14.581 International Trade — Lecture 3: The Ricardian Model (Theory) —

Dave Donaldson

Spring 2011

Taxonomy of neoclassical trade models.

- Standard Ricardian model: Dornbush, Fischer and Samuelson (AER 1977).
 - Free trade equilibrium.
 - Comparative statics.
- Multi-country extensions.
- The origins of cross-country technological differences.

- As we saw last week, in a neoclassical trade model, comparative advantage, i.e. differences in relative autarky prices, is the rationale for trade.
- Differences in autarky prices can have two origins:
 - Demand (periphery of the field).
 - Supply (core of the field).
 - Sicardian theory: Technological differences.
 - Factor proportion theory: Factor endowment differences.

Taxonomy of Neoclassical Trade Models

- In order to shed light on the role of technological and factor endowment differences:
 - Ricardian theory: assumes only one factor of production.
 - Factor proportions (Heckscher-Ohlin/Ricardo-Viner) theory: rules out technological differences.
- Neither set of assumptions is realistic, but both may be useful depending on the question one tries to answer:
 - If you want to understand the impact of the rise of China on real wages in the US, Ricardian theory is a natural place to start.
 - If you want to study its effects on the skill premium, more factors will (obviously) be needed.
- Note that:
 - Technological and factor endowment differences are exogenously given.
 - No relationship between technology and factor endowments (Skill-biased technological change?)

- Taxonomy of neoclassical trade models.
- Standard Ricardian model: Dornbush, Fischer and Samuelson (AER 1977).
 - Free trade equilibrium.
 - Comparative statics.
- Multi-country extensions.
- The origins of cross-country technological differences.

- Consider a world economy with two countries: Home and Foreign.
 - Asterisk denotes variables related to the Foreign country.
- Ricardian models differ from other neoclassical trade models in that there only is **one factor** of production.
 - Equivalently, you can think that there are many (nontradable) factors, but that they can all be aggregated into a single composite.
 - And if a factor is perfectly mobile then its return will be equalized across countries (and hence not generate comparative advantage) anyway.
- We denote by:
 - L and L^* the endowments of labor (in efficiency units) in the two countries.
 - w and w* the wages (in efficiency units) in the two countries.

- There is a **continuum** of goods indexed by $z \in [0, 1]$.
- Since there are CRTS, we can define the (constant) unit labor requirements in both countries: a(z) and $a^*(z)$.
- a(z) and $a^{*}(z)$ capture all we need to know about technology in the two countries.
- Wlog, we order goods such that $A(z) \equiv \frac{a^*(z)}{a(z)}$ is decreasing.
 - Hence Home has a comparative advantage in the low-z goods.
 - For expositional simplicity, we'll assume strict monotonicity.

Free trade equilibrium (I): Efficient international specialization

- Previous supply-side assumptions are all we need to make qualitative predictions about pattern of trade.
- Let p(z) denote the price of good z in both countries, under free trade.
- Profit-maximization requires:

 $p(z) - wa(z) \leq 0$, w equality if z is produced at Home (1) $p(z) - w^*a^*(z) \leq 0$, w equality if z is produced Abroad (2)

Proposition: There exists *z̃* ∈ [0, 1] such that Home produces all goods *z* < *z̃* and Foreign produces all goods *z̃* > *z*

Standard Ricardian Model

Free trade equilibrium (I): Efficient international specialization

• **Proof:** By contradiction. Suppose that there exists z' < z such that z produced at Home and z' is produced abroad. (1) and (2) imply

$$p(z) - wa(z) = 0$$

$$p(z') - wa(z') \leq 0$$

$$p(z') - w^*a^*(z') = 0$$

$$p(z) - w^*a^*(z) \leq 0$$

This implies

$$\textit{wa}\left(z\right)\textit{w}^{*}\textit{a}^{*}\left(z'\right)=\textit{p}\left(z\right)\textit{p}\left(z'\right)\leq\textit{wa}\left(z'\right)\textit{w}^{*}\textit{a}^{*}\left(z\right)\textrm{,}$$

which can be rearranged as

$$a^{*}\left(z'\right)/a\left(z'
ight)\leq a^{*}\left(z
ight)/a\left(z
ight)$$

This contradicts A strictly decreasing.

Free trade equilibrium (I): Efficient international specialization

- Proposition simply states that Home should produce and specialize in the goods in which it has a CA.
- Note that:
 - Proposition does not rely on continuum of goods.
 - But continuum of goods and continuity of A is important to derive:

$$A(\tilde{z}) = \frac{w}{w^*} \equiv \omega \tag{3}$$

- Equation (3) is the first of DFS's two equilibrium conditions:
 - Conditional on wages, goods should be produced in the country where it is cheaper to do so.
- To complete characterization of free trade equilibrium, we need look at the demand side to pin down the relative wage ω .

- Consumers have identical Cobb-Douglas prefs around the world.
- We denote by $b(z) \in (0,1)$ the share of expenditure on good z:

$$b(z) = \frac{p(z) c(z)}{wL} = \frac{p(z) c^{*}(z)}{w^{*}L^{*}}$$

where c(z) and $c^{*}(z)$ are consumptions at Home and Abroad.

• By definition, shares of expenditure satisfy: $\int_{0}^{1} b(z) dz = 1$.

Standard Ricardian Model

Free trade equilibrium (II): trade balance

- Let us denote by $\theta(\tilde{z}) \equiv \int_0^z b(z)$ the fraction of income spent (*in both countries*) on goods produced at Home.
- Trade balance requires

$$heta\left(\widetilde{z}
ight)w^{*}L^{*}=\left[1- heta\left(\widetilde{z}
ight)
ight]wL$$

- where LHS \equiv Home exports; RHS \equiv Home imports.
- Previous equation can be rearranged as

$$\omega = \frac{\theta(\tilde{z})}{1 - \theta(\tilde{z})} \left(\frac{L^*}{L}\right) \equiv B(\tilde{z}).$$
(4)

 Note that B' > 0: an increase in ž leads to a trade surplus at Home, which must be compensated by an increase in Home's relative wage ω

Standard Ricardian Model

Putting things together

- Efficient international specialization, ie Equation (3), and trade balance, ie Equation (4), jointly determine (*ž*, ω).
- Note: this figure is essentially a set of relative labor demand and labor supply curves.

A quick note on the gains from trade

- Since Ricardian model is a neoclassical model, general results derived in Lecture 1 hold.
- However, one can directly show the existence of gains from trade in this environment.

• Argument:

- Take *w* as the numeraire under autarky and free trade.
- So indirect utility of Home representative household only depends on $p\left(\cdot\right)$.
- For goods *z* produced at Home under free trade: no change compared to autarky.
- For goods z produced in Foreign under free trade: $p(z) = w^* a^*(z) < a(z)$.
- Since all prices are constant or go down, indirect utility must go up.

- Taxonomy of neoclassical trade models.
- Standard Ricardian model: Dornbush, Fischer and Samuelson (AER 1977).
 - Free trade equilibrium.
 - Comparative statics.
- Multi-country extensions.
- The origins of cross-country technological differences.

What Are the Consequences of (Relative) Country Growth? One of many classical comparative statics exercises using DFS (1977)

- Suppose that *L**/*L* goes up (eg rise of China):
 - ω goes up and \tilde{z} goes down.
 - At initial wages, an increase in L^*/L creates a trade deficit in Foreign, which must be compensated by an increase in ω .

What are the Consequences of (Relative) Country Growth?

- Increase in L*/L raises indirect utility, i.e. real wage, of representative household at Home and lowers it in Foreign:
 - Take w as the numeraire before and after the change in L^*/L .
 - For goods z whose production remains at Home: no change in p(z).
 - For goods z whose production remains in Foreign: $\omega \nearrow w^* \searrow \Rightarrow p(z) = w^*a^*(z) \searrow$.
 - For goods z whose production moves in Foreign: $w^*a^*(z) \le a(z) \Rightarrow p(z) \searrow$.
 - So Home gains. Similar logic implies welfare loss in Foreign.

• Comments:

- In spite of CRS at the industry-level, everything is as if we had DRS at the country-level.
- As Foreign's size increases, it specializes in sectors in which it is relatively less productive (compared to Home), which worsens its terms-of trade, and so, lowers real GDP per capita.
- The flatter the A schedule, the smaller this effect.
- Acemoglu and Ventura (QJE, 2002) exploit this to get convergence in a global AK growth model (see Lecture 17).

What are the Consequences of Technological Change?

- There are many ways to model technological change:
 -) Global uniform technological change: for all z, $\widehat{a}(z) = \widehat{a}^*(z) = x > 0$.
 - Foreign uniform technological change: for all z, $\hat{a}(z) = 0$, but $\hat{a}^*(z) = x > 0$.
 - International transfer of the most efficient technology: for all z, $a(z) = a^*(z)$ (Offshoring?)
- Using the same logic as in the previous comparative static exercise, one can easily check that:
 - Global uniform technological change increases welfare everywhere.
 - Foreign uniform technological change increases welfare everywhere (For Foreign, this depends on Cobb-Douglas assumption).
 - If Home has the most efficient technology, a(z) < a* (z) initially, then it will lose from international transfer (no gains from trade).

Other Comparative Static Exercises

Transfer problem

- Suppose that there is T > 0 such that:
 - Home's income is equal to wL + T,
 - Foreign's income is equal to $w^*L^* T$.
- If preferences are identical in both countries, transfers do not affect the trade balance condition:

$$\left[1-\theta\left(\widetilde{z}\right)\right]\left(wL+T\right)-\theta\left(\widetilde{z}\right)\left(w^{*}L^{*}-T\right)=T$$

 \Leftrightarrow

$$\theta\left(\widetilde{z}\right)w^{*}L^{*}=\left[1-\theta\left(\widetilde{z}\right)\right]wL.$$

- So there are no terms-of-trade effect.
- If Home consumption is biased towards Home goods, $\theta(z) > \theta^*(z)$ for all z, then transfer further improves Home's terms-of trade.
- See Dekle, Eaton, and Kortum (2007) for a recent application.

Adding Trade Costs

- As we will see in Week 8, there is an abundance of evidence that international trade is impeded by significant trade costs.
 - It is therefore attractive if a model permits the easy inclusion of trade costs—to potentially bring it closer to the data.
 - TCs can be hard to add to some trade models, and easy(ier) to add to others.
- TCs turn out to be easy to add to DFS 1977 (and many other models we'll see), if we assume a particular 'iceberg' (Samuelson, 1954) form for TCs:
 - This just means that if trade costs are $\tau > 1$, then whenever one unit of a good is shipped internationally only $1/\tau$ units arrive. ($\tau = 1$ is free trade).
- This means that:
 - Home will produce goods z that satisfy: $wa(z) \leq \tau w^* a^*(z)$.
 - And Abroad will produce goods z that satisfy: $w^*a^*(z) \leq \tau wa(z)$.

What Are the Consequences of Trade Costs?

- We now have a range of (endogenously determined) non-traded goods.
 - Defined by two cutoffs: H exports z ∈ [0, ž*], F exports z ∈ [ž, 1]; both H and F also make the range of non-traded goods, z ∈ (ž*, ž).
 - See DFS 1977 for equations that generalize the new trade balance equations in the presence of TCs to determine ω .

- Taxonomy of neoclassical trade models.
- Standard Ricardian model: Dornbush, Fischer and Samuelson (AER 1977).
 - Free trade equilibrium.
 - Comparative statics.
- Multi-country extensions.
- The origins of cross-country technological differences.

Multi-country extensions

- DFS 1977 provides extremely elegant version of the Ricardian model:
 - Characterization of free trade equilibrium boils down to finding (\tilde{z}, ω) using efficient international specialization and trade balance.
- Problem is that this approach does not easily extend to economies with more than two countries.
 - In the two-country case, each country specializes in the goods in which it has a CA compared to the other country.
 - Who is the other country if there are more than 2?
- Multi-country extensions of the Ricardian model:
 - Jones (1961)
 - Costinot (2009)
 - Wilson (1980)
 - Eaton and Kortum (2002)
 - Costinot, Donaldson and Komunjer (2010)

- Assume N countries, G goods.
- **Trick:** restrict attention to situations where each country only produces one good ("Assignment").
- Characterize the properties of optimal assignment.

• Main result:

Optimal assignment of countries to goods, within any 'class of assignments' (see paper for details), will minimize the product of their unit labor requirements.

- Assume N countries, G goods.
- **Trick:** put enough structure on the variation of unit-labor requirements across countries and industries to bring back two-country intuition.
- Suppose that:
 - countries i = 1, ..., N have characteristics $\gamma^i \in \Gamma$.
 - goods g = 1, ..., G have characteristics $\sigma^g \in \Sigma$.

• $a(\sigma, \gamma) \equiv$ unit labor requirement in σ -sector and γ -country.

Multi-country extensions Costinot (2009)

- Definition a (σ, γ) is strictly log-submodular if for any $\sigma > \sigma'$ and $\gamma > \gamma'$, a (σ, γ) a $(\sigma', \gamma') < a(\sigma, \gamma') a(\sigma', \gamma)$.
- If a is strictly positive, this can be rearranged as

$$\mathsf{a}\left(\sigma,\gamma\right)/\,\mathsf{a}\left(\sigma',\gamma\right)<\,\mathsf{a}\left(\sigma,\gamma'\right)/\,\mathsf{a}\left(\sigma',\gamma'\right).$$

- In other words, high- γ countries have a comparative advantage in high- σ sectors.
- Examples:
 - In Krugman (1986), $a(\sigma^s, \gamma^c) \equiv \exp(-\sigma^s \gamma^c)$, where σ^s is an index of good s's "technological intensity" and γ^c is a measure of country c's closeness to the world "technological frontier".
 - In Nunn (QJE, 2007), $a(\sigma^s, \gamma^c) = \sigma^s \gamma^c$, where σ^s is good s's "contract intensity" and γ^c is country c's quality of contracting institutions.

Multi-country extensions Costinot (2009)

- Proposition If a (σ, γ) is log-submodular, then high-γ countries specialize in high-σ sectors.
- Proof: By contradiction. Suppose that there exists γ > γ' and σ > σ' such that country γ produces good σ' and country γ' produces good σ. Then profit maximization implies

$$p(\sigma') - w(\gamma) a(\sigma', \gamma) = 0$$

$$p(\sigma) - w(\gamma) a(\sigma, \gamma) \leq 0$$

$$p(\sigma) - w(\gamma') a(\sigma, \gamma') = 0$$

$$p(\sigma') - w(\gamma') a(\sigma', \gamma') \leq 0$$

This implies

$$\mathsf{a}\left(\sigma,\gamma'\right)\mathsf{a}\left(\sigma',\gamma\right)\leq\mathsf{a}\left(\sigma,\gamma\right)\mathsf{a}\left(\sigma',\gamma'\right)$$

which contradicts a log-submodular.

ł

- Same as in DFS 1977, but with multiple countries and more general preferences.
- **Trick:** Although predicting the exact pattern of trade is difficult in general, one doesn't actually need to know this to make comparative static predictions.
- At the aggregate level, Ricardian model is similar to an exchange-economy in which countries trade their own labor for the labor of other countries.
 - Since labor supply is fixed, changes in wages can be derived from changes in (aggregate) labor demand.
 - Once changes in wages are known, changes in all prices, and hence, changes in welfare can be derived.

• **Trick:** For each country *i* and each good *z*, they assume that productivity, 1/a(z), is drawn from a Fréchet distribution:

$$F(1/a) = \exp\left(-T_i a^{\theta}\right)$$

• EK show that only this distribution will deliver certain closed forms.

- Why? Fréchet is an extreme value distribution and perfect competition selects extreme values (lowest prices).
- EK also describe some realistic features of this distribution.
- Like Wilson (and unlike Jones), no attempt at predicting which goods countries trade:
 - Instead focus on bilateral trade flows and their implications for wages.
- Unlike Wilson, trade flows only depend on a few parameters (T_i, θ) .
 - This allows for calibration and counterfactual analysis.
 - This methodological approach has had a large impact on the field.

- Taxonomy of neoclassical trade models.
- Standard Ricardian model: Dornbush, Fischer and Samuelson (AER 1977).
 - Free trade equilibrium.
 - Comparative statics.
- Multi-country extensions.
- The origins of cross-country technological differences.

The Origins of Technological Differences Across Countries

• Obvious limitation of the Ricardian model:

Where do productivity differences across countries come from?

• For some goods (eg agricultural goods):

Clearly some production characteristics are immobile (eg weather conditions; Portuguese vs. English wine)

But for other goods (eg manufacturing goods):

Why don't the most productive firms reproduce their production process everywhere?

• "Institutions and Trade" literature offers answer to this question

• Basic Idea:

- Even if firms have access to same technological know-how around the world, institutional differences across countries may affect how firms will organize their production process, and, in turn, their productivity.
- If institutional differences affect productivity relatively more in some sectors, than institutions become source of comparative advantage.

• General Theme in the "Institutions and Trade" Literature:

Countries with "better institutions" tend to be relatively more productive, and so to specialize, in sectors that are more "institutionally dependent".

Sontract Enforcement:

Acemoglu, Antras, Helpman (2007), Antras (2005), Costinot* (2009), Levchenko (2007), Nunn (2007), Vogel (2007).

Financial Institutions:

Beck (2000), Kletzer, Bardhan (1987), Matsuyama* (2005), Manova (2007).

Labor Market Institutions:

Davidson, Martin, Matusz (1999), Cunat and Melitz* (2007), Helpman, Itskhoki (2006).

(* denote papers explicitly building on DFS 1977)

• Starting point:

Division of labor \equiv key determinant of productivity differences.

• Basic trade-off:

Gains from specialization
 ⇒ vary with complexity of production process (sector-specific)

● Transaction costs ⇒ vary with quality of contract enforcement (country-specific)

• Two steps:

- Under autarky, trade-off between these 2 forces pins down the extent of the division of labor across sectors in each country.
- Under free trade, these endogenous differences in the efficient organization of production determine the pattern of trade.

- 2 countries, one factor of production, and a continuum of goods.
- Workers are endowed with 1 unit of labor in both countries.
- Technology (I): Complementarity. In order to produce each good z, a continuum of tasks t ∈ [0, z] must be performed:

$$q(z) = \min_{t \in T_z} \left[q_t(z) \right]$$

• **Technology (II): Increasing returns**. Before performing a task, workers must learn how to perform it:

$$l_{t}(z) = q_{t}(z) + f_{t}$$

- For simplicity, suppose that fixed training costs are s.t. $\int_{0}^{z} f_{t} dt = z$
- Sectors differ in terms of **complexity** *z*: the more complex a good is, the longer it takes to learn how to produce it

- A crucial function of economic institutions: contract enforcement.
- Contracts assign tasks to workers.
- Better institutions—either formal or informal—increase the probability that workers perform their contractual obligations.
- Let $e^{-\frac{1}{\theta}}$ and $e^{-\frac{1}{\theta^*}}$ denote this probability at Home and Abroad.
- So if Home has better institutions: θ > θ*:

- In each country and sector z, firms choose "division of labor" N ≡ number of workers cooperating on each unit of good z.
- Conditional on the extent of the division of labor, (expected) unit labor requirements at Home can be expressed as:

$$\mathsf{a}\left(\mathsf{z},\mathsf{N}
ight)=rac{\mathsf{z}\mathsf{e}^{rac{\mathsf{N}}{ heta}}}{\left(1-rac{\mathsf{z}}{\mathsf{N}}
ight)}$$

• In a competitive equilibrium, N will be chosen optimally:

$$a(z) = \min_{N} a(z, N)$$

• Similar expressions hold for $a^*(z, N)$ and $a^*(z)$ Abroad.

- Proposition If $\theta > \theta^*$, then $A(z) \equiv a^*(z) / a(z)$ is decreasing in z.
- From that point on, we can use DFS 1977 to determine the pattern of trade and do comparative statics.
- One benefit of micro-foundations is that they impose some structure on A as a function of θ and θ*:
 - So we can ask what will be the welfare impact of institutional improvements at Home and Abroad?
- The same result easily generalizes to multiple countries by setting " $\gamma^i\equiv\theta$ " and " $\sigma^g\equiv z$ "
 - Key prediction is that $a(\sigma, \gamma)$ is log-submodular

- Institutional trade theories differ in terms of content given to notions of institutional quality (γ) and institutional dependence (σ) .
- Examples:
 - Matsuyama (2005): $\gamma \equiv$ "credit access"; $\sigma \equiv$ "pledgeability"
 - Cunat and Melitz (2007): $\gamma \equiv$ "rigidity labor market"; $\sigma \equiv$ "volatility"
- However institutional trade theories share same fundamental objective: Providing micro-foundations for the log-submodularity of $a(\sigma, \gamma)$.
- Key theoretical question:

Why are high- γ countries relatively more productive in high- σ sectors?

See problem set for details!

- Non-homothetic preferences: Matsuyama (2000)
 - Goods are indexed according to priority.
 - Home has a comparative advantage in the goods with lowest priority.
- External economies of scale: Grossman and Rossi-Hansberg (2009)
 - Unit labor requirements depend on total output in a given country-industry.
 - Like institutional models, *a* is endogenous, but there is a two-way relationship between trade on productivity.

14.581 International Economics I Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.