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ABSTRACT

Finite element analysis (FEA) was used to study the mechanical behavior of three
idealized cellular solids: a regular hexagon, a two-dimensional non-periodic
honeycomb, and a three-dimensional random network of struts. FEA results for
uniaxial deformation of the hexagon with elastic-plastic cell walls were compared to
analytical solutions for stiffness and strength. A plastic failure envelope was
calculated for the two-dimensional non-periodic honeycomb under biaxial loading.
Results were compared to the failure envelope for a regular hexagonal honeycomb.
Finally, FEA results for a three-dimensional random structure under cyclic
compression were compared to experimental results for fatigue of trabecular bone.
The studies demonstrated the usefulness of the unit cell approach and the strengths
of different finite element models for understanding mechanical response to
uniaxial, biaxial, and cyclic loading.
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1 Introduction

1.1 Background

A cellular solid is "made up of an interconnected network of solid struts or plates

which form the edges and faces of cells (Gibson and Ashby, 1997)." Examples from

nature include bees' honeycombs, cork, coral, and wood. In the last decade, there

has been a remarkable increase in applications and manufacturing techniques for

cellular solids. Man-made examples range from prismatic honeycombs in catalytic

converters to Triscuit wafers. Cellular solids have a variety of applications such as

sandwich panels in airframe structures and foamed polymers for insulation.

Understanding the mechanical properties of cellular solids can lead to improved

materials design and performance.

Analytical and numerical solutions for the behavior of cellular solids have been

developed using two- and three-dimensional geometric models for open and closed

cells (Gibson and Ashby, 1997). Some models have been extended to understand the

properties of specific cellular solids like foams and trabecular bone (Beaupre and

Hayes, 1985; Guo et al, 1994; Kraynik et al, 1997; Silva and Gibson, 1997). Numerical

solutions allow parametric studies than cannot be easily obtained from

experimental data. Finite element models are useful for predicting and interpreting

the micromechanical consequences of various external loading configurations.

In this study we develop computational models to explore the mechanical behavior

for three idealized cellular solids: a unit cell of a regular two-dimensional hexagonal

honeycomb, a random two dimensional non-periodic honeycomb, and a random

three dimensional non-periodic open cellular solid. We extend the results of the
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final model and apply them to a physically meaningful problem, namely fatigue of

trabecular bone.

1.2 Objectives

There were three principal aims for this study:

(1) to demonstrate the usefulness of finite element analysis (FEA) and the unit

cell approach,

(2) to understand the biaxial loading behavior of a random cellular solid, and

(3) to compare the fatigue behavior of a random three-dimensional cellular

solid model to the behavior of trabecular bone under cyclic compression.

1.3 Overview

Chapter 2 demonstrates the use of the unit cell approach and finite element analysis

(FEA) to compute the uniaxial properties of a regular hexagonal honeycomb. A

comparison to the closed-form solutions for elastic modulus and plastic yield

strength enables us to evaluate the effectiveness of the finite element approach.

In chapter 3, we perform FEA to obtain a plastic failure envelope or yield surface for

a non-periodic, two-dimensional random honeycomb. We study bending and

stretching in the cell walls to understand the differences between the periodic and

non-periodic biaxial loading behavior.

Chapter 4 extends the idealized non-periodic model to three dimensions. We apply

the model to represent a specific cellular solid, trabecular bone. By selecting

physically meaningful input parameters, we study micro-mechanisms for

14



osteoporotic fracture in trabecular bone, in particular the micro-mechanical

response to fatigue.
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2 Uniaxial mechanical properties of a regular hexagonal honeycomb

2.1 Background

Man-made honeycombs are commercially available for an assortment of

applications: polymer and metal honeycombs for structural applications, metal ones

for energy-absorbing applications, and ceramic ones for high-temperature

processing. Understanding the properties of honeycombs allows us to define new

applications and improve design parameters for existing applications.

Characterizing the mechanical behavior of two-dimensional honeycombs is also

important because the results shed light on the mechanics of complex three-

dimensional foams.

Analytical model

Gibson et al (1982) derived an analytical expression for Young's modulus for a unit

hexagonal cell by calculating the moment required to bend a cell wall and the

resulting deflection. For a regular hexagonal honeycomb (figure 1) with linear

elastic walls of uniform thickness, t, side length, 1, and Young's modulus, E, the

expressions for in-plane Young's moduli reduce to

E E 4 (1)

E, E, 5 'F

where E,* and EY* are Young's moduli in the x- and y-directions, respectively. The

thickness to length ratio, t/l is given as a function of the relative density p*/p, by

17



(1) 2 C p (2)

If one includes axial and shear deflections, which become especially significant

when (t/l) > 0.2, the expression for Young's moduli of a regular hexagonal

honeycomb becomes

E1 = E+= E
73 1 1+(5.4+

1

1.5v)f
(3)

Note that this expression reduces to equation 1 for small t/l.

V I'
A

ilIi )/I

I

Figure 1: A regular hexagonal unit cell with cell walls of length, 1 and thickness, t.
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Gibson et al (1982) also gave an analytical expression for the yield strength of a

hexagonal unit cell with elastic-perfectly plastic cell walls. Elastic buckling precedes

plastic collapse so long as

Otherwise, plastic collapse occurs when the bending moment in the cell walls

reaches the fully plastic moment. When the two moments are equated, the plastic

yield stress of the regular hexagon reduces to

- y 2(t 2 (4)

Our research aim in this study was to show that finite element analysis (FEA) can be

used to compute mechanical properties for a regular hexagonal honeycomb. After

demonstrating that the computational results are consistent with analytical

solutions, we can extend the study to understand mechanical behavior of non-

periodic honeycombs, which are less well understood.

2.2 Methods

Analytical evaluation of mechanical properties

Young's modulus and uniaxial yield strength were determined for a regular

hexagonal honeycomb of relative density, p*/p,=0.1 5 . The elastic-perfectly plastic cell
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wall properties were Young's modulus, E,=1.0, Poisson's ratio, v,=0.3, yield strength,

Gys=0.01, and thickness to length ratio, t/l=0.13. Using the equations 3 and 4

discussed above, we obtained the following results:

EX*/ES=Ey*/Es=E*/Es=4.61 x 10 3

xT*/qys=(y*/cyys=%p*/ayS = 1.13 x 102.

Finite Element Analysis

Unit cell mesh generation

To compute the mechanical properties of a regular hexagonal honeycomb, FEA

input files were created for a regular hexagonal honeycomb unit cell. Four to eight

three-noded elements (ABAQUS beam type B22) comprised each cell wall of length,

1, uniform thickness, t, and width, b (ABAQUS, Hibbitt, Karlsson, & Sorensen, Inc.,

Pawtucket, RI). The cell wall properties and value of t/l were identical to those

given above. The selected mesh consisted of 32 elements and 64 nodes. The results

of a convergence study (figure 2) showed that the reaction force in the displacement

direction came within 3.7% and 1.6% of the exact solution in the x and y directions,

respectively.

Computing uniaxial mechanical properties using FEA

Young's modulus and uniaxial compressive yield strength were computed for both

x and y directions. To determine the Young's modulus and yield strength in the x

direction (figure 3), a displacement in the x-direction was imposed on node C in one

step. Node F was constrained from translating in the x direction. Rotation in the x-

y plane was prevented at nodes A, B, D, E, G, and H to reproduce the behavior of a

20



unit cell in a hexagonal honeycomb (figure 3b). A node on wall CD was constrained

from translating in the x-direction to ensure uniform deformation of the unit cell.

Reaction forces and displacements were reported for the displaced node at each

increment.
2.65E-11

2.60E-11 0

2.55E-1 1

2.50E-11

2.45E-11

E 2.40E-11

2.35E-11

2.30E-11

2.25E-1 1

2.20E-11

2.15E-11

FH Y

0 50 100 150 200 250 300 350 400 450

DcF

Figure 2: Convergence study results. Reaction forces were plotted against the number of degrees of
freedom to determine how many degrees of freedom were required to achieve convergence for testing in
both x- and y-directions Each point on a series corresponds to a different mesh.

The Young's modulus and yield strength in the y-direction were determined by

imposing a vertical displacement on nodes A and B, while nodes G and H were

prevented from translating in the y-direction. To represent behavior in a hexagonal

honeycomb, nodes A, B, D, E, G, and H in the unit cell were prevented from rotating

in the x-y plane (figure 3c). One node on wall AB was constrained from translating

in the x-direction to ensure uniform deformation of the unit cell. Reaction forces

and displacements were reported for the displaced nodes at each increment.
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C

Figure 3: (a) The initial finite element mesh for the unit cell of a hexagonal honeycomb

Stress, a and strain, E were calculated from the reported reaction forces, F and

displacements, U at each increment using the following expressions (figure 4):

F

2blcos6
UX

2(1+ lsin6)
F

2b(l + lsin6)

E =
2lcosO

(5a)

(5b)

(6a)

(6b)
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translational constraint

rotational constraint

translation vector

F2- F, /2.

translational constraint

S rotational constraint

= translation vector

(c)

Figure 3: Boundary conditions used to determine E* and ays in the (b) x- and (c) y-directions. The
arrowheads represent translational constraints, and the squares represent rotational constraints.
Displacement boundary conditions are denoted by arrows with tails.
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2(l+lsinO)

y

P1.x

2(l+lsinO)

Figure 4: Calculation of stress and strain in the x- and y-directions.

Young's Modulus, E' was calculated for both x- and y-directions by computing the

tangent to the stress-strain curve at the second increment of load so that

(7a)
(7b)

E = Cy,
y ,

Uniaxial yield strength was taken as the peak value of stress on a stress-strain curve.
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2.3 Results

Analytical values for uniaxial mechanical properties

Evaluation of analytical expressions for mechanical properties of an isotropic

hexagonal honeycomb with linear elastic-perfectly plastic cell wall material (E,=1.0,

v5=0.3, TY,=0.01, t/l=0.13) gave the following results:

Ex /ES=Ey*/ES=E*/ES=4.61 x 10-3

X*/Gys=(Ty*/(Yys=api*/(y, = 1.13 x 102.

Uniaxial mechanical properties by FEA

Uniaxial properties were also computed based on a finite element analysis of a unit

hexagonal cell with linear elastic-perfectly plastic cell wall material. Stress-strain

curves for the x- and y-directions are shown below (figure 5). Young's modulus and

yield stress were calculated for both directions giving the following results:

Ex*/Es=4.64 x 10-3

Ey /Es=4.59 x 10-

-2cax*/ays=l.21 x 102

yy*/ays=1.10 x 10-2

2.4 Discussion

We developed a finite element model for a unit cell of a hexagonal honeycomb to

compare the computational predictions of Young's modulus and failure strength to

25



Ca
>1
U
X
U

x ys

0.014

0.012

0.01

0.008 -

0.006 -

0.004 -

0.002 -

0 -

0

0.012 -

0.01 -

0.008 -

0.006 -

0.004 -

0.002 -

0

0

0.02 0.03 0.04 0.05 0.06

Ty /ys

0.01 0.02 0.03 0.04 0.05 0.06 0.07

Figure 5: Young's modulus and yield stress were determined from stress-strain curves for the (a) x- and
(b) y-directions of the hexagonal unit cell.
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the values obtained using analytical expressions. The computational findings are

largely in agreement with analytical results.

Finite element analysis results for Young's modulus in the two directions differed

from the analytical values by 0.6% and -0.4% in the x- and y-directions, respectively.

We expect Ex=Ey for regular hexagonal structures, and the FEA results give Young's

Moduli which differ by only 1%. An explanation for the difference between Young's

moduli in the x- and y-directions for the model and the analytical solution is that

the analytical solution (equation 3) assumes that the walls AB, CD, EF, and GH have

thickness t/2 as they would in a proper unit cell. We assigned identical thickness, t

to the walls in our "unit" cell. For loading in the y-direction, walls AB, CD, EF, and

GH are unloaded so Ey should be nearly equal to the analytical results. However, for

deformation in the x-direction, axial loading in walls AB and GH is included in the

finite element calculations. Then the axial deflection 8a for these members in our

model is:

F1 (8)
a btE,

Gibson and Ashby (1997) give small strain calculations of the moduli, including

axial and shear deformations. Accounting for the thicker walls, the analytical

solution for Young's modulus in the x-direction becomes

3(h+ sin 0 (h(9)
= EY -CO- (

os3 6 1+2.4+1.5v +tan2O+ (
Cos 20 1)
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Evaluating this expression for our model gives Young's modulus in the x-direction

E */Es= 4.71x10 3 . The FEA result for stiffness differs from this value by -1.49%.

We also expect strength to be equal in both x- and y-directions for the regular

hexagonal unit cell. When comparing the computational and analytical results for

plastic yield strength, one should consider boundary conditions, mesh design, and

element types. To mimic behavior of a unit cell in a periodic lattice, rotational

boundary constraints were imposed at the hexagon nodes for loading in the two

directions as shown in figure 3. In addition, each cell wall of length 1 was modeled

with the same number of elements. A finer mesh or a mesh with varying numbers

of elements per cell wall might have improved the accuracy of our solution.

Selection of the element types could also improve the results. A continuum model

would approach the analytical solution more exactly. These factors may explain the

7.1% and 2.7% differences between the x- and y-direction yield strengths,

respectively, and the yield strength as determined by the analytical expressions.

2.5 Conclusions

This study demonstrated that a finite element model can be effectively used to

evaluate Young's modulus and plastic yield strength for a hexagonal honeycomb

unit cell. Improvements to this study should focus on a better evaluation of yield

strength by FEM.

2.6 Reference

Gibson LJ, Ashby MF, Schajer GS, and Robertson CI. Proc. R. Soc. Lond. 1982; A382:
25.
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3 A failure envelope for two-dimensional Voronoi honeycombs

3.1 Background

Behavior of cellular solids in uniaxial loading is relatively well understood.

However, loads in real engineering structures are often multiaxial. For these cases,

the designer is concerned less with the uniaxial stress than with the combination of

stresses causing failure. In this chapter we consider failure i.e the onset of plasticity

of a two-dimensional non-periodic cellular solid subject to biaxial loads.

Biaxial properties can be studied by considering the plastic moments and axial forces

in cell walls of a cellular solid. The biaxial properties of periodic structures like the

regular hexagonal honeycomb have been analyzed (Gibson et al, 1989). In the case of

equibiaxial stress states, the plastic moments cancel so that the cell walls stretch. In

this extreme, the axial stresses in the cell wall define the criteria for plastic failure.

To obtain the complete failure surface for a hexagonal honeycomb, Gibson et al

(1989) considered both stretching and bending of cell walls. Their analytical solution

for the plastic yield surface of a hexagonal honeycomb gives two intersecting ellipses

following the equations:

, -+sin e sine- a2 cos 2
0 { j(h+sin cose+ a 2cos sinO (1)

+ = Y 1- 1

For regular hexagonal cells, the failure envelope delineating plastic collapse is the

intersection of two symmetric elongated ellipses (figure 1).
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YIELD SURFACE 2 ,-,
HONEYCOMBS 0.06

0=30* h/1 =1
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PLASTIC
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''I

'Il

-0.06 0oo oa 02 0.04 006

ELASTIC
BUCKLING ,"-.02

Figure 1: The plastic yield surface for an idealized, two-dimensional cellular solid made up of regular
hexagonal cells. The surface is truncated by the elastic buckling failure surface in biaxial compression.
(from Gibson et al, 1989)

While the biaxial failure envelope for regular hexagonal honeycombs has been

determined analytically, the multiaxial loading behavior of random honeycombs

and foams is less well understood. An exact analytical solution for the random non-

periodic structure of foams cannot be obtained. A finite element model for a

Voronoi cellular solid would enable one to study bending and stretching in the cell

walls of a random, non-periodic structure.

The Voronoi honeycomb is constructed as follows. Consider points distributed

randomly in a plane. If at each point a gas bubble were to nucleate simultaneously

and grow radially at the same rate, then the initial structure would be a Voronoi
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honeycomb. Alternatively, the structure can be thought of as a network composed

of the perpendicular bisectors of line segments connecting each point to its nearest

neighbors (figure 2). By excluding points within a specified distance, or "exclusion

distance," one can create a relaxed Voronoi honeycomb, a more regular structure.

Figure 2: Cell centers are randomly distributed in a plane. Dotted lines connect each cell center to its
nearest neighbors. The perpendicular bisectors, shown in solid lines, connect to give the resulting
Voronoi honeycomb.

Depending on the relative density, the honeycombs can represent cellular solids, e.g.

the result of spherulitic growth in some polymers. According to Gibson and Ashby

(1997), the nearest thing to Voronoi honeycombs in nature include coral, some

sponges, and the nests of wasps and ants.

Silva performed finite element analysis (FEA) to study the uniaxial properties of

non-periodic cellular solids (Silva et al, 1995/Silva and Gibson, 1997). He

determined that elastic properties could be well represented by combining estimates

of relative density and microstructural anisotropy with simple relations developed

for periodic honeycombs. For twenty isotropic Voronoi honeycombs with a relative

density of 15%, the mean relative Young's modulus, E*/E,=0.488 x 102, was within a
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few percent of the analytical solution. Young's modulus varied as a power law of

relative density with an exponent of approximately 2.5. This relationship nearly

identically matched the results of a closed-form solution for the elastic modulus of a

hexagonal honeycomb as described in the previous chapter (eqn 3). The uniaxial

compressive strength of Voronoi honeycombs with a relative density of 15% was

30% lower than that of the corresponding regular hexagonal honeycomb. This

finding contrasts sharply with the strongly correlated results for Young's modulus of

the periodic and non-periodic structures.

Our goal in this study was to compute a failure envelope for an elastic-perfectly

plastic 2D Voronoi cellular solid using FEA. By comparing our results to the failure

behavior of a regular hexagonal honeycomb, we hoped to gain insight on the effect

of non-periodic structure on the biaxial failure envelope.

3.2 Methods

Mesh generation

FEA input files for two-dimensional Voronoi honeycombs were produced using

software originally written by Matt Silva (Silva, 1996). Each Voronoi mesh was

constructed by connecting the perpendicular bisectors of line segments between

adjacent "nucleation" points in two-space to form a network of cell walls.

To obtain a more even distribution of cell size, points within a specified exclusion

distance were not considered nearest neighbors. For our 17x17 mesh, the exclusion

distance was set at 2 units of length.
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The original programs were modified to allow control over the number of finite

elements in a cell wall. This feature was used to perform a convergence study (see

Results) to identify the required number of degrees of freedom.

The final mesh had 309 cells (figure 3). Because the cells had no preferred

orientation, the model was considered to be isotropic. Each cell wall had uniform

thickness and was modeled as a series of four 3-noded beam elements (ABAQUS

element type B22) with Young's Modulus, Es=1, Poisson's ratio, vs=0.3, and yield

strength, Gys=0.01. The mesh tested in this study achieved a relative density p*/ps

of 0.15 by specifying a uniform cell wall thickness which was computed using the

expression:

p* Area of Solid NE lit
p. Total Area "LLy (2)

where NE is the total number of cell edges, t is the uniform cell wall thickness, li is

the length of the ith cell wall, and Lx and Ly are the dimensions of the cellular solid.

The mesh used for uniaxial and biaxial compression loading had elastic-perfectly

plastic cell walls, while for uniaxial tension, biaxial tension, and combined tension-

compression stress states, cell walls were modeled using strain-hardened material

with a strain hardening coefficient, h=0.01 (figure 4). Though the elastic-perfectly

plastic walls were sufficient to achieve failure in compression, slight strain-

hardening was required to induce a discernible failure point in tension loading. A

convergence study indicated that four elements per cell wall or 11,288 degrees of

freedom were adequate to obtain a solution within 6% of the exact solution in both x

and y directions (figure 5). The final mesh had 3836 nodes and 1988 elements.
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Figure 3: The Voronoi honeycomb finite element mesh had 309 cells.

0 .0 15 . .... .... . ...... - .....

3.01 0.01 h
VEl

3.01 E 0.5

Figure 4: The cell wall material was modeled as elastic-perfectly plastic (a) for compression tests and
as elastic-perfectly plastic with slight strain-hardening (b) for tension tests. Note that the schematics
are not drawn to scale.
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Elements per cell wall
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Figure 5: Convergence studies were conducted in both the x and y directions of the mesh. Each series of

points corresponds to one node on the mesh. Each point of a series denotes the reaction force resulting

from a prescribed displacement of the node for a model with a specified number of degrees of freedom in

the mesh. The degrees of freedom were adjusted by controlling the number of elements per cell wall.

Results indicated that four elements per cell wall were adequate.
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Uniaxial properties

Elastic properties and the uniaxial yield strength of the Voronoi honeycomb were

determined using a displacement boundary condition. The nodes forming an edge

were displaced by a specified amount while the nodes of the opposite edge were

prevented from translating in the direction of displacement. Additional boundary

conditions were imposed to apply biaxial stresses. Since biaxial testing specified

displacements at two edges, boundary conditions were ultimately imposed at all

four edges for the biaxial tests. To design a uniaxial testing methodology that would

be consistent with the anticipated biaxial testing, the nodes of one of the two edges

in the direction normal to the displacement direction were prevented from

translating in the direction normal to the displacement direction (figure 6). Edge

nodes were prevented from rotating in the x-y plane to reduce local crushing effects.

A mesh with edges free from rotation constraints was also tested for comparison.

Uniaxial deformation occurred in one step. Each step was automatically divided

into increments. Uniaxial compression testing required approximately twenty

increments to achieve a specified displacement while tension required about sixty

increments. Stress and strain, or average displacement per length, were computed

at each increment using the following expressions:

EN,(3a)
I RF
n=1 X.

L
ENY

_=1iRF (3b)

L
ENx

E U (4a)

EN -L
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EN.

_ _ (4b)
n=1 Y.

EN, -L,

where i refers to the increment, n specifies a node, EN is the number of nodes in a

displaced edge, RF is the reaction force at a node in a displaced edge, L, and Ly are the

edge lengths, and U is the specified displacement of each node on the edge. Strain is

calculated by taking the average nodal displacement. Young's modulus was

calculated using the stress and strain from the first increment of the uniaxial

compression test:

(5a)
(5b)

Ex = c--
Ex

E, = .y

= translational constraint

= rotational constraint

= translation vector

Figure 6: This figure depicts boundary conditions used to determine E* and a in the x-direction for the

Voronoi honeycomb. The squares and arrowheads represent rotational constraints at edge nodes and

translational constraints, respectively. Arrows with tails indicate displacements.

37



For compression, yield strength was taken as the peak value of stress on the stress-
strain curve (figure 7a). For tensile testing, yield strength was taken as the intercept
of the linear elastic and plastic portions of the stress-strain curve (figure 7b).
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0.008

0.007
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(a)
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0
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E

0.016

0.014

0.012

0.01 -

0.008

0.006

0.004-

(b)
0.002 -

0

0 0.01 0.02 0.03 0.04 0.05 0.06

Figure 7: Uniaxial yield strength was taken as the peak of a stress-strain curve for compression (a) and
as the intercept of the linear elastic and plastic portions for tension (b).
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Biaxial properties

Biaxial deformation required two steps. The first step occurred as in uniaxial

deformation except that the displacement magnitude was limited to strains in the

linear-elastic portion of the stress-strain curve. In the second step, the edge

displaced in the first step was prevented from translating further in its original

displacement direction while a displacement boundary condition was applied in the

second direction to the fourth edge (which had no prior translational constraints).

Stress was computed at both of the displaced edges in their respective displacement

directions at each increment and plotted against the strain associated with the edge

displaced in the second step (figures 8 and 9). Failure corresponded to a peak or the

intercept of the linear elastic and plastic portions on one of the stress-strain curves.

The combination of stresses served as coordinates for a point on the failure

envelope. The magnitudes of displacements in the first and second steps were

varied to obtain twenty points on the two-dimensional failure envelope.

= translational constraint

= rotational constraint

= translation vector

Figure 8: Squares indicate that rotation was prevented in the x-y plane at a node. Arrowheads denote a

restriction in translation in one direction at a node. Arrows indicate direction and magnitude of

displacement.
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Figure 9: Stress was plotted for both directions against the strain at increments in the second step. The
first peak in the stress-strain curves indicated the yield strength in one direction, shown here as xfailure-

The corresponding stress, shown here as GYfaiure, was taken as the yield strength in the second direction.

Element moment and stress characterization

Section forces and geometry were used to calculate internal moments and stresses

for each element. Bending moments, Mi and axial forces, Si, were obtained for each

element in equibiaxial tension and compression to characterize bending and

stretching contributions to failure in each mode.
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Bulk modulus

The bulk modulus, K, was computed using results from equibiaxial compression

and tension of a mesh with the same geometry but with linear elastic cell walls. The

following expression was used:

K =AC
AA/A' (6)

where AG is the equibiaxial compressive stress, AA is the change in area, and A is the

initial area. The mesh was also deformed beyond failure to depict visually the

elastic cell walls in equibiaxial tension and compression.

For comparison, the bulk modulus was calculated for a regular hexagonal

honeycomb using the following expressions:

A = 1'

A =(Y - = =P 261+ l2 -28

AA A-A _ -23 ~2e
AK A A

A 2A- 24-3

3.3 Results

Uniaxial Stiffness and Strength

Young's Modulus was computed for both x- and y-directions in compression giving

the following results:

Ex /E= 4.42 x 10-3

E /IES= 4.13 x 10-3,
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where E is Young's Modulus in the i-direction and E, is Young's Modulus for the

cell wall material.

Yield strength was computed for both x- and y-directions in uniaxial compression

and tension with the following results:

* / cy = 8.89 x 10'

S/ ay,= 8.39 x 10-3

lg C /Y,= 11.0 x 10-3

ayt7/ys = 9.90 x 10-3,

where a is the compressive yield strength in the i-direction, a is the tensile yield

strength in the i-direction, and yy, is the yield strength of the cell wall material. FEM

and analytical solutions for Young's modulus and uniaxial strength are shown for

the regular hexagonal honeycomb and for the Voronoi honeycomb in Table 1.

Table 1: Mechanical properties of >eriodic and non-periodic hone combs

Regular hex, Regular hex, FEM solution Voronoi, FEM solution

analytical solution

EX 4.61x10-3  4.64x10 3  4.42x10-3

Ey 4.61x10-3  4.59x10-3  4.13x10-3

K 0.037 0.020

yXC 1.13x10-2  1.21x10-2  0.889x10-2

yyc 1.13x10-2  1.10x10-2  0.839x10-2

Txt 1.13x10-2  1.10x10-2

Gyt 1.13x10-2 0.990x10 2

*not determined
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Failure Envelope Results

The locus of points defining yield strength for twenty combinations of biaxial strain

was plotted to create the failure envelope (figure 10). Three sets of points were

plotted. The first set was derived for a Voronoi mesh with an elastic-perfectly plastic

cell wall material. The second set of points corresponds to a Voronoi mesh with

strain hardened cell wall material. Whereas the first two sets were derived for a

mesh with restricted x-y rotation at the edge nodes, the third set was derived for a

Voronoi mesh with perfectly plastic cell wall material but with edge nodes free from

x-y rotation constraints. For each point (ax,ay), ay was normalized by the uniaxial

compressive yield strength in the x-direction and ay was normalized by the uniaxial

compressive yield strength in the y-direction. Each set of points was normalized by

the uniaxial compressive yield strengths obtained for that set to allow comparison

between sets. Values of the coordinates are given in Table 2.

Table 2a: Failure stress values for biaxial compression of Voronoi honeycomb with elastic-perfectly

plastic cell walls and edge nodes with rotational constraints.

ox G

0 -8.39x10-5

-8.87x10-5  0

-9.92x10-5  -12.1x10-5

-10.6x10-5  -12.2x10-5

-11.6x10-5  -12.2x10-5

-11.6x10-5  -12.2x10-5

-12.7x10-5 * -12.2x1O-5*

-12.7x10-5  -7.81x10-5

-12.8x10-5 -8.60x10-5
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-13.0x10-5  -12.1x10~5

-13.1x1O 5  -11.5x10-5

-13.1x10-5  -11.3x10-5

-13.2x10-5  -10.4x10-5

*equibiaxial strength in compression

Table 2b: Failure stress values for Voronoi honeycomb with strain-hardened cell walls and edge nodes
with rotational constraints.

-13.1x10-5  -12.5x10-5

-5.34x10-5  3.29x10 5

2.30x10-5  -5.80x10-5

0 9.90x10-5

10.6x10 5  0

14.9x10-5 * 15.0x10-5 *

14.9x10-5  16.7x10-5

16.4x10-5  14.0x10~5

16.7x10-5  18.3x10-5

17.0x10 5  15.6x10~5

19.0x10-5 14.5x10-5

*equibiaxial strength in tension

Table 2c: Failure stress values for Voronoi honeycomb with unconstrained edge nodes. Compression
loading was done using elastic-perfectly plastic cell walls; tension loading was done using strain-

hardened cell walls.

lx Gy

0 -6.18x10-5

-7.11x10-5 0
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-6.96x10-5  -6.49x10-5

14.4x10-5 14.0x10-5
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-1 0
CIX / 0Tc
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Figure 10a: Three sets of points were plotted to produce the plastic failure envelope for a Voronoi

honeycomb. Points marked by "o" and "x" correspond to a Voronoi mesh with rotational constraints at

edge nodes having elastic-perfectly plastic and elastic-strain hardened cell walls, respectively.
Points marked by "+" represent results for a mesh with no edge constraints. Each set of points was

normalized by the uniaxial compressive yield strength for the set. Deformation of the cell walls could

not be seen at the stresses used for the analysis.
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Figure 10b: The three sets of points are shown with the plastic failure envelope for a regular hexagonal
honeycomb following equation (1) where 0=30', h/l=1, t/l=0.13, and ay,/E,=0.01.
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Axial Forces in Elements

Axial forces were computed for each element in the mesh for two stress states:

equibiaxial compression and equibiaxial tension (see the * values in Tables 2a and

2b). These cases corresponded to the equibiaxial strengths on the plastic failure

envelope. The average axial force in compression (1.131 x 10') was very close to the

value obtained in tension (1.135 x 10'), and the distribution of axial forces was also

similar for the two stress states. To compare the distributions, data was plotted in the

histogram shown below (figure 11).

Axial Force Distribution
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Figure 11: This histogram compares the distribution of axial forces in the cell walls of a Voronoi mesh

in equibiaxial tension and in equibiaxial compression.
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Element Section Moments

Section moments were also computed for each cell wall in equibiaxial compression

and tension (see the * values in Tables 2a and 2b). The average element section

moment for compression was 4.241 x 10~ while the value for tension was 2.279 x 106.

The distribution results, depicted in the following histogram (figure 12), show that

more elements have greater moments in compression than in tension.

Section Moment Distribution

E

1600 -

1400 -

1200 -

1000 -

800 -

600 -

400

200

0
0-0.25 0.25- 0.5- 0.75- 1.0- 1.25- 1.5- 1.75- 2.0- 2.25-

0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5

moment, 1 E-5

Figure 12: This histogram shows a comparison of the section moment distribution for elements of a

Voronoi mesh in equibiaxial compression and in equibiaxial tension.
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Bulk Modulus

Bulk modulus calculations were made using the same Voronoi mesh but with

linear elastic cell wall material. Stresses in the x- and y-directions were plotted

against the strain at each increment of the second step of biaxial compression. The

stress value Aa used to calculate bulk modulus, K, was chosen at an increment for

which the stress values in the x- and y-directions were equal (figure 13). This point

corresponded to biaxial strain of approximately 0.02%. The Voronoi mesh used in

this study had K.=1.98 x 10-2 and K,=2.01 x 10-2.

Bending of the linear elastic cell walls was evident when the initially 17x17 model

was compressed to dimensions of 16x16 (figure 14a). In contrast to the compression

results, individual cell walls stretched to achieve equibiaxial tension (from 17x17 to

18x18-figure 14b).

Evaluation of the analytical expressions for bulk modulus of a hexagonal

honeycomb gave a result of K*/E,=0.037.

3.4 Discussion

We conducted finite element analysis of a Voronoi honeycomb to compute a plastic

failure envelope for an idealized cellular solid. We compared Young's modulus,

uniaxial strength, and biaxial failure envelopes of Voronoi and regular hexagonal

honeycombs to identify and understand differences attributed to the non-periodic

structure of foams.
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Figure 13: For the second step of biaxial (a) compression and (b) tension, aj/ay, and a)y/ay, at each
increment were plotted against EF, the strain in the direction of displacement in the second step. The s,,
axis begins at values less than zero due to the Poisson effect which allows the mesh to expand in the

second direction during the displacement in the first step.
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Figure 14: (a) Elastic cell walls bend when the Voronoi honeycomb is equibiaxially compressed from

initial dimensions of 17x17 to 16x16. (b) The cell walls stretch to accommodate equibiaxial tension

when the original mesh expands to 18x18. The relevant stress-strain data is presented for the second

step of both loading scenarios.
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Young's modulus for the Voronoi structure in the two directions was within the

range of values reported in a previous study. Silva et al list (1995) elastic moduli for

twenty isotropic Voronoi meshes with a relative density of 15%. They tested

meshes with linear elastic cell walls given a Young's modulus of 1.0 and found the

resulting elastic moduli to range from 0.433 x 10' to 0.583 x 102 (Silva et al, 1995).

Their values compare with the values computed in this study of Ex=4.42 x 10-3 and

Ey= 4.13 x 10-3.

The strength of the Voronoi honeycomb was 73% and 78% of the FEM solution for

the strength of the hexagonal mesh in the x- and y-directions, respectively. These

differences are consistent with a previous study that reported the mean strength of

five Voronoi honeycombs with relative density of 0.15 to be 70% of the strength of

the corresponding periodic hexagonal honeycomb (Silva and Gibson, 1997).

The failure envelope obtained for the Voronoi honeycomb was compared to the

plastic yield surface predicted for regular hexagonal honeycombs in biaxial loading.

Using the equation derived by Gibson et al (1989) to calculate the biaxial failure

strength of a regular hexagonal honeycomb with t/l=0.13, the equibiaxial stress states

are nearly seven times as great as the uniaxial failure strengths in both compression

and tension.

The Voronoi honeycomb failure envelope varies considerably from the plastic yield

surface shown above for the hexagonal honeycomb. Our envelope depicts a

structure that is weaker than the periodic structure in both biaxial compression and

in biaxial tension. Whereas the hexagonal mesh in equal biaxial loading could

withstand nearly six times its uniaxial strength, the Voronoi mesh failed under
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equal biaxial loads less than two times its uniaxial compressive strength. The

structure was also somewhat stronger in tension than in compression.

Both the relative weakness in biaxial loading of the Voronoi mesh compared to the

hexagonal mesh and the relative weakness in compression versus tension for the

Voronoi case alone can be explained by examining the contributions to failure due

to stretching and bending of the cell walls. To achieve uniaxial deformation in a

hexagonal honeycomb, the cell walls bend (Gibson et al, 1982; Papka and Kryakides,

1994; Warren and Kraynik, 1987). In the biaxial case, the bending moments can

cancel so that the cell walls feel only axial forces (Gibson and Ashby, 1997). The cell

walls stretch to achieve the extreme state of biaxial loading and are thus able to

withstand much higher stresses than in uniaxial deformation (Gibson et al, 1989).

One might consider that the relative weakness of the Voronoi mesh in compression

presents a different failure mechanism that dominates over plastic yielding. As

shown in the plastic yield surface for a hexagonal honeycomb with t/l=0.1 (figure 1),

elastic buckling of cell walls in compression will occur before the mesh reaches the

plastic yield strength predicted by the theoretical expression. One should note that

in our study, the relative density of the Voronoi honeycomb was taken at 15%

(t/l=0.13) to ensure that plastic yielding would be the dominant failure mechanism.

For the Voronoi mesh, cell walls accommodated both uniaxial and biaxial stress

states by a combination of stretching and bending. We computed element axial

forces and section moments to characterize contributions to plastic failure made by

stretching and bending, respectively, in the cell walls. We then plotted histograms

to compare distributions of axial forces and section moments in equibiaxial tension

and compression for the non-periodic structure.
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The average axial force of the elements were nearly equal in both compression

(<S>C=0.000113) and tension (<S>,=0.000114). The distribution varied only slightly

for the two states, showing that the contributions to failure by stretching of cell walls

were equally significant in both loading scenarios. In contrast to the axial force

results, the element section moment analysis revealed that the average bending

moment in compression (<M>c=4.24 x 10-6) was nearly two times as much as the

average section moment in tension (<M>t=2.26 x 10-6). The histogram confirmed

that in compression, more elements have higher bending moments than in

tension.

Large deformation analysis of the Voronoi mesh with linear elastic cell walls clearly

depicted the dominant failure mechanism for the two loading states. In

compression, the walls appear uniformly bent, whereas in tension, there is no

apparent bending in the cell walls. Figure 14 shows the walls stretching in their

axial direction to achieve the state of equibiaxial tension.

A comparison of the bulk moduli of hexagonal and Voronoi honeycomb supports

the bending and stretching conclusion. Equation 7 was evaluated to determine the

theoretical bulk modulus for a hexagonal honeycomb, Kh,,,=0.0 3 7 . The bulk

modulus for the Voronoi mesh was similarly computed using FEM results for the

mesh with linear elastic cell walls. The Voronoi mesh exhibited a much lower

modulus, Kvo,=0.020. Bulk modulus physically represents the extent to which a bulk

material deforms under uniform pressure. The bulk modulus values reported in

this study are consistent with the failure envelope which depicts a material weaker

in the extreme biaxial stress states than the corresponding periodic structure.
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In practice, rotational constraints at the edge nodes are unrealistic compared to

physical specimens of foams which would not be constrained at the edges. An

accurate prediction of experimental results for a three-dimensional specimen in

hydrostatic compression would fall somewhere between the constrained and

unconstrained models. Plastic collapse strength is sensitive to small defects so the

experimental results may be systematically less than theory or computational results

would predict (Gibson and Ashby, 1997). Our computational results predict failure

in equibiaxial compression to occur at biaxial stresses equal to 1-1.5 times the

uniaxial material yield strength. Failure in equibiaxial tension takes place at

approximately two times the uniaxial failure strength.

This study has several strengths. The computational approach enabled us to

determine the failure mechanism in the biaxial loading state by determining the

stress states in each element. The dimensionless results are highly reproducible and

can be qualitatively applied to predict results for plastic yield surfaces of cellular

solids having 15% relative density.

Certain limitations to this study should be noted. The failure envelope described

here represents only one specific arrangement of cells. Increasing the number of

non-periodic arrangements would improve the accuracy of the predicted yield

surface. The study could also be extended to determine how properties like bulk

modulus and failure mechanisms vary with changing relative density. Finally, the

finite element model might be improved by using elements of the same length as

opposed to dividing each cell wall into equal numbers of segments.
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3.5 Conclusions

In this chapter we computed the failure envelope of a two-dimensional non-

periodic cellular solid under biaxial loading. FEA results show that the material has

a lower plastic failure strength in both biaxial tension and compression compared to

a regular hexagonal honeycomb of the same relative density. The non-periodic

honeycomb exhibited greater strength in equibiaxial tension than in equibiaxial

compression due to larger bending moments in the elements for external

compression loading. These results shed light on the mechanical behavior of

random foams under hydrostatic loading.
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4 Fatigue of trabecular bone

4.1 Background

All bones contain trabecular (also termed spongy, cancellous, or marrow bone) and

cortical (or compact) bone (Schiller, 1994). Trabecular bone (figure 1) appears as a

porous network of connecting rods or plates (Gibson, 1985) and can be found at the

ends of long bones within the medullary canal (Schiller, 1994). As a consequence of

aging and osteoporosis, the horizontal and vertical struts in the trabecular lattice

thin and even disappear, resulting in the loss of bone strength. These age-related

effects on the structure and mechanical behavior of trabecular bone are well

documented (Ding, 1999; Mosekilde, 1988, 1989; Snyder, 1993).

Figure 1: Trabecular bone is a partly open, partly closed cellular material. (Image courtesy of Ralph

Mueller.)

Early models of trabecular bone focused on the response to monotonic loads using a

variety of structural representations. Beaupre and Hayes used a three dimensional
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unit cell for a porous model to study the modulus as a function of density (1985).

Jensen et al used a three dimensional cubic lattice with struts of different cross-

secitional areas to model the effects of aging (1990). Silva and Gibson randomly

removed struts from a two-dimensional hexagonal honeycomb to simulate the

effects of trabecular thinning and disappearance due to aging (1997).

Microdamage accumulation has been proposed as a factor that contributes to skeletal

fragility with age, especially for older women (Burr et al, 1997). There is strong

evidence of microcrack growth due to fatigue in cortical bone, and recent studies

have begun to explore these phenomena in trabecular bone (Burr et al, 1995; Huja et

al, 1999; Reilly et al, 1999; Schaffler et al, 1996; Vashishth et al, 1996; Vashishth et al,

1997; Vashishth, 1999). Several studies describe mechanical behavior of bone in

dynamic loading conditions as well. Michel and Bowman reported cycle-dependent

and time-dependent response to repeated loading in trabecular bone and suggest

that creep-fatigue interaction contributes to failure (Bowman et al, 1994; Bowman et

al, 1998; Michel et al, 1993). A similar interaction was found in earlier experimental

studies of cortical bone (Caler and Carter 1989; Carter and Caler, 1983).

Finite element models and analytical methods have been used to characterize and

distinguish between fatigue and creep contributions to failure in trabecular bone.

Guo used a two dimensional hexagonal honeycomb with a beta distribution of crack

lengths to model the effects of fatigue due to microcrack growth in trabecular bone

(1994). This study contrasted the effects of fatigue and creep and suggested the

presence of a creep-fatigue interaction as has been shown for cortical bone.

In this study, we propose a new model to characterize effects of fatigue and creep in

trabecular bone. We believe that the rod-like structure of trabecular bone can be
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better represented by a three dimensional Voronoi network. Like the two

dimensional Voronoi honeycomb described in chapter 3, Voronoi solids in three

dimensions have been used to model the mechanical behavior of open and closed

cell foams (Kraynik, 1997; Schulmeister, 1997; van der Burg, 1997). A Voronoi solid

(figure 2) has straight edges and flat surfaces with the proper connectivity of a soap

froth. The open Voronoi network mimics the structure of trabecular bone which

appears mostly rod-like in the later stages of life.

Figure 2: (a) Closed and (b) open cell Voronoi solids. Randomly oriented nuclei appear and grow

spherically at the same rate; growth ceases when one cell contacts a neighboring cell.

In this chapter we build on concepts explored in previous chapters and apply the

results to a physically meaningful problem. We extend the Voronoi honeycomb to

three dimensions and use the finite element method to study the effects of cyclic

compression on a unit cell of a low density open cellular solid. Finally, we

extrapolate these results to apply them to a higher density cellular solid and

compare our findings to studies of creep and fatigue contributions to failure in

trabecular bone.
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4.2 Methods

H 0o
L

.4 K

Cells

4
VCS

torusmunge

surface
evolver

FEA

Figure 3: Schematic overview of mesh generation.

Mesh Generation

Three-dimensional Voronoi networks were created using software from the

University of Minnesota Geometry Center (UMNGC) and Sandia National

Laboratories (SNL) (figure 3) based on the method of Kraynik (1997). Cells (Sullivan,

1997) was used to generate random seeds for a unit cell of a Voronoi network.

60



Different random seeds were used to produce five Voronoi models, each with

twenty-seven cells. Cell seeds were placed to achieve cell radii less than or equal to

77% of a cell's radius in an equivalent face centered cubic (fcc) crystal lattice for a

3x3x3 mm 3 unit cell (figure 4).

3
/3

Figure 4: Spacing was set so that the radius of each cell in the Voronoi network was greater than or

equal to 77% of R&, the radius of an atom in a face centered cubic unit cell, shown in the figure above.

The program VCS (Sullivan, 1988) was used to create and connect the vertices of the

Voronoi network. Torusmunge (Sullivan, 1988) was used to make the structures

spatially periodic. A spatially periodic unit cell repeats infinitely in space, thus

eliminating edge effects from the mechanical analysis.

The UMNGC Surface Evolver (Brakke, 1998) was used in conjunction with a

number of software programs from SNL (Kraynik et al, 1998) to remove short edges

and to produce an input file for the finite element modeling software, ABAQUS

(HKS, 1997). It has been shown that removal of short struts does not influence the

accuracy of results (Schulmeister, 1997). The constant cross-sectional area of the

struts was computed by dividing the product of the relative density and unit cell

volume by the sum of the lengths of all struts. Because this approximation greatly

overestimates the volume of material contained in the joints at high relative

densities, our structures were limited to relative densities, p*/p, less than or equal
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to 0.1%. Also, a low relative density ensures that beam elements adequately model

the struts since the resulting element aspect ratio would satisfy beam theory. Based

on these considerations, relative density was set at p*/p,=0.1%.

The five final structures used in this study had three-noded three-dimensional

beams (ABAQUS type B31) with uniform circular cross-sections (figure 5). The strut

material had properties of human trabecular bone: Young's modulus E,=17.2x10 3

MPa (Rho et al, 1998) and Poisson's ratio v,=0.3. Each model represented a 3x3x3

mm 3 unit cell defined by three basis vectors in the input file:

<3 0 0> , <0 3 0>, and <0 0 3>.

Convergence study

A convergence study was conducted on a representative model to identify an

adequate number of elements per strut and to determine the appropriate amount of

strain per increment. Input files were created for structures having struts divided

into two to eight elements, on average. After a uniaxial compression to E=1.0%,

reaction forces were reported at each basis vector node and true stress was computed.

True stress values were plotted as a function of degrees of freedom and as a function

of average number of elements per cell wall. For a strain of 1.0%, the stress values

converged to within 0.23% of the true solution when struts were modeled using

seven elements (figure 6). A typical mesh consisted of approximately 2200 elements

and 2500 nodes. By varying the amount of strain per increment in a one step

uniaxial compression (E=1.0%) of a model with an average of seven elements per

strut, we found that 0.001 strain, or e=0.1%, per increment gave stress values which

converged to within 0.16% of the exact solution.
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Model 1: 31 struts

Model 3: 297 struts

x

Model

Mode 2: 311 st ut

Mod 1 4: 30 s ruts

l5: 319 struts

Figure 5: Five models of Voronoi networks. The number of struts in each model is given next to each
model. Each model occupies a 3x3x3 mm3 unit cell with three orthogonal unit vectors: <3 0 0>, <0 3 0>,
and <0 0 3>.
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Figure 6: Reaction force values converged when struts were modeled using seven elements.

Finite element analysis

Finite element analysis (FEA) was performed for each model. Each structure was

loaded by boundary condition displacement applied at the node of the third basis

vector <0 0 3> in the z-direction. Five loading values of Aa/E were chosen: 1%, 3%,

5%, 7%, and 10%. For each model, E0 was calculated by dividing the stress, Y by the

strain, E for a model in uniaxial compression. In each case, E0 was computed at 0.1%

strain.
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A separate analysis was performed to determine the displacement and number of

increments required to achieve the Aa/EO value. Using data on reaction forces and

displacements at the nodes, stress and strain were calculated at each increment (0.1%

strain) of an analysis in which the structure was compressed to a strain large enough

to achieve the specified AG/EO value. We then identified the strain and exact

number of increments corresponding to a loading level just less than or equal to the

AcY/EO required for the analysis. In all cases, AT/EO was within 0.04% of the specified

value.

Once the appropriate boundary condition displacement had been determined, FEA

was used to compute and report the axial reaction forces (SF1), section bending

moments (SM1, SM2), and section twisting moment (SM3) at the centroid of each

element (figure 7). These values were used in the fatigue calculations described

below.

n,

SM2

n2 SM1

t . -'' SKl
.' SM3 .-.--

3

Figure 7: Geometry of beam and stress values. Finite element modeling software was used to compute
the axial force SF1, bending moments SM1 and SM2, and twisting moment SM3 with respect to the local
coordinate system of each beam element.
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Fatigue calculations

Based on studies of damage accumulation and fatigue in bovine trabecular bone

(Lee, 1997; Arthur, 1999) a semi-elliptical surface crack was selected for placement in

10% of the trabeculae in each model. Cracks were assumed to be in the worst

configuration, i.e. on the surface experiencing the greatest bending moment. The

initial crack length a, was set to 1/4 of the diameter of the trabecular cross section.

The strain energy release rate, G, was used to combine stress intensity factors for the

three modes of loading (Anderson, 1995):

K2  K2  K2
G = 'I+ "II+ '", (

E E 2y'

where KI, K 1, and Km are the stress intensity factors for opening, sliding, and tearing

modes, respectively. The shear modulus, g, is given as

E (2)

2(1+ v)

where v is Poisson's ratio.

Using the strain energy release rate, we derived an effective stress intensity factor for

the opening mode, Klff, by combining these terms to characterize the total effects of

the three loading modes:

K2

G = '
E

Kiff = K K ((E

K I"f = _ Kj + K 11+ KIII(1 + V). (3)
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Stress intensity factors for a surface crack in a three-dimensional cylindrical beam

were obtained from several previous studies of stress intensity factors for various

semi-elliptical surface crack geometries (Levan and Royer, 1993; Murakami, 1987;

Rooke and Cartwright, 1976).

d

ao

2aO

Figure 8: Geometry of semi-circular surface crack on trabecular cross-section. The initial crack length ao

at the crack front was set to 1/4 of the trabecular diameter, d.

Based on previous studies of microcracks in trabecular bone (Arthur, 1998; Lee, 1997;

Taylor and Lee, 1998) we selected a semi-circular crack with an initial crack length,

a0, equal to 1/4 of the trabecula cross-section diameter, d (figure 8). Levan and Royer

give normalized stress intensity factors K/(a(nb)0.5 ) as a function of relative crack

depth a/R for various crack shapes (figures 9 and 10) Murakami reports calculated

values of the normalized stress intensity factors for our geometry and initial crack

length, ao=0.25d as 0.758 for a shaft under tension and 0.513 for a shaft under bending

(1987).

-Bs A a= .

B

Bo 7

Figure 9: Crack shapes for the surface cracks defined by parameter a. (from Levan and Royer, 1993)
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Figure 10: Normalized stress intensity factors versus the relative crack depth. (a) Tension. (b) Bending.

(c) Torsion. (from Levan and Royer, 1993)

Based on these studies, our geometry corresponded to the following stress analysis

factors:

KB = 0.513ab1ma

K = 0.758af

K =KB+ KK, 11 I

KBl= -0.325,r.17
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where KT and KB are the stress analysis factors for tension and bending, respectively.

The two factors are combined to obtain the stress analysis factor for the opening

mode. (Note that there is no sliding mode for this geometry; therefore, K,1=0.) The

bending moment ab, axial stress (7, and twisting moment m were calculated for each

element using the data obtained from FEA (Crandall et al, 1978):

4VSM2 +SM2 (8)
b 173

SF (9)
t Tr2

_ 2SM 3  (10)
=3

where r is the radius of the trabecula cross-section. By combining the two reported

section moments SM 1 and SM 2, we assumed that each crack was placed in the worst

possible configuration for the element, i.e. on the portion of the surface which

experiences the highest bending force.

Combining equations 3-10, we obtained the following expression for AKeff:

AK = ((A + B)2 + C) a, (11)
where

A=(0.513 x 4) SM+ SM
r Ir

B (0.758)SFB= ',and

- (-0.325 x 2)SM 3 2(1+ V
r 3 r

Details of the derivation are given in the Appendix.

The microcracks were assumed to grow under cyclic loading by the Paris law (Paris

and Erdogan, 1963):
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da (12)
- C,(AK)"1

dN

where da/dN (10-6 m cycle-') is the crack growth rate and AK (MNm- 5 ) is the

opening mode stress intensity factor range for cyclic loading. Based on the only

existing data for bovine cortical bone, the constant C and exponent m of the Paris

law were taken as 0.013 and 4.5 (Wright and Hayes, 1976). After integrating and

accounting for variations in units, we obtained the following expression:

S 2 2 -- 2 )2 M, (13)

af = exp{2-m _ In[a 2-m Cp((A + B + C)2_ 1015-3 (13)

where af (m-3 ) is the final crack length taken at the crack front after N cycles.

Based on equation 13 the element force and moment data obtained by FEA were

used to compute the total number of cycles required for an element to fail, N. We

assumed that the element fractured when the final crack length exceeded 3/4 of the

diameter of the trabecula cross section. After an element failed, the element

number and number of cycles to failure were recorded. The element was removed

from the model, and the new mesh was analyzed using the FEA procedure described

above. Young's modulus was calculated for the new mesh, the number of

increments or strain required to achieve the specified AcY/E value was determined,

and the element forces and moments were calculated again. This process was

repeated iteratively until Young's modulus for the model had decreased by at least

15% (figure 11). The number of cycles required for the 15% reduction was then

recorded as the number of cycles to failure, N.
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Initial crack distribution

4-

Pans Law: da/dN=C(AK)m

Identify failed trabeculae

Delete failed elements & re-
mesh

Figure 11: Summary of FEA and fatigue calculations.

Extending the model to trabecular bone

We developed a dimensional argument to extend the Voronoi model results to

trabecular bone. Consider a single trabecular strut subject to an external load (figure

12).
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M

1 r

M

Figure 12: External bending moment M applied to single trabecular strut with radius r, length 1, and

crack length a.

When an external stress is applied, the strut will initially deform by bending. The

stress will be related to the bending moment M by

My (14)

I

where I is the moment of inertia. This expression relates to the external stress a* by
My _ a * Pr (15)

I r' '

so that equation 14 becomes

l 3 (16)
or C a* -.

r

We can substitute the relative density into equation 16 using the following relation:
( 2  (17)

Ac .

The stress intensity factor AK describing the growth of the crack is given as

AK oc aid. (18)

We use equations 16-18 to derive a relationship between the stress intensity factor

and the relative density:

A(19

Note that we can convert the applied stress to the normalized fatigue stress range

value using the following expression:
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cT* __ E (20)
p, ) E

(Gibson, 1999).

The Paris law for crack growth (equation 12) becomes

da = C E (21)

dN '' E (p,

where CVor is a scaling constant which incorporates the Paris constant and must be

calculated from the Voronoi model results. Note that our analysis ignores the axial

and twisting components since A, the bending component of AKIff (equation 11)

was the dominant term for most of the fractured members, e.g. A/B-40, A/C-40.

We integrated the equation and computed CVor for each of the five models at each of

the five normalized stress range values. We then used the constants to calculate the

number of cycles required for the five models to fail at each stress range, assuming a

new relative density p*/p,=0.30. Finally, we compared these scaled results to the

experimental and computational results reported in previous studies on trabecular

bone.

4.3 Results

Young's modulus for each of the intact structures is given in table 1. Each mesh

required five to nine members to fracture for a 15% reduction in Young's modulus

for the structure (figure 13). Young's modulus was recalculated each time an

element was removed. The reduction in Young's modulus can be seen in the stress-

strain curves in figure 14. Data was successfully obtained for all models at all stress

levels except for the fifth model at the 10% fatigue stress. The finite element

73



analysis results did not converge, and results were not included for this model at the

highest fatigue stress.

Table 1: Data for intact structures

Model Number EO (MPa) Number of elements Number of nodes

1 1.23 x 10-2  2196 2109

2 1.37 x 10-2  2176 2087

3 1.49 x 10-2  2081 1997

4 1.51 x 10-2  2121 2033

5 1.46 x 10-2  2236 2141

2

1

Figure 13: This intact model had 2081 elements. Fractured elements, shown in red, are numbered in the
order in which they fractured and were removed.
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Figure 14: Stress-strain curves show reduction in Young's modulus. After an element fractured, the

structure's stress-strain curve was plotted and Young's modulus was calculated for the new mesh.

For each model, the fatigue stress values Aa/E. and the fraction of elements which

had failed was plotted against the total number of cycles to failure. As the loading

value increased, fewer cycles were required to achieve the 15% reduction in Young's

modulus (figure 15).

The relative modulus E/E 0 was also plotted against the number of cycles for each

model. For some models, the elements failed in the same order for each loading

value (figure 16a); for others, different elements failed or the same elements failed

but in a slightly different order (figure 16b). The number of cycles to failure for each

model at a given load were averaged and plotted against the fatigue stress values on
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a log-log plot (figure 17). These values are given in Table 2 below. There was a

strong (r2 = 0.976) power law relationship between the number of cycles-to-failure Nf

and the applied normalized stress range Aa/E:

log N, = -0.4900 - 8.651.

0.004

0.0035

0.003

0.0025

CD

E 0.002

0

c 0.0015
0

0.001

0.0005

0

(22)iog( E)

Aa/E

1%

-- 3%

-a5%

-x- 7%

-x-10%

0 2 4 6 8 10

log Nf (cycles)

Figure 15: Fraction of fractured elements was plotted against number of fatigue cycles at each Aa/EO
value for a model. For lower Aa/EO values, more cycles were required to substantially reduce the intact
structure's Young's modulus.
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Figure 16: Relative modulus E/EO was plotted against number of fatigue cycles at each Aa/EO value for a
model. The parallel curves (a) depicts a model whose elements fractured in the same sequence at each
fatigue stress. Figure 16b represents a model which had different elements fail or had the same
elements fail in a different sequence at each stress level.
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y = 0.3236x4-0156

F = 0.976I 0.3236

0.001 L

Cycles-to-failure Nf

Figure 17: Summary of results for all models. The relative loading values were plotted against the
average value of log(Nf). Error bars show one standard deviation.

Table 2: Average values for relative Young's modulus, fraction of failed elements, and number of cycles
to failure for each fatigue stress.

Aa/E Average relative Young's Average percent fractured Average number of cycles to

(%) modulus E/EO at failure (-) struts at failure (%) failure Nf (cycles)

1 0.83 1.80 2.36 x 1013

3 0.83 1.82 1.18 x 10

5 0.82 1.87 7.98 x 106

7 0.83 1.93 1.28 x 106

10* 0.82 1.77 5.40 x 10 4

*The results for the fifth model were not included at the 10% fatigue stress level.
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We obtained constants CVor for each model and extended the results to relative

densities for trabecular bone (p*/p,=0.3). The new values for cycles to failure, scaled

for relative densities more appropriate to trabecular bone, were plotted against the

normalized stress ranges. Power law curves were fit to the data for the new relative

densities (table3).

Table 3: Calculated cycles-to-failure as a function of stress for different relative densities [log
N=A+Blog(Aa/E)I

Relative Density, p/p, A B

0.001* -0.4900 -8.651

0.04** -1.022 -8.651

0.15** -1.213 -8.651

0.20** -1.255 -8.651

0.30** -1.313 -8.651
*Results from FEA analysis.
**Computed using constants from dimensional argument.

We compared our results for the 3D model at a relative density p/p,=0.30 to

experimental and computational results from other studies (figure 18). The 3D

Voronoi model predicts higher cycles-to-failure for the 0.005-0.04 normalized stress

range compared to the 2D hexagonal honeycomb model for fatigue crack growth.

We also compared the projected results for the 3D model at relative density p/p,=0.30

to the 2D hexagonal honeycomb analytical creep solution (Andrews et al, 1999; Guo

et al, 1993) and to experimental results for compressive fatigue of bovine trabecular

bone (Bowman et al, 1998).

To compare the results for creep in a 3D model, we used an expression for the creep

strain rate in a foam (Andrews et al, 1999) with relative density, p*/p,=0. 3 0:
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_ 0.6 (1.7(2n, + 1) )-* 3o + (23)

t (n, +2) n. O p

where n, is a creep material constant. We assumed the following creep behavior for

the trabecular tissue:

S=A . (24)

where As is a creep material constant. We used the material constants for bovine

cortical bone as was done in Guo's two-dimensional creep model: A,=10 4 3.- and

n,=18.9. Failure corresponded to a 5% strain and the number of cycles to failure

were determined from the time to failure, t, by assuming a frequency of 2 Hz. These

assumptions are consistent with Guo's fatigue model. The resulting equation,

-- (25)
N = 2.098 x 10-38

E

was plotted for comparison with the experimental data and the results of the other

models.

Our model predicts higher cycles-to-failure than the experimental data showed for

the same stress ranges. However, the 3D Voronoi fatigue model provides a better

approximation of the slope of the experimental data than the hexagonal model.

4.4 Discussion

Obvious architectural limitations exist in our model of trabecular bone. We

modeled the structure as a network of beam elements, each trabecular strut

represented by a series of cylindrical rods. Trabecular bone appears as a combination

of rods and plates, a cellular solid which is part open and partially closed. Our
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model also failed to represent the anisotropy present in bone by ignoring

remodeling which occurs due to aging and external loading (Mosekilde et al, 1985).

10 100 1000 10000 100000 1000000

- 3D Voronoi fatigue (FEA)
- - - - 3D Voronoi creep (analytical)

experimental

2D hex fatigue (FEA)

2D hex creep (analytical)

* m~. ,~ ~ ~ *~ ~* 45.

- - ~~...
-

Cycles-to-failure, Nf

Figure 18: FEA results for fatigue of the 3D Voronoi model (p/p,=0.30) were compared to results reported

from previous studies. We plotted the linear regression fitting experimental data for compressive

fatigue of bovine trabecular bone [Nf=1.7 7 x 107(Aa/EO)-"'1' (Bowman et al, 1998) on a log-log scale.

The shaded region approximates scatter in the data. Equations for curves from FEA of creep and fatigue

(Andrews et al, 1999; Guo et al, 1993) of a hexagonal honeycomb model (p/p,=0.30) for trabecular bone

were also plotted. A plot of an analytical expression for creep in a three dimensional foam (p/p,=0.30)

was included for comparison (Andrews et al, 1999).

Our model suggests that microcrack growth contributes to failure in compressive

fatigue. The three dimensional Voronoi model gives a better prediction of the slope

of the S-N curve (-8.651 compared to -11.19 from experimental results) than the
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two-dimensional hexagonal honeycomb model. Previous studies suggest that other

mechanisms such as creep may contribute to failure of trabecular bone at high stress

ranges (Michel et al, 1993; Guo et al, 1993; Bowman et al, 1994; Bowman et al, 1998).

Creep contributes to the fatigue behavior under cyclic loading at high stress in

cortical bone (Carter and Caler, 1983; Caler and Carter, 1989). Although other studies

have suggested a similar transition from fatigue-dominant to creep-dominant

failure modes at around 100-1000 cycles for trabecular bone, our study indicates that

fatigue plays a role for all stress levels.

Certain differences should be noted when comparing the model to previous studies.

The hexagonal honeycomb modeled by Guo et al (1993) describes a two dimensional,

anisotropic structure with members of wet bovine cortical bone (E,=22.6 GPa) while

our model represents a three dimensional random structure composed of elements

of dry human trabecular bone (E,=17.2 GPa). Guo's study set a 10% reduction in

modulus (typically 15 fractured elements) as the specimen's failure criterion while

our study did not report cycles-to-failure until the modulus had been reduced by

15% (typically 7 fractured members). Another critical difference between the two

models lies in the assumed crack distributions. Guo assumed a beta distribution of

crack lengths in his model while our study distributed an arbitrary number of

uniform cracks throughout the model. We selected an initial crack length a/d=0.25

based on the average crack length observed in trabecular bone (Arthur, 1999). A

better estimation of microcrack distribution in trabecular bone might improve our

prediction for the cycles-to-failure.

When comparing our results to the experimental results of Bowman et al, consider

that their study (1998) was conducted on wet bovine trabecular specimens over a

range of relative densities and our study used a Young's modulus for the solid
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material that was consistent with dehydrated human trabecular bone (Rho et al,

1998). (Gibson lists Young's modulus values for individual trabeculae from various

studies ranging from 0.76<E,<14.1 GPa (Gibson and Ashby, 1997).) Changing

Young's modulus for the solid might lower the y-intercept for the three-

dimensional Voronoi structure S-N curve. Note also that our results for the

relative densities representative of trabecular bone were computed from FEA results

for a relative density p*/p,=0.001. A more accurate expression for Young's modulus

of the solid and the scaling constants used to extend the FEA results to trabecular

bone could significantly improve the correlation between our model and actual

experimental results.

Our model presents several improvements over previous studies by introducing a

three dimensional random structure. The dimensionality enabled us to account for

bending, twisting, and tension in each of the trabecular elements. Despite these

advances in our ability to model the fatigue behavior of bone, several limitations

exist. We ignored trabecular thinning as a mechanism for weakening the structure.

In addition, our analysis assumes that each strut either supports all of the applied

external load or none of it. We did not account for the reduction of modulus in

each individual trabecular strut as the crack length increased. We also assumed that

crack growth proceeded from an initial crack length of 0.25d to a critical crack length

of 0.75d along a linear propagation path. After a trabecular strut fractured and was

removed, we continued the analysis to identify the next strut to fracture by

assuming that all cracks in the model returned to the initial length. In other words,

we assumed that crack propagation only occurred in the trabecular element for

which fracture was imminent; once the element was removed from the mesh, crack

growth in the next element to fracture would begin from the initial crack length and

proceed until it reached the critical crack length. Without this assumption, we
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would need to compute new expressions for bending, tension, and twisting stress

intensity factors for each element every time a member failed. For our initial

conditions, Couroneau and Royer showed that only the type of loading and the Paris

law exponent, assumed to be 4.5 for all trabeculae, influenced the crack propagation

path for the model (1998). For a Paris constant m=4.5, initial crack lengths exceeding

a/r=0.35 do not influence the results. Our crack lengths (a/r=0.5) satisfy this

criterion.

4.5 Conclusions

This study demonstrates the use of the finite element method to predict fatigue

behavior of trabecular bone using a three-dimensional random network of struts.

Comparison with experimental data suggests that fatigue combines with creep to

result in failure of trabecular bone under cyclic loading conditions at all stress levels.

Future work should focus on considering the effects of trabecular thinning and

weakening of individual struts. Previous studies attempting to determine creep

contributions to compressive fatigue behavior of bone could also be extended to

three dimensions. Finally, the approach described in this study could be applied to

study other open cellular solids like metallic foams.

4.6 References

Anderson TL. Fracture Mechanics. CRC Press, 1995; 69-72.
Andrews EW, Gibson LJ, and Ashby MF. The creep of cellular solids. Acta Mat 1999;

in press.
Arthur TL. Private Communication March, 1999.
Arthur TL. Thesis proposal: Fatigue damage in trabecular bone. MIT, 1998.
Beaupre GS and Hayes WC. Finite element analysis of a three-dimensional open-

celled model for trabecular bone. J. Biomech. Eng. 1985; 107: 249-256.

84



Bowman SM, Guo XE, Cheng DW, Keaveny TM, Gibson J, Hayes WC and
McMahon TA. Creep contributes to the fatigue behavior of bovine trabecular
bone. J. of Biomech. Eng. 1998; 120: 647-654.

Bowman SM, Keaveny TM, Gibson LJ, Hayes WC, and McMahon TA. Compressive
creep behavior of bovine trabecular bone. J. Biomech. 1994; 27: 301-310.

Burr DB, Forwood MR, Fyhrie DP, Martin RB, Schaffler MB, and Turner CH. Bone
microdamage and skeletal fragility in osteoporotic and stress fractures. J. Bone
and Min. Res. 1997; 12: 6-15.

Burr DB, Turner CH, Naick P, Forwood MR, and Pidaparti RMV. Does
microdamage accumulation affect the mechanical properties of bone? Trans.
ORS 1995; 20: 127-22.

Caler WE and Carter DR. Bone creep-fatigue damage accumulation. J Biomech.
1989; 22: 625-635.

Carter DR and Caler WE. Cycle-dependent and time-dependent bone fracture with
repeated loading. J. Biomech. Eng. 1983; 105: 166-170.

Ciarelli TE, Schaffler MB, and Goldstein SA. Age effects on the fatigue behavior of
human vertebral cancellous bone. Trans. ORS. 1999; 24: 772.

Couroneau N and Royer J. Simplified model for the fatigue growth analysis of
surface cracks in round bars under mode I. Intl. J. Fatigue 1998; 20: 711-718.

Crandall SH, Dahl NC, and Lardner TJ. An Introduction to the Mechanics of Solids.
Mcgram-Hill, Inc, 1978; 446.

Ding M, Odgaard A, Lind F, and Hvid I. Age variations in the microstructure of
human tibial cancellous bone. Trans. ORS. 1999; 24: 553.

Gibson L and Ashby MF. Cellular Solids Structure and Properties. Cambridge
University Press, 1997; 436.

Gibson J. Private Communication April, 1999.
Gibson LJ. The mechanical behavior of cancellous bone. J. Biomech. 1985; 18: 317-

328.
Guo XE, McMahon TA, Keaveny TM, Hayes WC, and Gibson J. Finite element

modeling of damage accumulation in trabecular bone under cyclic loading. J.
Biomech. 1994; 27: 145-155.

Huja SS, Katona TR, Burr DB, Garetto LP, and Roberts WE. Microdamage in fatigue
loaded bone types surrounding endosseous implants. Trans. ORS 1999; 24: 748.

Jensen JK, Mosekilde L, and Mosekilde L. A model of vertebral trabecular bone
architecture and its mechanical properties. Bone 1990; 11: 417-423.

Kraynik AM, Neilsen MK, Reinelt DA, and Warren WE. Foam Micromechanics:
Structure and Rheology of Foams, Emulsions, and Cellular Solids. Proceedings
of the NATO Advanced Study Institute on "Foams, Emulsions, and Cellular
Materials." Kluwer, 1997.

Lee TC. Detection and accumulation of microdamage in bone. Trinity College,
Dublin, Ireland 1997.

Levan A and Royer J. Part-circular surface cracks in round bars under tension,
bending and twisting. Intl j Fract 1993; 61: 71-99.

Michel MC, Guo XE, Gibson LJ, McMahon TA, and Hayes WC. Compressive fatigue
behavior of bovine trabecular bone. J. Biomech. 1993; 26: 453-463.

85



Mosekilde L, Viidik A, and Mosekilde L. Correlations between the compressive
strength of iliac and vertebral trabecular bone in normal individuals. Bone 1985;
6: 291-295.

Mosekilde L. Age-related changes in vertebral trabecular bone
Architecture-Assessed by a New Method. Bone 1988; 9: 247-250.

Mosekilde L. Sex differences in age-related loss of vertebral trabecular bone mass
and structure-biomechanical consequences. Bone 1989; 10: 425-432.

Murakami Y. Stress Intensity Factors Handbook. Pergamon Books Ltd, 1987.
Paris PC and Erdogan F. Trans. ASME 1963; 85: 528.
Reilly GC and Currey JD. The development of microcracking during fatigue cycling

in an equine radius loaded in vitro. Trans. ORS 1999; 24: 479.
Rho JY, Roy ME, Tsui TY, and Pharr GM. Elastic properties of microstructural

components of human bone tissue as measured by nanoindentation. J. Biomed.
Mat. Res. 1999; 45: 48-54.

Rooke DP and Cartwright DJ. Compendium of Stress Intensity Factors. Cvoron,
1976.

Schaffler MB, Boyce TM, and Fyhrie DP. Tissue and matrix failure modes in human
compact modes during tensile fatigue. Trans. ORS 1996; 21: 57-10.

Schiller AL. Bones and Joints. Pathology, ed. E Rubin and JL Farber. Lippincott,
1994.

Schulmeister V, van der Burg MWD, van der Giessen E, and Marissen R. A
numerical study of large deformations of low-density elastomeric open-cell
foams. Mech. of Mat. 1998; 30: 125-40.

Silva MJ and Gibson LJ. Modeling the mechanical behavior of vertebral trabecular
bone: effects of age-related changes in micro-structure. Bone 1997; 21: 191-9.

Snyder BD, Piazza S, Edwards WT, and Hayes WC. Role of trabecular morphology
in the etiology of age-related vertebral fractures. Calcif. Tissue. Int. 1993; 53 Supp.
1: S14-S22.

Taylor D and Lee TC. Measuring the shape and size of microcracks in bone. J.
Biomech. 1998; 31: 1177-1180.

van der Burg MWD, Shulmeister V, van der Geissen E, Marissen R. On the linear
elastic properties of regular and random open-cell foam models. J. Cell. Plas.
1997; 33: 31-54.

Vashishth D, Behiri JC, and Bonfielld W. Crack growth resistance in cortical bone:
concept of microcrack toughening. Trans. ORS 1997; 30:763-769.

Vashishth D, Behiri JC, Tanner KE, and Bonfield W. Toughening mechanisms in
cortical bone. Trans. ORS 1996; 21: 56-10.

Vashishth D, Koontz J, Qui S, Cannon-Lundin D, Schaffler MB, and Fyhrie DP.
Characterization of diffuse damage in human trabecular bone. Trans. ORS 1999;
24: 765.

Wright TM and Hayes WC. The fracture mechanics of fatigue crack propagation in
compact bone. J. Mat. Res. Symp. 1976; 7: 637-648.

86



5 Biographical Note

Surekha Vajjhala attended the Massachusetts Institute of Technology from 1992-
1996. As a sophomore she was named an Ely Burchard Scholar by the School of
Humanities and Social Sciences. In recognition of academic and leadership
achievement, she received the Institute's nomination for the Beinecke Brothers
Memorial Scholarship which she was awarded in 1995. In 1996 she became a
member of the Sigma Xi Scientific Research Honor Society and Alpha Sigma Mu
Materials Science and Engineering Honor Society.

After receiving the Bachelor of Science degree in Materials Science and Engineering,
she spent one year as a consultant with the Information Technology practice at Ernst
& Young, LLP Management Consulting in Vienna, Virginia. She returned to MIT
in 1997 to pursue graduate studies in the Department of Materials Science and
Engineering. She conducted her thesis work under the supervision of Professor
Lorna Gibson at the Orthopedic Biomechanics Laboratory at Beth Israel Deaconess
Medical Center and served for one year as the student representative to the
Departmental Committee on Graduate Students.

In January, 1999 she joined Molecular Geodesics, Inc. (MGI), a biomimetic materials
start-up in Boston, Massachusetts. After completing the Master of Science degree in
June 1999, she will continue her work in research and development of
microstructural architectures for industrial and biomedical applications with MGI.

87





APPENDIX: Deriving a stress analysis factor for a semi-circular surface crack on a
trabecular strut

For each trabecular strut, we can compute the strain energy release rate, G
(Anderson, 1995) using the equation

K 2  2  K2 (A.1)
G=-'-+KI+K "',(.1

E E 2y
where KI, K 1, and KmI, are the opening, tearing, and twisting mode stress intensity
factors for a surface crack on a cylindrical beam.

The shear modulus g is given by:

E

2(1 + v)'
where v is Poisson's ratio for the solid.

The strain energy release rate can be used to determine an effective stress intensity
factor for the opening mode:

K2

G =-K, or
E

K = GE.

Substituting equation A.1 for G, we get:

Kf = VX2+ K, + K2(1+v). (A.2)

Previous studies give the stress intensity factors for semi-circular surface cracks on
cylindrical beams (Levan and Royer, 1993; Murakami, 1987):

K= 0.513a wa (A.3)

K= .758y-1 ,M

K1, = -0.325r. , -

where KB and Kj are stress intensity factors for the opening mode under bending
and tension, respectively. For the selected crack geometry, the stress intensity factor
for the tearing mode K11=O at the crack front.

The bending moment ab, axial stress a, and twisting moment Tm can be calculated
using data obtained from FEA:
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CT - -2. A4
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Or T, 2
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where SM 1 and SM 2 are the bending moments about two orthogonal normal axes,
SM 3 is the twisting moment about the transverse axis, and SF1 is the beam axial
force.

We combine KB and KT to obtain K:

K =K + K (A.5)

Replacing KIby the relationship above and noting that K 1=O, equation A.2 becomes:

Ke = (K + KI) + K,(1+v). ( A.6)

Substituting the relations from A.3, we get

K,, = 4(0.513c, + 0.758a )2 + (-0.325r.)2(1 + v)- ii. (A.7)

Finally, after using the relations from A.4 and simplifying, we get:

AKI'f = f((A + B) 2 + Qa

where

(0.513 x 4 ) SM + SM2A = _
r 3 7

B (0.758)SFB- =,and

(- 325 x 2)SM3 1+2

r 3c
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