
PAVEMENT PERMIT SYSTEM INFRASTRUCTURE: UML BASED DESIGN
BY

Rajesh Prasad

BACHELOR OF TECHNOLOGY IN CIVIL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, 1990

SUBMITTED TO THE DEPARTMENT OF CIVIL AND ENVIRONMENTAL

ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Master of Engineering
IN CIVIL AND ENVIRONMENTAL ENGINEERING

AT THE

Massachusetts Institute of Technology
JUNE 2001

@2001 RAJESH PRASAD ALL RIGHTS RESERVED.

THE AUTHOR HEREBY GRANTS TO MIT PERMISSION TO REPRODUCE AND TO

DISTRIBUTE PUBLICLY PAPER AND ELECTRONIC COPIES OF THIS THESIS

DOCUMENT IN WHOLE OR IN PART.

SIGNATURE OF AUTHOR:

RAJESH PRASAD

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING
MAY 11, 2001

CERTIFIED BY:

GEORG KO R, PH. D.
SENIOR LECTURER, CIVIL AND ENVIRONMENTAL ENGINEERING

THESIS SUPERVISOR

CERTIFIED BY:

- RAL BUYUKOYRK, PH. D
CHAIRMAN, DEPARTMENTAL COMMITTEE ON GRA ATE STUDIES

MASSACHUSETTS INSTiTUTE
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

JUN 0 4 2001

LIBRARIES

PAVEMENT PERMIT SYSTEM INFRASTRUCTURE: UML BASED DESIGN
By

RAJESH PRASAD

Submitted to the Department of Civil and Environmental Engineering Department on
May 11, 2001,

in partial fulfillment of the requirements for the degrees of Master Of Engineering in
Civil and Environmental Engineering

Abstract

Distributed systems have complex interactions that are difficult to understand. This is
true of any large application. Vague system specifications and poor designs are a still
major problem even in today's Internet era. A failure to follow specifications or poor
design can introduce errors with very severe results. Therefore there is a great need for
using efficient specifications and design methods.

UML, the Unified Modeling Language, is viewed as the answer to this problem. It
simplifies the complex process of software design, making a "blueprint" for construction.
In this thesis, I apply the UML to the modeling of requirements and design for a
Pavement Permit System project.

The Pavement Permit System is a web-based application for automating the permit
application and issuance process for the Public Works Department in the Town of
Arlington, MA. This system allows utilities, such as gas or phone companies, as well as
independent contractors, to obtain permits over the Internet to do work in public streets. It
performs a variety of checks before granting a permit. Besides this it provides other
capabilities like restricting streets, generating billing data and performing other
manipulations of administrative data.

This thesis explores the issues related to the use of UML as applied to the Pavement
Permit System design and development. As a case study we applied UML based
techniques to the requirements specification and design of the Permit System. There were
significant benefits derived from this. It provided for a better understanding of the
requirements leading to a clearer requirements specification and subsequent design. In the
end the software developed for the application reflected the design very well and there
was a relatively smooth integration of the components and timely release of the product.

Thesis Supervisor: G. Kocur
Title: Senior Lecturer

Acknowledgments

I would like to thank Dr. George Kocur for initiating the fabulous Pavement Permit

System Project for our Master of Engineering Project. The project not only helped us

understand large projects, but also provided a strong basis for this thesis. He constantly

provided us his helping hand during the course of execution of the project and also during

the writing of this thesis. I am very grateful for his help and encouragement, without

which, I am certain, we would not have been able to bring the project and thesis to a

successful culmination.

I would also like to thank Mr. Ron Santosuosso and the other staff of the Department of

Public Works, Arlington, for their help and cooperation during the Pavement Permit

System project. They made a great contribution towards the completion of our project.

I am very grateful to the professors and the teaching assistants in our department for their

inputs during the year, in making me an IT professional. I would also like to thank my

colleagues in the M.Eng. 2001, for their help during the course of the year.

Finally, I would like to thank my parents, my wife, my little daughter, Akansha, my

brother, his wife, my in-laws and also my uncle and his family for their great support

during this year. Without their love and affection, I would not have successfully

completed the course.

Table of Contents

1 Introduction ... 13

1.1 Overview .. 13

1.2 Preamble.. 13

1.2.1 The Problem statement.. 13

1.2.2 Object-oriented view ... 14

1.2.3 The UM L and e-W orld... 15

1.3 M otivation .. 16

1.4 Thesis Overview.. 17

2 bject Oriented ara..1

2.1 Object-Oriented Concepts And Principles .. 19

2.2 Object-Oriented Analysis... 20

2.3 Object-Oriented Design.. 21

2.4 Conventional Vs. 00 Approaches ... 22

.ML A Theoretical Perspective............................4

3.1 UM L-Overview ... 25

3.2 UM L: M odeling Concepts ... 25

3.3 UM L M eta-M odel ... 26

3.4 UM L M eta-M odel: Terminology.. 28

3.4.1 Use cases ... 28

3.4.2 Use case Diagram .. 29

3.4.3 Use Case Relationships .. 31

3.4.4 Generalization .. 31

3.4.5 Extend.. 31

3.5 Class Diagram s... 32

3.5.1 Association ... 34

3.5.2 Attributes.. 34

3.5.3 Operations ... 34

3.5.4 Constraints Rules.. 36

7 of 98

3.5.5 When to Use Class Diagrams... 36

3.6 Interaction D iagram s .. 37

3.6.1 Sequence D iagram s ... 37

3.7 Component Diagram & Deployment Diagram .. 39

3.8 C ollaboration D iagram .. 42

3.9 A ctivity D iagram ... 42

3.10 State D iagram s ... 44

4 Pavement Permit System .. 46

4.1 Problem D escription.. 46

4.2 Requirements of the Proposed System... 47

4.2.1 Contractors and Utility Companies (External Users) Perspective 47

4.2.2 The internal user's perspective... 48

4.2.3 G eneral Perspective... 49

5 Pavement Permit System - Use Cases 50
5 .1 O verview 50

5.2 U se C ases 5 1

5.2.1 Use Case for Accessing Permits menu - Internal User.........................51

5.2.2 Use Case for making a new application- Internal User.........................52

5.2.3 Use-Case for searching permits by Internal User..................................54

5.2.4 Use Case to view permits issued within last 30 days by Internal User.....55

5.2.5 Use Case for editing an existing permit ... 55

5.2.6 Use Case for deleting an existing permit .. 56

5.2.7 Use-Case on street restrictions administration 56

5.2.8 Use-Case on street restriction addition: .. 56

5.2.9 Use-Case on street restriction editing.. 57

5.2.10 Use-Case on street restriction deleting:... 57

5.2.11 Use case on listing all current street restrictions 58

5.2.12 Use case on listing all street restrictions in the entire history 58

5.2.13 Use case on Companies Administration .. 58

5.2.14 Use-Case on company/utility company addition: 59

8 of 98

5.2.15 Use-Case on contractor/utility company editing 59

5.2.16 Use-Case on company/utility company deleting:..................................60

5.2.17 Use case on listing all contractor/utility company: 60

6 UML Application To Pavement Permit System o@999961

6.1 U se C ase D iagram ... 61

6.2 C lass D iagram s... 62

6.2.1 P erm it C lass... 63

6.2.2 C om pany C lass... 65

6.2.3 R estriction C lass.. 66

6.2.4 H oliday C lass .. 66

6 .2.5 O ption C lass .. . 67

6.2.6 R eport C lass .. 68

6.2.7 F A Q C lass .. . 69

6.2.8 Class Diagram for Pavement Permit System 70

6.3 Sequence D iagram ... 73

6.3.1 Sequence Diagram For Adding A Street Restriction 73

6.3.2 Sequence Diagram For Deleting Data On A Holiday 74

6.3.3 Sequence Diagram For Permit Issuance..75

6.4 State D iagram s ... 75

6.5 C om ponent D iagram s.. 76

8 Aofendi....... ...8

9 fReferences ...*9

9 of 98

List of Figures

Figure 3-1 UML Meta Model... 27

Figure 3-2 Use Case Diagram - Features .. 29

Figure 3-3 Use Case Diagram - Example.. 30

Figure 3-4 A ctor In U se case... 31

Figure 3-5 Use Case: Extends Diagram.. 32

Figure 3-6 Class Diagram Concepts (Source: UMLTM Quick Reference for Rational

R o se).. 3 3

Figure 3-7 Class Diagram Interactions - Example .. 33

Figure 3-8 C lass E xam ple ... 35

Figure 3-9 Class Diagrams - Other Concepts (Source: UMLTM Quick Reference for

R ational R ose).. . . 37

Figure 3-10 Sequence Diagram Concepts (Source: UMLTM Quick Reference for Rational

R o se).. 3 8

Figure 3-11 Sequence Diagram Example.. 39

Figure 3-12 Component and Deployment Diagram (Source: UMLTM Quick Reference for

R ational R ose)... . 40

Figure 3-13 Component Diagram Example ... 41

Figure 3-14 Deployment Diagram Example ... 41

Figure 3-15 Collaboration Diagram... 42

Figure 3-16 Activity Diagram Example (Based on UML Distilled, Martin Fowler) 43

Figure 3-17 State Diagram Example (Based on UML Distilled: Martin Fowler) 44

Figure 4-1 Paper B ased Perm it... 46

Figure 5-1 Use-case Diagram: Access Permits Menu.. 51

Figure 5-2 Apply For New Permit Use-Case Diagram...52

Figure 6-1 Use Case Diagram: Permit Application ... 61

Figure 6-2 Perm it C lass... 64

Figure 6-3 C om pany C lass... 65

Figure 6-4 R estrictions C lass .. 66

10 of 98

Figure 6-5 H oliday C lass.. 67

Figure 6-6 O ption C lass ... 68

Figure 6-7 R eport C lass.. 69

Figure 6-8 FA Q C lass ... 70

Figure 6-9 Class Diagram-Pavement Permit System..71

Figure 6-10 Pavement Permit System Data-Model (Source: Web Application

Development Using Open Source Technologies and Java by Wolfgang Andreas

K lim k e)..7 2

Figure 6-11 Sequence Diagram For Adding A Street Restriction 73

Figure 6-12 Sequence Diagram For Editing Company Data 74

Figure 6-13 Sequence Diagram For Deleting Data On A Holiday 74

Figure 6-14 Sequence Diagram For Permit Issuance..75

Figure 6-15 Permits: State Diagram... 76

Figure 6-16 Component Diagram ... 77

Figure 8-1 Pavement Permit System: Internal User Main ... 79

Figure 8-2 Companies Main Menu ... 80

Figure 8-3 Perm its M ain m enu... 81

Figure 8-4 Restrictions Main Menu ... 82

Figure 8-5 Holiday Restrictions Main Menu ... 83

Figure 8-6 Miscellaneous Options ... 84

Figure 8-7 Export Billing data to MS-Excel..85

Figure 8-8 Reports on Permits ... 86

Figure 8-9 FA Q M enu .. 87

Figure 8-10 Street Opening Permit System Help... 88

Figure 8-11 About The Software ... 89

Figure 8-12 Complete Permit Application .. 90

Figure 8-13 Login Screen for External Users ... 91

Figure 8-14 List of C om panies... 92

Figure 8-15 A dd a R estriction.. 93

Figure 8-16 Edit a Holiday Information... 94

Figure 8-17 D elete the FA Q ... 95

11 of 98

Figure 8-18 Billing Data ... 96

Figure 8-19 Reports on Perm its ... 97

12 of 98

1 Introduction

1.1 Overview

This thesis examines the application of the UML based design techniques to software

development. We use the Pavement Permit System as a case study for the application of

the UML techniques. This case study helps us better understand the abstract concepts of

object-oriented design and of UML.

1.2 Preamble

1.2.1 The Problem statement

Worldwide, there is an insatiable demand for software. The advent of the Internet has

fuelled the demand further. The future of software can be reasonably predicted from the

visible trends that it's going to be more complex and it's going to be far more distributed.

It's going to be far more complex mainly because of demand-pull and supply-push, to use

an economic analogy. User expectations for what software can do are exceedingly high.

Furthermore, what is possible is far greater now than just a few years ago. Although the

cost of computing has plummeted, yet the cost and complexity of software development

have continued to increase. Future systems will be far more distributed for similar

reasons.

The new e-world brings a lot of power and has created exciting times for professional

software developers, but that power comes at a high development cost. Concurrent,

distributed systems have extremely complex interactions that can be hard to understand,

let alone predict. Vague specifications are a major problem. In the past, the specifications

for a monolithic system only affected the single system, and if it didn't work exactly as

specified, the impact was limited to just that system. But now a business system may

have to interoperate with another system halfway around the world, both of which may

be written by people who have never heard of each other. A failure to follow

13 of 98

specifications can introduce errors that propagate around the world. One cannot take a

snapshot of a distributed system for backup or reboot it if part of it fails. The entire

system must keep going in spite of failures, errors, or data corruption of some of its parts.

Most systems are now real-time (online rather than batch) systems. Timing concerns

matter a great deal to customers and partners. On top of everything else, performance of

complex systems is often nonlinear and cannot be predicted by simple extrapolation.

Although it has created exciting times for the professional software developers, the trends

show that no amount of heroic programming will ever suffice to meet this demand.

Furthermore, as software continues to weave itself deeply into the fabric of society, the

stakes have become higher. Moreover, it is still very true that building complex software

of quality and of scale is still fundamentally a hard problem. Simply put, this means that,

all the latest technology trends notwithstanding, deploying quality software is still an

engineering problem. Moreover, unfortunately, software bugs are still considered just a

normal part of the territory, but now, they may manifest themselves in the fall of a

business or even worse, in the loss of a human life.

The challenge then is what can one do about it? There is a powerful school of thought

that believes that one can use the same kinds of approaches available to engineers in

every field: modeling before construction, architecture based on experience, a process

based on best practices, building with reusable components, and the use of tools to

leverage the developer's time and skill. This is manifested in the need for a practical and

effective tool to help the designers to take on the challenges of the modern day software

development. It is here that the modem day concept of object-oriented approach and

UML based design comes in very handy.

1.2.2 Object-oriented view

Object-oriented analysis and design, through its concepts and methods, provides many

advantages to today's software development environment. The most obvious advantage of

object-oriented design and analysis is its ability and ease of reuse of objects from other

designs. Structural or functional design techniques fail miserably in the category of reuse

of code and design. The reason being that real world problems differ substantially in

14 of 98

structure and function. However, many real world problems are composed of the same

objects and those objects are expected to maintain their properties and behavior no matter

the domain.

Object-Oriented Software Architecture (OOSA) changes the way one thinks about

systems. The OOSA way of thinking is more natural for most people than the techniques

of structured analysis and design. End users and business people think naturally in term

of objects, events, and triggers. We can create Object-Oriented (00) diagrams that they

can relate to and thus make the design process more comprehensible and effective

In object-oriented styles, architectures are composed of objects that contain and manage

their own internal data and provide well-defined interface services that allow other

objects to use them. Object-oriented diagrams show collections of objects and the way

each object makes use of the services provided by other objects.

1.2.3 The UML and e-World

The Unified Modeling Language is designed to be distributed, concurrent, and connected.

It is well suited to the new demands of the brave new e-world. It is based on objects.

Objects are distributed -- each one maintains its own state, distinct from all others. They

are concurrent -- each one can potentially execute in parallel with all others. Also they are

connected -- each one can send messages to others through a Web of links. UML is not

associated with one platform or programming language; therefore it is well suited to

bridge networks of different systems. UML was designed with extensibility in mind, so it

can adapt to new issues as and when they arise.

The UML as a modeling language is evolutionary and general-purpose, has broad

applicability, is tool-supported, and is now the industry-standard for specifying,

visualizing, constructing, and documenting the artifacts of a system-intensive process.

The language is broadly applicable to different types of systems software and non-

software, domains i.e. business versus software, and methods and processes. The UML

enables and supports (but does not require nor mandate) a use-case-driven, architecture-

centric, iterative, and incremental process that is object oriented and component based.

15 of 98

The UML enables the capturing, communicating, and leveraging of knowledge. The

models capture knowledge i.e. semantics, the architectural views organize knowledge in

accordance with guidelines that express idioms of usage, and diagrams depict knowledge

of syntax- for communication.

1.3 Motivation

We are developing a web-based application for the Public Works Department of the town

of Arlington, MA, the "Pavement Permit System", which essentially aims to automate the

street opening permit application and processing system for the department. This system

allows utilities, such as gas, electric or phone companies, as well as independent

contractors, to obtain permits over the Internet that allow them to do work in public

streets. It performs a variety of checks on whether a permit should be granted. It provides

the capability to restrict streets and times where permits are issued; generate the data

required for billing pertaining to permits that were issued and allows management of the

overall permits process.

It is a very typical software application that is representative of the modem day trends in

the software development. The application is of a reasonable size and had to be

developed in a fairly short span of time by a small team.

As discussed earlier, proper requirements specification and design is essential to the

development of any software application and UML is a very important tool towards that

end.

For me, this project was the first real world large software assignment. I understand the

project very well. Therefore, I felt that I should study the application of the principles of

UML based design for this software application, which will greatly help me understand

the bigger picture of the application of object oriented design and application of UML

techniques.

16 of 98

From my work experience in the oil industry, I know that formalized planning and design

are crucial to the successful execution of any project. Although software projects are a

relatively new venture for me, I believe that the basic premises mentioned above do

remain the same for the software projects too. Therefore, in order to be able to take future

challenges in the software sphere, it was necessary that I understand the application of

object-oriented paradigm and application of UML. These reasons combined with the

factors mentioned above motivated me to write the thesis on this topic.

1.4 Thesis Overview

There are a total of seven chapters in this thesis. We provide a brief introduction to each

of the chapters below.

Chapter One is an introduction to the thesis. In this chapter, we provide an overview of

the thesis, along with the motivation for writing it. We also present the structure of the

thesis.

Chapter two deals with a theoretical input on the abstract concepts of the object-oriented

paradigm. Since, this forms a very important background for the use of UML, we discuss

the paradigm in some detail therein

Next in chapter three, we provide the theoretical principles of UML itself. We discuss the

concepts that form the UML to provide a framework for the case study.

In chapter four, we introduce the case study itself, i.e. the Pavement Permit System, the

problem it solves, its requirements premises and so on. The intent is to provide the

background for application of the UML techniques to it.

In chapter five we provide the representative use-cases for the Pavement Permit system,

as derived from the requirements specification.

17 of 98

In chapter six, we actually apply the principles and techniques of UML to the Pavement

permit system. The chapter contains various diagrams that were derived by applying the

UML techniques to the case study, along with explanations.

In chapter seven, we provide our conclusions for the thesis. We also provide an appendix,

which shows the screen shots of representative portions of the actual system.

18 of 98

2 Object Oriented Paradigm

The UML based design techniques are basically derived from the object oriented

concepts and principles. Here we give a brief description on the object-oriented

paradigm. (The material in this chapter is drawn, in part, from Software Engineering A

Practitioner's Approach: Roger S Pressman)

2.1 Object-Oriented Concepts And Principles

There are several ways to look at problems that have to be solved using a software-based

solution. One approach that is widely used for problem solving is the object-oriented

viewpoint. The objects are manipulated with a collection of functions (called methods,

operations, or services) and they communicate with each other through a messaging

protocol. Objects are categorized into classes and subclasses.

The definition of object consists of describing its attributes, behaviors, operations, and

messages. An object encapsulates both data and the processing that is applied to the data.

This characteristic is very important as it enables classes of objects to be built and

therefore inherently leads to libraries of reusable classes and objects. As reuse is a

critically important attribute of modem software engineering, the object-oriented

paradigm has become very is attractive to many software development organizations.

Additionally, the software components derived using the object oriented paradigm show

design characteristics (e.g. functional independence, information hiding) that are essential

ingredients of high-quality software.

Object-oriented software engineering follows the same steps as conventional approaches.

Analysis identifies objects and classes that are relevant to the problem domain: design

provides the architecture, interface, and component-level detail: implementation (using

19 of 98

an object-oriented language) transforms design into code; and testing exercises the

object-oriented architecture, interfaces and components.

The product of this effort is a set of object-oriented models. These models describe the

requirements, design, and code and test process for a system or product. In order to

ensure the correctness of the process, at each stage, object-oriented work products are

reviewed for clarity, correctness, completeness and consistency with customer

requirements and with one another.

2.2 Object-Oriented Analysis

Before one can build an object-oriented system, one needs to define the classes (objects)

that represent the problem to be solved, in the manner in which the classes relate to and

interact with one another, the inner workings i.e. attributes and operations of objects, and

the communication mechanisms i.e. messages that allow them to work together. All of

these things are achieved during object-oriented analysis (OOA).

The definition of an object oriented analysis model consists of a description of the static

and dynamic characteristics of classes that describe the system or product.

OOA is important because one cannot build software (object-oriented or otherwise) until

we have reasonable understanding of the system or the product. OOA provides with a

concrete way to represent ones understanding of requirements and then test that

understanding against the customer's perception of the system to be built.

OOA usually begins with a description of use-cases - a scenario based description of how

actors (people, machines, other systems) interact with the product to be built. "Class-

responsibility-collaborator modeling "or other methods translate the information

contained in use-cases into a representation of classes and their collaborations with other

classes. The static and dynamic characteristics of classes are then modeled using the

Unified Modeling Language (or, more rarely, some other method).

20 of 98

The work product of OOA is an analysis model. The analysis model is consists of

graphical or language-based representations that define the attributes of classes,

relationships between classes, their behaviors as well as inter class communication and a

description of class behavior over time.

At each stage the element of the object-oriented analysis model are reviewed for clarity,

correctness, completeness and consistency with customer requirements and with one

another.

Object oriented design transforms the analysis model created using object-oriented

analysis into a design model that serves as a blueprint for software construction.

2.3 Object-Oriented Design

The design of object oriented software requires the definition of a multi-layered software

architecture, the specification of subsystems that perform required functions and provide

infrastructure support, a description of objects (classes) that form the building blocks of

the system, and a description of the communication mechanisms that allow data to flow

between layers, subsystems and objects. Object-oriented design accomplishes all of these

things.

An object oriented system draws upon class definitions that are derived from the analysis

model. Some of these definitions will have to be built from scratch, but many others can

be reused if appropriate design patterns are recognized. OOD establishes a design

blueprint that enables a software engineer to define the 00 architecture in a manner that

maximizes reuse, thereby improving development speed and ending product quality.

OOD is divided into two major activities: system design and object design. System

design creates the product architecture, defining a series of layers that accomplish

specific system functions and identifying the classes that reside at each layer. In addition,

21 of 98

system design considers the specification of three components: the user interface, data

management functions, and task management facilities. Object design focuses on the

internal detail of individual classes, defining attributes, operations and message detail.

An 00 design model encompasses software architecture, user interface description, data

management components, task management facilities, and detailed descriptions of each

class to be used in the system.

At each stage, the elements of the object oriented design model are reviewed for clarity,

correctness, completeness, and consistency with customer requirements and with one

another.

2.4 Conventional Vs. 00 Approaches

Conventional approaches to software design apply a distinct notation and set of heuristics

to map the analysis model into a design model. Each element of conventional analysis

model maps into one or more layers of the design model. Like conventional software

design, OOD applies data design when attributes are represented, interface design when a

messaging model is developed, and component -level (procedural) design for the design

of operations. It is important to note that the architecture of 00 design has more to do

with the collaborations among objects than flow of control between components of the

system.

Within the object-oriented model, the subsystem design is derived by considering overall

customer requirements (represented with use-cases) and also by the events and states that

are externally observable (the object behavior model). Class and object design is mapped

from the description of attributes, operations, and collaborations contained in the model.

The object-relationship model enables message design, and responsibilities design is

derived using the attributes, operations, and collaborations described in the model.

22 of 98

Fichman and Kemerer [FIC92] suggest ten design modeling components that may be

used to compare various conventional and object-oriented design methods:

1. Representation of hierarchy of modules.

2. Specification of data definitions.

3. Specification of procedural logic.

4. Indication of end to end processing sequence.

5. Representation of object states and transitions.

6. Definition of classes and hierarchies.

7. Assignment of operations to classes.

8. Detailed definition of operations.

9. Specification of message connections.

10. Identification of exclusive services.

Because many conventional and object-oriented design approaches are available, it is

difficult to develop a generalized comparison between the two methods. It can be stated,

however, that modeling dimensions 5 through 10 are used more in the object oriented

paradigm and are less used in the structured design or its derivatives.

The OOD landscape consists of a wide variety of object-oriented analysis and design

methods that were proposed during the 1980s and 1990s. These methods established the

foundation for modem OOD notation, design heuristics, and models. Some of these

methods include the "Booch Method", "Rumbaugh Method", the "Jacobson Method", the

"Coad and Yourdon Method".

Although the terminology and process steps for each of these OOD methods differ, the

overall OOD processes are reasonably consistent. To perform object-oriented design, a

software engineer should perform the following generic steps:

1. Describe each subsystem and allocate it to processors and tasks.

2. Choose a design strategy for implementing data management, support for

interface, and management of task.

3. Design a suitable control mechanism for the system.

23 of 98

4. Make object design by creating a procedural representation for each operation

and data structures for class attributes.

5. Perform message design using collaborations between objects and object

relationships.

6. Create the message model.

7. Review the design model and iterate as required.

It is important to note that the design steps discussed above are iterative. This means that

the steps can be executed incrementally, along with additional OOA activities, till a

completed design is produced.

As discussed above, there were various methods that evolved in helping the system

designers in achieving the above stated tasks. However, over a period of time, Booch,

Rumbaugh and Jacobson combined the best features of their individual object-oriented

analysis and design methods into a unified method. The result, called the Unified

Modeling Language (UML) has become widely used in the industry.

24 of 98

3 UML: A Theoretical Perspective

3.1 UML-Overview

UML is a third-generation method for "specifying, visualizing, and documenting the

artifacts of an object-oriented system under development". UML represents the

unification of the earlier Booch, Objectory, and OMT methods, and in addition it also

incorporates ideas from a number of other methodologists. By unifying these three

object-oriented methods, UML provides method that is common, stable, and expressive.

(The material in this chapter is drawn, in part, from UML Distilled, Second Edition: A

Brief Guide to the Standard Object Modeling Language; The Addison-Wesley Object

Technology Series by Martin Fowler, Kendall Scott.)

UML was designed by intentionally making it quiet on process. However, UML does

enable a process that is use-case driven, architecture-centric, and both incremental and

iterative. In can be stated that in many ways, UML tries to codify the best practices that

software people have encountered in successful object-oriented projects worldwide.

Therefore the authors of UML were in many ways, not really the "inventors" of anything

radically new. But, the value that UML brings is that its proponents have observed what

works and what doesn't in the world of object-oriented software development, and then

they packaged that up in the form of a modeling language that scales to systems of

complexity.

3.2 UML: Modeling Concepts

The UML specifies a modeling language that incorporates the object-oriented

community's consensus on core modeling concepts. The developers of the UML had the

following objectives in mind during its development:

25 of 98

* Provide sufficient semantics and notation to address a wide variety of

contemporary modeling issues in a direct and economical fashion.

* Provide sufficient semantics to address expected future modeling issues,

specifically related to component technology, distributed computing, application

frameworks, and executability.

* Provide extensibility mechanisms so individual projects can extend the meta-

model for their application at low cost. It doesn't want users to have to adjust to

the UML meta-model itself.

* Provide extensibility mechanisms so that future modeling approaches could grow

on top of the UML

* Provide sufficient semantics to facilitate model interchange among a variety of

tools.

" Provide sufficient semantics to specify the interface to repositories for the sharing

and storage of model artifacts.

3.3 UML Meta-Model

The purpose of a model is to represent the semantics, physical details, and visualization

of analysis, design, or implementation. The UML meta-model introduces concepts that

are generally useful across many problems and many languages. This is always a

balancing act and lines must be drawn, so there is always something that a method cannot

model directly, no matter how complicated the method is. Agreeing on a common meta-

model has had a great impact on flexibility and compatibility of further developments.

The UML, in its current state, defines a notation and a meta-model. The notation it

defines is the graphical elements displayed in the models. It is the syntax of the modeling

language, for example, the class diagram notation defines how items and concepts such

as class, association, and multiplicity are represented.

Formal methods usually conform to the idea of rigorous specification and design

languages. However, since design is all about seeing the key issues in the development,

formal methods often lead to getting bogged down in minor details. Further, formal

26 of 98

methods are hard to understand and manipulate and often harder to deal with than the

programming languages itself. However, most of the 00 methods have very little rigor

and their notation appeal to our intuition rather than to formal definition. On the whole

this does not seem to have much harm, the methods may be informal but many people

still find them useful that is what counts.

Having said that, it is also to be mentioned that there is a continuous effort on the part of

the 00 community to improve the rigor of the methods without sacrificing the

usefulness. One way of achieving this is to define a meta-model i.e. a diagram that

defines the notation. The diagram below is a small piece of UML meta-model that shows

the relationship among associations and generalizations.

Feature

Structural Behavioral

Feature feature

Parameter

Figure 3-1 UML Meta Model

27 of 98

3.4 UML Meta-Model: Terminology

3.4.1 Use cases

Before defining a use case we need to define a scenario. A scenario is a sequence of steps

that describes an interaction between a user and a system. So if we have a Web-based on-

line store, we might have a "Buy a Product" scenario that would say this:

"The customer browses the catalog and adds desired items to the shopping

basket. When the customer wishes to pay, the customer describes the shipping

and credit card information and confirms the sale. The system checks the

authorization on the credit card and confirms the sale both immediately and

with a follow-up email."

This scenario is one thing that can happen. However, the credit card authorization may

fail. This would be a separate scenario.

A use case therefore is a set of scenarios tied together by a common user goal. A simple

format for capturing a use case involves describing its primary scenario as a sequence of

numbered steps and the alternatives as variations on the sequence.

There is a lot of variation as far as how one might describe the contents of a use-case; the

UML does not specify any standard. One can even add additional standards. For example

one can add a line for pre-conditions, which are things that must be true when the use

case can start. However, it is also to be noted that the amount of detail one needs depends

on the risk involved in the use-case: The more the risk the more detail one needs.

(System size is the largest determinant: in a large system, no use case will have the detail

that a small system will.)

28 of 98

3.4.2 Use case Diagram

A use case diagram is that diagram that captures the interactions between use cases and

actors. It describes the functional requirements of the system and also how outside things

like actors interact at the system boundary, and also what the system does in response.

The diagram below illustrates some features of Use Case Diagrams.

0
Use Case

extension points

Actor

<<extends>>
extension points

Figure 3-2 Use Case Diagram - Features

The diagram below shows a typical use-case diagram for a customer who has to log in to

register with a bookshop.

29 of 98

Login

Customer

Register with
Bookshop

Figure 3-3 Use Case Diagram - Example

In addition to introducing use cases as primary elements in software development,

Jacobson also introduced a diagram for visualizing use cases. The use case diagram is

now an integral part of UML. The important elements of a use case diagram are discussed

here:

3.4.2.1 Actors

An Actor is an entity that is the user of the system: either a human user, or machine or

even another system. It is anything that interacts with the system from the outside or

system boundary. Actors are typically associated with Use Cases. The actors may use the

system either through a graphical user interface, or through a batch interface or through

some other media. An actor's interaction with a use case is documented in a use case

scenario and it details the functions a system must provide to satisfy the user

requirements. The actor is represented as shown in the diagram below.

30 of 98

<<Actor>>

Figure 3-4 Actor In Use case

3.4.3 Use Case Relationships

The interaction between the use cases and the actors are shown as links. In addition to the

links among actors and use cases, one can show several kinds of relationships between

use cases.

3.4.3.1 Include

An element often includes the functioning of another. The include type of relationship in

the use case models indicate that one use case (always) includes the behavior of another.

It is used to avoid having the same subset of behavior in many use cases.

3.4.4 Generalization

One can use use-case generalization kind of relationship when one has one use case that

is similar to another use case but does a bit mot more. In effect this is another way of

capturing alternative scenarios.

3.4.5 Extend

A third relationship is called extend. An element extends the behavior of another. As

used in use case models it indicates that one use case (optionally) extends the behavior of

another. Often, they are used to express alternate flows. Essentially it is similar to

generalization but with more rules to it. With this construct the extending use case may

add behavior to the base use case, but the base use case must declare certain "extension

points", and the extending use case may add additional behavior only at those extension

points. A use case may have many extension points, and an extending use case may

31 of 98

extend one or more of this extension points. One can indicate which ones on the lines

between the use cases on the diagram.

<<extends>>

<<uses>>

Figure 3-5 Use Case: Extends Diagram

Some of the rules that could be applied to the use of these relationships are the following:

" Include should be used when one is repeating oneself in two or more separate use

cases and to avoid repetition.

" Generalization may be used when one is describing a variation on normal

behavior and a more controlled form is needed, declaring ones extension points in

ones' base case.

3.5 Class Diagrams

The class diagram technique has become truly central within object-oriented methods.

The class diagram captures the logical structure of the system i.e. the classes and

associated things that make up the model. It is a static model; i.e. it describes what exists

and what attributes and behavior it has, rather than how something is done. Most of the

object-oriented methods have included some variation of this technique.

There are two principal kinds of static relationships:

" Associations (for example a customer may rent a number of videos)

" Subtypes (a nurse is a kind of person)

32 of 98

Class diagrams also show the attributes and operations of a class and constraints that

apply to the way objects are connected. A typical class diagram is shown below. This

figure shows class diagrams from the theoretical standpoint.

CLASS DIAGRAM Shows the existence of classes and their relationships
in the logical view of a system

Class Name:

Class Name
0.ributt

attribute: data_type
attribute: date-type z initsalue

operation
operation (argjlist) :resuhtype

Parameterized class

Amwn----

template name template definition

template name <actual arguments> class instantiated
from template

Figure 3-6 Class Diagram Concepts (Source: UMLTM Quick Reference for Rational

Rose)

Below we show the various classes and their interaction for a bookstore. It is self-

explanatory.

Inventoryltem Com parn
+ EookGD. string + Address: string
+ QuanttCOnH and long + City string
+ QuanityOnorder: long + CompanyName: string

+ Com paslurnber string
+ GetQOnHand(): ong + Phone: string
+ GetQtyOnOrerq): long + Zip: string

Book Publisher
+ Author: Author + ContactfD: string
+ ratePulished string + Phone. string
+ Genre: string + PublisherName: string
+ Price: string -
+ Title: BookTite 1 + AddPublisher()

+ DelPublisher()
+ AddBook(bool + ModifiPubisher()
" CascelOrdero: long
+ eleteBook(): bool
+ GetQtyOnHand(): long
+ OrderBooki): long

Author Tile
+ AuthorBirthDate: Date + AlternateTitle: string
+ AuthorName: string + ISBN string
+ Biography string + Ke ords: string
+ Comment string + Tie: string

Figure 3-7 Class Diagram Interactions - Example

33 of 98

Class

Catalogue
+ BookList string
+ CatalogueDate: Date

+ AddBook). bool
+ DelBook(): bool ^>-
" GethooJsO Book
" GetFulte trgStrig): BookList
+ GeQtyinCatalogue). long

3.5.1 Association

Associations represent relationships between the instances of classes. For example a

person works for the company; a company has a number of offices. Each association has

two association ends and each of the ends is attached to one of the classes in the

association. The ends can be explicitly named with a label, which is called a role name.

An association end also has multiplicity, which indicates that how many objects may

participate in any given relationship. In general, the multiplicity indicates lower and

upper bounds for the participating objects. The * represents the range 0..Infinity. The

most common multiplicities in practice are 1, *, and 0.. 1.

The arrows on the association lines show navigability. If navigability exists in only one

direction, we call the association a unidirectional association. Similarly, a bi-directional

association contains navigability in both directions. As per UML specification one should

treat associations without arrows to mean that either the navigability is unknown or the

association is bi-directional. Bi-directional associations also include extra constraints,

which is that two navigations are inverses of each other.

3.5.2 Attributes

An attribute is a named slot within a class that describes a range of values that instances

of the class may hold. Depending on the detail in the diagram, the notation for an

attribute can show the attribute's name, type and default value. The UML syntax is

visibility name: type=default Value, where visibility is the same as for operations.

3.5.3 Operations

An operation is that use which can be requested from an object to affect some behavior.

The operations have signature, which describes the actual parameters that are possible

(including possible return values). A "method" is the implementation of an operation. It

34 of 98

stipulates the procedure that affects the results of an operation. Thus operations are the

processes that a class knows to carry out.

Full UML syntax for operations is

Visibility Name Parameter-list): Return-type-expressions (property-string]

Where

* Visibility is + (public), # (protected), or - (private)

" Name is a string

* Parameter-list contains comma separated parameters whose syntax is similar to

that for attributes: direction name: type=default value. The element direction is

used for input (in), output (out), or both (inout) with the default value being in.

" Return-type-expression is a comma-separated list of return types. Most people use

only one return type, but multiple types are allowed.

" Property-string indicates property values that apply to a given operation.

The diagram below shows the attributes and operations of the Customer class for a

typical business application. It shows all the elements discussed above.

Figure 3-8 Class Example

35 of 98

Customer

- Address ring
- Account: CustomerAccount
+$ City: string
+ Country: Country
+ Custome1D: Etring

" FirstName: strng
" La~tLogin: strng
+ Login: string
+ Pasmord: DateTime
+ Preferences CustomerPreferences
+ Surname: string
" Zip: Zip

+ A ddCustomer(String) : bool
+ DeleteCustomero : bool
+ GetAccount(Functional) : CustomerAccount
+ GetCustomerAsXMLO : sring
+ GetPreferenceo : CustomerPreferences
+ Update Customer(xml) : bool

3.5.4 Constraints Rules

The basic constructs of association, attribute, and generalization do specify important

constraints, but they indicate every constraint. These constraints still need to be captured;

and is generally done in the class diagram. The UML allows one to use anything to

describe constraints with the only rule being that one should put them in braces ({}).

3.5.5 When to Use Class Diagrams

Class diagrams are the backbone of nearly all 00 methods. But the richness of the class

diagrams does pose a problem of being overwhelming to use. Some tips on their effective

use are provided below.

* One should start with simple elements like classes associations, attributes,

generalization, and constraints and not try to use all the notations available.

Similarly, other notations should be introduced only when needed.

" One should not draw models for everything but should instead concentrate on the

key areas as it is better to have a few diagrams that one can use and keep up to

date than to have many forgotten, obsolete models.

The diagram below shows typical representations of Association classes, Role names and

derived associations, Aggregation, navigability and multiplicity and also constraints from

the theoretical standpoint.

36 of 98

Associ aion ctasses

A.5s5ciation Name
|Class-I A---ia --- Class-2

a ssociafion
class name

attributs
operation

Aggreqation, navigability, and nunliplicity

Whole Class Name
0_. a gregabon. a compasite aggregaboi

0 nid"',coraf btdirectca, nakegabibty
nawgabe"I'y

Paal Clas~s Namrie Part2 Class Name

Role nates and derived associations

Associaiom
Association Name

Class-I f Css

/Corved snto

Constraints

Clas. 1

icqnstrn int}

: 3 a

Figure 3-9 Class Diagrams - Other Concepts (Source: UMLTM Quick Reference for

Rational Rose)

3.6 Interaction Diagrams

Interaction diagrams are models that describe how groups of objects collaborate in some

behavior. Typically, an interaction diagram captures the behavior of a single use case.

These diagrams show a number of example objects and the messages that are passed

between these objects within the use case.

There are two kinds of interaction diagrams: sequence diagrams and collaboration

diagrams.

3.6.1 Sequence Diagrams

A sequence diagram is defined as an ordered depiction of behavior as a progression of

sequential steps over time. It is used to depict workflow, message passing and how

elements in general co-operate over time to achieve some result. The diagram below

shows the theoretical representation of the interaction diagrams.

37 of 98

Class 2

H 1ardured

INTERACTION DIAGRAMS Show objects in the system and how they interact

Sequence diaoram

actpir name:
Actr class

script text

more script text

bi ct 1 t2CIass narne-

. event
2. operation

3. operaon
Ipararmotor I

4. operation
(parameter list)

biect3 class

5. operation
(parametor listl

Figure 3-10 Sequence Diagram Concepts (Source: UMLTM Quick Reference for Rational

Rose)

The diagram below shows the sequence diagram for the various activities involved in the

validation of the customers in any operation as an example.

38 of 98

SC Q
Customer Login Screen Security Users

Manager

Login

validateUser

checkUserDetail

User Details

vali ate

(Result)
K<-------------

GetName

Figure 3-11 Sequence Diagram Example

Within a sequence diagram an object is shown as a box at the top of a vertical line. This

vertical line is called the objects lifeline. The lifeline represents the objects life during the

interaction. An arrow between the lifelines of two objects represents each message. The

order in which these messages occur is shown top to bottom of the page. Each message is

labeled at minimum with a message name; one can also include the arguments and some

control information. One can also show a self-call, a message that an object sends to

itself, by sending the message arrow back to the same lifeline.

3.7 Component Diagram & Deployment Diagram

A component diagram illustrates the pieces of software and embedded controllers etc.

that will make up the system. It is a level up from the class level. Usually one or more

classes implement a component (or objects at runtime).

39 of 98

A deployment diagram shows how and where the system will be deployed. It displays

physical machines and processors, and the components that run on them.

The diagram below show a typical component diagram and a typical deployment

diagram.

COMPONENT DIAGRAM
Shows the dependencies between software components

component 1

|L----

component2

DEPLOYMENT DIAGRAM
Shows the configuration of runtime processing elements

[node 1 link ra meb node 2

Figure 3-12 Component and Deployment Diagram (Source: UMLTM Quick Reference for

Rational Rose)

The diagram below shows a typical component diagram for a web application. It shows

the various components that form the application and their inter-relationships.

40 of 98

FIrewall

AcceptRequest(): H TML Request
ForwardRequest(): H TML Request
ReturnRes pons e(): H TML Res pon~se.

Web Server

DoRequest(): HTML Response

COM+ Component Environment

Business Logic

XSL Stylesheets

TransrormXML()

ASP Pages

Oracle Database

Poes SQLRequest() : Re cordsft

Figure 3-13 Component Diagram Example

The diagram below shows the deployment diagram for a simple application with four

servers, two for the application, one for the database and one for the warehouse.

Application
Server 2

Warehc
Serv

Databi
Application serv

Server 1

rse
er

se
er

Figure 3-14 Deployment Diagram Example

41 of 98

3.8 Collaboration Diagram

A collaboration diagram is also a type of Interaction diagram. Within the collaboration

diagram, the example objects are shown as icons. As on a sequence diagram, arrows

indicate the messages sent within the given use case. However, in collaboration diagrams,

the numbering on the messages indicates their position in the sequence of activities. The

diagram below shows the sequence in the collaboration diagram for a printing request on

a computer network.

Figure 3-15 Collaboration Diagram

3.9 Activity Diagram

An activity diagram is used to show activities, workflows, conditions to processing and

how work is done in general in the organization. The diagram below shows the activity

diagram for the order processing related activities. This diagram allows one to choose the

order in which to do things. In other words it just states the essential sequencing rules that

should be followed. The strength of the activity diagrams lies in the fact that they support

42 of 98

Computer :Oueue

[printer busy)
12: Store(file)

1: Print(file)

[printer free] 1.1: Print(file)
:PrinterServer I :Printer

I

3.10 State Diagrams

A state diagram is used to show how an element (usually a class) changes state over time

and also the transitions that are allowable along with the conditions for the transitions.

They are familiar techniques to describe the behavior of the system. They describe all the

possible states that a particulai object can get into and how the object's state changes as a

result of the event that reaches the object.

[not all items checked] /get next item

del +d eree items:

Start

Folr

All items checked an all items av ilable

Disptchn I emschecked. [some not in stock]

+ do /initiate delivery

Item rrReceived [some not in stock]

del ered Waiting

Delivered

Figure 3-17 State Diagram Example (Based on UML Distilled: Martin Fowler)

44 of 98

3.10 State Diagrams

A state diagram is used to show how an element (usually a class) changes state over time

and also the transitions that are allowable along with the conditions for the transitions.

They are familiar techniques to describe the behavior of the system. They describe all the

possible states that a particular object can get into and how the object's state changes as a

result of the event that reaches the object.

[not all items cheded] /get next item

dChece tem

Start

All iterns checed4 all items av ilable

tems cheded. [some not in stock]

+do / initiate deliverV:

Item rrReoeived [some not in stock]

del ered Waiting

Delivered

Figure 3-17 State Diagram Example (Based on UML Distilled: Martin Fowler)

44 of 98

The diagram above shows the state diagram for an order in the order processing activity.

The diagram indicates the various states of an order. The state diagrams are good at

describing the behavior of an object across several use cases.

45 of 98

4 Pavement Permit System

4.1 Problem Description

Road construction work in the town of Arlington needs to be approved by the public

works department. The major part of road construction work is the opening of streets, as

required by utility companies (telco, gas, cable TV) and by individual contractors.

At present, utility companies and contractors have to apply for a permit for street opening

in written form i.e. on a standardized form. They apply for the permit by filling out the

standard form and submitting it to the department. The Department then processes the

form. The town officials verify the application regarding location, proposed time, and

occupied space, validity of the contractor registration, his permissions and so on. They

also check against any restrictions that apply on the proposed work. After collection of

the application fee, the permit is finally issued. The current paper form is shown in part

below.

Permit to Open or Occupy

TOWN OF ARLINGTON
ENGINEERING DEPARTMENT

51 Grove Street
Arlington, MA 02476 Dec /8/2000

From this date up to and including Jan/7/2000

DigDug Inc., Boston

in hereby authorized to open, occupy, obstruct and encumber a space not

exceeding 100 feet in length by 8 feet in

width of the travelway-sidewalk in front of the premises Number 234 - 238

on Massachusetts Ave. street for the purpose

of Maintenance of sewer pipes

APPLICATION FEE: $25.00

PERMIT FEE: -. __C_ TOTAL

Figure 4-1 Paper Based Permit

46 of 98

This system has its own disadvantages. It is time intensive for both the permit applicants

and the department personnel. The applicants have to fill out the application and wait for

the department officials to process it. The department officials also have to input a

substantial amount of time to review the application in terms of the conditions that apply

relating to the parameters of the application. Since, on the average 500 applications are

received by the department every year, they have to station at least one person in the

office to take care of the applications. Moreover, the issues of reports and permit search

are also very cumbersome for the paper based application system.

Considering this, it appeared logical to apply modem technology and provided for an

automated system that will be accessible to all concerned and would process the

applications on its own. Therefore, a web based application using the Internet technology

seemed to be the best option to solve the problem.

4.2 Requirements of the Proposed System

Based on the discussions that our team had with the officials at Arlington PWD,

Engineering Department, the following system requirements were identified. We are

categorizing these identified requirements based on the various users of the proposed

system.

4.2.1 Contractors and Utility Companies (External Users) Perspective

The requirements from the contactors and utilities that form the "external users" of the

system are as under:

> The system should be easy to use. This is essential, as the department does not

perceive most of the external users of the system and their agents as very

proficient in the use of the computers.

> The system should be accessible from the web for ubiquitous access.

> The system should provide for a form, which is similar to the currently used form.

47 of 98

The system should allow the external users the fill out the form and provide them

with instant message on the processing results and also the facility to print the

permit if granted.

> The system should provide the users with the reasons for rejection of their

application, when applicable.

> The system should provide the users with the requisite fee for processing of their

application.

> The system should allow the users a search facility, where they should be able for

their own permits issued in the past.

> The system should provide the necessary help / Frequently asked questions

section, to help the external users.

4.2.2 The internal user's perspective

> The system should allow the internal users to specify the valid companies and

relevant information on them as also updating them removing them as needed.

> The system should allow the internal user to specify the restricted streets /

sections and the details thereof.

> The system should allow the internal user to specify other restrictions related to

holidays, valid time of application, etc.

> The system should allow the internal user to be intimated by e-mail when an

application is granted.

> The system should allow the internal user to generate billing information from the

system, which would allow him to prepare the billing summary meeting the

current practice.

> The system should provide help section where information about system's use is

documented.

> The system should allow the internal user to generate reports regarding the

permits issued by the system.

48 of 98

The system should allow the internal user to apply for a permit on a contractor or

companies' behalf and override system decision when rejected, to meet

emergency conditions.

> The system, before issuing a permit should make an exhaustive check on the

restrictive conditions that apply during the proposed time of work, including for

companies' validity for registration, permission on types of work, restrictions on

streets / sections, other restrictions related to holidays and so on.

4.2.3 General Perspective

> The system should allow the internal users to set some miscellaneous setting

applicable to the system as a whole, like, the timings for the week ends, whether

e-mail notification be done, the e-mail id where notification be done, time for

notification / demarcation before work can be undertaken by the contactor, fee

structure etc.

> The system should be integrate with the Pavement Management system and

provide that system with information related to manholes etc. that are added to the

streets, so that the Pavement Management system, can take that into account in

owns own application. The data on streets should be common for both the

applications.

> The system should provide for separate entry points for the external and internal

users.

> The system should also provide for login protection to the application.

> The system should provide for feedback by the users, both internal and external,

so as to improve upon the application and also to help in its maintenance.

> The application configuration should allow for using less expensive components

and as far as possible, freeware / shareware software should be used. This

necessary considering the constraints of the budgetary provisions of the

department.

49 of 98

5 Pavement Permit System - Use Cases

5.1 Overview

From the requirements stated for the pavement permit system in chapter four, several use

cases can be derived. These use cases would essentially contain all the expected user

interaction with the system. The use cases from the internal users' (users from within the

department) perspective would relate to the following elements.

> Companies

> Permits

> Street Restrictions

> Holiday Schedule

> Miscellaneous settings and options

> Billing data transfer

> Reports

> Frequently Asked Questions (FAQs)

> Help and Instructions

Similarly, from the external users' (contractors and utility companies) perspective, the

use cases would relate to mainly the Permits menu. Further, both the groups would also

have login related use cases too.

In view of the fact that a complete listing of all the use cases possible would be beyond

the purpose of the thesis, we are enunciating some of the more important use cases that

we derived.

Each of the use-cases describes the sequence of activities that would occur for that use-

case. We also provide the representative use-case diagrams for some of the use-cases as

50 of 98

examples. The use-case diagrams for the other use-cases are similar. However, in chapter

six also we provide some use-case diagrams for this application.

5.2 Use Cases

Below we provide the use case diagram for the

5.2.1 Use Case for Accessing Permits menu - Internal User

Below we provide a simple use case representation of the use case diagram:

Access Permits
Menu

Internal User

System

Figure 5-1 Use-case Diagram: Access Permits Menu

As seen in the diagram above, there is a basic use case with two actors, namely the

internal user and the system itself. Both the actors interact with the basic use-case,

"Access the Permits Menu" to complete the stated use-case. The complete sequence of

the activities with the main use-case is enumerated below.

1.

2.

The internal user selects "permits menu" from the internal user home page.

The system displays the permits main page. The options provided on the main

page include:

51 of 98

a. "View all permits issued within the last 30 days",

b. "Search for Permits",

c. "Apply for a new permit",

d. "Edit an existing permit" and

e. "Delete an existing permit"

3. Depending on the user selection, the system takes the next action.

5.2.2 Use Case for making a new application- Internal User

Internal Us er

Apply for new
permit

System

Figure 5-2 Apply For New Permit Use-Case Diagram

As seen in the diagram above too, there is a basic use case with two actors, namely the

internal user and the system itself. Both the actors interact with the basic use-case,

"Apply for new permit" to complete the stated use-case. The complete sequence of the

activities with the main use-case is also enumerated below.

1. The internal user chooses the option to fill out a new application for permit from

the Internal User main menu for Permits;

52 of 98

2. The system displays the form for the internal user to fill out for making the permit

application;

3. The internal user fills out the following information;

" Company name

" Type of work the company does

" The company's "DigSafe" number

" Proposed first day of work

" Proposed last day of work

" Type of the proposed work

" Street name where work is proposed

" Premises, from and to where work is proposed on the above mentioned

street

" Length and width of the working area

" Description of the purpose of the work

* Upload any necessary drawing file

" Information on number of openings that are added to or removed from the

street, if any along with the type i.e. telephone manholes, Water Manholes,

Other Openings, Water Gates, Electric Manholes, Sewer Manholes, Catch

Basins, Gas Gates.

" User is also shown important standard information on the application.

4. The internal user submits the application to the system.

5. The system displays the information submitted by the internal user for

confirmation.

6. On confirmation by the internal user in 5. above, the system makes following

checks on the application

" Whether the proposed company is allowed to do the type of work that is

proposed

" Whether a "DigSafe number" is provided

* Whether first day of work is at least 48 hours (from the database) later

than the current time.

53 of 98

* Whether the last day of work is at most 30 days later than the first day of

work, and that it is later than or equal to the first day of work.

" Whether the proposed street is on the currently restricted list

" Whether the proposed range of premises are overlapping a restricted range

of premises on the street

" Whether the proposed date range for work overlaps with the restricted date

ranges on the street

* Whether the proposed work falls on a holiday

* Whether the application is being made on a holiday

* System obtains the information on fee from the database, computes the

application fee, and displays it.

7. If none of the checks fail, the system displays a "permit granted" message along

with the permit itself and with a request to the internal user to get a printable

version to print. The system also updates the database on the permit by adding

this issued permit.

8. The internal user prints the permit.

9. If one or many check fails then the system displays a message on denial of permit

along with the reason for denial. However, it also gives the internal user to

override the system decision and have the permit issued, in which case the steps

in 8 and 9 above are repeated.

10. The internal user may also reapply with changed parameters.

5.2.3 Use-Case for searching permits by Internal User

1. Internal user selects "Search for Specific Applications/Permits" from the

permits menu.

2. System displays "search" page.

3. The system presents the internal user to search the permits in various ways.

The user could select / provide the following parameters:

> Contractor/Utility Company name,

> Permit Number,

54 of 98

Permit Issue Dates; with 'From date' and 'To date'

> Street Name.

4. System searches the database based on the combination of information on the

search provided by the user on the search from and displays the results on a

separate page. This display would be including the important parameters for

the permit.

5. For the entire details the user could click on the hyperlink on the permit

number provided in the display and then the system would then display the

details about the particular permit.

5.2.4 Use Case to view permits issued within last 30 days by Internal User

1. The internal user selects the option on "viewing permits issued within the last 30

days".

2. System searches the database for all permits issued within the last 30 days and

displays the results on a separate page. This display would include the important

parameters of the permit.

3. For the entire details the user could click on the hyperlink on the permit number

provided in the display and then the system would then display the details about

the particular permit.

5.2.5 Use Case for editing an existing permit

1. The internal user provides a permit number to edit on the permits main page.

2. The system presents the requested permit in a separate editable form.

3. The user makes the necessary changes to the permit.

4. The system updates the database and gives a message on "success / error" to the

user. The user can then go back to the permits main menu for further action.

5. In case of error, the database is not updated and the user can go back to the

permits main menu.

55 of 98

5.2.6 Use Case for deleting an existing permit

1. The internal user provides a permit number to edit on the permits main page.

2. The system presents the requested permit in a separate page with details.

3. The internal user confirms deletion of the permit.

4. The system updates the database by deleting the said permit and gives a message

on "success / error" to the user. The user can then go back to the permits main

menu for further action.

5. In case of error, the database is not updated and the user can go back to the

permits main menu.

5.2.7 Use-Case on street restrictions administration

1. Internal user selects option to administer street restrictions from the Internal users

main page;

2. The system displays the restrictions main menu;

3. The restrictions main menu includes options on adding a new restrictions, editing

a restriction, deleting a restriction, listing all current restrictions, listing all

restrictions ever;

4. User chooses an option from above and system displays the relevant page for

further action.

5.2.8 Use-Case on street restriction addition:

1. Internal user selects "Add a New Street Restriction" option from street restrictions

main menu;

2. System displays street restrictions addition form;

3. Users fills out data on the form

> Street name,

> Date of start for the restriction,

> Date when restriction ends,

> Reason for the restriction,

> Status of restriction on it being active or inactive,

56 of 98

> The type of restriction i.e. the whole street or a section only)

4. Based on the user selection of the type of restriction the system would take further

action;

5. If the user selects the "whole street" option, the system would add the entered

data on the restrictions table in the database;

6. If the user selects the "section only" option, the system would display an

additional page with a list of valid premises within the selected street and prompt

the user to enter the start and end premises for the section. Then when the user

provides it, the system would add the user provided data to the database.

7. The system then displays the confirmation ("success/error") page.

8. The confirmation page would have option to go back to the main restrictions

menu.

9. In case of error, the database is not updated and the user can go back to the

Restrictions main menu.

5.2.9 Use-Case on street restriction editing

1. On the restrictions main menu, internal user is given a list of all restrictions from

which he chooses the one to edit.

2. System displays the data on the selected restriction in an editable form.

3. Users makes the changes to the data on the restriction

4. The system updates the database;

5. The system then displays the confirmation ("success/error") page

6. The confirmation page would have option to go back to the main restrictions

menu.

7. In case of error, the database is not updated and the user can go back to the

Restrictions main menu.

5.2.10 Use-Case on street restriction deleting:

1. On the restrictions main menu, internal user is given a list of all restrictions from

which he chooses the one to delete.

57 of 98

2. System displays the data on the selected restriction for user to confirm deletion.

3. Users confirms to delete

4. The system deletes the restriction from the database;

5. The system then displays the confirmation ("success/error") page

6. The confirmation page would have option to go back to the main restrictions

menu.

7. In case of error, the database is not updated and the user can go back to the

Restrictions main menu.

5.2.11 Use case on listing all current street restrictions

1. The internal user selects option to list all current restrictions from the main menu;

2. The system lists all "active" status restrictions to the user from the database.

5.2.12 Use case on listing all street restrictions in the entire history

1. The user selects option to list all restrictions in the history from the main menu;

2. The system lists all "active" status restrictions to the user from the database.

5.2.13 Use case on Companies Administration

1. Internal user selects option to administer information on companies from the

Internal users main page;

2. The system displays the companies main menu;

3. The Companies main menu includes options on adding a new contractor/utility

company, editing a contractor/utility company, deleting a contractor/utility

company, listing all contractor/utility company,

4. User chooses an option from above and system displays the relevant page for

further action.

58 of 98

5.2.14 Use-Case on company/utility company addition:

1. User selects "Add a New company/utility company" option from Companies

Main menu;

2. System displays company/utility company addition form;

3. Users fills out data on the form

> Company Name,

> Company Type,

> License Number,

> Address information (Street, City, State, Zip, Phone, Fax, e-mail),

> Types of Work the contractor does (Gas or Electric or Telco or Cable TV

or Drain/Water/Sewer or Driveway or Other),

> Types of Street Work permitted (i.e. Street Opening Only or Sewer Only

or Water Only or Sewer And Water or Other),

> The Status of the contractor for the Department (Active or Inactive),

> Contact Information for three contact persons as optional (Name, Phone,

Pager, Email

4. The system then adds the user provided data to the database.

5. The system then displays the confirmation ("success/error") page.

6. The confirmation page would have option to go back to the companies' main

menu.

7. In case of error, the database is not updated and the user can go back to the

Restrictions main menu.

5.2.15 Use-Case on contractor/utility company editing

1. On the Companies main menu, user is given a list of all company/utility company

from which he chooses the one to edit.

2. System displays the data on the selected contractor/utility company in an editable

form.

3. Users makes the changes to the data on the contractor/utility company

4. The system updates the database;

59 of 98

5. The system then displays the confirmation ("success/error") page

6. The confirmation page would have option to go back to the companies' main

menu.

7. In case of error, the database is not updated and the user can go back to the

Restrictions main menu.

5.2.16 Use-Case on company/utility company deleting:

1. On the companies' main menu, internal user is given a list of all contractor/utility

company from which he chooses the one to delete.

2. System displays the data on the selected contractor/utility company for user to

confirm deletion.

3. Users confirms to delete

4. The system deletes the company/utility company from the database;

5. The system then displays the confirmation ("success/error") page

8. The confirmation page would have option to go back to the companies' main

menu.

9. In case of error, the database is not updated and the user can go back to the

Restrictions main menu.

5.2.17 Use case on listing all contractor/utility company:

1. The user selects option to list all contractor/utility company from the main menu;

2. The system lists all company/utility company to the user from the database, in a

concise format, with links so that the user can click on it to get the full details on a

separate page.

60 of 98

6 UML Application To Pavement Permit System

The UML design techniques that were discussed in chapter three can be successfully

applied to any project. Below, we apply these techniques to a representative part of the

Pavement Permit System that we outlined in chapter four. We also provide the necessary

explanations for the diagrams.

6.1 Use Case Diagram

The use-case diagram technique can be applied very effectively to the Pavement permit

system. As a representative application, below we draw the use-case diagram for the use

case on permit applications. The diagram captures the basic elements in the permit

application use case.

check For
appl for-----------------Various
permitRestrictions

Deny~ permit

em

External User

Internal User
Print P ermit <<extends >>

Apprv
Permit

Add Permit
to Data base

Figure 6-1 Use Case Diagram: Permit Application

61 of 98

There are three actors namely, the Internal User, the System and the External User. There

are six basic use-cases namely:

" Apply for the permit

* Check for various restrictions

" Approve permit

" Deny permit

" Add permit to database

" Print permit

The various relationships between the actors and the use-cases are shown in the diagram.

This diagram is basically a pictorial representation of the use-case sequence described

above in the "Use-Case" section for the permit application process.

Moreover, this is a representative diagram for this particular use-case. The same

diagrammatic technique can be applied to all the use cases described above. It is a very

powerful tool and captures the essence of the use-cases in a very simple but effective

manner.

6.2 Class Diagrams

As stated earlier, the class diagram technique is central within object-oriented methods. A

class diagram describes the types of the objects in the system and various kinds of static

relationships that exist among them. Below we show the various classes that are central

to the Pavement Permit system application. The classes are shown along with their

attributes and operations.

62 of 98

6.2.1 Permit Class

The Permit class has attributes that pertain to the permits that are issued by the system, in

response to applications made by the internal or external users. The operations within this

class take care of the all the attributes related to the individual permits and also of the

other operations that are performed on the permits data by the system. The diagram

below shows the permit class along with its attributes and operations.

The symbols used have the following meanings:

o + Public class

o - Private class

o $ Static class.

63 of 98

Permit

- periD: string
- perlssueDate: string
- perComID: string
- perComName: string
- perWorkType: string
- perDigSafe: string
- perApproved: string
- perValidFrom: string
- perValidUntil: string
- perStreetWorkType: string
- perStreetName: string
- perStreetlD: string
- perintersection: string
- perStartPremises: string
- perEndPremises: string
- perintersectingStreetName: string
- perintersectingStreetD: string
- perWorkAreaLength: string
- perWorkAreaWidth: string
- perPurpose: string
- perApplicationFee: string
- perTelephoneManholes: string
- perWaterManholes: string
- perSewerManholes: string
- perElectricManholes: string
- perCatchBasins: string
- perWaterGates: string
- perGasGates: string
- perOtherOpenings: string
- perTimeStamp: string
- perActive: string
- perLastEditDate: string
- perLastEditUser: string
- perDrawingFile: string
- perFileContentLength: string
- perFileLength: string

+ addPermit(MyDbBean)
+ computeApplicationFee(MyDbBean)
+ deleteDrawingFileo
+ deletePermit(MyDbBean)
+ displayEnteredData(StringBuffer)
+ getDrawingFileo : File
+ moveDrawingFile(File)
+ perGetAttributeo : String
+ perSetAttributeo
+ readCompanyData(MyDbBean)
+ readOptionsData(MyDbBean)
+ readPermitData(MyDbBean)
+ readPermitFormData(MultipartRequest)
+ readPermitFormData(HttpServletRequest)
+ readPermitFormID(HttpServletRequest)
+ readSupplementaryData(MyDbBean)
+ sendNotificationEmail()
+ setPerissueDate()
+ setPerLastEditDate()
+ setPerLastEditUser(String)
+ setPerTimeStampo
+ updatePermit(MyDbBean)
- checkApplication(MyDbBean, StringBuffer) boolean
- checkCompanyActive(StringBuffer) : boolean
- checkCompanyStreetWorkType(StringBuffer) : boolean
- checkCompanyWorkType(StringBuffer) : boolean
- checkDateRange(StringBuffer) : boolean
- checkDigSafeNumber(StringBuffer) : boolean
- checkDrawingFile(StringBuffer) : boolean
- checkHoliday(MyDbBean, StringBuffer) : boolean
- checkLastDayFirstDay(StringBuffer) : boolean
- checkNotificationTim e(StringBuffer) boolean
- checkPremisesValid(MyDbBean, StringBuffer) : boolean
- checkStreetNotRestricted(MyDbBean, StringBuffer) : boolean
- checkWeekEnd(StringBuffer) : boolean
- checkWorkingArea(StringBuffer) : boolean

Figure 6-2 Permit Class

64 of 98

6.2.2 Company Class

The Company class has attributes that pertain to the companies that are allowed by the

company to apply for the permit. The operations within the company class take care of

the all the attributes related to the companies and also related to operations on the

companies data by the application. The diagram below shows the company class along

with its attributes and methods.

Figure 6-3 Company Class

65 of 98

Company
- conPager: string
- conEmail: string
- conPhone: string
- conName: string
- comStreetWorkType: string
- comWorkType: string
- comActie: string
- comEmail: string
- comFax: string
- comPhone: string

comZip: string
- comState: string
- comCity: string
- comStreet: string
- comLicense: string
- comType: string
- comName: string
- comID: string

+ addCompany(MyDbBean)
+ addContacts(MyDbBean)
+ addStreetWorkTypes(MyDbBean)
+ addWorkTypes(MyDbBean)
+ deleteCompany(MyDbBean)
+ deleteContacts(MyDbBean)
+ deleteStreetWorkTypes(MyDbBean)
+ deleteWorkTypes(MyDbBean)
+ getAttribute(: string
+ hasStreetWorkType(St ring) : boolean
+ hasWorkType(String) : boolean
+$ readAllCompanies(MyDbBean) : ResultSet
+ readComlD(MyDbBean)
+ readCompanyData(MyDbBean)
+ readCompanyForrn Data(HttpServetRequest)
+ readCompanyWorkTypeData(MyDbBean)
+ readContactData(MyDbBean)
+ setAttribute(String)
+ updateCompany(MyDbBean)
+ updateContacts(MyDbBean)
+ updateStreetWorkTypes(MyDbBean)
+ updateWorkTypes(MyDbBean)

6.2.3 Restriction Class

The Restrictions class has attributes that pertain to the street restrictions that are applied

towards review of application for the permit. The operations within the restrictions class

take care of the all the attributes related to the individual restrictions and also related to

operations on the restrictions data by the application. The diagram below shows the

Restriction class along with its attributes and methods.

Figure 6-4 Restrictions Class

6.2.4 Holiday Class

The Holiday class has attributes that pertain to the holidays that apply within the year.

This works in conjunction with street restrictions towards review of application for the

permit. The operations within the Holiday class takes care of the all the attributes related

to the individual holidays and also related to operations on them by the application. The

diagram below shows the Holiday class along with its attributes and methods.

66 of 98

Restriction

- resActive: string
- resComment: string
- resEndDate: string
- resStartDate: string
- resEndPremises: string
- resStartPremiese: string
- resWholeStreet: string
- resStreetName: string
- resiD: string

+ addStreetRestriction(MyDbBean)
+ deleteRestriction(MyDbBean)
+ readAllRestrictionCurrent(MyDbBean) : ResultSet
+ readRestrictionEditData(MyDbBean) : ResultSet
+ updateRestriction(MyDbBean)
+ getResAttributeo : String
+ readAllRestrictionHistory(MyDbBean) : ResultSet
+$ readAllRestrictions(MyDbBean) : ResultSet
+ readRestrictionDeleteFormData(HttpServletRequest)
+ readRestrictionEditFormData(HttpServletRequest)
+ readStreetRestrictionFormData(HttpServeletRequest)
+ setResAttribute(String)

Figure 6-5 Holiday Class

6.2.5 Option Class

The Options class has attributes that pertain to the miscellaneous options that apply to the

other parameters needed for permit issuance. The operations within this class take care of

the all the attributes related to the various options and also related to operations on the

options data by the application. The diagram below shows the Option class along with its

attributes and methods.

67 of 98

Holiday
- holDate: string
- holName: string

+ addHoliday(MyDbBean)
+ deleteHoliday(MyDbBean)
+ getAttributeo : String
+ readHolidayDate(MyDbBean)
+ readHolidayFormData(HttpServletRequest)
+ readHolName(MyDbBean)
+ setAttribute(String)
+ updateHoliday(MyDbBean)

Figure 6-6 Option Class

6.2.6 Report Class

The Report class has attributes that pertain to the generation of reports by the system. In

line with the other classes, this class also has attributes and operation related to reports.

The operations within this class take care of the all the attributes related to the various

reports that are generated by the system. The diagram below shows the Report class

along with its attributes and methods.

68 of 98

Option

- admEmailAddress: string
- admMailServer: string
- admEmailNotification: string
- admMaximumValidDays: string

admDrawingFileRequired: string
- admPremisesChecking: string
- admStreetWorkTypeChecking: string
- admWorkTypeChecking: string
- admissueHolidays: string
- admWeekEndTo3: string
- admWeekEndTo2: string
- admWeekEndTol: string
- admWeekEndFrom3: string
- admWeekEndFrom2: string
- admWeekEndFroml: string
- admissueWeekEnd: string
- admMinNotify: string
- admAddFee3: string
- admTo3: string
- admFrom3: string
- admAddFee2: string
- admTo2: string
- admFrom2: string
- admAddFeel: string
- admTol: string
- admFroml: string
- admBasicFee: string

+ getAdmAttribute() : String
+ readOptionFormData(HttpServletRequest)
+ setAttribute(String)
+ updateOption(MyDbBean)

Figure 6-7 Report Class

6.2.7 FAQ Class

The FAQ class has attributes that pertain to the generation of FAQs page by the internal

user using the system. In line with the other classes, this class also has attributes and

operation related to generation of FAQs. The operations within this class take care of the

all the attributes related to the generation of FAQs. The diagram below shows the FAQ

class along with its attributes and methods.

69 of 98

Report

- repEndDate: string
- repStartDate: string
- reStreetName: string
- repCompanyName: string
- repCompanylD: int
- repStreetlD: int

+ getAllPermits(MyDbBean) : ResultSet
+ getAllStrComComboPer(MyDbBean) : ResultSet
+ getAttributeintType() : int
+ getAttributeStringTypeo : String
+ getNoOfPerComW iseAllStr(MyDbBean): ResultSet
+ getNoOfPerStrWiseAllCom(MyDbBean): ResultSet
+$ readAllCompaniesForReport(MyDbBean) : ResultSet
+$ readAllStreetsForReport(MyDbBean) : ResultSet
+ readReportFormData(HttpServletRequest)
+ setAttributelntType(int)
+ setAttributeStringType(String)
+ setComlDFromComName(MyDbBean)
+ setStreetlDFromStreetName(MyDbBean)

Figure 6-8 FAQ Class

6.2.8 Class Diagram for Pavement Permit System

The diagram below shows the relationship within the various classes shown above. This

diagram shows the interaction between the classes. It is also appropriate to mention that

these sets of classes need to be supported by other supplementary classes that are not

shown below. These supplementary classes are language related like MyHTML class,

which has built in functionality to create HTML tables, dropdowns, and so on in the

Pavement Permit System look and feel format. The MyCalendar class has functionality to

deal with all the date and time related issues for the project. There are a host of other such

classes, which may be looked up in the project documentation.

70 of 98

FAQ

- faqPosition: string
- faqiD: string
- faqAnswer: string
- faqQuestion: string

+ addNewFAQToDatabase(MyDbBean)
+ deleteFAQFromDatabase(MyDbBean)
+$ displayAlIFAQ(ResultSet) : String
+ editFAQInDatabase(MyDbBean)
+ getAttribute() : String
+ getFAQForEdit(MyDbBean) : ResultSet
+$ IistAlIFAQ(MyDbBean) : ResultSet
+$ IistAllFAQForDropDown(MyDbBean) : ResultSet
+ IistFAQAddAdminData(MyDbBean) : ResultSet
+ readAddFormData(HttpServetRequest)
+ readEditDeleteFormData(String)
+ readFAQEditedFormData(HttpServletRequest)
+ setAttibute(String)

Company_ _Restrction _Holidays_

Report OtosFAQ

Figure 6-9 Class Diagram-Pavement Permit System

The class diagram for the pavement Permit system shown above is very similar to the

actual data-model for the project. The similarities are by design. Below we show the data-

model for the project. The diagram shows the data-model in detail. The only differences

are that there are some additional tables in the data-model like "CompanyWorkType" etc.

These are also present in the class diagram but are incorporated within the company class

itself. The reason for this is that the data-model has been normalized and therefore items

were placed in separate tables items to avoid duplication. Moreover, in the class diagrams

there are also some helper classes like "MyHTML" and so on, which are not present in

the data-model.

71 of 98

Note: The Street Premises Table and the Login Tables are not shown.

CompanyType -

-CoTType: Enum

Contact

-ConCompanyID: int
-ConName: String 0.. n
-ConEmail: String
-ConPhone: String
-ConPager: String

CompanyWorkType

- CWTCompanyID: int 1.
-CWTType: Enum

CompanyStreetWorkType

- CSTCompanyD: int
- CSTType: Enum

Company

- ComiD: int
- ComName: String O..n
- ComType: Enum 0..

t..n - ComLicense: String
- ComStreet: String
- ComCity: String
- ComState: String
- ComZip: String
- ComPhone: String
- ComFax: String
- ComEmail: String
- ComActive: Enum

WorkType

-__-WoTType: Enum

StreetWorkType
-..n - SWTType: Enum

1..n

Street

- StrID: int
- StrName: String

Holiday

- HolName: String
- HolDate: Date

0..n

FAQ

- FaqQuestion: String
- FaqAnswer: String
- FaqlD: int
- FaqPosition: int

Admin

- AdmBasicFee: int
- AdmFrom1: int
- AdmTol: int
- AdmAddFeel: int
- AdmFErom2: int
- AdmTo2: int
- AdmAddFee2: int
- AdmFrom3: int
- AdmTo3: int
- AdmAddFee3: int
- AdmMinNotify: int
- AdmissueWeekend: Enum
- AdmWeekendFroml: String
- AdmWeekendFrom2: String
- AdmWeekendFrom3: String
- AdmWeekendTol: String
- AdmWeekendTo2: String
- AdmWeekendTo3: String

-AdmissueHolidays: Enum
- AdmWorkTypeChecling: Enum
- AdmStreetWorkTypeCheckng: Enum
- AdmPremisesChecing: Enum
- AdmDrawingFileRequired: Enum
- AdmMaximumValidDays: int
- AdmEmailNotification: Enum
- AdmMailServer: String
- AdmEmailAddress: String

Figure 6-10 Pavement Permit System Data-Model (Source: Web Application Development Using
Open Source Technologies and Java by Wolfgang Andreas Klimke)

72 of 98

Permit

- PerID: int
- Perlssue: Date
- PerComID: int
- PerWorkType: Enum
- PerDigSafe: String
- PerApproved: Enum
- PerValidFrom: Date
- PerValidUntil: Date
- PerStreetWorkType: Enum
- PerStreetD: int
- PerStartPremises: int
- PerEndPremises: int
- PerWorkAreaLength: int
- PerWorkAreaWidth: int
- PerPurpose: String
- PerApplicationFee: int

PerTelephoneManholes: int
- PerWaterManholes: int
- PerSewerManholes: int
- PerElectricManholes int
- PerCatchBasins: int
- PerWaterGates: int
- PerGasGates int
- PerOtherOpenings int
- PerTimeStamp: Date
- PerActive: Enum
- PerLastEditDate: Date
- PerLastEditUser String

PerDrawingFile: String
- PerFileContentType: String

PerFileLength: int

Restriction

- ResID: int
- ResStreetiD: int
- ResWholeStreet: Enum
- ResStartPremises: int
- ResEndPremises: int
- ResStartDate: Date
- ResEndDate: Date

Resvomment: String
- ResActive: Enum

6.3 Sequence Diagram

The interaction diagrams are models that describe how groups of objects collaborate in

some behavior. The sequence diagram is one way of representing the interaction

diagrams.

Within the Pavement permit system there are various instances when objects are added,

edited, deleted or listed and so on. Below, we show a set of sequence diagrams that

exhibit the sequence of activities involved in activities mentioned earlier.

6.3.1 Sequence Diagram For Adding A Street Restriction

The diagram below shows the sequence of activities and operations in adding a street

restriction.

ns_Window AddRestrictionWindow Iytm

select-AddOptiono=:Show Forr

submitNewRestriction()

addR

errorlnAddig

RestrictionTable

estrictionToDatabase()

Figure 6-11 Sequence Diagram For Adding A Street Restriction

6.3.1.1 Sequence Diagram For Editing Company Data

The diagram below shows the sequence of activities and operations in editing data on a

company.

73 of 98

restrictio

Company
Main Window

select Company

Compa
Win

ToEdito

ny Edit System
dow

submitEditedData 3 ,

errorEditinglnDatabase()
~ - -- ------------------ 4--------------------

editlnDatabase(

Figure 6-12 Sequence Diagram For Editing Company Data

6.3.2 Sequence Diagram For Deleting Data On A Holiday

The diagram below shows the sequence of activities and operations in deleting data on a

holiday.

Hoilday Main Holiday delete
Screen Screen

selectHolidaytoDeleteo

submitToDeleteo

errorDeleting romDatabase()

tern Database

deleteFromDatabaseo

Figure 6-13 Sequence Diagram For Deleting Data On A Holiday

74 of 98

Database

).

Sys

6.3.3 Sequence Diagram For Permit Issuance

The diagram below shows the sequence of activities and operations in applying for,

review and issuance or rejection of permit.

permit Application permit System restrictions Checker Issued
window pcation in System Permit

showNewApplicationQ

Apply(

checkForRestrictiono

- - not OKO Permit Denied

foundOko

Figure 6-14 Sequence Diagram For Permit Issuance

6.4 State Diagrams

State Diagrams are familiar technique to describe the behavior of a system. They describe

all of the possible states that a particular object can get into and how the object's state

changes as a result of events that reach the object.

Within the pavement permit system we are showing below the state diagram for the

permits. The diagram shows the various states that the permit is within the permit

application process.

75 of 98

Permit
A lied

+ Fill Formo:

ocedure

PermitP
Denied-

Permit

Permit Issued

Application
Parameters
Changed

Permit

End
Added To

PePrm it
database

Application
Process

Permit Pending Review

;heckRestriction(): boolean
checkCompanyWorkTypeo: boolean
CheckCompanyActive(): boolean
checkWorkingArea(: boolean
checkWeekEndo: boolean
:heckStreetNotRestricted(): boolean
checkPremisesValid(: boolean
checkNotificationTime(): boolean
checkLastDay FirstDay(: boolean
checkHoliday(: boolean
heckDrawingFile(: boolean

checkDigSafeNumbero: boolean
checkCompanyStreetWorkTypeo: boolean
heckApplicationo: boolean

.heckDateRange() boolean

Permit
Approved

Figure 6-15 Permits: State Diagram

6.5 Component Diagrams

A component diagram shows the various components in a system and their dependencies.

The diagram below shows the basic component diagram for the application. It shows the

various components of the system and their interaction.

76 of 98

Start
Permit

Application
Pr

c
c

c
c
c

c

Web
ServerApache

JSP / Servlet JSP Pages
Engine and Serviets

Busine ss MySOL
Logic Database

Figure 6-16 Component Diagram

In the figure above, the Business Logic refers to the business rules that the application

aims to model. It consists of the rules that the customers' organization follows and which

the application maps. The other components are self-explanatory.

77 of 98

7 Conclusions

Today, when a substantial portion of software applications being developed is of

intensely distributed nature and sophisticated configuration, there is a more pronounced

need for more logical and adept technology for aiding the software process. The object

oriented technology and UML have been a great help towards this end.

We have seen that during the development of the Pavement Permit System, the

application of the object oriented paradigm and use of UML for the software process has

been very successful. The requirements specification for the project was substantially

simplified on account of use of the UML technology. Similarly, object oriented

technology and UML also made the design of the project much easier and also more

understandable across the team and other stakeholders. The project was completed in

time and the application not only mirrored the requirements specification, but also the

software design. In the end the software developed met the users expectation and

therefore was a success. We are providing the screen shots of the actual application in the

appendix for the use cases that we had discussed in chapter five.

Personally, I found the use of the object oriented technology and UML as a very helpful.

It helped me immensely in understanding the bigger picture of the software process. I feel

much more adapt at taking up large-scale projects now that I have learned these

techniques.

78 of 98

8 Appendix

Herein we are providing a representative collection of Screenshots for the Pavement

Permit System. The collection consists of screenshots of all the main screens,

representative screenshots of some of the common operations, of Listing, Adding, Editing

and Deleting and for the Billing Transfer and Reports.

Re Edt view Favorkes Tools Fe*
r 2 I Fevorts 0HItryI

,Addmrs ttp i ngtsn6.mt .du :8O/pernm-tnternalhhomejnt. sp

ARLINGTON DEPARTMENT OF PtJBLIC WORKS
Permit Smetm

Street Opening Permit System Home Page - Internal

Welcome to the Street opening Permit System Internal Home Page.

MAIN MENU

Companies Menu
Permits Menu
Street Restrictions Menu
Holiday Schedule Menu
Miscellaneous Settings and Options
Billing Transfer to Microsoft Excel
Data Evaluation, Reports
Frequently Asked Questions Admin
Help and Instructions
About the Software
External User Homepage

(c) 2001 Department of Civil Engineering, MIT, Cambridge. All rights reserved. For questions or comments, please e-mail Ron Santosuassa of
the Department of Public Works, Arlington

strt I 9I d... iVal...Ijt,.. V]C... c.... Aa _ j _cjub_.. t)Tm.. Ck I 1 PM

Figure 8-1 Pavement Permit System: Internal User Main

This page is the home page for the internal user. After successful login he comes to this

page and then he can select any of the links for undertaking whatever operation he desires

to perform.

79 of 98

k P~E dt Vow __evortes Toods HleO ------

ARLINGTON DEPARTME NT or- PUJBLIC WORKS

PermRtSURStM

Companies Main Menu

From this page, you may view and modify the contractor and utility company database.

Ploase select onep of the following options:

View List of All Contractors and Utility Companies
Add a New Contractor/Utility Company

Edit or Delete a Contractor/Utility Company: lAndreas Construction Ed 081

) 2001 Department of Civil Engineering, MIT, Cambridge. All rights reserved. For questions or comments, please e-mail Ran Samtosuosso of
the Department of Public Works, Arlington.

Internet

3%staot Eud...] 4.1Y...o;. %s.&&... MCo...-I - cub... d 91fThe,_. $nAdk.,. 10C.... untit., lArk*gW QQ30 :7P

Figure 8-2 Companies Main Menu

An important element for the system administration is the manipulation of the

companies' related data. The figure above is the companies' main menu, which the

internal user can access from the main page. Here he can follow the link to add a new

company, or edit or delete company information or list them.

80 of 98

,rrmtst.jsp

Permits Main Menu

From this page, you may view and modify permit and application data

------ ---- --- ---- --- ---- -s :

View Ust of All Applications/Permits for the Last 30 Days
Search for Specific Applications/Permits
Enter New Aiplication

Edit or Delete Application or Permit Number: E Delete

(c) 2001 Department of Civil Engineerng, MIT, Cambridge. All rights reserved, For questions or comments, please e-mail Ron Santosuosso of
the Department of Public Works, Arlington.

Figure 8-3 Permits Main menu

The Permits page is the core page of the application. The figure above is the Permits'

Main Menu, which the internal user can access from the main page. From this page the

user can also follow the links and view permits list or search for permits and also do the

other routine administration works for the permits.

81 of 98

http:/jarringtor6.dt,edu:8O801perntfnternadfrestrictionsJlrt.sp______

R INGTOf O N D 'C)EPjFjMTIME'NTJ P.BLC WQ RK5

I Permut System

Restrictions Menu

From this page, you may view and modify the Street Restrictions database.

View List of All Current Street Restrictions
View List of Street Restrictions History
Add a New Street Restriction

Edit or Delete a Street Restriction:
ABERDEEN ROAD From 2001-04-08 To 2001-04-09 Zj d elete

(c) 2001 Department of Civil Engineering, MIT, Cambridge, All rights reserved. For questions or comments, please e-mail Ron Santosuosso of
the Department of Public Works, Arlington.

tAtt 9EudO... OYaho .. R[est... SW-. 0Co.. LjEcbj STh... *Adn.j 19Cx .. IM MI- 1 ;5 O9 Mm

Figure 8-4 Restrictions Main Menu

The restrictions on the streets have to be administered for making the application up to

date in checking the parameters of the permits application. The figure above is the

Restrictions' main menu (Streets), which the internal user can access from the main page.

The user can administer the street restrictions from here by following the links.

82 of 98

~emkaternalfhoklaysJht, isp ____

U uuWNWE 4WWWWOWERM

Holiday Restrictions Main Menu

From this page, you may view andomodify the holiday schedule. No permits are issued on holidays.

Display Current Schedule
Add a New Holiday to the Schedule

Edit or Delete a Holiday: Christmas Day Edt Dews

(c) 2001 Department of Civil Engineering, MIT, Cambridge. All rights reserved. For questions or comments, please e-mail Ron Santosuosso of
the Department of Public Works, Arlington,

Figure 8-5 Holiday Restrictions Main Menu

The figure above is the Holidays restrictions' main menu, which the internal user can

access from the main page. This page allows for administration of the holidays

restrictions data.

83 of 98

Miscellaneous Options

The current settings are displayed below To change information, please enter the new data and click the Submit button.

Basic Pormt, APPiC ation F".: $f25

Additional Application Fees for Utilities (Water):

From length - feet to 125 feet additional fee $ 150
From length 25 feet to 75 feet additional fee $ 175

From length[75 feet to l100 feet additional fee $ F2t5
Notification Time Frame for PWD [hours]; 48

Maximum Valid Days for a Permit: 3_0

The weekend lasts from:
[Frid-y :-5:00 J |pm.J d Monday .z l8t0 :] lam i

Application Checking System Configuration:
Issue Permits on Weekends: Yes C No r

Issue Permits on Holidays: Yes C No r-

Perform Company Work Type Checking: Yes 0' No r

Perform Street Wori Type Checking: Yes r No C

m~Ij 1 t Med e I mw' 11o-j _L1~c i 156tPM

Notfcation Time Frame for PWD [hours]: 48

maxmum valid Days for a Permit: 30

Th awikng let Pefom: oWUit:Ys ~N

Friday :70 FB pm E FMndy E

Application Checkng System Cion
Sisseformits on Weekends: Yes C No P

issue Permits on Holidays; Yes r No 0-

Perform Com pany Work Typo Checking Yes r- No r

i Perform Street Work Type Checking; Yes 6- NorO

Perform premises range checking; Yes r- NorO

Drawing File Required from Utilities: Yes 0- No r

Notification Email Configuration:

Send Email for Each Permit Issued: Yes r No 0_

SMTP Server: arlington6.mit.edu

Email Address: landreaskom t.edu

Subrut Res-t ICanicelI

(c) 2001 Department of Civil Engineerng, MIT, Cambridge. All rights reserved. For questions or comments, please e-mail Ron Santosuosso of the

Department of Public Works, Arlington.

A tst-t|!,rfPe sy-- 'G wy -R... . :Jnt3yo= SWhdoml.. taR*4vh... @ Eudora Pr.,. A..n n .Q '137 PM-

Figure 8-6 Miscellaneous Options

84 of 98

There are various non-static miscellaneous parameters that are relevant for the

application. The internal user will need to change these parameters as per the existent

conditions. The figure above is the page for administering these miscellaneous options.

http:/jar1ngton6.mit.edu:8080ipermit/nternalexportjnt.

U- -L-XNG1-br ;f -A zT FN1 3FP;) ICWVRK

Export Data to Excel

From this page, you may generate billing information for export to Microsoft Excel.

From: 4 Apr 2001 To: May 2001 _

Submit Cnce

(c) 2001 Department of Civil Engineering, MIT, Cambridge. All rights reserved, For questions or comments, please e-mail Ron santosuosso of
the Department of Public Works, Arlington.

A start| I" JEudo,, ! Yaho. Pr.. 50ar. tCcla. .jE(:ub,. It has.. Acimn. t Con... uw ._ I' ngton ! LQ LO (_J'i 1:57PM

Figure 8-7 Export Billing data to MS-Excel

The figure above is the page for Exporting billing data to MS Excel. Only the internal

user can access from the main page. This page allows for transfer of the billing data for

the billing purposes.

85 of 98

ARLING-rN DEPARTMENT Of: PtBLYC WORKS
Permit SvstemI

Report on Permits

From this page, you may view reports on the permit system.

Select a Street for the RepoAt:]

Selecit a Company for th Repot iAl

Search for Permit lssuesDates _

From: F 3 F7 12001 To: F E iMay 2001

Please select Report Typ~e

Show Number of Permits for Combination of Specified Street and Company J

(c) 2001 Department of Civil Engineering, MIT, Cambridge. All rights reserved. For questions or comments, please e-mail Ron Santosuosso of

the Department of Public Works, Arlington.

*Start 1] Eudo ... I 4Yaho j~iRep.. V Sear.,. OjCola Ad.. IC un . Aringtn 9{_he .. I $1A .. I C - 99 1:57 PM........... 7 7 4

Figure 8-8 Reports on Permits

The application also allows the users to generate reports regarding the permits. The user

is required to select a combination of factors and the system then generates the reports.

The figure above is the Reports page, which the internal user can access from the main

page. This page is the main page from which reports can be generated.

86 of 98

FAQ Menu

From this page, you rhay view and modify the Frequently Asked Questions.

List All Frequently Asked Questions
Add a New Frequently Asked Ouestion

Edit or Delete a Frequently Asked Question:
How can I applyfor a new permit? J Delete

(c) 2001 Department of Civil Engineering, MIT, Cambridge. All rights reserved. For questions or comments, please e-mail Ron Santosuosso of
the Department of Public Works, Arlington,

Figure 8-9 FAQ Menu

It was expected that the FAQs would not be static, but would have to be administered

from time to time by the department officials based on the queries that they receive

regarding the system. The figure above is the FAQs' menu, which also the internal user

can access from the main page. This page allows the user to follow links to administer the

FAQs.

87 of 98

I] RMs jj http:lfarigon6.mt.edu:5050fpermr jrternalnetp inw.sp
---------- - --r -- - -- --

Street Opening Permit System Help

... for internal users.

Please select the desired help topic:

Company Administration Holiday Schedule
Permit Administration Miscellaneous Settings and Options
Permit Applications Billing Transfer to Microsoft Excel
Street Restrictions Data Evaluation. Reports

Company Administration Help

* Adding new companies:
The only required fields are the company name and the company license number, since those attributes are used for the

company login.
Please make sure to also provide the company work types and street work types that the company is allowed to perform,

* Editing a company:
Company data may be modified through this function. Any company field may be modified, the database will be updated

accordingly once the "Submit" button is pressed.
Please note that companies can be de-activated by setting the company status to "Inactive". This should be done when

a company no longer exists, or is no longer allowed to apply for Permits.
* Deleting a company:

A Company may only be deleted if there have never been any permits issued for this company. This is to keep the history

of permits intact.

Permit Administration Help

Figure 8-10 Street Opening Permit System Help

The page above shows the help page, as it is available to the internal users.

88 of 98

IA RLANGT1 NE"M

About

Some background imformation on the Street Opening Permit System.

The Permit Application System was developed in Spring 2001 by the CiYlI and Environmental Department
of MIT, Cambridge, Massachusetts.

The system addresses the need of the Engineering Department of Arlington Public Works for a reliable
system that allows both contractors and utility companies to apply for lermits for Street Openings on-
line.
The application Is one of the first systems used by public authorities that automate the whole
application process, from data input over verification to archiving.

Utilising open source technologies and Sun's Java for development and deployment, the system is a
very cost efficient solution which does not strain the public budget.
The long-term benefits are manyfold. The town of Arlington can reduce manual processing of
applications. Administrative tasks are easier, and past permits are archived conveniently in a database.
Furthermore, the companies performing street work in Arlington can apply for the required permit at any
time, without having to visit the Public Works office.

The development team members Rajesh, Leon, and Andreas would like to thank MIT and the town of
Arlington for the great support throughout this ambitious project.

(c) 2001 Department of Civil Engineering, MIT, Cambridge. All rightsjeserved. For questions or comments, please e-mail Ron Santosuosso of
the Department of Public Works, Arlington.

AStarti' fEudo-1 eYah.-.ftre.,. Se&r. SnC.la . ~Ib C f&JThesj 1*Ackn, 9C..nc Mnt] .. Arkqton "I 'I .!I-lo D---e- J -

Figure 8-11 About The Software

The figure above shows the page describing about the software.

89 of 98

Af. a* %n"&" "oz

A RLINGTO N 0 P ArTM N4T O1-PU13C W ORKS
I ft~Prnit ssi

File New Application

This form is to be used by the Department of Public Works only.

ContractorJity CompanlyI Andreas Construction zi

Type of Work: Cab eTV
Dig Sare Numbwr

First Qay of Woric [7y- _;~2001:-
Last Day f Work: Jun 2001

T ype of Street Work! ther

Street wherWbdIsToe D o ABERDEEN ROAD

i Front Of PrMHs65 From F T o #r

Width of Working Area (Feet);

Purpose Of work:

E_ CnO gjjn Q PM

Drawing Fles (riquired from utlgty Companies Only)i

Telophn Manhoes ot Water Manholes rubs othecr openings by fE Water Gates ot p h

Electric Manh04sFQ Sewer Manholeff 0 Cattlh Ba_-ins F_ Gas Gates:[3

. obtaining a valid DigSafa number is the contractor's responsibility. The contractor must mark out the area of work for DigSafe,

- This permit is granted and accepted upon the express condition that the contemplated work shall be done in such manner as to protect all

travelers from liability to accident and from contact with materials, rubbish or excavations, by fencing or otherwise, to the approval of the

Director of Public Works, and upon the condition that during the whole of every night, from twilight in the evening till sunrise in the morning,

lighted barricades shall be so placed as effectually to warn all persons of the existence of any obstructions to travel.

* The party or parties in whose name this permit is issued shall be responsible for the removal of all surplus material from the street, and also

for the replacement of all surfaces and excavations covered by this permit, the work must be done to the satisfaction of the Director of Public

Works. The party or parties in whose name this permit is issued will be held responsible for the condition of the work for a period of one year

from the expiration date of the permit. Any repairs becoming necessary within a period of one year will be made at the expense of the party

or parties in whose name this permit is issued.
* The permit must be completely displayed upon the work where it can be seen by anyone passing by. A strict compliance with this rule will

be required and this permit is revoked upon any violation of the conditions herein contained.

Submit I R~eset

(c) 2001 Department of Civil Engineering, MIT, Cambridge. All rights reserved. For questions or comments, please e-mail Ron Santosuosso of

the Department of Public Works, Arlington

Rstat I d. Yh .AftPer- *r.. Ct .. l 9hes Ad Sn J .1 A -:I OO _: Ze2PM

Figure 8-12 Complete Permit Application

90 of 98

The two figures above show the complete application form that the internal user fills out

for applying for a permit. A similar page is also available to the external users. The

system checks the parameters of the application and then displays the results of the

processing of the application.

htp://arington6,mt.edu:880permtlextemralrlagin-ext.jsp

Permit 81 stem

Street Opening Permit System Login

Welcome to the Street Opening Permit System Login. To access the street opening permit application form, you need to be registered with the
Arlington Department of Public Works. If you are not registered yet, please call [phone number] for more information.

it you are registered, please eniter youir accouint informiation below.

License Number (required for contractors)

E-mail Address (required for utilities)

Submil Reset

(c) 2001 Department of Civil Engineering, MIT, Cambridge. All rights reserved. For questions or comments, please e-mail Ron Santosuosso of
the Department of Public Works, Arlington.

'5utIMJ.. Ydftub..... IMhs. C~kn. IJ~ j mWJ Ij t --I 1:.: 1,S

Figure 8-13 Login Screen for External Users

The figure above shows the Login Screen for the External users. The internal users also

will be presented with a similar login screen.

91 of 98

-1

ARLINGTON DEPARTMENT OF PUBLIC WORKS

Permit SVs10M

List of All Companies

Company Name LUcense ! Active
Andreas construction 11223344 Active

Another test comnpany 3456 Inactive

f1oeaershausen Construction Co ABCDEFGHHIF Active

Test Contractor Company 12345 [ci-;v7

(c) 2 001 D ep ar tm e nt of C ivil E ngin e er ing, MIT, Cambridge. All rights reserved. For questions or comments, please e-mail Ro~n San1t.suoiss of
the Department of Public Works, Arlington.

I DonaIntemnet

AStt [l j I Eudo. .. ah ... I. CCh. a C _Ecub. _Thes ..I n ... t Ij InAtgton 1 J J L 1:54 PM

Figure 8-14 List of Companies

The figure above shows one of the common functionalities of the application, i.e. listing

of items. Here we show the listing of the companies for this purpose.

92 of 98

Add a Restriction

From this phge, you may add a new street restriction.

Select Street to be Restricted: IABERDEEN ROAD

Rastriction Type. Whole Street-

Start Date: 4 [My 2001

F(C) 2001 Department of Civil Engineering, MIT, Cambridge. All rights reserved, For questions or comments, please e-mail RQn SDntg5Mgsso of
the Department of Public Works Arlington

Figure 8-15 Add a Restriction

Similarly the above figure shows the other common activity of adding items to the

database for the administration of the application. As an example we show the screen for

the addition of a Restriction.

93 of 98

AkV"OT1 'O'EAtTM NT OFPU LC'"7

A n LXW N G T 0 N n a1m -f T M IE 0 ,0= P J B L I C W O R K S 1
Permit Sistem

Edit Holiday Information

From this page, you may edit the holiday data.
........... ~--...-.....-.... .~~ ~.

.. I_............

Hofiday Name Crhristmas D Ly

Hoia Dbatie. 2:15 1 IDec 1_j2001

Su~bmit IReset Cancel

(c) 2001 Department of Civil Engineering, MIT, Cambridge. All rights reserved. For questions or comments, please e-mail Ron Santosuosso of
the Department of Public Works, Arlington.

,IMStartj g_ _udo_... I O.._ FCP;r... Nsear .:. I 1cosa... JEcub.. lj j... Mkn. OlConc.. un.. I

Figure 8-16 Edit a Holiday Information

The figure above shows a representative screen for the activity of editing with editing

holiday information as an example.

94 of 98

InArgfon cQ :1 , 5

ARLINGTON DEPAR T E!N-I TF PU3L IC VVU RIKZ 1I Permfit Swaton.

Delete An FAQ

From this page, you may delete an FAQ.

Do youl really wish to dielete t his F AQ?

Question:-
How can I apply for a new permit?

Your company needs to be registered with the department of public works. Then, you may log into the Permit System, and apply for permits
at any time.

Sumi CnVcelj

(c) 2001 Department of Civil Engineering, MIT, Cambridge. All rights reserved. For questions or comments, please e-mail Ron Santosuosso of
the Department of Public Works, Arlington.

Done -- ::L

ARStt ij je... I jfJ ~ ... I j~w f The,.I WA&- 01C.-I ___*c, ~ -V40 ms

Figure 8-17 Delete the FAQ

Similarly the figure shows the other commonly used administration activity of deleting an

item with the deleting an FAQ as an example here.

95 of 98

................

Al P ermit # 41
A 8 C 0 D I F G

2 * 207 Andreas Construction 4/16/2001 4/19/2001 5/19/2001 ABERDEEN ROAD 25

3 206 Boegershausen Construction Co 416/2001 419/2001 5/9/2001 APPLETON STREET 25

4 205 Andreas Construction 4/6/2001 4M9/MI 519/2001 ABERDEEN ROAD 25

5 204 Andreas Construction 4TV/2001 4/11/2001 5/9/2001 ABERDEEN ROAD 25

-6 203 Andreas Construction 14/6/2001, 4/9/2001, 5/M/2001,ACTON STREET 25

7 202 Andreas Construction 14/4/20011 417/20011 5/7/2001 ABERDEEN ROAD 125

8
4-

131

23

Y ~4 lelig~i e~se~ona=&

F

SI j_ _- A .r.nI _ n_.

datard] Eudo.. Yaho.. h2:p:... r . E b. h .05 PM

Figure 8-18 Billing Data

The figure above shows the billing data, as it would be available on an MS Excel sheet

(on the browser window).

96 of 98

I

H J K L

IARLINGTON DAPARRTMENT 'F PEIJLX- VWIK I!(PerMWARM Sy""eM

Report on Permits

Selected Company Name All
Selected Street Name: All

Report Qate From: 2001-03-04

Report Date To: 2001-05-04

Number of Permits Issued! 150

Back toReportsMenu

(c) 2001 Department of Civil Engineering, MIT, Cambridge. All rights reserved. For questions or comments, please e-mail Ran Santosuosso of
the Department of Public Works, Arlington.

:4] H Dwe A IwJ-cAj IVtJ

Figure 8-19 Reports on Permits

The screenshot above shows the report being displayed to the internal user.

97 of 98

-Mr-e&StarRop-200 I &dayEndRop-4&TmonthEndRep.=May&yearEncRep-20O I reports-reports&R tpcrt-Show+Raport

9 References

1. UML Distilled, Second Edition: A Brief Guide to the Standard Object Modeling

Language (The Addison-Wesley Object Technology Series)

by Martin Fowler, Kendall Scott

2. Software Engineering A Practitioner's Approach (McGraw-Hill Higher

Education), 5th edition (June 1, 2000): Roger S Pressman

3. http://stud4.tuwien.ac.at/-e872671 1/ummw3.html#MU1 5A (aggregated by C.

Demmer using material from G. Booch, J. Rumbaugh and I. Jacobson)

4. http://www.rational.com/products/whitepapers/285.jsp (Quality Software and the

Unified Modeling Language by Grady Booch)

5. http://www.rational.com/uml/resources/quick/index.jsp (UML TM Quick Reference

for Rational Rose)

6. "Web Application Development Using Open Source Technologies and Java" by

Wolfgang Andreas Klimke

98 of 98

