those who find genes use a very different approach. They hope that
the cDNA or protein (or a good part of these) that are produced by the gene lie in
one of the corresponding data bases. They then submit their sequences to BLAST
[3], a program that finds best matches to members of the data base. When it is
possible to match parts of the gene with an entire protein, then one has the answer to
the problem, either by examining the alignments by eye, or submitting the matches
to a program such as PROCRUSTES [28]. As the databases grow, the likelihood of
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good matches to new genes increases. When this approach fails, they turn to the
algorithms mentioned, and seek consensus results from them. The process is tedious,
time consuming and does not necessarily produce correct results.
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Chapter 3

Identification of Introns and Exons

In this chapter we study various characteristics of introns and exons that help us
distinguish them from each other. We begin with a detailed analysis of splice sites.
These are of special importance in the discrimination of introns and exons because
they occur at the boundaries between the two. We then turn examine the various
properties of the introns and exons themselves that are of computational importance.

3.1 Splice Sites

In this section we begin by describing some computational/statistical analysis of pair
correlations around splice sites. These results lead to interesting observations of
possible biological significance (see sections 3.2.2, 3.2.3 and 3.2.4). We continue by
describing the GENSCAN splice site detector, and our modification of it which we use
in Chapters 5 and 6 for exon prediction.

3.1.1 Pairwise Correlations

We begin by defining some terminology which is essential for our study. The position
of a nucleotide around the donor splice site of an intron is defined to be the distance
(in nucleotides) to the start of the intron (following the convention used in [58]).
Negative positions indicate nucleotides in the exon. For example, positions +1 and
+2 in an intron are the well conserved GT nucleotides. Position -1 refers to the last
nucleotide in the exon, which is usually a G (note: some authors prefer to start the
labeling in the intron with 0).

We also define positions around the acceptor splice site in the same way. In this
case however positions -2 and -1 refer to the last two nucleotides in the intron. Notice
that positions are always defined relative to the donor or acceptor splice sites. For
example, in an intron of length 30, position +12 from the donor site and position -19
from the acceptor site represent the same nucleotide.
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Correlation Matrices

Given two positions r, t around the donor splice site we constructed a 4 x 4 contingency
table based on a set of genes with intron and exon boundaries marked. The rows and
columns in the table are labeled with the four bases A, C, G, T. The ijth entry in the
table is the number of times base i appeared in position r with base j in position t.

Given such a contingency table, we then computed Cramer's Statistic to test the
null hypothesis that the nucleotide in position r is independent of the nucleotide in
position t.

Cramer's statistic is derived from Pearson's Chi-Squared test. Let fi, be the entry
in the ith row and jth column of a contingency table. The ith row sum fi+ is given
by fi+ = Ej fij and the jth column sum f+3 is given by f+j = E> fij. Define

f = E_ 4 =1 fij to be the sum of all the entries and let ej = +J+'. The statistic
we compute is

X2 (fi- eij )2 (3.1)
i=1 j=1 (

and the null hypothesis is rejected if X 2 exceeds X2,9 (a is usually taken to be .05).
Pearson's Chi-Squared Test is good in detecting dependencies between positions,

however it is not as useful for measuring relative strengths of correlations. For this
purpose, we use Cramer's V 2 statistic [1], defined for a x b contingency tables by

X2V2 = x2(3.2)
n min(a - 1, b - 1)

where n is the sample size.
Given some window, say from -k to k, around the donor splice site, we computed

Cramer's statistic for each pair of positions r, t (-k < r, t < k) (in our case a = b = 4).
The V 2 values were tabulated in a 2k x 2k symmetric matrix which we call the donor
correlation matrix. A similar matrix was also constructed for the acceptor splice
site. Figure 3-1 shows the correlation matrices for donor and acceptor splice sites,
computed in for a window of size k = 40.

Observations

It is evident from (3.1) that the diagonal of any correlation matrix is not well defined.
We therefore set the diagonal entries to be 0. Similarly, if all the introns in the dataset
contain the AG and GT consensus there will be two rows and two columns whose X2

computations contained divisions by 0. Since we only considered splice sites with the
AG, GT consensus, we set the appropriate rows and columns to 0.

Another important trait of our test was the fact that the values in the correlation
matrix for a pair of fixed positions depended on the size of the window chosen. This
is because introns and exons have finite sizes, so as the window size was increased,
the number of introns and exons used in our calculations decreased (for a fixed data
set). In addition, since the length distributions of the introns and exons considered
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Figure 3-1: Correlation Matrices for donor and acceptor splice sites

changed with window size, we were actually sampling introns and exons with inher-

ently different characteristics. We computed tables for a variety of window sizes, but

chose to discuss only the k = 40 case in this thesis (and also only the human, as

opposed to characteristics in other organisms). More detailed results will appear in

follow up work.
As with all Chi-Squared tests for contingency tables, it is important that the

values in the contingency table are "sufficiently" large. A commonly used guideline

suggested by Cochran [17] is that at least 80 percent of the cells in the contingency

table should have counts exceeding 5.0. We observed this to be the case in most of our

tests. Nevertheless, for the purposes of our correlation matrices, we decided to use V2

values rather than p-values computed from X 2 values. This is because we were more

interested in the relative strength of correlations rather in an absolute measure of

significance. It can be shown [21] that for an a x b contingency table the X 2 statistic

cannot exceed the sample size multiplied by min(a - 1, b - 1). Thus, the V 2 statistic

provides a good measure of relative associations between datasets although it has no

simple probabilistic interpretation.
The pair correlations were studied in terms of their applications to splice site

prediction. In particular, the strong correlations between non-adjacent nucleotides

close to the splicing site were observed to be the only significant correlations between

exons and the introns, and so were examined with regards to possible connections to

the splicing process. We mention that similar correlations (computed a bit differently)
have recently been analyzed by Burge and Karlin [12].

In Table 3.1 we have listed the X 2 values for the matrix between positions -3 and

5 at the donor splice site (the data is from the -40,40 correlation matrix).

Burge and Karlin [12] provide an interesting analysis of the significance of the

correlations, concluding that the absence of base pairings with U1 at certain positions

is compensated for by base pairings in other positions. We refer the reader to their
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0 179 37 0 0 15 38 30
179 0 103 0 0 29 63 70
37 103 0 0 0 12 55 37
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
15 29 12 0 0 0 96 101
38 63 55 0 0 96 0 184
30 70 37 0 0 101 184 0

Table 3.1: X 2 values for the (-3,5) donor window.

paper for a detailed analysis.
The lack of correlation between positions in the intron and the exon away from the

splicing site suggest that material in the intron has evolved separately from material
in the exon. Indeed, it seems plausible that the intron positions are free to mutate,
while the exon positions are constrained by the structural requirements of the protein
they code for (this is the basis for the results in Chapter 6). We remark that this lack
of correlation can also be used to assist in splice site detection by explicitly measuring

(using, say, a X2 test), the lack of correlation between positions in an intron and an
exon.

We decided eventually to settle on a modified form of the splice site detector
used in the GENSCAN program [12] (see Section 3.1.3), rather than scoring splice sites
based on pair correlations alone. This decision was marginal, since the schemes do
not appear to give vastly different results. The GENSCAN splice site detector has the
advantage that it gives a score which has a direct, simple, probabilistic interpretation.

In sections 3.2 and 3.3, we present an overview of some other interesting facts and
correlations we observed in our human correlation matrices.

3.1.2 The GENSCAN splice site detector

The splice site recognition method outlined in this section is based on the method
by Burge described in [11]. The outline we provide is very vague, the reader should
consult the thesis for exact details.

As an example, we consider the donor splice site detector (the method for the
acceptor splice site detector is similar, and we refer the reader to [11] for details).
Burge uses a technique he calls Maximal dependence decomposition (MDD). The
method generates a decision tree as follows:

1. Calculate for each position i around the splice site, the sum

Si = Z x 2 (Ci, Xj) (3.3)
ii

where Ci is the consensus at position i, and Xj is the nucleotide variable at
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position j. Intuitively, this measures the amount of dependence between the
consensus at a position, and the nucleotides in the local region around it.

2. Choose the value of i at which Si is maximized, and partition the data into
two subsets, the ones with the consensus at position i and the ones without the
consensus.

3. Repeat the first two steps, thus building a binary tree, until there is no signif-
icant dependencies between the position, or until there is insufficient data for
determining probabilities at the leaves.

The exact conditions for termination are described in the thesis. The entire pro-
cedure is heuristic in the sense that the decision for branching could be based on
different criteria, the subdivision of the data could be different, and the termination
conditions are heuristic. Given a sample sequence, a probability for it being a splice
site can be obtained by traversing the tree and examining the probabilities at the leaf
where it is contained. Figure 3-2 shows the distribution of scores obtained for true
donor and acceptor sites, as well as the distribution of scores for "false" sites (sites
containing the GT/AG consensus but that are not true splice sites).

Philosophical Note: We experimented with a variety of splice site detectors;
indeed there are many available based on many techniques (neural nets, decision
trees, heuristics, etc.) We developed a splice site detector based on the strict pair
correlations described in the previous sections, as well as different metrics of distance
between splice sites. Our approaches yielded similar results to the ones obtainable by
the MDD detector, although they suffered from the problem that the scores associated
with them had no probabilistic interpretation. Thus, one had to resort to a cutoff
of the score to select splice sites, philosophically ensuring that certain splice sites
would be lost, although ensuring good results on average. The MDD detector has the
advantage that the scoring is probabilistic, and therefore no cutoffs are necessary in
scoring schemes for gene prediction based on splice sites. The cutoff issue has been
a recurring dilemma for us in many contexts: while one can improve average results
with cutoffs, they ensure that there will be some false negatives.

3.1.3 Left Rules

The separation in distribution between scores (obtained with the GENSCAN detector)
of true and false splice sites is impressive. Nevertheless, for reasons to be elaborated
on in Chapter 6 it is useful to stretch the distributions as much as possible, so as to
reduce further the score of true false splice sites.

We noticed a directional "effect" for donor and acceptor splice sites (the effect
was also observed for translation initiation sites). The effect is that almost always,
the score of a false splice site to the left (upstream in the 5' direction) of a true splice
site is smaller than the score of the true splice site. The effect is directional, because
it is much stronger to the left, than to the right (downstream in the 3' direction). We
analyzed the effect for both donor and acceptor splice sites. It is interesting to note
that the effect is not very dependent on the type of scoring used for splice sites.
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Figures 3-3 and 3-4 show a detailed analysis of the strength of this effect as
a function of distance from a true splice site. For a given parameter d and fixed
direction (either left or right), we computed three quantities. First we computed
t(d), the total number of splice sites at most d away from a true splice site in the
fixed direction, with the additional property that they had no intervening splice sites.
Then we computed b(d), the number of such splice sites with a better score than the
closest true splice site. Finally, we computed r(d), the ratio b(d) For example, Figure
3-3 contains the results computed for donor splice sites. The plots are labeled left and
right depending on the direction tested. There is a tremendous difference between
the left and right directions in terms of the number of adjacent splice sites with better
scores.

A similar effect is evident for acceptor splice sites (Figure 3-4). Interestingly
however, the situation is a bit different than for donor splice sites. In particular, there
are very few potential acceptor splice sites immediately upstream of true acceptor
sites.

For both acceptor and donor sites, it seems that there is a significant effect up
to a distance of 30-40 basepairs away from the splice site. The directional effect at
both splice sites strongly suggests that the splicing machinery has a directionality
associated with it.

We can use these effects to enhance the separation between the true and false
distributions for splice sites. Consider two neighboring splice sites si, S2 with S2
following si (that is, si is to the 5' side of s2 ). We found that if the GENSCAN splice
site scores of these splice sites were gSi, gs 2 respectively, then a better separation was
obtained by updating the score of S2 to be gs' where gs' is defined by

9S'2 = 982 + MIN(0, gs 2 - gs 1).

In other words, we only penalize the score of a splice site, and only if it has a splice
site to the left with a better score. Figure 3-5 shows the score distributions for true
and false splice sites with the "left rules" added. Presumably, based on the empirical
observations detailed above, a more elaborate scheme can be employed to assist in
distinguishing between true and false splice sites. We decided to settle on a simple
scheme in this thesis to avoid overtraining issues. Future work will include a detailed
analysis of the left/right effects, biological verifications, and computational splice site
detection schemes techniques based on these results.

3.2 Introns

In this section we describe various features of introns that are of biological and com-
putational interest. We begin with a description of the length distribution of introns
(which should be contrasted with the exon length distribution in section 3.3.1). This
length information is used in Chapter 6 to assist in distinguishing introns from ex-
ons. We then proceed to examine various characteristics of introns that are correlated
with the donor splice site. These investigations were motivated by the pair correlation
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Figure 3-6: Length distribution of introns

study described in section 3.1. The results especially interesting in light of the fact
that some of them have been verified experimentally.

3.2.1 Length Distribution

The length distribution of introns in human genes has been well documented [35]. We
include a plot of the distribution of intron lengths, only for the sake of completeness
and for reference. The distribution is of interest to us, mainly because it is different
from the distribution of exon lengths (section 3.3.1).

3.2.2 Pair Correlations in Introns

Looking at the correlation matrices, we found significant correlations between almost
all positions in introns. These correlations are due to the high G+C content of
many genes, and the fact that this abundance of G+C is different for different genes
in the same organism (discussed in more detail in the next subsection). Thus, the
appearance of a G or a C in some position is an indicator that the entire intron is G+C
rich. Strangely, we did not observe this phenomena in all organisms (for example,
plants).

Also of interest is the fact that position +3 showed a correlation with distant
positions while positions +4 and +5 did not. This means that positions +4 and +5
are severely constrained by splicing requirements, whereas position +3 is not! In fact,
for any position +k (k > 5) in the intron, a G in position +3 correlates with a G or C
in position k and an A or T in position +3 correlates with an A or T in position k. So
it seems that position +3 is constrained to be an A or G, but that in cases when the
rest of the consensus is strong, it is essentially determined by the overall G+C content
of the gene. Burge and Karlin [12] have noticed that when the overall consensus is
strong position +3 tends to be a G rather than the A which would complement the
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Correlation Coefficient
Intron Exon

0.76 0.64

Table 3.2: The correlation coefficient for GC content between an intron (exon) and
its neighboring introns and exons.

RNA in the U1 spliceosome. It seems that this is simply due to the fact that most
human genes tend to be G+C rich.

Strong correlations all around the area from positions +1 through +30 reveal that
many important splicing interactions may be occurring in that region. Specifically, a
very strong interaction between positions +23 and +24 suggests a possible splicing
component involved with those specific sites. Adding credence to this observation is
the fact that correlations (23,26), (21,24), (22, 25) and (21,25) are uncharacteristically
low, which is significant because of the G+C effect mentioned above.

As a result of these observations we conjecture that there is a signal which is
constrained only to a region (not a position), much like the branchpoint at the 3'
ends of introns. This signal is probably located somewhere between positions +22
and +26. We suggest there is a weak consensus for this signal although it seems that
a G is recognized. The G is probably preceded by a T or a G.

Even more interesting is the fact that these biases disappeared when the entire
GENBANK primate database was tested, suggesting that there might be a human specific
splicing component (or else that the correlations are an artifact of the dataset we
tested on).

3.2.3 G+C effects

The multitude of correlations in the intron can be attributed, in large part, to the
GC isochore structure of the human genome [9]. Specifically, introns tend to appear
in GC rich and GC poor flavors, and indeed, genes in general exhibit overall GC
richness/poorness. As discussed previously, this effect is evident in the pair correlation
test, which tests for independence between positions. If a nucleotide in an intron is
a G, it is likely that another nucleotide, even far upstream or downstream in the
same intron, is a G or a C. The relative lack of correlation between positions in the
intron and positions in the exon is an indicator that the GC content of an intron
is not as good a predictor of the GC content of its flanking exons, as it is for the
adjacent introns (see Table 3.2). The fact that correlations in the intron are partly
due to the GC effect, and the observation that the 3rd position of the donor splice site
exhibits such correlations, led us to examine the relationship between the 3rd position
and neighboring nucleotides. Figure 3 summarizes the findings. Even though it is
apparent that the 3rd position is an indicator of GC content, the abundance of G's
near the splice site when G appears in position 3 suggests there is more involved than
just the GC effect.
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GC poor GC rich
G 3  A3  G 3  A3

GC content 0.43 0.39 0.60 0.59
G triplets 0.69 0.34 1.54 1.48
Length 1531 1644 568 580
> 2 triplets length 2121 2337 643 568

Table 3.3: GC content and the number of G triplets.
A3 and G3 denote an A in position 3 and a G in position 3 respectively. > 2 triplets

length is the average length of introns that contained more than two G triplets
between positions 5 and 25.

3.2.4 G triplets near the donor splice site

Based on reports of many G triplets near donor splice sites, McCullough and Berget
[63] set out to experimentally test the hypothesis that the triplets are involved in
splicing, and not merely an artifact of GC rich introns. The intron they tested (the
second one in the human a-globin gene) was short (129bp), in a GC rich intron
(although other introns in the gene were GC poor) and happened to have a G in
position 3. They found that the number of G triplets next to the donor site additively
enhanced splicing of the intron (this is somewhat of a simplification, the reader should
consult the paper for exact details). Interestingly, they found that G triplets help in
splicing in the absence of a strong pyrimidine tract at the acceptor splice site. Indeed,
improvement of the tract with contiguous uridines suppressed the requirements of G
triplets for maximal splicing. Nevertheless, the G triplets still seemed to be involved
in donor splice site selection. The authors strongly suggest that it is the short length
of the introns that is necessitating this additional splicing element, and that there
may be a class of short introns which require numerous G triplets for correct splicing.

Having observed that the number of G triplets near the donor splice site was
directly correlated with position 3, we computationally investigated whether length,
or perhaps other factors were responsible for the numerous G triplets in some introns.
The data set was divided according to the GC content of the introns. GC rich introns
were defined to be introns with at least 50% G's and C's. GC poor introns were
defined as those with less than 50% G's and C's. The number of G triplets was
calculated within each of these data sets, further divided according to the nucleotide
in position 3. The number of G triplets was defined to be the number of G
triplets between positions 5-25 at the beginning of the intron. Figures 3-7, 3-8, and
3-9 indicate many of the relationships we found. Table 3.3 summarizes additional
parameters, such as length, that were calculated for the various subclasses.

Figure 3-8 show that the number of G triplets near the donor splice site is more
strongly correlated with the overall GC content of the gene, than with the nucleotide
in position 3. One must however take into consideration the fact that the nucleotide in
position 3 is strongly correlated with the overall GC content of the intron. Indeed, the
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plot in Figure 3-9, smoothed using local least squares regression, shows the correlation
between overall GC content and the nucleotide in position 3. An A in position
3 is weighted 0 and a G is weighted 2 (C and T are weighted 1 and 3 respectively,
however, the small number of sequences containing them makes their effect negligible).
Considering again the information in Figure 3-8, we see that in GC poor introns, the
role of G triplets becomes important when G appears in position 3. This is not at
all the case in GC rich introns, where a G in the third position does not seem to
affect the number of triplets by much. This suggests that a G in the third position is
especially detrimental when the rest of the intron is not GC rich, and in such cases
G triplets are a necessity.

3.3 Exons

Our main result concerning exons is a new procedure for identifying exons based on
a differential frame test. This is described in section 3.3.3. We proceed to discuss the
problem of frame identification in coding exons. These results are of practical impor-
tance in the exon prediction problem discussed in chapters 5 and 6. In particular,
our frame prediction technique is applied in chapter 5.

3.3.1 Length Distribution

The distribution of exon lengths is interesting because unlike introns, the distribution
appears normal and not exponential. Furthermore, terminal, initial and internal exons
all have very different distributions, a fact that can be used to our advantage.
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Figure 3-9: GC content and Position 3

3.3.2 Pair Correlations in Exons

Our correlation matrices provide immediate evidence of codon bias in genomes [43,
45, 44, 46], and also clearly reveal the triplet nature of the genetic code. Notice
the correlations within exons along the off-diagonals, spaced distance three apart.
It is interesting that the correlations do not appear to weaken significantly at large
distances.

Of interest to the splicing problem, is the fact that we observed a correlation
between positions -29 and -26 and somewhat of a correlation between positions -29 and
-8 before the donor splice site. These correlations by themselves do not stand out as
particularly significant however Chiara et. al. [15] have found experimental evidence
that two spliceosomes (SRp20 and SRp30) interact with exons between positions -31
and -26.

3.3.3 The Frame

Frametests

It is well known that certain codons are overrepresented (or underrepresented) in
the genes of different organisms [46]. Indeed, there are even substantial differences
between organisms [44]. These biases have been used extensively in gene recognition
programs.

We study the following two related problems:

* How can the frame of an exon be predicted?

" How can exons and introns be distinguished based on the tuples that occur in
exons?
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The solution of the above problems is possible because of the empirical observation
that k-tuples are not uniformly distributed between the true frame and the shifted
frames of an exon (for example, stop codons never occur in frame except in the last
coding exon).

We begin with some notation and definitions:

Definition 3.1 The absolute frame of a tuple in a coding exon is defined to be the
position mod3 of the first nucleotide of the tuple in the exon. The absolute frame of
an exon is defined to be the absolute frame of 3-tuples that are codons.

Let t be a k-tuple. For a given learning set of coding DNA, define t (i E (0, 1, 2)
to be the relative frequency of occurrence of t "shifted by frame i". That is, for every
exon E in the learning set, t2 is computed by

t - E ZjEE Xi (
Totali (t)

where j ranges over the positions in the exon, and Xj (t) = 1 if the tuple t begins in
position j and (j - i) mod 3 is the absolute frame of the exon, Xj (t) = 0 otherwise, and
Total(t) is the total number of positions j in coding exons E satisfying (j - i) mod 3
is the absolute frame of E. Define tj to be the relative frequency of occurrence of t
in a learning set of introns. For convenience, in any exon E, let t' denote the tuple
beginning at position r.

We define a frametest F to be a pair of maps T : E -+ R 3 and S : R' - R
where E is a sequence of genomic DNA. The idea is to construct functions T that
for a given region, return three numbers which represent the "score" of the region
in each of the three possible frames (under the assumption that it is coding). This
information can already be used to guess the frame of the exon, by selecting the frame
with the best score. In order to distinguish exons from introns, another function S
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is constructed that uses the three frame scores to determine one score for the region.
The function S can be used to base the test on codon usage bias (reference) (e.g.
taking the maximum of the three numbers), or on the fact that coding exons tend
to have one frame look more exonish as opposed to the other two (e.g. taking the
difference between the largest and smallest score).

A number of different frametests were investigated. For a given exon E, the
following tests were considered (T : E -+ (p, p2, p), S : (p1, P2, P3) -+ R):

1. (F = #1) Pi = (log t~jmod 
3 ), S = MAX(po, pi, p 2).

2. (F = #2) pi = ZEE t 1 -, S = MIN(po, pi, p 2 )
rimod 3

3. (F = #3) Pi = _rE (trimod 3 - tj), S = MAX(po, p1 , p 2 ).

4. (F = #4) Pi = E mo3- tj), S = MAX (po, pi, p2) - (Po + pi + P2).

5. (F =#5) Pi = rEE O3 t 1 ), S= MAX'(popip 2 ) - (Pm +3P+P2).

6. (F = #6) Pi = ,ErE Od 3 t , = MAX(po,pip 2).

7. (F = #7) Pi = ZrEE ( mod 3 5 = MAX(po, P1, P2) - (P1 +P2 + P1).

8. (F = #8) Pi = +rE + , S = MAX'(po,p1,p 2 ) - (P1 + P2 + P3).

The function MAX is the maximum and the function MAX' is the maximum where
pi = -o if the exon E has a stop codon in frame i.

Testing

Tests were conducted by constructing two data sets, one consisting only of coding
exon and the other only of intron. The coding exons from the HKR dataset (Ap-
pendix B) were glued together (with stop codons of the genes removed) to make one
large open reading frame of length about 250,000. Similarly, the introns were glued
together, although only a portion of roughly the same length as the total coding exon
material was constructed. The same data was used for learning and for testing, al-
though to remove the cheating that would be caused by this, a "minus one" option
was implemented. In particular, for each test sequence considered, the tuples were
removed from the learning table (t, t1 , t 2 ), except in the case when one of these en-
tries was zero or one, in which case the entry was left unchanged if there was no stop
codon in frame. For a fixed length L and frametest F, the coding exon segment and
intron segment were each tested with F across every region of length L. The results
were used to compute two histograms HE and H, for the respective segments. The
separation s(L, F) between the histograms was then calculated by the formula

2A(HEAnHI)s(L A F)= H)
'A(HE) +A(H,)'
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Figure 3-13: Frame Prediction

Optimal Frametest
Length Frametest

9-81 F=#6
81-162 F = #8

162-360 F = #7
360- F = #3

Table 3.4: The Best Frametests

where A(R) is the area of the region R.
Frame prediction was tested in a similar fashion, by examining the number of

incorrect frame guesses using a particular function T from a frametest.

Results

The best function (in comparison with the functions defined above) for frame predic-
tion was obtained by using the function T: E -+ R3 defined by

A Eii r-i mod 3 -tI

rEE tO + t1 + t2

and guessing the frame to be f where pf > pi for i E {0, 1, 2}. Figure 3-13 shows
the performance of this method: Remarkably, the method above was the best for all
lengths. Tests based on F = #1 and F = #2 performed only marginally worse.

The situation for frametests proved to be much more complicated. Depending on
the lengths of the exons, different frametests are optimal: The results are depicted
in Figure 3-14. Analysis of the plots is interesting: Notice that for short lengths,
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the best frametest is obtained by taking S to be a MAX. In other words, the best
frametest score is based on setting the score to be the score of the best frame. On
the other hand, for slightly longer exons, the best test is derived from MAX', which
is based on the differential between the different frames. Also interestingly, the best
test for exons of length 81-162 is much worse than the best test in the region 9-81.
For longer exons, once again MAX seems to be better, and normalizing at each step
by the sum relative frequencies of the tuple in each frame is no longer better. The
difference between the tests becomes much smaller as one examines longer exons.
Indeed, any test is good for long exons, which is probably why many programs have
little difficulty in identifying such exons. The fact that different tests are good for
different lengths, and that the more sophisticated tests are in general better than the
standard F = #1, proves that there is no panacea, and that in this case the simplest
test (with the easiest probabilistic interpretation), is not the best.

53



0

0

0

0

S
0

0

0

0.

0

Comparison of the Best Method with the Simplest MeOd

-- F=#1
.9-e F=be .

.9-

.5

.4--

.3-

2-

01'
50 100 150 200 250 300 350 400 450 500 550 600

Length
Best Frametest for Short Exons

-- +-- F=#6
-e4-- F=#8
-+-- F=#7 -

L\ ..\

X\-

10 20 30 40
Length

50 60 70 80

Best Frametest for Longer Exons

-- F=#7
---- F=#6
-e- F=#8-
-4-- F=#3

K-

4 ,

0.05

0.

0.0

0.1

U
180 200 220 240 260 280 300 320 340 360

Length

Best Frametest for Average Length Exons
0.5C

-s-- F=#8
0.45. - - F=#6 .

0.4-

0.35

0.3

.C -..

0.25 -

0.2-

0.15-

0.10

90 100 110 120 130
Length

Best Fraetest for Longest Exons

140 150 160

+ F=#31
45. -V- F=#4.

04-

35

03-

15L-e-

01 -

5 -

400 450 50 5 600
Length

Figure 3-14: Separations for the different Frametests

54

0.8

0.7

0.6

0.5

to 0.4

0.3

02

0.1

02

0.41

'~0.1

0.0

0.0

0.

0.00



Chapter 4

Assembling a Parse

4.1 Introduction

The difficulty in accurately predicting splice sites means that for every true donor
splice site, approximately ten incorrect ones must be considered. The situation is
even worse for acceptor splice sites (where the ratio is about fifteen splice sites for
every true one). The number of parses that must be considered is therefore very large.
In this chapter we first give an upper bound on this number (which is exponential
in the number of sites that need to be considered). In practice, many parses can be
discarded because of stop codons in frame. Still, even for a small gene, the potential
number of parses is still enormous. We use dynamic programming to overcome this
difficulty. Our approach is detailed at the end of this chapter.

4.2 Complexity of the Problem

4.2.1 A visit with Fibonacci

It is clear that the number of parses of a gene increases dramatically with an increase
in the number of potential donor and acceptor splice sites. An exact analysis of the
number of parses of a gene with n potential acceptor sites and m donor sites is in fact
possible; the answer is, surprisingly, related to the Fibonacci numbers!

We model the problem as follows:

Definition 4.1 Given a string S of open ( and closed ) brackets, let p(S) denote the
number of parses of S. A parse of S is a sequence of alternating open and closed
brackets (not necessarily consecutive).

In our model, the open brackets represent potential acceptor splice sites, and the
closed brackets represent donor splice sites.

Theorem 4.1 Let S be a string with n open brackets and m closed brackets.

p(S) <; Fn+m+l- (4.1)
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where Fn+m+ is the (n + m + 1)th Fibonacci number.

Proof: We will use the notation ISI for the length of a string S of open and closed
brackets. Assume that the theorem is true by induction for |SI < n - 1. Let S be
a string with ISI = n. Observe that S must have an open bracket somewhere that
is followed immediately by a closed bracket. Otherwise we have that p(S) = 1 (the
empty parse is considered to be a parse). We thus have S = S1()S2 where S, has
k open and r closed brackets respectively, and S2 has n - k - r - s - 2 open and s
closed brackets respectively. Now notice that

p(S) Fr+k+lFn-k-r + Fr+k+2Fnk-r-1 + Fn_1 - Fr+k+1Fnk.r_1. (4.2)

This is obtained by taking any parse in Si and appending to it a parse in the string
"(S2 ". Then one adds in parses in "S1)" together with parses in S2. Parses omitting
the pair 0 are counted twice but one of these counts corresponds to all parses with
the pair (). The last two terms correct for parses whose last element in S1 is an open
bracket and whose first element in S2 is a closed bracket.

Using the Fibonacci identity (for an elegant proof see Chapter 6)

Fn+m = Fn+iFm + FnFm-1, (4.3)

we have

p(S) Fn + Fr+k+Fn-k-r-1 + Fn_1 - Fr+k+1Fn-kr_1 = Fn+1- (4.4)

The bound is attained for certain configurations. For example, the string S =

00- () with n open and n closed brackets has p(S) = F2n+1-

4.2.2 Average case analysis

When examining real genes it is clear that we will not necessarily be dealing with
strings S that conform to the worst case scenario in terms of the number of parses.
Unfortunately, an average case analysis reveals that even random strings will have an
exponential number of parses.

Theorem 4.2

Z p(S) = (3 + 1) (4.5)
ISI=n

Proof: Let an = Es=n p(S). We will establish that an = 3an_ 1 - 1. The strings

of length n can be partitioned into two classes, those that start with ")" and those
that start with "(". The strings starting with ")" contribute (by induction) an_1 to
an since the first bracket cannot be used. Strings beginning with "(" contribute an_1
when the first bracket is not used. When the first bracket is used, it must eventually
be matched up with a closed bracket. Suppose there are i brackets between the first
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bracket and this closed bracket. The i brackets can be chosen arbitrarily contributing
a factor of 2'. The remaining brackets after the closed bracket contribute a total of
an-2-i total parses. Thus we have

n-2

an= 2an-1 + ai2- (4.6)
i=O

from which the recursion an = 3an_ - 1, and hence the theorem, follow.
Theorem 4.2 immediately implies

Corollary 4.1 The average number of parses of a string of length n is

1
2n+1 (3" + 1). (4.7)

Indeed, this shows that on average the number of parses of a string of length n is

almost as large as in the worst case.

4.2.3 Mitigating factors

The number of possible parses for an actual gene with n potential acceptor splice sites
and m potential donor splice sites is, in practice, actually far lower than the above
estimates. The reason for this is that many parses can be eliminated for biological
reasons. These may include the existence of a stop codon in frame, or an extremely
unlikely long exon produced by the parse. Indeed, this suggests that for short genes,
an exhaustive enumeration of the parses is a reasonable idea.

4.3 A Dynamic Programming Approach

4.3.1 General Framework

Definition 4.2 A valid parse is defined to be a subdivision of a gene into coding

exons and introns satisfying the following requirements:

* The coding region begins with the codon ATG.

* The coding region ends with a stop codon (TAG, TGA, and TAA).

* All donor splice sites contain the GT consensus. All acceptor splice sites contain

the AG consensus

e The frame between adjacent coding exons is consistent.

Definition 4.3 A partial valid parse is a subset of a valid parse. That is, a partial

valid parse is a subdivision of a subset of a gene into coding exons and introns, and

thus the first coding exon is not required to begin with ATG, nor is the last required

to end with a stop codon.

'This requirement can be relaxed, as discussed in Chapter 6
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noncoding -+ I +- Exon 1 -+ I +-- Intron 1 -- + +- Exon 2 -

noncoding -- +- Exon 3 -+ I +- Intron 2 -+ I +- Exon 2 -+

Figure 4-1: The reason for frame consistent dynamic programming

Notice that a partial valid parse may actually be a valid parse (if it contains an
initiation and termination codon).

We applied dynamic programming [10] in a variety of contexts (Chapters 5,6) to
find "optimal" valid parses which maximized the sum of scores of exons in a parse. We
experimented with a variety of scoring schemes for exons ranging from the frametest
(Chapter 3), to comparative based scores described in Chapter 6. Formally, our
dynamic programming optimized the function

f = Zsi(e)+ s 2 (i).
e i

where e ranges over positions in exons in the parse, and i ranges over positions
in introns. The functions Si, s2 assign scores to positions in the exons and introns
respectively. We found (empirically) that assigning exon scores was more beneficial
than assigning intron scores or scores to both. The particular scoring functions we
used were based on both heuristics (Chapter 5), and more formal probabilistic scores
(Chapter 6). In general, we found that heuristics performed best in most situations,
and were to be embraced rather than avoided in the context of gene recognition.
Perhaps a reason for this is the multitude of exceptions that arise in the sequences
(due to rare biological phenomena), and thus probabilistic scoring schemes based on
statistical assumptions are often invalid because the assumptions are violated.

4.3.2 Frame Consistent Dynamic Programming

To guarantee that a parse is optimal, it is necessary to keep track of the best parses in
every possible frame. Consider the example illustrated in Figure 4-1 (from Salzberg in
[77]). Consider the ends of introns 1 and 2 (which are the same). At this position, it
is necessary to save the values of the best parses ending in the three different frames
in the previous exons. This is because, even though exon 1 might score better than
exon 3, it may be that exon 1 is not frame consistent with exon 2. Thus, our dynamic
programming keeps track of the best parse in every frame.

4.3.3 Technical Issues

The dynamic programming algorithm described above is quadratic in the number of
splice sites.

We found that precomputing information necessary to parse the genes was both
fast and efficient. For example, we precomputed a "stop matrix" which allowed us to
do an 0(1) lookup to determine whether there was an open reading frame in a given
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region. Clearly such a precomputation can be done in time linear in the length of the
sequence.
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Chapter 5

Dictionary Approaches

5.1 Introduction

In this chapter we describe a dictionary based method to scoring potential exons,
using the dynamic programming approach described in Chapter 4. The dictionary
method is a technique for rapidly identifying matches of an input sequence to se-
quences in a protein or cDNA database and has many additional applications beyond
exon prediction; we outline some of these in the latter sections of this chapter.

Previous targeted approaches developed for exon prediction suffer from the lack of
integration of statistical and homology based approaches. Our approach generalizes
many of the previous approaches, and maintains the flexibility of adding further
signals into the computations (such as promoters). Furthermore, the speed of our
techniques enable us to look for alternative splice sites, and we can also consider
other applications which have not been investigated to date.

The method is best described as applied to a particular database. Using the
nonredundant protein OWL database [96], our dictionary consists of 4 tuples of amino
acids, and for each, the protein sequences in OWL which contain it. We can construct
such dictionaries very quickly from the OWL and dbEST databases [95]. We used the
OWL dictionary to find the longest common subsequences of length at least k (for
any k > 4) between sequences in OWL and the translation of the genomic sequence
under investigation. A similar approach was applied to the dbEST database, after
orienting the dbEST database [84] and eliminating non-coding exon regions. Given
such information, we used our dynamic programming algorithm to produce a parse of
the gene into introns and exons (Chapter 4). There are a continuum of scoring schemes
for the exons based on frequencies of occurrence in the database of subsequences of
each size.

We tested our method on two of the benchmark data sets described in Appendix
B. On the HKRM data set we found exons with 88% nucleotide sensitivity and 99%
specificity. Our exon sensitivity/specificity is 81%/82%. When testing on the BG data
set we found nucleotides with 82%/97% sensitivity/specificity. Our exon sensitivity /
specificity was 73%/75%. These results were obtained after removing sequences from
the database with exact amino acid homology to genes in the data set.
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5.2 Methods

5.2.1 Dictionary Lookups and Fragment Matching

A central component of our gene annotation approach is the fragment matching
problem. That is, given a gene and a database (for example the dbEST database),
we would like to find all the matches of length above some threshold between the
gene and the database. This is a classic string matching problem, and there are
linear-time algorithms for it. The problem with such an approach is that the size of
the databases we are interested in matching against precludes the possibility of real
time computation. Instead, we do some precomputation on the database so that we
do not have to look at all the sequences in the database whenever we are looking up
the matches for a particular gene.

Dictionary Construction

The data structure we precompute is a dictionary. Conceptually, the idea is to
record for each tuple (either of DNA or of protein, depending on the dictionary one
is building), the list of sequences in the database in which it appears.

Formally, a dictionary is based on a "plain" sequence file, consisting only of
accession codes (identifying codes) and corresponding sequences of strings, from an
alphabet of size 4 for DNA and size 20 for proteins. A tuple is a sequence of length
11 for DNA sequences and length 4 for protein sequences. A hit is a match between
some segment in the input sequence and a target sequence in the database.

Sequences and tuples are indexed by integers for the purpose of lookups in the
dictionary. The dictionary is organized into six components which collectively enable
the following operations to be performed in 0(1) time:

o Find a sequence given its number.

o List all the sequences that contain a given tuple.

o Find the accession code of a sequence from its number.

Finally, the accession code of a sequence can be used to find the sequence number in
O(log n) time using binary search. The first two sequence and tuple lookup functions
are used by the end-user. The last function is a helper utility for enabling the 0(1)
lookups.

Two dictionaries were constructed, one from the OWL database [96] and another
from the dbEST database [95]. The more difficult step was constructing the tuple
lookup table, i.e., for each tuple, a list of the sequences in which it occurs. The naive
approach to building the dictionary would be to first construct a matrix indexed by
tuples and the accession numbers of the sequences. For instance, in the case of the
dbEST database this would be a 4 million by 1 million entry binary matrix (the OWL
database consists of roughly 250,000 sequences). The entries of the matrix would be
flagged according to which tuples occur in which sequences, and the dictionary would
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be built by reading off the entries for each tuple. Unfortunately, this would require
too much space (terrabytes) or time (trillions of operations).

Instead, the dictionary was constructed by sorting pairs of sequence/tuple identi-
fiers by the tuple coordinate. Specifically, every occurrence of a tuple in a sequence
was recorded as a pair (si, ti), where the si's are integers ranging from 1 to the number
of sequences, and the ti's are integers ranging from 1 to the number of tuples. The
list was originally ordered by the sequences from the database. A linear time radix
sort [20] was used to sort the list according to the second coordinate. The large
number of pairs necessitated that the large list was sorted in pieces and then merged
at the end. The size of the individual pieces to be sorted was set as a command line
parameter, so that the dictionary construction could be tuned to take full advantage
of the memory of our machine. The final list of sequence/tuple pairs ordered by tuple
numbers was used to look up the sequences in which a specified tuple occurs in 0(1)
time.

Using the Dictionary to Find Matches

The dictionaries were used to quickly find exact matches of subsequences between a
given input sequence and a database. This information was used to compute hits.
For a given hit, the following information was returned:

e The position in the input sequence where the hit began.

* The length of the hit.

e The accession number of the target sequence.

e The position in the target sequence where the hit began.

Returned hits correspond to longest segments in the input sequence that matched
segments of each target. These hits were also required to be longer than a threshold
k. The first three pieces of information were useful for obvious reasons. The position
in the target sequence was used to determine if nonadjacent hits in the input sequence
corresponded to consecutive segments in the target (thus indicating the presence of
an intron).

This information was computed in two phases. In the first phase, the dictionary
was used to find, for each tuple appearing in the input sequence, the list of target
sequences containing that tuple. The input sequence was then scanned from the
beginning to the end to find all segments longer than k that contained tuples from the
same target sequence in the database. This resulted in a list of candidate segments.

A second phase was necessary to ensure that the tuples in these candidate segments
were actually consecutive in the database sequence which they matched. This was
accomplished by loading the database sequence for each candidate segment, and then
finding the longest subsegments of the candidate segment appearing in the loaded
database sequence. This final procedure was divided into two substeps. The first
consisted of building a mini-dictionary, used to return in 0(1) time a list of the
positions in the sequence where a given tuple occurred. This dictionary was then
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used in the second step in a manner analogous to the first phase described above to
scan through the candidate segment to find all subsegments consisting of consecutive
tuples in the database sequence.

5.2.2 Dynamic Programming

We used the dynamic programming approach described in Chapter 4. Our assumption
was that our input is genomic DNA from one gene only.

The score of a parse was defined to be the sum of the scores of the exons. For
example, one simple score for a potential exon was computed by

score(exon) = f(p)
p

where p ranges over all the positions in an exon. The function f(p) was defined by

1 h(p) > 8
f(p) = -1 4 < h(p) < 8

-2 h(p) < 5

where h(p) was the length of the maximal hit at position p. Other scoring schemes
were tested, but we found the heuristic scheme described above worked well.

When using the OWL database, the sequence was converted into protein in all three
possible frames to look for matches (computed with a threshold of k = 5), and it was
this information that was used to ascertain the frame of a potential exon.

Parses were constructed by first determining all potential splice sites. This was
done using modified versions of the WAM, WWAM and MDD techniques described in
Burge and Karlin [12]. For details see Chapter 3. The potential splice sites were then
used to dynamically construct a parse using the scoring scheme described above. In
addition, repeats were masked (see section 5.3.4), reducing considerab§ the locations
available for exons.

Tests were conducted on the BG and HKRM datasets (for a detailed description
of these datasets see Appendix B) The tests were performed once using the entire
database, and once where sequences in the database matching all of the exons in the
input sequence were removed.

5.3 Results and Discussion

5.3.1 Output of the Program

The program gives a list of maximal exact matches of length at least k, which is
a parameter one may choose, in the database in question in various frames. The
results depend on k and some matches may occur in introns and some in exons.
Typically, those in introns tend to be scattered and it is usually easy to distinguish
them from those in exons. Table 5.1 contains an example output obtained for the Id3
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Figure 5-1: Java applet display

The sequence is displayed in a diagram on top. The darker interior regions correspond

to coding exons. The number of hits to the OWL database at every position is displayed

in the graph above the diagram. Subsequences of the actual sequence can be displayed

below together with a variety of computed annotations. These include: potential

splice sites, pyrimidine tracts, stop codons (with different colors corresponding to

different frames), tuples much more common in introns than exons, repeats, as well

as tuple frequencies in exons with respect to frame.

gene (an HLH type transcription factor, GENBANK Accession: X73428) using the OWL

dictionary with a minimum threshold of k = 8. The number of hits returned was 46.

A corresponding table for k = 7 contained 440 hits. The table for k = 6 contained

more than 8000 hits. The frame of a hit was defined by its position in the DNA

sequence modulo 3. Note that positional information in the target sequence has been

omitted. The annotated structure of the gene in GENBANK is represented in Figure

5-2.
Figure 5-1 contains a screenshot of a java applet used to visualize genes, as well

as various types of information including the the dictionary hits described above.

5.3.2 Alternative Splice Sites

Our methods are particularly amenable to showing where exons can be read in dif-

ferent frames. For example, consider the Id3 gene illustrated in Figure 5-2.

Using the protein dictionary, we found that the second exon matched in two
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Position in the given sequence Length in nucleotides Frame Locus in the OWL database
171 27 0 Y338 MYCGE
687 24 0 S43230
738 90 0 ID3 MOUSE
738 90 0 ID3 RAT
927 24 0 151316
927 24 0 151278
954 27 0 ID2 HUMAN
954 27 0 ID2 MOUSE
954 27 0 ID2 RAT
954 27 0 ID4 HUMAN
954 27 0 ID4 MOUSE
954 27 0 JC2007
954 27 0 A41689
954 27 0 AF049135
954 27 0 OMID2PROT
954 27 0 HSU 16153
957 24 0 HUMID2X
990 24 0 A27280
738 300 0 ID3 HUMAN
837 201 0 ID3 RAT
840 198 0 ID3 MOUSE
1053 57 0 S71404
1152 24 0 CELF21H11
738 480 0 S71405
1128 90 0 S71404
1506 24 0 D89624
1671 24 0 PABL STRGR
1953 24 0 Y4EF RHISN
2310 24 0 AE0006769
438 24 1 MVIM SALTY
438 24 1 STYFLGA5
810 27 1 SCBLACABL
954 24 1 GUN1 TRILO
954 24 1 GUN1 TRIRE
1239 24 1 AF041044
1239 24 1 AFO41045
1548 24 1 CYAA SACKL
1596 24 1 DMU08282
1839 24 1 IMH1 YEAST
2283 24 1 S49247
2283 24 1 BTU04364
126 24 2 YC26 PORPU
210 24 2 CEC50F44
1146 60 2 ID3 HUMAN
1716 24 2 CEB03655
1785 24 2 AF005632

Table 5.1: OWL hits returned with a minimum length cutoff of k = 8 amino acids.
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Positions:
738 1038 1146 1205

nto l\ 
Intron 2

Coding Exon 1 Coding Exon 2 Non-Coding Exon

Figure 5-2: The Id3 gene.

Positions:
738 1218 Intron3

Coding Exon 3 Non-Coding Exon

Figure 5-3: An alternative form of the Id3 gene.

different frames. There is an alternatively spliced form of the gene which is shown in

Figure 5-3. In coding exon 3, the entire first intron is used to make protein, and the

fact that its length is not divisible by 3 means that coding exon 2 is expressed in a

different frame. The alternatively spliced version occurs only 10% of the time [241.

The algorithm we used to find exons in genes, given the protein matches, can be forced

to select either alternative and return both answers, thus automatically identifying

an alternative splice site. This particular example also illustrates the difficulty in

finding a universal "good" target. Even though the alternatively spliced version of

the gene is somewhat rare, BLAST reports it as a better match to the whole gene

because the expressed protein is longer. Furthermore, analysis of the above gene with

the dbEST dictionary revealed coding exons 1 and 2, and also the noncoding exon,
but the alternatively spliced variant was not evident. Thus it can be useful to analyze

genes using different databases.
Table 5.2 contains a list of all the genes we found in the Burset-Guig6 data set

that contained exons that matched proteins in two distinct frames. The criteria used

was that the candidate exon had to have two segments (each at least 24 base pairs

long) overlap it in two distinct frames, with the overlap between the segments and

the exon being at least half the length of the exon. Furthermore, the overlap between

the two segments was also required to be half the length of the exon. The candidate

exon was at least 30 base pairs long. The strict criteria were chosen to ensure that

the overlapping hits observed in the selected exons were statistically significant.

5.3.3 Exon Prediction

The results of tests using the entire OWL protein database are reported in Table 5.3 for

the Burset-Guig6 and Haussler-Kulp-Reese data sets. The sensitivity and specificity

are based on the definitions in Burset and Guig6 [13]. The results of tests with exact

matches of each test sequence removed from the OWL database are also shown in Table

5.3. The results for the Burset-Guig6 runs may have been affected by the presence
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Locus Description Exon Position
HS1D3HLH Id3 gene 1146 - 1205
HSCYP216 CYP21 gene 2036 -2214

HSDAO diamine oxidase gene 4856 - 6425
HSGROW2 germ line for growth hormone 1602 - 1799
HSMT1H MT1H gene 1409 - 1474

HSPRB3L PRB3L gene 2087 - 2916
HSPRB4S PRB4 gene 2213 - 2793
HSPSAG DNA for prostate specific antigen 1688 - 1847

HSU12421 mitochondrial benzodiazepine receptor gene 3684 - 3872

HUMADAG adenosine deaminase gene 35100 - 35202
HUMCP210H 21-hydroxylase B gene 2728 - 2906

HUMCP210HC mutant 21-hydroxylase B gene 2729 - 2907
HUMGHN growth hormone gene 1827 - 2024

HUMGHV growth hormone variant gene 1834 - 2031
HUMLYTOXBB lymphotoxin-beta gene 3559 - 3630
HUMMCHEMP monocyte chemotactic protein gene 1472 - 1589

HUMMET2 metallothionein-II gene 1167 - 1232

HUMMET2 metallothionein-II gene 1436 - 1527
HUMNTRI neutrophil peptide-1 gene 2627 - 2801
HUMNTRI neutrophil peptide-1 gene 3382 - 3491

HUMNTRIII neutrophil peptide-3 gene 2627 - 2801
HUMNTRIII neutrophil peptide-3 gene 3382 - 3491
HUMPRCA protein C gene 10516 - 11105

HUMTHROMA thrombopoietin gene 5053 - 5718
LEBGLOB Lepus europaeus adult beta-globin gene 2492 - 2620

MMGK5 Mouse glandular kallikrein gene 1645 - 1804
OAMTIB Sheep metallothionein MT-Ib gene 1655 - 1720
OAMTIC Sheep metallothionein MT-Ic gene 1229 - 1294

Table 5.2: Genes from the Burset-Guig6 database with exons expressed in two frames.

Unless otherwise specified, the genes are human.
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Data Set Nucl. Sn. Nucl. Sp. Exon Sn. Exon Sp.
BG (matches removed) 82 97 73 75

BG 93 97 87 86
HKRM (matches removed) 88 99 81 82

HKRM 97 99 92 91

Table 5.3: Statistics for the OWL protein database.
BG=Burset-Guig6, HKRM=Haussler-Kulp-Reese, modified.

of non-human genes. The parameters for the program were calibrated on a human
training set.

The power of combining dictionary hits with a gene recognition program is em-
phasized by the following statistic (computed with the removal of exact matches of
test sequences from the database): Out of the 10% of intron positions covered by
matches of 8-tuples to the OWL database, only 0.5% were predicted to be in exons.
Only .05% of the total intron base pairs were incorrectly classified as coding.

The results in Table 3 compare favorably with other statistical methods. Estimates
for sensitivity and specificity per nucleotide position range from 60-90%. Predictions
of exact exons also vary between the programs, with estimates between 30-70% speci-
ficity and sensitivity. The homology based AAT approach predicts nucleotides with a
sensitivity of 94% and specificity of 97%, and exons exactly with a sensitivity of 74%
and specificity of 78%.

The quality of our results is, of course, directly related to the presence or absence
of related matches to our test genes in the database. The larger the minimum tuple
length threshold k, the more the results become dependent on the general redundancy
of the database. For genes with few matches, one can resort to a smaller tuple size and
take the number of hits into account. Thus, our approach can be tuned to work either
as a statistical method or as a homology based method, as well as all the hybrids in
between. Furthermore, as the size of the databases grow, the results can be expected
to improve.

5.3.4 Other Applications

The dictionary approach we have described lends itself to a number of other applica-
tions:

" Repeat masking: We have built dictionaries from repeat databases and used
these for rapidly finding repeat segments in genes. This technique provides an
alternative to alignment based repeat maskers such as RepeatMasker (A. F.
A. Smit and P. Green [97]). The method is especially useful for exon predic-
tion, where it is advantageous not only to mask complete repeats, but to mask
segments (perhaps from repeats) that do not occur in exons.

" Different tuple patterns: The construction of the dictionary can be based on
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arbitrary tuple patterns and does not need to be restricted to consecutive tuples.
Such patterns may be important biologically. For example, the third position
in codons is less conserved in exons than the other two, so a pattern skipping
every third position may lead to interesting results. Another example is the
Kozak consensus (Chapter 1) for translation starts, which involves positions -3
and +4 around the ATG (recall that the consensus is AGXXATGG).

o Pseudogenes: Reverse transcribed genes which lack introns are often pitfalls for
gene recognition programs. The identification of neighboring exons in inconsis-
tent frames with no room for an intron immediately suggests the presence of
a pseudogene. This can be easily checked and automated, in the same vein as
the alternative splicing detection. Indeed, we discovered two such examples in
a newly sequenced genomic segment (GENBANK Accession: AC001226).

5.3.5 Discussion

The dictionary approach has a number of advantages over standard similarity search
techniques. Despite the unprecedented success of alignment algorithms in biology,
the algorithms are all handicapped by the problem that short matching segments can
be difficult to find in certain cases [8, 94]. For example, Figure 5-4 illustrates a case
where two subsequences of a large sequence agree in small regions (dark areas) and
differ elsewhere. An alignment between them may be overlooked if mismatches are
penalized less than gaps. Such a penalty scheme will produce an alignment of the
two subsequences with each other where the dark regions are not aligned, rather than
the desired alignment where the dark regions are superimposed. Even though this
problem can be addressed by suitably modifying the alignment parameters, the num-
ber of such extreme examples, combined with the myriad of parameters necessary to
address biological phenomena involved in sequence evolution (e.g., BLAST [3]), creates
a fundamental difficulty. Every given problem has a set of parameters associated
with it that provides a "good" alignment, but there is no universal set of parameters
that works for every problem. An advantage of our dictionary method is that when
performing a database search, all the exact matches of segments in a sequence are
rapidly detected.

The FLASH program is also designed to find similarities of segments to sequences in
databases. Unlike our dictionary method, which involves 0(1) time lookups for tuples
of a given size (4 tuples for protein dictionaries and 11 tuples for DNA dictionaries),
the FLASH program relies upon storing the positions of shorter tuples in a hash table.
The use of larger tuple sizes in a dictionary renders this unnecessary because longer
tuples appear in fewer sequences. The advantages of our dictionary method become
apparent when the databases involved become very large, which is the case with
the current dbEST database. Furthermore, this method enables rapid calculation of
frequency counts of arbitrary length tuples, which can be applied to statistics based
programs that rely on such information.

This approach also has advantages over other exon prediction methods. The en-
tire process of database search and exon prediction is automated, and the prediction
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Figure 5-4: A difficult alignment problem.

is based on many good target sequences (and their fragments) simultaneously. Fur-

thermore, in contrast to the INFO program, exons that have partial or no matches in

a database can sometimes be accurately predicted by using the fact that exons are

constrained independently in many ways: they require splice sites, must be frame

consistent and cannot contain high complexity repeats [69]. Also in contrast to INFO,
the method takes full advantage of the presence of long and short hits. The INFO

program uses 26 tuples of amino acids, whereas the dictionary based approach can

use all the tuple information starting with 4 tuples of amino acids. The AAT [38] tool

is designed specifically to automate the process of finding a good target sequence.

However, the reliance on one good target limits the ability of the program to predict

exons from fragments.
The effectiveness of the dictionary method we propose is not at all obvious apriori.

Indeed, the method can be inferior to alignment in the case where one wants to

compare two similar DNA sequences, perhaps from different species. A few gaps

and mismatches every 5-6 nucleotides will tend to exclude 11-tuple DNA hits. On

the other hand, the method has proved to be very effective for exon prediction,
especially when used in conjunction with a protein database (where mutations in the

third position of codons do not necessarily alter the resultant protein), or an EST

database (where exact matching fragments of a gene provide excellent candidates for

the dictionary to find).

5.3.6 Running Times

The OWL dictionary was built on a Pentium 2 (400MhZ) in 10 minutes, and the

dbEST dictionary, in 40 minutes. The total space occupied by the dictionaries was

manageable on modern drives. The dbEST database occupied about 1.75GB. The

analysis of a typical gene (computation of dictionary hits and solution of the best

parse) was accomplished on the order of seconds.
The construction of the dictionaries, a routine exercise for small databases, was
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complicated by the extremely large size of the databases. The solution described in
the methods section solves the problem by finding a tradeoff between space and time
that enables a realistic solution to the problem.
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Chapter 6

Comparative Genomics

6.1 Introduction

In this chapter we present a new system for exon prediction based on comparative
genomics. Our main result is the implementation and testing of a program which
is based on the approaches outlined in the previous chapters, but which is greatly
enhanced by the ability to compare information between genomes. We begin by
introducing the new paradigm we have established, and then proceed to detail our
algorithms. Finally, we discuss the results of tests performed with our program.

6.1.1 The Rosetta Stone

In September 1822, Jean-Francois Champollion uncovered the techniques which led to
our current understanding of hieroglyphics. He managed to decipher the hieroglyphic
language by using the Rosetta stone, which had been discovered in 1799.

The Rosetta stone is a record of the priestly honors and economic privileges given
to Ptolemy V for the services he performed for Egypt. It contains text written in
three languages: 14 lines of Egyptian hieroglyphics, 32 lines of Egyptian demotic
and 54 lines of ancient Greek. Because scholars in the 19th century knew ancient
Greek, Champollion was able to use the three languages simultaneously to reconstruct
the meaning of the Egyptian hieroglyphics, and more importantly, to understand
the structure of the language (for example, he deduced that there was a phonetic
component to hieroglyphics).

In a sense, the problem of finding exons and introns in DNA, is a bit like de-
ciphering a language, one that was composed by nature. But unlike the Rosetta
stone, which was written in 196 BC, our own DNA is a record of events that have
taken place during millions of years. Furthermore, when it comes to DNA, we have
no ancient Greek that we understand and can use to begin the translation process.
Nevertheless, evolution has been kind to us, and has acted differently on the different
parts of the DNA code. In particular, while exons have remained relatively stable
during evolution (possibly because mutations are often very damaging to the organ-
ism), introns have mutated wildly. Thus, the organisms of today are, in some sense,
a Rosetta stone that we can use to learn about introns and exons. If our goal is to

72



Figure 6-1: The Rosetta stone.

distinguish introns and exons, we can use multiple organisms to see where they have
been preserved (most likely exon) and where they have diverged (probably intron or
intergenic material). Indeed, even though we cannot necessarily find the introns and
exons in one organism alone, by using many organisms at once we can enhance our
signals and hope to simultaneously identify the signals we are interested in. This idea
is the backbone of what follows in this chapter 1.

6.1.2 A New Paradigm for Gene Annotation

The use of two or more organisms to distinguish introns and exons, or to annotate
more complex features such as promoters seems to be a fundamentally new way of
approaching the gene annotation problem. While the utility of two organism com-
parisons has been discussed [62, 33], little attention has been given explicitly to the
problem of gene annotation, and to the algorithms necessary to accomplish this task.

In what follows we describe a detailed approach to exon prediction based on using
two organisms (in our case, the human and mouse). Our algorithms are based on the
following observations, which are almost always true (there are exceptions, and these
are discussed at the end of this chapter):

" There is a bijective correspondence between coding exons in the human and the
mouse.

" Coding exons in the human and the mouse are the same length modulo 3.
Usually they are exactly the same length.

'Hieroglyphics are now extinct, and the Rosetta stone has been conveniently relocated to the
British museum in London (where it has been since 1802). We hope that the DNA code, and the
organisms that contains it (us), do not endure similar fates.
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" The DNA identity between corresponding exons is about 75%. At the protein
level, identity is around 85%.

" Introns are a lot less similar to each other than are coding exons, exhibiting
large variations in length, and having DNA identity of less than 50%.

Based on these observations, we predict coding exons using the following general
algorithm, which is described in the subsequent sections in detail:

1. Find the map between a human and its corresponding mouse gene. This entails
globally aligning the two sequences so that the coding exons correspond.

2. Find good exon pairs in regions of good alignment by assuming an underlying
Markov model and finding the best possible parse in the region.

3. Globally piece together good exon pairs to be frame consistent in both species.

We tried to keep the algorithm simple, yet as general as possible. For example, our
method for predicting good exon pairs can be generalized to handle organism pairs
other than human and mouse, simply by changing the PAM matrix used. We also
tried to keep the algorithm symmetric with respect to the organism, so that the role of
the human and mouse in the algorithm could be interchanged without effect. Finally,
we avoided, as much as possible, techniques based on "learned" rules or probabilities,
so that our algorithms are as robust as possible.

Each section below describes a main part of the overall algorithm and is self
contained. We mention that the alignment method should be useful for purposes
other than the exon prediction for which it is used in this thesis.

6.2 Alignments

6.2.1 Background

In order to use human/mouse comparisons for exon prediction, we need to align
long, similar sequences of human and mouse DNA. This problem has been considered
before [39, 31], but previous approaches suffer from a number of problems. Most
methods do not compute an entire map, rather settling for finding regions of locally
good alignment. Furthermore, the algorithms are slow; Hardison et al. [33] suggest
that an alignment of the entire human and mouse genomes should take a month. Our
approach is novel in that we produce a detailed alignment map for every position in
the sequences being aligned. Our recursive approach means the algorithm is easily
parallelized, and hence also fast. We define a good alignment to be one that satisfies
the following two criteria:

" Corresponding exons between the human and mouse are mapped to each other.

* The map is well preserved even at the boundaries of coding exons.
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Our alignment algorithm is based on an iterative mapping approach. The idea is to
use large regions of homology to fix pieces of the alignment, and then to iteratively
find the alignment for the regions in between the fixed ones. Thus we obtain a global
alignment by successively fixing regions with good local alignment.

Formally, an alignment is a pair of maps f : Si -+ S2 U{-1} and g: S2 -+ S1U{-1}
where S1 and S2 are the sets {1, ... , n} and {1, ... ,m} respectively. The maps must
be injective when restricted to elements that do not map to -1. In our case, we
will think of S1 and S 2 as representing positions in sequences of DNA (i.e., there are
additional maps N 1, N 2 from S1 , S2 to {A, C, G, T}), and an element mapping to -1
will be a nucleotide that is "gapped".

Alignments have been well-studied in the context of biological sequences (for a
comprehensive reference see Gusfield [31]). Our algorithm is a heuristic which is
based on the two classic global alignment techniques. These will be referred to as
MMG and MMGG:

ALGORITHM MMG(ma, iM, g):
Input: Two sequences (Si, S2, N1, N2 ), real numbers ma, M,, g. Output: An "opti-
mal" alignment of S1 with S2 where optimality is defined as the alignment maximizing
the quantity

Z mna+ Tn m+ g+ g
iESi,f (i)0--1,N(i)=N(f (i)) iESi,f (i)$-1,N(i)tN(f (i)) iESi,f (i)=-1 iES2,9(i)=-1

(6.1)
This algorithm is known as the classical "Needleman-Wunsch" algorithm [66],

and forms one of the original cornerstones of computational biology. The algorithm
is based on dynamic programming. The simplest implementation runs in 0(nm) time
and 0(nm) space where ISiI = n, IS21 = m. At the cost of doubling the running time,
space requirements can be improved to 0(n), n < m [37, 65]. Reduction of space is
especially important in our applications since the strings we are considering may be
very long (hundreds of kilobases).

ALGORITHM MMGG(ma, msg go ge):
Exactly the same as algorithm MMG with two extra parameters go, ge, where go is
the penalty for opening a gap, and g, is the penalty for a gap that is preceded by
another one.

The MMGG algorithm is a simple extension of the MMG algorithm. Different
gap opening and extension penalties are needed in our biological context because we
would prefer to keep gaps clustered together.

6.2.2 Nested Alignments

Our main alignment algorithm, as described before, is based on an iterative, or nested,
alignment procedure. The central ingredient in this algorithm is ALGORITHM
PARTIALALIGN described next, which is the procedure that is called recursively.
We begin by finding exact matches tuples of a fixed size between the two input se-
quences. The tuples are then aligned, with the match score for the alignment taken
to be the alignment quality of the local regions around the matching tuples. That
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is, two 1-tuple alignments are computed (one in each direction) and their scores are
added. The resulting matching tuples are then "fixed", subject to there not being any
inconsistencies. ALGORITHM GLOBALALIGN calls ALGORITHM PAR-
TIALALIGN recursively, thereby fixing regions with increasingly higher resolution
until the entire map is resolved.

ALGORITHM PARTIALALIGN:
Input: Two sequences (Si, S2, N 1, N2), integers k > 1, eLength > 0, and real numbers
ecesegap, emismatchematch, eopen, eextend, eap, ismatcheatch, pen, extend. Output:
The algorithm outputs two partial maps f, g.

1. Find all the k-tuples in S, that match k-tuples in S2 . We now construct two
sequences T1 , T2 where T consists of the tuples in Si that have a match in S2

and T2 consists of the (ordered) tuples in S2 with a match in S1. Notice that
the number of distinct elements in T is exactly the number of distinct tuples
in S1.

2. Align the sequences T and T2 using an MMG alignment where the parameters
are: Mismatch=0, Gap=O, Match=L+R. L is defined to be the score of the
alignment of a sequence of length eLength to the left of a considered element of
T 1, with a region of size eLength to the left of the (corresponding) element in
T2 . The alignment is an MMGG alignment with parameters egap, emismatch,
ematch, eopen, eextend. Similarly R is the score of an MMGG alignment of two
sequences of length eLength with parameters egap, emismatch, ematch, eopen, eextend.

3. The alignment generated between T and T2 is really a partial map of k-tuples
in S, to k-tuples in S2. Inconsistencies in this map are removed in this step
(i.e., inconsistent tuples are unfixed). Such inconsistencies may arise from two
consecutive overlapping tuples mapped to distant locations.

4. For each remaining mapped tuple, two MMGG alignments are performed on se-
quences on each side of the tuple (one on each side, with sequences are of length
eLength). These alignments are performed with the parameters e'a,, e'

ap emismatche
ematch' open, eextend. Mapped tuples whose resulting alignments have a score
L + R < ec are removed, and thus no longer mapped.

5. Of the remaining tuples, if the score of the alignment on one side is greater than
es, the map is extended to cover the nucleotides on that side.

ALGORITHM GLOBALALIGN:
Input: Two sequences S1, S2 , N 1, N2, a collection of tuples sizes (positive integers)
Pi > P2 > p3 > ... > pn = 1, as well as one set of parameters for each call to
PARTIALALIGN (there will be n such calls). Output: Alignment between S, and
S2 , (i.e., the maps f, g).

1. Call PARTIALALIGN with tuple size k = pi and the corresponding set of
parameters associated with pi.
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2. Repeat step 1 on each contiguous unmapped segment in S1 , and its correspond-
ing segment in S2 determined by the images of the endpoints of the unmapped
segment in S1.

6.3 Finding Coding Exons

Definition 6.1 Given two sequences S1 and S2 and the alignment maps f, g, we
define an exon pair to be a pair of subsequences E1 E S1 and E2 E S 2 = f(E). In
addition, we impose the requirement that E1 and E2 can potentially be coding exons,
i.e. they either have possible splice sites on the ends, or else initiation or stop codons.

By considering all potential exon pairs with reasonable alignment in a dynamic
programming context (Chapter 4), and by scoring the protein alignments between
potential exons, we were able to reliably find coding exons in human (and mouse)
genes. The dynamic programming was designed to operate under different assump-
tions. For example, we allowed for the different assumptions that the genomic region
being analyzed contained only one gene, many genes, and even genes on either strand.
In addition, we investigated the "local" performance of the program; that is, in the
case where only information from neighboring exons was used. We found that the
weak splice site consensus signals in the human were greatly enhanced by using an
additional organism, as was information about codons etc.

6.3.1 Removing Regions with Bad Alignment

Given an alignment between two sequences Si and S2, we began finding coding exons
by removing regions with a very bad alignment. A badly aligning region is defined to
be one with either too many gaps or too few matches:

Definition 6.2 Consider a region P of length 1. A position i E R is said to be in a
bad alignment if any of the following conditions are true:

1. In a window of size w around i, there are fewer than m matches.

2. Position i is inside a gap of length at least g.

If P contains no positions in a bad alignment, and 1 is greater than a cutoff
parameter L, then P is said to be a well-aligned region. We chose the parameters
I = 25, w = 37, g = 30, m = 10. Any positions not in a well-aligned region were forced
to be non-coding. The choice of parameters was arbitrary; we chose to be lenient so
as to avoid the possibility of removing any regions containing coding exons.

In addition to the local screening described above, we also removed any exon
pairs that did not have a sufficient good overall alignment. Given an alignment map
between two sequences, we define a score for the alignment as follows:
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Definition 6.3 MMGGE(ma, ins, g, a,,3, cap): Given two strings S1, S2 together
with the alignment maps f, g we define the MMGGE score as follows:

MMGGE(ma, m,, g, a, /3.cap) = MAXE{o, 1 ,2,} Ecmj (na, i)
(iESij (i)54-1,N(i)=N(f (i))

+ ms + cg(g, i) + cg(g,i).
iESi,f(i)#-1,N(i)#N(f(i)) ieSi ,f(i)=-1 iES 2 ,g(i)=-1

The function cm,(ma, i) is defined as follows: Let th(i) be the total number of gaps
until position i in S1. Similarly, define tm(i) to be the total number of gaps until
position i in S2 . If th(i) - tm(i) = j mod 3 then

cmj (ma, i) = Ma3MIN(mcap) (6.2)

where 1m is the length of the longest consecutive string of matches ending at i. Oth-
erwise,

cm, (ma, i) = Ma (6.3)
2

The function cg(g, i) is defined in a similar fashion; it is given by

cg(g, i) = gaMIN(lg,cap) (6.4)

where l is the length of the longest consecutive string of gaps ending at i.
In principle, the alignment maps could be constructed by optimizing the function

MMGGE described above. We found that in practice, the simpler alignment scoring
functions sufficed to find the map, and that the more complicated scoring scheme was
useful for post-processing.

We removed any exon pairs where the MMGGE(2,-1,-3,0.84,1.2,7) score was
less than half the length of the human exon.

6.3.2 Scoring a Pair of Exons

The score of an exon pair Eh E human and Em E mouse is given by

s(Eh, Em) = Sbh + Sbm + Seh + Sem + E P(Eh , Em) + EC(Eh, Em) (6.5)

where Sbh, Sbm, Seh and Sem (e for end, b for begin) are scores assigned to the
endpoints of the exons. The scores depend on whether the endpoints are splice sites,
initiation, or termination codons. We set the score of termination and initiation
codons to 0. The score of a donor or acceptor splice site (either Sbh or Sbm for
acceptor, Seh or Sem for donor) was given by the left rule modified GENSCAN splice
site detector (Chapter 3). Donor splice site scores were multiplied by a factor of ,
and acceptor splice site scores were multiplied by 3.5. This was done to balance the
scores; the factors were designed to equate the mean true splice site scores.
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EP(Eh, Em) is defined to be the protein alignment score of the two exons. For-
mally,

EP(Eh, Em) = E PAM(chi, f (chi)), (6.6)
iEEh

where i ranges over the codons in Eh, chi is the ith codon in the human sequence,
and f(chi) is the image of chi under the alignment map f (thus, f(chi) is a codon,
or a gap, in the mouse). The function PAM(a, b) is the value of a PAM matrix for
two codons a, b (see Appendix A). Note that as i ranges through Eh, the codon chi
might be a gap. We used the PAM20 matrix (see Appendix A), normalized so that
the average diagonal entry was 2. Future improvements will include constructing a
specialized "PAM" matrix for the exact problem of determining homologies between
human and mouse sequences. We chose to use a precomputed matrix so as to avoid
the problem of training on the test set. PAM20 was selected (as opposed to a different
PAMn matrix) because 20 point mutations per one hundred nucleotides seemed to
agree with our results about human/mouse alignments (see discussion).

EC(Eh, Em) is defined to be the codon usage score of the two exons. Similarly to
EP(Eh, Em), it is given by

EC(Eh, Em) = E CODONh(chi) + E CODONm(cmi). (6.7)
iEEh iEEm

As before, chi, cmi represent the ith codons. CODONh and CODONm are log odds
ratios that for a codon c, return the value

CODONh,m(c) = log fc. (6.8)
log e,

That is, depending on whether one is examining human or mouse, the function returns
the logarithm of the frequency of occurrence of the codon in an exon database, divided
by the logarithm of the expected frequency of occurrence. Tables for human and
mouse codon usage are listed in Appendix A.

Cutoffs

As mentioned previously, cutoffs were employed to remove regions of bad alignment.
Similarly, cutoffs were used to remove very bad splice sites. Coding exons with a
combined splice site score less than -10 were not allowed. These cutoffs are heuristic,
and can be tuned to remove false positives at the expense of false negatives. Similar
cutoffs were experimented with for protein alignments and codon usage. We decided
not to implement such cutoffs at this time.

Penalties

Penalties were implemented to account for the different length distributions of introns
and exons. These penalties will be improved with time, both to be more probabilistic
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and to take into account various parameters such as GC richness, G triplets near
splice sites etc. (see Chapter 3).

A penalty was also imposed for exons with different lengths, with the penalty
dependent on the difference of the lengths modulo 3. For internal exons, the penalty
for being of different length modulo 3 was -27, and a penalty of -9 was imposed
for length which were different, but the same modulo 3. Initial and terminal exons
received similar penalties of -9 and -3 respectively.

6.3.3 Piecing together Exons

The dynamic programming algorithm described in Chapter 4 was used to find the
optimal parse maximizing the exon pair scores from equation (6.5). A minor modifi-
cation to the basic dynamic programming routine was added to deal with the special
case of human/mouse based parsing:

Since the exon pair score is based on an exon pair Eh, Em, and the dynamic
programming was based on the human alone, it was necessary to find a matching
exon pair in the mouse for a potential exon Eh in the human. This was accomplished
by defining Em to be f(Eh) if the endpoints of Em matched equivalent endpoints in
the mouse. That is, if splice sites in the human mapped directly to splice sites in the
mouse, they were used. In the case of no map, splice sites (or initiation/stop codons)
within windows of size 15 on either side of the image were considered (if the case of
no images inside these windows the potential exon in the human was rejected). Thus,
a potential exon Eh in the human was paired with either 1, 2 or 4 exons in the mouse.
The best pairing was considered to be the true pair.

Frame consistency between predicted exons was required both in the human and
the mouse. This was particularly important in the context of the different assumptions
(Chapter 2) underlying the dynamic programming. We implemented the ability to
operate under all possible assumptions, ranging from the single gene assumption, to
multiple genes.

6.4 Results

We tested our methods on the HUMCOMP/MUSCOMP comparison test set (see
Appendix B for details on how the test set was constructed). The program described
in this chapter, which we call Rosetta, was tested with a variety of underlying
assumptions:

1. The genomic regions we were analyzing consisted of only one gene (we call this
the single gene assumption). The dynamic programming algorithm was set to
find the optimal valid parse (see Chapter 4).

2. We allowed for multiple genes in the genomic regions analyzed (we call this the
multiple gene assumption). The dynamic programming algorithm was set to find
the optimal collection of partial valid parses, with the added restriction that a
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partial valid parse could begin with an initiation codon only if the previous
partial valid parse ended with a stop codon.

3. We also considered the problem of finding exons locally. We defined this to be
the problem of using dynamic programming to find optimal partial valid parses
for each well-aligned region. Information about the parse obtained in a well-
aligned region was not used when finding parses for its neighbors. We call this
the parsed in pieces assumption.

4. We also considered the double strand assumption, where the optimal parse was
found on both strands.

The third assumption was used primarily as an intermediate step towards the goal
of parsing with the multiple gene, double strand assumption. We state the results
for this assumption in Table 6.5 because of its applicability for finding exons in short
genomic fragments.

Results with the single gene assumption appear in Table 6.8. We include these
for comparison with most other gene recognition programs which operate with this
assumption. It is also interesting to note the large gain in accuracy obtained by
adding this assumption.

Table 6.6 contains the results with the multiple gene assumption.
In the double strand assumption we did not allow for coding exons simultaneously

appearing on both strands in the same position. If this happened, we picked a strand
by examining a region of size 2000 on each size of both exons (on both strands) and
picking for our prediction the strand in which we predicted the most coding exon in
this region. Results with this assumption, as well as the multiple gene assumption (our
most general result) appear in Table 6.7. The results of running GENSCAN operating
under the same assumptions on the same test set appear in Table 6.9. Out of the
117 genes we tested on, 40 appear in GENSCAN's training set. Surprisingly, we noticed
that GENSCAN's performance did not deteriorate when removing these genes.

The main results of our runs are summarized in the tables below. Table 6.1 shows
a comparison between the Rosetta program and GENSCAN, with the most general
assumptions in place (multiple genes, double strand).

Rosetta GENSCAN
Nucleotide sensitivity 95% 98%
Nucleotide specificity 97% 89%
Exon sensitivity 84% 83%
Exon specificity 83% 76%
Predicted exons not overlapping coding exon 26 68

Table 6.1: Summary of results for all coding exons.

Tables 6.2 and 6.3 show the statistics for internal and external coding exons.
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Rosetta GENSCAN

% exons correct on both ends 93% 91%
% exons correct on one end only 4% 6%
% exons completely missed 3% 3%

Table 6.2: Summary of results for interior coding exons.

Rosetta GENSCAN
% exons correct on both ends 71% 73%
% exons correct on one end only 19% 15%
% exons completely missed 8% 10%

Table 6.3: Summary of results for exterior coding exons.

In Table 6.4 we show all of the genes in the HUMCOMP/MUSCOMP test set,
together with the DNA and protein alignments for each exon as well as the results of
our predictions. The first two rows contain the loci of the genes, the number of coding
exons in each, the total length of the coding regions of the genes, and then the length
of the individual exons. The alignment percentages correspond to the percentage of
positions in the exons that match. The DNA alignment was done as follows: we used
the exon annotations in the human and mouse to find the corresponding exons. If our
map did not correspond to the annotations, we returned an alignment of 0. Otherwise
we return the alignment given by our map (percentage of matches). For the protein
we recompute an alignment based solely on the annotations. Thus, even if our map
did not correspond to the annotations, we could compute an alignment. This was
done so as to be able to see when our map did not correspond to the annotations.

Unfortunately, not all the genes in MUSCOMP contained complete annotations, for
these the alignment results are invalid. Furthermore, in genes with different numbers
of exons in the human and mouse it was sometimes difficult to establish the exact
correspondence. Finally, we show for each gene the results of our predictions for each
exon. A \/ indicates an exon correctly identified on both ends. A x indicates the
exon was completely missed. x - V, \/ - x and x - x indicate that the exon was
covered but at least one of the ends was not predicted correctly. In this latter case,
the \/ indicates which end was correct, if any at all.

6.5 Discussion

A number of observations are immediate from the results, and are interesting:

* Our results are robust in that they did not seem to differ much from gene to
gene.
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" We find external exons in genes about as accurately as GENSCAN, despite not
incorporating promoter detection or other signals that help fix gene boundaries.

* Our main advantage at this stage is our superior specificity.

" Our errors are mostly restricted to external exons. Upon analysis, we see that
our mistakes on internal exons are the result of a few, unrelated pathological
examples. There does not seem to be a clear trend. -

Our results also clearly demonstrate the advantages of using multiple organisms to
enhance the signal to noise ratio in coding exon detection. Our technique clearly relies
on the empirical observation that coding exon regions have good alignments, as op-
posed to introns. In Figures 6-3 and 6-4 we show the distributions of matches and gaps
in windows of size 39 in exons and introns (taken from the HUMCOMP/MUSCOMP
datasets). The figures clearly show excellent separation; the exact figures for overall
alignment agree with those in the literature [52, 51, 67, 33, 62].

Unfortunately, it is not the case that the alignments alone allow us to distinguish
exons from introns. In Figure 6-2 we show an example of a typical gene, and how
there can be a lot more well-aligned material, than there is coding exon. The top bar
represents the human gadd45 gene, and the bottom bar the orthologous mouse gene.
The light regions within the bars are the coding exons. Arrows originate on splice
sites and show where they map to. The painted region between the bars indicates:
regions of good alignment.

Human gadd45 gene
Mouse gadd45 gene

Regions with good alignrnent
Coding exons

Transcription binding site p53 binding site

Figure 6-2: The gadd45 gene
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Much of the power of our algorithm comes from our EP function, which is mea-
suring how the amino acids mutated (using the PAM matrix). Indeed, it seems that
what is helping us more is the type of mutation, rather than the place of mutation.
In this work, we have strived to keep our tests fair and unbiased, and have therefore
not trained on the HUMCOMP and MUSCOMP datasets. However, after testing,
we are now in a position to use this data to measure exactly the types of mutations
that occur, and considerably refine our PAM matrix.

The nature of the Rosetta technique also enables analysis other than gene recog-
nition (and exon detection) to be performed on pairs of orthologous genes from two
organisms. The fact that a global alignment is obtained, in conjunction with the
exon prediction, allows for an accurate measurement of DNA and protein similarity
between corresponding genes. This should prove useful in making statements about
the functions of the genes being analyzed. As an example, consider the pair of genes
HSU12202 and MMMRPS24 (see Table 6.4). These genes encode for the ribosomal
protein S24. There are three interior coding exons in these genes (of lengths 66, 210
and 111 nucleotides) which have the property that each is preserved 100% at the
protein level! In contrast, the DNA similarity is only about 90% for each exon. This
would strongly suggest that this particular protein is structurally very constrained.
Indeed, it seems reasonable that further analysis will show that various functional con-
clusions about genes can be drawn from examining extremely well preserved exons
(and also perhaps exons which have diverged).

In addition to the applications outlined above, a detailed analysis of the types of
mutations in promoters, enhancers and other signals in genes should yield numerous
insights into the biological processes associated with the signals (a la the techniques
of Chapter 3).

There is no apriori reason to restrict our methods to human-mouse comparisons.
The method should generalize well to the use of other organisms simply by changing
the splice site detection method, as well as recalibrating the PAM matrix and length
parameters. It is an interesting question to determine the "optimal" evolutionary
distance for signal enhancement. Organisms that are too far apart will be too different
to distinguish preserved regions, while those that are too similar will be preserved too
much. Our methods should also generalize to n organism comparisons. Indeed, it
appears that the addition of a third organism should greatly enhance the signal to
noise ratio.
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Figure 6-3: Alignment statistics in coding exons
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Figure 6-4: Alignment statistics outside of coding exons

85



HSCKIIBE 6 648 72 103 116 76 190 91
MMGMCK2B 6 648 72 103 116 76 190 91
DNA % 93.83 94.44 96.12 90.52 93.42 93.68 95.6
Protein % 98.61 100 99.03 98.28 98.68 97.89 98.9
Predictions x - / V / / V
HUMSAACT 6 1134 129 325 162 192 182 144
MUSACASA 6 1134 129 325 162 192 182 144
DNA % 90.83 89.92 89.23 90.12 90.62 92.86 93.75
Protein % 99.21 100 99.69 98.15 98.44 98.9 100
Predictions x - V V V V V
HSH4EHIS 1 312 312
MMHIS412 1 312 312
DNA % 89.74 89.74
Protein % 100 100
Predictions I/
HSU12202 5 393 3 66 210 111 3
MMMRPS24 5 396 3 66 210 111 6
DNA % 89.06 100 86.36 89.52 91.89 0
Protein % 100 100 100 100 100 100
Predictions x V V V x
HUMHIS4 1 312 312
MUSHIST4 1 312 312
DNA % 87.5 87.5
Protein % 100 100
Predictions x - V
ISHISH3 1 411 411

MMHIST31 1 411 411
DNA % 86.13 86.13
Protein % 100 100
Predictions V
HSHSC70 8 1941 205 206 153 556 203 199 233 186
MMU73744 8 1941 205 206 153 556 203 199 233 186
DNA % 89.39 86.83 89.81 90.85 89.75 92.61 85.43 90.13 89.25
Protein % 99.23 99.51 99.03 100 99.82 97.54 99.5 97.85 100
Predictions x - V V/ V/ v V V V
HUMNOCT 1 1332 1332
MUSPOUDOMB 1 1338 1338
DNA % 93.62 93.62
Protein % 99.1 99.1
Predictions I/
HUMTROC 6 486 24 31 147 115 137 32
MUSCTNC 6 486 24 31 147 115 137 32
DNA % 91.15 95.83 87.1 91.84 93.04 87.59 96.88
Protein % 96.91 100 96.77 97.96 96.52 96.35 93.75
Predictions I/ V V / / V
HSINT1G 4 1113 104 254 266 489
MUSINT1A 4 1113 104 254 266 489
DNA % 91.46 91.35 89.37 91.73 92.43
Protein % 98.38 89.42 98.03 99.25 100
Predictions x - V V / v
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HUMSRI1A 1 1176 1176
MUSSRI1A 1 1176 1176
DNA % 89.12 89.12
Protein % 98.72 98.72
Predictions
HSMIMAR 1 1383 1383
MUSACHRM1 1 1383 1383
DNA % 90.31 90.31
Protein % 98.05 98.05
Predictions x - V
HSFAU1 4 402 75 145 56 126
MUSFAUA 4 402 75 145 56 126
DNA % 91.54 94.67 88.97 91.07 92.86
Protein % 97.01 96 95.17 96.43 100
Predictions x - V V
HUMCRYABA 3 528 201 123 204
MUSALPBCRY 3 528 201 123 204
DNA % 91.29 92.54 84.55 94.12
Protein % 97.73 95.52 100 98.53
Predictions x - V V /
HSENO3 11 1305 85 96 59 70 134 223 198 202 109 59 70
MMENO3G 11 1305 85 96 59 70 134 223 198 202 109 59 70
DNA % 89.81 95.29 89.58 88.14 92.86 85.82 94.62 85.86 89.6 89.91 88.14 87.14
Protein % 96.09 98.82 93.75 81.36 98.57 96.27 99.55 93.94 96.53 99.08 96.61 94.29
Predictions x - VV V V V V
HUMPPIB 1 558 558
MUSPPIA 1 558 558
DNA % 93.01 93.01
Protein % 97.31 97.31
Predictions V
HUMKCHN 1 1572 1572
MUSMKSA 1 1587 1587
DNA % 90.71 90.71
Protein % 97.14 97.14
Predictions V
HUMPCNA 6 786 221 98 68 195 124 80
MMPCNAG 6 786 221 98 68 195 124 80
DNA % 88.42 88.69 85.71 89.71 88.72 88.71 88.75
Protein % 95.8 95.02 97.96 97.06 96.92 94.35 93.75
Predictions V V V V
HSU73304 1 1419 1419
MMU22948 1 1422 1422
DNA % 90.49 90.49
Protein % 97.25 97.25
Predictions
AF007876 7 873 112 129 105 206 57 99 165
MMATPB2 7 873 112 129 105 206 57 99 165
DNA % 90.95 97.32 91.47 93.33 88.35 91.23 85.86 90.91
Protein % 96.22 99.11 95.35 91.43 96.12 94.74 93.94 100
Predictions I I I V v V v N
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HUMNT3A 1 774 774
MMNT3 1 777 777
DNA % 89.79 89.79
Protein % 96.12 96.12
Predictions x - V
HSCKBG 7 1146 193 155 133 172 124 190 179
MUSCRKNB 7 1146 193 155 133 172 124 190 179
DNA % 90.23 87.56 89.03 92.48 88.95 94.35 93.16 87.71
Protein % 95.55 91.71 90.97 99.25 95.93 96.77 96.32 98.88
Predictions x - V V VS/ V V
HUMACHRM4 1 1437 1437
MMM4ACHR 1 1440 1440
DNA % 89.42 89.42
Protein % 95.2 95.2
Predictions V
HUMMHHSP2 1 1926 1926
MUSHSP7A2 1 1929 1929
DNA % 91.38 91.38
Protein % 95.33 95.33
Predictions V
HUMAPEXN 4 957 58 188 193 518
MUSAPEX 4 954 55 188 193 518
DNA % 86.73 74.14 89.36 87.05 87.07
Protein % 94.04 62.07 89.36 97.93 97.88
Predictions V V V V
HUMGAD45A 4 498 44 102 238 114
MUSGAD45 4 498 44 102 238 114
DNA % 90.56 97.73 88.24 88.24 94.74
Protein % 93.37 88.64 91.18 92.02 100
Predictions V
HUMMHHSPHO 1 1926 1926
MUSHSC70T 1 1926 1926
DNA % 84.94 84.94
Protein % 94.39 94.39
Predictions IV
HSHOX51 2 768 433 335
MMU77364 2 753 427 326
DNA % 88.54 87.99 89.25
Protein % 92.19 90.76 94.03
Predictions x - V V
HUMHISAC 1 660 660
MUSH1EH2B 2 987 660 327
DNA % 85.76 85.76
Protein % 94.09 94.09
Predictions V
HUMSPERSYN 8 909 167 121 93 154 84 146 123 21
MMSPERSYN 7 909 167 121 93 154 230 123 21
DNA % 88.67 93.41 90.08 89.25 87.66 89.29 88.36 83.74 76.19
Protein % 93.73 97.01 99.17 100 93.51 92.86 90.41 85.37 85.71
Predictions V V V x - x - V
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HSHIS1OG 1 585 585
MMU18295 1 585 585
DNA % 91.11 91.11
Protein % 94.87 94.87
Predictions _ V_
HSCFOS 4 1143 141 252 108 642
MMCFOS 4 1143 141 252 108 642
DNA % 88.28 90.07 84.13 91.67 88.94
Protein % 93.7 97.87 86.9 100 94.39
Predictions N/ / / / - X
HUMHGCR 1 1173 1173
MUS5HT1B 1 1161 1161
DNA % 88.83 88.83
Protein % 92.07 92.07
Predictions v
HUMUDPCNA 1 1338 1338
MUSGLCNACT 1 1344 1344
DNA % 84.75 84.75
Protein % 90.36 90.36
Predictions I V
HSODCG 10 1386 102 174 173 135 82 84 163 113 215 145
MUSODCC 10 1386 102 174 173 135 82 84 163 113 215 145
DNA % 86.36 86.27 86.78 90.17 87.41 84.15 88.1 87.12 84.07 88.37 78.62
Protein % 89.61 82.35 94.83 90.17 93.33 87.8 89.29 92.02 92.92 93.49 74.48
Predictions v / / V v / / /
HUMGALTB 11 1140 82 170 76 49 130 57 123 133 84 155 81
MMU41282 11 1083 25 170 76 49 130 57 123 133 84 155 81
DNA % 77.02 23.17 88.82 84.21 77.55 95.38 94.74 81.3 90.98 94.05 82.58 0
Protein % 85.79 25.61 97.06 86.84 73.47 96.92 100 85.37 90.23 96.43 87.1 81.48
Predictions Ix -V V/ V-x x x x x -V V x
HSU29185 1 738 738
MUSPRNPA 1 765 765
DNA % 81.3 81.3
Protein % 83.74 83.74
Predictions x - V
HSU01212 1 492 492
MMU01213 1 492 492
DNA % 88.62 88.62
Protein % 89.63 89.63
Predictions I V
HUMMIF 3 348 108 173 67
MMU20156 3 348 108 173 67
DNA % 88.51 89.81 87.28 89.55
Protein % 88.79 94.44 83.24 94.03
Predictions I/ N/ V /
AF049259 7 1263 495 83 157 162 126 221 19
MMU13921 8 1314 471 83 157 162 126 221 23 71
DNA % 84.8 80.61 86.75 91.08 88.89 90.48 90.05 0
Protein % 86.46 80.61 79.52 93.63 92.59 92.86 96.38 0
Predictions V / v V v V x
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HSH12 1 642 642
MUSHISlA 1 639 639
DNA % 76.95 76.95
Protein % 84.11 84.11
Predictions x -
HSACTHR 1 894 894
MUSACTHR 1 891 891
DNA % 84.12 84.12
Protein % 88.26 88.26
Predictions _ _ / - x
AF027148 3 963 630 79 254
MMMYOD1 3 957 627 79 251
DNA % 85.25 89.05 81.01 77.17
Protein % 87.85 94.76 68.35 76.77
Predictions I I v
HUMKER18 7 1293 417 83 157 165 126 224 121
MUSENDOBA 7 1272 396 83 157 165 126 224 121
DNA % 83.45 79.86 89.16 88.54 87.88 80.95 83.93 80.99
Protein % 86.54 81.29 93.98 95.54 89.09 80.95 88.39 86.78
Predictions v V-x V V V V
HUMADRA 1 1353 1353
MUSALP2ADB 1 1353 1353
DNA % 87.29 87.29
Protein % 88.25 88.25
Predictions V
HSMHCPU15 6 660 60 68 132 130 142 128
MUSLMP2A 4 642 281 132 130 99
DNA % 54.24 0 89.71 85.61 80.77 55.63 0
Protein % 58.18 65 92.65 88.64 90 19.01 16.41
Predictions x
HSU72648 1 1386 1386
MUSADRA 1 1377 1377
DNA % 86.65 86.65
Protein % 88.1 88.1
Predictions V
HUMMK 4 432 76 168 162 26
MUSMKPG 4 423 76 159 162 26
DNA % 86.57 78.95 85.71 90.74 88.46
Protein % 84.72 82.89 82.14 87.04 92.31
Predictions x - V v
HSMYF4G 3 675 471 81 123
MUSMYOGEN 3 675 471 82 122
DNA % 90.67 90.87 90.12 90.24
Protein % 94.67 96.82 85.19 92.68
Predictions x -V v
HUMHISAB 1 666 666
MMHISTH1 1 666 666
DNA % 79.43 79.43
Protein % 87.84 87.84
Predictions V



HUMOTNPI 3 375 120 199 56
MUSOXYNEUI 3 378 120 202 56
DNA % 87.47 87.5 90.45 76.79
Protein % 87.2 90 91.96 64.29
Predictions I/ V I/
HUMTKRA 7 705 66 32 111 94 90 120 192
MUSTKM 7 702 66 32 111 94 90 120 189
DNA % 84.11 89.39 93.75 89.19 86.17 83.33 81.67 78.65
Protein % 86.38 90.91 93.75 91.89 89.36 86.67 92.5 75
Predictions Iv/ N/ v I/ V
HUMADRBRA 1 1242 1242
MMB2ARG 1 1257 1257
DNA % 85.43 85.43
Protein % 87.2 87.2
Predictions %
HUMMETIII 3 207 31 66 110
MUSMETIII 3 207 31 66 110
DNA % 88.41 93.55 84.85 89.09
Protein % 84.06 87.1 77.27 87.27
Predictions V V v
HUMXRCC1G 17 1902 51 93 111 159 75 112 110 112 259 117 94 133 55 140 91 76 114
MUSXRCCIG 17 1890 51 93 117 159 75 112 110 100 259 117 94 130 55 137 91 76 114
DNA % 84.23 96.08 92.47 89.19 89.94 80 88.39 80.91 68.75 79.54 91.45 80.85 80.45 90.91 80 82.42 85.53 89.47
Protein % 84.7 94.12 100 100 98.11 88 91.07 79.09 61.61 81.08 94.87 70.21 63.16 87.27 72.86 89.01 86.84 97.37
Predictions x - -/ V/ -V/ x - V
HUMGOS24B 2 981 24 957
MUSZPF36G 2 960 24 936
DNA % 83.08 91.67 82.86
Protein % 84.4 87.5 84.33
Predictions I V
HSAGL1 3 429 95 205 129
MUSHBA 3 429 95 205 129
DNA % 80.42 73.68 79.51 86.82
Protein % 85.31 72.63 86.34 93.02
Predictions V V
HSPGK2G 1 1254 1254
MUSPGK2 1 1254 1254
DNA % 84.93 84.93
Protein % 86.12 86.12
Predictions V
HSU57623 4 402 73 173 102 54
MMUO2884 4 402 73 173 102 54
DNA % 83.33 90.41 85.55 77.45 77.78
Protein % 85.07 90.41 84.97 82.35 83.33
Predictions I/ V V v
HSARYLA 8 1524 218 241 219 170 125 128 103 320
MMDNAASFA 8 1521 215 241 219 170 125 128 103 320
DNA % 82.61 79.36 86.31 82.19 85.29 79.2 88.28 88.35 78.12
Protein % 84.65 83.94 92.12 87.67 88.24 84 91.41 81.55 74.06
Predictions I I I V V V v
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S63168 1 810 810
MUSCRP3A 1 804 804
DNA % 85.31 85.31
Protein % 85.19 85.19
Predictions _ / - x
HSHSP27 3 600 364 64 172
MUSHSP25A 3 630 375 66 189
DNA % 84 84.89 90.62 79.65
Protein % 83.5 84.89 93.75 76.74
Predictions I V__/ v
HUMROD1X 3 1056 590 247 219
MUSROMiX 3 1056 590 247 219
DNA % 85.04 84.24 85.83 86.3
Protein % 84.38 83.39 88.66 82.19
Predictions x - x V V
HUMSSTR3X 1 1257 1257
MUSSSTR3A 1 1287 1287
DNA % 82.74 82.74
Protein % 85.2 85.2
Predictions I
HSPNMTB 3 849 202 208 439
MUSPNMT 3 888 235 208 445
DNA % 82.92 77.72 83.65 84.97
Protein % 84.45 75.74 86.54 87.47
Predictions x - V V v
HSIGF2G 2 394 157 237
MMU71085 3 543 157 149 237
DNA % 85.53 87.26 84.39
Protein % 45.69 85.99 18.99
Predictions x - V V
HUMADAG 12 1092 33 62 123 144 116 128 72 102 65 130 103 14
MMU73107 11 1059 33 62 123 144 116 128 72 102 65 130 84
DNA % 78.85 87.88 83.87 82.11 86.81 83.62 79.69 72.22 79.41 80 83.85 59.22 0
Protein % 80.22 90.91 87.1 75.61 91.67 77.59 75 83.33 85.29 73.85 92.31 58.25 42.86
Predictions V / I / / / V V V / x x
HUMSMPD1G 6 1890 312 773 172 77 146 410
MMASM1G 6 1884 306 773 172 77 146 410
DNA % 82.49 70.51 83.31 91.28 88.31 86.3 83.9
Protein % 82.06 54.81 87.32 92.44 89.61 90.41 84.15
Predictions x -V V V V V /
HUMCOX5B 4 390 103 74 100 113
MUSCYTCOVB 4 387 100 74 100 113
DNA % 85.9 84.47 89.19 88 83.19
Protein % 80.77 75.73 89.19 87 74.34
Predictions v I/ I/ V
HUMNUCLEO 14 2124 18 117 478 198 87 142 125 124 158 124 134 127 215 77
MMNUCLEO 14 2124 18 117 496 186 87 142 125 124 155 124 122 127 224 77
DNA % 84.32 94.44 88.03 79.92 72.22 88.51 80.99 90.4 83.87 85.44 91.94 84.33 89.76 88.84 90.91
Protein % 82.34 100 87.18 75.31 66.67 86.21 69.72 96 77.42 79.75 84.68 82.84 94.49 99.07 93.51
Predictions I V V V v V V v v I V V v V



S45332 8 1527 115 136 176 158 154 88 88 612
MMERYPR 8 1524 115 133 176 158 154 88 88 612
DNA % 82.19 82.61 85.29 77.84 77.85 87.01 80.68 94.32 81.05
Protein % 80.75 78.26 79.41 80.11 75.95 89.61 85.23 92.05 78.43
Predictions V, V V
HUMINSPR 2 333 187 146
MMINSIIG 2 333 186 147
DNA % 82.28 79.68 85.62
Protein % 81.08 80.21 82.19
Predictions N/
HUMHST 3 621 340 104 177
MMKFGF 3 609 328 104 177
DNA % 81.16 77.65 86.54 84.75
Protein % 79.23 70.59 86.54 91.53
Predictions V V V - x
HUMPLPSPC 5 594 42 159 123 111 159
MUSPSPC 5 582 42 159 123 111 147
DNA % 79.63 85.71 84.28 80.49 86.49 67.92
Protein % 78.79 85.71 90.57 78.05 78.38 66.04
Predictions V I/ N V- x V
HSCOSEG 3 495 120 202 173
MUSVASNEU 3 507 132 202 173
DNA % 85.05 85 92.08 76.88
Protein % 81.21 82.5 93.56 65.9
Predictions x - V V v
HSB3A 2 1227 1205 22
MMBSA 2 1203 1163 40
DNA % 78 79.42 0
Protein % 80.2 81.41 13.64
Predictions _ / - x x
HUMLORI 1 951 951
MMU09189 1 1446 1446
DNA % 78.86 78.86
Protein % 79.18 79.18
Predictions
HSU37055 18 2136 52 148 113 115 137 121 119 169 131 103 137 36 121 78 147 107 140 162
MUSHEPGFA 18 2151 52 148 113 115 137 121 119 196 131 103 137 36 109 78 147 107 140 162
DNA % 80.9 78.85 84.46 78.76 81.74 83.94 76.86 80.67 77.51 76.34 84.47 76.64 88.89 71.9 87.18 81.63 85.98 82.86 84.57
Protein % 78.51 69.23 81.08 76.99 78.26 83.21 76.86 83.19 71.01 75.57 84.47 76.64 91.67 76.86 84.62 81.63 78.5 68.57 83.33
Predictions V V V V V V V V V
HSH11 1 648 648
MUSH1X 1 642 642
DNA % 73.15 73.15
Protein % 79.17 79.17
Predictions
HSU66875 3 294 73 137 84
MMU63716 3 294 73 137 84
DNA % 80.27 83.56 76.64 83.33
Protein % 77.55 73.97 72.26 89.29
Predictions V V v
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HSINT2 3 720 220 104 396
MMINT2 3 738 220 104 414
DNA % 81.39 87.73 83.65 77.27
Protein % 82.5 94.09 92.31 73.48
Predictions V V / - x
HSBGL3 3 444 92 223 129
MUSHBBMAJ 3 444 92 223 129
DNA % 82.43 84.78 82.96 79.84
Protein % 79.73 78.26 82.06 76.74
Predictions V N/ v
HUMALIFA 3 609 19 179 411
MUSALIFA 3 612 19 182 411
DNA % 81.44 94.74 88.83 77.62
Protein % 79.8 94.74 90.5 74.45
Predictions N/ I/ v
HUMFABP 4 399 67 173 108 51
MUSFABPI 4 606 103 173 108 222
DNA % 81.2 85.07 81.5 82.41 72.55
Protein % 60.15 13.43 79.77 66.67 41.18
Predictions x - V V / V
HUMLYTOXBB 4 735 162 46 72 455
MMU16984 3 921 162 316 443
DNA % 81.22 86.42 65.22 83.33 80.66
Protein % 75.51 85.19 45.65 70.83 75.82
Predictions x - V x x - V V
HUMLYLiB 3 804 296 92 416
MMLYL1 3 837 333 90 414
DNA % 79.23 76.35 88.04 79.33
Protein % 76.87 73.99 88.04 76.44
Predictions x - V V V
HUMANFA 3 456 123 327 6
MUSANF 3 459 120 327 12
DNA % 80.92 75.61 82.87 83.33
Protein % 78.95 63.41 84.4 100
Predictions v V x
HUMGOS19A 3 279 73 115 91
MMSCIMIP 3 279 76 112 91
DNA % 78.85 82.19 78.26 76.92
Protein % 75.27 82.19 75.65 69.23
Predictions V v V
HUMALPI 11 1587 67 117 116 175 173 135 73 135 192 117 287
MUSIAP 11 1680 67 117 116 175 173 135 73 135 192 114 383
DNA % 79.84 89.55 85.47 83.62 85.71 80.92 80 68.49 78.52 81.25 69.23 76.31
Protein % 78.07 94.03 84.62 85.34 82.29 86.71 82.22 57.53 68.89 84.38 64.1 70.03
Predictions I x-V V V V V V V V V V x
HUMFPR1A 1 1053 1053
MUSNFORREC 1 1095 1095
DNA % 78.54 78.54
Protein % 77.49 77.49
Predictions



HSSPRO 8 1437 64 120 345 140 157 153 345 113
MMVITRO 8 1437 64 120 342 140 157 153 351 110
DNA % 79.12 90.62 83.33 66.38 90.71 86.62 86.93 75.65 82.3
Protein % 73.9 79.69 75 54.78 94.29 87.9 86.27 69.57 79.65
Predictions I/ V v V V
HSGCSFG 5 624 40 164 108 147 165
MMGCSFG 5 627 40 173 108 147 159
DNA % 77.24 77.5 75.61 87.04 76.87 72.73
Protein % 72.12 52.5 64.02 86.11 83.67 65.45
Predictions _ / V - x V x
HUMTNFBA 3 618 99 106 413
MMTNFBG 3 609 96 100 413
DNA % 79.13 72.73 69.81 83.05
Protein % 71.84 57.58 56.6 79.18
Predictions x - V I
HSU16720 5 537 165 60 153 66 93
MUSIL10Z 5 537 165 60 153 66 93
DNA % 81.01 73.94 78.33 85.62 90.91 80.65
Protein % 73.18 61.82 70 82.35 90.91 67.74
Predictions N/ V V V V
HUMCP210H 10 1488 202 90 155 102 102 87 201 179 104 266
MUS210HA1 10 1464 202 90 143 96 102 87 201 170 104 269
DNA % 76.21 79.7 75.56 75.48 76.47 70.59 77.01 78.11 73.74 79.81 74.81
Protein % 70.56 78.71 70 73.55 76.47 47.06 68.97 71.64 70.39 72.12 68.8
Predictions N/ x V V V V
HUMMIS 5 1683 412 143 109 160 859
MMAMH 5 1668 403 143 109 160 853
DNA % 74.63 68.69 72.73 77.06 71.25 78.11
Protein % 71.48 56.8 67.13 74.31 65.62 79.98
Predictions f_ vN/ V V V
HUMAPOE4 3 954 43 193 718
MUSAPE 3 936 43 169 724
DNA % 77.57 83.72 70.98 78.97
Protein % 71.07 69.77 65.28 72.7
Predictions x - V V V
HUMREGB 5 501 64 119 138 112 68
MUSREGI 5 498 61 119 138 112 68
DNA % 77.84 75 75.63 83.33 76.79 75
Protein % 71.86 56.25 75.63 80.43 75 57.35
Predictions v V V V
HUMPROLA 1 1002 1002
MUSPROL 1 1005 1005
DNA % 76.45 76.45
Protein % 71.56 71.56
Predictions
HSU29874 7 708 33 111 54 144 139 179 48
MMU44024 7 699 33 122 46 144 144 189 21
DNA % 70.48 93.94 65.77 74.07 76.39 79.86 72.63 8.333
Protein % 67.37 90.91 70.27 72.22 75 73.38 62.01 18.75
Predictions V x v V v v x



HSA6693 1 510 510
MUSSER1 1 693 693
DNA % 61.96 61.96
Protein % 59.41 59.41
Predictions x - x
HUMIL2RGA 8 1110 115 154 185 140 163 97 70 186
MMU21795 8 1110 115 154 185 143 163 97 67 186
DNA % 80.63 71.3 82.47 79.46 77.86 80.98 82.47 82.86 86.02
Protein % 69.73 44.35 74.03 71.35 64.29 64.42 71.13 77.14 85.48
Predictions x - v' V N v I I V
HUMCRPGA 2 675 61 614
MMCRPG 2 678 64 614
DNA % 76.15 72.13 76.55
Protein % 69.78 54.1 71.34
Predictions v v
HSBCDIFFI 4 405 144 33 129 99
MMIL5G 4 402 141 33 129 99
DNA % 78.02 72.92 78.79 85.27 75.76
Protein % 70.37 60.42 72.73 74.42 78.79
Predictions x - V V V v
HUMTHY1A 3 486 37 336 113
MUSTHY1GC 3 489 37 339 113
DNA % 77.57 86.49 73.81 85.84
Protein % 69.14 72.97 63.39 84.96
Predictions V V V
HSUPA 10 1296 57 28 108 175 92 220 149 141 149 177
MUSUPAA 10 1302 57 31 108 175 92 223 149 141 149 177
DNA % 77.47 73.68 60.71 79.63 82.29 84.78 76.36 71.81 77.3 80.54 75.14
Protein % 68.06 52.63 21.43 66.67 70.29 71.74 69.55 62.42 65.96 74.5 76.27
Predictions V V V IV v v V N x -
HUMSAPOI 2 672 64 608
MUSSAPRB 2 675 67 608
DNA % 74.4 84.38 73.36
Protein % 68.75 65.62 69.08
Predictions v V
HUMPAP 5 528 76 119 138 127 68
D63360 5 528 76 119 138 127 68
DNA % 75.57 81.58 75.63 79.71 69.29 72.06
Protein % 68.75 78.95 60.5 73.91 66.14 66.18
Predictions x - V V V V
HUMILIB 6 810 47 52 202 165 131 213
MMIL1BG 6 810 47 49 202 171 131 210
DNA % 78.27 70.21 78.85 73.76 72.73 83.97 84.98
Protein % 67.78 51.06 63.46 56.44 60 84.73 78.87
Predictions x - V V V V V V
HUMCAPG 5 768 55 148 136 255 174
MUSCATHG 5 786 55 148 136 255 192
DNA % 74.22 78.18 83.78 78.68 69.02 68.97
Protein % 66.41 70.91 79.05 75 61.18 55.17
Predictions V IV x
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Number of internal coding exons: 279
Number of internal coding exons predicted correctly: 263
Number of internal coding exons predicted correctly only on 5' end: 7
Number of internal coding exons predicted correctly only on 3' end: 5
Number of internal coding exons predicted correctly on neither end but partially covered: 0
Number of initial coding exons: 84
Number of initial coding exons predicted correctly: 52
Number of initial coding exons predicted correctly only on 5' end: 1
Number of initial coding exons predicted correctly only on 3' end: 26
Number of initial coding exons predicted correctly on neither end but partially covered: 1
Number of terminal coding exons: 84
Number of terminal coding exons predicted correctly: 71
Number of terminal coding exons predicted correctly only on 5' end: 4
Number of terminal coding exons predicted correctly only on 3' end: 2
Number of terminal coding exons predicted correctly on neither end but partially covered: 0
Number of genes with one coding exon: 33
Number of single gene coding exons predicted correctly: 23
Number of single gene coding exons predicted correctly only on 5' end: 3
Number of single gene coding exons predicted correctly only on 3' end: 6
Number of single coding exons predicted correctly on neither end but partially covered: 5
Number of genes: 117
Number of perfect genes: 51
Number of coding exons: 480
Number of predicted exons: 517
Number of coding exons of length greater than 50: 445
Number of predicted exons of length greater than 50: 462
Number of predicted exons overlapping no coding exon: 48
Number of splice sites in noncoding exons that are predicted: 19
Number of false negatives completely uncovered: 16
Number of nucleotides predicted to be coding: 103082
Number of nucleotides that are coding: 104557
Number of nucleotides predicted to be coding that are coding: 99599
Wrong exons (WE): 0.0928433
Missing exons (ME): 0.0333333
Nucleotide sensitivity: 0.952581
Nucleotide specificity: 0.966211
Nucleotide approximate correlation (AC): 0.950923
Exact exon sensitivity: 0.852083
Exact exon specificity: 0.791103
Covered exon sensitivity: 0.966667
Exact internal exon sensitivity: 0.942652

Table 6.5: Results with the multiple genes assumption, parsed in pieces.
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Number of internal coding exons: 279
Number of internal coding exons predicted correctly: 262
Number of internal coding exons predicted correctly only on 5' end: 4
Number of internal coding exons predicted correctly only on 3' end: 6
Number of internal coding exons predicted correctly on neither end but partially covered: 0
Number of initial coding exons: 84
Number of initial coding exons predicted correctly: 52
Number of initial coding exons predicted correctly only on 5' end: 1
Number of initial coding exons predicted correctly only on 3' end: 27
Number of initial coding exons predicted correctly on neither end but partially covered: 1
Number of terminal coding exons: 84
Number of terminal coding exons predicted correctly: 70
Number of terminal coding exons predicted correctly only on 5' end: 4
Number of terminal coding exons predicted correctly only on 3' end: 1
Number of terminal coding exons predicted correctly on neither end but partially covered: 0
Number of genes with one coding exon: 33
Number of single gene coding exons predicted correctly: 23
Number of single gene coding exons predicted correctly only on 5' end: 3
Number of single gene coding exons predicted correctly only on 3' end: 5
Number of single coding exons predicted correctly on neither end but partially covered: 4
Number of genes: 117
Number of perfect genes: 57
Number of coding exons: 480
Number of predicted exons: 484
Number of coding exons of length greater than 50: 445
Number of predicted exons of length greater than 50: 449
Number of predicted exons overlapping no coding exon: 21
Number of splice sites in noncoding exons that are predicted: 17
Number of false negatives completely uncovered: 19
Number of nucleotides predicted to be coding: 101726
Number of nucleotides that are coding: 104557
Number of nucleotides predicted to be coding that are coding: 99391
Wrong exons (WE): 0.0433884
Missing exons (ME): 0.0395833
Nucleotide sensitivity: 0.950592
Nucleotide specificity: 0.977046
Nucleotide approximate correlation (AC): 0.956306
Exact exon sensitivity: 0.847917
Exact exon specificity: 0.840909
Covered exon sensitivity: 0.960417
Exact internal exon sensitivity: 0.939068

Table 6.6: Results with the parsed in pieces assumption.
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Number of internal coding exons: 279
Number of internal coding exons predicted correctly: 260
Number of internal coding exons predicted correctly only on 5' end: 4
Number of internal coding exons predicted correctly only on 3' end: 6
Number of internal coding exons predicted correctly on neither end but partially covered: 2
Number of initial coding exons: 84
Number of initial coding exons predicted correctly: 50
Number of initial coding exons predicted correctly only on 5' end: 1
Number of initial coding exons predicted correctly only on 3' end: 26
Number of initial coding exons predicted correctly on neither end but partially covered: 2
Number of terminal coding exons: 84
Number of terminal coding exons predicted correctly: 69
Number of terminal coding exons predicted correctly only on 5' end: 4
Number of terminal coding exons predicted correctly only on 3' end: 1
Number of terminal coding exons predicted correctly on neither end but partially covered: 2
Number of genes with one coding exon: 33
Number of single gene coding exons predicted correctly: 23
Number of single gene coding exons predicted correctly only on 5' end: 3
Number of single gene coding exons predicted correctly only on 3' end: 5
Number of single coding exons predicted correctly on neither end but partially covered: 4
Number of genes: 117
Number of perfect genes: 55
Number of coding exons: 480
Number of predicted exons: 487
Number of coding exons of length greater than 50: 445
Number of predicted exons of length greater than 50: 449
Number of predicted exons overlapping no coding exon: 26
Number of splice sites in noncoding exons that are predicted: 17
Number of false negatives completely uncovered: 21
Number of nucleotides predicted to be coding: 101693
Number of nucleotides that are coding: 104557
Number of nucleotides predicted to be coding that are coding: 98881
Wrong exons (WE): 0.0533881
Missing exons (ME): 0.04375
Nucleotide sensitivity: 0.945714
Nucleotide specificity: 0.972348
Nucleotide approximate correlation (AC): 0.950529
Exact exon sensitivity: 0.8375
Exact exon specificity: 0.825462
Covered exon sensitivity: 0.95625
Exact internal exon sensitivity: 0.9319

Table 6.7: Results with the multiple gene assumption and double strand assumption
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Number of internal coding exons: 279
Number of internal coding exons predicted correctly: 251
Number of internal coding exons predicted correctly only on 5' end: 8
Number of internal coding exons predicted correctly only on 3' end: 10
Number of internal coding exons predicted correctly on neither end but partially covered: 1
Number of initial coding exons: 84
Number of initial coding exons predicted correctly: 71
Number of initial coding exons predicted correctly only on 5' end: 2
Number of initial coding exons predicted correctly only on 3' end: 7
Number of initial coding exons predicted correctly on neither end but partially covered: 0
Number of terminal coding exons: 84
Number of terminal coding exons predicted correctly: 72
Number of terminal coding exons predicted correctly only on 5' end: 1
Number of terminal coding exons predicted correctly only on 3' end: 2
Number of terminal coding exons predicted correctly on neither end but partially covered: 1
Number of genes with one coding exon: 33
Number of single gene coding exons predicted correctly: 27
Number of single gene coding exons predicted correctly only on 5' end: 1
Number of single gene coding exons predicted correctly only on 3' end: 2
Number of single coding exons predicted correctly on neither end but partially covered: 1
Number of genes: 117
Number of perfect genes: 79
Number of coding exons: 480
Number of predicted exons: 476
Number of coding exons of length greater than 50: 445
Number of predicted exons of length greater than 50: 428
Number of predicted exons overlapping no coding exon: 19
Number of splice sites in noncoding exons that are predicted: 6
Number of false negatives completely uncovered: 24
Number of nucleotides predicted to be coding: 97818
Number of nucleotides that are coding: 104557
Number of nucleotides predicted to be coding that are coding: 96683
Wrong exons (WE): 0.039916
Missing exons (ME): 0.05
Nucleotide sensitivity: 0.924692
Nucleotide specificity: 0.988397
Nucleotide approximate correlation (AC): 0.947591
Exact exon sensitivity: 0.877083
Exact exon specificity: 0.884454
Covered exon sensitivity: 0.95
Exact internal exon sensitivity: 0.899642

Table 6.8: Results with the single gene assumption.
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Number of internal coding exons: 279
Number of internal coding exons predicted correctly: 253
Number of internal coding exons predicted correctly only on 5' end: 10
Number of internal coding exons predicted correctly only on 3' end: 6
Number of internal coding exons predicted correctly on neither end but partially covered: 3
Number of initial coding exons: 84
Number of initial coding exons predicted correctly: 55
Number of initial coding exons predicted correctly only on 5' end: 2
Number of initial coding exons predicted correctly only on 3' end: 19
Number of initial coding exons predicted correctly on neither end but partially covered: 1
Number of terminal coding exons: 84
Number of terminal coding exons predicted correctly: 68
Number of terminal coding exons predicted correctly only on 5' end: 3
Number of terminal coding exons predicted correctly only on 3' end: 2
Number of terminal coding exons predicted correctly on neither end but partially covered: 1
Number of genes with one coding exon: 33
Number of single gene coding exons predicted correctly: 20
Number of single gene coding exons predicted correctly only on 5' end: 2
Number of single gene coding exons predicted correctly only on 3' end: 9
Number of single coding exons predicted correctly on neither end but partially covered: 2
Number of genes: 117
Number of perfect genes: 50
Number of coding exons: 480
Number of predicted exons: 524
Number of coding exons of length greater than 50: 445
Number of predicted exons of length greater than 50: 503
Number of predicted exons overlapping no coding exon: 68
Number of splice sites in noncoding exons that are predicted: 16
Number of false negatives completely uncovered: 26
Number of nucleotides predicted to be coding: 114646
Number of nucleotides that are coding: 104557
Number of nucleotides predicted to be coding that are coding: 102460
Wrong exons (WE): 0.129771
Missing exons (ME): 0.0541667
Nucleotide sensitivity: 0.979944
Nucleotide specificity: 0.893708
Nucleotide approximate correlation (AC): 0.92242
Exact exon sensitivity: 0.825
Exact exon specificity: 0.755725
Covered exon sensitivity: 0.945833
Exact internal exon sensitivity: 0.90681

Table 6.9: GENSCAN results on the HUMCOMP dataset
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Part II

Combinatorics
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Overview

The remainder of this thesis is devoted to combinatorial problems that originate from
domino tiling questions. The bulk of the work is unrelated to the gene recognition
problem discussed in the previous chapters, although there is one mathematical link
between the two sections which the avid reader will undoubtedly find.

Chapter 7 is about the forcing numbers of matchings on different graphs. The
forcing number of a perfect matching M of G is defined as the smallest number of
edges in a subset S C M, such that S is in no other perfect matching. The forcing
number of a matching was first defined by Harary, Klein and Zivkovid [32], although
it had already been considered by chemists [49, 50, 72] because of its applicability for
resonance energy estimators of molecules. For example, the innate degree of freedom
of a graph (the sum of forcing numbers over all matchings) was compared to classical
resonance energy estimators in [49].

We consider forcing numbers of matchings on square grids (as opposed to poly-
hexes analyzed by chemists) and show that for the 2n x 2n square grid, the forcing
number of any perfect matching is bounded below by n and above by n2 . Both
bounds are sharp. We also establish a connection between the forcing problem and
the minimum feedback set problem.

Finally, in Chapter 8, we develop some of the combinatorial tools we used for
forcing problems and discuss their applicability to proving combinatorial "power of
2" results for the number of domino tilings of certain classes of polyominoes. The
enumeration of domino tilings of square grids was first undertaken by Kasteleyn [47],
in an attempt to understand the absorption of dimers on a two dimensional lattice

(and also because of its relationship to the Ising problem). While Kasteleyn succeeded
in providing a closed form solution for the number of tilings of the 2n x 2n square grid,
it is not obvious from his solution that the number of tilings is of the form 2"-(2k + 1)2

(a fact partially explained by Jockusch [41] and others). We give the first complete
combinatorial proof of this fact thus settling a question raised in [75]. Despite our
success with this problem, the ubiquitous appearance of powers of 2 in enumeration
formulas for the number of domino tilings of polyominoes remains a mystery, which
we perpetuate by adding a number of new conjectures to the existing literature.
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Chapter 7

Forcing Matchings

7.1 Introduction

The notion of the forcing number of a matching was introduced by Harary, Klein and
Zivkovid in [32]:

Definition 7.1 Let G be a graph that admits a perfect matching. The forcing number
of a perfect matching M of G is defined as the smallest number of edges in a subset
S C M, such that S is in no other perfect matching. The forcing number of M is
denoted p(M). A subset S with the property above is said to force M.

The concept of forcing is related to some problems in chemistry (see [49, 50, 72]).
The investigation of forcing in the context of chemistry has led to the extensive study
of forcing in hexagonal systems (see for example [32, 93, 92]). Surprisingly, few other
classes of graphs have been considered. Here we consider the forcing problem for the
square grid:

Our main result is an upper and lower bound for the forcing numbers of perfect
matchings of R, (R, = P2n E P2n):

Theorem 7.1 Let M be a perfect matching of Rn. The forcing number of M is
bounded by

n < <p(M) n2 (7.1)

The upper bound is the easier of the two bounds, we give both a constructive
proof (in Section 7.3) and a nonconstructive proof (Section 7.5). The lower bound,
which is more difficult, is proved in Section 7.4.

7.2 Preliminaries

We will be using the following definitions and conventions in the article:

Definition 7.2 An alternating path in a matching M is a sequence

v1, e1i, v2, e2, v3, e3, v4 , e4 , ... , vn-, en_,vn satisfying:
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vi and vi+1 belong to the edge ei.
ei E M when i is odd and ei M when i is even.

Alternating cycles are alternating paths where the final vertex is the same as the initial
vertex.

Edges in an alternating path which are not in the matching will be called alternate
edges. If all the edges in an alternating path (respectively. cycle) are distinct, the
alternating path (respectively. cycle) will be called simple.

Definition 7.3 We shall denote by c(M) the maximum number of disjoint, simple,
alternating cycles in a matching M of a graph G.

Proposition 7.1 Let G be a graph with a perfect matching M. Then p(M) > 0 if
and only if c(M) > 0.

Proof: Every simple alternating cycle in M must contain a forcing edge because
otherwise we can replace the matching edges of the cycle with the alternate edges
of the cycle to obtain a new perfect matching. It follows that V(M) > c(M) and so
c(M) > 0 =V p(M) > 0. Now suppose that p(M) > 0. Consider an edge el = (v1 , v2 )
in M that is not forced. Examine the neighbors of v2 . If all the vertices in the
neighborhood are endpoints of forced edges, then el is forced. Therefore, there must
be a neighbor (other than vi) that is the endpoint of an edge that is not forced.
Call this vertex v3 and the edge e2 . We can now extend our alternating path by
examining the neighborhood of the other endpoint of e2. Since G is finite, and we can
keep extending our alternating path, we must eventually return to a vertex already
in the alternating path. It follows that c(M) > 0.

7.3 The Upper Bound

The perfect matching M in which every edge lies in the same direction shows that
the upper bound is sharp. There are n2 disjoint alternating cycles and since every
alternating cycle must contain a forced edge, W(M) > n2 . Figure 7-1 shows M
together with the edges which force it. Forced edges are dark.

Proof of the upper bound: Embed Rn in R 2 so that the boundaries are parallel
to the xy-axes and each edge has unit length. Place Rn in the first quadrant with
one corner at (0, 0). Every vertex has a label (i, j) where 1 < i, j 2n. Let F C M
be the collection of edges in M which contain a vertex whose co-ordinates are both
even.
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Figure 7-1: Forced tiling (upper bound)

Lemma 7.1 M - F has no simple alternating cycles.

Proof of the lemma: Let C = vi, v2 , ... ,v be any cycle in G that does not
contain any vertex with both co-ordinates even. Suppose, also, that all the vertices in
C are distinct (except for the first an final vertex) so that C encloses some region S in
the plane. Let the number of vertices in C be b, the number of vertices in S be i, and
let the area of S be A. Notice that for all odd j, the edges (vj, vj+1) and (vj+l, vj+ 2 )
lie in the same direction because C avoids all vertices with both co-ordinates even.
We can thus encode C with a sequence whose elements consist of Up (U), Down
(D), Left (L) and Right (R). Each symbol represents two edges in C. Note that the
number of U's must equal the number of D's, and the number of L's must equal
the number of R's. This defines a bijection between simple cycles avoiding vertices
with both co-ordinates even and simple cycles on the unit lattice (otherwise known
as polyominoes or animals). Graphically the bijection is given by:

It follows that b and A are divisible by four. We can conclude that i is odd (this
follows by induction on A). Alternatively, the result follows from the more general
result of Pick [29]:

Theorem 7.2 (Pick) The area of a simple lattice polygon P is given by

b
2

(7.2)

where i is the number of lattice points in the interior of P, and b is the number of
lattice points on the boundary of P.
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-T -- - - -

Figure 7-2: The bijection

If M - F contained a simple alternating cycle C, there would be no way to match all

the vertices in S (because i is odd).
Since c(M - F) = 0 it follows from Proposition 7.1 that F forces M.

Figure 7-2 shows an example of a cycle C and its corresponding encoding under

the bijection. In this case, i = 7, b = 20 and A = 16. The dark vertices are the ones

which C must avoid.

7.4 The Lower Bound

We begin by showing that the lower bound is sharp. Figure 7-3 shows a perfect

matching M of R 4 with p(M) = 4. As before, the forced edges are dark. The general

construction for a perfect matching M of R, with yp(M) = n consists of n concentric

simple alternating cycles arranged as in Figure 7-3. The forcing edges are staggered

in a stepwise fashion upwards towards the center, beginning with a horizontal edge

in the corner. A total of n edges are used for Rn. Notice that by construction, M

has n simple alternating cycles; they are just the concentric rings. It follows that

p(M) > n. It is easy to verify that the forcing edges described above do in fact force

M so that V(M) = n.

Theorem 7.3 Any perfect matching M in Rn can be decomposed into at least n

simple, disjoint, alternating cycles.

Proof of the theorem: We apply the method of proof introduced by Ciucu in

his factorization theorem [16]. Embed Rn in the plane so that all edges have the same

length and are parallel to the x, y axes. Let I be the diagonal line from the bottom left

hand corner to the upper right hand corner. Notice that 1 is an axis of symmetry for

Rn. Let the vertices which 1 intersects be labelled alternately a,, bl, a2 , b2 ,. ... , an, b.

(See Figure 7-4).
Let M be any perfect matching of Rn. Let M' be the matching obtained by

reflecting M across the line 1 and define D = M U M' (D is allowed to have multiple
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Figure 7-3: Forced tiling (lower bound)

, 4

,' 4

3

3

- 2

- 2

- 1

,,, a1

Figure 7-4: The square grid with its axis of symmetry and labelled diagonal
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edges). Notice that D is a 2-factor of G and is therefore a disjoint union of even-length
cycles. Furthermore, since D is symmetric across 1, any cycle maps to another cycle
under the reflection.

Now define Cj to be the cycle containing ai. Cl can have at most one other vertex
on I because every vertex in Cj has degree 2. Furthermore, such a vertex must be of
the type bj, for otherwise the number of vertices enclosed by C is odd (contradicting
the fact that D is a disjoint union of even length cycles). It follows that all the cycles

Cj are distinct.
Finally, let Ci = Cj n M be the alternating cycles in M obtained from Cf. By the

above arguments, the alternating cycles Ci are disjoint and there are n of them.
The above result completes the proof of Theorem 7.1.

7.5 A Min Max Theorem

We rely on Proposition 7.1 in our proofs of the lower and upper bound. Even though
it is all that is necessary in our proofs, a much stronger result can be proved that has
consequences for a large class of graphs other than Rn.

Definition 7.4 Let G be a finite directed graph. A feedback set is a set of edges in
G that contains at least one edge of each directed cycle of G.

The following theorem of Lucchesi and Younger [60] relates the number of disjoint
cycles in a directed graph to the minimal size of a feedback set:

Theorem 7.4 For a finite planar directed graph, a minimum feedback set has cardi-
nality equal to that of a maximum disjoint collection of directed cycles.

The theorem has recently been refined by Barahona et al. [6]:

Theorem 7.5 If D is a directed graph that does not contain a subdivision of K3 ,3
then the cardinality of a minimum feedback set is equal to the maximum number of
edge disjoint cycles.

Using the terminology of Alon et al. [2], we shall say that a directed graph G has
the cycle-packing property if the maximum size of a collection of edge disjoint cycles
equals the minimum size of a feedback set. An undirected graph will be said to have
the cycle-packing property if every orientation of the edges results in a directed graph
with the cycle-packing property.

We now apply the above theorems to the forcing problem. Construct a digraph
D(M) from a perfect matching M of a bipartite graph G with the cycle-packing
property in the following way: Let the vertex set of D(M) be the vertex set of G.
Since G is bipartite, the vertices can be naturally partitioned into two disjoint sets.
Label the sets A and B. If e E M, direct e from A to B. If e V M, direct e from B
to A.

The following observation is trivial:

110



Lemma 7.2 There is a one to one correspondence between alternating cycles in M
and directed cycles in D(M). Furthermore, two cycles in D(M) intersect on an edge
or not at all.

There is also a natural correspondence between forcing sets in M and feedback
sets in D(M). In particular, we have:

Lemma 7.3 For every feedback set in D(M) there exists a forcing set in M of the
same cardinality.

Proof: Let Fm be a feedback set in D(M). If all the edges in FM lie in M, then
by Proposition 7.1, Fm is a forcing set for M. If there exists an edge e E FM and
e V M then there exists a unique edge f E M with the head of f being the tail of e.
Any cycle in D(M) passing through e must pass through f. We can therefore remove
e from FM and add in f. We repeat this process until all the edges in FM lie in M.

The converse of the lemma is also true because any forcing set for M must be a
feedback set in D(M). Furthermore, D(M) has the cycle-packing property because
G has the cycle-packing property.

Theorem 7.6 For any perfect matching M of a bipartite graph G with the cycle-
packing property,

p(M) = c(M). (7.3)

The above theorem and lemmas show that for bipartite graphs with the cycle-
packing property the forcing problem for matching is equivalent to determining the
number of disjoint alternating cycles in a matching. We can use Theorem 7.6 to
obtain an upper bound for the forcing number of any perfect matching in such a
graph.

Proposition 7.2 Let G be a bipartite graph of girth g with the cycle-packing property.
Suppose also that G has p vertices and admits a perfect matching. For any perfect
matching M of G,

p(M) < . (7.4)

Proof: Any simple alternating cycle must contain at least g vertices. From the
second part of Lemma 7.3 it follows that the maximum number of disjoint simple
alternating cycles in M is LJ. Applying Theorem 7.6, o(M) 5 LJ.

Applying Proposition 7.2 to Rn, we obtain an alternative proof of the upper bound
in Theorem 7.1. We can also use Proposition 7.2 to obtain an upper bound for the
hexagonal systems discussed in [93, 92, 32]. Since any hexagonal system has girth 6,
for any perfect matching M of an hexagonal system with p vertices, O(M) < [J.

We also remark that for planar graphs there exist polynomial time algorithms for
finding feedback sets. In [27], Gabow presents an O(n3 ) algorithm. We can use such
algorithms on D(M) to find forcing sets for perfect matchings in bipartite planar
graphs.
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7.6 Other Problems

Our results can be extended to arbitrary rectangular grids of the form P, e P,, where
mn is even. However, the behavior of the lower bound for such graphs seems more
complicated than that of the square grid. Also of interest are the forcing numbers of
perfect matchings of graphs other than rectangular grids. Let Tn = C2n e C2n be the
2n e 2n torus:

Conjecture 7.1 Let M be a perfect matching of Tn. The forcing number of M
satisfies

V (M) > 2n. (7.5)

The n dimensional hypercube, Qn, also seems interesting.

Problem 7.1 Let M be a perfect matching of Qn. Find good upper and lower bounds
on V(M).

Some investigation of the forcing numbers of matchings for low dimensional hy-
percubes suggests that for any perfect matching M in the hypercube Qn,

V(M) =- (7.6)
4

The following counting argument (due to Noga Alon) dispels the possibility that
(7.6) holds for all n:

Lemma 7.4 For sufficiently large n, there exists perfect matchings M of Qn with

V(M) > -n (7.7)
4

Proof: Let f(n) denote the number of perfect matchings of Q". We use the well
known fact that

f(n) (2) (7.8)

If we assume that p(M) 2 for every perfect matching M of Qn, we see that4

Taking the 2n-'th root of (7.8) and (7.9) we obtain a contradiction.
Given the above result, it would be interesting to find the extremal perfect match-

ings (with respect to the forcing number) in Qn. Presumably the perfect matching
consisting of edges all in the same direction is the extremal configuration for a lower
bound of V(M) > 2n-2.

Both Qn and Tn do not have the cycle-packing property (except for small cases),
so Theorem 7.6 does not apply. Furthermore, there is no known analogue of Theorem
7.3 for these graphs.
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Chapter 8

Tilings of Grids and Power of 2

Conjectures

8.1 Introduction

The number of domino tilings of the n x m square grid was first calculated in a seminal
paper by Kasteleyn [47]. He showed that, for n, m even, the number of tilings N(n, m)
is given by

N~nm~VFVF( 2 _ r
N(n, M) = l(4cos2 + 4 cos 2  r ). (8.1)

i=1 k=1++

This result, while interesting in its own right, does not reveal all of the properties
of N(n, m) at first glance. For example, N(2n, 2n) is either a perfect square or
twice a perfect square (such a number is called squarish). This was first proved
by Montroll [59] using linear algebra and later proved by Jokusch [41] and others.
Another interesting observation is that

N(2n, 2n) = 2"(2k + 1)2. (8.2)

A derivation of this fact from (8.1) has been obtained independently by a number
of authors; we refer the reader to [42]. A combinatorial proof of (8.2) has proved
more elusive, although partial results have been established [16]. Our main result is
a direct combinatorial proof of (8.2). Our proof illuminates the combinatorics behind
N(2n, 2n) and leads directly to generalizations.

Interestingly, perhaps because of the closed form of equation (8.1), observations
other than the ones mentioned above have been scarce. Propp has remarked [71] that
"Aztec diamonds and their kin have (so far) been much more fertile ground for exact
combinatorics than the seemingly more natural rectangles".

We show that there is a rich source of problems to be found in the enumeration
of perfect matchings of rectangular grids. In fact, it seems that the tools needed to
resolve many of the problems have yet to be discovered.
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8.2 The square grid

8.2.1 Even Squares

Theorem 8.1 Let N(2n, 2n) be the number of domino tilings of the 2n x 2n square
grid.

N(2n, 2n) = 2"(2k + 1)2. (8.3)

Our proof is broken down into two parts. The first part is not new, in fact it ap-
pears as a very special case in a theorem in [16]. Since we are interested in this special
case only, we provide a simplified version of the proof in [16] that sacrifices much of
the generality but illustrates the elegant combinatorial nature of the argument.

We begin by introducing the notation we will use. Rather than discussing perfect
matchings of graphs, we will use the dual graph and think of edges in the perfect
matching as dominoes covering two adjacent squares. We will, on occasion, use the
two descriptions interchangeably. For an arbitrary region R, we will use the notation
# R for the number of domino tilings of R. For example,

# = 3.

We will use the notation # 2 R for the parity of the number of domino tilings of R.
The direction of a domino from a fixed square is either up, down, left or right.

We shall say that a domino is oriented in the positive (respectively negative)
direction from a given square if its direction is up or to the right (respectively down
or to the left). For example, in the tiling below, the top left square has a domino that
is positively oriented and whose direction is right.

Lemma 8.1 Label the diagonal squares on the 2n x 2n square grid from the bottom
left to the top right with the labels a1, b1 , a2 , b2 ,... , an, bn. The number of domino
tilings of the square grid with dominoes placed at a1, a2 ,... ,an is dependent only on
the orientation of the dominoes and not their direction.

Proof of lemma: Let M be any domino tiling of the 2n x 2n square grid. Let
M' be the tiling obtained by reflecting M across the diagonal and define D = M U M'
(D is allowed to consist of multiple dominoes). Notice that in the dual graph of the
2n x 2n square grid, D is a 2-factor and is therefore a disjoint union of even-length
cycles. Furthermore, since D is symmetric across across the diagonal, any cycle maps
to another cycle under the reflection.

Now define Cj to be the cycle containing ai. Cl can have at most one other vertex
on the diagonal because every vertex in C has degree 2. Furthermore, such a vertex
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b3

a3

b2

a 2

a1

Figure 8-1: Labeling of the diagonal

must be of the type bj, for otherwise the number of vertices enclosed by C is odd

(contradicting the fact that D is a disjoint union of even length cycles). It follows
that all the cycles Cj are distinct.

Finally, let Ci = Cl n M be the alternating cycles (cycles in the dual graph
alternating between edges in the tiling and edges not in the tiling) in M obtained
from Cf. By the above arguments, the alternating cycles Ci are disjoint. Thus, there is
a bijection between any two sets of tilings with fixed dominoes of the same orientation
on the ai's. We simply select all the dominoes on the ai's that have switched direction
and rotate the appropriate alternating cycles.

Example 8.1 Changing the direction of the domino at a2 we have

-4

We now define a class of grids, Hn (first introduced by Ciucu [16]), as follows:

Notation 8.1 H1 consists of two adjacent horizontal squares. Hn is defined from
Hn_ 1 by adding a grid of size 2 x (2n - 1) to the left of Hn_1.

Lemma 8.2 The number of domino tilings of the square grid is given by

(8.4)N(2n, 2n) = 2"(#Hn)2.
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Figure 8-2: The grids H.
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Figure 8-3: A reduced configuration

Proof of lemma: Consider a fixed orientation for the dominoes covering the ai's.
We can assume (using Lemma 8.1) that the directions of the dominoes are all either
down or to the right (call such a configuration reduced). Notice that the square grid
decomposes naturally into two halves. Figure 8-3 illustrates an example of a reduced
configuration.

Notice that the region filled with U is equivalent to Ha, as is its complement.
Now consider the standard checkerboard 2-coloring of the square grid. All the U's
which are adjacent to empty squares have the same color. It follows that in any
reduced configuration, every domino covers either two U's or none at all. We have
from Lemma 8.1 that

N(2n, 2n) = 2" #C (8.5)
C

where C ranges over all reduced configurations. From the remarks above it follows
that

#C = (#Hn)2, (8.6)
C

which completes the proof of the lemma.

Lemma 8.3 #Hn is odd.

Proof of lemma: Our proof is by induction. The case when n = 1, 2 is trivial.
We illustrate the general case by showing the step n = 3 =- n = 4.

Begin by observing that
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The first two terms in (8.7) are equal, so we have

#2

where the X's denote squares that cannot be

We now begin removing shapes of the fc

similar idea:

x x
xx
x x
#2 _(8.8)

used.

)rm X from the diagonal, using a
X
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X
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x
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X
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Hence, we can conclude that

X XJ X XxxI x xxx
#2 =_#2 _ X =

Our last shape is Hn_ 1 (minus the forced domino
and rotated by 900! It follows that

#2Hn = #2Hn_1.

#2

x
x
x

x
x
x

(8.9)

X
X
X

X X(8.10)
XX~X

on the bottom right), flipped

(8.11)

Proof of theorem: The theorem follows immediately by applying Lemmas 8.2
and 8.3.

8.2.2 Odd Squares

Odd Squares clearly have no tilings with dominoes, but by deleting one square from
the border we can make them tileable (Figure 8-4). It follows from Temperley's
bijection, that the removal of any appropriate border square (one must remove a
square that leaves a balanced bipartite graph), results in the same number of tilings
for the resulting region [48) We propose a "squarish" conjecture for these regions and
suggest a combinatorial approach.

We will use the notation N(n, m) to denote an n x m rectangular grid with a
border square removed (if n, m are odd we assume that the removed square is of the
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Figure 8-4: An Odd Square with a corner removed

appropriate type leaving a balanced bipartite graph).

Conjecture 8.1 N(2n+1,2n+1) is squarish.n+1

We may assume without loss of generality that we have removed the bottom left
hand border square. The resulting figure is symmetric and thus we can apply Lemma
8.2 to understand the number of tilings in terms of the number of tilings of two smaller
regions.

These smaller regions belong to two classes of grids (similar to Hn), which we
denote by S, ("symmetric") and Dn ("deleted"):

Notation 8.2 S1 is a 2 x 2 square grid. S,, is defined from S,,-_ by adding a grid of
size 2 x (2n) to the left of Sn_1.

Notation 8.3 D1 is an "L" shaped 4-omino (see Figure 8-6). Dn is defined from
Dn_1 by adding a grid of size 2 x (2n - 1) to the left of Dn_1 , together with two
additional squares on the top left hand corner.

Lemma 8.4 The number of domino tilings of the square grid with a corner removed
is given by

N(2n + 1, 2n + 1) = 2"(#Sn)(#Dn). (8.12)

Proof: The proof is identical to that of Lemma 8.2.

Conjecture 8.2
#Sn = (n + 1)#Dn (8.13)

Conjecture 8.1 follows from Conjecture 8.2
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Figure 8-6: The grids D,
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8.3 Rectangular Grids

8.3.1 2 x n grids

We begin with some simple combinatorial observations about 2 x n grids, which lead
to elegant proofs of Fibonacci identities.

The art of discovering, or constructing problems whose solution is expressed in
terms of Fibonacci numbers, has probably been in existence since the discovery of
the numbers themselves. One of the many elegant interpretations of the Fibonacci
numbers is in terms of domino tilings of the 2 x n rectangle [59]. The correspondence
is quickly established as follows:

Using the symbol # to denote the number of tilings of a grid, we have

# +

Since the number of tilings of the 2 x 1 grid is 1, we have that the number of
tilings of the 2 x n grid is F+,.

The Lucas numbers can be recovered from a very similar problem. Consider the
2 x n ring depicted below. The two bold squares on the top are identified with the
two bold squares at the bottom.

+ # + 2x# (8.14)

In other words, we choose a line cutting the ring, and we consider the number of
tilings avoiding the line together with the number of tilings crossing the line. The
third term in the expression on the right hand side has only one tiling, so we obtain
that the number of tilings of the 2 x n ring is

Fn+ 1 + Fn- 1 + 2 = Ln+ 1 + 2.
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The cutting technique employed above can be used to provide an immediate "pic-
ture proof" of the identity

Fn+m = Fm_1Fn + FmFn+i- (8.15)

Consider the 2 x (n + m) rectangle:

n: :
n- -

(n +m) # # + #

m - m

We cannot have just one tile crossing a given line (see the third term in the right
hand side of (8.14)) because the resulting region would not be tileable. We have thus
shown that

Fn+m+i = Fn+iFm+i + FnFm. (8.16)

This is equivalent to equation (8.15) by replacing m with m - 1.
Combinatorial proofs of the above fact have been discovered before (for a graph

theoretical proof see [78]); Undoubtedly, many different bijective proofs are known,
probably even the one given above. The search for bijective proofs of different iden-
tities, while interesting to some extent, is sometimes unnecessary and redundant. In
this case however, the tiling proof is much clearer and shorter than the standard in-
ductive proof. Indeed, it seems that elegant, succint tiling proofs can replace inductive
proofs in many cases.

The cutting method described above is just one of many tools that can be used
to extract proofs of identities. In what follows, we present a number of different
examples illustrating the variety of identities one can deduce using tilings alone.
Different algebraic and inductive proofs can be found in [87].

Note: The fact that the number of tilings of the 2 x n rectangle is Fn+1 means
that many of the identities we derive need to be re-indexed (as in the proof of (8.15)).
We omit this from our proofs.

Fn= Z0_o ("-~):

We use the fact that any horizontal line cutting the 2 x n rectangle crosses two
dominoes or non at all. It follows that any tiling can be specified by a sequence of H's
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and V's (corresponding to horiontal and vertical dominoes) such that #H + 2 x #V =
n. Notice that the number of ways of selecting i positions from n positions so that
no two are adjacent is exactly (n+ -i). Since we can only place vertical dominoes on
n - 1 of the rows, and the condition is that no two are adjacent, it follows that

(8.17)Fn+1
i=0

n 1i

# 2

n=+F =1

n +1

III

w
I

+

(8.18)

= Fn + Fn_1

The proof of this identity using tilings is implicit in
[90]. The proof in his paper can, in principle, be
tilings.

the bijective proof of Zeilberger
translated into the language of

Fn+tp = - o (P)Fn+(t-I)p-i:

Consider a grid of size 2 x (m + tp). We begin by selecting a total of p H's and V's.
Suppose that we have selected i V's. Then we have a tiling of the first p + i rows of
the original rectangle. we now complete the rest of the rows in Fn+(t-)p-i ways.
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Fan = F 3++F 3- F_:

In this proof we cheat a bit and use some algebra, although only the basic identity
(definition)

Fn= Fn- 1 + Fn-2-

# nn n :

nw
n -nen-i

(continued on next page)
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n : :

n--

From these diagrams it is apparent that

n

n

n-i

EI~

Fan ~ ~~ = Fn1F +F+F_1n+1 +F _IF
= F + Fi_ - F_1 + FZ+1 Fn + F_1FFn+1 + F_ F

= F + F_1 ( F 1 + F,) - F_1 + F n1 Fn + F._1 FFu1

= F3 - F3 _1 + F_1 Fn+1 (F_1 + FF) + FS+1 F

= F - Fn 1 + F+

(8.19)
(8.20)

(8.21)

(8.22)
(8.23)

Other Identities

Many of the above proofs easily generalize to give many more identities. For example,
it is not hard to see how to modify example 2.1 to obtain the identity

n

FiFi+d=
i=1

nFn+d+1 -

FnFnzd.1 - Fd

The variety of identities tackled above shows that in, some sense, the framework of
tilings unifies many of the Fibonacci identities known to date. From a more practical
standpoint, the tiling method should clearly be considered whenever trying to prove
an identity about Fibonacci numbers. The proof may often be much simpler than an
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inductive argument.

8.3.2 n x m grids

The exact formula for the largest power of 2 appearing in N(2n, 2n) suggests an
investigation of the same question for n x m rectangular grids.

We use the notation (a, b) to denote the greatest common divisor of a and b.

Problem 8.1 Let N(n, m) be the number of domino tilings of the n x m rectangular
grid. Prove combinatorially that

(2n+1,2m+1)-1

N(2n, 2m) = 2 2 (2r 1 + 1) (8.25)

N(2n + 1, 2m) = 2 ( 2 + (2 r2 + 1) (8.26)

where j is defined by n + 1 = 2i (2t + 1). (In the above r1 , r2 , t are natural numbers
that may vary for different n, m.)

Equation (8.25) follows using the methods introduced in [42]. (This has been
observed by Saldanha [76]). Indeed, the other case should follow by similar methods.
A combinatorial proof is not known for either case. Combinatorial proofs are impor-
tant in this context because other methods fail for regions that are more complicated.
Section 4 contains numerous examples where an analogous formula to (8.1) is lacking,
and therefore there is no closed form formula from which to work.

Stanley [85] has conjectured that for fixed m (and n varying), N(n, m) satisfies a
linear recurrence with constant coefficients that is of order 2 -V (he established this
when m + 1 is an odd prime). Such recurrences have been obtained for small M and
can be used to provide proofs of special cases of Problem 8.1. Indeed, Bao [5] has
used such recurrences together with the reduction techniques we use above to establish
combinatorial proofs for the formulas in Problem 8.1 for n < 2. Unfortunately, the
difficulty in establishing recurrences for N(n, m) combinatorially probably precludes
the general applicability of the above method for finding combinatorial proofs for
(8.25) and (8.26).

Equation (8.26), has recently been established algebraically by Chapman [14].

8.4 Conjectures

8.4.1 Deleting From Diagonals

We begin with an intriguing "power of 2" conjecture for a new type of region we call
the spider.

Define the (n, k) spider to be the region obtained by deleting k consecutive squares
(from the corner) along each diagonal of the 2n x 2n square grid.
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Figure 8-7: The (5, 2) spider

Conjecture 8.3 Let S(n, k) be the number of domino tilings of the (n, k) spider.

S(n, k) = 2 n+k(2k-1) (2r + 1), k < [ n. (8.27)

When k > [Ij the region reduces to an Aztec diamond after the removal of forced
dominoes (for a definition and extensive discussion of Aztec diamonds see [26]). If n
is even we see that (8.27) reduces to the formula for the number of domino tilings
of the Aztec diamond when k =!I. Conjecture 8.3 has been checked numerically for
n < 10.

8.4.2 Deleting From Step Diagonals

The acute reader will have noticed that the arguments in Lemma 8.1 establish that
any domino tiling of the 2n x 2n square grid contains at least n disjoint alternating
cycles. The tiling in Example 8.1 illustrates that this is the best result possible (for
other results along these lines see the Chapter on forcing). Figure 8-8 shows how
to place n dominoes so as to ensure the remaining figure has only one tiling (the n
dominoes "block" the n cycles).

We shall call the set of the first n stepwise horizontal edges in the 2n x 2n square
grid the step-diagonal.

The above observation has led Propp [71] to ask whether removal of only half the
dominoes from the bottom of the step diagonal results in a graph whose number of
tilings is interesting. Indeed, drawing on his idea, we have formulated the following
remarkable conjecture:

Conjecture 8.4 Let G be the grid obtained after the removal of any k edges from
the step-diagonal of the 2n x 2n square grid. Then the number of domino tilings of
G is of the form

#G= 2n-k(2r + 1). (8.28)
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Figure 8-8: Tiles on the step-diagonal

In addition, if the k edges removed are consecutive from the lower left corner then
2r + 1 is a perfect square.

Conjecture 8.4 was checked extensively for n < 10 (the exponential growth of the
number of configurations to be tested precluded exhaustive checking of this conjec-
ture).

Also related to the step-diagonal is the following theorem:

Theorem 8.2 Let G be the grid obtained after the removal of one edge from the step-
diagonal of the 2n x 2n square grid. Using the notation that N(2n, 2n) = 2'(2k + 1)2,
the number of domino tilings of G satisfies:

#G = c(2k + 1) (8.29)

where c is a constant which depends upon which edge was removed.

Proof: We
one of the ai's.
either down or
grid. Just as in

can assume without loss of generality that the removed edge covers
Furthermore, we can assume that the removed edge has direction

to the right. This can be arranged by flipping and/or rotating the
the proof of Lemma 8.2, we see that

(8.30)#G = 2"- 1 #C
C

where C ranges over all reduced configurations (in this case, configurations for
the remaining (n - 1) ai's). Furthermore, from Figure 8-3, we have that EC #C is
#Hn (corresponding to the region filled with U), multiplied (this time) by a value
not equal to #Hn.

Edward Early has considered the number of tilings of holey squares. The holey
square H(n, m) is a 2n x 2n square with a hole of size 2m x 2m removed from the
center. He has conjectured

Conjecture 8.5
#H(n,m) = 2"~",(2k + 1)2 (8.31)
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The fact that 2"-IH(n, m) is easily obtained using Lemma 8.1 (the fact that
H(n, m) is either a perfect square or twice a perfect square also follows). The fact
that n - m is the highest power of 2 dividing H(n, m) does not follow inductively in
this case. Bao [5] has established that the conjecture is true for m = 1, 2 by showing
that a region similar to H, has an odd number of domino tilings. Unfortunately,
algebraic methods using (8.1) fail in this case since no analogous formulas from which
to work are known.

Finally, based on numerical evidence, we present the following conjecture:

Conjecture 8.6 Conjecture 8.4 is true for all holey squares (with n replaced by n-m
in (8.28)).

Note: Theorem 8.2 is true for all holey squares (with (2k + 1) replaced by the
square root of the odd part of #H(n, m)).

8.5 Discussion

The results and conjectures of the previous sections point to an underlying combi-
natorial principle which is most likely the basis of the nice patterns of powers of 2.
While such a result eludes us, the following old (somewhat forgotten) result which
appears in [59] may hint at an algebraic approach to "power of 2" conjectures:

Proposition 8.1 A graph G has an even number of perfect matchings if there is
a non-empty set S C V(G) such that every point is adjacent to an even number of
points of S.

Henry Cohn [18] has recently proved an interesting result about the function f(n)
appearing in N(2n, 2n) = 2nf(n)2

Theorem 8.3 (Cohn) f(n) is uniformly continous under the 2-adic metric, and
satisfies the functional equation f(-1 - n) = ±f(n) where the sign is positive if
n = 0 3 mod 4.
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Appendix A

Biology Tables

The genetic code is the map used by ribosomes to convert codons into amino acids.
The map we have included below is for eukaryotes. It includes the codons and the
amino acids into which they are converted
letter). Notice that ATG (Methionine) is
TAG, TGA and TAA are the stop codons.

(together with the abbreviated alphabet
the standard initiation codon, and that

TTT F Phe TCT S Ser TAT Y Tyr TGT C Cys
TTC F Phe TCC S Ser TAC Y Tyr TGC C Cys
TTA L Leu TCA S Ser TAA * Ter TGA * Ter
TTG L Leu TCG S Ser TAG * Ter TGG W Trp
CTT L Leu CCT P Pro CAT H His CGT R Arg
CTC L Leu CCC P Pro CAC H His CGC R Arg
CTA L Leu CCA P Pro CAA Q Gln CGA R Arg
CTG L Leu CCG P Pro CAG Q Gln CGG R Arg
ATT I Ile ACT T Thr AAT N Asn AGT S Ser
ATC I Ile ACC T Thr AAC N Asn AGC S Ser
ATA I Ile ACA T Thr AAA K Lys AGA R Arg
ATG M Met ACG T Thr AAG K Lys AGG R Arg
GTT V Val GCT A Ala GAT D Asp GGT G Gly
GTC V Val GCC A Ala GAC D Asp GGC G Gly
GTA V Val GCA A Ala GAA E Glu GGA G Gly
GTG V Val GCG A Ala GAG E Glu GGG G Gly

Table Al: The Genetic Code

The PAM matrix series was developed by Margaret Dayhoff et. al. [23] (for
a thorough discussion about such matrices and their relatives see [31]). We used
the PAM20 matrix to score exon pairs, having determined that this point mutation
distance was suitable for assessing human/mouse homology. The exact matrix we
used is the one shown below (obtained from the NCBI website), normalized so that
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the average value on the diagonal is 2. We mention that true log odds ratios can be
obtained by multiplying every entry in the matrix by 1*g2. In Chapter 6 we describe
the different possibilities for normalization, and how we selected one.

The codon usage tables are from the Transterm database [22]:
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A R N D C Q E G H I L K M F P S T W Y V B Z X *
A 6 -8 -5 -4 -8 -5 -3 -3 -8 -6 -7 -8 -6 -9 -2 -1 -1 -16 -9 -3 -5 -4 -4 -19
R -8 9 -7 -12 -9 -2 -11 -11 -3 -6 -10 -1 -5 -10 -5 -4 -8 -3 -11 -9 -9 -5 -7 -19
N -5 -7 8 1 -13 -5 -3 -4 -1 -6 -8 -2 -11 -10 -7 -1 -3 -9 -5 -9 6 -4 -4 -19
D -4 -12 1 8 -16 -4 2 -4 -5 -9 -15 -6 -13 -17 -9 -5 -6 -17 -13 -9 6 0 -7 -19
C -8 -9 -13 -16 10 -16 -16 -11 -8 -7 -17 -16 -16 -15 -9 -4 -9 -18 -5 -7 -14 -16 -11 -19
Q -5 -2 -5 -4 -16 9 0 -8 0 -9 -6 -4 -5 -15 -4 -6 -7 -15 -14 -8 -4 7 -6 -19
E -3 -11 -3 2 -16 0 8 -5 -6 -6 -10 -5 -8 -16 -7 -5 -7 -19 -9 -8 0 6 -6 -19
G -3 -11 -4 -4 -11 -8 -5 7 -10 -13 -12 -8 -10 -10 -7 -3 -7 -17 -16 -7 -4 -6 -6 -19
H -8 -3 -1 -5 -8 0 -6 -10 9 -11 -7 -8 -13 -7 -5 -7 -8 -8 -4 -7 -2 -2 -6 -19
I -6 -6 -6 -9 -7 -9 -6 -13 -11 9 -2 -7 -2 -3 -10 -8 -3 -16 -7 1 -7 -7 -6 -19
L -7 -10 -8 -15 -17 -6 -10 -12 -7 -2 7 -9 0 -4 -8 -9 -8 -7 -8 -3 -10 -8 -7 -19
K -8 -1 -2 -6 -16 -4 -5 -8 -8 -7 -9 7 -3 -16 -8 -5 -4 -14 -10 -10 -3 -5 -6 -19
M -6 -5 -11 -13 -16 -5 -8 -10 -13 -2 0 -3 11 -5 -9 -6 -5 -15 -13 -2 -12 -6 -6 -19
F -9 -10 -10 -17 -15 -15 -16 -10 -7 -3 -4 -16 -5 9 -11 -7 -10 -6 1 -9 -12 -16 -9 -19
P -2 -5 -7 -9 -9 -4 -7 -7 -5 -10 -8 -8 -9 -11 8 -3 -5 -16 -16 -7 -8 -5 -6 -19
S -1 -4 -1 -5 -4 -6 -5 -3 -7 -8 -9 -5 -6 -7 -3 7 0 -6 -8 -8 -2 -6 -4 -19
T -1 -8 -3 -6 -9 -7 -7 -7 -8 -3 -8 -4 -5 -10 -5 0 7 -15 -7 -4 -4 -7 -5 -19
W -16 -3 -9 -17 -18 -15 -19 -17 -8 -16 -7 -14 -15 -6 -16 -6 -15 13 -6 -18 -11 -17 -13 -19
Y -9 -11 -5 -13 -5 -14 -9 -16 -4 -7 -8 -10 -13 1 -16 -8 -7 -6 10 -8 -7 -11 -9 -19
V -3 -9 -9 -9 -7 -8 -8 -7 -7 1 -3 -10 -2 -9 -7 -8 -4 -18 -8 7 -9 -8 -6 -19
B -5 -9 6 6 -14 -4 0 -4 -2 -7 -10 -3 -12 -12 -8 -2 -4 -11 -7 -9 6 -1 -6 -19
Z -4 -5 -4 0 -16 7 6 -6 -2 -7 -8 -5 -6 -16 -5 -6 -7 -17-11 -8 -1 6 -6 -19
X -4 -7 -4 -7 -11 -6 -6 -6 -6 -6 -7 -6 -6 -9 -6 -4 -5 -13 -9 -6 -6 -6 -6 -19
* -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 -19 1

Table A.2: The PAM20 matrix.



AmAcid Codon Number /1000 Fraction
Gly GGG 67052.00 16.26 0.24
Gly GGA 69289.00 16.80 0.25
Gly GGT 46385.00 11.25 0.17
Gly GGC 95488.00 23.15 0.34
Glu GAG 167908.00 40.71 0.58
Glu GAA 122622.00 29.73 0.42
Asp GAT 94296.00 22.86 0.46
Asp GAC 108702.00 26.36 0.54
Val GTG 117559.00 28.50 0.47
Val GTA 29241.00 7.09 0.12
Val GTT 45257.00 10.97 0.18
Val GTC 60686.00 14.71 0.24
Ala
Ala
Ala
Ala
Arg
Arg

GCG
GCA
GCT
GCC
AGG
AGA

29796.00
65536.00
76404.00

116551.00

7.22
15.89
18.53
28.26

45260.00 10.97
46298.00 11.23

0.10
0.23
0.27
0.40
0.20
0.20

Ser AGT 49552.00 12.01 0.15
Ser AGC 80527.00 19.52 0.24
Lys AAG 137842.00 33.42 0.58
Lys AAA 100951.00 24.48 0.42
Asn AAT 70840.00 17.18 0.46
Asn AAC 82995.00 20.12 0.54
Met ATG 90548.00 21.95 1.00
Ile ATA 28777.00 6.98 0.16
Ile ATT 66222.00 16.06 0.36
Ile ATC 90043.00 21.83 0.49
Thr ACG 26394.00 6.40 0.12
Thr ACA 61755.00 14.97 0.28
Thr ACT 53911.00 13.07 0.24
Thr ACC 81000.00 19.64 0.36

AmAcid Codon Number /1000 Fraction
Trp TGG 50400.00 12.22 1.00
End TGA 3922.00 0.95 0.49
Cys TGT 41047.00 9.95 0.45
Cys TGC 50739.00 12.30 0.55
End TAG 1739.00 0.42 0.22
End TAA 2301.00 0.56 0.29
Tyr TAT 50282.00 12.19 0.44
Tyr TAC 65051.00 15.77 0.56
Leu TTG 49783.00 12.07 0.13
Leu TTA 29222.00 7.09 0.07
Phe TTT 68820.00 16.69 0.46
Phe TTC 82290.00 19.95 0.54
Ser
Ser
Ser
Ser
Arg
Arg
Arg
Arg

TCG
TCA
TCT
TCC
CGG
CGA
CGT
CGC

18711.00
48119.00
60222.00
71945.00
47772.00
25689.00
19735.00
44225.00

4.54
11.67
14.60
17.44
11.58
6.23
4.79

10.72

0.06
0.15
0.18
0.22
0.21
0.11
0.09
0.19

Gln CAG 142629.00 34.58 0.74
Gln CAA 49865.00 12.09 0.26
His CAT 42331.00 10.26 0.41
His CAC 61169.00 14.83 0.59
Leu CTG 159724.00 38.73 0.40
Leu CTA 27535.00 6.68 0.07
Leu CTT 51426.00 12.47 0.13
Leu CTC 76817.00 18.63 0.19
Pro CCG 29150.00 7.07 0.11
Pro CCA 70590.00 17.12 0.28
Pro CCT 72473.00 17.57 0.28
Pro CCC 82909.00 20.10 0.32

Table A.3: Codon Usage in Humans
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AmAcid Codon Number /1000 Fraction
Gly GGG 35492.00 15.80 0.23
Gly GGA 39668.00 17.66 0.26
Gly GGT 27188.00 12.10 0.18
Gly GGC 52529.00 23.38 0.34
Glu GAG 91181.00 40.59 0.59
Glu GAA 62167.00 27.67 0.41
Asp
Asp
Val
Val
Val
Val

GAT
GAC
GTG
GTA
GTT
GTC

49356.00
62116.00
64700.00
15715.00
22840.00
34878.00

21.97
27.65
28.80

7.00
10.17
15.52

0.44
0.56
0.47
0.11
0.17
0.25

Ala GCG 15804.00 7.03 0.10
Ala GCA 34247.00 15.24 0.22
Ala GCT 44581.00 19.84 0.29
Ala GCC 59633.00 26.54 0.39
Arg AGG 25775.00 11.47 0.21
Arg AGA 25602.00 11.40 0.21
Ser AGT 27061.00 12.05 0.15
Ser AGC 44351.00 19.74 0.25
Lys AAG 78551.00 34.96 0.61
Lys AAA 49491.00 22.03 0.39
Asn AAT 35666.00 15.88 0.42
Asn AAC 48946.00 21.79 0.58
Met ATG 50169.00 22.33 1.00
Ile ATA 15025.00 6.69 0.15
Ile ATT 33369.00 14.85 0.33
Ile ATC 51779.00 23.05 0.52

Thr ACG 13636.00 6.07 0.11
Thr ACA 34913.00 15.54 0.29
Thr ACT 29650.00 13.20 0.24
Thr ACC 44121.00 19.64 0.36

AmAcid Codon Number /1000 Fraction
Trp TGG 28319.00 12.61 1.00
End TGA 2307.00 1.03 0.49
Cys TGT 24262.00 10.80 0.46
Cys TGC 28288.00 12.59 0.54
End TAG 1076.00 0.48 0.23
End TAA 1282.00 0.57 0.27
Tyr
Tyr
Leu
Leu

TAT
TAC
TTG
TTA

27170.00 12.09
38296.00 17.05
27575.00
13397.00

12.27
5.96

0.42
0.58
0.13
0.06

Phe TTT 36046.00 16.04 0.43
Phe TTC 47781.00 21.27 0.57
Ser TCG 10127.00 4.51 0.06
Ser TCA 24811.00 11.04 0.14
Ser TCT 34282.00 15.26 0.19
Ser TCC 39640.00 17.64 0.22
Arg CGG 23262.00 10.35 0.19
Arg CGA 14906.00 6.63 0.12
Arg CGT 10958.00 4.88 0.09
Arg CGC 22672.00 10.09 0.18
Gln CAG 77131.00 34.33 0.74
Gln CAA 26417.00 11.76 0.26
His CAT 22105.00 9.84 0.39
His CAC 34030.00 15.15 0.61
Leu CTG 85763.00 38.17 0.40
Leu CTA 16396.00 7.30 0.08
Leu CTT 27064.00 12.05 0.13
Leu CTC 42912.00 19.10 0.20
Pro CCG 15291.00 6.81 0.11
Pro CCA 38695.00 17.22 0.28
Pro CCT 41530.00 18.49 0.30
Pro CCC 42600.00 18.96 0.31

Table A.4: Codon Usage in Mice

136



Appendix B

Datasets

B.1 Description of the Databases

The data available to us comes from a number of data bases, which contain examples
of various kinds of biological sequences, as follows:

" The protein database OWL [96]; it contains proteins whose amino acid sequences
have been determined.

" The cDNA database dbEST [95]; it consists of what are essentially the DNA
sequences of the exons of a gene only, and fragments thereof.

" Databases of genes whose splicings into introns and exons are known (GENBANK).

" Databases of genes of various species without such information (GENBANK).

There are numerous complications that arise when using publicly available data,
perhaps the most significant of which is the unreliable nature of the annotated data.
Errors frequently occur in the data itself, while sometimes errors appear in the anno-
tation of the exons and introns. The errors are difficult to find, because sometimes
what may look like an apparent error (for example a GC instead of a GT in a splice
site), is really a valid annotation, albeit rare.

B.1.1 Learning

We used a number of different databases for our various training experiments, de-
pending on whether or not the data was to be used again for testing.

In Chapter 3 we describe x2 tests for which we used the HKR (Haussler-Kulp-
Reese) dataset. This database is distributed freely by the creators of the GENIE pro-
gram [34] and consisted of 353 genes selected from GENBANK. The criteria for selection
included heterogeneity among the genes, reliable intron/exon boundary annotations
etc. The dataset has since been expanded to include over 400 genes, and this dataset
was used to train the splice site detector used in Chapter 6.
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B.1.2 Testing

Tests for the dictionary approach in Chapter 5 were performed on a test set derived
from the HKR benchmark dataset. The Haussler-Kulp-Reese test set was filtered
with the additional following criteria (beyond what the authors had already checked
for): Genes were required to have a single annotation covering the whole sequence,
the CDS annotation was checked for consistency with the annotated nucleotides, and
sequences with "unknown basepairs" were removed. This resulted in a reduced set of
genes, described in Appendix B, which we call the HKRM dataset.

Additional tests were conducted on a data set of 570 vertebrate genes, compiled by
Burset and Guig6 [13]. This is a standard test set that has been used as a benchmark
for comparing gene recognition programs. We refer to the dataset as BG.

The human-mouse comparison test sets (HUMCOMP/MUSCOMP)

This dataset consisted of 119 human genes (homo sapiens) together with the corre-
sponding genes in the mouse (Mus musculus). The dataset was obtained by starting
with a list of 1196 orthologous mouse and human cDNAs as described by Makolowski
et al. in [62]. For each cDNA, we selected genomic matches from GENBANK that con-
tained the entire cDNA (this was done rapidly using the dictionary method described
in Chapter 5). We screened the human matches by hand for genes with complete
intron exon annotations. This pruning and filtering procedure resulted in 119 genes,
for which we had the necessary annotations in the human, and for which we could
find the corresponding murine genomic DNA. In this thesis, we refer to the datasets
as HUMCOMP and MUSCOMP. The genes together with information about their
coding exons are listed in Table B.1.

B.2 Tables

The following pages contain the various datasets described above. Locus names have
been provided. To find the genes in GENBANK, search in
http://www.ncbi.nlm.nih.gov/Entrez/nucleotide.html

We mention that Table B.1 begins on the next page and is forty pages long.
The annotations for the genes numbered 56,71,72 and 80 have been truncated for
formatting reasons; in these genes only the lengths of the first 13 exons are displayed.
Some of the annotations in the mouse sequences (specifically exon lengths and number
of exons) may be inaccurate because of lack of annotations in the mouse database.
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Gene number: 1
Human locus: HSCKIIBE 5917 bp DNA PRI 10-SEP-1998
DEFINITION Human gene for casein kinase II subunit beta (EC 2.7.1.37).
ACCESSION X57152

Mouse locus: MMGMCK2B 7874 bp DNA ROD 12-APR-1996
DEFINITION M.musculus gMCK2-beta gene.
ACCESSION X80685

Exon Lengths:
H: 72 103 116 76
M: 72 103 116 76

190 91
190 91

Human Mouse
Number of coding exons 6 6
Total coding length 648 648

Gene number: 2
Human locus: HUMSAACT 3778 bp DNA PRI 09-JAN-1995
DEFINITION Human skeletal alpha-actin gene, complete cds.
ACCESSION M20543

Mouse locus: MUSACASA 4007 bp DNA ROD 10-OCT-1991
DEFINITION Mouse skeletal alpha-actin gene, complete cds.
ACCESSION M12347

Exon Lengths:
H: 129 3
M: 129 3

25 162 192
25 162 192

Human Mouse
Number of coding exons 6 6
Total coding length 1134 1134

Gene number: 3
Human locus: HSH4EHIS 859 bp DNA PRI 09-NOV-1992
DEFINITION H.sapiens H4/e gene for H4 histone.
ACCESSION X60484

Mouse locus: MMHIS412 637 bp DNA ROD 08-DEC-1995
DEFINITION Mouse histone H4 gene (clone 12).
ACCESSION X13235

Exon Lengths:
H: 312
M: 312

Number of coding exons
Total coding length

Human Mouse
1 1
312 312

182
182

144
144
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Gene number: 4
Human locus: HSU12202 4942 bp DNA PRI 13-SEP-1996
DEFINITION Human ribosomal protein S24 (rps24) gene, complete cds.
ACCESSION U12202

Mouse locus: MMMRPS24 5499 bp DNA ROD 15-MAR-1994
DEFINITION M.musculus MRP S24 gene.
ACCESSION X71972

Exon Lengths:
H: 3 66 210 111 3
M: 3 66 210 111 6

Human Mouse
Number of coding exons 5 5
Total coding length 393 396

Gene number: 5
Human locus: HUMHIS4 1098 bp DNA PRI 08-NOV-1994
DEFINITION Human histone H4 gene, complete cds, clone F0108.
ACCESSION M16707

Mouse locus: MUSHIST4 968 bp DNA ROD 26-MAR-1994
DEFINITION Mouse histone H4 gene, complete cds.
ACCESSION J00422 V00753

Exon Lengths:
H: 312
M: 312

Human Mouse
Number of coding exons 1 1
Total coding length 312 312

Gene number: 6
Human locus: HSHISH3 698 bp DNA PRI 12-SEP-1993
DEFINITION Human histone H3 gene.
ACCESSION X00090

Mouse locus: MMHIST31 592 bp DNA ROD 12-SEP-1993
DEFINITION Murine H3.1 gene for histone H3.1.
ACCESSION X16496

Exon Lengths:
H: 411
M: 411

Human Mouse
Number of coding exons 1 1
Total coding length 411 411
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Gene number: 7
Human locus: HSHSC70 5408 bp DNA PRI 09-MAY-1995
DEFINITION Human hsc70 gene for 71 kd heat shock cognate protein.
ACCESSION Y00371

Mouse locus: MMU73744 4270 bp DNA ROD 07-NOV-1996
DEFINITION Mus musculus heat shock 70 protein (Hsc70) gene, complete cds.
ACCESSION U73744

Exon Lengths:
H: 205 206 153 556 203 199 233 186
M: 205 206 153 556 203 199 233 186

Human Mouse
Number of coding exons 8 8
Total coding length 1941 1941

Gene number: 8
Human locus: HUMNOCT 4878 bp DNA PRI 19-JAN-1996
DEFINITION Homo sapiens POU-domain transcription factor (N-Oct-3), complete
cds.

Mouse locus: MUSPOUDOMB 3864 bp DNA ROD 18-MAY-1992
DEFINITION Mouse brain-2 POU-domain protein, complete cds.
ACCESSION M88300

Exon Lengths:
H: 1332
M: 1338

Human Mouse
Number of coding exons 1 1
Total coding length 1332 1338

Gene number: 9
Human locus: HUMTROC 4567 bp DNA PRI 11-JAN-1991
DEFINITION Human slow twitch skeletal muscle/cardiac muscle troponin C gene,
complete cds.

Mouse locus: MUSCTNC 4194 bp DNA ROD 15-MAR-1990
DEFINITION M.musculus slow/cardiac troponin C (cTnC) gene, complete cds.
ACCESSION J04971

Exon Lengths:
H: 24 31 147 115 137 32
M: 24 31 147 115 137 32

Human Mouse
Number of coding exons 6 6
Total coding length 486 486
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Gene number: 10
Human locus: HSINT1G 4522 bp DNA PRI 03-JAN-1991
DEFINITION Human int-1 mammary oncogene.
ACCESSION X03072

Mouse locus: MUSINT1A 5607 bp DNA ROD 21-DEC-1990
DEFINITION Mouse mammary proto-oncogene Wnt-1 (int-1), complete cds.
ACCESSION K02593 M34750

Exon Lengths:
H: 104 254 266 489
M: 104 254 266 489

Human Mouse
Number of coding exons 4
Total coding length 1

4
113 1113

Gene number: 11
Human locus: HUMSRI1A 1634 bp DNA PRI 29-DEC-1994
DEFINITION Human somatostatin receptor isoform 1 gene, complete cds.
ACCESSION M81829

Mouse locus: MUSSRI1A 1265 bp DNA ROD 29-DEC-1994
DEFINITION Mus musculus somatostatin receptor isoform 1
ACCESSION M81831

Exon Lengths:
H: 1176
M: 1176

Human Mouse
Number of coding exons 1
Total coding length 1

gene, complete cds.

1
176 1176

Gene number: 12
Human locus: HSMIMAR 2100 bp DNA PRI 01-OCT-1996
DEFINITION H. sapiens M1 gene for muscarinic acetylcholine receptor.
ACCESSION Y00508 M35128

Mouse locus: MUSACHRM1 1574 bp DNA ROD 29-MAR-1994
DEFINITION Mouse muscarinic acetylcholine receptor M1 gene, complete cds,
clone M1/ZEM228.

Exon
H:
M:

Lengths:
1383
1383

Number of coding exons
Total coding length

Human Mouse
1 1
1383 1383

142



Gene number: 13
Human locus: HSFAU1 2016 bp DNA PRI 21-JUL-1993
DEFINITION H.sapiens fau 1 gene.
ACCESSION X65921 S45242

Mouse locus: MUSFAUA 2850 bp DNA ROD 07-MAR-1996
DEFINITION Mus musculus Fau gene, complete cds.
ACCESSION L33715

Exon Lengths:
H: 75 145 56 126
M: 75 145 56 126

Human Mouse
Number of coding exons 4 4
Total coding length 402 402

Gene number: 14
Human locus: HUMCRYABA 4206 bp DNA PRI 01-NOV-1994
DEFINITION Human alpha-B-crystallin gene, 5' end.
ACCESSION M28638

Mouse locus: MUSALPBCRY 4181 bp DNA ROD 22-MAY-1995
DEFINITION Mouse alpha-B2-crystallin gene, complete cds.
ACCESSION M73741

Exon Lengths:
H: 201 123 204
M: 201 123 204

Human Mouse
Number of coding exons 3 3
Total coding length 528 528

Gene number: 15
Human locus: HSENO3 7194 bp DNA PRI 25-JUN-1997
DEFINITION H.sapiens ENO3 gene for muscle specific enolase.
ACCESSION X56832

Mouse locus: MMENO3G 5472 bp DNA ROD 09-OCT-1991
DEFINITION M.musculus gene for beta-enolase.
ACCESSION X61600

Exon Lengths:
H: 85 96 59 70 134 223 198 202 109 59 70
M: 85 96 59 70 134 223 198 202 109 59 70

Human Mouse
Number of coding exons 11 11
Total coding length 1305 1305
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Gene number: 16
Human locus: HUMPPIB 1083 bp DNA PRI 08-JAN-1995
DEFINITION Homo sapiens 21 kDa protein gene, complete cds, clone D4S234.
ACCESSION M98529

Mouse locus: MUSPPIA 576 bp DNA ROD 13-AUG-1992
DEFINITION Mouse 19 kDa protein gene, complete cds, clone D4S234E.
ACCESSION M98530

Exon Lengths:
H: 558
M: 558

Human Mouse
Number of coding exons 1
Total coding length 558

1
558

Gene number: 17
Human locus: HUMKCHN 2397 bp DNA PRI 03-DEC-1997
DEFINITION Homo sapiens voltage-gated potassium channel
cds.

Mouse locus: MUSMK3A 1994 bp DNA ROD 15-NOV-1992
DEFINITION Mouse intronless potassium channel gene MK3.
ACCESSION M30441

Exon
H:
M:

(HGK5) gene, complete

Lengths:
1572
1587

Human Mouse
Number of coding exons 1
Total coding length 1572

1
1587

Gene number: 18
Human locus: HUMPCNA 6340 bp DNA PRI 07-JAN-1995
DEFINITION Human proliferating cell nuclear antigen (PCNA)
ACCESSION J04718

gene, complete cds.

Mouse locus: MMPCNAG 4970 bp DNA ROD 07-MAY-1991
DEFINITION Murine PCNA gene for proliferating cell nuclear antigen (DNA
polymerase delta auxiliary protein).

Exon
H:
M:

Lengths:
221 98
221 98

68
68

Number of coding exons
Total coding length

195 124 80
195 124 80

Human Mouse
6
786

6
786
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Gene number: 19
Human locus: HSU73304 5665 bp DNA PRI 05-NOV-1996
DEFINITION Human CB1 cannabinoid receptor (CNR1) gene, complete cds.
ACCESSION U73304

Mouse locus: MMU22948 1654 bp DNA ROD 28-MAR-1995
DEFINITION Mus musculus CB1 cannabinoid receptor gene,
ACCESSION U22948

complete cds.

Lengths:
1419
1422

Human Mouse
Number of coding exons 1
Total coding length 1

1
419 1422

Gene number: 20
Human locus: AF007876 7894 bp DNA PRI 07-APR-1998
DEFINITION Homo sapiens Na,K-ATPase beta 2 subunit gene, complete cds.
ACCESSION AF007876

Mouse locus: MMATPB2 7179 bp DNA ROD 20-MAY-1992
DEFINITION Mouse Na/K-ATPase beta 2 subunit gene.
ACCESSION X56007

Exon Lengths:
H: 112 129 105
M: 112 129 105

Number of coding exons
Total coding length

206 57 99 165
206 57 99 165

Human Mouse
7
873

7
873

Gene number: 21
Human locus: HUMNT3A 1029 bp DNA PRI 07-MAR-1995
DEFINITION Human neurotrophin-3 gene, complete cds, from 1.8 kb HindIII
fragment.

Mouse locus: MMNT3 1284 bp DNA ROD 30-NOV-1992
DEFINITION M.musculus NT-3 gene for neurotrophin-3.
ACCESSION X53257

Exon Lengths:
H: 774
M: 777

Human Mouse
Number of coding exons
Total coding length

1
774

1
777
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Gene number: 22
Human locus: HSCKBG 4200 bp DNA PRI 24-APR-1993
DEFINITION Human gene for creatine kinase B (EC 2.7.3.2).
ACCESSION X15334

Mouse locus: MUSCRKNB 4521 bp DNA ROD 24-JUN-1993
DEFINITION Mouse creatine kinase B gene, complete cds.
ACCESSION M74149

Exon Lengths:
H: 193 155 133 172 124 190 179
M: 193 155 133 172 124 190 179

Human Mouse
Number of coding exons 7 7
Total coding length 1146 1146

Gene number: 23
Human locus: HUMACHRM4 2595 bp DNA PRI 30-OCT-1994
DEFINITION Human m4 muscarinic acetylcholine receptor gene.
ACCESSION M16405

Mouse locus: MMM4ACHR 1707 bp DNA ROD 19-JUL-1993
DEFINITION M.musculus m4 muscarinic acetylcholine receptor.
ACCESSION X63473

Exon Lengths:
H: 1437
M: 1440

Human Mouse
Number of coding exons 1 1
Total coding length 1437 1440

Gene number: 24
Human locus: HUMMHHSP2 2876 bp DNA PRI 07-MAR-1995
DEFINITION Human MHC class III HSP70-2 gene (HLA), complete cds.
ACCESSION M59830 M34269

Mouse locus: MUSHSP7A2 3518 bp DNA ROD 26-MAR-1994
DEFINITION Mouse heat shock protein 70.1 (hsp70.1) gene, complete cds.
ACCESSION M35021

Exon Lengths:
H: 1926
M: 1929

Human Mouse
Number of coding exons 1 1
Total coding length 1926 1929
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Gene number: 25
Human locus: HUMAPEXN 3730 bp DNA PRI 18-JAN-1995
DEFINITION Human APX gene encoding APEX nuclease, complete cds.
ACCESSION D13370

Mouse locus: MUSAPEX 4042 bp DNA ROD 08-FEB-1996
DEFINITION Mouse gene for APEX nuclease, complete cds.
ACCESSION D38077

Exon Lengths:
H: 58 188 193 518
M: 55 188 193 518

Human Mouse
Number of coding exons 4 4
Total coding length 957 954

Gene number: 26
Human locus: HUMGAD45A 5378 bp DNA PRI 25-JAN-1994
DEFINITION Human gadd45 gene, complete cds.
ACCESSION L24498

Mouse locus: MUSGAD45 3100 bp DNA ROD 23-JUL-1998
DEFINITION Mus musculus GADD45 protein (gadd45) gene, complete cds.
ACCESSION U00937

Exon Lengths:
H: 44 102 238 114
M: 44 102 238 114

Human Mouse
Number of coding exons 4 4
Total coding length 498 498

Gene number: 27
Human locus: HUMMHHSPHO 3330 bp DNA PRI 07-MAR-1995
DEFINITION Human MHC class III HSP70-HOM gene (HLA), complete cds.
ACCESSION M59829 M34268

Mouse locus: MUSHSC70T 2295 bp DNA ROD 09-JAN-1995
DEFINITION Mouse heat shock protein 70 (Hsc70t) gene, complete cds.
ACCESSION L27086

Exon Lengths:
H: 1926
M: 1926

Human Mouse
Number of coding exons 1 1
Total coding length 1926 1926
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Gene number: 28
Human locus: HSHOX51 6305 bp DNA PRI 25-JUN-1997
DEFINITION Human HOX 5.1 gene for HOX 5.1 protein.
ACCESSION X17360

Mouse locus: MMU77364 7627 bp DNA ROD 23-JAN-1997
DEFINITION Mus musculus homeodomain-containing transcription factor (Hoxd4)
gene, complete cds.

Exon Lengths:
H: 433 335
M: 427 326

Human Mouse
Number of coding exons 2 2
Total coding length 768 753

Gene number: 29
Human locus: HUMHISAC 1978 bp DNA PRI 07-MAR-1995
DEFINITION Human histone H1 (H1F4) gene, complete cds.
ACCESSION M60748

Mouse locus: MUSH1EH2B 3605 bp DNA ROD 04-AUG-1994
DEFINITION Mouse histone Hie gene, complete cds and histone H2b pseudogene.
ACCESSION L26163

Exon Lengths:
H: 660
M: 660 327

Human Mouse
Number of coding exons 1 2
Total coding length 660 987

Gene number: 30
Human locus: HUMSPERSYN 7623 bp DNA PRI 13-JAN-1995
DEFINITION Human spermidine synthase gene, complete cds.
ACCESSION M64231

Mouse locus: MMSPERSYN 3915 bp DNA ROD 07-DEC-1995
DEFINITION M.musculus spermidine synthase gene.
ACCESSION Z67748

Exon Lengths:
H: 167 121 93 154 84 146 123 21
M: 167 121 93 154 230 123 21

Human Mouse
Number of coding exons 8 7
Total coding length 909 909
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Gene number: 31
Human locus: HSHIS10G 2530 bp DNA PRI 12-SEP-1993
DEFINITION Human gene for histone H1(0).
ACCESSION X03473

Mouse locus: MMU18295 2893 bp DNA ROD 15-JUL-1995
DEFINITION Mus musculus histone H1(0) gene, complete cds.
ACCESSION U18295

Exon Lengths:
H: 585
M: 585

Human Mouse
Number of coding exons 1 1
Total coding length 585 585

Gene number: 32
Human locus: HSCFOS 3565 bp DNA PRI 21-NOV-1994
DEFINITION Human cellular oncogene c-fos (complete sequence).
ACCESSION V01512

Mouse locus: MMCFOS 3967 bp DNA ROD 01-OCT-1996
DEFINITION Mouse c-fos oncogene.
ACCESSION V00727

Exon Lengths:
H: 141 252 108 642
M: 141 252 108 642

Human Mouse
Number of coding exons 4 4
Total coding length 1143 1143

Gene number: 33
Human locus: HUMHGCR 2635 bp DNA PRI 17-SEP-1992
DEFINITION Human gene for serotonin 1B receptor, complete cds.
ACCESSION D10995

Mouse locus: MUS5HT1B 2348 bp DNA ROD 11-DEC-1995
DEFINITION Mus musculus 5HT1B gene, complete cds.
ACCESSION M85151

Exon Lengths:
H: 1173
M: 1161

Human Mouse
Number of coding exons 1 1
Total coding length 1173 1161
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Gene number: 34
Human locus: HUMUDPCNA 4705 bp DNA PRI 19-SEP-1995
DEFINITION Human alpha-1,3-mannosyl-glycoprotein beta-1,
2-N-acetylglucosaminyltransferase (MGAT) gene, complete cds.

Mouse locus: MUSGLCNACT 1894 bp DNA ROD 08-DEC-1992
DEFINITION Mouse N-acetylglucosaminyltransferase I (GlcNAc-T1) gene, complete
cds.

Exon Lengths:
H: 1338
M: 1344

Human Mouse
Number of coding exons 1
Total coding length 1338

1
1344

Gene number: 35
Human locus: HSODCG 9043 bp DNA PRI 24-APR-1993
DEFINITION Human gene for ornithine decarboxylase ODC
ACCESSION X16277

(EC 4.1.1.17).

Mouse locus: MUSODCC 7100 bp DNA ROD 15-DEC-1988
DEFINITION Mouse ornithine decarboxylase gene, complete cds.
ACCESSION J03733

Lengths:
102 174 173 135 82
102 174 173 135 82

84
84

163
163

113 215 145
113 215 145

Human Mouse
Number of coding exons 10
Total coding length 13

10
36 1386

Gene number: 36
Human locus: HUMGALTB 4286 bp DNA PRI 14-AUG-1995
DEFINITION Homo sapiens galactose-1-phosphate uridyl transferase
complete cds.

Mouse locus: MMU41282 4023 bp DNA ROD 19-DEC-1995
DEFINITION Mus musculus galactose-1-phosphate uridyltransferase
complete cds.

Lengths:
82 170
25 170

76
76

49
49

130
130

57
57

123 133 84
123 133 84

155
155

(GALT) gene,

(GALT) gene,

81
81

Human Mouse
Number of coding exons
Total coding length

11
1140

Exon
H:
M:

Exon
H:
M:

11
1083
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Gene number: 37
Human locus: HSU29185 35522 bp DNA PRI 19-FEB-1998
DEFINITION Homo sapiens prion protein (PrP) gene, complete cds.
ACCESSION U29185

Mouse locus: MUSPRNPA 38418 bp DNA ROD 19-FEB-1998
DEFINITION Mus musculus short incubation prion protein Prnpa gene, complete
cds.

Exon Lengths:
H: 738
M: 765

Human Mouse
Number of coding exons
Total coding length

1
738

1
765

Gene number: 38
Human locus: HSU01212 3718 bp DNA PRI 03-AUG-1994
DEFINITION Human olfactory marker protein (OMP) gene, complete cds.
ACCESSION U01212

Mouse locus: MMU01213 3279 bp DNA ROD 03-AUG-1994
DEFINITION Mus musculus 129 olfactory marker protein (OMP)
ACCESSION U01213

Exon
H:
M:

gene, complete cds.

Lengths:
492
492

Human Mouse
Number of coding exons
Total coding length

1
492

1
492

Gene number: 39
Human locus: HUMMIF 2167 bp DNA PRI 29-SEP-1994
DEFINITION Homo sapiens macrophage migration inhibitory factor
complete cds.

Mouse locus: MMU20156 920 bp DNA ROD 08-MAR-1996
DEFINITION Mus musculus macrophage migration inhibitory factor
complete cds.

Exon
H:
M:

(MIF) gene,

(MIF) gene,

Lengths:
108 173 67
108 173 67

Number of coding exons
Total coding length

Human Mouse
3 3
348 348
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Gene number: 40
Human locus: AF049259 5698 bp DNA PRI 16-SEP-1998
DEFINITION Homo sapiens keratin 13 gene, complete cds.
ACCESSION AF049259

Mouse locus: MMU13921 4678 bp DNA ROD 24-JAN-1995
DEFINITION Mus musculus cytokeratin 13 (MK13) gene, complete cds.
ACCESSION U13921

Exon Lengths:
H: 495 83 157 162 126 221 19
M: 471 83 157 162 126 221 23 71

Human Mouse
Number of coding exons 7 8
Total coding length 1263 1314

Gene number: 41
Human locus: HSH12 1391 bp DNA PRI 09-NOV-1992
DEFINITION H.sapiens 111.2 gene for histone H1.
ACCESSION X57129

Mouse locus: MUSHISlA 1877 bp DNA ROD 26-MAR-1994
DEFINITION Mouse histone (H1-.1) gene, complete cds.
ACCESSION M25365

Exon Lengths:
H: 642
M: 639

Human Mouse
Number of coding exons 1 1
Total coding length 642 639

Gene number: 42
Human locus: HSACTHR 1850 bp DNA PRI 18-SEP-1992
DEFINITION H.sapiens ACTH-R gene for adrenocorticotropic hormone receptor.
ACCESSION X65633

Mouse locus: MUSACTHR 1100 bp DNA ROD 24-JAN-1996
DEFINITION Mouse gene for adrenocorticotropin receptor, complete cds.
ACCESSION D31952

Exon Lengths:
H: 894
M: 891

Human Mouse
Number of coding exons 1 1
Total coding length 894 891
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Gene number: 43
Human locus: AF027148 12825 bp DNA PRI 08-AUG-1998
DEFINITION Homo sapiens myogenic determining factor 3 (MYOD1) gene, complete
cds.

Mouse locus: MMMYOD1 2627 bp DNA ROD 27-JAN-1992
DEFINITION M.musculus myoD1 gene for MyoD1 protein.
ACCESSION X61655

Exon Lengths:
H: 630 79 254
M: 627 79 251

Human Mouse
Number of coding exons 3 3
Total coding length 963 957

Gene number: 44
Human locus: HUMKER18 6520 bp DNA PRI 09-JAN-1995
DEFINITION Human keratin 18 (K18) gene, complete cds.
ACCESSION M24842 M19353 X12799

Mouse locus: MUSENDOBA 7879 bp DNA ROD 26-AUG-1994
DEFINITION Mus musculus cytokeratin (endoB) gene, complete cds.
ACCESSION M22832

Exon Lengths:
H: 417 83 157 165 126 224 121
M: 396 83 157 165 126 224 121

Human Mouse
Number of coding exons 7 7
Total coding length 1293 1272

Gene number: 45
Human locus: HUMADRA 1521 bp DNA PRI 30-OCT-1994
DEFINITION Human platelet alpha-2-adrenergic receptor gene, complete cds.
ACCESSION M18415

Mouse locus: MUSALP2ADB 1454 bp DNA ROD 20-AUG-1992
DEFINITION Mouse alpha-2 adrenergic receptor, complete cds.
ACCESSION M99377

Exon Lengths:
H: 1353
M: 1353

Human Mouse
Number of coding exons 1 1
Total coding length 1353 1353
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Gene number: 46
Human locus: HSMHCPU15 5833 bp DNA PRI 29-JUL-1993
DEFINITION H.sapiens gene for major histocompatibility complex encoded
proteasome subunit LMP2.

Mouse locus: MUSLMP2A 6101 bp DNA ROD 18-AUG-1993
DEFINITION Mus musculus proteasome (lmp2) gene, complete mRNA.
ACCESSION L11613

Exon Lengths:
H: 60 68 132 130 142 128
M: 281 132 130 99

Human Mouse
Number of coding exons 6 4
Total coding length 660 642

Gene number: 47
Human locus: HSU72648 4850 bp DNA PRI 19-DEC-1996
DEFINITION Human alpha2-C4-adrenergic receptor gene, complete cds.
ACCESSION U72648

Mouse locus: MUSADRA 2409 bp DNA ROD 22-JUL-1993
DEFINITION Mouse alpha-2 adrenergic receptor gene, complete cds.
ACCESSION M97516

Exon Lengths:
H: 1386
M: 1377

Human Mouse
Number of coding exons 1 1
Total coding length 1386 1377

Gene number: 48
Human locus: HUMMK 4638 bp DNA PRI 12-SEP-1992
DEFINITION Human midkine gene, complete cds.
ACCESSION D10604 D90540

Mouse locus: MUSMKPG 2929 bp DNA ROD 15-SEP-1990
DEFINITION Mouse retinoic acid-responsive protein (MK) gene, complete cds.
ACCESSION M34094 J05447

Exon Lengths:
H: 76 168 162 26
M: 76 159 162 26

Human Mouse
Number of coding exons 4 4
Total coding length 432 423
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Gene number: 49
Human locus: HSMYF4G 2804 bp DNA PRI 27-SEP-1996
DEFINITION Human myf4 gene for skeletal muscle-specific transcription factor.
ACCESSION X62155

Mouse locus: MUSMYOGEN 4145 bp DNA ROD 03-SEP-1992
DEFINITION Mus musculus myogenin gene, complete cds.
ACCESSION M95800

Exon Lengths:
H: 471 81 123
M: 471 82 122

Human Mouse
Number of coding exons 3 3
Total coding length 675 675

Gene number: 50
Human locus: HUMHISAB 1314 bp DNA PRI 07-MAR-1995
DEFINITION Human histone H1 (H1F3) gene, complete cds.
ACCESSION M60747

Mouse locus: MMHISTH1 1943 bp DNA ROD 22-AUG-1996
DEFINITION M.musculus gene for histone H1.
ACCESSION Z38128

Exon Lengths:
H: 666
M: 666

Human Mouse
Number of coding exons 1 1
Total coding length 666 666

Gene number: 51
Human locus: HUMOTNPI 1338 bp DNA PRI 03-MAY-1996
DEFINITION Human prepro-oxytocin-neurophysin I (OXT) gene, complete cds.
ACCESSION M11186

Mouse locus: MUSOXYNEUI 2003 bp DNA ROD 11-MAR-1992
DEFINITION Mouse oxytocin-neurophysin I gene, complete cds.
ACCESSION M88355

Exon Lengths:
H: 120 199 56
M: 120 202 56

Human Mouse
Number of coding exons 3 3
Total coding length 375 378

155



Gene number: 52
Human locus: HUMTKRA 13500 bp DNA PRI 14-JAN-1995
DEFINITION Human thymidine kinase gene, complete cds, with clustered Alu
repeats in the introns.

Mouse locus: MUSTKM 2939 bp DNA ROD 24-SEP-1992
DEFINITION Mouse thymidine kinase gene, complete cds.
ACCESSION M68489

Exon Lengths:
H: 66 32 111 94 90 120 192
M: 66 32 111 94 90 120 189

Human Mouse
Number of coding exons 7 7
Total coding length 705 702

Gene number: 53
Human locus: HUMADRBRA 3458 bp DNA PRI 13-FEB-1996
DEFINITION Human beta-2-adrenergic receptor gene, complete cds.
ACCESSION J02960

Mouse locus: MMB2ARG 4928 bp DNA ROD 22-MAR-1991
DEFINITION Mouse gene for beta-2-adrenergic receptor.
ACCESSION X15643

Exon Lengths:
H: 1242
M: 1257

Human Mouse
Number of coding exons 1 1
Total coding length 1242 1257

Gene number: 54
Human locus: HUMMETIII 2167 bp DNA PRI 01-JUL-1992
DEFINITION Human metallothionein-III gene, complete cds.
ACCESSION M93311

Mouse locus: MUSMETIII 2649 bp DNA ROD 01-JUL-1992
DEFINITION Mouse metallothionein-III gene, complete cds.
ACCESSION M93310

Exon Lengths:
H: 31 66 110
M: 31 66 110

Human Mouse
Number of coding exons 3 3
Total coding length 207 207
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Gene number: 55
Human locus: HUMXRCC1G 37785 bp DNA PRI 30-JAN-1995
DEFINITION Human XRCC1 DNA repair gene, genomic.
ACCESSION L34079

Mouse locus: MUSXRCC1G 37349 bp DNA ROD 30-JAN-1995
DEFINITION Mouse XRCC1 DNA repair gene, genomic.
ACCESSION L34078

Exon Lengths:
H: 51 93 111 159 75 112 110 112 259 117 94 133 55
M: 51 93 117 159 76 112 100 258 116 94 130 55 137

Human Mouse
Number of coding exons 17 16
Total coding length 1902 1779

Gene number: 56
Human locus: HUMGOS24B 3889 bp DNA PRI 09-MAY-1997
DEFINITION Homo sapiens zinc finger transcriptional regulator (GOS24) gene,
complete cds.

Mouse locus: MUSZPF36G 7493 bp DNA ROD 24-OCT-1995
DEFINITION Mus musculus tristetraprolin (zpf-36) gene, complete cds.
ACCESSION L42317

Exon Lengths:
H: 24 957
M: 24 936

Human Mouse
Number of coding exons 2 2
Total coding length 981 960

Gene number: 57
Human locus: HSAGL1 1138 bp DNA PRI 24-APR-1993
DEFINITION Human alpha-globin germ line gene.
ACCESSION V00488

Mouse locus: MUSHBA 1441 bp DNA ROD 01-SEP-1988
DEFINITION Mouse alpha-globin gene, complete cds.
ACCESSION J00410 M13126

Exon Lengths:
H: 95 129
M: 95 205 129

Human Mouse
Number of coding exons 2 3
Total coding length 224 429

157



Gene number: 58
Human locus: HSPGK2G 1911 bp DNA PRI 12-SEP-1993
DEFINITION Human testis-specific PGK-2 gene for phosphoglycerate kinase
(ATP:3-phospho-D-glycerate 1-phosphotransferase, EC 2.7.2.3).

Mouse locus: MUSPGK2 2147 bp DNA ROD 02-NOV-1992
DEFINITION Mouse testis-specific phosphoglycerate kinase (pgk-2) gene,
complete cds.

Exon Lengths:
H: 1254
M: 1254

Human Mouse
Number of coding exons 1 1
Total coding length 1254 1254

Gene number: 59
Human locus: HSU57623 9170 bp DNA PRI 16-JUN-1996
DEFINITION Human fatty acid binding protein FABP gene, complete cds.
ACCESSION U57623

Mouse locus: MMU02884 8765 bp DNA ROD 03-FEB-1995
DEFINITION Mus musculus mammary-derived growth inhibitor (MDGI) gene, complete
cds.

Exon Lengths:
H: 73 173 102 54
M: 73 173 102 54

Human Mouse
Number of coding exons 4 4
Total coding length 402 402

Gene number: 60
Human locus: HSARYLA 3637 bp DNA PRI 24-APR-1993
DEFINITION Human DNA for arylsulphatase A (EC 3.1.6.1).
ACCESSION X52150

Mouse locus: MMDNAASFA 4342 bp DNA ROD 20-NOV-1997
DEFINITION M.musculus gene for arylsulfatase A.
ACCESSION X73231

Exon Lengths:
H: 218 241 219 170 125 128 103 320
M: 215 241 219 170 125 128 103 320

Human Mouse
Number of coding exons 8 8
Total coding length 1524 1521
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Gene number: 61
Human locus: S63168 1594 bp DNA PRI 23-AUG-1993
DEFINITION CCAAT/enhancer-binding protein delta=transcription factor CRP3
homolog [human, prostate carcinoma cell line LNCaP, Genomic, 1594

Mouse locus: MUSCRP3A 1146 bp DNA ROD 27-JUN-1994
DEFINITION Mouse C/EBP-related protein (CRP3) gene.
ACCESSION M85144

Exon Lengths:
H: 810
M: 804

Human Mouse
Number of coding exons 1 1
Total coding length 810 804

Gene number: 62
Human locus: HSHSP27 2496 bp DNA PRI 28-MAR-1995
DEFINITION Human gene for 27kDa heat shock protein (hsp 27).
ACCESSION X03900

Mouse locus: MUSHSP25A 3058 bp DNA ROD 04-AUG-1993
DEFINITION Mus musculus small heat shock protein (HSP25) gene,.
ACCESSION L07577

Exon Lengths:
H: 364 64 172
M: 375 66 189

Human Mouse
Number of coding exons 3 3
Total coding length 600 630

Gene number: 63
Human locus: HUMROD1X 2841 bp DNA PRI 09-JAN-1995
DEFINITION Human rod outer segment membrane protein 1 (ROM1) gene exons 1-3,
complete cds.

Mouse locus: MUSROMiX 2787 bp DNA ROD 14-JUL-1993
DEFINITION Mouse rod outer segment membrane protein 1 (Roml) gene exons 1-3,
complete cds.

Exon Lengths:
H: 590 247 219
M: 590 247 219

Human Mouse
Number of coding exons 3 3
Total coding length 1056 1056
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Gene number: 64
Human locus: HUMSSTR3X 1413 bp DNA PRI 13-JAN-1995
DEFINITION Human somatostatin receptor subtype 3 (SSTR3) gene, complete cds.
ACCESSION M96738

Mouse locus: MUSSSTR3A 1797 bp DNA ROD 01-APR-1993
DEFINITION Mouse somatostatin receptor (SSTR3) gene, complete cds.
ACCESSION M91000

Exon
H:
M:

Lengths:
1257
1287

Human Mouse
Number of coding exons 1
Total coding length 1257

1
1287

Gene number: 65
Human locus: HSPNMTB 3799 bp DNA PRI 24-APR-1993
DEFINITION Human gene for phenylethanolamine N-methylase (PNMT) (EC 2.1.1.28).
ACCESSION X52730

Mouse locus: MUSPNMT 3144 bp DNA ROD 28-JUN-1995
DEFINITION Mouse phenylethanolamine N-methyltransferase gene, complete cds.
ACCESSION L12687

Exon Lengths:
H: 202 208 439
M: 235 208 445

Human Mouse
Number of coding exons 3
Total coding length 849

3
888

Gene number: 66
Human locus: HSIGF2G 8837 bp DNA PRI 27-JAN-1993
DEFINITION Human gene for insulin-like growth factor II.
ACCESSION X03562 M13970 M14116 M14117 M14118

Mouse locus: MMU71085 27874 bp DNA ROD 17-DEC-1997
DEFINITION Mus musculus insulin-like growth factor II (Igf2) gene, complete
cds.

Exon Lengths:
H: 157 237
M: 157 149 237

Number of coding exons
Total coding length

Human Mouse
2 3
394 543
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Gene number: 67
Human locus: HUMADAG 36741 bp DNA PRI 04-OCT-1995
DEFINITION Human adenosine deaminase (ADA) gene, complete cds.
ACCESSION M13792

Mouse locus: MMU73107 29807 bp DNA ROD 30-MAR-1998
DEFINITION Mus musculus adenosine deaminase (ADA) gene, complete cds.
ACCESSION U73107

Lengths:
33 62
33 62

123 144 116 128 72 102
123 144 116 128 72 102

Human Mouse
Number of coding exons
Total coding length

65
65

130
130

103
84

14

12 11
1092 1059

Gene number: 68
Human locus: HUMSMPD1G 5588 bp DNA PRI 31-AUG-1995
DEFINITION Homo sapiens acid sphingomyelinase (SMPD1) gene,
ORF's 1-3, complete cds's.

complete cds,

Mouse locus: MMASM1G 4775 bp DNA ROD 28-APR-1994
DEFINITION M.musculus (balb-c) gene for sphingomyelin phosphodiesterase.
ACCESSION Z14132 Z31654

Exon
H:
M:

Lengths:
312 773 172 77
306 773 172 77

146 410
146 410

Human Mouse
Number of coding exons 6
Total coding length 1890

6
1884

Gene number: 69
Human locus: HUMCOX5B 2593 bp DNA PRI 01-NOV-1994
DEFINITION Homo sapiens cytochrome c oxidase subunit Vb (COX5B)
cds.

gene, complete

Mouse locus: MUSCYTCOVB 2540 bp DNA ROD 04-AUG-1994
DEFINITION Mouse cytochrome c oxidase Vb subunit gene, complete cds.
ACCESSION M77040 M38201

Exon Lengths:
H: 103 74
M: 100 74

100 113
100 113

Human Mouse
Number of coding exons 4
Total coding length 390

4
387
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Gene number: 70
Human locus: HUMAE1ERY 21319 bp DNA PRI 01-DEC-1994
DEFINITION Human anion exchanger (AE1) gene, exons 1-20.
ACCESSION L35930

Mouse locus: MUSBAND32 12519 bp DNA ROD 15-JUN-1989
DEFINITION Mouse band 3 anion exchange protein gene, complete cds.
ACCESSION J02756

Exon Lengths:
H: 15 91 62 181 136 124 85 182 211 195 149 195 174
M: 6 121 74 181 136 124 82 182 211 213 149 195 171

Human Mouse
Number of coding exons 19 18
Total coding length 2736 2699

Gene number: 71
Human locus: HUMNUCLEO 10942 bp DNA PRI 07-JAN-1995
DEFINITION Human nucleolin gene, complete cds.
ACCESSION M60858 J05584

Mouse locus: MMNUCLEO 11478 bp DNA ROD 27-AUG-1998
DEFINITION Mouse nucleolin gene.
ACCESSION X07699

Exon Lengths:
H: 18 117 478 198 87 142 125 124 158 124 134 127 215
M: 18 117 496 186 87 142 125 124 155 124 122 127 224

Human Mouse
Number of coding exons 14 14
Total coding length 2124 2124

Gene number: 72
Human locus: S45332 8647 bp DNA PRI 23-DEC-1992
DEFINITION erythropoietin receptor [human, placental, Genomic, 8647 nt].
ACCESSION S45332

Mouse locus: MMERYPR 6561 bp DNA ROD 13-MAY-1992
DEFINITION Mouse gene for erythropoietin receptor.
ACCESSION X53081

Exon Lengths:
H: 115 136 176 158 154 88 88 612
M: 115 133 176 158 154 88 88 612

Human Mouse
Number of coding exons 8 8
Total coding length 1527 1524
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Gene number: 73
Human locus: HUMINSPR 3943 bp DNA PRI 06-JAN-1995
DEFINITION Human alpha-type insulin gene and 5' flanking polymorphic region.
ACCESSION M10039

Mouse locus: MMINSIIG 2408 bp DNA ROD 09-APR-1993
DEFINITION Mouse preproinsulin gene II.
ACCESSION X04724

Exon Lengths:
H: 187 146
M: 186 147

Human Mouse
Number of coding exons 2 2
Total coding length 333 333

Gene number: 74
Human locus: HUMHST 6616 bp DNA PRI 22-AUG-1995
DEFINITION Human transforming protein (hst) gene, complete cds.
ACCESSION J02986 M16338

Mouse locus: MMKFGF 3989 bp DNA ROD 11-NOV-1994
DEFINITION Mouse hst/kFGF genomic DNA.
ACCESSION X14849 M28516

Exon Lengths:
H: 340 104 177
M: 328 104 177

Human Mouse
Number of coding exons 3 3
Total coding length 621 609

Gene number: 75
Human locus: HUMPLPSPC 3409 bp DNA PRI 17-AUG-1998
DEFINITION Human pulmonary surfactant protein C (SP-C) and pulmonary
surfactant protein C1 (SP-C1) genes, complete cds.

Mouse locus: MUSPSPC 3633 bp DNA ROD 24-JAN-1991
DEFINITION Mouse pulmonary surfactant protein SP-C (SFTP2) gene, complete cds.
ACCESSION M38314

Exon Lengths:
H: 42 159 123 111 159
M: 42 159 123 111 147

Human Mouse
Number of coding exons 5 5
Total coding length 594 582
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Gene number: 76
Human locus: HSCOSEG 3521 bp DNA PRI 15-JAN-1992
DEFINITION H.sapiens coseg gene for vasopressin-neurophysin precursor.
ACCESSION X62890

Mouse locus: MUSVASNEU 3494 bp DNA ROD 11-MAR-1992
DEFINITION Mouse vasopressin-neurophysin II gene, complete cds.
ACCESSION M88354

Exon Lengths:
H: 120 202 173
M: 132 202 173

Human Mouse
Number of coding exons 3 3
Total coding length 495 507

Gene number: 77
Human locus: HSB3A 3683 bp DNA PRI 18-MAY-1993
DEFINITION H.sapiens gene for beta-3-adrenergic receptor.
ACCESSION X72861

Mouse locus: MMB3A 3438 bp DNA ROD 18-MAY-1993
DEFINITION M.musculus gene for beta-3-adrenergic receptor.
ACCESSION X72862

Exon Lengths:
H: 1205 22
M: 1163 40

Human Mouse
Number of coding exons 2 2
Total coding length 1227 1203

Gene number: 78
Human locus: HUMLORI 3321 bp DNA PRI 06-OCT-1992
DEFINITION Human loricrin gene exons 1 and 2, complete cds.
ACCESSION M94077

Mouse locus: MMU09189 6530 bp DNA ROD 30-NOV-1995
DEFINITION Mus musculus loricrin gene, complete cds.
ACCESSION U09189

Exon Lengths:
H: 951
M: 1446

Human Mouse
Number of coding exons 1 1
Total coding length 951 1446
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Gene number: 79
Human locus: HSU37055 9980 bp DNA PRI 16-MAY-1996
DEFINITION Human hepatocyte growth factor-like protein gene, complete cds.
ACCESSION U37055 M74179

Mouse locus: MUSHEPGFA 6751 bp DNA ROD 07-OCT-1994
DEFINITION Mouse hepatocyte growth factor-like protein gene, complete cds.
ACCESSION M74180

113 115 137
113 115 137

121 119 169 131
121 119 196 131

103 137 36
103 137 36

Number of coding exons
Total coding length

Human Mouse
18 18
2136 2151

Gene number: 80
Human locus: HSH11 1034 bp DNA PRI 19-APR-1993
DEFINITION H.sapiens H1.1 gene for histone H1.
ACCESSION X57130

Mouse locus: MUSH1X 1781 bp DNA ROD 04-AUG-1994
DEFINITION Mouse histone H1, complete cds.
ACCESSION L26164

Exon Lengths:
H: 648
M: 642

Human Mouse
Number of coding exons 1
Total coding length 648

1
642

Gene number: 81
Human locus: HSU66875 1569 bp DNA PRI 31-MAY-1997
DEFINITION Homo sapiens cytochrome oxidase subunit VIa
(COX6AH) gene, complete cds.

heart isoform precursor

Mouse locus: MMU63716 2324 bp DNA ROD 02-FEB-1997
DEFINITION Mus musculus cytochrome C oxidase subunit VIa heart isoform
(coxVIaH) gene, nuclear gene encoding mitochondrial protein,

Exon Lengths:
H: 73 137 84
M: 73 137 84

Human Mouse
Number of coding exons
Total coding length

3
294

3
294
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Gene number: 82
Human locus: HSINT2 11608 bp DNA PRI 25-JUN-1997
DEFINITION Human int-2 proto-oncogene.
ACCESSION X14445

Mouse locus: MMINT2 8283 bp DNA ROD 29-NOV-1994
DEFINITION Mouse int-2 gene.
ACCESSION Y00848 M26284 X68450

Exon Lengths:
H: 220 104 396
M: 220 104 414

Human Mouse
Number of coding exons 3 3
Total coding length 720 738

Gene number: 83
Human locus: HSBGL3 2052 bp DNA PRI 07-OCT-1996
DEFINITION Human germ line gene for beta-globin.
ACCESSION V00499

Mouse locus: MUSHBBMAJ 6532 bp DNA ROD 15-JUN-1988
DEFINITION Mouse beta-globin major gene.
ACCESSION J00413 K01748 K03545 X00624

Exon Lengths:
H: 92 223 129
M: 92 223 129

Human Mouse
Number of coding exons 3 3
Total coding length 444 444

Gene number: 84
Human locus: HUMALIFA 7614 bp DNA PRI 31-OCT-1994
DEFINITION Human leukemia inhibitory factor (LIF) gene, complete cds.
ACCESSION M63420 J05436

Mouse locus: MUSALIFA 8757 bp DNA ROD 10-APR-1991
DEFINITION Mouse leukemia inhibitory factor (LIF) gene, complete cds.
ACCESSION M63419 J05435

Exon Lengths:
H: 19 179 411
M: 19 182 411

Human Mouse
Number of coding exons 3 3
Total coding length 609 612
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Gene number: 85
Human locus: HUMFABP 5204 bp DNA PRI 08-NOV-1994
DEFINITION Human, intestinal fatty acid binding protein gene, complete cds,
and an Alu repetitive element.

Mouse locus: MUSFABPI 5039 bp DNA ROD 25-FEB-1992
DEFINITION Mouse Fabpi gene, exons 1-4.
ACCESSION M65033

Exon Lengths:
H: 67 173 108 51
M: 103 173 108 222

Human Mouse
Number of coding exons 4 4
Total coding length 399 606

Gene number: 86
Human locus: HUMLYTOXBB 6305 bp DNA PRI 14-MAY-1996
DEFINITION Homo sapiens lymphotoxin-beta gene, complete cds.
ACCESSION L11016

Mouse locus: MMU16984 6914 bp DNA ROD 20-JUL-1995
DEFINITION Mus musculus lymphotoxin-beta (LT-beta) gene, complete cds.
ACCESSION U16984

Exon Lengths:
H: 162 46 72 455
M: 162 316 443

Human Mouse
Number of coding exons 4 3
Total coding length 735 921

Gene number: 87
Human locus: HUMLYL1B 4569 bp DNA PRI 18-MAR-1996
DEFINITION Human LYL-1 protein gene, complete cds.
ACCESSION M22638

Mouse locus: MMLYL1 3678 bp DNA ROD 02-AUG-1991
DEFINITION Mouse Lyl-1 gene.
ACCESSION X55055

Exon Lengths:
H: 296 92 416
M: 333 90 414

Human Mouse
Number of coding exons 3 3
Total coding length 804 837
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Gene number: 88
Human locus: HUMANFA 2710 bp DNA PRI 01-NOV-1994
DEFINITION Human atrial natriuretic factor (PND) gene, complete cds.
ACCESSION K02043

Mouse locus: MUSANF 1983 bp DNA ROD 16-DEC-1985
DEFINITION Mouse PND gene encoding atrial natriuretic factor, complete cds.
ACCESSION K02781

Exon Lengths:
H: 123 327 6
M: 120 327 12

Human Mouse
Number of coding exons 3
Total coding length 456

3
459

Gene number: 89
Human locus: HUMGOS19A 4102 bp DNA PRI 07-JAN-1991
DEFINITION Human homologue-1 of gene encoding alpha subunit
(MIP1/SCI), complete cds.

of murine cytokine

Mouse locus: MMSCIMIP 1988 bp DNA ROD 08-MAY-1993
DEFINITION Mouse SCI/MIP-la gene for stem cell inhibitor/macrophage
inflammatory protein la.

Exon Lengths:
H: 73 115 91
M: 76 112 91

Human Mouse
Number of coding exons
Total coding length

3
279

3
279

Gene number: 90
Human locus: HUMALPI 5291 bp DNA PRI 29-APR-1996
DEFINITION Human intestinal alkaline phosphatase (ALPI) gene, complete cds.
ACCESSION J03930

Mouse locus: MUSIAP 5293 bp DNA ROD 02-DEC-1991
DEFINITION Mouse intestinal alkaline phosphatase (IAP)
ACCESSION M61705 M35029

gene, complete cds.

Exon Lengths:
H: 67 117
M: 67 117

116 175 173 135 73
116 175 173 135 73

Human Mouse
Number of coding exons
Total coding length

135
135

192 117 287
192 114 383

11 11
1587 1680
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Gene number: 91
Human locus: HUMFPR1A 6931 bp DNA PRI 18-MAR-1994
DEFINITION Human N-formyl peptide receptor (FPR1) gene, complete cds and Alu
repeats.

Mouse locus: MUSNFORREC 1524 bp DNA ROD 25-JAN-1994
DEFINITION Mouse N-formyl peptide chemotactic receptor gene, complete cds.
ACCESSION L22181

Exon Lengths:
H: 1053
M: 1095

Human Mouse
Number of coding exons 1 1
Total coding length 1053 1095

Gene number: 92
Human locus: HSSPRO 5296 bp DNA PRI 20-MAY-1992
DEFINITION Human S-protein gene, complete cds.
ACCESSION X05006

Mouse locus: MMVITRO 5004 bp DNA ROD 17-FEB-1997
DEFINITION M.musculus gene for vitronectin.
ACCESSION X72091

Exon Lengths:
H: 64 120 345 140 157 153 345 113
M: 64 120 342 140 157 153 351 110

Human Mouse
Number of coding exons 8 8
Total coding length 1437 1437

Gene number: 93
Human locus: HSGCSFG 2960 bp DNA PRI 24-APR-1993
DEFINITION Human gene for granulocyte colony-stimulating factor (G-CSF).
ACCESSION X03656

Mouse locus: MMGCSFG 3054 bp DNA ROD 10-JAN-1991
DEFINITION Murine G-CSF gene for granulocyte colony stimulating factor
precursor.

Exon Lengths:
H: 40 164 108 147 165
M: 40 173 108 147 159

Human Mouse
Number of coding exons 5 5
Total coding length 624 627
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Gene number: 94
Human locus: HUMTNFBA 2140 bp DNA PRI 14-JAN-1995
DEFINITION Human tumor necrosis factor-beta (TNFB) gene, complete cds.
ACCESSION M55913

Mouse locus: MMTNFBG 3219 bp DNA ROD 08-MAY-1993
DEFINITION Mouse tumor necrosis factor-beta (lymphotoxin) gene.
ACCESSION Y00137

Exon Lengths:
H: 99 106 413
M: 96 100 413

Human Mouse
Number of coding exons 3 3
Total coding length 618 609

Gene number: 95
Human locus: HSU16720 8868 bp DNA PRI 28-OCT-1995
DEFINITION Human interleukin 10 (IL10) gene, complete cds.
ACCESSION U16720

Mouse locus: MUSIL10Z 7207 bp DNA ROD 30-JUN-1992
DEFINITION Mouse interleukin 10 (IL10) gene, complete cds.
ACCESSION M84340

Exon Lengths:
H: 165 60 153 66 93
M: 165 60 153 66 93

Human Mouse
Number of coding exons 5 5
Total coding length 537 537

Gene number: 96
Human locus: HUMCP210H 4042 bp DNA PRI 01-NOV-1994
DEFINITION Human 21-hydroxylase B gene, complete cds.
ACCESSION M26856 X05448

Mouse locus: MUS210HA1 3307 bp DNA ROD 15-MAR-1990
DEFINITION Mouse steroid 21-hydroxylase A (21-OHase A) gene, complete cds.
ACCESSION M15009

Exon Lengths:
H: 202 90 155 102 102 87 201 179 104 266
M: 202 90 143 96 102 87 201 170 104 269

Human Mouse
Number of coding exons 10 10
Total coding length 1488 1464
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Gene number: 97
Human locus: HUMMIS 3100 bp DNA PRI 03-MAY-1996
DEFINITION Human Mullerian inhibiting substance gene, complete cds.
ACCESSION K03474

Mouse locus: MMAMH 2870 bp DNA ROD 22-JAN-1992
DEFINITION M.musculus mAmh gene for anti-Mullerian hormone.
ACCESSION X63240

Exon Lengths:
H: 412 143 109 160 859
M: 403 143 109 160 853

Human Mouse
Number of coding exons 5
Total coding length 1

5
683 1668

Gene number: 98
Human locus: HUMAPOE4 5515 bp DNA PRI 09-NOV-1994
DEFINITION Human apolipoprotein E (epsilon-4 allele) gene, complete cds.
ACCESSION M10065 J03053 J03054

Mouse locus: MUSAPE 4856 bp DNA ROD 26-SEP-1998
DEFINITION Mus musculus gene for apolipoprotein, exons 1,2,3,4, complete cds.
ACCESSION D00466

Exon
H:
M:

Lengths:
43 193 718
43 169 724

Human Mouse
Number of coding exons
Total coding length

3
954

3
936

Gene number: 99
Human locus: HUMREGB 4251 bp DNA PRI 15-SEP-1990
DEFINITION Human regenerating protein (reg) gene, complete cds.
ACCESSION J05412

Mouse locus: MUSREGI 3756 bp DNA ROD 18-APR-1996
DEFINITION Mouse reg I gene for regenerating protein I, complete cds.
ACCESSION D14010

Exon
H:
M:

Lengths:
64 119
61 119

138 112
138 112

68
68

Human Mouse
Number of coding exons 5 5
Total coding length 501 498
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Gene number: 100
Human locus: HUMPROLA 1404 bp DNA PRI 19-MAY-1995
DEFINITION Human cathepsin L gene, complete cds.
ACCESSION M20496

Mouse locus: MUSPROL 1413 bp DNA ROD 17-MAY-1994
DEFINITION Mouse cathepsin L gene, complete cds, clones a-H-ras-1 and RIT-1.
ACCESSION M20495

Exon Lengths:
H: 1002
M: 1005

Human Mouse
Number of coding exons 1 1
Total coding length 1002 1005

Gene number: 101
Human locus: HSU29874 6155 bp DNA PRI 29-FEB-1996
DEFINITION Human Flt3 ligand gene and Flt3 ligand alternatively spliced
isoform gene, complete cds.

Mouse locus: MMU44024 4799 bp DNA ROD 02-APR-1996
DEFINITION Mus musculus Flt3 ligand gene, complete cds.
ACCESSION U44024

Exon Lengths:
H: 33 111 54 144 139 179 48
M: 33 122 46 144 144 189 21

Human Mouse
Number of coding exons 7 7
Total coding length 708 699

Gene number: 102
Human locus: HSA6693 3448 bp DNA PRI 13-JUN-1998
DEFINITION Homo sapiens UHS KerA gene.
ACCESSION AJ006693

Mouse locus: MUSSER1 3366 bp DNA ROD 11-JAN-1991
DEFINITION Mouse serine 1 ultra high sulfur protein gene, complete cds.
ACCESSION M37759

Exon Lengths:
H: 510
M: 693

Human Mouse
Number of coding exons 1 1
Total coding length 510 693
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Gene number: 103
Human locus: HUMIL2RGA 4038 bp DNA PRI 18-OCT-1993
DEFINITION Human (IL2RG) gene, complete cds with repeats.
ACCESSION L19546

Mouse locus: MMU21795 5267 bp DNA ROD 25-MAR-1995
DEFINITION Mus musculus common cytokine receptor gamma chain gene, complete
cds.

Exon Lengths:
H: 115 154 185 140 163 97 70 186
M: 115 154 185 143 163 97 67 186

Human Mouse
Number of coding exons 8 8
Total coding length 1110 1110

Gene number: 104
Human locus: HUMCRPGA 2480 bp DNA PRI 01-NOV-1994
DEFINITION Human C-reactive protein gene, complete cds.
ACCESSION M11725

Mouse locus: MMCRPG 2140 bp DNA ROD 09-APR-1993
DEFINITION Murine crp gene for C-reactive protein.
ACCESSION X13588

Exon Lengths:
H: 61 614
M: 64 614

Human Mouse
Number of coding exons 2 2
Total coding length 675 678

Gene number: 105
Human locus: HSBCDIFFI 3230 bp DNA PRI 30-MAR-1992
DEFINITION H.sapiens gene for B cell differentiation factor I.
ACCESSION X12706

Mouse locus: MMIL5G 6727 bp DNA ROD 10-APR-1993
DEFINITION Murine gene for interleukin 5 (eosinophil differentiation factor).
ACCESSION X06271

Exon Lengths:
H: 144 33 129 99
M: 141 33 129 99

Human Mouse
Number of coding exons 4 4
Total coding length 405 402
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Gene number: 106
Human locus: HUMTHY1A 2806 bp DNA PRI 14-JAN-1995
DEFINITION Human Thy-1 glycoprotein gene, complete cds.
ACCESSION M11749

Mouse locus: MUSTHY1GC 3257 bp DNA ROD 01-SEP-1988
DEFINITION Mouse Thy-1.2 gene, clones pcT108 and pcT34.
ACCESSION M11160

Exon Lengths:
H: 37 336 113
M: 37 339 113

Human Mouse
Number of coding exons 3 3
Total coding length 486 489

Gene number: 107
Human locus: HSUPA 7258 bp DNA PRI 07-FEB-1997
DEFINITION H.sapiens uPA gene.
ACCESSION X02419

Mouse locus: MUSUPAA 9950 bp DNA ROD 15-MAR-1990
DEFINITION Mouse Murine urokinase-type plasminogen activator protein gene,
complete cds.

Exon Lengths:
H: 57 28 108 175 92 220 149 141 149 177
M: 57 31 108 175 92 223 149 141 149 177

Human Mouse
Number of coding exons 10 10
Total coding length 1296 1302

Gene number: 108
Human locus: HUMSAP01 1394 bp DNA PRI 11-MAR-1998
DEFINITION Homo sapiens gene for serum amyloid P component, complete cds.
ACCESSION D00097

Mouse locus: MUSSAPRB 1350 bp DNA ROD 15-MAR-1990
DEFINITION Mouse serum amyloid P component gene, complete cds.
ACCESSION M29535

Exon Lengths:
H: 64 608
M: 67 608

Human Mouse
Number of coding exons 2 2
Total coding length 672 675
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Gene number: 109
Human locus: HUMPAP 4497 bp DNA PRI 07-JAN-1995
DEFINITION Homo sapiens pancreatits-associated protein (PAP) gene, complete
cds.

Mouse locus: D63360 4292 bp DNA ROD 02-APR-1997
DEFINITION Mouse DNA for regIIIbeta/PAP protein, complete cds.
ACCESSION D63360

Exon Lengths:
H: 76 119 138 127 68
M: 76 119 138 127 68

Human Mouse
Number of coding exons 5 5
Total coding length 528 528

Gene number: 110
Human locus: HUMILIB 7824 bp DNA PRI 09-AUG-1995
DEFINITION Human interleukin 1-beta (IL1B) gene, complete cds.
ACCESSION M15840

Mouse locus: MMIL1BG 7100 bp DNA ROD 16-SEP-1994
DEFINITION Murine interleukin 1-beta gene.
ACCESSION X04964

Exon Lengths:
H: 47 52 202 165 131 213
M: 47 49 202 171 131 210

Human Mouse
Number of coding exons 6 6
Total coding length 810 810

Gene number: 111
Human locus: HUMCAPG 3734 bp DNA PRI 31-OCT-1994
DEFINITION Human cathepsin G gene, complete cds.
ACCESSION J04990

Mouse locus: MUSCATHG 3438 bp DNA ROD 03-JUN-1993
DEFINITION Mus musculus cathepsin G gene, complete cds.
ACCESSION M96801

Exon Lengths:
H: 55 148 136 255 174
M: 55 148 136 255 192

Human Mouse
Number of coding exons 5 5
Total coding length 768 786
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Gene number: 112
Human locus: HUMCTLA1 4505 bp DNA PRI 23-MAY-1995
DEFINITION Human cytotoxic T-lymphocyte-associated serine esterase 1 (CTLA1)
gene, complete cds.

Mouse locus: MUSSPCTLS 4348 bp DNA ROD 30-JUN-1997
DEFINITION Mouse cytotoxic T lymphocyte-specific serine protease CCPI gene,
complete cds.

Exon Lengths:
H: 55 148 136 261 144
M: 55 148 136 261 144

Human Mouse
Number of coding exons 5 5
Total coding length 744 744

Gene number: 113
Human locus: HSLACTG 3310 bp DNA PRI 24-APR-1993
DEFINITION Human alpha-lactalbumin gene.
ACCESSION X05153

Mouse locus: MUSALCALB 3045 bp DNA ROD 15-OCT-1992
DEFINITION Mouse alpha-lactalbumin gene, complete cds.
ACCESSION M87863

Exon Lengths:
H: 133 159 76 61
M: 136 159 76 61

Human Mouse
Number of coding exons 4 4
Total coding length 429 432

Gene number: 114
Human locus: HUMOSTP 10881 bp DNA PRI 30-MAY-1996
DEFINITION Human DNA for osteopontin, complete cds.
ACCESSION D14813

Mouse locus: MMOESTEOP 5782 bp DNA ROD 17-FEB-1997
DEFINITION Murine gene for osteopontin.
ACCESSION X51834

Exon Lengths:
H: 54 39 81 42 324 405
M: 54 36 81 42 282 390

Human Mouse
Number of coding exons 6 6
Total coding length 945 885
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Gene number: 115
Human locus: HSCD14G 1570 bp DNA PRI 23-JUN-1993
DEFINITION Human gene for CD14 differentiation antigen.
ACCESSION X06882

Mouse locus: MMCD14 2404 bp DNA ROD 21-AUG-1997
DEFINITION Mouse CD14 gene.
ACCESSION X13987

Exon Lengths:
H: 3 1125
M: 3 1098

Human Mouse
Number of coding exons 2 2
Total coding length 1128 1101

Gene number: 116
Human locus: HSGAPIGNA 2609 bp DNA PRI 10-AUG-1996
DEFINITION H.sapiens gap-I gene.
ACCESSION X74322

Mouse locus: MMU60528 5416 bp DNA ROD 08-AUG-1996
DEFINITION Mus musculus guanylin precursor gene, promoter region and complete
cds.

Exon Lengths:
H: 75 208 65
M: 75 211 65

Human Mouse
Number of coding exons 3 3
Total coding length 348 351

Gene number: 117
Human locus: HSBGPG 1675 bp DNA PRI 24-APR-1993
DEFINITION Human gene for bone gla protein (BGP).
ACCESSION X04143

Mouse locus: MUSOGC 949 bp DNA ROD 17-FEB-1994
DEFINITION Mus musculus osteocalcin gene, complete cds.
ACCESSION L24429

Exon Lengths:
H: 64 33 70 130
M: 64 33 58 133

Human Mouse
Number of coding exons 4 4
Total coding length 297 288
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Gene number: 118
Human locus: HSAPOAIA 2209 bp DNA PRI 03-NOV-1994
DEFINITION Human fetal gene for apolipoprotein AI precursor.
ACCESSION X01038

Mouse locus: MUSAICIIIA 9060 bp DNA ROD 08-MAR-1993
DEFINITION Mouse apolipoprotein A-I/CIII gene.
ACCESSION L04149

Exon Lengths:
H: 43 157 604
M: 9060

Human Mouse
Number of coding exons 3 1
Total coding length 804 9060

Table B.1: The HUMCOMP/MUSCOMP Datasets
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Number T Locus
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.

HSACKI10
HSAPOA2

HSAPOAIA
HSAPOC2G
HSARYLA
HSASML

HSAT3
HSATPCP1
HSBCDIFFI

HSBGPG
HSBSF2

HSC1INHIB
HSCBMYHC

HSCD1R3
HSCKBG

HSCKIIBE
HSCOSE
HSCPH70
HSCST3G
HSCYCLA
HSCYP216

HSDAO
HSDNAMIA

HSENO2
HSERPG
HSFAU1

HSFBRGG
HSFESFPS
HSGCSFG

HSGEBCMA
HSGLUCG2

HSHAP1
HSHH3X3B

HSHLADMBG
HSHNRNPA
HSHOX3D
HSHSC70
HSIFNG
HSIGK12
HSILlAG
HSILiB
HSL7A

HSLCATG
HSMECDAG

HSMED
HSMT1H

HSNCAMX1
HSNFM

HSODCG
HSODF2

51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.

Number Locus

HSP53G
HSPAT133
HSPLAPL
HSPNMTB
HSPROPG
HSPSAG

HSRPS6G
HSRPS7
HSRPS8
HSSHBG
HSTNFA
HSTPI1G

HSTUBAG
HSU20325
HSU20982

HSUBA52G
HSUBR

HSZNGP1
HUMA1GLY2
HUMADAG

HUMADPRF02
HUMAFP
HUMAKI

HUMANFA
HUMANT1

HUMATPSYB
HUMBFXIII
HUMBNPA
HUMCEL

HUMCFVII
HUMCRPG

HUMCRYABA
HUMCYC1A

HUMCYP2DG
HUMEDHB17
HUMEDNiB

HUMEPOHYDD
HUMFABP
HUMFIXG

HUMGOS8PP
HUMGFP40H
HUMHMG14A
HUMHMG2A
HUMHMGIY

HUMHSKPQZ7
HUMHSP89KD

HUMIL4A
HUMIMPDH
HUMIRBPG
HUMLHDC

101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.

Table B.2: The HKRM dataset
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HUMLYTOXBB
HUMMGPA

HUMMHCD8A
HUMMHDC3B

HUMMIF
HUMMIS

HUMNKG5PRO
HUMOPS

HUMOSTP
HUMP45C17
HUMPALC

HUMPBIPB
HUMPCNA

HUMPDHAL
HUMPDHBET
HUMPEPYYA

HUMPGAMMG
HUMPIMlA

HUMPROTiB
HUMPROT2
HUMRBPA
HUMRIGA

HUMRIGBCHA
HUMROD1X
HUMRPS17A

HUMSEMI
HUMSOMI
HUMTBGA

HUMTDGF1A
HUMTFPB

HUMTHY1A
HUMTKRA

HUMTPALBU
HUMTRHYAL

HUMTROC
HUMTS1

HUMUBILP
HUMVIPAA

Number |Locus

,



Number Locus
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.

ACU08131
AGGGLINE
AGU04852

ALOEGLOBIM
ALOEGLOBIN
ALOPROTP1A

AMU12024
AMU12025

AOIRHODOPS
ASPROP2
ASYRVISP

ATREGLOBIN
BABAPOE
BATROX

BCHEGLOBIN
BOVANPA

BOVCOX7AL
BOVGAS
BOVIAP

BOVIRBP
BOVLHB

BOVLYSOZMA
BOVLYSOZMB
BOVLYSOZMC

BOVMYF5A
BRHOX22

BRHOX34A
BRU12895

BTATPAAA
BTEBGL2
BTEBGL4
BTGLO1

BTHOR02
BTKER6B
BTSPDNA

BTSVSP109
BTTNP2G
BTU02285

CALEGLOBIM
CBUEGLOBIM

CCALAC
CCBEGLOBIM
CCBEGLOBIN

CCGHG
CCGONBS1
CCGONBS2
CCGTHA1
CCT64CLU
CEPPINS
CHBLG

51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.

CHEBGLI
CHEBGLII
CHKALDB
CHKAPOII
CHKDPCP
CHKMAX

CHKMYOD
CHKOVAL
CHKRPL30

CHKRPL37A
CHKRPL5G
CHKTUB4B

CHKY
CHPPHYGEN
CHPPROTP1A
CHPPROTP1B

CHWEGLOBIM
CIGH

CITEGLOBIM
CJAEGLOBIN
CJINTERFG

CL54K
CMBGA2B2
CMEGA2E2
CMU11711

CPPROT1GN
CRASEQB

CRUCH7AHYD
CRUGAD45A
DMPROTP1
DMU11712

DOGCOLIP
DOGIL8T

ECGLOAP1
ECPZA2GL

ECZGL1
ECZGL2
ELMETL

FDFELDI2
FDTNFA

GDMYF5G
GGAC01

GGACTAC
GGACTI
GGCALB

GGCRYD1
GGGL03

GGGNRHIA
GGNFMD
GGPROP2

101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.

Table B.3: The BG dataset, part 1
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GGRIHBGEN
GGVITIIG

GIBPROTP1A
GORAFPA

GORPROTP1A
GPIINS

HAMAMYLP
HAMHG5

HROAMD1
HROMA2

HROMA4A
HRSPRMI

HS1D3HLH
HS2OXOC

HSABLGR1
HSALDCG
HSAPC3A

HSAPOA2B
HSAPOAJA
HSAPOAIT
HSAPOC2G
HSAQUPN2
HSARYLA

HSAT3
HSATPCP1
HSATPCP2

HSB3A
HSBGPG
HSBSF2

HSCBMYHC
HSCD14G
HSCKBG

HSCOMT2
HSCPH70

HSCSF1PO
HSCST3G
HSCYCLA
HSCYP216
HSCYP45C

HSCYTOK17
HSCYTOK20

HSDAO
HSERPG
HSFAU1

HSFESFPS
HSGCSFG

HSGEBCMA
HSGGL2
HSGLA

HSGROW2

Number I Locus Nubr L ocus



Number Locus
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.

HSGSTM4
HSGTRH

HSHMG17G
HSHNRNPA

HSHOX51
HSHSC70
HSIFNAR
HSIFNG
HSIL1AG
HSIL1B
HSINT2
HSL7A

HSLCATG
HSMECDAG

HSMED
HSMT1H

HSNCAMX1
HSNFM

HSODCG
HSODF2

HSPAT133
HSPLAPL
HSPRB3L
HSPRB4S
HSPSAG

HSRPII145
HSRPS7

HSSAA1B
HSSHBG

HSSSPN1AG
HSSURF3
HSTNFB
HSTPI1G

HSTUBAG
HSU01102
HSU04357
HSU04636
HSU05259
HSU07807
HSU07983
HSU08198
HSU12421

HSUBR
HSXBXVIII
HSZNGP1

HUMADAG
HUMADPRF02

HUMAPEXN
HUMAPOCII
HUMAPOE4

201.
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244.
245.
246.
247.
248.
249.
250.

The BG dataset, part 2
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HUMATPGG
HUMBETGLOA
HUMBETGLOB
HUMBETGLOC
HUMBETGLOD
HUMBETGLOE
HUMBETGLOF
HUMBETGLOG
HUMBETGLOH
HUMBETGLOI
HUMBETGLOJ
HUMBETGLOK
HUMBETGLOL
HUMBETGLOM
HUMBETGLON
HUMBETGLOO
HUMBETGLOP
HUMBETGLOR

HUMCBRG
HUMCHYMASE

HUMCP210H
HUMCP210HC

HUMCS1
HUMCS3

HUMCSN2A
HUMCSPA

HUMCTLA1
HUMDEF5A
HUMDZA2G
HUMELAFIN

HUMEPOHYDD
HUMGOS24B
HUMGOS8PP

HUMGAD45A
HUMGARE
HUMGCK

HUMGFP40H
HUMGHG
HUMGHN
HUMGHV

HUMGSTM4A
HUMHMGIY
HUMHOX13G
HUMHPARS1

HUMIBP3
HUMIDS

HUMIGERA
HUMIL2RGA

HUMIL4A
HUMIRBPG

Table B.4:

Number I Locus
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.
298.
299.
300.

HUMLHDC
HUMLUCT

HUMLYTOXBB
HUMMCHEMP

HUMMET2
HUMMGPA

HUMMIF
HUMMIS

HUMMKXX
HUMNKG5PRO

HUMNTRI
HUMNTRIII
HUMOSTP
HUMPAP
HUMPCI

HUMPEM
HUMPEPYYA
HUMPF4V1A
HUMPHOSA
HUMPRCA

HUMPREELAS
HUMPRPHX

HUMRCC1
HUMREGHOM

HUMROD1X
HUMRPIB2
HUMRPS6B
HUMSEMI

HUMSEMIIB
HUMSTATH2

HUMTBGA
HUMTCRBRA
HUMTHROMA

HUMTNP2SS
HUMTPALBU
HUMTRHYAL

HUMTSHB2
HUMV2R

HYPSCGH
LAYEGLOBIN

LEBGLOB
LNOEGLOBIN

MACHBGA1
MACHBGA2

MAMGLUTRA
MAU09941

MFAPOA2A
MFAPOC3A

MMA2IXCOA
MMACLGNA

Number Locus



Number Locus
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.
322.
323.
324.
325.
326.
327.
328.
329.
330.
331.
332.
333.
334.
335.
336.
337.
338.
339.
340.
341.
342.
343.
344.
345.
346.
347.
348.
349.
350.

MMAPOG
MMASM1G
MMCASEIB
MMCD24A
MMCFOS

MMCOL10A
MMCRPG

MMCYTOKNA
MMDM2RR

MMDNAASFA
MMEZGL
MMG37

MMGBCRYA
MMGCCRYA
MMGFAPD

MMGGLINE
MMGK5

MMH2D4Q5
MMHOX13
MMHOX24I
MMIL1BG
MMIL3G
MMIL5G

MMKFGF
MMLDHAG
MMMMP9A
MMMRPS24

MMMTIX
MMMUPBS6

MMMYCL
MMNFMG
MMNMYC

MMNUCLEO
MMODC2

MMOESTEOP
MMPO

MMPPSOMA
MMPROP2
MMPROT1
MMPROT2

MMSAP
MMSCIMIP

MMSYNDE1A
MMTHY1G
MMTLAC

MMTNFBG
MMTROPIB
MMTUM198
MMU01530
MMU02278

351.
352.
353.
354.
355.
356.
357.
358.
359.
360.
361.
362.
363.
364.
365.
366.
367.
368.
369.
370.
371.
372.
373.
374.
375.
376.
377.
378.
379.
380.
381.
382.
383.
384.
385.
386.
387.
388.
389.
390.
391.
392.
393.
394.
395.
396.
397.
398.
399.
400.

MMU02298
MMU02884
MMU04056
MMU04827
MMU07568
MMU07808
MMU09741
MMU09964
MMU10098
MMU11054
MMU11713
MMU12029
MMU12273
MMU12559
MMU12560
MMU12561
MMU12562
MMU12565
MMU13921
MMU14421
MMVITRO

MMVPREB2
MMVPREB3

MNKEGLOBIM
MNKEGLOBIN

MNKHGBGGAG
MNPROP2
MUS8HS20

MUSAP
MUSAP5A
MUSAPEX

MUSAPOAII
MUSAPOIVA

MUSBMP4
MUSBNP

MUSCD14A
MUSCRKNB

MUSCYTCOVB
MUSENDOBA

MUSFAUA
MUSFERHC

MUSFKBP13X
MUSGAD45
MUSGFJE

MUSGPOAD
MUSHBBHO
MUSHBBH1
MUSHES1

MUSHOX35A
MUSIL1RN

401.
402.
403.
404.
405.
406.
407.
408.
409.
410.
411.
412.
413.
414.
415.
416.
417.
418.
419.
420.
421.
422.
423.
424.
425.
426.
427.
428.
429.
430.
431.
432.
433.
434.
435.
436.
437.
438.
439.
440.
441.
442.
443.
444.
445.
446.
447.
448.
449.
450.
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MUSKE3A
MUSLMP7A

MUSLTA
MUSMC26
MUSOGC

MUSOGCA
MUSOGCB
MUSPNMT

MUSPROTA
MUSPROTEB
MUSPRPC2

MUSPRPMPB
MUSREGI
MUSREGII

MUSROM1X
MUSRPL30
MUSRPS16
MUSS100B

MUSSERPROA
MUSSSATGN

MUSTCP
MUSTHY1
MUSTLAG

MUSTSHBA2
MUSY1GLOB
OABBGLOB
OABCGLOB
OAINIGFII1

OAINTL3
OAKRT213

OALGB
OAMETIAG

OAMTIB
OAMTIC
OAMTII

OAPROTP1
OATRICH

OCAPOAIG
OCTNFBETA
OCUTGLOB

OOGH
OPOP1

ORAPROTP1A
PAA1GL
PAAFPG
PAU03674
PIGAPAI

PIGAPCIII
PIGCNP
PIGFSB

Number Locus Number Locus



Number Locus
451.
452.
453.
454.
455.
456.
457.
458.
459.
460.
461.
462.
463.
464.
465.
466.
467.
468.
469.
470.
471.
472.
473.
474.
475.
476.
477.
478.
479.
480.
481.
482.
483.
484.
485.
486.
487.
488.
489.
490.
491.
492.
493.
494.
495.
496.
497.
498.
499.
500.

PIKEGLOBIN
PPGLTG
PPPROP2

PPYPROP2
PTAZGLO

PTGGGLOG
PTPPINS
PTPROP2
PVU11715
QULNFLW

QULTROPIA
RABCRP

RABDNP3AA
RABSURFA

RABTNF
RATCYC
RATCYSS

RATDCCOVB
RATGRG

RATGROS
RATGSTY
RATIGFBA

RATJE
RATKALA
RATLHB

RATLITHOST
RATLYSOZYM
RATLYSZYM
RATOSCAL

RATPAP
RATPAPIIB

RATPPP
RATPTBZR02

RATRGPI
RATRPIII

RATSVSIV1
RATTSHB

RNOB2GLOB
RN2BGLOB
RN3B2GLOB
RN3B3GLOB
RN3BGLOB

RNAC01
RNAC02

RNANTANT
RNAPOEG
RNCALBD9
RNGAMT
RNGMTG

RNGROW3

501.
502.
503.
504.
505.
506.
507.
508.
509.
510.
511.
512.
513.
514.
515.
516.
517.
518.
519.
520.
521.
522.
523.
524.
525.
526.
527.
528.
529.
530.
531.
532.
533.
534.
535.
536.
537.
538.
539.
540.
541.
542.
543.
544.
545.
546.
547.
548.
549.
550.
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RNHSC73
RNLALB01
RNLPKG
RNODC

RNP9KA
RNPBPG

RNPGMUT
RNPROST22
RNREVSV2A

RNSDHG
RNSVFG

RNTHYCSG
RNU03551
RNU09193
RNU12250
RNUCPG
RNVEGP1

RNVEGP2C
RRU04320

S46763
S49651
S57980
S62287
S63697
S66606
S67057
S69277
S69278
S69350

SAIEGLOBIM
SMIGCU

SMNPRP1A
SOEEGLOBIN

SSBAT1G
SSIKBAGE
SSPINT1B

TAPROTP1
TARHBE
TARHBG

TFLPA2P1
TFLPA2P2
TFLPA2P3
TFLPA2P4
TGLHBB

TIOPRP1A
U00432
U00433
U00454
U00938
U01026

Number Locus
551. U01027
552. U01844
553. XELCRPGA
554. XELCRYB
555. XELHBBC
556. XLACTA
557. XLACTCAG
558. XLBGL3
559. XLGLAA1
560. XLGLAA2
561. XLK81A1G
562. XLRPL14
563. XLRPL1AG
564. XLS8
565. XLTUBAG
566. XLXANF1A
567. XTGLA
568. XTGLAA
569. XTGLB
570. ZEFB2MICB

Number I Locus

,



Appendix C

Numerical Evidence for Tiling

Conjectures

The following values were computed with the program vaxmacs by David B. Wilson.
In many cases, the large numbers obtained made the presentation impractical so in
most examples we have restricted ourselves to grids of size at most 12 x 12.

k\n 2 3 4 5 6
0 2232 23292 24172532 2524123732 26543125327012
1 23 2472 2513 26341121392 27527443972
2 - - 210 211312 21236172
3-- - - - 221

Table C.1: Values of S(n, k) for n = {2,.. ., 6}, k < LgJ

k\n 2 3 4 5 6
0 2232 23292 24172532 2524123732 26543125327012
1 2132 22292 23172532 2424123732 25543125327012
2 20 21112 2236132 233439232 24345261241332
3 - 20 213452 2250092 2332547231872
4 - - 20 211972 2223323472
5 - - - 20 213272432
6 - - - -

Table C.2: Number of tilings of the 2n x
the lower left corner

2n square grid with k edges removed from

In the following computation we have removed one edge from the step-diagonal.
The value r, indicates which edge was removed (the lower left edge is at r = 1 and
the last edge on the step-diagonal is at r = n).
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r\n 2 3 4 5 6
1 2132 22292 23172532 2424123732 25543125327012
2 213 22111291 2333131171531 24322411373139231 253253311531611701141331
3 - 22191291 235171172531 243151291137124113731 2 5 3311531701'38243331

4 - - 231715313731 2345197124113731 2553111311371531701163171
5 - - - 2424113731528611 2553713115312271701121431
6 - - - 25315331153170118450991

Table C.3: Number of tilings of the 2n x 2n square grid with the rth edge removed
from the step-diagonal

n Number of tilings
0 1
1 22
2 2631
3 21172
4 2123253112

5 2183552112132
6 21873132294432

7 23672172472792972
8 224361741943745321092
9 2343253114194412592101218122812
10 230115234892109219922412373239724192
11 25135547611213223671273297219342632

Table C.4: Number of tilings of a (2n + 1) x (2n + 1) square grid with one square
removed from the border
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