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ABSTRACT

The propagation of single-frequency waves in media with continuously-
varying parameters is studied theoretically, with particular application
to wave conversions in microwave magnetoelastic delay lines. The
theory involves analytic solutions of linear ordinary differential equations
with variable coefficients.

A procedure previously developed is extended to provide a systematic
method of deriving WKB quasi-normal mode solutions for systems th
describable by coupled first-order, coupled second-order, or single n
order differential equations. Previous WKB solutions for the fourth-
order system describing "magnetostatic"-to-"exchange" spin wave con-
version at a turning point are shown to be in error by explicit calculation
of the correct WKB solutions. A fourth-order differential equation has
been solved previously by the WKB method and applied to various cases
in the plasma literature to match the WKB solutions on either side of the
turning point. The same equation is solved here by the WKB method in
a manner particularly suited for wave conversion problems. By explicit
calculation of the first error terms in the asymptotic expansions, it is
shown that certain reflections have been overlooked in the earlier
solutions.

A systematic procedure is developed for finding exact solutions of
certain differential equations of arbitrary order describing reflection and
transmission of waves in media with a bounded region of inhomogeneity.
This procedure involves solution by generalized hypergeometric functions.
It is applied to find reflection coefficients for spin wave conversion at a
fourth-order turning point near which the static magnetic field varies
monotonically. Solution for a variation with a single valley is also
outlined. A "source equation" method is described which allows a
broader class of differential equations to be solved exactly using the above
procedure. This method is applied to a fourth-order equation to find the
reflections and transmission efficiencies at a magnetoelastic crossover
point. Comparison with previous solutions shows that successive approxi-
mations schemes are not reliable for calculating reflections. Coupled
second-order equations are derived and combined into one sixth-order
equation simultaneously describing interactions between "magnetostatic,
"exchange,' and elastic waves in the presence of both a turning point and a
crossover point. An expression for the overall conversion efficiency is



found in terms of sines of complex arguments.

Hypergeometric functions can also be used to solve certain coupled
mode problems in which reflections are neglected. Here they are used
to find analytic expressions for conversion efficiencies at a magneto-
elastic coupling point. Previous solutions required successive approxi-
mations or numerical integration. Solutions for the reflections on
certain nonuniform transmission lines are also described.

Thesis Supervisor: Frederic R. Morgenthaler

Title: Professor of Electrical Engineering
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CHAPTER 1

INTRODUCTION

1. 1 Survey of this work.

(a) Motivation and summary of major results.

This work arose from a desire to understand how certain quantities

such as loss and field gradients affect the various wave-excitation

processes which occur in magnetoelastic delay lines at microwave

frequencies (Chapter 4). All of these processes require inhomogeneous

static magnetic fields, such as occur in rods or slabs. These processes

include the excitation of medium-wavelength "magnetostatic" modes in

magnetized yttrium iron garnet by relatively long wavelength electro-

magnetic radiation from a fine wire antenna, the conversion from such

"magnetostatic" spin waves to short -wavelength exchange- dominated spin

waves and subsequently to elastic waves. The inverses of these

processes also occur, in reverse order (see Fig. 3). Magnetoelastic

delay lines are of interest because the overall group delay of a pulse

from an antenna to an elastic wave and back can be changed by varying

the applied magnetic field. As with elastic delay lines, the basic delay

is relatively long due to the slow speed of sound and spin waves as

compared to electromagnetic waves.

Particular interest at the start of this work was centered on the

conversion from medium wavelength waves to the short wavelength spin

waves. Recent evidence had indicated that these medium wavelength

"magnetostatic waves" acted as an intermediary between the electro-

magnetic waves and the exchange-dominated spin waves (part 4. 3(a)1).

Furthermore, VASILE and LAROSA 1968a have derived a fourth-order
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differential equation which could model this conversion process. (See

parts 4. 1(b) and 4. 3(b) for a differential derivation, valid for cylindrical

symmetry as well as for slabs. ) However, they indicated that the

conversion would always be essentially complete in the cases of interest

for practical devices. There was no suggestion of how losses and the

steepness of the static magnetic field gradient inside the delay line might

affect this medium-to-short wavelength conversion. Certainly one would

expect an incident wave to generate reflected waves of the same type if

the gradient is too steep. The presence of such reflected waves had in

fact been indicated by recent experimental evidence (see part 4. 3(a)1).

Losses could also be expected to influence the conversion and perhaps

generate such reflections because losses cause a splitting in the

dispersion relation similar to the splitting caused by, for example,

magnetoelastic coupling (see Figs. 4 and 9).

The analysis of conversion by VASILE and LAROSA 1968a was

discovered in the course of this work to be invalid due to an incorrect

construction of the WKB quasi-normal mode approximate solutions of the

fourth-order differential equation. Hence a systematic procedure was

developed for deriving such solutions in general. The approach

extends the results of KELLER and KELLER 1962 by showing how the

"WKB amplitudes" may be calculated explicitly, regardless of whether

the problem is formulated in terms of coupled first-order, coupled

second-order, or single nth order differential equations. (See part

2. 2(a) in connection with Appendices 1 and 2. ) The WKB solutions

break down strongly, however, near the "turning point" where the group

velocities of the two types of spin waves vanish and the power in each

wave is divided equally between the two types (see 4. 3(b)2 and 4. 3(b)3).

....... ...... ..
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Hence a successive approximations method of calculating the conversion

efficiency is not useful. Since the validity of the WKB approximate

solutions is closely related to the validity of geometrical optics and ray

theory, these latter approaches also break down near the turning point.

When WKB solutions break down at a critical point, it is common

to apply the WKB method to match the solutions on both sides of that

point, and hence find the reflection and transmission coefficients. When

only two waves are strongly interacting, a phase-integral method is

sometimes used, based on solutions of the second-order Airy equation

(see parts 2. 4(b)2 and 4. 3(c)). Usually, however, asymptotic

solutions of the complete nth order differential equation are necessary

(part 2. 4(a)). Since such solutions of a fourth-order equation had been

previously applied to similar situations in the plasma literature (see

part 2. 4(d)), they were applied here to study the spin-wave conversion

at the turning point (part 4. 3(d)). Again, however, complete conversion

was predicted. Such a conclusion is invalid in this case because the

error terms in the asymptotic expansions indicate the presence of other

reflected waves. A warning that results of the WKB method may be

invalid in certain cases for this reason was given by HEADING 1967b and

1968. Therefore, the leading error terms were calculated explicitly

in the present work (see 4. 3(d)). The basic mathematical solutions of

the relevant fourth-order equation by WASOW 1950 and RABENSTEIN

1958 included only estimates of the order of these errors. Furthermore,

their treatments were not well suited for wave-conversion studies.

In an effort to find better solutions than the WKB method could

provide, it was discovered that certain fourth- and even higher-order

differential equations could be transformed into equations whose
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solutions are generalized hypergeometric functions (sections 3. 3 and

3. 4). In addition, the reflection coefficients can emerge from such

solutions in a very natural way (see section 3. 1 for a formulation of the

properties of generalized hypergeometric functions particularly well

adapted for this purpose). The discovery of such solutions resulted

from combining the ideas of EPSTEIN 1930b and HEADING and WHIPPLE

1952. When the solutions were applied to conversion at the spin-wave

turning point, it was found that reflections from an incident wave into

the wave of the same type traveling in the opposite direction become

significant precisely when the error terms in the WKB method become

significant (see part 4. 3(e)).

Later a " source equation" method was discovered which allows a

broader class of differential equations to be solved using generalized

hypergeometric functions (see parts 3. 3(a) and 3. 3(f)). This method

was found upon investigation of the solution for a derivative field when

the field itself can be found from a hypergeometric function solution

(see 3. 2(a)6). Solutions were thus obtained for the complete fourth-

order equation describing reflections and transmissions at the magneto-

elastic coupling point (part 4. 2(c)1). Previously, only successive

approximations and numerical integration solutions were available

(see SCHLOMANN and JOSEPH 1964 and KIRCHNER et al. 1966,

respectively). A complete solution was desirable to understand whether

discrepancies between recent experimental results and the previous

theories were due to limitations of the theories or of the experiments

(see 4. 2(c)2). Furthermore, the present work shows how to solve the

relevant second-order system, in which reflections are neglected, by

using hypergeometric functions instead of numerical integration of the

two first-order"coupled mode" equations (see 4. 2(b)). This discovery
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then led to an indication of how to solve analytically certain coupled-mode

problems in homogeneous media (3. 2(c)) and certain cases of nonuniform

transmission lines (3. 2(b)).

The solutions of the fourth-order spin-wave turning point and

magnetoelastic crossover point problems are still somewhat unsatisfactory,

however. The solutions of the former problem depend on the location of

of the crossover point (see the discussions in 4. 3(d) and 4. 3(e)), while

the solutions of the latter clearly depend on the influence of the turning

point (see the discussion in 4. 2(c)2). Therefore, it was decided to try

to find a solution of the combined problem. First of all, the relevant

sixth-order differential equation was derived (see 4. 4(a)). Then it was

shown how generalized hypergeometric functions could again be used to

find solutions. In this way, the overall conversion efficiency was

expressed in terms of sums and products of hyperbolic sines (part

4. 4(b)). More work, however, is needed to interpret the result.

(b) Relation to previous work.

Much of the material in section 1. 2, Chapter 2, section 3. 1 and

part 3. 2(a) is based on information which has been in various places in

the literature for a fairly long time. It is included primarily as a

background for the new results presented here and also as an introduction

to the concepts involved. However, the sum of this material may

provide a better understanding of the overall picture than can be

obtained easily from the literature. See also BUDDEN 1961 for an

earlier summary. Section 1. 2 of the present work gives a survey of

the basic properties of the wave-coupling which can occur in multi-wave

media even in homogeneous regions of space. Chapter 2 describes the
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origin of the new types of couplings which can occur in media with

continuously-varying parameters, and outlines various methods of

solution for reflection and transmission coefficients. Section 2. 1

summarizes and compares these methods. Included then in section 3. 1

and part 3. 2(a) are descriptions of the techniques applied originally by

EPSTEIN 1930b to the solution of such problems using hypergeometric

functions. Reference to more recent related work occurs primarily in

parts 2. 2(a), 2. 3, 2. 4(c), 2. 4(d), 3. 2(d), 4. 2(a)1, 4. 2(c)2, and 4. 3(a)1.

See also the bibliography for various groupings of representative work

in the literature.

For clarity, it is helpful to note here some of the important

related problems which this work does not consider. First of all, by

"inhomogeneous" media we mean only those whose parameters vary

continuously along the direction of propagation. For a survey of other

examples of "inhomogeneities, " see KARBOWIAK 1967. Such examples

include nonuniformities perpendicular to the propagation direction, as

occur in surface wave problems and certain waveguide problems, and

multiple discrete layers. Since we consider only ordinary (one-

dimensional) differential equations, we can treat transverse variations

only through constants resulting from the separation of variables in a

partial differential equation. Thus we do not include any calculations

of ray paths, for example. Similarly, we do not consider directly the

coupling of energy from localized sources such as fine-wire antennas.

Nonlinear effects and the propagation of pulses or transients are also

beyond the scope of this work. Note, however, the work of PRICE 1965

who obtained information on pulse propagation by calculating inverse

transforms of single-frequency reflection coefficients resulting from
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solutions of second-order equations by hypergeometric functions. Note

finally that we consider no numerical methods of solution. ALTMAN

and CORY 1969a and 1969b may be consulted for a summary of such

methods which are applicable.

(c) Conclusions.

Several conclusions from this work can be mentioned. First of

all, the discussions in part 4. 2(c)2 and 4. 3(b)3 show that successive

approximations methods are not useful in calculating reflection

coefficients. For slowly-varying media in which the WKB quasi-normal

mode solutions are approximately valid, however, transmission

coefficients may be obtained by such methods. Furthermore,

oscillations in the reflection or transmission coefficients as a function of

gradients in the medium parameters are likely to occur only when these

parameters have discontinuities, or discontinuities in their gradients,

etc., with respect to distance. See part 4. 2(c)2 and also

BREKHOVSKIKH 1960, Fig. 78. For magnetoelastic coupling, the basic

conversion efficiency depends only on the local gradient of the magnetic

field at the crossover point and not on the shape of the field variation

elsewhere. The net conversion efficiency may depend on such "global"

variations only to the extent that reflections are generated by rapid field

variations or approaches to cutoff (see Fig. 7).

Secondly, the results of the WKB method are unreliable for cases

where the unperturbed wavenumber of an extraordinary electromagnetic

wave ( 1magnetostatic" wave) becomes very large. This statement applies

to treatments of second-order equations as well as the corresponding

complete fourth-order equations (see 2. 4(d) and 4. 3(d)). At finite

.... ...........
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distances from the critical point, and for finite gradients of the medium

parameters, the error terms in the asymptotic expansions mask the

presence of certain reflected waves. Evaluation of the reflection

coefficients at finite distances is necessary because other wave-coupling

processes will occur and because the differential equation solved by the

WKB method is a valid approximation only in a limited region of space.

The masked reflections become important in spin wave conversion at a

turning point when the magnetic field gradient exceeds a critical value,

which probably depends most strongly on the wavenumber at the turning

point (see 4. 3(e)).

Thirdly, there need be no particular danger that nonlinear

instabilities will occur at the turning point in 'magnetostatic"-to-

"lexchange" spin-wave conversion. Note from part 4. 3(b)3 that the total

power flow in each quasi-normal mode remains constant.as the wave

approaches the turning point as long as the mode amplitudes are approxi-

mately constant. The group velocity approaches zero which implies

that the energy density may then be very large, leading to nonlinear

effects. The quasi-normal mode amplitudes do change rapidly, however.

Furthermore, 4. 3(21) shows that the two types of power in each wave

become equal in magnitude at the turning point. As long as the dynamic

magnetic field remains finite and reasonably constant, the net power

flow vanishes with the same dependence on wavenumber as the group

velocity. Recall from 4. 3(b)3 that the dynamic magnetic field increases

rapidly only if the amplitude of the WKB quasi-normal mode remains

constant, which does not happen.

Fourthly, the dispersion relation plays a fundamental role in the

solutions for reflection and transmission coefficients by either the WKB
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method or the generalized hypergeometric equation method. In the WKB

method, the dispersion relation appears in the determination of the

location of saddle points in the plane of integration versus real distance

(see 4. 3(d)). Also, in order to transform an equation to a generalized

hypergeometric equation it must have the same form as the dispersion

relation in homogeneous regions (see 3. 3(a)). The parameters of the

transformed equation are then simply related to the solutions of the

dispersion relation outside the inhomogeneous regions(see 3. 3(c)).

Fifthly, it is possibly to solve for the reflection and transmission

coefficients from certain useful differential equations of arbitrary order

(section 3. 3). Even if the results do not correspond directly to

physical situations, the exact solutions can be a very valuable check on

any solutions by numerical methods. Since generalized hypergeometric

functions are expressed in terms of an integral resembling an inverse

transform (equation 3. 1(24)), it is also at least conceivable that problems

in pulse and transient propagation might be solvable directly without

first finding the single-frequency reflection and transmission coefficients.

Finally, solutions of differential equations by hypergeometric

functions may be applicable to other problems of coupled modes in

continuously-varying media (see 3. 2(c) and 4. 2(b)). A representative

sample of physical systems for which such solutions may prove useful

is listed in the bibliography.

Note in addition that the solution by generalized hypergeometric

functions for spin wave conversion at the turning point (4. 3(e)) indicates

that reflections of incident "magnetostatic"' waves are not significantly

increased by the presence of loss. Such reflections were postulated by

KEDZIE 1968 to result from the split in the real part of the dispersion

relation due to loss (see Fig. 9).

L
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1. 2 Waves in Homogeneous Media.

(a) Wave types.

There are many interesting physical phenomena which can be

-4
described as waves. In each case there is a field component F(r, t) which

in time-invariant media is usually written as

F(r, t) = Re EF(r) ej ] , 1.2(1)

where w is the radian frequency of the wave. If waves of more than one

frequency are excited, then the total solution for F(r, t) must be written

as a superposition or integral (inverse Fourier transform) over solutions

of the type of the right-hand side of 1. 2(1). In uniform media with

propagation in only one direction, the z-direction, we can go further and

write

F(r) = a ejkz 1.2(2)

where a may either be a constant or a function of the transverse

dimensions as in a waveguide, and 2 ,U /k is the wavelength along the z-axis.

Superposition of solutions of the form 1. 2(2) is also necessary when more

than one wave is present.

The field component F(r, t) will be the solution of some wave

equation. For example, F might be the voltage or current on a trans-

mission line, the x or y component of the electric or magnetic field in a

waveguide or in the ionosphere, a strain component of an elastic wave in

a solid, a velocity component of electrons in an electron beam or plasma,

a component of the magnetization in a magnetic material, and so on. The

wave equations for these examples result from Maxwell's curl and

divergence equations, and Newton's laws for force and torque. The last
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three examples usually involve linearization of the equations.

When solutions of the form of 1.2(1) and 1. 2(2) are substituted into

the wave equations without any external driving terms or loss, we find

which values of k for given values of w represent waves which can exist

without any external excitation. The solutions 1. 2(2) are then called the

normal modes and the relation between k and w is called the dispersion

relation. In a medium which can support only one type of wave, there

are normally two solutions for the wavenumber k for each value of

frequency. If the system is symmetric about the plane perpendicular to

the propagation direction (z-axis), then two solutions for k exist which

represent waves traveling in opposite directions but with equal wave-

lengths (k2 = -k1). When F(r, t) does not represent the total physical

field but only the oscillating component as for waves on an electron beam,

both solutions for k may have the same sign, one wave moving slower

than the beam and the other faster. For spinwaves in magnetic

materials there are also static fields, but then F(r, t) represents an

entire field component transverse to such static fields, and there will

again be two solutions with k 2 = -k1. In the limiting case of k 4 0, the

result is ferromagnetic resonance, with the magnetization precessing in

time about the static field, but not in space.

(b) Coupled waves: concepts.

Whenever waves of two different transmission lines or physical

types or polarizations are coupled together in a one-dimensional system,

there are normally four possible traveling waves, one traveling in each

direction for each type. For example, simple directional couplers can

have a wave going in each direction in each of the two coupled wave-

guides or transmission lines. In materials such as yttrium iron garnet
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rods, spin waves and elastic waves can travel in both directions along the

rod axis, but can also be coupled strongly due to the effect of the elastic

strain on the magnetization and vice versa. In a case such as this, the

two coupled "transmission lines" exist at the same location in space but

refer to different physical quantities. Radio waves of two different

polarizations of electric field can be coupled by the magnetic field in the

ionosphere, and each polarization can have waves traveling in either

direction. Another example is the interaction and coupling of electron

space charge waves with the electromagnetic fields of waves traveling

along a surrounding helical conductor in a traveling wave tube. See the

bibliography of this work for some representative references.

The characteristic feature of such situations is that the originally

uncoupled waves are no longer normal modes. Hence, a given linear

combination of the uncoupled waves entering a coupling region will in

general emerge as a different linear combination.

A familiar case is Faraday rotation where linearly-polarized

electromagnetic waves are coupled due to the anisotropy of a medium with

applied static magnetic field, for example. For homogeneous (uniform)

media, however, it is still possible to construct uncoupled normal modes,

expressible as linear combinations of the original wave types. Basically

this property follows from the fact that the corresponding wave equations

all have constant coefficients (see below), in contrast with the situation

in continuously-varying media. In homogeneous Faraday rotation media,

for example, the new uncoupled normal modes are circularly-polarized

linear combinations traveling at different velocities.

Apparently another ,example are the normal modes in rectangular

waveguides, which can be considered to be linear combinations of plane
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waves reflected from the transverse boundaries of the waveguide. These

linear combinations do not change with propagation distance, however,

and therefore do not represent the same kind of coupled wave situation.

Furthermore, from each set of these plane waves there can be

constructed only one normal mode traveling in each direction, instead of

two. Coupling in the sense to be used in this section occurs, for

example, when two waveguides are placed side by side with holes in the

wall between them, as in directional couplers. Then certain linear

combinations of the fields in the two waveguides will constitute new

uncoupled normal modes. The velocities of these new modes are

changed by the coupling just as the resonance frequencies of two coupled

resonant circuits differ from each other and from the original frequencies,

even if these were identical. Compare the splitting of degenerate

quantum-mechanical energy levels by a perturbation.

The analysis of coupled waves in homogeneous media is simplified

by the fundamental absence of coupling between waves with wavenumbers

of opposite sign. Normally, this absence is equivalent to the absence of

reflected waves. It is possible, nonetheless, for a wave carrying

energy in one direction to be coupled to a "backward wave" carrying

energy in the reverse direction. The phase velocity of the two waves,

however, is in the same direction; the backward wave has its energy

flow vector opposite to its phase velocity, and is of a different physical

type than the incident wave. Furthermore, the amplitudes of the normal

modes do not change with distance; power conservation is assured by the

fact that the wavevectors k. are complex. (See JOHNSON 1965 and
1

LOUISELL 1960 for examples.) Only in inhomogeneous media or in the

presence of boundaries will true reflections be generated. Therefore,
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in four wave situations with homogeneous media only two waves will be

coupled, so that finding the normal mode wavenumbers reduces to a

2 x 2 eigenvalue problem, and the effects of coupling are describable by

2 x 2 matrices (see below). These statements hold for all the relevant

physical situations treated in the two references cited above, including

directional couplers, contradirectional couplers, backward wave

oscillators, and traveling wave tubes.

A difficulty may nevertheless arise if the two coupled waves,

carrying different kinds of energy such as electromagnetic and electro-

mechanical energy in electron beam tubes, are strongly coupled, since

it may then be very difficult to determine the coupled wave equations.

This can occur if an electron beam and a guided-wave helix are very

close together in a traveling wave tube, for example, so that a simple

perturbation analysis of the effect of the fields of one wave on the other

breaks down. In such a case, one may use a variational method to

approximate the eigenvalues k. without actually ever explicitly finding the
1

wave equations (HAUS 1958). This method resembles the use of

variational methods to determine the propagation constant in waveguides

of difficult cross section, such as ridge waveguides. There is also

some similarity to the situation in quantum mechanics where one solves

for the perturbed eigenvalues using matrix notation when the perturbation

("coupling") is weak, but uses variational methods to approximate the

eigenvalues when the perturbation terms (coupling terms) are hard to

calculate explicitly.

(c) Coupled waves: Faraday rotation illustration.

Media exhibiting Faraday rotation are special cases of anisotropic

media, in which the permittivity E or the permeability A is a tensor.
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Faraday rotation occurs as the result of the application of a static

magnetic field H in a plasma (gaseous or solid state), in a magnetic

insulator, and near an absorption frequency in many materials. In the

former two cases, the effect is normally noticed near microwave

frequencies, since the effect is strongest near the electron cyclotron

resonance and the ferromagnetic resonance, respectively. In each of

those cases, the resonance frequency is approximately 2. 8 MHz per

oersted of applied field H. The resonance is manifested in a tensorE

for the plasma, and a tensork in the magnetic insulator. Chapter 4

treats cases where y is not only dependent on frequency but also on wave-

number, which in turn is a function of distance. Optical Faraday

rotation occurs in both magnetic and non-magnetic materials due to the

Zeeman effect, and is manifested through a tensorE. Such an effect

occurs when application of a magnetic field can split the resonance

absorption frequency of an optical transition into an odd number of

frequencies, allowing normal modes with circular polarization to

propagate at different speeds. (See, for example, MASON 1966 for

references.)

Now assume that the medium in question has a tensor g. The

treatment with tensorg is entirely analogous. Assume also that the

magnetic field H is applied in the z-direction. For propagation in the

z-direction, there will be no z-components of the dynamic fields in

infinite media, so that we will be concerned only with the components

Ex , Exy' ,yx, and E yy* Moreover, for the usual cases of Faraday

rotation, OE= - = , and E =C . Then the components of
yx xy xy xx yy

Maxwell's curl equations can be written as:
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= -jwOH ;

joH x;

H'
y

H-x

1. 2(3)

= -jw(c E +( E)
xx -x xy -y

= JW(-Cy E +C E ),xyxxx -y

where the prime denotes differentiation with respect to the propagation

distance z, and the fields are assumed to be written as in 1. 2(1).

Equations 1. 2(3) constitute a set of four coupled first order

differential equations which can be written in matrix form:

U'(z) = DU(z) 1.2(4)

where

U(z)

E (z)-x

H (z)
-y

E (z)
-y

H (z)

1.2(5)

and

D = j w

0 -

U-C xx

0

xy

0 0

-exy

0 0

0 Sxx

0

0

To find the normal modes N and their wavenumbers k ,

1.2(6)

one can

diagonalize the matrix D as in Appendix 1.

are then just jk., i = 1, 2, 3, 4.

The four eigenvalues of D

Furthermore, the fields in 1. 2(5) will

be expressible as linear combinations of the normal modes through the

matrix L which diagonalizes D:

E'
-y
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U = LN, 1.2(7)

where L 1DL is diagonal with elements -jk. (see Appendix 1). From

1. 2(7) and 1. 2(4) we see that

N' = L 1DLN. 1.2(8)

Since L 1DL is diagonal, the solutions for N are simply

N = a. exp (-jk z), 1.2(9)

which is the desired normal mode form (compare 1. 2(2)). In continuously-

varying inhomogeneous media, the matrix D is a function of position, and

then instead of normal modes N one finds quasi-normal modes Q with

U = LQ instead of 1. 2(7) (see section 2. 2). Equation 1. 2(8) then takes on

a more complicated form.

Note for isotropic media Exy and C are both zero, so that

ordinary linearly-polarized plane waves can propagate with either E and
-y

H both zero or E and H both zero (see equations 1. 2(3)). These are-x -x -y

called the x-polarized and y-polarized waves, respectively. Note in

this case that the matrix D in 1.2(6) splits into two 2 x 2 sub-matrices

down the main diagonal. The wavenumbers are then

k = -k = k = -k xx)2, 1.2(10)

with corresponding normal mode solutions

N = E +- H ; N = E -H1 -x -y 2 -x -Hy
1.2(11)

N = E - H ; N = E +?H ,3 -y -x 4 -y -x

~~-q U
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where =(o / ) is an effective impedance, by analogy with similar

equations for the voltage and current on a transmission line.

Since we are considering homogeneous media, there are no

reflections, as indicated by the fact that N and N2 are uncoupled, as

well as N3 and N4 * In sections 2. 2 and 3. 2 we consider how N and N2

can be coupled by inhomogeneity. Section 4. 3 treats a case where all

four waves are coupled by inhomogeneity in an anisotropic medium.

For the present case of Faraday rotation the anisotropy couples

N1 and N Since N2 and N do not enter the analysis, it is simpler to

proceed by eliminating H and H , treating explicitly only the coupling
-y-

between E and E . This is done by combining equations in 1. 2(3),-x -y

with the result:

E + 2 y 2 E + E ) = 0 1.2(12a)
-x go xx -x xy -y

E 1 + o (-y E + x E ) = 0. 1.2(12b)
-y 0  -xy -x xx-y

These are now two coupled second-order equations. By adding and

subtracting the first equation to j times the second, however, we obtain

the uncoupled equations:

S2
(E ± jE ) + W 2 (exT je ) (E ±jE ) = 0. 1.2(13)
-x -y o x xy -x -y

Assuming normal mode solutions of the form exp (-jk ±z) for the

uncoupled linear combinations

= E ± jE 1.2(14)-i-x -y

we find from 1. 2(13) that

2 2 - ._ 2
k = /10 (C + je ) = wO C± 1.2(15)
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as could have been found also by diagonalizing D in 1. 2(6). If only E is

propagating (E = 0), then E = jE and equation 1. 2(1) shows that

E (z, t) lags E (z, t) by 900. Such a wave is called positively circularly-
-y-

polarized. With the negatively circularly-polarized wave E_, E (z, t)
-y

leads E (z, t) by 900.-x

We could also go further and eliminate E , say, from 1. 2(12).

Taking the second derivative of 1. 2(12a), substituting for EIfrom
-y

1. 2(12b) and for E from the original form of 1. 2(12a), we obtain
-y

2 2 2 2 2
E'(z) + 2 w 0 i E"(z) + (W y) (C - y ) E (z) = 0. 1.2(16)

x x gxo x xy -x

Again, assuming solutions of the form of 1. 2(2), we find a quadratic

polynomial equation for k 2, whose solutions are again given by 1. 2(15).

Note that information on polarization has been lost in going to 1. 2(16).

If, however, we set V = E , V 2 = E , V =E , andV = E II, we findI 2 x 3 -x' 4 -X

that an equation similar to 1. 2(4) results:

V'(z) = D V(z), 1.2(17)

where D is given as

0 1 0 0

0 0 1 0
D = 1.2(18)

d 0 d 1

2 22 2 2
From 1.2(16), d= -(W 2 ) (C 2- ), and d2 =-2W 2 g . By1 go xx xy ox
diagonalizing D just as D was diagonalized, we find again the normal

modes N., but now written in terms of E and its derivatives, instead of

explicitly in terms of E , H , E , and H as before. A case in an
-x -y -y-x
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inhomogeneous medium where it is convenient to transform a fourth-order

differential equation to the form of 1. 2(17) and 1. 2(18) is examined in

section 4. 3.

To demonstrate rotation of the plane of polarization using the

matrix formulation of this section, write

U = Lf N f 1.2(19)

with

E
Uf 

[E
-ys

the subscript f standing for "Fara

E
and N , 1.2(20)

day." From the definition 1. 2(14) we

have

L 1
Lf 2

[1
+1 1.2(21)

Since the components of Nf have the normal mode form of 1.2(9), we can

write

E (zb)-i(z)

N (zb)

= exp [-jk± (zb

= SN (za),

= exp (-jk +)

0
1.2(24)

0

exp (-jk-l)

Hence at the output, from 1. 2(19) and 1

Thus

-za

where

1.2(22)

1.2(23)

VPPPP__

and I z zb - za. . 2(23):
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Uf(zb) = Lf S Lf U1(Z) . 1.2(25)

Equation 1. 2(25) expresses what happens in coupled mode situations:

a wave incident at z = aa is decomposed into normal modes which

propagate uncoupled through to z = zb where it is desired to determine the

effect of the coupling on the original waves.

Now assume that at the input z = za to the Faraday rotation medium

the wave is linearly polarized in the x-direction, so that

Uf (z a E 1.2(26)

-0

Also neglect any reflections at the input and output z = zb due to any

discontinuities. Then explicitly performing the calculation indicated in

1. 2(25), we find

E exp (-jk +) + exp (-jk Q)
U f(zb -2 -j exp(-jk+)+ j exp (-jk f ). 1.2(27)

The angle of rotation is given by

P = arctan [E (z, t)/E (z, t)] 1.2(28)

Since the ratio E /E does not change with time for a linearly polarized

wave when it is again a normal mode outside the Faraday rotation

medium, we can evaluate 1. 2(28) at some time wt = n 27. Thus from

1.2(1), 1.2(27) and 1.2(28) we find

sin k f - sin k i k - k
p(zb) = arc tan cos k + cos k 2) . 1.2(29)

b -+
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Thus the Faraday rotation is due to the different wavenumbers and hence

different velocities of the two circularly-polarized waves.

(d) Reflection and transmission coefficients at boundaries.

Consider now a sharp boundary located at z = z . If the media on

both sides allow only two waves, one traveling in each direction, a wave

incident upon the boundary will generate a reflected and a transmitted

wave. Assume, for example, that the incident wave is an x-polarized

electromagnetic wave traveling in the z-direction with amplitude E .

Then in the region to the left of the boundary,

E = E0 [exp (-jk 1 z) + R exp (-jk2 z)], 1.2(30)

while in the region to the right:

E = E T exp (-jk+z) , 1.2(31)
-x o - 1

with the fields written as in 1. 2(2). We assume k 2= -k in both regions,

as in 1. 2(10).

To determine the unknowns R and T, two boundary conditions are

necessary. For multi-wave media with n waves allowed on each side of

the boundary, there will need to be n boundary conditions, since the

amplitude of the single incident wave is known, and only transmitted

waves are allowed on the other side of the boundary. For the electro-

magnetic case considered here, the boundary conditions are continuity of

E (z, t) and H (z, t) at z = z , or in view of Maxwell's equations and
x y

1;1
1. 2(1), the continuity of E (z) and - E (z). Application of the conditions

-x -x

to 1.2(30) and 1.2(31) yields:
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k_/4 - kt/p+ Z+ - Z-
R = +_ _ Z + Z- 1.2(32)

k /_+ k+ 1+ + -

and

T= 2 k _ 2 Z+ 1.2(33)

k/ + k + Z+ + Z-

where Z = (a/c)' = wp/k is the effective impedance as was 7 in 1. 2(11).

The reflection coefficient with the waves written in terms of the magnetic

field is the negative of that given in 1. 2(32).

When A is continuous across the boundary, so that p+ -, the

boundary conditions reduce to continuity of E and its derivative E' (z).

Then 1. 2(32) takes the form

R = (k - k +)/(k~ + k). 1.2(34)

RYDBECK 1960 showed for 4-wave media in which one field and its first

three derivatives are continuous, that the reflection and transmission

coefficients have the form of a product of three factors such as the right-

hand side 1. 2(34). This fact actually follows quickly from a property of

the determinants of alternate matrices mentioned in Appendix 1, when

Cramer's method is used to solve for the reflection and transmission

coefficients.

Now recall that the total power flow for the waves in 1. 2(30) and

1. 2(31) can be calculated from the Poynting vector. In this case the

z-component of electromagnetic power Sz is just E (z, t) H (z, t). With

the fields written as in 1. 2(1), we find that the time average (Sz) is given

as (see, for example, RAMO, WHINNERY, and VAN DUZER 1965):
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(S 1 Re (E H"). 1.2(35)z 2 -x -y

Substituting from 1. 2(30) and 1. 2(31), noting that H = jE /wA, we
-y -x

obtain:

(Sz 2= Z (1 - jR_2) _ j2 . 1.2(36)z 2 Z (- 2 Z 1

Note that the ratio of power in the reflected wave to that in the

incident wave is simply 1 R 2 . If the impedance Z+ differs from Z ,

however, the ratio of transmitted power to incident power is not IT 12,

but ZT12/Z+ = k I T12 /k~. Similarly, for multi-wave media with

different "'impedances" for different waves, the ratio of reflected power in

a certain wave P to incident power in a wave i will be given directly in

terms of the relevant reflection coefficient R only when Ik I = Ik i.

Otherwise the ratio may be IkI I Ri/ k I, or may have even a more

complicated factor multiplying I R Le 2 when the waves i and e are not of

the same physical type (see subsections 4. 2(c) and 4. 3(b), for example).

Furthermore, for multi-wave media with Ik, I Iki, the total

time-averaged power (Sz ) will not be the simple generalization of 1. 2(36).

When only propagating waves are present, there will be an interchange of

power between the waves of different physical type in a manner analogous

to the "beating"' of two musical notes of different frequencies. Since

this interchange is periodic in space there will be no net interchange

after a spatial average is taken. On the other hand, if evanescent or

decaying waves are present, with imaginary or complex k, respectively,

then power can be permanently transformed from one physical type to

another. Thus, even though the power in each physical "channel'" may be

"I "I "I'll - 11 1~~ wd"" A_ - - __ --------- - - , , , . - I - __ I - - - _-- __
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required to be separately continuous at the boundary, a net energy

transformation may take place as a wave is decaying away from the

boundary (see MORGENTHALER 1967 for an example of this effect).
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CHAPTER 2

SOLUTION OF COUPLED WAVE PROBLEMS IN MEDIA

WITH CONTINUOUSLY- VARYING PARAMETERS

2.1 Introduction

In this chapter we review the mathematical concepts behind various

methods of solving coupled wave problems where the parameters vary

significantly in only one direction, the direction of propagation. The

distinction between wave propagation in such media and that in corres-

ponding linear homogeneous media is as big as the distinction between

differential equations with variable coefficients and those with constant

coefficients only. This chapter is concerned primarily with situations

where the coefficients vary monotonically or with one relative maximum

or minimum; hence, there is no explicit treatment of wave propagation

in periodic or random media. Although almost all of the material of

this chapter has existed in scattered places in the literature, the overall

picture and certain of the specific results are often not well understood.

When a certain wave can propagate independently of all others in a

bulk homogeneous medium, the situation is often describable by a

second-order ordinary differential equation, allowing for two solutions,

one representing propagation in each direction. If then some physical

coupling mechanism is introduced between this wave and another, this

second-order differential equation becomes coupled to another second-

order equation. The result can be expressed as one fourth-order

equation. As long as the coupling and the wave velocities do not change

with distance, however, the resulting differential equation has constant

coefficients and hence has exponential, wavelike solutions. As was

pointed out in section 1. 2, these solutions, called normal modes,
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propagate independently of each other; they are uncoupled. The only

effect of the physical coupling mechanism is that a certain normal mode

may be expressible as a different linear combination of the original

waves at two different positions along the direction of propagation. The

original waves may thus be coupled. The analysis of this situation for

the case of Faraday rotation was given in subsection 1. 2(c).

In continuously-varying media (to be referred to hereafter as

"inhomogeneous" media), it is no longer possible to find simple

exponential wavelike solutions as in 1. 2(9). One can always find such

normal mode solutions for differential equations with constant coefficients,

but the best that is possible for propagation in inhomogeneous media is to

find approximate quasi-normal mode WKB solutions of differential

equations with variable coefficients. Such solutions have been derived

for certain fourth-order systems by RYDBECK 1960 and 1967 and

BUDDEN 1961, for example, as well as by SCHL6MANN and JOSEPH

1964, although they are not always identified as "WKB" or "quasi-normal

mode" approximate solutions. Furthermore, the form of the "WKB

solutions" constructed recently by VASILE and LAROSA 1968a was

incorrect. Hence in section 2. 2 we show how to construct the quasi-

normal mode solutions in general, for systems of any order. A

rigorous and complete mathematical development of these quasi-normal

modes was accomplished by KELLER and KELLER 1962, starting from

a system of first-order coupled differential equations. Section 2. 2 in

connection with Appendix 1 goes further to show how to construct these

modes explicitly as approximately linearly- independent "basis"

solutions for all fourth-order differential equations and for sets of

coupled second-order equations and coupled first-order equations.
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Typically, the physics of a situation produces two coupled second-

order equations describing coupling between two wave types. In cases

for which the variation of the parameters with distance is slow compared

to the wavelengths involved, one can with good accuracy usually neglect

the two reflected waves and just consider the coupling between two

waves traveling in the same direction. This situation can often be

modeled by two coupled first-order equations extracted from the original

coupled equations. From these first-order equations quasi-normal

modes can be constructed. Such modes were called "tapered" or

"warped" normal modes by COOK 1955, FOX 1955, and LOUISELL 1955,

who found that directional couplers with a wider bandwidth could be

constructed by varying the coupling and/or transverse dimensions of the

waveguides continuously with distance. The corresponding directional

couplers built with waveguides with constant parameters were extremely

frequency-sensitive due to "beating" which occurred. When reflections

are important, quasi-normal mode solutions may still be useful for the

analysis, as in the WKB method (see the discussion below and section

2.4).

Methods of solving coupled differential equations by successive

approximations are almost always based on quasi-normal mode

solutions as the "zero-order" approximations. For the first approxi-

mation it is assumed that the incident wave (quasi-normal mode) has a

constant amplitude throughout the inhomogeneous coupling region. The

excitation of the other modes is then considered one at a time.

(Compare time-dependent perturbation theory in quantum mechanics,

with "incident wave" replaced by "initial state. ") LOUISELL 1955

applied a successive approximations method to find the coupling between
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the quasi-normal modes described above in tapered directional couplers.

Note that subsections 3. 2(b) and 4. 2(b) describe an analytical solution of

the relevant second-order equation, which has the same form as that of the

magnetoelastic coupling problem when reflections are neglected.

In section 2. 3 we describe various applications which have been

reported in the literature of successive approximations methods using

coupled first- and second-order equations. When the complete set of

th
n coupled first-order equations for an n order system are used, the

coupling terms come directly from the analysis which determines the

quasi-normal modes. In this case, the coupling terms are proportional

to the derivatives of the parameters of the medium, and go to zero when

the medium becomes homogeneous. The successive approximations

approach then involves matrizants as described by KELLER and KELLER

1962, similar to related approaches in the control theory of time-

varying systems. Approaches using coupled second-order equations

may or may not be written so that the coupling terms involve only

parameter derivatives, since the system may or may not have been

transformed first to normal modes.

Note that the discussion so far has been mostly in terms of coupled

first- and second-order equations. It is always possible, however, to

rewrite four first-order or two second-order coupled equations in terms

of one fourth-order equation (see Appendix 2). This procedure can be

useful in comparing the various kinds of coupled mode situations,

especially since the corresponding dispersion relations for homogeneous

media usually involve the solution of similar fourth-order polynomials

in the wavenumber. Furthermore, there are important cases where

solution of the fourth-order differential equation seems to offer the only
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hope for obtaining useful analytical results (in distinction to useful

numerical results obtainable on a computer). These cases occur, for

example, when neither wave type can propagate past a certain point,

called the "turning point, " but an incoming wave of one type will, in

general, couple strongly to both types of reflected wave.

For cases where reflections are substantial, successive approxi-

mations are no longer useful, since the amplitude of the incident normal

mode is not approximately constant throughout the inhomogeneous

region. In other words, there is then strong coupling between the

various quasi-normal modes, and the approximate validity of the WKB

quasi-normal modes breaks down. This can happen when either the

parameters of the medium, or the "local" wavenumbers of the quasi-

normal modes vary rapidly. Such a region will be termed a "critical

th
region" in the following. Then we usually look for solutions of the n

order differential equation with variable coefficients describing the

system with n waves.

A critical region may be one of rapid variation of the medium

parameters, or where two roots of the dispersion relation become

equal, or where one root goes to zero. At a large distance from such

a region, however, we can usually specify that the fields consist of an

incident wave of one type and one or more reflected waves. On the

side of the region opposite to where the incident wave is present there

will be the physical restriction that only waves carrying energy away

from the critical region may be present, as long as no reflections from

some distant point are allowed. If certain waves are cut off, so that

the wavenumber is imaginary in the lossless case, this restriction is

equivalent to requiring that only waves which are evanescent (as
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opposed to growing) may be present on the side opposite the incident

wave. Care is required in certain cases to identify which waves carry

energy away from the critical point, since for "backward waves" the

energy flow is directed opposite to the phase velocity (see, for example,

HEADING 1969a; also STIX 1965b, and KUEHL 1967a). Backward

waves occur in the examples of section 4. 3.

There exist basically three methods for finding the reflection and

transmission coefficients at critical regions. These coefficients refer

to the amplitudes of plane waves representing independent waves in

exterior homogeneous regions, or of the quasi-plane wave WKB

solutions of section 2. 2 representing almost-independent waves traveling

in weakly-inhomogeneous exterior regions, outside the critical region.

For very thin (thinner than any wavelength of the waves on either side)

critical regions, the ordinary boundary conditions will provide these

coefficients, through a set of simultaneous algebraic equations. The

number of boundary conditions must be equal to the number of unknown

amplitudes, since there must be as many equations as unknowns. As

discussed in section 1. 2, if there are more than two waves allowed in

each region, there will be more than one reflected wave and one trans-

mitted wave at the boundary, so more than the usual two boundary

conditions are required. Boundary conditions involve the requirement

of continuity of certain field quantities, arising from physical arguments

about forces and torques remaining finite.

The use of a large number of boundaries of small height to model

a smooth spatial variation forms the basis of the numerical schemes

developed by ALTMAN and CORY 1969a and 1969b. Their method is

called the "generalized thin film optical method" and has been applied
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successfully to coupled wave problems in the ionosphere, even when more

than two waves are involved. An iterative procedure is applied after the

transfer coefficient matrices for an elementary layer are derived, in

terms of a geometric series of matrix products. The method can be

adapted to yield transfer matrices of intermediate "layers" as well as

the overall reflection and transmission coefficients of the medium. In

the present work, numerical schemes such as this will not be discussed

further, since it is generally desirable if possible to have an analytic

solution for a quick assessment of the various factors. The work of

Altman and Cory cited above, however, includes numerical graphical

plots which are quite helpful in understanding the coupling and

reflections at numerous places in the ionisphere. Their work may also

be consulted for a discussion of earlier numerical approaches in the

literature.

The other two methods depend upon the properties of the differential

equation which describes the fields within the critical region. The

distinction between these two methods is based on the location and type

of the singular points of the differential equation. Near such points it is

impossible to write all the solutions in terms of single-valued convergent

power series. One method is the WKB method; the other involves the

use of generalized hypergeometric functions. The areas of differences

and similarities between these two methods are discussed in section 2. 5,

together with an explanation of the reasons that generalized hyper-

geometric functions are so useful. Expositions of some of the

mathematical details of the WKB method and of generalized hypergeometric

functions appear in sections 2. 4 and 3. 1, respectively. Applications to

physical problems appear in section 4. 3, and in sections 3. 2, 3. 4, 4. 2,



II

44

4. 3, and 4. 4.

The WKB method treats cases where the inhomogeneity extends

effectively over all space, although the critical region is localized.

Outside the critical region, the WKB quasi-normal mode solutions of

section 2. 2 will be valid in the sense that they are approximately linearly

independent basis solutions for the field, since the coupling terms are

small there. Some approximating differential equation is used for the

fields in the critical region. The basic problem is then to identify the

asymptotic expansions of the solutions of this differential equation as

linear combinations of the WKB solutions at the "edge" of the critical

region. This "matching" technique usually works well only in the limit

of the large value of some parameter, such as inverse static field

gradient in the critical region, and when the original differential equation

used to derive the WKB solutions is itself valid even at large distances

from the critical region. If some approximation, such as a "quasistatic"

approximation used, to derive the original equation, breaks down too

close to the coupling region, there may be difficulty in identifying the

linear combinations referred to above. Similar trouble can arise from

other coupling, such as magnetoelastic coupling, occurring in regions

too close to the critical region. See subsection 4. 3(d) for an explicit

discussion of these phenomena in the case of medium-k to high-k spin

wave conversion at a turning point.

The WKB treatment of the second-order Airy equation forms the

basis of phase-integral methods applied to a broader class of problems.

The Airy equation describes a cutoff situation where the square of the

"local" wavenumber passes through zero so that no energy can

propagate further; all is reflected. When loss is included, a phase
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integral may account for the corrections. Multi-wave problems can

sometimes also be approximated in certain regions by an equation

resembling the Airy equation. Instead of describing a cutoff situation,

however, this equation may now describe the confluence of two wave-

numbers at a branch point. A phase integral may then be used to obtain

an estimate of the reflection coefficients, or sometimes of the trans-

mission coefficients. See BUDDEN 1961, RYDBECK 1967, and the

discussion in part 2. 4(b)2 below.

In cases where the inhomogeneity is localized, the linearly

independent solutions outside the critical region are just the normal

modes of a homogeneous medium, with simple exponential variation with

distance (see section 1. 2). For certain variations of the medium

parameters in the inhomogeneous region, analytic solutions of the

corresponding differential equations can be obtained in terms of general-

ized hypergeometric equations. Far away from the inhomogeneous

region these solutions can be represented well by the first term of

convergent power series expanded about positive or negative infinity.

These first terms are easily identified with the exponential normal

modes. Note that if the width of the inhomogeneous region is allowed to

become infinitesimally thin, the reflection and transmission coefficients

obtained from these solutions should agree with those obtained from the

boundary conditions.

When the original differential equation has a form away from the

critical region which is significantly different from that of the approxi-

mating equation solved by one of the above methods, it may be profitable

to find the corrections. In this case the approximating equation is

called the "comparison equation, " and its solutions serve as zero-order
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solutions in a new successive approximations scheme. The differences

between the original and the comparison equations can be considered

as driving terms of a differential equation, which is solved by the

variation of parameters method using the solutions of the comparison

equation as basis functions. See subsection 2. 3(b) for cases when the

comparison equation is second-order.

Although this discussion has been in terms of spatially

inhomogeneous media, very similar situations exist in time-varying

media. The differential equations which arise are often almost

identical in the two different kinds of media. See, for example,

subsection 4. 2(b). In parametric interactions and in quantum-

mechanical time-dependent perturbation theory, the coupling parameters

of the media usually vary sinusoidally with space and/or time, however.
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2. 2 WKB Quasi-Normal Modes

(a) General formalism.

As in equation 1. 2(4), let us again assume that we have a set of n

coupled first-order equations which can be written in matrix form

U' = DU 2.2(1)

where U is an n x 1 column matrix, and D is an n x n square matrix. If

we start originally with coupled second-order equations, or a single

fourth-order equation, for example, Appendix 1 shows how to convert

them to the form of 2. 2(1). Now we would like to diagonalize D to find

s normal modes as in 1. 2(7) and following. Instead of the normal-mode

matrix N in 1. 2(7), let us introduce Q, in anticipation of the fact that we

will have to be content with _quasi-normal modes in inhomogeneous media:

U = LQ, 2.2(2)

where L is the n x n "linear combination" matrix, and Q is a column

matrix. Indeed, instead of an equation of the form 1. 2(8), we find

(CLEMMOW and HEADING 1954):

Q = L DLQ - L~ LI Q. 2.2(3)

The extra term in 2. 2(3) arises because of the extra term

generated by taking

U' = LQ + L'Q , 2.2(4)

and then substituting in 2. 2(1) and 2. 2(2). If we neglected this extra

term because of slow variations in L, then we would obtain:

Qi , -jk.Qi, 2. 2(5)
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where the -jk. are defined to be the eigenvalues of D and hence the

diagonal elements of L~ DL (see Appendix 1):

-jk = (L DL). . 2.2(6)

Even so, however, the solutions of 2. 2(5) for the Q. would not have the

same simple exponential form of 1. 2(9), but rather:

z

Qi a exp - k ) d(, 2.2(7)

since the "local wavenumbers" k are functions of the distance z. The

exponential factor in 2. 2(7) is called an "exponential phase integral. "

To construct quasi-normal mode solutions which at least resemble

2. 2(7), we first must eliminate the "self-coupling" terms along the

diagonal of (-L- 1 L ). As was shown in RYDBECK 1960 and 1967, by

calculating the relevant transmission coefficient for a boundary of

infinitesimal height, these terms represent the amount of "forward

scattering" into the same wave by the inhomogeneity. The off-diagonal

terms of (-L 1L) represent scattering into the other modes. Proceeding,

we now write

Q= BX, 2.2(8)

where B is assumed to be an n x n diagonal matrix and will be shown to

consist of the WKB amplitudes which must multiply the exponential phase

integrals in 2. 2(7). The column matrix X will be shown to consist of

exponential phase-integral solutions.

Following the same steps as led to 2. 2(3) after combining 2. 2(8)

with 2. 2(2), we find:



X' = [(LB) -D(LB)]X - (LB)~ 1 (LB)'X .

(LB) -D(LB) = B~I(L~ DL)B = L~ 1 DL ,

since B and (L~ DL) are assumed to be diagonal

2. 2(10)

and hence commute.

Furthermore, we define the n x n coupling matrix C as:

C (LB) (LB)' = BB+B (L L')B 2.2(11)

The diagonal elements C.. of C are from 2. 2(11)

= (B..) 1 B..
11 11

+ (L~ 1 L') ,11

since B is diagonal. For C to be diagonal as desired,

i = 1, 2, & ., n.

C.. = 0 for
11

Then 2. 2(12) represents a set of uncoupled differential

equations with solutions:

B i(z) = exp j- (L 1 L') iidg; C . = 0. 2.2(13)

To the extent that cross-couplings between waves are small so that the

off-diagonal elements of C can be neglected, the solutions for Xi in

2. 2(9) will be the exponential phase integrals of 2. 2(7) with arbitrary

constants A.:
z

X = A exp [-j Ski(Q ) d ,

where we have noted 2. 2(10), 2. 2(11), and 2. 2(13).

mode solutions Q from 2. 2(8) are then simply

2. 2(14)

The quasi-normal

Q. = B.. X. ,1 1 1'

Note that

49

2. 2(9)

C..
11

2.2(12)

2. 2(1 5)
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with B and X given by 2. 2(13) and 2. 2(14), respectively.

The solution outlined above for the "WKB amplitudes" B was

derived by KELLER and KELLER 1962 and equivalently by BUDDEN 1961.

RYDBECK 1960 and 1967 also derived the form of these "WKB amplitudes"

in general directly from the equivalent of the diagonal terms of (-L~ L )

in 2. 2(3), by arguing that they represent "forward scattering" terms.

In this case, however, his wavenumbers k. were taken from normal-mode

th
type solutions of the n order equation including terms in gradients of the

medium parameters. These solutions for k. differ slightly from those of

2. 2(6), calculated as if the medium were homogeneous (see Appendix 1).

HEADING 1961 and RYDBECK 1967 have shown that whenever 2. 2(1)

is obtained from a single nth order differential equation.

-1 n k'.
(L~1 L') = 7 1 2.2(16)

11 P=1 k k

,P/ i

provided that L is chosen to have the form of A1(11) (see Appendix 1).

When n = 2 and k2 = Sk, (L 1 L = k1 /2k = (L~ L') 2 2, so that the

solution in 2. 2(13) becomes B 1 1 = B2 2 = (k 1 ), the familiar result for

ordinary WKB solutions. However, when n = 4, B / (k.) 2. For

example, if k2 = -k 1 and k4 = -k 3 , then from 2. 2(16) we have

-1 /kr(4k )
(L~ L) 1 1  = + 2 . 2. 2(17)k 1) (k1 - k )

If k2 k is constant, we can integrate 2. 2(17) to obtain, from 2. 2(13),

B (k

B1 1 z [k 3(k-] 2 k k k constant. 2.2(18)
11 (Z) 1 3)] 1 3=
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Similarly, B 2 2 = B 1 1 and B4 4 = B33,3 with

-1

B3 3 (z) = 3k (k - k1) 2 kyk 3 = constant. 2.2(19)

-1 th
The fact that B / (k ) 2 for general n order systems has not

always been appreciated in the literature (for example, VASILE and

LAROSA 1968a), although BUDDEN 1961 gives the correct solutions when

n = 4 for radio waves in the ionosphere, including the effects of the

magnetic field. Also, PEARLSTEIN and BHADRA 1969 derive the

correct solutions when n = 4 for plasma waves at the upper hybrid

frequency. Their derivation proceeds in the fashion of geometrical

optics by assuming solutions of the form Q = exp [S(z)], and then

solving by iteration for S(z) assuming S"(z) << (S') 2, etc. Such

calculations involve approximate solutions of nonlinear nth order Riccati

equations, however, without the elegrance and generality of the method

leading to 2. 2(13). Furthermore, the nth order differential equation is

needed at the start with such a method, and none of the coupling terms

represented by the off-diagonal elements of C are readily obtainable.

th
For systems not initially described by a single n order differential

equation, the solutions for the B will generally be different from those

in 2. 2(18) and 2. 2(19), since L1 L will have a different form. As

shown in Appendix 2, however, it is always possible to reduce a set of

four coupled first-order equations or two coupled second-order equations

to one fourth-order equation. It is not necessary, moreover, to know the

explicit form for inhomogeneous media of this fourth-order equation to

obtain L in the form of A1(11). As remarked in Appendix 1, all that

need be known are the eigenvalues X. = -jk of the matrix D in 2. 2(1).
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These eigenvalues are the solutions of the fourth-order dispersion

relation for homogeneous media. Note that whenever the system is

reduced to a fourth-order system to obtain the simple form A1(1I) for L,

the quasi-normal modes using L- will be expressible in terms of U1 and

its first three derivatives, rather than in terms of the original U, U 2 ,

U 3 , and U 4 . Even if it is not desired to reduce the system in this way,

it is still possible directly from coupled first- or second-order equations

to choose the first row of L to consist of constants. This is done using

equation A1(15), where the cofactors c 4 -P there are those of (D - X I).

For two coupled second-order equations, Appendix 1 shows the relevant

steps explicitly. Similar remarks hold for nth order systems.

Now note that 2. 2(2) implies

n

U, = L QL . 2.2(20)

i=1

When the Li are all constants independent of distance, the right-hand

side of 2. 2(20) shows that the Q constitute quasi-independent "basic"

solutions for U, which is usually some characteristic field. As

indicated in the preceding paragraph, the L can always be chosen to

satisfy this requirement. U1 is then just a constant linear combination

of the "partial waves" Q . Furthermore, to satisfy power conservation,

we then expect that the power in each Q must be approximately constant

whenever the quasi-normal mode amplitudes A are approximately constant.

In fact, the characteristic feature of WKB quasi-normal mode solutions is

this constancy of power flow in each mode when cross-coupling between

modes is neglected. We can also infer that the power flow in any mode

Q will be proportional to JA i 2 , multiplied at most by constants
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independent of distance and of i. This result is proved explicitly for a

fourth-order spin wave system in part 4. 3(b)3.

When the off-diagonal coupling elements of the matrix C in 2. 2(11)

must be considered, the quasi-normal mode amplitudes A in 2. 2(14)

are no longer constants. To examine when these variations might be

significant, write 2. 2(14) as

X = E A ; (X = EA),

with

2. 2(22)

The E are exponential phase-integral factors, and

be elements of an n x n diagonal matrix E. From t

will be considered to

he property 2. 2(6)

and 2. 2(22), we find

E' = (L1 DL) E

since (L DL) and E are both diagonal.

= E(L~1 DL) ,

Furthermore,

2. 2(23)

2. 2(9) with

2. 2(10) and 2. 2(11) becomes

X

Combining 2. 2(21),

= (L~1 DL) X - CX .

2. 2(23), and 2. 2(24), we finally obtain

A = -E CEA ,

or, in component notation,

A (z) = -[ x (k - k ) dj C A.

Aei

The equations represented by 2. 2(26) are the coupled first-order

2.2(21)

2. 2(24)

2. 2(25)

2. 2(26)

exp 1-j k ()d( ,
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equations for the quasi-normal mode amplitudes, where the C depend

upon the derivatives of the parameters of the medium through 2. 2(11).

The original equations represented by 2. 2(1), on the other hand,

generally contain coupling terms which do not vanish even for homogeneous

media. The transformation between 2. 2(1) and 2. 2(26) is given from

2. 2(2), 2. 2(15), and 2. 2(21) as:

U = LBEA, 2.2(27)

where B and E are diagonal with elements given by 2. 2(13) and 2. 2(22).

Once the Q are specified by the diagonalization of D, the transformation

Q = B E A leading to coupled equations of the form 2. 2(26) with no

self-coupling terms is unique to within a factor independent of z. To

prove this fact, first assume the contrary. Then we should be able to

write A (z) = g.(z) A (z), where the A (z) are new variables which must

satisfy an equationof the form of 2. 2(26). However, we would have

A'. = g. A'. + g. A.. Substituting for A'. from 2. 2(26), we obtain after
1 1-1 1 -1

division by g. the self-coupling term -(g '/gi)A in the equation for A ,

thus contradicting our assumption.

Note finally that the procedure outlined in this section can be

applied to find the quasi-normal modes in a systematic manner for any

problem, including those treated by SCHLOMANN and JOSEPH 1964

("strong coupling" case), LOUISELL 1955 and KIRCHNER 1966 (see

part 4. 2(b)1). Each of these papers reduced the coupled equations to

the form of 2. 2(24) where C has zero diagonal elements, but did not

indicate a systematic procedure for doing so. LOUISELL 1955 first

simplified the problem by neglecting coupling terms representing

reflections before finding the quasi-normal modes. His modes were
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thus found from a second-order system of two coupled first-order

equations.

(b) Example: reflection of electromagnetic waves.

As an example for the techniques of this section, consider the

propagation of an x-polarized electromagnetic wave in an isotropic

medium with variable dielectric constant ((z). Since the medium is

isotropic, there will be no coupling to y-polarized waves, as in the

Faraday rotation example of subsection 1. 2(c). However, in an

inhomogeneous medium we now may have reflections. Writing

U1 = E (z) and U2 = H y(z), we find from Maxwell's equations 1. 2(3)that

the matrix D in 2. 2(1) becomes:

D = -jW K . 2. 2(28)
_((z) 0

Diagonalizing, we find the eigenvalues -jk. satisfy

I

k = -k 2 = w(j0C) 2 , 2.2(29)

and that we can write L in the form

L = 2.2(30)

-go 1o -

producing after inversion the normal modes N 1 and N 2 of equation
1

1.2(11). Since (M/yo) 2 = k,/ w~o from 2. 2(29), we have

-1 - kL 1 -1 2.2(31)L L ~2k..2()
21 -1 1-
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Now explicitly evaluating the "WKB amplitudes" B using 2. 2(13),

we obtain

1 = B22 = (k) 2 2.2(32)

Combining 2. 2(27), 2. 2(22), and 2. 2(32) yields

z z

E (z) = (k1 )~ LAi exp j k di) + A2 exp + j k1 dj), 2.2(33)

which is the ordinary WKB solution, representing waves traveling in the

positive and negative z directions. Note from 1. 2(35) that the average z

component of electromagnetic power (Sz) in each wave is E _E /2Z where

1

Z = (j1o/C) = gop/k. Thus we see from 2. 2(33) that the power in each

wave is approximately constant as long as A1 and A2 are approximately

constant.

The coupling matrix C acting to change the amplitudes A and A2

according to 2. 2(26) is, from 2. 2(11), 2. 2(31), and 2. 2(32):

-k 0 1~
C 1 . 2.2(34)

11 0

Hence whenever k1 (z) (or E2, from 2. 2(29)) varies rapidly, the reflections

will be large. Also, if c(z) approaches zero (cutoff), substantial

reflections will result even in weakly-inhomogeneous media.

Analytical solutions for the reflections in this problem are given in

section 3. 2 for certain variations in C(z). Similar solutions for situations

where the anisotropy of the medium also couples waves traveling in the

same direction are given in section 4. 3. (See parts 4. 3(b)3 and 4. 3(e).)
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2. 3 Successive Approximation Methods.

(a) From coupled first-order equations.

Recall from section 2. 2 that the "WKB amplitudes" 2. 2(13) could

be derived by considering the "forward- scattering" transmission

coefficients at a boundary of infinitesimal height. BREMMER 1951

considered the WKB quasi-normal mode solution obtained in this way for

a second-order system to be the first term in a geometrical optical

series, higher-order terms resulting from multiple reflections described

by the off-diagonal terms of (-L L ). Reference to treatments on the

mathematical properties of such series are contained in BELLMAN 1964,

page 102. The series constructed by KELLER and KELLER 1962,

however, was shown to converge under more general conditions.

This last series was developed using a matrizant-integral procedure

based on first-order coupled quasi-normal mode equations similar to

2. 2(26). Such a procedure is now common in the treatment of time-

varying control systems with state variables. The first term in the

series is the usual first approximation, equivalent to the assumption that

the amplitude A. of the incident quasi-normal mode Q. is constant

throughout the coupling region.

Since the off-diagonal elements C in 2. 2(26) are non-zero only

when spatial derivatives of the parameters of the medium are present,

it is expected that the coupling will be small when these spatial

derivatives are small. If we start with only one of the A nonzero, say

A1 , and assume small coupling, equations 2. 2(26) can be integrated by

assuming that A1 is constant throughout the coupling region. Further-

more, the C often are significant only in a small region, so that the

contribution in this region is the most important, and then the limits on
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the integrals can be pushed to infinity, with good accuracy. The

parameters of the medium are also expanded in a power series. This

is one approach used by SCHL6MANN and JOSEPH 1964 in calculating

magnetoelastic coupling efficiency. His WKB solutions were derived in

a different manner, since the field elements of his matrix corresponding

to our U were arranged in a manner prohibiting the setting of all the

components in the first row of L equal to unity. Appendix 1, however,

shows how a slight rearrangement allows the systematized method of

this paper to be used.

If a better approximation is desired, it is necessary to use the

A.(z), i / 1, calculated in the first-order approximation, then to

calculate the variation of A1 (z) through integration of 2. 2(26), and then

use this corrected value to correct the values of A.(z), and so on. This

procedure is generally so involved that it is not used in practice. If the

coupling is too strong to give good accuracy in the first approximation,

another method is usually sought.

The coupling of the first-order equations of 2. 2(26) can become

strong when the parameters of the medium vary rapidly. In that case,

it is possible that the coupling terms of the corresponding coupled

second-order equations are then small. Such is the case with magneto-

elastic coupling, when the parameters still vary slowly enough that

reflections may be neglected. Then one uses the method of successive

approximation in the coupled second-order equations, instead (the

1weak coupling" case of SCHL6MANN and JOSEPH 1964). On the other

hand, when the coupling between the second-order equations becomes

strong ("strong coupling" case), it may happen that the corresponding

first-order equations are weakly coupled, so that the method described

above is useful.
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The usefulness of the successive approximations based on 2. 2(26)

also breaks down when the waves are close to a singularity in B or C.

Equations 2. 2(33) and 2. 2(18) show that this can happen when one of the

wavenumbers k. approaches zero, or when two wavenumbers approach

equality. Usually these situations imply that the waves are cut off

beyond the point of singularity so that strong reflections are generated.

Such is the case with the generation of high-k spin waves by medium-k

spin waves ("magnetostatic waves"), and vice versa, at a "turning point.

(See section 4. 3. ) In these cases the amplitudes A. of the incident

waves cannot be even approximately constant in the coupling region,

since beyond that point is the cutoff region where the amplitudes decay

rapidly to zero, as the wavenumbers k. become imaginary. Successive

approximations are then useless, whether based on the first- or second-

order coupled equations. The techniques of other subsections may then

be tried.

Before leaving the subject of coupled first-order equations, note

the similarity between equations 2. 2(20), 2. 2(26), and those of time-

dependent perturbation theory in quantum mechanics. Instead of an

expansion in terms of WKB quasi-normal modes, there is an expansion

in terms of the eigenfunctions of the unperturbed time-independent

Hamiltonian. The method of successive approximations is used when

the perturbation is small, to calculate the transition probabilities

between energy levels. Actually, whenever a successive approximations

scheme is applied to coupled first-order equations, the appearance will

be similar, as in the solution of state-variable problems in time-

varying control systems, for example, mentioned above. BELLMAN

1964, pages 32-51, may be consulted to see the relation to other
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perturbation techniques, including those used for nonlinear equations.

(b) From coupled second-order equations.

Coupled second-order equations such as in equations 1. 2(12) are

often the most natural form of description of a system, particularly

when the coupling terms are small. The coupling terms in one

equation may be functions of the field of the second equation or its

derivative. In this form, one quickly sees how the dispersion relations

for the two uncoupled systems are affected by these terms.

In attempting to apply successive approximations methods to such

equations when the coupling terms are weak, usually both coupling terms

are neglected at first. The uncoupled second-order equations are then

solved, often in terms of WKB quasi-normal mode solutions, with n = 2

instead of n = 4. (As discussed in connection with first-order coupled

equations, such WKB "solutions" are good approximations only in

regions of space where there are negligible reflections of the energy in

each solution. ) Then one coupling term is calculated from these

solutions and is interpreted as a driving term in the other equation.

The solution to the coupled equation then follows the method of variation

of parameters using the solutions to the corresponding uncoupled

equation as basis functions. See SCHLO5MANN and JOSEPH 1964, and

BURMAN 1967, for examples. HORTON 1966 takes the Laplace trans-

form of the coupled second-order equations before applying this method.

Higher approximations may be obtained by iteration.

In other cases, when the solutions to the uncoupled equations are

also difficult to obtain, it may be convenient in a successive approxi-

mation approach also to neglect some terms in the uncoupled equations

at first. Then one solves the resulting equations exactly in terms of

_01
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known functions (for example, BURMAN 1967). These resulting

equations are of the same kind as the comparison equations mentioned at

the end of section 2. 1. The solutions to the original equations are then

obtained in a manner similar to that described above, using the

correction terms as driving terms, and then applying the variation of

parameters method. Neglect of the correction terms mentioned may be

equivalent to assuming that the wavelengths of the waves in question are

much smaller than free-space wavelengths, and this approximation is

then called a quasi-static (electrostatic or magnetostatic) approximation.

Usually, however, such an approximation is made in the process of

deriving the coupled wave equations to begin with (see section 4. 1).

When an inhomogeneous region is bounded by homogeneous regions

a kind of Born approximation can be used (BURMAN 1967). First the

Green's functions are found for the uncoupled wave equations satisfied in

the homogeneous regions. Then a particular solution is found in terms

of the fields which enter the equations for the inhomogeneous region as

driving terms. This has the form of an integral equation. However, if

the medium is slowly varying and only one wave type is incident from the

homogeneous region, one particular solution gives the field of the other

wave type generated in the inhomogeneity.

In a uniform, homogeneous, linear medium, there is no coupling of

normal modes, as was mentioned in section 1. 2. In the absence of

nonlinearities or random irregularities, the normal modes are only

coupled in the presence of an inhomogeneity. Thus it is often

advantageous to transform variables so that the only coupling terms

arise from derivatives of the parameters of the medium, as in equations

2. 2(26) for coupled first-order equations. For example, instead of
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using equations 1. 2 (12), one first uses the matrix Lf of 1. 2(21). The resul-

ting two second-order equations are then coupled by inhomogeneities

in the medium. This is the idea behind Fbrsterling's coupled second-

order equations which are used in analyzing wave propagation in the

ionosphere. The normal modes are the ordinary and extraordinary

electric fields with their associated magnetic fields.

Often the two kinds of modes are strongly coupled only in certain

isolated regions. Outside those regions, one can just be concerned with

how the inhomogeneity affects the quasi-normal ordinary or extraordinary

modes separately (see, for example, BUDDEN 1961). If there is

another region where strong reflection of a quasi-normal mode occurs,

the WKB phase-integral methods of part 2. 4(b)2 may be used. Further-

more, when the extraordinary and ordinary waves do couple, it often

happens that reflections are weak. Then it may be possible to model

the coupling between the two forward-traveling waves by one single

second-order equation using new variables (see HOUGARDY and SAXON

1962). The phase-integral method may then also be adapted to handle

such coupling (see BUDDEN 1961 and part 2. 4(b)2 below).
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2. 4 The WKB Method.

(a) Matching quasi-normal mode solutions to

asymptotic expansions.

In a critical region, where n WKB solutions of the type of section

2. 2 break down, one needs some information about the exact solutions to

the corresponding nth order differential equation. This may be the

original differential equation, valid over the entire one-dimensional space

under consideration, or it may be an approximation valid near the critical

region only. Such an approximation may be obtained by replacing the

coefficients of each derivative in the differential equation by the first

term of a power series for the coefficient, expanded about the critical

point. This type of approximation will be particularly useful when the

critical region is narrow, since outside this region the WKB quasi-normal

mode solutions are satisfactory.

The next step is to try to connect the solutions of this nth order

equation to the quasi-normal mode solutions, at the edge of the critical

region. Since the quasi-normal mode solutions are written in terms of

exponential phase integrals, as in 2. 2(14) and 2. 2(15), it is natural to

look for asymptotic solutions to the differential equation which also can be

written conveniently in terms of exponential phase integrals. For this

reason, a saddle point method (either the steepest descents or the

stationary phase methods) is invariably used, as described below. The

solutions are called asymptotic because they become increasingly better

approximations to exact solutions as some parameter becomes large.

This parameter is usually some normalized measure of distance from the

critical point, and often is proportional to some characteristic of the

medium such as inverse static field gradient. If this parameter is not
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large, then the asymptotic solutions are reasonably valid only at large

distances from the critical point. In such a case, if the differential

equation used to derive the asymptotic solutions becomes a bad approxi-

mation far from the critical point, then of course this method breaks

down.

To obtain asymptotic solutions by a saddle point method, it is first

necessary to write the solutions of the differential equation in the form

of a contour integral of the following form:

I(z) = exp [f(z, t)] dt 2.4(1)

A common case where this can be done is when the differential equation

can be solved by Laplace's method. (See LANDAU and LIFSHITZ,

Quantum Mechanics, mathematical appendix, for example.) In this case,

the integral in 2. 4(1) is basically a Laplace transform. Any extra terms

in the integrand outside the exponential can be absorbed into f(z, t) by

first taking the logarithm. Furthermore, almost all common second-

order differential equations can be written in terms of the hypergeometric

differential equation and its generalizations, such as the confluent hyper-

geometric equation. Certain higher order equations can also be trans-

formed into generalized hypergeometric equations. In such a case it is

possible to express the solutions in terms of Barnes contour integral

representations, where the integrand is written in terms of the ratio of

products of gamma functions. By taking the logarithm, these terms are

absorbed into f(z, t). Since the logarithm of a gamma function is

conveniently approximated by Stirling's formula for large values of the

argument, it is possible to evaluate 2. 4(1) by a saddle point method

_."044
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whenever the contour can be deformed to corresponding regions of t.

See Chapter 3 for cases when explicit convergent power series can be

obtained instead of asymptotic solutions. A recent book (LUKE 1969)

summarizes information on generalized hypergeometric functions and

their relations to other functions in an organized and accessible form.

See also ERDELYI et al. 1953.

To solve 2. 4(1), first find at fixed z the points t where

f'(t ) = 0 2.4(2)

where the prime denotes differentiation with respect to t. In general

there will be n such "saddle" points, corresponding to the n WKB quasi-

normal mode solutions of an nth order differential equation. Then,

following BUDDEN 1961, for example, expand the exponent f(t) in a Taylor

series about t = to:

exp [f(t)] = exp f exp 1 (t - t) 2 f" + (t - t ) 3 f + - - 2.4(3)0 21 0 o 3!. o o

where f = f(t ), f" = f"(t ), etc. For the method of steepest descents,0 0 0 0

one writes 2. 4(3) as

exp [f(t)] = exp f exp (-c-2) 2.4(4)

with a- real, while for the method of stationary phase write:

exp [f(t)] = exp f exp (ir 2) 2. 4(5)

with r real. Which method is chosen depends upon the relative

convenience of the transformation of variables from (t - t ) to a- or 7.

This change of variables generally involves writing (t - t ) as a series in
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cr or 7, respectively. Since a and r are defined by 2. 4(4) and 2. 4(5) as

power series in (t - t ) through 2. 4(3), this last operation involves an

inversion of power series, which may be very difficult to do. In this

connection, Lagrange's expansion or power series "reversion" formulas

may be useful (see ABRAMOWITZ and STEGUN 1964).

Usually there are n or more contours C for which the integral

I (z) in 2. 4(1) represents a solution of the corresponding nth order

differential equation in the independent variable z. If one deforms each

contour to follow paths of steepest descent or stationary phase, these

paths will pass through up to n of the saddle points defined by 2. 4(2).

Regardless of whether one uses a steepest descent path as in 2. 4(4) or a

stationary phase path as in 2. 4(5), the first term of the contribution I

to I from each saddle point m has the same form

± (2 exp [f ] exp [i(T - a)] 2.4(6)

Here A and a are defined through Ae f" = f"(t ), with 0 a < 2 r.
0 0

The sign of I depends on the direction @ of the contour at the

saddle point m and is positive if -17 <6 s 7T. The factor I
2 arises

+0 2 2
from an integration S e dCx or e dr. Note that exp [f 0

factors out of the integration, since f = f(t ) is not a function of a or r.

It is this factor which must be identified with some WKB integral
z

exponential exp (- j k d4] as in 2. 2(14). The other factors in 2. 4(6)

turn out to be the WKB amplitudes B = exp - (L L)i dj of 2. 2(13).

Note that the saddle points to are functions of the distance of travel z,

and hence A and a in 2. 4(6) will also be functions of z. See subsection

4. 3(d) for a demonstration of these phenomena in a fourth-order

.1111, W 0 .9 . I I - - - _ _ - _ ___ _ - - , __ - ___ I 1 11 - - I -- _ .- . __ I _=MQ
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differential equation treated by the WKB method.

The central issue of the WKB method lies in finding through which

saddle points the various contours C can be deformed to pass, as a

function of z, and then in identifying the terms 2. 4(6) with WKB quasi-

normal mode solutions. The solutions to the differential equation are

defined in terms of fixed undeformed contours. In general, the same

contour C will pick up different saddle points on different sides of the

critical region, and may represent a linear combination of propagating

waves on one side and evanescent waves on the other side. This is a

manifestation of Stokes' phenomenon which occurs when a differential

equation has an irregular singular point at z = oo. The relation between

Stokes' phenomenon and the similar functioning circuit relations for

equations with regular points at z = co is discussed in section 2. 5. The

desired total solution then is, in turn, a linear combination of the II,

determined by the requirement that only one incident wave be present,

and that the waves on the opposite side of the critical region from the

incident wave must be either evanescent or traveling away from the

critical region. See, for example, subsection 4. 3(d).

Difficulties arise in this method when the steepest descent or

stationary phase contours pass through regions where some essential

approximation such as Stirling's formula, used to find the saddle points

and the steepest descent or stationary phase contours in the first place,

is no longer valid. In any case, the contribution to I represented by

2. 4(6) is only the first term in a series. Unless the distance from the

critical region or some characteristic parameter is large, the higher

order terms may actually be larger than the first-order terms from

other saddle points. These difficulties become particularly troublesome
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with differential equations of higher order than two (see subsection

4. 3(d)). Mathematically, the series which arises for I in the saddle

point method is ordinarily an asymptotic expansion in the Poincare'

sense as is shown by Watson's lemma. See, for example, CARRIER,

KROOK, and PEARSON 1966. Whenever Stokes' phenomenon appears,

these series are divergent. For general mathematical treatments of

these problems, and references to earlier work, see HEADING 1962,

WILCOX 1964, WASOW 1965, for example.

(b) The Airy equation.

1. Basic solutions.

The most common equation used in the WKB method is the Airy

equation

F" - zF = 0 2.4(7)

where the prime denotes differentiation with respect to z. The solutions

of 2. 4(7) can be written in terms of powers of z multiplying Bessel

functions of order one-third. The well-known asymptotic expansions

of the Bessel functions in terms of exponentials can then be used to

match to WKB quasi-normal mode solutions. Recent treatments,

however, almost universally consider directly the Airy integrals which

are the solutions of 2. 4(7) by Laplace's method. Then the saddle-point

method described following 2. 4(1) is used to connect to the WKB

solutions. The Airy integrals are more natural solutions since they

are analytic about z = 0, which is an ordinary point of 2. 4(7), whereas

Bessel functions of order one-third have a singularity at the origin.

Since, however, the Airy equation has an irregular singular point at

infinity, the Airy integral solutions exhibit Stokes' phenomenon.
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The "dispersion relation calculated from 2. 4(7) as if z were

constant gives

k = -z , 2.4(8)

showing that for z greater than zero k is imaginary and the wave is cut

off in that region. For this reason z = 0 is called a "turning point. "

The WKB solutions obtained in the manner of section 2. 2 represent a

wave incident from z less than zero and a wave reflected back from
5

z = 0. The total solution for F for z < 0 is then the linear combination

(see 2. 2(33)):

z z -1
k{ exp [-j Skdz + R exp + jS kdz]. 2.4(9)

z z
5 5

R is the reflection coefficient and the ratio of the amplitudes of the two

waves at zs, the "starting point. " Now the Airy integral solution which

represents an evanescent wave for z > 0 matches onto 2. 4(9) for z < 0,

if
Zo

R = j exp L-2j kdz 2.4(10)
zs

where z is the place where k(z) = 0. (See BUDDEN 1961, Chapter 16.)

Clearly, for a lossless medium, z0 = 0 from equation 2. 4(10), so that

IRI = 1, representing complete reflection of energy. The phase integral

in 2. 4(10) is just a function of the reference point zs, just as with

reflections on lossless transmission lines. To include the effects of

loss, one can in practical problems often replace 2. 4(7) by

F" - (z + jZ)F = 0

-- 1-- 1-1. --d " - IW I I I- - -- - -1- --- -- - . -- - - -- - -- - - - - - - - ---------------- mmm

2. 4(11)
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in which case 2. 4(10) still holds, but now z = -jZ. For example, for

spin waves Z is proportional to the linewidth, while Z is proportional to

collision frequency for radio waves. ) Thus to find the magnitude IRI of

the reflection coefficient, one must evaluate the integral Im (Sk dz) not

just from the limit z = zs to z = 0, as there is an added contribution

along the line z = 0 to z = -jZ. This added contribution, as well as the

factor j in 2. 4(10), are the corrections to simple ray-theoretical

approaches. The corrections are necessary because ray theory breaks

down when the WKB solutions break down, near z = 0.

2. Phase-integral methods.

The use of 2. 4(10) and variations thereof to find R for various

lossless and lossy media is called a "phase-integral method" for

determining R. Note, however, that the form of 2. 4(10) is strictly

correct only when the original differential equation has the form of

2. 4(7) or 2. 4(11). For other differential equations, a different formula

would have to be calculated, based on new asymptotic expansions (see

HEADING 1962). Nevertheless, 2. 4(10) is often approximately valid

for other differential eqtiafios when the medium parameters are slowly

varying and the branch points of the equation are far apart.

Comparisons of exact "full wave" results and those obtained from

phase-integral methods based on the Airy equation (Stokes' equation) are

contained in Chapter 20 of BUDDEN 1961, for second-order equations

similar to 2. 4(7), but with variations of k2 z) other than that of 2. 4(8).

When k 2(z) is parabolic instead of linear with z, for example, differences

in the results become substantial for certain regions of the medium

parameters. To quote Budden, "the phase integral formula is unreliable
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because the branch points ... are so close together that there is no

region between them where the WKB solutions are good approximations.

When k 2(z) follows a hyperbolic tangent variation, the formula for the

reflection coefficient is reproduced in 3. 2(a)5, from an exact solution of

the differential equation using hypergeometric functions. Budden shows

that the reflection coefficient R found from the phase-integral formula

2. 4(10) agrees with the expression from the exact solution when k2 (z) has

a slow variation. In applying the phase-integral formula, however, it is

necessary to use some intuition to determine around which branch point

of the integrand the integral should be taken.

As mentioned previously, it is sometimes possible to reduce, for

example, a fourth-order system to one second-order approximating

equation in certain regions of space. If this second-order equation is the

Airy equation, then 2. 4(10) can again be used. For the case of the

coupling of extraordinary and ordinary waves in the ionosphere, when

reflections are neglected, this indeed is possible after transformation of

the independent variable. In that case R represents a transmission

coefficient with z above the coupling region and 2. 4(10) is then called a

phase integral formula for coupling. (See BUDDEN 1961, Chapter 20.)

In such a case, it is generally assumed that the variable parameter

involved has a linear variation with distance z. Since the phase integral

formula is not rigorous, it would probably be preferable, if possible, to

use exact solutions of the coupled wave equations such as described in

parts 3. 2(c) and 4. 2(b)1 below.

For example, RYDBECK 1967 has shown that the coupling between

cyclotron waves and "whistler" modes in four-wave ionized media can in

certain regions be described approximately by:
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k 3 - k 1 2F 0.F" + (kk = 0. 2.4(12)

Here k 3 , representing an incident cyclotron wave, and kJ, representing

a reflected "whistler" mode, are both functions of distance z. At some

points zI and z 2, called the branch points, k3 = k . At these two points

the group velocities of the waves go to zero and the waves contain equal

amounts of the two types of power flow (kinetic and electromagnetic).

Between these two points no energy can propagate because k and k3

become imaginary. This situation is similar to the turning point problem

discussed in section 4. 3, except that in that case the waves are cutoff

beyond the second branch point also. By analogy with 2. 4(7) and 2. 4(10),

Rydbeck from 2. 4(12) takes the coefficient R for energy reflected from a

wave incident upon a branch point into a wave of the same type traveling

in the opposite direction to be (except for a factor of 2 in the exponent):

- 2 k m 3 - kg
=RI exp-2 ISz 2 )dz 2.4(13)

as long as (k 3 - 1 2 varies linearly with z. It is then assumed that

(1 - IRP) represents the amount of energy converted to the other wave

type. There is no rigorous justification of this assumption or of formula

2. 4(13), however. Note also that WKB quasi-normal mode solutions are

not valid between the branch points. (See the quotation from BUDDEN

1961 given above. ) Results obtained using formula 2. 4(13) are compared

in section 4. 3 with those from the WKB method and from generalized

hypergeometric functions.

The whole subject of modeling the coupling involved in nth order
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equations by extracting different single second-order equations in

different regions of space is treated by HEADING 1961. See also

HEADING 1967 for a specific application to electroacoustic waves.

When reflections and coupling occur in the same region, as for examples

in sections 4. 2, 4. 3, and 4. 4, the "embedding method" breaks down.

Then solutions of the complete nth order differential equation must be

sought. Note in this connection that HEADING 1962 (page 23) showed

that the attempt of ECKERSLEY 1950 to establish a phase-integral method

for fourth-order equations by generalization of 2. 4(10) was without

mathematical justification.

(c) Other second-order equations.

Matching of WKB quasi-normal mode solutions to solutions derived

from saddle-point integrations has been successful for certain other

cases of the equation

F" + [C + g(z)] F = 0 2.4(14)

besides the Airy equation for which g(z) is linear in z. BUDDEN 1961,

for instance, gives several examples. When g(z) is parabolic in z or

simply proportional to the square of z, the solutions are parabolic

cylinder functions, whose asymptotic expansions match onto WKB

solutions. With these functions it is possible to consider two isolated

critical regions. See HEADING 1962. When g(z) is exponential in z,

Hankel functions result.

Equation 2. 4(14) is useful in studies of the vertical propagation of

waves in the ionosphere or other medium assumed to be vertically

stratified, when the medium is assumed to be isotropic so that a
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maximum of two waves are coupled. In the case of the ionosphere, this

means that the effect of the magnetic field is neglected. Then g(z) is

proportional to the density of ionized particles. To consider oblique

incidence upon the ionosphere in the x-z plane, it is only necessary to

take C in 2. 4(14) to be a certain function of the angle of incidence, but

independent of z, as long as the wave is polarized with its electric field

in the y (horizontal) direction. In these cases, g(z) is just proportional

to the square of the refractive index of the ionosphere. If, however, the

wave has a component of electric field in the z direction (vertical

polarization), then-g(z) is proportional to n 2 (z) - n(z) where

n(z) is the refractive index (BREMMER 1958). Then when the refractive

index is linear in z, for example, the resulting equation is Whittaker's

confluent hypergeometric equation instead of the Airy equation 2. 4(7).

A list of the cases solved in the literature for vertical polarization is

contained in HEADING 1969b, while WESTCOTT 1969a gives all the

cases whose solutions can be written in terms of hypergeometric functions,

by generalizing a method of HEADING 1965. By using other generaliza-

tions of this method, WESTCOTT 1968, and WESTCOTT 1969b, have

systematically derived solutions for propagation in spherically stratified

and cylindrically stratified media, respectively. These latter solutions

are for horizontal polarization only, however.

When the medium is anisotropic, certain reflection, transmission,

and absorption processes can still be modeled by 2. 4(14) as long as only

two of the four or more possible waves are interacting strongly in the

region of interest. In many regions of the ionosphere, for example, the

extraordinary waves are essentially uncoupled from the ordinary waves.

To consider the propagation of the former, g(z) can be considered as
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proportional to the square of the index of refraction for the extraordinary

waves. Now, however, new phenomena occur. For example, at a

resonance point g(z) may have a pole, in which case C + g(z) may have an

isolated infinity, or a zero and an infinity close together. The solutions

for F are then in terms of Bessel functions of order unity, or Whittaker's

confluent hypergeometric functions, respectively. STIX 1960 and 1962,

has given a treatment of the former case (isolated pole) to try to under-

stand the absorption of energy in an inhomogeneous plasma in plasma

heating experiments. VASILE and LAROSA 1968, consider an

"fisolated pole" case when the extraordinary wave is a circularly-polarized

medium-k "magnetostatic wave" in an anisotropic magnetic insulator.

(d) Fourth-order equations.

The seeming possibility that the refractive index of the extraordinary

wave may approach infinity raises some interesting problems. First of

all, the WKB method applied to the case of an isolated pole mentioned in

the last paragraph gives the result that all the energy is absorbed near

that point, even when the losses in the medium are negligibly small, and

the derivatives of the medium parameters arbitrarily large. Attempts to

explain this result included a supposition that most of the energy in the

wave is diverted sideways instead of being absorbed (or reflected) when

the losses are small (see, for example, BUDDEN 1961, section 21. 16).

Also, if one allows the refractive index to approach infinity, it turns out

that the amount of power radiated by an antenna in such a medium

approaches infinity ("the infinity catastrophe"). The September 1966

issue of "Radio Science" was largely concerned with this question.

The resolution of the paradoxes just mentioned lies basically in the

fact that the refractive index does not actually go to infinity. Instead,
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the extraordinary wave couples to waves which have finite but large

refractive indexes (or wavenumbers) but which were neglected. When the

effects of finite temperature are included, it is seen that the extraordinary

transverse electromagnetic waves in a plasma are coupled to longitudinal

"'Bernstein" (electrokinetic) waves. Similarly, including the effects of

exchange in a magnetic insulator shows the possibility of high-k exchange

spin waves with different dispersion characteristics than the medium-k

(extraordinary electromagnetic) magnetostatic spin waves. Both types

of high-k, propagating, coherent waves were known earlier (longitudinal

plasma waves: BERNSTEIN 1958; exchange spin waves: KITTEL 1958b),

and a qualitative indication of possible coupling between these waves and

the corresponding extraordinary waves appeared in GINZBURG 1961,

and FLETCHER and KITTEL 1960, respectively. However, it was

assumed at first that the high-k spin waves, for example, were excited

by a process describable by an Airy equation such as 2. 4(7) directly from

free-space ordinary electromagnetic waves, by a large net dipole moment

where the spin-wave refractive index went to zero (at z = 0). (See

SCHLOMANN 1961 and 1964a, and the discussion in subsection 4. 3(a).)

The introduction of the high-k wave type prevented the refractive

index from going to infinity, but it introduced a situation where it was

impossible to avoid a fourth-order system arising from the coupling of

the two extraordinary waves with the two high-k waves. The ordinary

waves, of course, were neglected long since. To include them again

would require a sixth-order system. The first to apply the WKB method

to the fourth-order system described above was STIX 1965a and 1965b,

by using an equation of WASOW 1950:

Fli t + p2 (zF'' + F) = 0 2.4(15)
0
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Wasow found solutions of this equation using the WKB method for

application to the Orr-Sommerfeld theory of hydrodynamical stability.

A more flexible equation was solved asymptotically for the same purpose

by RABENSTEIN 1958:

FI'I + p (zFI + p F +p 2 F) = 0 2.4(16)

Several workers have recently applied these results of the WKB

treatments by Wasow and Rabenstein to various problems in plasma physics.

Since the more recent papers do not refer to each other, it may be helpful

to present here a summary. KOPECKY, PREINHALTER, and VACLAVIK

1969 use Rabenstein's results to treat more thoroughly the wave trans-

formations described by STIX 1965b, and by GORMAN 1966. These

included transformations from transverse cold plasma waves to short-

wavelength Bernstein modes in plasmas with radially decreasing charged

particle density, at the upper and lower hybrid resonance frequencies.

A magnetic field is assumed to be applied axially in the plasma,

perpendicular to the propagation direction. Since the short-wavelength

waves are readily absorbed, plasma heating can occur, especially when

the ions are involved as at the lower hybrid frequency. Certain

"Landauer" radiation observed from a hot plasma can also be explained

(see also BEKEFI 1966). Using Rabenstein's results, KOPECKY and

PREINHALTER 1969 explain another linear process leading to plasma

heating, namely the transformation from electrostatic waves excited by

an electron beam into short-wavelength Langmuir waves at the plasma

frequency. The waves are assumed to be traveling with a component of

the wavevector parallel to the beam, which is also parallel to an applied
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magnetic field and the direction of the variation in electron density.

KUEHL 1967a applied Rabenstein's results to the coupling of extraordinary

waves to high-k waves at the upper hybrid resonance frequency near the

second electron cyclotron harmonic in a plasma. The waves are assumed

to propagate perpendicular to a static magnetic field and to be incident on

a nonuniform plasma half-space. In such a case, the second-order

equation for the extraordinary waves alone corresponds to 2. 4(14), where

C + g(z) has a zero close to an infinity. PEARLSTEIN and BHADRA

1969 calculated the dispersion of the upper hybrid mode propagating

parallel to a uniform magnetic field but perpendicular to the density

variation. Finally, TIMOFEEV 1968 used the results of Wasow to show

that certain flute oscillations are stable, without employing expansions in

the Larmor radius.

The WKB method for these fourth-order systems is not completely

satisfactory, however, since at finite distances from the critical point the

error terms in certain saddle-point contributions to the asymptotic

expansions of solutions of 2. 4(15) or 2. 4(16) can be larger than the first

term contributions from other saddle points. (Recall that 2. 4(6)

represented only the first terms in these expansions. ) Practically, this

means that the WKB method sometimes predicts complete conversion of

the extraordinary wave energy into the high-k wave regardless of the

steepness of the inhomogeneity, whereas in fact there is some energy

reflected back into the medium-k extraordinary wave. A general

warning that errors in asymptotic expansions might lead to such problems

is given by HEADING 1968. Furthermore, for this same reason, the

WKB method applied to the second-order equation 2. 4(14) when g(z) has a

pole predicted that there never would be any reflected energy, regardless

M llWi 1, 1~m M ~ l l 6961 04' 1 '- - " , a
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of the gradients in the medium parameters. Hence we are led to look

for more exact solutions of fourth-order equations. These solutions,

and a detailed discussion of when the WKB method applied to fourth-order

systems describable by 2. 4(15) and 2. 4(16) breaks down, are contained

in subsection 4. 3(e). Subsection 4. 3(d) evaluates the first error terms

explicitly.
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2. 5 Mathematical Concepts Involved in Closed Form Solutions.

The WKB method of section 2. 4 involved asymptotic series

expanded about z = oo, which was always an irregular singular point,

meaning that at least some of the solutions had essential singularities

there. Each solution was a linear combination of these asymptotic

series whose lowest order term has the form of a WKB partial wave (see

equation 2. 4(6). In those cases, there were no power series represen-

tations of the solutions in positive powers of 1/z valid for 27j radians

around infinity. At certain angles it then is necessary to change the

constants multiplying the various asymptotic series, which is equivalent

to changing the linear combination. This feature is called Stokes'

phenomenon, and the lines radiating from infinity where these changes

occur are called Stokes lines.

In the methods of Chapter 3, however, the solutions are expanded

about one or more regular singular points of a differential equation which

is a transformation of the original one. In these cases, except for a

multiplicative factor, the power series are all convergent and single-

valued about the singular point. To make the entire power series single-

valued, it is necessary to change the phase of the multiplicative factor

at branch cuts. In distinction to the Stokes line, however, a branch cut

is encountered only once in a revolution of 2 ,u radians about the singular

point for these equations. Furthermore, because these equations are

transformed from the original ones, the branch cut can be moved out of

the way of the relevant range of the new independent variable.

(a) Singular points of linear differential equations.

To amplify on the above statements, it is helpful to discuss singular

__ __ .. I I __ , N , No - , - _ -1 - 11
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points of differential equations in more detail. As a result, it will

become clear why hypergeometric equations and their generalizations are

almost invariably used when one needs a model which has explicit

analytical solutions.

First of all, near an ordinary (nonsingular) point of the linear

differential equation:

U (z)F (z) + u ) (z) + - -+ + u _ (z)F'(z) + u (z)F(z) = 0 2. 5(1)

all the coefficients u (z) of the various derivative terms are analytic

(holomorphic). (A linear equation involves only the first power of the

dependent variable F and its derivatives. ) Normally the coefficients

u (z) are analytic over almost all of the complex domain of the

independent variable. A theorem of differential equations shows that in

such regions the solutions can all be written in terms of series in integer

powers of the independent variable, expanded about some ordinary point

and convergent (and hence analytic) in every neighborhood of that point

where the coefficients u (z) are analytic (see, for example, CODDINGTON

1961, theorem 3. 12). These series have the form

F (z) = ar (z - Z0)r g = 1, 2, ...,q 2. 5(2)

r =0

convergent for Iz - z0 1 < R, say, where z0 is an ordinary point and R is

a function of z 0 . For a qth order equation, there will be q linearly

independent solutions of the form of 2. 5(2), but with different constants

r 
sr

At a singular point, however, one or more of the coefficients u IzW
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of the differential equation 2. 5(1) has a pole or worse behavior. If

u (z)/U0(z), 1 = 1, 2,. - - , q, has at worst an Pth order pole at z = z9

then z is called a regular singular point, because none of the solutions

of 2. 5(1) then has an essential singularity at z (Fuch's theorem - see

KORN and KORN 1961, section 9. 3 - 6). Then about this point the

solutions have instead of 2. 5(2) the form

F (z) =(z - z 0ar(z - z 0 )r g =1, 2, - - -, q 2.5(3)

r= 0

where X is not in general an integer. (When X is a negative integer,

2. 5(3) represents a Laurent series. ) Thus z is a branch point of the

th
solutions. For a q order equation, there will be q possibilities for X ,

found by solving a qth order polynomial equation called the indicial

equation. If two of the roots for X coincide or differ by an integer,

then in order to obtain a complete linearly independent set of q solutions,

some of the q solutions of the form 2. 5(3) must be replaced by other

solutions found through the differentiation and limiting processes in

Frobenius' method. In these latter solutions the multiplicative factor

in front of the infinite series may involve logarithmic functions of

(z - z0).

The differential equation (2. 5(1) is said to have a regular singular

point at infinity if after the transformation of the independent variable

z = 1 /t the resulting equation has a regular singular point at t = 0. A

necessary and sufficient condition for this to be true is that the ratios

u ()/uo(z), I = 1, 2, - - -, q, must be analytic at z = co and have a zero of

at least order Q there (see theorem 6. 2 of CODDINGTON and LEVINSON

1955, Chapter 4). If for all P = 1, 2, - - -, q, the zeros are of higher
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order than e, then z = o may even be an ordinary point. If any of the

zeros has order less than P, however, then z = o is an irregular singular

point. When infinity is a regular singular point, the solutions will be of

the form of 2. 5(3) with (z - z ) replaced by 1/z, as long as no two of the

roots X are equal or differ by an integer. The infinite series corres-

ponding to 2. 5(3) are then all convergent for I z I larger than some finite

number.

When infinity is an irregular singular point, the only way to write

the solutions in the form of 2. 5(3) with 1/z instead of z - z is to include

negative powers of I/z as well as positive powers (KORN and KORN 1961,

section 9. 3 - 6). Such a form would be useless in solving wave propa-

gation problems, however. What is usually done instead is to attempt

to find solutions similar to 2. 5(3) with only positive powers in the

infinite series. Instead of the factor (l/z) , one tries to obtain factors

which can be identified for large z with the WKB quasi-normal mode

solutions of section 2. 2. (For this purpose, 0 = 1. ) Solutions in this

form are most readily found by the saddle-point integration methods

described in section 2. 4; the series are then asymptotic expansions:

Fh ~ B(z) exp [-j k dz h = , 2, -,q 2.5(4)

r =0

The Bhh(z) are the WKB amplitudes of equations 2. 2(13). Each solution

of 2. 5(1), for a limited region of large jz I, is a certain linear combina-

tion of the q almost-linearly-independent solutions 2. 5(4).

(b) Stokes' phenomenon

When infinity is an irregular singular point of 2. 5(1), the power

series in 2. 5(4) cannot be convergent in a complete neighborhood of infinity.
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In fact, they are divergent series, but the first few terms alone give an

increasingly better approximation to the actual function represented by

2. 5(4) for increasingly large z. (Ordinary convergent series give an

increasingly better approximation at fixed z as the number of terms

included in the sum is increased. Series which for a fixed number of

terms give an increasingly better approximation as z is increased are

called asymptotic series in the Poincare sense; in certain cases such

a series may also be convergent, but not in our cases. ) To keep the

series in 2. 5(4) reasonably good approximations to the Fh as one moves

round the neighborhood of infinity, it turns out to be necessary to change

the linear combination of the various Fh in each solution. As mentioned

in the last subsection, this effect can be visualized as the change in the

saddle points through which the contours of the contour integrals 2. 4(1)

representing each solution may be deformed to pass. Then, for example,

the same solution will be given by different linear combinations of WKB

solutions as z - -c and z 4 +o; in this way, the reflection and trans-

mission coefficients are determined.

Good treatments of this Stokes' phenomenon for various common

differential equations are found in BUDDEN 1961, and HEADING 1962.

Both these authors also show when it is necessary to have stricter

requirements on the asymptotic series than those of the Poincare

definition, when dealing with wave propagation problems where one must

be able to identify the waves. See WILOX 1964, WASOW 1965, and

MILLINGTON 1969, for recent discussions of other aspects of Stokes'

phenomenon.

(c) Circuit relations.

Since the situation for regular singular points is much better
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defined, we are led to look for solutions similar to 2. 5(4) which are of

the form

+Mh 7 0 -r
= r h = 1,2,- ,q 2. 5(5)

r =0

corresponding to a regular singular point at c = o. Here the G+( () are

to be solutions of some new equation obtained from 2. 5(1) by transforming

the independent variable z to (. Now it is more convenient to look for

solutions of differential equations representing wave propagation in media

which become homogeneous near z = c , in contrast to the usual situation

in the WKB method where WKB quasi-normal mode solutions as in 2. 5(4)

are still necessary near z = o . In other words, we wish (C)~Ah to

represent a simple, normal mode of the form exp [-jkhz] near C = 0.

This can be done if C represents the following transformation of the

independent variable z in 2. 5(1):

C = -Ae az, a > 0 2. 5(6)

In this case, jkh = Pa, or

Mh = jkh/a 2. 5(7)

The factor (-A) h multiplies the normal mode.

Furthermore, 2. 5(6) shows that as z approaches -o, C approaches

zero, whereas C goes to minus infinity (if A is positive) when z goes to

+co. Assume that the critical region is centered near z = 0. Then in

order to obtain reflection and transmission coefficients, it is necessary

that the actual physical solution should represent a different linear

combination of normal modes for large negative z where there are
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incident and reflected waves than for large positive z where there are

only transmitted (or evanescent) waves. This can be done if C = 0 as

well as C = o is also a regular singular point of the transformed

differential equation for G (C) = F[z((C)]. Then the series in 2. 5(5) will

not converge near = 0 and new series must be developed which converge

near = 0:

G (C) = (r) C r g = 1,2,. *--,q 2.5(8)
r =0

(Here the X = -jk /a for z near -c. Compare equation 2. 5(7).)

Although none of the series in 2. 5(5) converges over the whole c
plane, it may be possible to define uniquely, through contour integrals, q

solutions which coincide near =o with those of 2. 5(5), but which turn

out to be various linear combinations of the G~(C) of 2. 5(8) near = 0.

These relations between the series are called circuit relations and

represent analytic continuations of the series. The entire set of these

linear transformations between the two sets of n linearly-independent

solutions can be expressed in terms of a q x q matrix P, the eigenvalues

T of which are equal to exp L21TjX ], when the G of 2. 5(5) are expressed
g g h

in terms of the G of 2. 5(8) (see for example KORN and KORN 1961,
g

section 9. 3 - 6). Once the circuit relations are obtained, it is an easy

matter to find the reflection and transmission coefficients.

From the preceding discussion it is clear that the differential

equation for G(C) = F~z(C)] must have more than just one regular

singular point in order to be useful. In fact, there are no linear

differential equations with just one regular singular point and no other

singular points (see, for example, FRIEDRICHS 1965, section V. 8).

-
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Furthermore, there is basically only one kind of equation with just two

regular singular points and no other singular points. These are called

the Euler equations of order q. The two singular points can be assumed

to be at zero and infinity, since simple transformations of the independent

variable will accomplish this. The theorems quoted before and after

equation 2. 5(3) then require that the ratio of the Yth coefficient to the

zeroth coefficient in the differential equation must have a zero of at

least order Y at C = co, but a pole of no higher than order P at ( = 0,

P = 1, 2, ' -- , q. Thus the Euler equation must have the form:

CqG () + V Cq-1 G (q-1)(C) + - - - + vq_1 G'() + v qG(C) = 0 2.5(9)

where the v9 are constants. After applying the transform inverse to

2. 5(6), we find that the field function F(z) = G[ C (z)] satisfies a qth order

equation of the form of 2. 5(1), where the uI are all constants. In order

to model propagation in an inhomogeneous medium, however, some of

the coefficients in the original differential equation for F(z) must be

functions of z. Thus we conclude that the Euler equations are useless

for our needs.

For example, the second-order Euler equation is

2dG + V C + v2G = 0. 2. 5(10)
dC

Defining the operator

e = d 2. 5(11)

we find that
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a2 _
dC

2. 5(12)

and thus that 2. 5(10) can be written in the form

(6 + p 1 ) (6 + p2 ) G (C)

p1 + P2 + 1

pI p2

-0

Svi

= v 2

2. 5(13)

2.5(14)

2. 5(15)

Writing the equation in terms of @ is useful for two reasons.

First, by noting that

d
dz (j) 2.5(16)

and by applying 2. 5(6), we find easily that

=G CC(z)] = at G[C (z)] = a6 G(C)

Thus it is seen quickly that when G(C) satisfies 2. 5(10), F(z) must

satisfy

/Kd + ap2) F(z) = 0

which clearly has constant coefficients. Secondly, in preparation for

future work with the hypergeometric functions, note that writing an

equation such as 2. 5(13) in terms of @ facilitates finding the power

series solutions in the form of 2. 5(8). For, assuming G(C) has that

form,

where

and

dz 2. 5(17)

2. 5(18)

. .........

+ a p 1\(



eG(C) = C

r=O
ar Cr L r (r+ )

r=0

(r+ ) (r+)
r =0

where the subscript g on the X was dropped.

62 G(C) =
Similarly,

(r + X)2 ar (r + X) 2. 5(20)

r = 0

Thus, it is easy to find the recursion relations that the ar must satisfy.

For equation 2. 5(13), in fact,

Lr + X)2 + (r + X)(p 1 + p 2 ) + PI P2 Iar = 0, r = 0, 1,

Either the term in brackets or the ar must be zero for all r, and

there thus is no real "recursion relation" for ar+1 in terms of ar, etc.

Equations 2. 5(21) can be satisfied by setting all the a r = 0 for r 0,

a = 1, and

x 2 + x (pI + p 2 ) + p1 p2
= 0 2. 5(22)

Equation 2. 5(22) is the indicial equation for the regular singular point at

C = 0; because of the form of 2. 5(13), it has also the appearance of a

dispersion relation. Indeed, equation 2. 5(6) taken with 2. 5(8) and the

results of 2. 5(21) shows that

F(z) = G[C(z)] = (-A) x exp [-jkz] 2. 5(23)

when k is defined in terms of X through a relation similar to 2. 5(7).

89

2.5(19)

2. 5(21)

-d
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The solutions for F(z) thus represent normal modes which are nowhere

interacting, as was expected from 2. 5(18) which has constant coefficients

(see section 1. 2).

Thus we are led to consider equations for G (C) with three regular

singular points: at zero, at infinity, and somewhere else. Differential

equations with this property are all called hypergeometric equations for

q = 2; higher order equations with three regular singular points behave

very similarly and are thus called generalized hypergeometric equations.

These equations are equivalent to some interesting equations for F(z)

using the transformation 2. 5(6); no longer do the resulting equations

corresponding to 2. 5(18) have constant coefficients. The possible

variations of coefficients which are useful and can be generated by hyper-

geometric equations are described in the latter part of this section. No

longer are the recursion relations trivial, but they can be explicitly

solved.

Differential equations with more than three regular singular prints

are hard to use because the recursion relations are difficult to solve,

although they do provide somewhat more variety in the choice of profiles.

Heun's equation, for example, is the second-order equation with four

regular singular points; its recursion relation for the a r involves three

terms at once. Thus it does not seem to be possible to find explicit

solutions for the power series which can be analytically continued to

produce reflection and transmission coefficients. Recently, however,

(SLUIJTER 1965), Heun's equation arose in the study of an extraordinary

wave propagating perpendicularly to a static magnetic field, across an

inhomogeneous plasma with a certain variation of electron density. In

this case it was apparently possible to match by inspection the linear

--------- -
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combinations of power series expanded about C = 0 and c = o, in order

to find the reflection and transmission coefficients.

Another possibility is to use differential equations for G (C) which

have an irregular singular point at C = co as well as a regular singular

point at C = 0. These equations result from hypergeometric equations

or their generalizations whenever one of the three singular points is

allowed to coalesce with another; such equations are thus called "confluent"

hypergeometric equations. Confluent equations seem to be useful only

when the waves are strongly attenuated in the region z -+ +co (C 4 -co)

opposite to the region of the incident wave z - -co (C 4 0). The reason

for this is that because of the irregular singular point at C = CO, the

equation for F(z) represents a medium which remains inhomogeneous as

z goes to infinity. Thus it is impossible to find solutions of the form of

2. 5(5) representing plane waves for z 4 co. A saddle point method such

as is used in the WKB method can, however, be used to the form of the

solutions near infinity similar to 2. 5(4). Since the physical waves are

strongly attenuated, it is only necessary to eliminate the mathematical

solutions which represent growing waves; there is no worry about error

terms in the asymptotic expansions because in any case they do not

represent growing waves. Then near the regular singularity at C = 0,

the solutions can be found as linear combinations of the normal modes

represented by 2. 5(8). These normal modes are easily identifiable as

the incident and reflected modes in the region z 4 -cc, which is

homogeneous. The example for second-order equations with this

behavior is called the exponential profile. See, for example, BUDDEN

1961. There the functions used are Hankel functions which are a

special case of confluent hypergeometric functions. Apparently the only
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application in the literature of hypergeometric-type equations to the

solution of fourth-order wave propagation problems involved such a use

of a confluent hypergeometric equation (HEADING and WHIPPLE 1952).

The physical problem involved an anisotropic medium with exponential

variation of charged-particle density. In Chapter 4 of this work, fourth-

order generalized hypergeometric equations, not of the confluent type,

are applied to certain problems of finding reflection and transmission

coefficients.

(d) Summary

Since the discussion in this section has been concerned largely with

singular points, it is important to clarify the overall picture in terms of

physical applications. In particular, note that whenever a differential

equation such as 2. 5(1) is used to find reflection and possibly trans-

mission coefficients for a field F(z) far from a critical region, that equation

must have an irregular singular point at infinity. Otherwise, a solution

-l
of the form of 2. 5(2) or 2. 5(3), with (z - z ) replaced by z , will be

0

valid in a complete neighborhood of infinity. This would mean, in turn,

that the same linear combination of normal modes which is present at

z = -0 (incidence region) will also be present at z = +o (transmission

region). Hence there would be no reflection at all. The point is that

when the transformation 2. 5(6) is used, the irregular singular point at

z = o is split into two singular points, a regular singular point at ( = 0

(z = -co) and another singular point, usually regular, at C = -co

(z = co). In this case, however, simple normal mode solutions

correlponding to homogeneous regions near z = -co result from the

necessary form 2. 5(8) of the solutions near C = 0.

I
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It would be very difficult to modify the transformation 2. 5(6) to

have the solutions 2. 5(8) represent WKB-type quasi-normal modes

propagating in an inhomogeneous region near z = -o, especially with

equations of higher order than two. This difficulty is caused by the

varying WKB amplitudes B .(z) as in 2. 2(13), multiplying the exponential

phase integrals. On the other hand, it is difficult to apply the WKB

method to media which become homogeneous outside the critical region,

as z goes to minus infinity. This difficulty results from the limitations

of Laplace's method used to find solutions of a differential equation in

terms of contour integrals 2. 4(1). Laplace's method generally works

only when the coefficients u (z) of the various derivative terms in the

equation 2. 5(1) are polynomial functions of the independent variable z.

All non-trivial polynomial functions represent inhomogeneities extending

to infinity, since they never become constant.

Because the differential equation describing wave propagation does

have an irregular singular point at infinity, for both the WKB method and

the method of Chapter 3 using generalized hypergeometric equations,

there is a basic similarity between the two methods. Both involve

contour integral solutions representing different linear combinations of

WKB quasi-normal modes or real normal modes on different sides of the

critical region near z = 0. In the WKB method the different linear

combinations result from the Stokes phenomenon representing charges

in asymptotic expansions; in the method using non-confluent hyper-

geometric functions they result from circuit relations representing

analytical continuations. Solutions with confluent hypergeometric

equations may involve a mixture of both methods.
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CHAPTER 3

GENERALIZED HYPERGEOMETRIC FUNCTION SOLUTIONS

Hypergeometric functions and their generalizations seem to be the

most useful for solving problems of coupled waves in inhomogeneous

media because they not only are relatively simple to apply, but also still

allow for a substantial diversity of inhomogeneities. In section 3. 1, we

outline the mathematical properties of these functions which allow them to

be used successfully to find reflection and transmission coefficients.

These properties basically have been well known in the mathematical

literature, but we formulate them in a way here which allows the functions

to be used conveniently in coupled wave problems. Following the concepts

of section 2. 5, the hypergeometric differential equations are written in a

way which allows direct correspondence with the dispersion relations in

limiting homogeneous regions. Furthermore, the hypergeometric

function solutions are constructed in such a way that they reduce to normal

mode solutions in those regions. The major results of 4. 1 are the circuit

relations 4. 1(29) and 4. 1(31) which relate the various normal mode

solutions, and from which the reflection and transmission coefficients can

be calculated.

Section 3. 2 contains applications of these solutions to various second-

order wave equations, especially that of the electric field in an infinite

dielectric with varying permittivity. Although most of the results in

3. 2(a) for this problem have been obtained long ago in the literature

(EPSTEIN 1930b), they are repeated here for comparison with the new

solutions in Chapter 4. In part 3. 2(a) 5 we also point out how to find

solutions for the derivative field, the magnetic field, for which the wave
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equation is considerably more complicated. An extension of this simple

observation allows hypergeometric functions to be applied to the solution

of a much broader class of higher-order equations than would otherwise

be possible, as is shown in part (f) of section 3. 3.

Furthermore, subsection 3. 2(b) presents a new application of hyper-

geometric equations to nonuniform transmission lines, or equivalently, a

dielectric with both varying permittivity and permeability. These

solutions are constructed by using a different transformation of the

independent variable than is customary. The results for the reflection

coefficient are valid from the very slowly varying taper limit all the way

to the limit of an abrupt transition between two transmission lines. In

subsection 3. 2(c) we point out how certain problems written in coupled

mode form can be solved using the methods of 3. 2(a) and 3. 2(b).

Solutions are developed which apply when either the propagation "constants"

(wavenumbers) or coupling parameters or both are varying quantities.

The relations of the solutions described in 3. 2 to others in the literature

are shown in subsection 3. 2(d).

Section 3. 3 systematically presents a new method of solving

differential equations for reflection and transmission coefficients. Such

an equation must contain only one monotonically-varying parameter, but

linear combinations of this parameter may occur in any of the coefficients

of the various derivative terms. Many solutions found using this method

are applied in Chapter 4 to microwave magnetoelastic delay lines with a

nonuniform static magnetic field. Section 3. 4 extends the results in 3. 3

for a fourth-order system in which the varying parameter is not monotonic,

but possesses a valley or hump. The solutions in subsection 3. 2(a)

appear as special cases of the method described in 3. 3 and 3. 4.
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3. 1 Generalized Hypergeometric Differential Equations:

Basic Properties

(a) Power series solutions for use in reflection and

transmission problems.

1. General concepts.

To find the most general differential equation with three regular

points, which may be assumed to be at C = 0, 1, and co, a systematic

method known as Fuch's method may be used. This method is based

upon the theorems quoted before and after equation 2. 5(3) concerning

the requirements on the coefficients of the various derivative terms near

a regular point. This same method showed that the Euler equation

2. 5(9) was the most general equation with just two regular singular

points, at C = 0 and o. The result for second-order equations with

three regular singular points is called the Gaussian hypergeometric

equation

(1 -) 2 + [c - (a + b + 1)] d - abG = 0 3.1(1)

where a, b, and c are any unequal complex parameters.

As an aid in developing power series solutions for 3. 1(1) and for

future ease in identifying the normal modes which they represent,

introduce again the operator 8 as in 2.5(11). Using 2.5(11) and

2. 5(12) shows that 3. 1(1) can then be written in the form (COPSON 1935):

e(e+ c - 1) G(C) = C(0 + a) (6+ b)G(C) 3.1(2)
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By assuming for G(C) an expansion about C = 0:

r =0
3. 1(3)

we can then use the properties of the operator e demonstrated in 2. 5(19)

and 2. 5(20) to derive the recursion relation corresponding to 2. 5(21) .

Setting the coefficient of Oot equal to zero provides the indicial equation

similar to 2. 5(22) , with roots X = 0 and X = 1 - c. The solution of 3. 1(3)

with X = 0 and a0 = 1 is then found using the remaining relations between

a and a 1 :

3. 1(4)= (a+r-1)(b+r-l1)ar (c + r -1) (r) ar-1

This solution is called the hypergeometric series, denoted by

2 F (a, bl) r (c)
r(a)r(b)

F(a+r) r(b+r)
r(c+r)

r 0

where r (a) is the gamma function. The gamma function arises from the

recursion relation 3. 1(4) because of the property

r (a+l) = ar(a)

which implies

a(a + 1) ... (a + r - 1) S(a + r)
r (a)

For integers r,

r(r + 1) = r. = r(r - 1)---.

We define 0! = 1, so that the zeroth order term in 3. 1(5) is unity, as

was specified.

Generalizations of the hypergeometric series simply involve

r
r.

3. 1(5)

3. 1(6)

3. 1(7)

2- 1 3.1(8)
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adding or subtracting factors to the numerator and denominator inside

the summation in 3. 1(5). For example, a 4 F3 function has four factors

in the numerator and three in the denominator, allowing for seven

arbitrary constants like a, b, and c. Those parameters such as a and b

which appear in the numerator are added to the top in the symbol corre-

sponding to the left of equation 3.1(5), while denominator parameters

such as c appear in the bottom part of the symbol. A simple application

of the ratio test shows that 3. 1(5) converges for IC I < 1, as do all series

for F _ expanded about C = 0, when p = q. When p > q the series

diverge for all C $ 0, whereas when p < q the series converge for all

finite C. These latter series are called confluent hypergeometric series.

In general, there are q different solutions for X in 3. 1(3). If p = q we can

also find series solutions of 3. 1(2) and its generalizations expanded about

G + I E r -r 3.1(9)
r=0

For equation 3. 1(2), the solutions for p in this expansion are = a and

= b.

For the solution of wave propagation problems, we use transforma-

tion 2. 5(6) = -A eaz. In order to identify normal mode solutions at

C = O (z = +o) and C = 0(z = -c) more readily, it is advantageous to write

equation 3.1(2) and its generalizations directly in terms of the solutions

for X and p in 3. 1(3) and 3. 1(9) at C = 0 and (when p = q) at C = c. The

reason for this advantage is that, from 2. 5( 6 ) , X = -jk /a near

z = -o, and Ph = ikh/a near z = +oo. Thus the solutions X and ph are

directly related to the solutions for the dispersion relations in k in the

homogeneous regions near z = -o, and (when p = q) at z = +o, when it is
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required that 3.1(3) and 3. 1(9) represent normal modes of the form

exp [-jkz] at those limits. Accordingly, we look for solutions of the

equation

(0 - p)(e- p 2 ) ... (@ ~Pq)G(C) = C(6+o 1 )(e+ca2) ... (e+ aP)G(C) 3.1(10)

Now we expect that at the incident region z =-o(Q = 0) the p will be

solutions for X in 3. 1(3) and that thus

Pg , g = 1, 2, - -, q. 3.1(11)

Similarly, we expect that, when p = q, the crh will be solutions for A in

3.1(9) and:

Jkh+
S , h = 1, 2, , q. 3.1(12)

Extrapolating from the discussion concerning equation 3. 1(2), when

p < q the series 3. 1(3) converge for all finite C. Then C = c is an

irregular singular point of 3. 1(10) and no solution such as 3. 1(9) exists

there. The only way then to find the solutions at z = c is to perform

saddle-point contour integrations to obtain suitable asymptotic expansions.

These points are elaborated below.

2. Solutions near the origin.

To find explicit solutions of 3. 1(10) near = 0, apply the 6

operators to 3. 1(3), obtaining after cancellation of (-C)X:



(X+r-pl)(X+r -p 2 )... (X+r-p ) ar Cr

r =0

(r+r+cy 1 )(X+r+ 2 ) .- (X+r+o )ar+1
r2 pr

r= 0

(X+r - 1+ )(±r - 1+ c 2 ) ...
r=1

(X+r - 1+ ap) rr-1 r

For r = 0 and assuming a0 = 1, we must have

= 0

showing that indeed the p are roots of the indicial equation, which

because of 3. 1(11) is really a dispersion relation.

zero we have from 3.1(13) a in terms of ar r-l*

For r greater than

(X+r -1+ a)(+r -1+ 2 ) ... (X+r -1+ a )

(X+r-pl) (X+r -p 2 ) ... (X+r-pq)
3.1(15)

Setting X equal to one of the roots p g we find (compare equations 3. 1(3),

3. 1(4) and 3. 1(5)):

p

p n. r(p -p.+1)
=(-C) il g 1nI r (pg +a.)g=1

ri=1 r (p9 ±+ +r)
n' qr(p +1.+ r)

Ei=1 Eg~Pi++)r =0

In this notation q

i = q except for i = g.

denotes a product of all the terms from i = 1 to

By comparison of 3. 1(16) with 3. 1(5) and recalling

the discussion about generalized pFq_ 1 functions, we conclude:
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3.1(13)

3.1(14)

ar

r

r .

3.1(16)

(X - PI) (X - P2) ''-' (X ~ Pq)



Gg (CI ) =
g Cyp

F (Pg21' Pg+U2
-p q-1 p -lp , ---

- (-C)

Pg Pg+ 1 PgPg+ 1+

+ +r
F P

p q-1 p g - p4Pg - q

where p denotes all the p , i = 1, 2, - - a, q except for i = g.

term of the pF is unity, since it corresponds to a.

3. Solutions near infinity.

When p = q, we next need to look for solutions to 3. 1(10) of the form

3. 1(9) near C = o . Applying the operator @

6
r =O0

pr

= d to

r =0

- r -C r

3.1(9) we get

-4 3.1(18)

and so on for 2 , etc. Then instead of 3.1(13) we have, after cancel-

lation of ( ) :

( y -r -pl)(-yA- r -P2) ... ( ~9 ~i- Pq) Or C r

r=r

(-1-r+or)(-p-r+a)d -4- Or+a )r +
r = 0

-
r = -1

The recursion relation is found by again equating coefficients of

(-f) g
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... Pg Pq

3.1(17)

The first

3.1(19)

r

+1

( -r - + c )-y r - 1+-a2)--(- - r - 1+ aq )#r+1C
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equal powers of C.

ponding to r = - 1.

Now, however, the highest power is C corres-

Hence the indicial equation is now

= 0

which is the analog of 3. 1(14). Next, by multiplying both sides of

3. 1(19) by (- 1 )q, we obtain the recursion relation

(p+r+p1 )(p+r+ p 2 )... (+r+ p q)

(M4+r+l -a Y1) (y+r+1 -a 2 )...(A + r+ 1 - cr )

Reducing the order of the dummy index by one,

(y4 +r - 1+p
r (p + r - a1) ( +r-a 2) ) ... (A+r - aq)

which facilitates comparison with 3. 1(15) and 3. 1( 4).

r - 1
3.1(21)

Setting M now

equal to one of the roots orh, we have

G + (CIq) =
h 4 p

n9
-h i1 r(ho~+)

5 r)1=1 ruh+Pi) i=1

r(ah+ p+ r)

r(ah- 0i+1+r)

Comparison of 3. 1(22) with 3.1(16) and the definition 3. 1(17) shows that

G+ ') = (- C) qFq-1 h +r 1 ic- 3.1(23)

When no confusion can result, we write in shorthand notation G~ (C) and
g

G (C) for the functions in 3.1(16) and 3. 1(22), omitting the parameters.

3.1(20)

r+ 1

-r
r!

3.1(22)

)(j + r - 1+ P2). ... (A +r - 1 + pq)
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(b) Contour integral solutions: asymptotic expansions

and analytical continuations.

The series in 3. 1(16) can be clearly identified in terms of normal

modes when C approaches zero (z -4 -co) because G~(C) approaches (-C)Pg
g

in this limit, and C = -A eaz according to the transformation 2. 5(6).

In order to identify the behavior of these solutions near C = oo (z 4 +O),

however, it is necessary to define contour integral solutions valid over

the entire C plane which reduce to 3. 1(16) near = 0. When p = q these

contour integrals represent the analytical continuation of the G (c),g
since then 3.1(16) converge only for |I < 1. In this case certain linear

combinations of the contour integrals will reduce to 3. 1(22) near C = CO

and hence they can also be interpreted as the analytical continuation of

the series 3.1(22), which converge only for |I > 1. The resulting

relations between the G () and the G~(C) are the circuit relations.

These are given in equation 3. 1(31). When p < q, the series 3. 1(16)

converge for all finite C but are not identifiable in terms of normal

modes near C = co . In that case, these same kind of contour integrals,

which reduce to 3. 1(16) near C = 0, can be used to find asymptotic

expansions of the solutions near C = co. These expansions are then

identifiable as linear combinations of evanescent and growing waves

because of the nature of the saddle point integration methods used to

find them (see section 2. 4).

The basis for being able to define such contour integral solutions

in a simple way lies in the properties of the gamma function r(w);

namely, F(w) has simple poles at w = 0, -1, -2, --- , and the residue at

w = -r is equal to (-l)r/r., r a non-negative integer (0'. 1). A

systematic notation and a catalog of properties for such integrals has

been developed in terms of Meijer's G-function, defined as

_0 PRAi P0
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G M.(n a -- P)
p, q b, --- bq

3.1(24)

(2'r-j 1 S 1 (b-s)U F(1 -a+s) ds
D m (1-b.+s) n? r(a.-s)].=M+ 1 i J=n+1 i

Here 0 s m s q, 0 s n s p, and an empty product is interpreted as unity.

It is also assumed that (ah - b ) is not a positive integer, g = 1, 2, - -, m

and h = 1, 2, - - -, n, so that none of the poles of r (b - s) coincides with a

pole of F(1 - ah+ s). Shorthand notation for the function in 3. 1(24) is

G M(, n P) or simply Gm, n (C), used when no confusion can result.
p, q bq p, q

For our purposes, when p = q we define a contour L = L in 3. 1(24) to go

from -jo to +jco, wiggling if necessary in such a way that all the poles of

F (b - s), g = 1, 2, - - -, m lie to the right of the path and all the poles of

T(l -ah+s), h = 1, 2, -. , n lie to the left. When p s q, we can define

contours L to begin and end at s = +o, encircling all of the poles of

r (b - s), where g is any one number from 1 to q, once in the negative

direction, but none of the poles of (1 - ah - s), h = 1, 2, - - -, n. The

reason for these choices will become apparent shortly. The integrals

defined above converge in the cases of interest to us (see LUKE 1969,

section 5. 2). Note that s = exp (s n C).

If we assume 0 < I < 1, the contour L0 can be closed by drawing

a semicircle in the right-half s-plane where Re(s) > 0; then the

contribution from this semicircle vanishes (Jordan's lemma) as in the

theory of inverse Laplace transforms. If m = 1, the integration over L0

will give the same result as that over L1 , or by interchange of b1 with

b , with the integration over L . Then the only poles encountered are

- - ''I - _1: - _-_______.I - - - - - . - - -__ ___ - - I - ___ - __ __ 1 0
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those of r(b - s), occurring at b - s = -r, or s = b + r, r = 0, 1, 2,* -- ,
g g g

each with residue (-1)r/r' . In this way we obtain a power series

proportional to the one in 3.1(16), if we identify bg = Pg and ah -1 h'

When p < q, the series for G (C) in 3.1(16) converges for all finite

(, and then the function in 3. 1(24) with m = q, n = p may be used to

determine the asymptotic behavior of various linear combinations of the

G (C) for C *co. This is done by using a saddle-point integration along
g

a contour, which like Lg, begins and ends at s = + o, but encircles all

of the poles of r (b. - s), i = 1, 2, * ', q. Since it encircles all of the poles,

this contour can be distorted to lie far from any pole, and then Stirling's

formula for the gamma function in 3. 1(24) can be used. By taking

G (en2) j one can obtain three other independent linear combinations
p, q

of the G (). The asymptotic expansions of these linear combinations

then show which of them represent decaying waves for C 4 c (z 4 +o).

Finally, by choosing the linear combination of these latter solutions

which represents only one incident wave of the desired type for ( - 0

(z 4 -co), the final solution is obtained, which contains the reflection

coefficients in it. This procedure was used by HEADING and WHIPPLE

4 0
1952, in terms of 0 F3 (C) (or G0 , 4 (C)) functions for the oblique reflection

of long radio waves in the ionosphere in the presence of a vertical

magnetic field. The density of ionized particles was assumed to increase

exponentially from a constant value as z 4 -c to an infinitely large value

as z 4 +co.

Usually the functions described in this subsection are of most use

when p = q. Then the objective is to relate the G~ (C) through Meijer's

Gm, n(C) functions to the series 3.1(22) for G +(C), which converge for
p, q h

Id> 1. Since Cs = exp [s ln C], we now must close the contour L in
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the left-hand s-plane, where Re s < 0, so that the contribution from the

integration along the infinite semicircle vanishes. Now 3. 1(24) can be

evaluated by taking the sum of residues as before, except that the poles

to be counted now are those of F(1 - a +s) instead of those of r(b. - s).

That is, we have poles at s = a. - 1 - r with residue (-1) r/r? for the

function (1 - a.+ s). In this way, the same function which involved
bg p - Uh

powers such as C 9= C P for ICI < 1 involves C h for lj > 1. When

n > 1, moreover, we will have to consider poles arising from n roots oh.

Thus the series 3. 1(16) are analytically continued outside the unit circle

when p = q. Note in this connection that definition 3. 1(24) in connection

with the above discussion shows that

a 1-b -
Gm, n p = Gn, m (-l ) (arg(-) = -arg C) 3.1(25)

p,q b q,p 1-aq p

c. Circuit relations.

We now wish to find explicitly how the G (C) can be written as
g

linear combinations of the G (), and vice versa, when p = q. Actually,

we are interested in the relationship of the normal modes at z = ± 0.

Because of the minus sign in transformation 2. 5(6): ( = - e z

(assuming A = 1), the normal modes exp (- jk z) are represented by

G (C) as -+ 0. Similarly as 4 -oo, the normal modes exp (-jk+z)

are represented by G h(Q). (See equations 3.1(11) and 3.1(12) for pg

and c-h in terms of k and k . )

Recall that the series in 3. 1(16) and 3. 1(22) could be expressed in

terms of the generalized hypergeometric functions F _- in 3.1(17) and

3. 1(23), so that:

G (C) = (- )P
g

F (gq 1 (1q q-1 p - p'+1
g q

3.1(26)
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Gh(C) = (-C) Fq-1 aI +11C3.1(27)
(h - q

We have also just seen how a Meijer's G-function GM, n () with m = 1
q, q

and n = q, say, can be proportional to one G (C) for I < 1, and to a
g

linear combination of q G + (C) functions for | > 1. The explicit

relationships between the Meijer's G-functions and the F _ functions

may be found as special cases of the formulas in LUKE 1969, section 5. 2.

As a result then of the analytical continuation formula 3.1(25) we will

then be able to write (LUKE 1969, equation 5. 3. 3):

a r(b q 1 )

q q-1 b q_ a q)
3.1(28)

-r - e) =ah 1+a - b a -
. (h n9-1 r~i-aq q-1 1+a ah - aq-1
h = 1 h iQ r(b -ah) h q

where 0 < arg C < 2 T. As before, a stands for all the a., i = 1, 2,- ,q;

and r(a ) stands for a q-fold product of the r(a ). The prime denotes

that i = h is excluded.

To make correspondence between the functions in 3.1(26) and

3. 1(27), we first identify a = Pg + a1 , i = 1, 2, - - -, q and b = Pg -P + 1,

i = 1, 2, - , q, i $ g. After cancelling terms, we then can write

q
G(C) = G 3.1(29)g ~ gh hj(C

h=1

where

M = pq (cr. Uh) 3.1(30)
gh (ri \( -ip - ah i+p

i/g h h 9

-- ----- --- ... ....
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To find the inverse relationship, identify ai = Uh + P i = 1, 2, -, q and

bi = Uh - 7i + 1, i = 1, 2, -* -, q, i # h, and exchange + , with a

change of argument to keep C~ in the range 0 < arg ~ < 21 T. The

result is very similar to 3. 1(29) and 3. 1(30), except that g h and

q

G(() = Phg G( 3.1(31)

g=1

where

hg q r (1 - ao- + crhp+ h ) 3.1(32)
ih 1 g i~g pi+,

These are the desired circuit relations and form the starting point for

the calculation of reflection and transmission coefficients from generalized

hypergeometric differential equations of order q. Since the set of G ()
+ -1

and Gh (C) functions are linearly independent, P = M , where the matrix

components are given by 3. 1(30) and 3. 1(32).
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3. 2 Examples of Determination of Reflection and Transmission

Coefficients from Second-Order Equations

(a) Equations with one varying parameter.

1. Basic equation.

Now that we have the circuit relations for the solutions of 3. 1(10)

when p = q, we would like to know what kind of inhomogeneous variations

can be modeled by 3. 1(10). Consider first the second-order case,

where p = 2 = q. In particular, we would be interested in solutions to an

equation such as 1. 2(12) for a component of the electric field when the

medium is isotropic (, = 0):

E (z) + k2 (z) E (z) = 0 3. 2(1)
x -x

where

k2 (z) W 2 AM C(z) 3. 2(2)

Then the question is, what kinds of variations of the dielectric constant

((z) give rise to hypergeometric equations with convenient solutions?

EPSTEIN 1930b was the first to realize that the circuit relations of

hypergeometric functions could be used to find reflection coefficients for

an inhomogeneous E(z) in an equation such as 3. 2(1). His treatment,

however, was in terms of the hypergeometric equation 3. 1(2) with

solutions 2 F 1 (). Both in order to transform to a useful equation in z

and to derive the analytic continuations, equation 3. 1(10) is more

convenient. As noted before, its parameters are more closely related

to the solutions of the dispersion relation on either side of an

inhomogeneous region. The second-order equation 3. 1(10) is:

(0 - P1)(6 - P2 )G(C) = V(e+a- )(0 + -2) GQg) 3. 2(3)
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where 6 .

2. Transformation of independent variable: smooth

transition of parameter.

Following EPSTEIN 1930b, we use transformation 2. 5(6)

= -Aeaz, a > 0, and assume

E (z)-x = GEC(z)]

Then

E' (z)-x =e uG(C)

3. 2(4)

3.2(5)

where the prime denotes differentiation with respect to z.

definitions then, 3. 2(3) is equivalent to

( - C)E"(z) - a Epi +p 2 +W +1 a2 (z)2+

Using these

= 0

3. 2(6)

In order for 3. 2(6) to correspond to equation 3. 2(1), which has no

first derivative term, we must have

p1
- p2 and a, - -U2

3. 2(7)

Also we have

k2 _ / ES (z)
2

= PP - aa)/'-C

Clearly, when C goes to zero (z -4 -oo), the solution for k2 (z)
2 2 2

a pip 2 = - p 1 .
2 2 2

approaches~ a ai2 =- a.

3. 2(8)

is

Similarly, when C approaches infinity (z -4+o),
2

k (z)

Thus, as mentioned before, the p. and a.

are simply related to the limiting wavenumbers (see equations 3. 1(11)

Further, if we assume A = 1 in the transformation

=c d G(C)

(P IP 2 -(71"2) xz W

and 3. 1(12).
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2. 5(6), we can write

(1 - )
= -1 1 +tanh 0) 3.2(9)

so that 3. 2(8) becomes

2 2
k (Z) A.(Z =2 [1P2 1 2 P1P2 ( +tanh 3.2(10)

representating a smooth transition from one value of dielectric constant

to another.

3. Transformation of dependent and independent variables:

symmetric hump or valley in the parameter.

To obtain a different kind of transition, it is necessary to trans-

form the dependent variable as well as the independent variable.

Instead of 3. 2(4), one then writes

G[C(z)] = f(z) E (z) 3.2(11)

and equation 3. 2(5) is modified to become

a6 G (C) = f'(z) E_ (z) + f(z) E' (z)x -x 3.2(12)

Instead of 3. 2(4) we obtain, after dividing through by (1 -() and f(z),

t [(r- Csl)
El = _ + El [2 + C)

E t  (r - si) + 2 (r 2  s2
+ E) + C) I 3.2(13)

where the primes all denote differentiation with respect to z, and

r



r- r1 -PI _P 2 ' 2

The condition that the coefficient of El vanish is

a differential equation for f(z), whose solution is

f[z(C)] = (-C)
(r(1 - (ri

now equivalent to

si)/2
3.2(15)

As before in equation

C = -Ae Z 3.2(16)

Evaluating the two derivatives of f(z) by the chain rule and substituting

into 3. 2(13), we find by comparison with 3. 2(1) and 3. 2(2) that now k2 (z)

can be written in the form

2 c2 C
= a (c 1 _C

+ c 3 C
+ 0 21
(1 - C)

The coefficients in this partial fraction expansion 3. 2(17) are found

by multiplying through by (1 )2 and then equating equal powers of C,

with the result:

= -- r + r
4 1 2' c2 = (s - r 2)2 4 1 )1

3. 2(18)
1

~ T (r1 - si) (r1 - si +2

= 0, this result reduces to 3. 2(10), for which f(z)

However, a new kind of profile is now possible, since

= - sech 2 (QL\}

(1 - )

when A = 1 in 3. 2(16).

= ~- 2 ) a n d s , = C 1 + a2 ,
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= a1C2
3.2(14)

2
k (z) 3.2(17)

and

c 1

C 3

+ (r 2 -s2

When r = s
= 1.

3.2(19)

s 2
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For example, taking c 2 = 0 shows that k2 (z) of 3. 2(17) can take the

form:

k z) = 2 Lc - c3 sech2 (a) 3. 2(20)

representing a case where C(z) has a symmetrical hump (or valley) near

z = 0. Alternatively, if k2 (z) in 3. 2(20) goes negative near z = 0, we

have a model for a quantum-mechanical tunneling problem. Note that

now, however, p. and a, i = 1, 2, are not so simply related to the wave-

numbers at z = ±o, because of the transformation 3. 2(11) of the

dependent variables. In fact, 3. 2(15) and 3. 2(11), in conjunction with
+r 1 /2

3.1(16), show that asC-40, E ((z )(- ) (- i. Similarly,-X (z CO-)

using 3.1(22) which shows the limiting behavior of G(C) as C 4 co, we see
s, I/2 _G .

E (z) ) 1(-) () In order for these limiting forms to

represent normal modes traveling in opposite directions at z 4-O ,

respectively, we must have

jk 1+jk~2
( r1 +p 1 ) 2k + r 3.2(21)

and . + +

(2 s- a1 ) = k 2k = - 2) 3. 2(22)

Both of these relations are satisfied identically, by virtue of the

definitions 3. 2(14). Note that in general r1 , r 2 , s , and s2 must be

determined from c1 , c2, and c 3 through 3. 2(18). Since this is an

overdetermined system, we can arbitrarily choose one of the parameters.

For convenience, choose

r =0 3.2(23)

Then s1 through 3. 2(18) is given directly in terms of c 3 , which from
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3. 2(20) is proportional to the depth of the valley in k (z).

4. General expression for the reflection coefficient.

The reflection coefficients for all these cases are easily found

using the circuit relations 3. 1(29) and 3. 1(31). We choose the ah which

makes G +(Q) represent an evanescent or transmitted wave for z -+ +o of

the form exp [-jkz], where Re(k) 2 0 and Im(k) s 0. In view of 3. 2(4)

and 3. 1(23) this is equivalent to requiring that the ch which we choose

must have Re(a1 ) 0 and Im(U h) 0 for the case where k2 (z) satisfies

3. 2(10). If 3. 2(20), or more generally 3. 2(17, is satisfied, then we

must have instead Re (sl /2 - a) : 0 and Im (si /2 - a) s 0. Label as

al the choice of ch which satisfies these requirements. Furthermore,

we must identify the p which causes the G~(C) of 3.1(16) to represent an
g g

incident wave. The requirement is Im (! r1 + p ) < 0. Call the P

which satisfies this requirement p 1 . Then p 2 corresponds to the

reflected wave. Then from 3. 1(31) we write

G + o = P G- ( P + P G2  ) 3.2(24)
PP2 '12 12 2 l.a2

The reflection coefficient is simply P 1 2 /P 1 1 , which from 3. 1(32) is

_P12 r9 1 ~p2) r# 2 +a1 ) P(1 - 2 ~p1RE P1 1  r(p 2 -P 1  P 1 + a) r(1 -02 -P 2 ) 3. 2(25)

(Note that the factor f(z) in 3. 2(11) cancels out when evaluating RE.

5. Magnitude of reflection coefficient for smooth transition

in a lossless medium.

Recall the discussion following 3. 2(20) and note that for any k2 (z)



satisfying 3. 2(9) we must have r1 = 0. Then p1 = -p 2 and hence in a

lossless medium they are complex conjugates: pi = p 2 . To evaluate the

magnitude of the reflection coefficient, we also note the property

r (w*)

and IRI2 = RR". Consider the case 3. 2(10). If k 2(z) goes negative as

z approaches positive infinity (cutoff situation), a1 and a 2 are real. Then

in 3. 2(25) the numerator is the complex conjugate of the denominator so

that IP12 1 12 = 1, as expected with a cutoff when k2 ) goes through zero.

In the absence of a cutoff, U1 = -a 2 = CT.1

of the gamma function:

r (w) r (-w)

Further, note another property

= -I- csc w
w

Using 3.1(6) and 3. 2(24) and 3. 2(25) shows that we can then write

+a I) sin [Ii(p 1 +u)]

I + a1) sin[7r(-pl + Crl)]

(-p + a)2

(+pI + C 1 )

(p +ao) sinr((p1 +or)]
(-p l + al) sin~iT (-pl + a, )]

sin2 (g p + a,)] 
3.2(28)

sin2 [((-p 1 + a 1

From 3. 2(10) it is clear that a is a measure of the steepness of the

transition. Furthermore, from 3. 1(11) and 3. 1(12) we have

p1 = -jk~/a and 1 =+jk/a

Thus when Ik+ - kI >> a, which corresponds to a transition which is

much wider than any local wavelength, the hyperbolic sines arising from

3. 2(28) can be replaced by exponentials, showing that
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3. 2(26)

P12 2 (p
P 11 (-P

3. 2(27)

= [ w)]
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1l2
P exp (- 2k,/) 3.2(29)

where k is taken to be the smaller of k and k Hence as the transition

becomes more gradual, a gets smaller, and the reflection goes to zero.

On the other hand, if the width of the transition becomes much smaller

than any local wavelength, a becomes very large. Then we can replace

the hyperbolic sines arising from 3. 2(28) by the first terms in their

power series, producing

k12 + k- k-11 3.2(30)
P11 1 k + k-

Notice that this is just the value of the reflection coefficient 1. 2(34)

calculated from the boundary conditions of continuous E (z) and its first

derivative, which is proportional to H (z). Thus the results of the
-y

hypergeometric equation include the sharp boundary as a special case,

as they should. Note that 3. 2(30) is independent of a in this limit.

It is possible to include the effects of loss in the treatment simply

by assigning an appropriate imaginary part to the dielectric constant E(z)

in 3. 2(2). This in turn produces pi and a with real as well as imaginary

parts. The reflection coefficient is still given by expression 3. 2(25).

Now, however, it is more difficult to simplify.

6. Reflection coefficient for the derivative field.

Recall that the above discussion has been in terms of a component

of the electric field, E (z), which satisfies 3. 2(1). As indicated in

Chapter 1, the reflection coefficient for the corresponding component of

magnetic field, H (z), must have the same magnitude as that for E (z),
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since power flow can be expressed in terms of either jE (z)1 2 or

H (z) 2 . In fact for plane waves, which exist in the above examples at

large Iz I,

(S ) = 1E (z) 12  = H (z) 2 3.2(31)z 2 -x 2 C -y

where E = 0 = H . (S z) is the time averaged power flow. Thus we

would probably expect that H (z) satisfies equation 3. 2(1) as well as E (z).-y -x

The relevant components of the two curl Maxwell's equations in an

isotropic medium where c = 0 are:

E' (z) = -jwMo H (z) 3. 2(32)
x -y

and

HI (z) = -jwE(z) E (z) 3. 2(33)

-y -

where we have set E(z) = xx* Taking the first derivative of 3. 2(33),

however, produces a term in E'(z) as well as one in E' (z). Substituting

3. 2(32) and 3. 2(33) into the result produces

H"(z) - E'(z) HI (z) + W2 p E(z) H (z) = 0 3. 2(34)
-y E(Z) -y -y

Thus instead of 3. 2(1) we have an additional first derivative term.

Moreover, if k2 (Z) = W 2 (z) has the form of 3. 2(10) or 3. 2(20)

or some combination in order that 3. 2(1) be soluble in terms of hyper-

geometric functions, then the E'(z)/c(z) term in 3. 2(34) will be a very

complicated hyperbolic function. In that case, it does not appear that

3. 2(34) has solutions of the hypergeometric type. Even making the

standard transformation to eliminate the first derivative term in

3. 2(34):
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H (z) = h(z) exp dz 3. 2(35)-y L2) C~ C I h(z)3.(5

we only get an equation with a horrible term multiplying h(z):

h"(z) + W2  ( + h(z) = 0 3.2(36)

Thus we conclude that equation 3. 2(34) cannot be solved in terms of

hypergeometric functions in the manner we have been considering in this

subsection, when E(z) has the form of 3. 2(17) or its special cases

3. 2(10) and 3. 2(20).

There is nevertheless a way to solve 3. 2(34), by a technique which

is particularly important for similar types of fourth-order equations to

be encountered later. We have the solutions of 3. 2(1) for E (z) in

terms of hypergeometric functions which satisfy relations such as

equations 3. 1(29) and 3. 1(31). By equation 3. 2(32), H (z) is basically
-y

just the derivative E (z), since we assume p is constant. Hence, to-x

find the relations for H (z) corresponding to 3.1(29) and 3. 1(31) in the

limits of z -+ ± oo, simply take the derivative with respect to z in those

limits of the leading terms of the G (C) and Gh(C) appearing in 3.1(29)

and 3.1(31). As is seen by reference to equations 3. 1(17) and 3. 1(22),

these leading terms involve the factors (- )f and (- )~ah. According

to the transformation 3. 2(16) with A = 1, and the identification of p and

ch in 3. 1(11) and 3. 1(12), these two factors are equal to exp (-jk z) and

exp (-jk+z), respectively. Hence we have the desired relationship for

the normal mode components of H (z):
-y

q
-a h exp (-achz) - Phg up g exp ( Pg Z) 3.2(37)

g = 1
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If, as before, we assume that p1 represents the wave incident from

z = -CO(C = 0), the reflection coefficient RH for the magnetic field is

simply

ap2 P 1 2
RH ap, P, i

P12 
R- - - RE

because p1 = -p 2 for any profile of E(z) satisfying 3. 2(17) (see 3. 2(23)

and 3. 2(14)). The result in 3. 2(38) is just as was expected, with

RE 'HI to satisfy power flow requirements.

7. Tran

Consider

in the limits of

3.1(11) and 3.1

smission coefficients.

first the smooth transition represented by 3. 2(10). Then

z -4 ±O, the circuit relation 3. 2(24) becomes, because of

(12):

exp (-jk z) + P exp (-jk z)+ P1 2 exp (-jk z) 3. 2(39)

Hence the transmission coefficient TE for the electric field, with k

representing the incident wavenumber, is simply

TE 1/P
1 1

3. 2(40)

When the more general variation of k 2(z) in 3. 2(17) is allowed, the

expression for TE is only multiplied by exp (-a s1 z/2), which for

lossless media is just a phase factor.

Similarly, for a smooth transition relation 3. 2(37) for the magnetic

field becomes

-jk+ exp (-jk z) + -jk1 P11 exp (-jk~ z) - jk2 P1 2 exp (-jk z)

3.2(38)

3. 2(41)
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Hence ++

T 1 1 - T 3.2(42)
H k~ 11 k- E

1 1

Note that the magnitude of TH is not the same as TE when C+ #,E~ because

the power flow expressions in 3. 2(31) involve E in the numerator when

using IE (z) 2 , but in the denominator when using IH (z)12 . Thus the

transmission coefficients must in general be different in order to give

the same transmission of power for the same physical problem.

(b) Equations with two simultaneously-varying parameters.

The telegraphist's equation. Nonuniform transmission

lines.

If the permeability A as well as the permittivity c vary, then neither

the equation for E (z) nor that for H (z) has the simple form 3. 2(1). In
-x -y

fact, we then have

E"(z) - '(z) E' (z) + w2(z) (z) E (z) = 0 3.2(43)
-x p~)-x -x

which is the dual of 3. 2(24), with the interchange of E and H and C and
-x -y

pA. An equation of this type is called a telegraphist's equation, since it is

satisfied by the voltage and current on a nonuniform transmission line,

with the voltage V replacing E , the impedance Z replacing A. and the

admittance Y replacing c.

Equation 3. 2(43) can be solved, however, by using a more general

transformation of the independent variable than 3. 2(16). Choose

= -exp (a Sz d), a > 0 3.2(44)
0
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Then, as long as 1 remains positive, this transformation still exhibits

the property that as z -o, (-*0 and as z ++, -.

d ( z
d/dz (a psd ) = ag(z), however, the

Now, since

hypergeometric equation 3. 2(3) is

transformed to the following, instead of 3. 2(6):

0 =E" + E - + a 4 r + (r -s ) ]

3. 2(45)

+ E a 2 Lr2 + (r2 ) s2

where the definitions 3. 2(14) are used.

2

-2 2
a p_

If we now set r = S 1

2

, 2 2

= 0, and

3. 2(46)

3. 2(45) can be identified with 3. 2(43).

Furthermore,

P 1 = -P 2 ~ E+

a = -a 2

To evaluate the parameter a in terms of physical quantities, note that in

general from 3. 2(44) and 3. 2(45):

W u(z) - r2 - L(r2 - s2 ) 1+tanh z p d 3.2(48)
U

(Compare 3. 2(10). ) It might be possible to treat variations more

general than 3. 2(48) if the dependent variable is also transformed

and 3. 2(47)

a



122

(compare 3. 2(11) and 3. 2(17)). Taking the derivative of 3. 2(48) with

respect to z at z = 0, and using 3. 2(46) we find

4
0 3.2(49)

Thus we have found solutions of 3. 2(43) in terms of r 2, s2, and a, all of

which depend only upon the ratio p/c which is just the square of the

effective impedance Z of the medium. The permeability and permittivity

can have any arbitrary variation with A> 0, as long as their ratio

satisfies 3. 2(48). In the limit of a sharp boundary, the reflection

coefficient reduces to

IRE Z + 3.2(50)

as can be seen by following the steps from 3. 2(2 8) to 3. 2(30). Equation

3. 2(50) is of course the same as that obtainable from the boundary

conditions, with Z =/47c. This treatment also includes the one already

treated with 1 a constant, as a special case.

WESTCOTT 1969c has obtained many other solutions of the

telegraphist's equation 3. 2(43) for special variations using hyper-

geometric functions, but does not appear to have derived this solution, or

to have shown that 3. 2(50) holds in the limit of a sharp boundary. His

treatment, however, contains other analytical solutions previously

derived in the literature as special cases. Note that the treatment of

this section and those of WESTCOTT 1969c do not involve any assumption

that the parameters of the transmission line are slowly varying. Most

0111
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treatments of nonuniform transmission lines in the literature do in

practice make this assumption. Hence they involve some kind of

successive approximations scheme and cannot be used anywhere near the

region where 3. 2(50) begins to be a good approximation.

(c) Coupled mode equations for inhomogeneous media.

The most general form of the coupled mode equations for two

interacting modes a 1 and a2 is:

all+ j# a = c 1 2 a2
3.2(51)

a + j02 a2 = c 2 1 a 1 ,

where the #i are the propagation constants of the uncoupled modes. The

coupling coefficients are related for power conservation by

c = ~ c2 , 3.2(52)

For waves traveling in the same (opposite) direction, use the upper

(lower) sign. Usually equations 3. 2(51) result from a four-wave

problem in which it is assumed that only two waves interact strongly at

one time. For active coupling or when energy is transferred to other modes,

or is lost, the 0i will be complex (see WALDRON 1967, JOHNSON 1965).

In an inhomogeneous medium, the O's and c's may be functions of

distance z. By combining equations 3. 2(51) we obtain

a + j# + - a' + jP I - jc2 c1 2 c2 1) a = 0. 3.2(53)
12 12

In Chapter 4 on magnetoelastic delay lines, an equation of this form is

solved in terms of hypergeometric functions for coupled magnetoelastic

iaiA6000wim-
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modes. In that case, c 1 2 and c 2 1 are constants and only one of the A's

is varying. For that solution, this # has a variation as in 3. 2(10).

Note also that the telegraphist's equation 3. 2(24) has the same form as

3. 2(53), with A, = 0 = #2 and c 1 2 = -jwc(z), c 2 1 = In this

connection, compare Maxwell's curl equation 3. 2(32) and 3. 2(33) with

3.2(51).

Sometimes it may be helpful to simplify the form of 3. 2(53).

Introduce the new dependent variable a.:

a = a exp (-j Pi d ),
0

Substituting into 3. 2(51) we find

a1  = c 1 2 h(z) 2

as2 = c2 1 h~ (z) a 1

i = 1, 2. 3. 2(54)

3. 2(55)

where

h(z) - exp (j s(1 - 3. 2(56)92) d ) ,

Combining the coupled equations 3. 2(55) gives now instead of 3. 2(53):

- 12 j (1 - 2)] ' c1 2c2 1 11
= 0 3.2(57)

If now we apply a transformation of the independent variable of the form

of 3. 2(44):

= -exp a z c12 d ]
0

3. 2(58)

we obtain from the hypergeometric equation 3. 2(3) an equation similar
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to 3. 2(45), except that now we have a instead of E (z) and c1 2 (z)

instead of p(z). This equation may thus be useful in solving coupled wave

problems by hypergeometric functions. The problem must be stated,

however, in such a way that the modes a1 and a 2 are coupled in

homogeneous regions as well as in the inhomogeneous ones. Otherwise

c12 will go to zero outside of the transition region, and the transforma-

tion 3. 2(57) will not have the desired property that ( - 0 as z -+ -o and

C -+ -c as z 4 +o. Recall from Chapter 1 that it is always possible to

find normal modes which are uncoupled in a homogeneous medium. In

the same way, by taking linear combinations of these uncoupled modes we

can obtain coupled ones.

See LOUISELL 1955 for an analysis of tapered mode directional

couplers, where the propagation constants AP1,2 and the coupling

coefficients jc are both functions of distance along the coupled trans-

mission lines. His original wave amplitudes are such that they are

coupled even in homogeneous regions, provided that the transmission

lines are physically coupled there also. He then transformed to normal

modes which are coupled only when the propagation and coupling

parameters are varying. Then he obtained solutions using a successive

approximation method when the parameters are slowly varying. Using

transformation 3. 2(5 8), however, we also have a solution for 3. 2(57) in

terms of hypergeometric functions, provided we take c 1 2 = jc = c21'

r 2 /2 = S2 and

- 2= r 1 - s)[1 + tanh [i c dc) 3. 2(59)
jmac r -3. (r 1  2 . )ith

(Compare 3. 2(44), 3. 2(45)., and 3. 2(48) with 3. 2(58)., 3. 2(57), and
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3. 2(59).) Energy conservation requires that c be real (see 3. 2(52)), so

a is then required to be imaginary to allow 3. 2(58) to be a useful trans-

formation. Note that it may be possible to use variations more general

than 3. 2(59) if the dependent variable is transformed further (compare

3. 2(11) and 3. 2(17).

In these coupled mode problems, the circuit relations 3. 1(29) in

terms of the matrix elements Mgh are more useful than those in terms

of P . Now we start with an incident wave at z = -c and wish to find
hg'

how much energy is transferred into the two transmitted waves. Note

that reflections are ignored in the second-order treatment. When the

parameters change very quickly, reflections will become important, and

it is then necessary to use a complete four-wave treatment to obtain the

reflection coefficients as well as the transmission coefficients. An

example of such a treatment in connection with coupled magnetoelastic

waves is given in Chapter 4.

(d) Summary of related solutions in the literature.

As mentioned earlier, the application of the circuit relations for

second-order hypergeometric functions to the solution of the wave

propagation equation 3. 2(1) was first done by EPSTEIN 1930b. His

treatment used the transformation of the independent variable 3. 2(16),

= -A eaz, and also included the transformation of the independent

variable corresponding to equation 3. 2(15). Thus the most general

profile for k (z) handled in his analysis was that of our equation 3. 2(17).

A summary of his treatment, including graphical and numerical results

for the special cases 3. 2(1) and 3. 2(20) is contained in BREKHOVSKIKH

1960 for example. This latter treatment also compares the results for

reflection coefficients obtained from the hypergeometric equation with
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those obtained from the WKB method, using a parabolic variation of

2k (z) sandwiched between two homogeneous regions. HEADING 1965

gives a systematic survey of the applications of hypergeometric

equations to problems of the propagation of horizontally polarized waves

in a vertically stratified ionosphere, including problems involving

various confluent hypergeometric functions. Because they have an

irregular singular point at C = co, however, such confluent hyper-

geometric equations must be solved by the WKB method of section 2. 3

rather than by the methods of this section.

WESTCOTT 1969a has given a similar treatment of the use of

hypergeometric equations in problems involving vertically polarized

waves propagating in an inhomogeneous but isotropic ionosphere. As

mentioned under part (c) of section 2. 4, the equation for such waves is

more complicated than that for a horizontally polarized wave in the

presence of the same variation in ion density (see BREMMER 1958).

HEADING 1969b uses these solutions together with those derived for

horizontally polarized waves to find the polarization of reflected waves

when the incident waves are elliptically polarized (a combination of

horizontal and vertical polarization).

Finally, the papers WESTCOTT 1968 and WESTCOTT 1969b apply

the hypergeometric equation to find solutions for electromagnetic wave

propagation in spherically stratified iostropic media, and for transverse

(ordinary) electromagnetic wave propagation in a cylindrically stratified

axially magnetized plasma, respectively. The propagation of extra-

ordinary waves in the latter situation has been discussed in terms of the

WKB method, section 2.4(c).

PEARLSTEIN 1965 solves a problem in plasma instability using an



equation such as 3. 2(1) with k 2(z) having the general variation 3. 2(17).

His results are then compared with those derived using the exponential

phase integral of WKB solutions in a manner such as is commonly used to

find ground states to Schrodinger's equation with slowly varying potentials.

Solutions corresponding to eigenstates of the potential well are stable;

others are unstable since they grow exponentially in the "cutoff region"

(they do not have "energy'" equal to an "eigenvalue"). Under certain

assumptions, Pearlstein shows that the two methods yield approximately

the same requirement for stability. Clearly, several different kinds of

potential wells can be modeled by 3. 2(17) since that form allows for a

symmetrical well (- sech2 (az/2) - equation 3. 2(20)) with an added

variation which can make one side higher than the other (the tanh (az/2)

term of equation 3. 2(10). No applications to quantum mechanical

problems of the hypergeometric equation seem to be generally known,

however, since usually the WKB treatments are good approximations,

unless the potential is quickly varying.

Until now, all the discussion has been in terms of treatments which

have used the transformation of the independent variable of equation

3. 2(16): A = Aeaz. More general transformations are possible which

can give useful results without too much labor for profiles of k2 (z) more

general than 3. 2(17). RAWER 1939, for example, considers transforma-

tions which reduce to 3. 2(16) in the limits C 4 0 (z 4 -co) and C - c

(z 4 +co). BURMAN and GOULD 1965 have introduced the transformation

1= - (eaz + ebz) Using this transformation, they were able to treat
22

a case where k 2(z) tends to the same limit as z goes to plus or minus

infinity, but has an asymmetrical profile near z = 0, in distinction to the

sech2 (az/2) profile of 3. 2(20), which is symmetric. HEADING 1967a

128
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has found a solution for a similar profile in k2 (z) by systematically

deriving the profiles which result from more general transformations

than 3. 2(16). His treatment is similar to RAWER 1939, but he gives

more explicit solutions, particularly for a special case where k2 (z) has

both a barrier and a well. Also, many of the solutions derived by

WESTCOTT 1969c for nonuniform transmission lines using hyper-

geometric functions involved more general transformations.
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3. 3 Differential Equations of Arbitrary Order Having One

Varying Parameter with a Smooth Transition:
A "Standard Procedure" for Finding Reflection and

Transmission Coefficients

In this section, a new method is described for solving in an orderly

manner certain wave equations for multi-wave inhomogeneous media,

using generalized hypergeometric functions. All of the solutions

described in section 3. 2 which involved transformation of the independent

variable only can be treated by special cases of this step-by-step method.

Applications of this method to second-, fourth-, and sixth-order equations

are given in sections 4. 2, 4. 3, and 4. 4.

(a) Identification of the related differential equation

for a homogeneous medium.

Many equations, especially those of higher order than second, are

too complicated in form to be transformed conveniently to a generalized

hypergeometric equation. Not only do they contain a varying parameter

p(z) such as permittivity, but they also contain terms with the derivative

of this parameter. See, for example, equations 3. 2(34) and 3. 2(43)

which are of the telegraphist's type.

In a homogeneous region where the parameter p(z) is constant,

however, these derivative terms drop out and an equation of much

simpler form such as 3. 2(1) results, with constant coefficients. Such

an equation can then easily be solved by assuming normal mode solutions

of the form exp (-jkz), where k is a constant, inversely proportional to

the wavelength. In this manner, the equation is transformed to a poly-

nomial equation in k, which is equivalent to the dispersion relation of

the system. When this dispersion relation is biquadratic in k, it

expresses the property that the system allows two normal modes
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traveling in opposite directions with the same wavelength for each

2solution for k .

When the parameter p(z) in the original differential equation has a

"smooth transition" variation of the hyperbolic tangent form of 3. 2(10),

then as z approaches plus or minus infinity, the variation ends and any

terms involving derivatives of the parameter become negligible. Hence

in these infinite limits the original equation approaches the form of the

one with constant coefficients described above. What is done in the

method described in this section, however, is to look for solutions of

the original differential equation without the terms involving derivatives

of the parameter p(z), but still allowing the parameter itself to vary as

in 3. 2(10). This new equation will be labeled the " source equation. "

The "source equation" has the same form as the one satisfied by

the real physical system in homogeneous regions, and hence resembles

the dispersion relation in form, but it does not have constant coefficients.

Thus its solutions may not correspond to any physical fields. Often,

however, solutions of the original differential equation can be expressed

as linear combinations of various derivatives of the solutions of this

" source equation." Thus solutions of 3. 2(34) for H (z) could be
--y

expressed as the first derivative of solutions of 3. 2(1), for example.

See part (f) below for an outline of this technique in more general cases.

(b) Transformation of the "source equation" into a

generalized hypergeometric differential equation.

The '' source equation" has the form

q

w (z) F (m)(z) = 0, 3. 3(1)
m =0
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where q is the order of the differential equation, w 0 (z) is chosen to be

F(n) th
unity, and F (z) denotes the n derivative of F(z) with respect to z.

If we call the varying parameter p(z), then any of the w m(z), m > 0, may

have any linear combination of p(z), but none of its derivatives. The

dispersion relation corresponding to 3. 3(1) is

q
w q k -m = 0, 3. 3(2)

m= 0

where the wm are evaluated in homogeneous regions. For systems with

dispersion relations which are biquadratic in k, all the w (z) with odd m

must be zero.

A generalized hypergeometric equation of order q can be written in

the form

(@ - p1 )(e -p 2 )- (-Pq) G(C) = (0 + 21 )( n+2 ) (6+n) G(C), 3. 3(3)

where as before in 3. 2(3):

e =. 3.3(4)

An equation of the form of 3. 3(3) with q = 4, n = 0 was used by HEADING

and WHIPPLE 1952 in the solution of a coupled wave problem in the

ionosphere, with p(z) representing electron density increasing exponen-

tially with altitude, in the presence of a magnetic field (see also

HEADING 1955). The right-hand side of 3. 3(3) was then just CG(C).

No other solution of a coupled wave problem for reflection and trans-

mission coefficients seems to have been given in the literature for q > 2.

For media which become homogeneous as z approaches positive or

negative infinity, so that p(z) becomes constant in those limits, we must

choose n = q. This must be true to apply the method of this section.
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The simplest transformation of the independent variable which will

transform 3. 3(3) into the form 3. 3(1) is as in 3. 2(16):

= eaz 3. 3(5)

As was done in section 3. 2 in equation 3. 2(4), we consider G to be a

composite function of z and write

F(z) Gj3C(z)]. 3. 3(6)

Then as in 3. 2(5) we find that

FG) (z) = dt G(C) 3. 3(7)

using the definition 3. 3(4).

write in general, for any m:

By repeated differentiation of 3. 3(7) we can

Fm (z) = am m G(C) , 3. 3(8)

since 6 commutes with itself.

Proceeding then by collecting terms in equal powers of @, 3. 3(3)

can be rewritten in the form, when n = q:

q

(r - sM) e q- m G(C) S 0 , 3. 3(9)

m=0

where rm and s are defined as the sum of all the distinct products of
e qm

the quantities (-p.) and u-, respectively, taken m at a time. Thus

q

rl = 2 -p),
i=1l

(Ph)F-Pi)l

q q

h=1 i=h+1

etc. We define r0 = 1 = s0. Note now that (1 - C) never goes to zero

= a 0 G(C) ,
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for any real value of z under the transformation 3. 3(5) with real a.

Thus, dividing 3. 3(9) through by (1 - () and also multiplying by aq, we

get

q

q q rm + (r- sm @ - m G(() = 0. 3. 3(10)
m =0

Using 3. 3(8), this may be rewritten in terms of an equation for F(z):

q

am rm + (r - s (q m)(z) = 0. 3. 3(11)
m= 0

Now in view of 3. 3(5)

- = - 1 tanh , 3. 3(12)

so that for 3. 3(11) to correspond to 3. 3(1) we must have for each w M(z),

m > 0:

wm(z) = rm r + sm -r( 1+tanh a)]. 3. 3(13)

Thereby the transformation from 3. 3(3) to 3. 3(1) is complete.

Since there is only one available hyperbolic tangent function with

one a, we see that we can handle only one varying parameter p(z), but

that it can appear in as many of the coefficients w (z) as desired,m

combined with various constant parameters rm and s . Note that the

hyperbolic tangent represents a "smooth transition. " By transforming

the dependent variable also as in 3. 2(11) it is possible to obtain in

certain cases a valley or hump in a w m(z) and hence in p(z). An example

for q = 4 is treated below in section 3. 4. The circumstances under

which this can be done are more restricted, however, than for the
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second-order case q = 2 described in part 3. 2(a) 3.

(c) Identification of parameters in the hypergeometric

equation from the dispersion relation in the limiting

homogeneous regions of the medium.

Note from 3. 3(13) that in the limits z - ±co, the coefficients wm

become

- m + m
w =a r , w = a , 3.3(14)m m m m

where the superscripts ± refer to z = ±o. Thus the rm and s are

related to the coefficients in the limiting dispersion relations of the form

3. 3(2). Recall that the rm and sm are defined in terms of the p. and a.,

following 3. 3(9).

Now label the solutions of the dispersion relations k and k ,

i = 1, 2, - - -, q. Then 3. 3(2) can be rewritten in the form at z = -c

(k - k ) (k~ -k 2) -. (k - ) = 0, 3.3(15)
1 2 q

and similarly at z = +o. Recall from 3. 3(5) that z 4 -o and z 4 +o

correspond to C 4 0 and -4 -o, respectively. Observing that the

hypergeometric differential equation 3. 3(3) looks very much like 3. 3(15)

in those limits, we see that the p's and a's must be related to the k and

k(, respectively Since in the limits we are assuming normal mode

solutions of the form

F~(z) = exp (-jk z) , 3. 3(16)

we see from 3. 3(7) that

eG(C) =k F(z), 3. 3(17)
ai
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and similarly for the + superscripts. Hence comparison of 3. 3(3) and

3. 3(15) now gives the explicit relations:

p= -jk /a, o =+jk /a; i = 1, 2, -,q. 3.3(18)

These relations are the same as in 3. 1(11) and 3. 1(12), where it was

shown how the leading terms in the power series solutions of 3. 3(3) in

the limits ( = 0 and = -co, Gg(C) and G (() respectively, could

represent normal modes.

(d) Identification of the transformation parameter in

terms of the "width of the transition.''

There remains one more parameter to be determined in the trans-

formation from 3. 3(3) to 3. 3(1). This is a, arising in the transforma-

tion 3. 3(5) of the independent variable. To accomplish this identification,

take the derivative of 3. 3(13):

(z) = am (s - rm) a sech2 (az /2) 3. 3(19)

where the prime denotes differentiation with respect to z. Using

relations 3. 3(14) and evaluating 3. 3(19) at z = 0, we obtain:

= 4w' (0)/(w+ - w) 3. 3(20)

for every w (z) which is not identically constant. Relation 3. 3(20)
m

emphasizes the fact that if the parameter p(z) occurs within more than

one coefficient w (z) of the original differential equation, it can at mostm

be multiplied by a different constant and/or added to a different constant

each time. Reference to figure 1 in connection with 3. 3(20) shows

that a is inversely proportional to the effective length L of the hyperbolic
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tangent transition. Thus it is an effective "transition wavenumber. "

Sometimes it is convenient to express a in terms of the gradient

of w m(z) at a critical point which is not located at the center (half-way

point) of the transition, z = 0. From 3. 3(19) we have, dropping the sub-

script m:

w'(0) = cosh 2 (az /2) w'(z). 3. 3(21)

Furthermore, using the relations 3. 3(14) write 3. 3(13) in the form

tanh (-) 2 (w(z) - w - 1. 3. 3(22)
w -w

Now using the identity cosh2 x = (1 - tanh2 X) 1, substituting 3. 3(22) into

3. 3(21) and that in turn into 3. 3(20):

= w'(z)/ 1( W) -W~)(1 - w) -w 3. 3(23)
w - w

If w(z) is close to w then this can be approximated by

a g w'(z)/(w(z) - w-) , 3.3(24)

regardless of the value of w +, as long as w(z) -w <<w -w . This

feature is a result of the fact that the hyperbolic tangent behaves for

large arguments like the difference between unity and an exponential.

By writing 3. 3(22) in a slightly different form, a can be written as in

3. 3(23) with w+ - w(z) replacing w(z) - w~. Then for z such that

w - w(z) << w+ - w~ we have a expressed in the same form as 3. 3(24),

but with w+ - w (z) replacing w(z) - w~.
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(e) Solution of the "source equation" in terms of the

circuit relations of hypergeometric functions.

Through equations 3. 3(18) and 3. 3(20) we have now related the

parameters p and ai of the hypergeometric equation 3. 3(3) to the

characteristics of the medium corresponding to the "source equation"

3. 3(1). Furthermore, the solutions G[C(z)]of 3. 3(3) are identical to the

solutions F(z) of 3. 3(1) by virtue of 3. 3(6). Consequently, the solutions

can be conveniently expressed by the G (C), which are related to the G (

solutions by the circuit relations 3. 1(29). The inverse relationships are

given in 3.1(31). Recall from expressions 3.1(16) and 3.1(22) together

with 3. 3(18) and 3. 3(5) that the leading term in each G(() and Gj+(C) is

equal to a normal mode of the form exp (-jkz) for z approaching negative

and positive infinity, respectively.

(f) Extraction of the solutions of the original equation

from those of the "source equation."

When the original differential equation contains derivatives of a

parameter p(z), its solutions H(z) can often be written in terms of a linear

combination of derivatives of the solutions F(z) of the "source equation"

(3. 3(1). By construction, this equation contains only p(z) but no terms

involving p'(z) or higher derivatives. Assume that the original equation

contains derivatives of p(z) up to a maximum of order P-. Then it is

necessary that the solutions H(z) include at least a term in F (z). For

example, consider the second-order equation

(2) ~ (1) '1
H (2)(z) - P (z) H'l(z) + p(z) H (z) = 0 3. 3(25)H1 p-z)

and the corresponding source equation
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F(2) (z)1 + p(z) F1 (z) = 0 . 3. 3(26)

(Compare equations 3. 2(34) and 3. 2(1) for magnetic and electric fields.)

Now take the derivative of 3. 3(26):

F (3)(z) + p(z) FM )1F 1 () + p (z) F 1 (z) = 0. 3. 3(27)

Substituting for F1 (z) from 3. 3(26) and 3. 3(27) we find:

FM3 (Z) - P (z)() F(2)(z)1 p(Z) I + p(z) FM (z) = 0. 3. 3(28)

This now has the same form as the original equation 3. 3(25).

we can take

H1 (z) F (Z)

The same procedure applied to the fourth-order equation:

H2 H 3)
~(1)

+ (a2+p) H 2) _ a2
2 2 p 2

H2 + b 2 pH 2 =0

with the source equation

F () + (a2 + p) F(2) + b 2 pF 2

again gives the result that

H2 (z) = F~(z) 3. 3(32)

where a2 and c 4 are some constants.

Consider now an equation containing the second derivative of p(z):

Clearly

3. 3(29)

3. 3(30)

= 0 3. 3(31)
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H(4) +( +p) (2)
H3 ( 2 ±p) 3

+ 2 p H3 + (p +b 2 p)H 3

Eliminating the terms in p(1) and p (2), we see that H 3 (z) has

source equation 3. 3(31) as H2 (z).

3. 3(31):

Taking the second derivative of

+p) F 4 +2 p (1) F( 3 ) (p (2) +b 2 p)F (2) + 2 b2 () F 1

we see that the first four terms look like 3. 3(33).

solutions of 3. 3(33) are related to F 2 (z) by

H3 (z)

Assume now that the

= F2) (z) + b2 F 2 (z). 3. 3(35)

In order to prove this result it is simplest to proceed first by applying

the differential operator of 3. 3(31) to 3. 3(35). Then substitute for the

F (6)(z) and b2F (4 ) terms appearing in H(4) by using equations 3. 3(34)F2 (z n 2 2 ()3

and 3. 3(31), respectively:

H(4) +(a 2 +p) H 3 2) +b 2 pH 3

-(a2 +p) F(4 ) - 2 p() F 3) ( (2)+b2 p) F (2)-2 b 2 p 2 2 2

+ b 2 -(a +p)F 2) - b pF

+ (a 2 + p) F + b2 (a2 +p) F 2) +b 2 pF 2 +b 2 pF 2 .

Clearly all the terms cancel except for those involving p and p(2)

The remaining terms on the right-hand side of 3. 3(36), however, are

equal to 2 p() H(1) + p(2) H3 , with H3 expressed by 3. 3(35). Hence we
33-3

= 0. 3. 3(33)

F(6)+ 2F2O +(a 2

the same

+ b2 P(2) F 2 0

3. 3(34)

3. 3(36)
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have shown that 3. 3(35) gives the solutions of 3. 3(33) in terms of the

solutions F 2 (z) of its source equation 3. 3(31).

Simply by taking the second derivative of the source equation

F(4) + p F (2) +a FF4 +p 4 a 4 4 = 0 3. 3(37)

for the system

H (4) + p H 42) + 2 p H 1 + (2) +a H = 0 , 3. 3(38)

we see that

Hg F (2)H4 4 3. 3(39)

Finally, in Chapter 4 there is some interest in a sixth-order

differential equation modeling simultaneous interactions between

"magnetostatic" spin waves, exchange-dominated spin waves, and

elastic waves in microwave magnetoelastic delay lines. This equation

has the form:

H (6) +( +p)H (4) + 4 p H(3) + (6 p (2) + b 5+ C p) (2)
b5 +c 5 p 5

+ (4 p (3) +2 c 5 p 51 ) + + c 5 p (2)+ b5 c 5 ) H 5

Equations 3. 3(33) and 3. 3(38) are actually special cases of 3. 3(40) in

various limits, when a2 = a5, a =b and b2 = c5.

equation for 3. 3(40) is

F(6)+ (a +p) F((4 +(b +C p) (2) +b 5 c5 F5F5 +( 5 +p 5 ( 5 +c 5p) 5 555

The source

= 0. 3.3(41)

By using the same technique which followed 3. 3(35), we can similarly

prove that

3. 3(40)

= 0.
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(4) (2)
5 5 5 5 . 3.3(42)

(g) Construction of proper linear combinations of solutions

to give the reflection and transmission coefficients.

In section 3. 2 (a) 4 it was shown that for second-order equations it

is a simple matter to determine the reflection coefficients from the

circuit relations for the hypergeometric functions, equation 3. 1(31).

All that is necessary is to label the wavenumber for the transmitted wave

k and then to write G in terms of G and G from 3.1(31), where G1 1 1 21

represents the incident wave. For a wave incident from z = -o, there

can be only one transmitted wave. On the other hand, for second-order

coupled mode problems it was mentioned in section 3. 2(c) that there is

one incident wave and two transmitted waves. It was inherent in the

approximations leading to such a second-order system, however, that

reflected waves were neglected. Thus for those coupled mode problems

one uses the circuit relation 3. 1(29) for the single incident wave G in

terms of the two transmitted waves G+ and G2+

For fourth- and higher-order systems, however, there can in

general be two or more transmitted waves as well as two or more

reflected waves, for each incident wave. Then the reflection and trans-

mission coefficients are no longer given directly by 3. 1(31) or 3. 1(29).

It is necessary to take the linear combination of the transmitted waves

which makes the coefficients of all the incident waves zero except for

that of the desired incident wave, which should be unity.

Consider fourth-order systems, and label the solution of the

"source equation" F. Label the wavenumbers which correspond to

transmitted (or evanescent) waves as z -+ +o as k+ and k3. Then write
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F as the following linear combination of these two waves:

F = G+ + JG+ 3. 3(43)

By 3.1(31) which expresses the G+ in terms of G , we can also writeh g
3. 3(43) as

4

F = (P + JP3 g ) G 3.3(44)

g=l

Now consider G and G to be the possible incident waves, and assume

that in fact only G is incident, with unit amplitude. Thus the coefficient

of G must vanish:

1 = 1 3 /P 3 3 . 3.3(45)

Also, in order for the incident wave to have unit amplitude we must now

divide 3. 3(43) and 3. 3(44) through by P 1 1 + J1 P 3 1, with the result:

F1 =G+R G +R G = T G + T G , 3. 3(46)1 12 2 14 4 11 1 13 3-1 33(6

where the R's and the T's are called the reflection and transmission

factors for the 'source equation" 3. 3(1).

If the original differential equation for the system is written in

terms of H(z) which can be expressed in terms of F(z) through the

procedures of 5. 3(f), we will have to take derivatives of 3. 3(46) to get

the physical reflection and transmission coefficients. To do this, recall

that the G's represent normal modes of the form exp (-jkz) as z -4 ±0.

Thus, as in the second-order example in section 3. 2(a) 7,

FO (Z) -jk ~ G, -jk R12 G~ - jk- RS G~ - jk+ Ty G G - jk T3G47

3. 3(47)
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and

F(2) (z) - (k1 )2 G - (k-) R12 G_ - (k4 ) R G4

+(k )2 T G - (k)) 2 T G G 3.3(48)

(1)
For example, if the physical field H(z) is given as F1 (z), then the

reflection and transmission coefficients for an incident wave of type G 1

are found by dividing 3. 3(47) through by -jk~.

Now we must evaluate the R's and T's. From equations 3. 3(43)

through 3. 3(46) we see that

T = (P - 33311 3. 3(49)
11 \1 P P 1

T3 1 133P1) 3. 3(50)
33

R = p - 13 34 3. 3(52)
133

Note from 3.1(31) that the Phg for fourth-order systems (q = 4) involve

the product and quotient of 12 gamma functions. Thus we would like to

simplify the expressions in 3. 3(49) through 3. 3(52).

First, note from 3.1(31) that Phg is invariant under any interchange

P - Pm or aO - cm as long as m g / I or m h / 1, respectively.

Further, observe that the operation pg p transforms Phg to P and

h - o, transforms Phg to P . Hence the combined operation pg - Ph'
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ah + Cg transforms Phg to Pgh

3. 3(52):

and

As a result, from 3. 3(49) through

(a 1 .3 )op T 1 1

(p 2 P4 )op R 1 2

Also note that operating on T-~I by (p, produces the term11 by (p1 2 )oP

P 1 2 - P 1 3 P 3 2 /P 3 3 which occurs in 3. 3(51). Thus

T11 (p1 - p2 p T1 =R12

3. 3(53)

3. 3(54)

3. 3(55)

Furthermore, if we choose the incident wave to be of type 3 instead

of type 1, we will find instead of 3. 3(45) that J must satisfy

3. 3(56)J 3 = 11 /P 3 1

with the result, after dividing 3. 3(43) and 3. 3(44) by (P 13 + J 3 P 3 3):

F 3 G 3 +R 3 2 G 2 +R 3 4 G 4
=T 3 1 G + T3 3 G ,

Note that the interchange p1  p 3 produces J 3 from J and (P 1 3 +J 3 P 3 3 )

from the factor (P 1 1 +JI P 1 3) used to obtain 3. 3(46), but leaves invariant

the P12' 14' P 32 and P34 terms multiplying G2 and G in 3. 3(44).

Thus (p1 - p3 ) operating on T11, T1 3 , R 1 2 , R1 4 produces T 3 1 , T 3 3 , R3 2 '

and R 3 4 , respectively. In summary, we conclude that the only quantity

which we must calculate in detail is T 1 1 .

Writing out T1 1 in 3. 3(49) in terms of the gamma functions in the

expression 3. 1(31) for P hg we have:

3. 3(57)

= T13

=R 14
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3. 3(58)

where

B = r(p,+o r)r(1- 1,-p)

3. 3(59)

r (p3 +ar) r (1 - U3 -p1 ) r(p 1 +a3 ) r( - ~ iP 3)
r (p3 +a3) r - 3 -P3)

Now use the property that

r (x) ( - x) = T /sin (i x) , 3. 3(60)

and note from application of ordinary trigonometric identities that

sin T (p3+ a) sin 1 (p +a 3) - sin 7 (p, + a) sin ' (p3 + a3

= sin iT (p3 ~P1) sin 7 (a 3 - a) . 3.3(61)

In this way the factor B is evaluated. After transforming back to gamma

functions using 3. 3(60) again we finally get:

Sr(p 2 +a,) r(p4 +crl) r(1 -2 -p1 ) ri( -04 -pl) r(1 -p3 +pj) r(Ca3 -)
11~T(p2 -P p 4 ~r 1 (p - 1 -2+a )r (1 -Cr gi-4+ay )rT( -3 ~1) ra3 +p7)

3. 3(62)

Interchanging parameters according to 3. 3(55) gives the explicit

expression for R12

R 12

r(p, -p 2 )r(p4 -p 2 ) r( 1 +p2 )r(a 3 +p2 )r(1 - 2 -p)r(1 - 4 -p)r(1- 3 +p1 )
r (p2 - 1) r (p4 - 1) rW1 +p1 ) r(a 3 +p1 ) r (1 -U2 2r1 U4 -2) r p3 p2 )

3. 3(63)

146

rUpi l ~ r1 Ci + r 1)

r pi) yr(1 - ci-p P)
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All the remaining reflection and transmission factors in 3. 3(46) and

3. 3(57) can be written down immediately from these expressions by inter-

changing parameters according to 3. 3(53), 3. 3(54), and interchanging

P1 ' P3 to obtain the R3i and T3i from R .and T , respectively.

For systems satisfying a biquadratic dispersion relation in

homogeneous regions of space, the first and third order terms in 3. 3(1),

3. 3(2) and hence 3. 3(3) will be absent. It is then possible to simplify

equations 3. 3(62) and 3. 3(63) further by noting that

P 2 = P1' P 4 = P 3 ' 2 =~a' a4 = 3.3(64)

This is the usual situation with the waves traveling in one direction

having the same wavelength as their counterparts traveling in the other

direction (see 3. 3(18)).

(h) Analytical expressions for the coefficients in the lossless

case in terms of elementary transcendental functions.

For lossless media, it is possible to simplify expressions for the

transmission and reflection factors such as 3. 3(62) and 3. 3(63), in the

manner indicated in section 3. 2(a) 5. If all the waves are propagating,

then in a lossless system the wavenumbers k will all be purely real, and

in view of 3. 3(18) the p's and a's will all be purely imaginary. Hence

they are the negatives of their complex conjugates. Then it is possible

to evaluate the magnitudes IT 12, IR12 2, etc. in terms of hyperbolic

sines (sines with imaginary argument) by using properties 3. 2(26),

3. 2(27), and 3. 3(60) of the gamma function.

When the waves for z 4 +o are all evanescent, the a' s will all be

real. In that case, it may not be possible to express the magnitudes of
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all the reflection factors in terms of hyperbolic sines. On the other

hand, because the p's are imaginary and the a Is are real, factors in the

numerator of R 1 2 , for example, may turn out to be complex conjugates

of those in the denominator and will hence simplify to one when the

absolute magnitude is taken. This happens when the system is

biquadratic so that 3. 3(64) holds. See Chapter 4 for specific examples.

Again as in section 3. 2(a) 5, when the transformation parameter a

is small (see 3. 3(20)) the p's and a's from 3. 3(18) will tend to be large,

and it may be possible to simplify the expressions by noting that hyper-

bolic sines of large arguments reduce to exponentials. This happens

when the transition width is much larger than any local wavelengths or

differences in local wavelengths of the system. In the opposite limit of

a very sharp transition, the hyperbolic sines may be replaced by the

first terms in their power series. Then the parameter a drops out so

that the coefficients no longer depend on the transition width, and the

results should be the same as those derivable by using the boundary

conditions if no assumptions are violated in the meantime (see, for

example, 3. 2(30)).

(i) Evaluation of the coefficients when loss is included.

In the same limit where the hyperbolic sines may be replaced by

exponentials in the lossless case, namely when a is small and the

transition width large, it is sometimes possible to simplify expressions

such as 3. 3(62) and 3. 3(63) by using Stirling's approximation for gamma

functions of large argument:

r (x) ~ ( 2 n )1 exp Lx (n x - 1) - ln , arg xI <,f. 3. 3(65)
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In this way only exponentials result.

Alternatively, the gamma functions of complex arguments arising

from 3. 3(62) and 3. 3(63) may be evaluated by means of a computer sub-

routine. One such subroutine is LOGGAM, written in Fortran by

Max Goldstein at New York University, and available as a library sub-

routine at the M. I. T. computer center.

(j) Discussion of limitations.

1. First of all, the physical problem must be stated in such a way

that the independent variable z can range from -o to +o. This is

necessary in order that the transformation 3. 3(5) from z to C can allow

for an interesting variation of the parameter p(z), as in 3. 3(13), and also

in order that the solutions of the equation in C represent normal modes

in the extreme limits. Hence radial variables ranging from 0 to o are

not allowed. Nevertheless, it may be possible to approximate the radial

problem in certain regions by one with cartesian coordinates (PEARLSTEIN

1969, for example) and thus apply this method.

2. Secondly, the parameter p(z) is constrained to vary like a

hyperbolic tangent, as in 3. 3(13). This is often a useful variation, but

one might like to be able to treat other variations, such as a hump or

valley in p(z). Such a variation can be treated fairly easily when it occurs

in a second-order equation, as in section 3. 2(a) 3. For higher-order

equations this becomes more difficult since the dependent as well as the

independent variables are being transformed. See section 3. 4 below,

however, for one case where a valley can be treated in a fourth-order

equation.

3. The procedure of this section is valid only if there is only one

varying parameter in the differential equation. This restriction results
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since there is only one transformation parameter a (see 3. 3(13)). Near

certain critical or coupling points, however, other parameters in an

equation may be effectively constant to a good approximation. Then one

can apply the method of this section if the parameter p(z) is constrained

to vary only in a limited range about such a point. See Chapter 4 for

examples.

In sections 3. 2(b) and 3. 2(c), a slightly modified transformation of

the independent variable was noted which allowed a second-order

differential equation with two varying parameters to be modeled by a

hypergeometric equation. Such a transformation is not expected to be

too useful for higher-order equations, however, because it results in the

appearance of the (n - 1)th and all lower derivatives of one of the

parameters, in an equation of order n.

4. Finally, no nonlinear combinations of the parameter p(z) are

allowed in the original differential equation. This includes rational

fractions of linear combinations of p(z). One such combination occurs

in the fourth-order equation for "magnetostatic" to exchange-dominated

spin wave conversion at a turning point (see section 4. 3). Near that

point, however, the combination is constant to a very good approximation

and hence the problem can be treated within restricted limits on p(z).

Note also that SLUIJTER 1967 has solved a second-order equation with a

similar rational fraction combination of a parameter p(z) which satisfies

a hyperbolic tangent variation as in 3. 3(13). There the physical problem

was propagation of an extraordinary wave in a plasma with varying

electron density perpendicular to a static magnetic field. The solution,

however, required transformation to the differential equation with four

regular singular points, Heun's equation.



151

3. 4 Fourth-order equations with a turning point having a

parameter with a valley or well.

It may be of interest to exhibit a solution for the above-mentioned

problem in terms of hypergeometric equations, by extending the method

of section 3. 3. As with similar second-order equations, it is necessary

to transform the dependent variable as well as the independent variable

(see subsection 3. 2(a)3). First transform the independent variable (

according to 3. 3(5) and thus bring the hypergeometric differential

equation 3. 3(3) into the form 3. 3(11). Now proceed further by

transforming the dependent variable as in 3. 2(11):

F(z) = f(z) D(z), 3.4(1)

where D(z) is to be the field in terms of which the differential equation

corresponding to the physical problem is written. Now apply Leibniz's

theorem for multiple differentiation of a product to 3. 4(1):

q-m
F ~ ) =(qm f(n) ) D((q m n) z). 3.4(2)

F ZZ) n' (q - m - n)fm
n = 0

Substituting this into 3. 3(11) gives

q q-m

u D (q -m -n)(z) = 0 3.4(3)

nC m+nmm= 0 n=0

where(-m

wqmm)'am r +(r s f\zM) 3.4(4)

(Recall that r = 1 = so, so that u 0)o = 1.) Changing the dummy index

in 3. 4(3) according to T = m + n gives

q q

v7U D ( z )(Z) = 0 3.4(5)
L ml =

M = 0 P = m
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Finally, after interchanging the order of summation, we have

q

(z) u (z) = 0 3.4(6)

Y =0 m=0

in which we can now identify the coefficients of each derivative of D(z).

Note that 3. 4(6) is entirely equivalent to the generalized hypergeometric

equation 3. 3(3), and the solutions of one are related to solutions of the

other by 3.4(1) and 3. 3(6).

Now specialize to fourth-order equations, with q = 4. Further

specialize to a biquadratic system satisfying a differential equation of the

form

D 4 (z) + p(z) D(2) (z) + K4 D(z) = 0 3.4(7)

Such an equation is said to have a turning point where p(z) = 0, since there

the two roots for k2 of the corresponding biquadratic dispersion relation

in k coalesce. Furthermore, none of the solutions for k are real for

p(z) < 0, corresponding to a cutoff situation (see section 4. 3 for more

details).

In order for 3. 4(6) to have the form 3. 4(7), we must first of all

have the coefficient of D(3) (z) vanish:

1

u, m(z) = 0. 3.4(8)

m=0

This is actually a differential equation for f(z), whose solution is

f(z) = (-V) 1  (1(-) 1 /1  3.4(9)

which is very similar to 3.2(15). Proceeding with the coefficients of
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D (z) and D(z), we require:

u 3 , m(z)

and

3

m=O

m= 0

U 4 M(z)

-0 3.4(10)

= K 4 3.4(11)

where the derivatives f - (Z)must be calculated from 3. 4(9).

considerable algebra, we find that 3. 4(10) and 3. 4(11) can be satisfied if

any one of the following three sets of conditions is satisfied:

r1 = s 1 3. 4(12a)

or

ri = s +4, r2 - s2 =
(r + s ), 4(r2+ 2) -3r 2 -12r +161 1

r1 = s1 - 4, r 2 2- s2 3-(r + s

together with certain other relations

t3 = I t 3+ 1t t23 1212

and

tg = 5 t4 + 1t 2t 2+ -4 ,t4  25 1 + 6 1 2

where t stands for either r or s.

Furthermore, the coefficient p(z) of D(2) (z) then

p(z) + r - s 2~11

3. 4(12c)

3.4(13)

3.4(14)

becomes

(r2 - s2+ - 1  -(r 1 -r2)

+ (r s- s ) (r 1 - s 1

3.4(15)

+)(1 -C)2~

After

or

3. 4(12b)
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Note that if we set r1 = sI = 0, f(z) = 0 from 3. 4(9), and 3. 4(15) reduces

to the expression for w2 (z) in 3. 3(13): a hyperbolic tangent variation.

Thus 3. 4(15) contains 3. 3(13) as a special case. More generally, if we

assume 3. 4(12a) is satisfied with arbitrary r1 we see that p(z) still has

only a hyperbolic tangent variation. If 3. 4(12c) is satisfied, p(z) is

identically constant, which is uninteresting.

The only new situation occurs when 3. 4(12b) is satisfied.

Substituting all of those relations into 3. 4(15), and using 3. 2(19), we find

p(z) = 2 2r 2 +1+3 sech 2 ()j, 3.4(16)

which no longer contains the hyperbolic tangent variation. Relation

3. 4(16) is similar to the corresponding situation for second-order

equations, 3. 2(20), except that there is one less available parameter in

3.4(16). All the other parameters are constrained through 3. 4(12b),

3. 4(13), and 3. 4(14). Hence, if the peak in p(z) is made higher by

2
increasing a , 3. 4(16) requires that the width of the peak must become

narrower. For very large a, the result would be something like a delta

function. See Fig. 2.

Note from 3. 4(16) that if r 2 is chosen to be less than -2, there are

two turning points at some finite z = ± z 0 . For IzI > z 0 , p(z) < 0 and the

waves are all cutoff. Thus we have the analogy with a potential well.

The methods of this chapter work best for determining reflection and

transmission coefficients near z = ±o. If r 2 < -2, there can be no

propagating incident wave, and there is no physical significance to

'reflection and transmission coefficients. For r 2 > -- , we can

calculate the reflection and transmission coefficients, following the

method outlined in 3. 3(g). In this latter case, however, it would
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probably be simpler to approximate the problem with two approximately

uncoupled second-order equations. On the other hand, with r 2 < -, it

may be of interest to calculate the solutions D(z) = fC (z) C C(z)] at

finite Iz I< z0 (C finite and non-zero) where the four possible waves can

bounce back and forth. It may be possible in that region to find suitable

approximations for G(C) in terms of polynomial and rational approxi-

mations to generalized hypergeometric functions (see, for example,

LUKE 1969, volume 2, chapters 11 and 12). Note that the parameters

r. and s. determined by 3. 4(16), 3. 4(14), 3. 4(13), and 3. 4(12a) are

defined in terms of the p's andc-'s appearing in the generalized hyper-

geometric equation 3. 3(3) (see after 3. 3(9)).
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CHAPTER 4

COUPLED WAVES IN MICROWAVE MAGNETOELASTIC DELAY

LINES WITH A NONUNIFORM MAGNETIC FIELD

As indicated schematically in Figs. 3 through 5, the waves in the

interior of typical microwave magnetoelastic delay lines couple at two

points called the crossover and turning points. In section 4. 1, we derive

the three coupled second-order differential equations which model these

physical situations. Two of these equations are combined in section 4. 2

to treat the exchange-dominated spin wave to elastic wave conversion at

the crossover point. By combining one of these latter equations with the

third, we treat in section 4. 3 the '"magnetostatic" to exchange-dominated

spin wave conversion at the turning point. Section 4. 4 shows how all

three equations may be combined into one sixth-order equation to deter-

mine how the coupling at each of the two points affects that at the other.

As indicated in section 1.1, there is no treatment here of nonlinear

effects or the propagation of pulses or transients. We also do not

consider explicitly the effects of nonuniformities in the directions trans-

verse to the propagation direction. ADDISON, AULD, and COLLINS 1968

may be consulted for a recent application of ray theory to investigate the

focusing or defocusing effects of such transverse variations. Modifications

in previous theories to account for these variations have also been made by

LEWIS and SCOTTER 1969. Finally, this chapter does not contain any

detailed discussion of the coupling of "magnetostatic" waves to fine-wire

antennas. See, for example, AULD 1963, BURKE and BHAGAT 1967, and

DESORMIERE and LEGALL 1969. Nevertheless, an understanding of the

solutions of the basic linear one-dimensional differential equations treated

in this work is fundamental for better understanding of the effects mentioned

above.
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4. 1 The Basic Differential Equations for One-Dimensional

Propagation

(a) Physical introduction.

There are basically three wave types of interest in the interior of

microwave magnetoelastic delay lines: elastic waves, whose wavelengths

are typically in the micro-meter range; exchange-dominated spin waves,

whose wavelengths can be either smaller or larger than those of elastic

waves; and the so-called "magnetostatic" spin waves. The first two

have such short wavelengths that they are generally much smaller than

any of the dimensions of the delay line and hence behave like plane waves.

The "magnetostatic" spin wave, however, has longer wavelengths and

thus has properties which depend strongly on the transverse dimensions

of the sample. In practice, at least one of these transverse dimensions

is much smaller than electromagnetic wavelengths at the frequency of

operation, so that the "magnetostatic" waves have wavelengths which are

still considerably shorter than the wavelengths of ordinary electro-

magnetic waves. These "magnetostatic" waves are actually the

" extraordinary, " slow waves resulting from the interaction of electro-

magnetic fields with the spins in a magnetized material. Note that both

types of spin waves represent precession in time and space of the

magnetization about its static position.

The predominant field for each wave type satisfies a second-order

wave equation. The lattice displacement R of a point in the crystalline

delay line from its equilibrium position satisfies a well-known equation

which is derived from Newton's laws and the relation between stress

(restoring force) and strain (resulting from non-zero R) in an elastic

medium. The predominant field for exchange-dominated spin waves is
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the dynamic magnetization m which precesses in space and time about

the static saturation magnetization Ms, according to the "torque equation.'

This torque equation results from the relation between torque and the

time rate of change of the spatially-averaged spin angular momentum,

which is in turn related to the magnetization by the gyromagnetic ratio y.

When the spins on neighboring atoms are appreciably misaligned, the

quantum-mechanical exchange interaction produces a restoring force

whose contribution to the torque on the magnetization is describable by

an effective exchange magnetic field. The existence of this force allows

the spin wave to carry "exchange" power as well as electromagnetic

power. Often only the exchange power is significant. The exchange

force and effective field become important, however, only for short

wavelengths since only then are neighboring spins in the crystal

appreciably misaligned.

Finally, for the longer -wavelength "magnetostatic" spin waves,

the dynamic magnetic field h is the predominant field. Only the electro-

magnetic power flow is usually significant for these spin waves. To

derive their characteristic wave equation, it is also necessary to use the

torque equation, but without the exchange field. The torque equation

must now also be combined with Maxwell's equations. However, these

waves get their name from the fact that their characteristics are usually

derived to first order by neglecting the dynamic electric field e in

Maxwell's equations. (The characteristics of the exchange-dominated

spin waves are also derived ignoring e, of course. Hence in this sense

they could also be called magnetostatic waves. ) It then may be difficult

to get a quantitative understanding of how the "magnetostatic" waves

couple to the fields of ordinary electromagnetic waves which might arise
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from a fine-wire antenna located outside the delay line (see Fig. 3).

Nevertheless, the sizes of the fine-wire antenna and the delay line are

usually much smaller than electromagnetic wavelengths at the frequency

of operation, so that only the near-field component of the magnetic field

set up by the antenna interacts with the fields inside the delay line. As

is well known, this near-field component can also be calculated from

Maxwell's equations by using the magnetostatic approximation which

ignores e. Hence it is possible to get a qualitative feel for the coupling

of the antenna fields to the "magnetostatic" waves by considering only

the magnetic field h. See the bibliography by subject for a listing of

relevant papers in the literature. The work of the present section

treats only interactions between the three kinds of waves within the

magnetic material.

(b) Derivation of the coupled second-order equations

for spatially-varying fields,

1. Summary of results.

Equations corresponding to most of those derived in this section

have been obtained elsewhere. SCHL6MANN 1960 derived the

equivalent of the elastic equations of motion 4. 1(2) and the torque

equation components 4.1(5), without the transverse wavenumber which

we neglect later anyway. Equation 4. 1(14a) was derived from Maxwell's

equations by VASILE and LAROSA 1968a for thin magnetic slabs. Using

the technique of VASILE 1967, it is shown here how to derive the

similar equation 4. 1(14b) for modes with no azimuthal variation in

cylindrically symmetric samples. AULD, COLLINS, and WEBB 1968

observed experimentally that, in rods, such a mode was the easiest to

excite by fine wire antennas. See their Fig. 9 for the antenna
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configurations they used, including the full loop which excites no

azimuthal magnetic field.

Further, using the methods of VASILE and LAROSE 1968a, we give

in 4. 1(19) the explicit form of requations 4. 1(5) when only one component

of transverse magnetic field is present. The elastic equations 4.1(2)

in this case become 4.1(20) directly. Equations 4. 1(19) and 4. 1(20) are

useful particularly for the analysis of section 4. 4, when the interactions

between elastic, exchange-dominated spin, and "magnetostatic " spin

waves are all considered simultaneously. In that case, 4. 1(14a) is also

added, to complete the set of three coupled second-order equations.

Finally equation 4.1(22) is derived, apparently for the first time, to show

explicitly in a second-order coupled equation how 'magnetostatic" waves

can couple to the exchange-dominated spin waves.

Since the various assumptions in these derivations are used in

several places, and since it is helpful to have all of them listed in one

location with a discussion of their physical implications, Appendix 3 is

provided for this purpose. The numbers which label each assumption

thus refer to this appendix.

2. The equation of motion for the lattice displacement

(elastic waves).

To find the equations of motion for the lattice displacement R, we

consult SCHL6MANN 1960, equation (1). There it is assumed that the

static magnetization is parallel to a cubic crystalline axis, which will be

labeled the z-axis. As a result, only shear elastic waves interact with

a spin-wave traveling in the z-direction. That is, Rz = 0, which is

assumption 17. SCHLOMANN 1960 also assumes that the material is

elastically isotropic, which is a good approximation for yttrium iron

-U
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garnet, which is most commonly used. Other assumptions in that

paper are taken from KITTEL 1958a. Ignoring the equation for Rz, we

thus have

2 ~b2
D = c 4 4 2R + (c 4 4 + c 2 ) a + Mx

b 4.1(1)
DR = c v2R + (c + c) (-1) + m

y 44 y 44 12 y M y

where certain changes in notation have been made to avoid confusion with

other symbols in this work. Dots and primes denote differentiation

with respect to time and space, respectively. The mass density is D,

c12 and c 4 4 are the elastic constants relating stress to strain, b 2 is

magnetoelastic coupling coefficient, and M is the saturation magnet-

ization (see assumption 9).

As mentioned previously, it is expected that the elastic waves by

themselves will act like plane waves since their wavelengths are so

short. If we thus neglect transverse variations and the coupling to the

magnetization (the last two terms on the right of equation 4. 1(1)), the

result is the ordinary wave equation for shear waves. The velocity of

sound vp is then identifiable as v2 = c4 4 /D (p is for "phonon").

More explicitly, if the parameters of the medium do not vary with

time, we can Fourier analyze 4. 1(1) and consider each harmonic

component individually. The fields are then written as in assumption 1.

Furthermore, the normal modes for the magnetization are generally

almost entirely circularly polarized when they interact with the elastic

waves. Thus it is convenient to take linear combinations of 4.1(1)

corresponding to the circularly polarized components R = R x ± jRaY.
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Thus we obtain:

2 b 2  4
- R 44- M ± + 4. 1(2)

where all transverse derivatives are neglected. This approximation is

roughly equivalent to assumption 12a, if the transverse variations of the

elastic displacement R have characteristic wavenumbers equal to some

k . Here we identify the elastic ("phonon") wavenumber k as
t p

k2  2 /V 2 w2 D Hence
p p /c.Hn

2 b
+ kR = c 4.1(3)p -± c 44 Mm

The form of this equation does not change with the system of electro-

magnetic units, since b 2 and c 4 4 both have units of energy density.

3. The torque equation for the magnetization (spin waves).

The torque equation for the magnetization is M = y Mx H eff

where the effective magnetic field Heff is composed of the following:

H(z), the net internal static magnetic field in the crystal, assumed to be

approximately parallel to the magnetization M; the magnetic dipolar

field A of the precessing magnetization, calculated from Maxwell's

24-
equations; the effective exchange field X v m arising from the quantum-

mechanical exchange force tending to align the magnetic moments on

neighboring atoms; and the effective field arising from the magneto-

elastic energy, calculated from the gradient of the magnetoelastic energy

with respect to the magnetization. Assuming that only small signal

(linear) excitation is involved, using assumptions 7, 8, and 9, and

- U
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again considering only shear elastic waves with Rz = 0, we obtain for

the x- and y- components of the torque equation:

A, = -yvOM(h +X 2 m) + YM m H + yb 2 R

4.1(4)

mM(h + 2 ) ypo m H - yb R

These equations again can be taken from SCHLOMANN 1960,

equation (1), except that 4. 1(4) are written in mks units. See JACKSON

1962, Table 3, for a conversion table for symbols and formulas in going

from Gaussian to mks units. Now again consider harmonic components

using assumption 1. Also assume that the transverse variation of m is

b2 2 -4 2 - 2 .+
as in assumption 4, so that ( 2 + 2) m = Vt m - kt m. (It will

ax by-
turn out that transverse variations in m actually can be ignored for our

purposes. ) Finally, take linear combinations of 4.1(4) corresponding to

the circularly polarized components m± = m ± jm :

H + W/ IYMIp 2 1 b2m - M + k m = h + M R 4.1(5)-1M MX t/- X -± M±415

4. Maxwell's equations for the magnetic field

(transverse electric waves).

The third coupled equation is obtained from the Maxwell curl

equations, writing the fields as in assumption 1:

v x e = - j W1(m +h) 4.1(6a)

V xh = jwEce 4. 1(6b)

By taking the curl of 4. 1(6b) and substituting into 4. 1(6a) we obtain the
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wave equation for h:

= -+

2 2
where k 0 w POE

To have only the transverse components of A appear,

equation 4. 1(5), we must find h in terms of h

the z-component of 4.1(7):

z t -t
2h
t -Z

4. 1(7)

as in

This is done through

k2h= kh
0-zL

4.1(8)

where the definitions V
2

+Y and

are used, and m is neglected according to assumption 2.

evaluate Vt ht in terms of h = h ± jh by defining the operators

evaluation,

j , introduced by VASILE 1967.

and by using the z-component of 4.1(6b), we find

+h

Vh

Then by explicit

To proceed further,

t -t

t -t

+ w c e

- WE e.

4.1(9a)

4. 1(9b)

assume e z 0 (see assumption 3), corresponding to

propagation in a transverse electric mode. Also assume that the

variables in equation 4. 1(7) can approximately be separated according to

assumption 4, so that V ht-
24

k -k h Thus 4.1(8) becomes

hz 2 2
k kt

a (V h

V(V - N ) - V 2 $

Vt -t

Now

4.1(10)
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where either the top or the bottom signs may be taken.

With the same assumptions used to obtain 4. 1(10), and by taking

appropriate linear combinations of the transverse components of 4. 1(7),

we find

2 ~ 22
v,(v-h ) + V (Bhz/bz) + k h - h = k (m +h ) 4.1(11)±+- ± -zt- 2- o0 -

Next note that V v h V h = k h

Finally, calculate V (Bh--/z) in 4. 1(11) from equation 4. 1(10),
2 2.

noting that k - k2 is a constant by assumption 4:t 0

k 2
V (bhz/Bz) = 2 t 2  . 4.1(12)

kt k 0z

Substituting 4.1(12) into 4. 1(11) and combining terms gives

112 2
h = (k - k ) (m + ), 4.1(13)

where the prime denotes differentiation with respect to z, as before.

As was pointed out by VASILE 1967, it is rigorously possible with a

magnetic material to neglect e , as we have done only when k >> k
z t 0

2
(assumption 5). Hence k should be neglected in 4. 1(13).

0

In practice, it is more convenient to combine the two equations

represented by 4. 1(13) into one. For rectangular coordinates, recall

that h = h ± jh and similarly form . Then we obtain by adding
Z-± -x -y

2
the two equations in 4. 1(13), and neglecting k :

I 2 2h - kt h = kt rx- 4 .1(14a)
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Equation 4.1(14a) was derived for slabs thin in the x-direction by

VASILE and LAROSA 1968a, using the "magnetostatic" approximation

in which all electric fields are neglected and only the curl A and

divergence A Maxwell equations are used. For cylindrical coordinates

r and p as in a rod, h = e (h ± jh ) and similarly for m

Multiplying the h equation by e~ 99 and adding it to e+ N times the h"

2
equation in 4. 1(13) gives, neglecting k :

h 2 2
-r t -r t-r. 4.(14b)

5. The coupled equations with only one transverse component

of magnetic field present.

It is common that only one transverse component of _ may be

present (see assumptions 6a and 6b), either h or h , in which case the

relevant one of equations 4.1(14a) and 4.1(14b) is used. To determine

how this equation then couples to 4. 1(5), it is necessary to eliminate one

of the circularly-polarized components of m. For example, if h = 0
-y

(assumption 6a), we first find m in terms of h from 4. 1(5). To do

this, first consider 4. 1(5) with the right-hand side terms, involving

coupling to the magnetic and elastic fields, set to zero. Then the left-

hand side is a wave equation for exchange-dominated spin waves with

normal-mode solutions _m o exp (-jk z), where

k = - H+ My.j 4.1(15)

2 2(Typically, kt is completely negligible compared even to k+, unless H

is within about 10-6 oersted of w/ IY4 I. )

U
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For propagating waves, the k2 must be positive. This is only

possible for the positive circularly-polarized waves m+ (with m - = 0).

Furthermore, these waves interact with the elastic waves only when

k+ f kp, which occurs in practice near where H f t/ Iy 0 1 , and with

the magnetic field only where k+ is even smaller (see the dispersion

diagram in Fig. 4). Thus from 4.1(5), we see that I k+I << Ik_ I in the

regions of interest. The negatively-circularly polarized waves are very

rapidly evanescent (k_ very large and imaginary). Consequently, only

the positively-circularly polarized waves interact with the elastic waves,

so we can set R_ = 0 (assumption 18), ignoring negatively-circularly

polarized elastic waves.

On the other hand, when coupling to the _ field in equation 4.1(5)

again becomes important, for smaller lk+1, the magnetization will no

longer be exactly positively-circularly polarized because h is not

circularly polarized. However, we can now use assumption 11 to neglect

Im 1 k rn , since as was just mentioned, in this region lk 2<< I k2 I,

as given by 4. 1(15). Thus, from equation 4. 1(5), with assumptions 18,

11, and 6a:

M
m x - jmy = H+ W/ hx, 4.1(16)

2
where k has also been neglected in accordance with assumption 12c.t

Equation 4.1(16) gives m in terms of m and h so that

rn+ m +n +jm 2m - H± - h 4.1(17)-y x H 1VM01~o -x*

Here it is seen that the term proportional to h gives the deviation

from circular polarization in M. With R =0, however, we can write

-. ~ -
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R = 2R . 4.1(18)

Now substituting 4. 1(17) and 4. 1(18) into equation 4. 1(5) for m+'

and substituting for h" in terms of m and h through 4. 1(14a), we

obtain:

mI k 2 m -H 1  2 R b
x Ex -x (H + / ) x + MOM -x _ , 4. 1(19)

2 2 2with kEx k+ as given by 4.1(15). A term approximately equal to kt

2
has been neglected compared with k in accordance with assumptionEx'

13. Since w/ Iypo I is close to H in the regions of interest, the only

change in form from 4. 1(5) is an extra factor of approximately 2

multiplying the _ term, arising because A is almost circularly

polarized but h is not. The two equations represented by 4. 1(3) can be

combined simply by adding them together to obtain:

I 2 b2
R + k R = - m 4.1(20)
-x p -x c4 4 M--x41(O

Finally, equation 4. 1(14a) is repeated here:

112 2
h - k h = k m 4.1(21)

Equations 4. 1(19) through 4. 1(21) form the starting point for

consideration of the complete wave coupling problem, where interactions

between elastic displacement, magnetization, and magnetic field are

simultaneously treated (see section 4. 4). Note that if instead of h = 0
-y

we had h = 0 in a cylindrical rod (assumption 6b), then equations

4. 1(19) through 4.1(21) would have exactly the same form, with r
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replacing x everywhere.

6. The wave equation for tmagnetostatic"? spin waves.

When the right-hand sides of equations 4. 1(19) and 4. 1(20) are

neglected, we obtain the wave equations for the exchange-dominated spin

waves and the elastic waves, respectively. However, the wave equation

for the "magnetostatic" waves is not obtained by neglecting the right-hand

side of 4. 1(21). The reason for this is that "magnetostatic" waves

intrinsically involve both magnetization and magnetic field. They do not

involve exchange field terms, represented by X, however. To obtain

the characteristic features of the "magnetostatic" waves, ignore R'

and find m in terms of _m and h from 4.1(19). Then substitute into-x -x -x

4.1(21):

a 2M X k "i
h + k2  h = + k m , 4.1(22)

x MS-x H- wl x

where

2 2 H2+HM-(W/ Iyyt 1)2k =- k t)2- 2 ] 4.1(23)
(W/ /ypA) H

Notice that the wavenumber of the "magnetostatic" waves becomes

very small near where the field satisfies H2 + HM = (w/ IylyI). The

long-wavelength electromagnetic fields will couple to these waves in

this region. When H approaches resonance at H = w/lYM0 1, however,

k2 becomes very large (see the dispersion diagram in Fig. 4). The
MS

coupling term on the right-hand side of 4. 1(22) also becomes large near

resonance, showing that coupling to the exchange-dominated spin waves

(whose existence depends upon the exchange parameter X) occurs there

also. An equation of the form 4. 1(22) does not appear to have been

exhibited previously in the literature.
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4. 2 High-k spin-elastic wave conversion at magnetoelastic

crossover point

(a) Introduction.

1. Summary of results in the literature.

At the place in a magnetized sample where the wavenumber k for
m

exchange-dominated spin-waves becomes equal to that (k ) of the elastic
p

waves, conversion from one type to another can occur. (See the

dispersion relation in Figs. 4 and 5. ) When the field is nonuniform, as

in Fig. 3, this conversion can only occur at one point, the "crossover

point, " since only km varies with the magnetic field. Since the wave-

lengths involved are so short compared with typical transverse

dimensions of the samples, transverse variations in 4.1(5) can be

neglected, and consequently the waves can be assumed to be circularly

polarized (assumptions 13, 16, and 18). If the high-frequency magnetic

field is similarly neglected (assumption 19a), equations 4. 1(3) and

4. 1(5) become

"2
v + k v = -au 4. 2(l a)

p

2
u +k u = av 4. 2(1b)m

where

2 _ 9/ v| - H(z)
k (z) = MX 4.2(2)
m M

and

v = (c4 4)2  +

u = (o X) 2 m+ 4.2(3)

ba -
a = ( X go C g)_2
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Equations 4. 2(1) are identical to those derived by SCHL6MANN and

JOSEPH 1964, who used definitions and normalizations corresponding to

4. 2(2) and 4. 2(3), except with some different symbols and Gaussian units.

As was mentioned in Chapter 2, the first treatment of spin/elastic

wave conversion by SCHL6MANN and JOSEPH 1964 used successive

approximations methods to derive conversion efficiencies in limits of

small and large gradients of magnetic field at the crossover point. For

large gradients, the 'weak coupling" approximation was used involving

the two coupled second order equations 4. 1(1), since little power is then

converted from one wave type to the other. When the gradients are

small, on the other hand, much power is converted (the "strong coupling

limit"). In this case it was more convenient first to write 4. 1(1) in the

form of four coupled first-order equations and then transform to hybrid

magnetoelastic modes, which would be the normal modes in a

homogeneous medium. In a weak inhomogeneity, these modes are

coupled weakly (see equation 2. 2(26) and remarks following), and thus

another successive approximation scheme was applied. The results

are reproduced in Fig. 6.

Later, KIRCHNER 1966 showed that if reflected waves could be

neglected, 4. 1(1) could be reduced to a set of only two coupled first

order equations, of the same form as the equations in LOUISELL 1955

for tapered mode directional couplers. These type of equations are

usually called the "coupled mode equations" for the inhomogeneous

system. By numerically integrating these equations, Kirchner obtained

a smooth curve for the conversion efficiency, reducing to the results of

Schlbmann and Joseph in the appropriate limits (see again Fig. 6).

Finally, REZENDE and MORGENTHALER 1969a derived coupled mode
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equations of the same form for the case when spin/elastic-wave

conversion occurs in time-varying, rather than spatially- varying,

magnetic fields. These equations were also integrated numerically,

and a plot of the conversion versus time was obtained.

2. Summary of the results of this section.

In this section, we show how solutions of generalized hyper-

geometric differential equations can be used to obtain the reflection and

transmission (conversion) coefficients.

A simple transformation allows the results to be obtained

analytically for arbitrary gradients of the magnetic field, having a

variation of the form shown in Fig. 1. In part (b), it is shown how an

equation of second order gives directly the conversion efficiency,

without the need for numerical integration. This is done by applying the

simple transformation to the coupled mode equations derived by

KIRCHNER 1966 and REZENDE and MORGENTHALER 1969a.

By using a fourth-order equation derived from 4. 1(1), the analysis

in part (c) is able to include the effects of reflections. These are shown

to be significant when the field gradients become large or the wavenumber

k becomes small so that the WKB solutions break down strongly (see
m

Fig. 8). It is also demonstrated that the magnitude of these reflections

depends upon the nature of the overall variation of km, whereas the

basic spin-elastic conversion (transmission) depends only upon the local

magnetic field gradient at the crossover. The results for all the

reflection and transmission power fractions are summarized schematic-

ally in Fig. 7. Note that these results are analytical expressions

derived without a computer. It should also be noted here that informa-

tion on the phases of the reflection and transmission coefficients can also
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be obtained from the treatment of this section. Then, however, a

computer evaluation of gamma functions of complex arguments is

necessary (see part 3. 3(i)).

Note that there is a negligible amount of reflected elastic (phonon)

energy with an incident spin wave (magnon), in contradiction to the

result of SCHLOMANN and JOSEPH 1964 obtained by successive approxi-

mation. This reflection becomes significant only when the magnetic

field transition is so abrupt that it is thinner than the wavelengths at the

crossover point. Then of course the boundary conditions would apply.

Thus we conclude that successive approximations are not useful in

calculating reflected waves. A similar conclusion holds for the waves

in section 4. 3. In that case, moreover, there are no transmitted waves.

(b) Solution of the second order '"coupled mode" equations

with hypergeometric functions.

1. Spatially-varying fields.

By neglecting reflections, KIRCHNER 1966 derived from

equations 4. 2(1) the following coupled equations:

A I + jk (Z A =jaA
m m m 2 p

4. 2(4)

A + jk A = jf a A
p p p m

where the A and A are normalized linear combinations of u, u', v,m p

and v', such that the quantities JAm 12 and lA p 2 represent power flow in

the spin and elastic waves, respectively. The prime denotes differenti-

ation with respect to z. As shown in deriving equation 3. 2(53),

equations 4. 2(4) can be combined into one of the form:
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2
A" + j(k (z) + k )A' + a - k (z) k A = 0 4.2(5)

p m p p 4 m p p

(The equation for A is identical. )

Using the transformation in 3. 3(5) from z to C, we find that 4. 2(5)

becomes a hypergeometric equation, if k (z) has a tanh ( ) variationm2

(see 3. 3(13)). This variation is shown schematically in Fig. 1. Then

the parameter a is given by 3. 3(20) or 3. 3(23), and the quantities pi and

a are related through 3. 3(17) and 3. 3(18) to the solutions k and k of the

dispersion relation at z = ±co. The solutions of 4. 2(5) can be written in

normal mode form in these limits as in 3. 3(16), with A (z) replacing F(z).

The dispersion relation for the homogeneous regions, from 4. 2(5) and

3. 3(16) is:

2 2
- k2 + (k + k )k + (a - k k 0, 4.2(6)m p 4 m p

with solutions

k +k k -k 2 2-

k = - 2 2 P) 4.2(7)

Label the solutions of 4. 2(7) corresponding to elastic waves as k and

those for spin waves as k 2 '

Now consider an incident phonon (elastic wave) as in Fig. 6. The

solution of the hypergeometric equation corresponding to 4. 2(5) is then

AP(z) = G1~ (z)] = M 1 GLC(z)] + M 1 2 G 2 E(z)] 4.2(8)

where G1 , G , and G represent the incident phonon, transmitted phonon,

and transmitted magnon (spin wave), respectively. The transmission

coefficient for the transmitted magnon is M 1 2 , where from 3.1(30)

L.

1 1 - - ... - - -awwo 1, .I I 1 .111 1 1 1 1 .. .k.4. ea! - I - - . --
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M~~ ( -P2+ Pl) r Cr -Y 4.(9
12 r(1 -p 2 ~ p 12 1 +p) 4.2(9)

Due to the normalizations included in the definitions of A and A , the

power conversion efficiency "pm is

A+ 2

lpm Am 2  4.2(10)
A1

From the second of equations 4. 2(4) we find the relation between A+
m2

and A Moreover, the ratio A+ to A is from 4. 2(8) simply M 1 2 '
P2*p2 p1 2

Hence

2 2
2(k -k +) M 1 2  4.2(11)

To evaluate IM 1 2 12 under the assumption of a lossless medium,

proceed as in subsection 3. 2(a)5. Using the properties 3. 2(26), 3. 1(6)

and 3. 3(60) of the gamma function, and identifying the a's and p's

through 3. 3(17) and 3. 3(18) we obtain

(k - k) (k- k ) sinh (k+ - k~) sinh (k -k )
M1 21 (k+ - k~ (k+ - k+) sinh "(k- - k-~) sinh F (k + - k ) 4. 2(12)

For the conversion from an elastic wave to a spin wave, the wavenumbers

are as shown schematically in the top half of Fig. 7 with k3 replaced by

k 2 . Hence, when7Tk >> a, all of the sinh factors in 4. 2(12) can be

approximated by exponentials, except for the one involving a(k( - k1 ) /a.

In fact

k

I



sinh A ; e: ,

2 sinh g e A = 1 - e-2$

In this way, IM 1 2 2 becomes, approximately:

(k + - ) (k~- k-)
IM (2 -1 1 2 1 (1

121 (k - k )(k - k )2 2 1 (1

where

x exp L- (k- k )1

Next note from 4. 2(7) that

k -k
k-k k = n2 [

2

k -k
m p

If (k - k )2 >> a2 both at z = - and z = +m, then the waves at those
m p

limits are almost purely spin or elastic waves. From 4. 2(16), we then

also have

k+ - k1 1

2
a
4

(k - k+
m m

(kp - k ) (k- k

Furthermore, from 3. 3(23) we can write

k (k+ - k)

= cr
(k - k ) (k - k

P M mp

and
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g >> 1, 4. 2(13a)

4. 2(13b)

irk >> a
p

4.2(14)

4.2(15)

4.2(16)

4.2(17)

L

4.2(18)

- x);
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Thus

x = exp (-i ia 2 /2kQcr); (k - k )2 >> a2  4.2(19)

regardless of whether the crossover point occurs at the center of the

hyperbolic tangent variation or not. If M X is constant, from 4. 2(2) we

see that

x = exp (- Hcrit/ jH'I) 4. 2(20)

where

H crit a k MX, 4.2(21)

and H' is to be evaluated at the magnetoelastic crossover.

To obtain 7 , combine 4. 2(11), 4. 2(14), and 4. 2(16) under the

± -2 2 2
assumption (k - k2 ) a2. In this case, using 4. 2(17), it is seen

m p

that the multiplicative factors in 4. 2(14) are all cancelled out, leaving

1pm =(1 - x) 4.2(22)

With 4. 2(20), this is the same as the result obtained numerically by

KIRCHNER 1966 (see Fig. 6). Note that it involves only the assumptions

listed in 4. 2(14) and 4. 2(19), plus the neglect of reflected waves. It is

not necessary that (k + k~ )/2 = k (symmetrical transition). Clearlym m p

the result 4.2(22) depends only on the field gradient at the crossover,

and not on the shape of the curve.

2. Time-varying fields.

REZENDE and MORGENTHALER 1969a have derived the "coupled

mode" equations for spin and elastic waves in a time-varying internal

magnetic field H(t), assuming negligible spatial variation. Such a field

A
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can be produced by pulsing a Helmholtz coil wrapped around a

cylindrical rod of magnetic material, magnetized initially to saturation

along the cylinder axis. Their equation (65) has the same form as

4. 2(4):

P-j P = (
pQ

4. 2(23)

- Wjk(t) Q = ( ) P

where the dot denotes differentiation with respect to time. Combining

equations 4. 2(23) results in

2
- j(k(t ) + W )P + (b - k(t)OW) P = 0, 4.2(24)

which has the same form as 4. 2(5). Here wk(t) and wp are the magnon

and phonon frequencies, respectively, and b is related to the magneto-

elastic splitting parameter a. The magnon frequency is given by 4. 2(2),

2
where it is assumed km, M, and X are constants. Thus wk(t) is simply

proportional to H(t). The variables P and Q are normalized such that

their absolute magnitudes are proportional to the phonon and magnon

momenta, respectively.

The analysis of 4. 2(a)1 can be used for this case with the following

changes. Instead of transformation 3. 3(5) from z to C, we write

C= -eat 4.2(25)

in which case 4. 2(24) is transformed to the hypergeometric equation

3. 3(3) provided that wk(t) has a tanh (at/2) variation (compare 3. 3(13)).

Instead of 3. 3(16), write



P (t) = exp (+ jw t)

and then 3. 3(17) and 3. 3(18) become

pi=+ jo~/a cr~ =

4H (t = 0)
= (H+ - H).

The plus and minus signs refer to t = ± o, respectively. It is assumed

that there is an elastic wave (phonon) incident from t = -o. Finally,

the dispersion relation is

k + W
2

b 2 -
+ b- .± Wk p\2

L -2')
4.2(29)

For an incident phonon, we assume that the frequency wk(t)

increases with time through the crossover point wk = wp so that

(see Fig. 4, noting that k is constant). Now the

analysis can be carried out exactly as in 4. 2(a)1, with the result that

the elastic-to-spin momentum conversion efficiency is

= (1 - x); 1TW >> a , (W - W )2 >>
P k p

x = exp (- crit / AI )

2i

Ncrit = 2/2 y v .

The same critical gradient was obtained by REZENDE and MORGENTHALER

- -
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4. 2(26)

with

4. 2(27)

4. 2(28)

??pm

with

and

4. 2(30)

4.2(31)

4. 2(32)

2 > W~ > W > Q 2

,
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1969a.

c. Solution of fourth-order equation including

the effects of reflections.

1. Derivation of results.

The two equations in 4. 2(1) can be combined into one fourth-order

equation in the following way. First take the second derivative of

4. 2(1a). Then to find u'' in terms of v and its derivatives, take the

first derivative of 4. 2(1b). Substitute for u' in this new equation, using

2
4. 2(la). Note that since k is a function of z, there will also be a term

m

involving u in the first derivative of 4. 2(1b). However, use 4. 2(lb)

itself to find u in terms of v' and u". Finally, find u" in terms of v'''

and v' by taking the first derivative of 4. 2(1a). The result of all these

substitutions is:

2 ' 2'(k ) 2 (k )
v1'''I m v' + (k2 + k2 + a2 - m (k2 + a2)v' + k2 k2 v = 0 4. 2(33)

(k 2 ) m p (k2 p m p
m m

Looking back to subsection 3. 3(f), we see that this equation is identical

in form to equation 3. 3(30). In a similar manner, an equation for u

having the same form as 3. 3(33) may be derived from equations 4. 2(1).

Thus the equations for v and u both have the same "source equation,"

2 2~ 2 -
2  d3.3(31). Identifying there p(z) = k (z), a k + a , b k , and

m 2 p 2 p

dropping the subscript of F, we find

v(z) = F'(z) 4. 2(34a)

2
u(z) = F"(z) + k F(z) , 4. 2(34b)

p

with

L
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F''''(z) + (k2 (z) + k2 + a2) F"(z) + k2 (z) k2 F(z) = 0 4.2(35)
m p m p

2
In homogeneous regions where km is constant, the solutions for

F(z) can be written as normal modes exp (- jkz), producing from

4. 2(35) the biquadratic dispersion relation:

k4 - (k2 + k2 + a2)k2 + k2 k = 0 4.2(36)m p m p

The solutions of 4. 2(36) can be written in the form:

(k -k2+a) 2a k 2-.
k = m 2 1 4.2(37)

p 2 L k k 2+ aT
m p

Thus for each wave type represented by a solution of 4. 2(37) for k2

there are two waves having the same magnitude of k, but traveling in

opposite directions. Near the crossover point km = k p, the dispersion

relation can be approximated by 4. 2(6), with solutions of the form of

4.2(16), as was shown by SCHLI5MANN and JOSEPH 1964. Then,

however, the reflected waves are neglected.

2
Since 4. 2(35) has only one varying parameter, k (z), it can be

m

transformed into a generalized hypergeometric equation, using the

method of subsection 3. 3(b), as long as k (z) has a hyperbolic tangentm

variation with z (compare the solutions in 4. 2(b)1). The solutions of

this hypergeometric equation can be written in the form of 3.1(31). By

taking linear combinations of these solutions according to the prescription

in subsection 3. 3(g), the reflection and transmission factors R and TL

for the two types of incident waves are derived. Two of these are

given in 3. 3(62) and 3. 3(63) after which it is remarked how to obtain the
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others by interchange of symbols.

The limiting forms of v(z) = F'(z) at z = ±o are then given by

3. 3(47), where the various G's are hypergeometric functions which

reduce to normal mode form in those limits. Now label the incident and

transmitted elastic waves by the subscript 1 and the reflected wave by 2.

Similarly, subscripts 3 and 4 refer to spin waves traveling in the plus

and minus z-directions, respectively. Note since the dispersion

relation 4. 2(36) is biquadratic, that k= -k k = -k Thus we find

from 3. 3(64) that

v /~= -R1 2 , v /vI =k /k~

4. 2(38)

vi /v = T 1 1 k, /k1 , v3/vl = T 1 3 k3/k,

For an incident spin wave having a small but finite v , four ratios similar

to 4.2(38) are found, with the first subscript in the R's and T's changed

to 3, and k~ changed to k . The ratio v 2 /v 3 is -R 3 2 k,~/k 3 '

From equation (15) of SCHL1MANN and JOSEPH 1964, the time

averaged total power flow can be written

(S) = 1 Im (u u' + v' v' + av* U) 4.2(39)

The first term represents exchange (magnetic) power (Sm), the second

term elastic power (S ), and the last term magnetoelastic power. Note
p

that each type of wave is identified by its wavenumber, and each wave will

have some u and v, related by equations 4. 1(1). In the limiting

homogeneous regions, from 4. 1(l a) for example:
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j(k2 - k2
Uv ak I . 4.2(40)

Except very near the magnetoelastic crossover, each wave will be

either predominantly magnetic or elastic in character, with lul >> lvi or

lv >> lul. Even at the crossover where u ; v and km = kp however,

the magnetoelastic power term in 4. 2(39) is the smallest of the three

power terms if a < k , which is always true in practice. Thus the

magnetoelastic power is neglected.

In order to calculate the exchange power in a spin wave from

solutions such as 4. 2(38) for v, it is necessary to use 4. 2(40). For

example,to calculate the conversion efficiency pm from incident phonon

to transmitted magnon (spin wave), write using 4. 2(39) and 4. 2(38):

(S + + 2 Re k+ (k) - k2 2 v2 Re k

"pm (S - v1 I Rek ~ a k vI Rek

(k+ 2 - 2 2 Re k+ 4.2(41)
3 p IT 12 3

a k 1 3  Re k

The other power ratios for the various reflected and transmitted waves

are found similarly. Even the reflection factors IR j will need to be

multiplied by factors if the reflected wave is not of the same type as the

incident wave. In a lossless medium the wavenumbers k1 , k3, etc.,

will all be real, as long as (k )2 > 0.m

Using 3. 3(53) to obtain T 1 3 from Ti1, and noting 3. 3(64), we can

obtain Tm in 4. 2(41) in the same manner as in 4. 2(b)1, with the result
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k2 - (k+)2 2 ( 2 - 2] [(k )2 - k~)2
77pm - 2 +2 +2 +2 (1- x)(1 - y), 4. 2(42)

mi ak1  [(k 3)-(k) ] ) (k1 ) k3 ) 2

provided that 'ik >>, with x as defined in 4. 2(15) and

y = exp (- 47T k /a) 4. 2(43)

2

Now a is defined from 3. 3(20) in terms of k (z), rather than in terms of

k m(z) as in 4. 2(b)1. Note that in the opposite limit 'rk << a, instead of

4. 2(13a) we have sinh 0 f A, A << 1. Then the form 4. 2(42) is no longer

valid, but the answer no longer depends on a and hence not on the field

gradient. In that case, the thickness of the hyperbolic tangent transition

is less than the wavelengths at the crossover, so that the answers should

then be those obtainable from boundary conditions.

To simplify 4. 2(42), note from the solutions 4. 2(37) to the

dispersion relation when (kn ) - k + a2 >> 2a k that

k - k 2 - 2 k2/ 2 - k2 + a2). 4.2(44)
1 p p m p

Then following steps similar to those involved in 4. 2(17) and 4. 2(18), and

by neglecting a2 compared with (k ) - k , we findm p

2
'ira k

(k+ - k~) 2 - k , 4.2(45)S 1 1 (k 2)
m cr

whether or not the crossover point occurs at z = 0 in the tanh (az/2)

variation for k (z). If MX is constant, 4. 2(45) and 4. 2(2) combined with
m

the definition 4. 2(15) for x show that again x has the form of 4. 2(20), with
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the same critical gradient Hrit as in 4. 2(21). Furthermore, thecri

multiplicative terms in 4. 2(42) cancel out when it is observed from

4. 2(45) that

(k+)2 - (k~)2 a2 (k )2 /[(k )2 - k ], 4.2(46)1 1 m m p

when k << k and a << k. We also use the facts that k+ km p p 1 p
± 2 2

k + k , since we are assuming k - k 2ak . Thus we finally3 m m p p
obtain

p (1 - x) (1 - ) 4.2(47)

The results of a representative computer plot of rm from 4. 2(41)

without any assumptions being made are shown in Fig. 8. (The evaluation

by computer involved the use of the subroutine LOGGAM mentioned in

subsection 3. 3(i).)

2. Discussion of results.

Figure 8 shows that the result pm 1 - x, derived in 4. 2(b)1, is

valid until quite large field gradients are reached in this example. The

numbers for k and H' H rtare taken from typical experimentalp c crit

conditions for coupling of spin waves and longitudinal elastic waves in

HU, REZENDE, and MORGENTHALER 1970. Reflections are important

only when y becomes significant, which occurs when the appropriate

WKB solutions break down. The criterion for this breakdown for

propagating spin waves describable by the second-order equation 4. 1 (1b),

without the magnetoelastic coupling term, is (k i)'/k M 1 (See

section 2. 2. ) Thus reflections are generated for large gradients or

Mmn +
small k . The minimum value of k (k A k for an incident elastic

m m m 3
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wave - see the top half of Fig. 7) may be taken as the value at the

turning point. See section 4. 3 below for a discussion of how exchange

spin-wave power is reflected from this turning point and largely

converted into electromagnetic power in a reflected "magnetostatic"

spin wave. There it is shown that the wavenumber kTP at the turning

2 1
point is (kt /2X) 4 , where kt is the transverse wavenumber of the sample.

For Fig. 8 it is assumed that kt - 10 cm , a reasonable value for a

cylindrical YIG rod of diameter 0. 3 cm.

It is interesting that the factor y defined by 4. 2(43) is identical in

form to the expression for the fraction of electromagnetic power reflected

from an incident plane wave traveling in a dielectric whose permittivity

varies in a hyperbolic tangent manner. This power fraction is given as

the square of the reflection coefficient RE in equation 3. 2(29), an

expression first derived by EPSTEIN 1930b. The reflection in that case

is also proportional to the severity of the breakdown in the WKB solutions.

Furthermore, for the same shape curve and same gradients, these

reflections become larger as either the original or final wavenumbers,

k or k , approach zero. Physically, this corresponds to approaching

a cutoff situation where the wavenumber becomes negative. In this

latter case, of course, all of the energy is reflected. We conclude that

the reflections represented by the factor y in 4. 2(47) depend most

strongly on the shape of the variation in km near its minimum value, and

upon that minimum itself. The relative distribution of the energy in the

transmitted waves is determined only by the gradient (k 2 )' or H' at them

crossover point, however, and is insensitive to the variation in k awaym

from that point.

With these interpretations in mind, it is instructive to look at
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Fig. 7, where are summarized all the reflected and transmitted power

fractions for an incident phonon or magnon. These results are obtained

in the same manner as 4. 2(47), starting from expressions corresponding

to 4. 2(41). Figure 7 indicates schematically how these results may be

interpreted. For the incident phonon (elastic wave), a fraction x of the

energy is transmitted as phonon power. The remainder (1 - x) is trans-

mitted into the spin wave. Before this energy reaches the homogeneous

region, however, a fraction y is reflected from near the minimum in km

due to WKB breakdown. This amount y(l - x) is in turn split into two

parts at the crossover point, a fraction (1 - x) of it being reconverted

to a reflected phonon. Note that the fraction x represents the amount of

power which is not converted at the crossover point, regardless of

whether phonon or magnon power is incident.

The results for an incident magnon are shown in the bottom half

of Fig. 7. The starting value of km is chosen to be less than k ,

because this is the way the situation occurs in practice. Once energy

gets into spin waves with wavenumbers greater than k , it is usually

lost, unless it can again be converted into another kind of elastic wave,

such as a shear wave with higher k . Figure 7 shows that again a

fraction y of the magnon power is reflected. The remainder is split at

the crossover according to the usual factor x. Now, however, the

wavenumbers are so large that there is negligible power reflected into

the oppositely-traveling phonon, contrary to the result in SCHL6MANN

and JOSEPH 1964.

The factor C in the expression for the reflected phonon power in

Fig. 7 becomes noticeable only when a approaches ukp (L in Fig. 7 is

the "length of the transition, " defined in Fig. 1 as 4/a ). In this case.,
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however, the approximation leading to 4. 2(42) breaks down, corres-

ponding to the fact that L is then smaller than the wavelengths at the

crossover point. Then the amount of reflected and transmitted power

should become insensitive to L because there is effectively a sharp

boundary. This result is confirmed in Fig. 8 in the region of very high

gradients. In that region it is possible to use the boundary conditions

to obtain the reflections and transmissions. Results obtained in that

2
manner will be the same as those obtained in this section only if k (z)m

is constrained to keep the tanh (z) variation. In order physically to

obtain such an abrupt transition in the magnetic field H(z) it would

undoubtedly be necessary to have a non-constant magnetization in order

to satisfy V -B = 0.

Note now, however, that SCHL6MANN and JOSEPH 1964 obtained

a significant amount of power in the reflected phonon, even with

relatively small field gradients (see their Fig. 3). Their analysis

involved a successive approximations approach with k m(z) expanded in a

power series about the crossover point. It is concluded that such an

analysis for reflected waves is not dependable. Reflections generally

depend upon breakdown of WKB solutions, but successive approximations

schemes, as mentioned in section 2. 2, depend for their success upon the

approximate validity of WKB quasi-normal mode solutions. (Equations

(51) in SCHL6MANN and JOSEPH 1964 are in fact WKB quasi-normal

mode solutions of the type of equation 2. 2(14. )

In the turning point problems of section 4. 3, the WKB quasi-normal

mode solutions break down drastically due to the presence of a cutoff

point for all propagating waves. Then successive approximations are of

no help. Finally, in section 4. 4 an analysis is presented which treats

the simultaneous presence of crossover and turning points.
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4. 3 Medium-k to high-k spin wave conversion at a fourth-order

turning point.

(a) Introduction.

1. Physical and historical background.

The essential feature of conversion from medium-k ("magnetostatic")

to high-k (exchange-dominated) spin waves is that it occurs where the

energy velocity in a lossless medium goes to zero. Such a point is

called a turning point by analogy with quantum mechanical potential wells,

since beyond it energy cannot propagate. Turning points arise in

2
magnetoelastic delay lines because the wavenumbers k (the same asEx
2 2 2

k in 4. 2(2) and k in 4. 1(15)) and kMS (given by 4.1(23)) depend on them + M

static internal magnetic field H(z), which is a function of distance in

nonellipsoidal samples such as rods (see Fig. 3, based on the formula of

SOMMERFELD 1964). For reference we reproduce here equations

4.1(15) and 4.1(23):

H - H
k TP4. 3(1)kEX MX 43l

H +2 H - 2

k = k 2  +H- 4.3(2)

TP T

where

HTP IO 1 4. 3(3)

Equation 4. 3(1) shows that the wavenumber kEX, usually very large

because of the small magnitude of the exchange parameter X, becomes

2
very small near H(z) = HTP. In fact, for H(z) > HTP, kEX is negative,

indicating that exchange-dominated spin waves are cutoff, or evanescent,

in such regions. Since a small wavenumber corresponds to a large
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wavelength, it was originally expected that exchange-dominated spin

waves could couple directly to long-wavelength (low-k) electromagnetic

radiation near where H(z) = HTP (see SCHLOMANN 1961 and 1964).

More recent evidence, however, has indicated that low-k electro-

magnetic radiation couples to exchange-dominated spin waves only

through the intermediary of the "magnetostatic" waves. First of all,

it was noticed that echoes having the characteristics of "magnetostatic"

wave echoes were observed even when the static applied field was large

enough that a turning point existed with the sample (see KEDZIE 1966 and

1968, LEWIS and LACKLISON 1966). Previously, "magnetostatic" wave

echoes were observed in rods only when H(z) was somewhat less than

H TP throughout the length of the sample, so that the wave could

2propagate (kMS > 0) practically from one end of the rod to the other and

back. Later, by Bragg diffraction of infrared laser light, COLLINS and

WILSON 1968 confirmed the evidence that "magnetostatic" waves could

propagate when a turning point was present. Furthermore AULD,

COLLINS, and WEBB 1968 showed in a series of experiments with fine

wire antenna excitation of spin waves in rods, that the best efficiency of

excitation occurred when the antenna was near the end of the rod, not

near the turning point. Near the end of the rod where H(z) is smaller,

kMS in 4. 3(2) would tend to be small, approximately equal to the wave-

number k0 = W( e )2 of electromagnetic radiation from the antenna.

2
In that region, however, k would be extremely large, precluding anyEX

coupling to electromagnetic radiation.

To understand in more detail how a "magnetostatic" wave can

serve as an intermediary between electromagnetic radiation and exchange-

dominated spin waves, recall the discussion following 4.1(23). Where
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the numerator of 4. 3(2) becomes small, the wavenumber kMS becomes

comparable to electromagnetic wavenumbers. Then the "magnetostatic"

wave should be able to couple to electromagnetic fields in a manner

similar to that postulated by SCHL6MANN 1964 for electromagnetic

coupling to exchange-dominated spin waves, as mentioned above. For

higher magnetic field H(z) (corresponding to positions further toward the

interior of the rod in Fig. 3), kMS in 4. 3(2) becomes larger. Because

2
Xk2 <<< 1 for the usual practical situations, k is usually much smaller

t MS

than k EX, as is seen by reference to 4. 3(1) and 4. 3(2). However, for

H(z) approaching H TP, the denominator in 4. 3(2) becomes very small, and

kMS rapidly approaches infinity. In plasma terminology this phenomenon

represents a resonance of the extraordinary electromagnetic wave

(the "magnetostatic" wave in our case), and occurs in our case at the field

required for ferromagnetic resonance in an infinite sample. Recall that

at the same field H TP the exchange-dominated spin wave experiences a

cutoff. Neither type of spin wave can propagate for higher internal fields

2 2
H(z), since then k and k both become negative.MS EX

As will be shown below, the complete dispersion relation for the

spin system results from the confluence of the two second order

dispersion relations in 4. 3(1) and 4. 3(2) (see also Fig. 4). As a

consequence, the wavenumber for the combined system still changes

rapidly with magnetic field near the turning point (see Fig. 5), but does

not go either to zero or to infinity. This wavenumber k TP is nevertheless

much greater than electromagnetic wavenumbers, so it is quite under-

standable that AULD, COLLINS, and WEBB 1968 found that coupling from

electromagnetic radiation to the spins does not occur at the turning point.

Basically, the wavenumber does not go to zero because of the necessity
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of including the effects of the finite transverse dimensions of the material

when the wavelengths become comparable in size to those dimensions.

On the other hand, the wavenumber does not go to infinity because the

exchange forces tend to keep spins on neighboring atoms closely aligned,

and hence tend to preclude variations with extremely short wavelengths.

A dispersion relation of the form of Fig. 4 showing the confluence of

the exchange-dominated and "magnetostatic" spin waves first appeared in

FLETCHER and KITTEL 1960. COLLINS 1967 was the first, however,

to use this dispersion relation to conclude that "magnetostatic" spin waves

could act as an intermediary between the electromagnetic and exchange-

dominated spin waves, as described above. This conclusion followed the

experimental evidence that waves of the "magnetostatic type" could exist

simultaneously with the high wavenumber magnetoelastic waves (KEDZIE

1966 and LEWIS and LACKLISON 1966). AULD, COLLINS, and WEBB

1968 explained the conversion further using a wavevector diagram noting

the fact that "magnetostatic" waves act like guided waves formed from the

resolution of two plane waves traveling at an angle with respect to the

static magnetic field (z-direction).

2. Summary of the results of this section.

The combined dispersion relation for the spin system was first

derived rigorously by VASILE and LAROSA 1968a by first deriving the

relevant fourth order differential equation. In part 4. 3(b)1 below we

rederive this equation by combining the two coupled wave equations

4. 1(19) and 4. 1(2 3), or equivalently 4. 1(19) and 4. 1(21), We also

indicate how a similar equation can be derived for modes with no

azimuthal variation in cylindrically-symmetric rods.

Next we find the WKB quasi-normal mode solutions for the fourth
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order spin system in a nonuniform static field H(z) by following the

procedure outlined in section 2. 2. After expressions for electromagnetic

and "exchange" power flow are developed, it is shown how the total power

in each of these quasi-normal modes is conserved. As was mentioned

in Chapter 2, this power conservation is the essential characteristic of

the WKB solutions, regardless of the order of the differential equation.

Consequently, the "amplitude" factors multiplying the exponential phase

integrals in these solutions do not have the same form for fourth order

systems as for second order systems. This latter fact was not realized

by VASILE and LAROSA 1968a, who then concluded that there was no

difficulty in matching two WKB solutions representing a "magnetostatic"

and an exchange-dominated spin wave at the turning point. They took the

second-order form (k) 2 where k is the "local" wavenumber of the quasi-

normal mode, as the "'amplitude" factor. As mentioned above, the wave-

number at the turning point does not go either to zero or to infinity.

Rather, the wavenumbers for the "magnetostatic" and exchange- dominated

spin waves simply become equal there. The "amplitude" factors in the

properly-constructed WKB solutions, however, are inversely proportional

to the difference in these wavenumbers, and hence become very large

near the turning point. For this reason, it is impossible to know how to

match the WKB solutions at that point. Furthermore, for the same

reason it is impossible to apply a successive approximations scheme

based on equation 2. 2(26), as is shown below in part 4. 3(b)3.

When a successive approximations scheme fails, it is customary to

turn to the WKB method, as was mentioned in Chapter 2. Recall that the

WKB quasi-normal mode solutions can be found as approximate solutions

of coupled first order equations, when the coupling is weak. For second
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order systems, this weak coupling is equivalent to very little power

being reflected from an incident wave. Successive approximations

schemes are based on sets of coupled first or second order equations.

The WKB method, however, uses asymptotic expansions of solutions of

the one higher-order differential equation which completely describes the

system. Such a treatment is necessary for a second order system, for

example, when a wave in an inhomogeneous medium reaches a cutoff.

The asymptotic solutions of the complete equation are then matched to the

quasi-normal modes in regions where the latter are approximately valid.

In subsection 4. 3(d) below, we apply the WKB method to a fourth

order equation of the type derived by VASILE and LAROSA 1968a and

again in part 4. 3(b)1. This treatment is based on asymptotic expansions

of a similar equation developed in the Orr-Sommerfeld theory of hydro-

dynamical stability by WASOW 1950 and RABENSTEIN 1958. Their work

has been applied to at least three distinct situations in plasma physics,

as was indicated in section 2. 4. However, this present work appears to

contain the first application to the problem of "magnetostatic" to exchange-

dominated spin wave conversion.

The result of the WKB method is that "magnetostatic" waves are

completely converted into exchange-dominated spin waves at the turning

point and vice versa. As is shown in subsection 4. 3(d), however, this

result is strictly valid only when either the magnetic field gradient at the

turning point is very small, or when the waves can be observed at

reasonably large distances from the turning point. Otherwise error

terms in the asymptotic expansions can be so large as to mask other

reflected waves.

In microwave magnetoelastic delay lines, the typical existence of
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reasonably high gradients of the internal static magnetic field H(z) and

the close proximity of the magnetoelastic coupling point to the turning

point thus introduces some doubt about the reliability of the WKB result.

Furthermore, KEDZIE 1966 and 1968 and LEWIS and LACKLISON 1966

in pulse-echo experiments have observed varying amounts of

"magnetostatic" waves reflected directly from the turning point when

a 1magnetostatic" wave was apparently incident. LEWIS and SCOTTER

1969 concluded from continuous wave absorption resonances that there

was some reflection of this type, but most of the energy was converted

to the exchange-dominated spin wave. Finally, absorption experiments

by KOHANE, SCHL6MANN, and JOSEPH 1965 may indicate that exchange-

dominated spin waves are reflected from the turning point when waves of

the same type are incident. This conclusion may follow because the high

Q of the observed magnetoelastic resonances implied the existence of

standing waves, while the energy reflected near the magnetoelastic cross-

over as calculated by the method in subsection 4. 2(d) may not be sufficient

to account for such standing waves. See section 4. 4 for a treatment by

generalized hypergeometric functions of the combined (sixth-order)

turning point-crossover point problem.

In subsection 4. 3(e) below we improve on the WKB method for

magnetostatic to exchange spin wave conversion by solving the fourth order

equation in the manner of section 3. 3 using generalized hypergeometric

functions. In this way, reflections into both types of spin waves are

treated naturally, regardless of which type is incident. We show how the

results reduce to those of the WKB method when either the magnetic field

gradient at the turning point is quite small, or when the wavenumbers of the

incident and reflected waves are far from the wavenumber kTP at the
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turning point. Recall that these conditions are exactly those under

which the error terms of the asymptotic expansions in the WKB method

are negligible.

A difficulty in interpretation which remains is how to determine

what the wavenumbers of the incident waves should be in this model.

The "magnetostatic" wave for low enough H(z) < H eventually couples

to the ordinary electromagnetic wave, but long before that the exchange-

dominated spin wave will couple to an elastic wave. Another difficulty

may result from the fact that the variation of H(z) in a rod, for example,

does not correspond to the hyperbolic tangent variation assumed for the

generalized hypergeometric function treatment (compare H(z) in Fig. 3

and Fig. 1). In certain configurations with reasonably thin films,

however, a hyperbolic tangent variation may be accurate.

The analysis of subsection 4. 3(e) is also extended to include the

effects of loss. Note in Fig. 9 that loss tends to split the real part of

the wavenumber dispersion relation at the turning point, in a manner

which seems similar to the magnetoelastic splitting at the crossover

point (see Fig. 4). One would expect that such a splitting might

generate increased reflections, as well as absorption. The results,

however, are somewhat difficult to interpret for the reasons given in the

preceding paragraph.

Finally, the expressions for the reflection coefficients found from

generalized hypergeometric functions are compared near the end of

4. 3(e) with the results of a phase-integral analysis given in subsection

4. 3(c). This analysis is based on the phase-integral method of

RYDBECK 1967, described in part 2. 4(b)2. A conclusion from these

analyses is that power reflected from a wave incident upon the turning
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point into the oppositely-traveling wave of the same type becomes

substantial only when the magnetic field gradient H' (z) at the turning

point exceeds a critical value. For magnetic fields H(z) with variations

more like Fig. 3 than Fig. 1, this critical gradient is probably

3 2 1
proportional to MXk TP, where kTP = (kt /2X) 4 is the wavenumber for

both types of spin waves at the turning point (see equation 4. 3(7) and

following).

4. 3(b) Basic properties.

1. Derivation of basic fourth-order differential equation

and dispersion relation.

When there is only one transverse component of magnetic field

present, the coupled wave equations for the "magnetostatic" and exchange-

dominated spin waves take the form of 4.1(22) and 4. 1(19). In the latter

equation, we now neglect the coupling to elastic waves represented by

the derivative of the lattice displacement (assumption 19b). Recall that

while 4. 1(19) and 4. 1(22) are written assuming h = 0, if the subscript x
-y

is replaced everywhere by r, these equations also hold for waves with no

azimuthal (p) component of magnetic field in cylindrically symmetric

rods (see assumptions 6). Under certain circumstances, "magneto-

static" waves with more than one transverse magnetic field component

can be excited, but it is expected that they will couple to exchange-

dominated spin waves in a manner similar to that described in this

section.

Rather than using 4.1(22), it is simpler to use 4.1(21), which with

4. 1(19) is equivalent to 4. 1(22) (see the derivation immediately preceding

4. 1(22)). Thus we have:
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hl - k2 h-x t -x

S2
m_ + kEX m-x EX -x

Sk2 m
t -x

-H
= (H+ HTP x

2with kEX and HTP defined as in 4. 3(1) and 4. 3(3), respectively. Now

simply take the second derivative of 4. 3(4), substitute for m" using

4. 3(5) and for m using 4. 3(4) itself.

h'''' + k2 h +
-x EX-x

The result is:

k2 k2 h
EX MS-x

2 2
where k is again ignored compared with k in accordance with

t EX
2 2assumption 13. Recall from 4. 3(1) and 4. 3(2) that kEX and kMS go to

zero and infinity at the turning point, respectively. For fields H(z)

reasonably close to HTP, however, the product kE2 kM2 is approxi-
mateEX MSysaapprox

mately a constant:

k2 (H2 + HM - H2)
t HM

k (H TP±+H)M
kt = k 4  H HTP2X~ TP T

Here kTP is the wavenumber at the turning point, as is shown below.

The dispersion relation corresponding to 4. 3(6) is

k4 k k2 + k 2k
EX EX MS

= 0, 4. 3(8)

valid for homogeneous regions where kEX and kMS are not functions of

position, so that the solutions of 4. 3(6) can be written as normal modes

of the form exp (-jkz).

k2
k 2 __ EX [

The solutions of 4. 3(8) are

± (1

4k 2

kMS)2]

EX

and

4. 3(4)

h , 4. 3(5)

= 0 4. 3(6)

E kMS 4. 3(7)

4.3(9)
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Note that when kEX >> kMS (far from the turning point), the two

solutions in 4. 3(9) reduce to approximately the unperturbed values

2 2 2 2k = k and k = k .MS EX'

On the other hand, when k EX= 2k the two solutions in 4. 3(9)

2
coalesce. Since X k2 << 1, 4. 3(1) and 4. 3(2) show that this coalescencet

2 2 4
can only occur when H H TP Thus k EXk k and we see

2
from 4. 3(9) that the common value of k to which the two solutions

2
coalesce is k . (See the dispersion relations in Figs. 4 and 5.)TP,

From the condition kEX = 2kMS, we find from 4. 3(1) and 4. 3(2) that

this coalescence occurs for H(z) slightly displaced from what has been

defined in H TP Explicitly:

k = kTP when HTP - H = M(2Xk )2 4.3(10)

Typically the difference from HTP is less than 0. 1 oersted. The reason

for the difference is that HTP was defined as the value of H(z) which

would cause kEX to go to zero (cutoff) when the "magnetostatic" waves

are neglected.

VASILE and LAROSA 1968a have labeled the place where 4. 3(10) is

satisfied as the branch point, since even in lossless media the solutions

for k2 in 4. 3(9) become complex conjugates when IH - HTPI s M(2Xk ).

These authors used this fact to show qualitatively how one type of spin

wave couples to the other near this point. Finally, for H - H TP

M(2Xk2 ) 2, no energy propagates in lossless media, since then both

solutions for k2 become negative. The corresponding solutions for k

are hence both imaginary, representing evanescent waves. (See Fig. 6

of VASILE and LAROSA 1968a for a plot of the wavenumber loci. )

To treat the effects of losses, it is customary to replace H in
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4. 3(1) and 4. 3(2) by H + j , where AH is the full spin-wave linewidth.22 2

Reasonably near the turning point, 4. 3(7) shows that 4 k2S/kE

4(kP/kEX)4 = 2M2 Xk 2 )/(H 2  - H2 ). Then even at H = HTP we see

that the two solutions for k2 from 4. 3(9) are basically the unperturbed

values of 4. 3(1) and 4. 3(2), as long as (AH)2 >> (Hcrit 2, where

2 1
AH it = t )2 4.3(11)

For rods of yttrium iron garnet (YIG) such as those used in practice,

AH . r 0.1 oersted. This is approximately the observed value for
crit

the linewidth at room temperature in the purest YIG now commercially

available (see VASILE and LAROSA 1968c, and also COMSTOCK 1965).

Note from Fig. 9 how the dispersion relation does split for linewidths

-l -9 2
greater than AHcrit. In that figure, kt = 20 cm , MX = 5 x 10 Oe cm ,

AH = 0. 36 Oe, and AH . = 0.17 Oe. (See also KEDZIE 1968.)crit

2. Derivations of expressions for power flow.

As indicated earlier, the "magnetoelastic" spin wave carries

mostly electromagnetic power, since it is really an extraordinary electro-

magnetic wave. The exchange-dominated spin wave, on the other hand,

carries "exchange" power resulting from the exchange forces acting to

align neighboring spins. Now we wish to find explicit expressions for

these power flows and write them in terms of the field h satisfying the

differential equation 4. 3(6).

Electromagnetic power flow.

The z-component of the time-averaged electromagnetic Poynting

vector is, in complex notation:
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(S M z 2 Re (exh )z , 4.3(12)

where the brackets ( ) represent a time average, and fields are

assumed to be written in terms of time-harmonic components as in

assumption 1. Then Maxwell's curl equations take the form of 4. 1(6),

of which 4. 1(6b) is

V x h = jwce 4.3(13)

Recall that in section 4. 1 we neglected e (assumption 3). If we also

again assume that -A- 0 so that h = 0 (assumption 6a), we find

e = 0 also. Using the y-component of 4. 3(13), however, we find

1 h h
- e h1 = - 4.3(14)

y-x \WE x az -x

All that remains to evaluate 4. 3(12) is now to find h / x in terms of h .

This can be done by applying the operators v to the two equations

2 2
represented by 4. 1(10), then noting that v= Vt= -kt by assumption

4, and finally adding the resulting two equations:

2

Bh /x = 2 kt 2 x/az 4.3(15)
(kt - k0)

Combining 4. 3(14) and 4. 3(15) along with 4. 3(11) produces:

1 ____If,

(SE) - 2 Im(h'h , 4.3(16)
E M 2 (kk2 - 2 x -x

t 0

where we again introduce the prime to denote differentiation with respect

to z, and drop the subscript z on SEM*

Note that if we had neglected k in 4. 3(15) with respect to k2
0
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(assumption 5), the combination of 4. 3(14) and 4. 3(15) would give zero

for the power flow. This situation shows again that assuming e = 0-z
2 2

and k2 >> k is equivalent to the "magnetostatic"' approximation in whicht 0

the right-hand side of 4. 3(13) is zero. ((S EM)z ) can be calculated in this

latter case only if the Vx e Maxwell equation is used to calculate e from

known h and m. This is the case when plane wave solutions are

assumed. Now, however, if we assume normal mode solutions for h--x

of the form exp (-jkz), we obtain from 4. 3(16):

(SE 1 22 Re(k) I , 4.3(17)
(k - k )

t 0

22
where it is now usually permissible to neglect k compared with k2

0 t

(assumption 5). Also recall that normal mode solutions are not the

same as plane waves, since the transverse variations of the fields are

not assumed to have exponential form.

The power flow expression 4. 3(17) shows that "magnetostatic"

2 2
waves with k > k are backward waves: the power flows in a directiont 0

opposite to that of the phase velocity w/k. This fact could also have

been deduced from the dispersion relation in Fig. 4 where it is clear

that the group velocity bw/ ak is negative for "magnetostatic" waves.

2 2
The reason these waves can propagate in closed structures with kt >> k2

t 0

is that the dynamic permeability is large and negative in the relevant

regions of frequency and wavenumber, allowing an additional surface

(evanescent) wave component to match the boundary conditions at the

transverse walls. (See, for example, the discussions in VASILE and

LAROSA 1968b and also THOMPSON 1962.) In ordinary waveguides, on

2 2
the other hand, kt must be less than k for propagating modes to exist,t 0
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in which case 4. 3(17) shows that they are ordinary forward waves:

((S EM) ) is positive if Re(k) is positive.

For modes in cylindrically symmetric rods satisfying -0 = h

(assumption 6b), an expression of exactly the same form as 4. 3(14) is

obtained from 4. 3(13), with y and x replaced by p and r, respectively.

To go from 4. 1(10) to the equation corresponding to 4. 3(15), note that

-= j e i j and h h ±jh =
- x y e (-b- ~r~p ± -y

e± (P (h ± jh ). By writing all the terms out explicitly, we find
-r -p

2 21 1b2 / 2 2v h v-h = 32h / r + I h_/r + 1 h P = vt h±, just as before,

where the last part of this equation follows from the formula for the

Laplacian in cylindrical coordinates. Using assumption 4 again,

2 2
1t = kt . Finally 4. 3(15) with r replacing x is obtained by combining

the two equations resulting from 4. 1(10) in the same manner that

4. 1(14b) was obtained from 4.1(13). Thus the power flow expressions

for modes with no azimuthal variation become 4. 3(16) and 4. 3(17), if x

is replaced by r.

Exchange power flow.

The expression for exchange power flow was obtained by SCHLOMANN

and JOSEPH 1964, assuming that the magnetization is circularly

polarized (our assumption 16). This assumption is valid for both kinds

of spin waves as long as the wavenumber k is much greater than kt , as

can be seen from 4. 1(17) and 4. 1(21). Thus we can take the z-component

of the time-averaged exchange power flow (S m) from 4. 2(41) as

- wIm (u u'), which in light of the normalization 4. 2(3) becomes

4.3(18)(Sm Mo I o A IM(m m).
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For circularly polarized waves with m_ = 0, we have m+ = 2 m

(or 2 e _m r). Nov

4.1(21). When 1h "

Hence in that limit:

(S )m

m can be found in terms of h" and h from
x x x

> k' I hxI, we can neglect the term in ht -xx

WA

2k 2 k4
t TP

Im [h"l h ' IL\x/ -xJ
4.3(19)

4where we have used the definition for k in 4. 3(7).TP Finally, assuming

normal mode solutions of the form exp (-jkz) for h we obtain:

= + 24
2 k2 kTP

t TP

Re (k5 ) 2 .

Note that S m) is positive when Re(k 5) is positive, so that waves such as

exchange-dominated spin waves with I(Sm) > ISEM ) I are forward

waves.

Total power flow.

Combining 4. 3(16) and 4. 3(19) or 4. 3(17) and 4. 3(20), we find that

the z-component of the total time-averaged power flow is

(Stot ) = I k h' h

4.3(21)

= /(Re k5 - k 4p Re k )Ihx 2

where

3 = WJp/2 k k . 4 3

- m

(Sm ) 4. 3(20)

4. 3(22)

- hI h..
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For lossless media, (Stot ) will be positive, zero, or negative if the

wavenumber k is real and greater than, equal to, or less than kTP'

respectively. Note also that beyond the turning point there is no power

flow because the wavenumbers are imaginary in that region.

3. Construction of WKB quasi-normal mode solutions.

To use the method outlined in section 2. 2, we first convert the

fourth-order differential equation 4. 3(6) into four coupled first-order

equations by setting

U = h , U2 = hX, U3 = h", U = h'.-- 3-x' 4 -x

(Recall that the prime denotes differentiation with respect to the distance

z. ) As a result, we have the matrix equation

U = DU ,

where U is a 4-element column matrix,

0

0

0

4
-kTP

1

0

0

0

4. 3(24)

and

0

1

0

2
-kEX

0

0

1

0

4. 3(25)

2 2 4
Here kEX k in 4. 3(6) is approximated by the constant kTP as inEX MS

2
4. 3(7), but k varies with distance z according to 4. 3(1).

Next write U as the linear combination

U = LQ,

4.3(23)

4. 3(26)
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where Q are to be the quasi-normal mode solutions. Appendix 1 shows

that when the solutions for the wavenumbers in 4. 3(9) are all distinct

2 2
(that is, k 2 k 2), it is possible to construct the matrix L such that

-1
not only is L- DL diagonal, but the first row of L is composed of

constants (see equation A1(11)). The diagonal elements in L DL are

the eigenvalues Xi = -jk. of D. (Note that these eigenvalues are functions

of distance.) Explicitly then we can write formal solutions for 4. 3(6)

from 4. 3(26) in the form

4

h = U,= Ll. Qi, 4. 3(27)

i=1

where the Li are independent of distance. Furthermore, 4. 3(26) with

the form of L obtained in Appendix 1 shows that

4 4

h (M) = M Lm+iQi = (-jki)m Ll Q, m = 0, 1, 2, 3,
i=+ i= 1

4. 3(28)

with hm being the mth derivative of h with respect to z.

As in section 2. 2, we now write

Q = BEA, 4. 3(29)

where B is a diagonal matrix such that the B b. are the "WKB

amplitudes" for the quasi-normal modes Q , E is a diagonal matrix

whose elements E are the exponential phase integral factors, and the

A are the quasi-normal mode amplitudes. Hence

z

Q = b exp [-j Sk () d A. 4. 3(30)
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as in 2. 2(14) and 2. 2(15). Since the dispersion relation 4. 3(8) is

biquadratic, choose k and k3 as positive when real solutions to 4. 3(8)

exist, and then set

k2 = -kg and k = -k3.4 (1k2 k1 adk4 k3' 4.3(31)

Furthermore, from 2. 2(18) and 2. 2(19):

b2(z) = b 1 (z) =k 3(k - k 2 2

4. 3(32)
(z) = 3 2 2 -

b4(z) = b 3 (z) =k 3 (k3 - k1 )1

Note that these WKB amplitudes bi get very large as k3 and k, approach

the common value k . In the following, k will represent a

"magnetostatic" spin wave, and k 3 an exchange-dominated spin wave..

For real k, this convention implies that k < k Then k2 and k from

4. 3(31) represent the corresponding waves traveling in the opposite

direction.

To calculate the power flow in each quasi-normal mode, use 4. 3(16)

and 4. 3(19), where the various derivatives of h are calculated using

4. 3(28). Consider the power in mode Q., and choose the multiplicative

constant Lii in 4. 3(27) to be unity. Then the average electromagnetic

power flow in a lossless medium in regions where k is purely real is:

(SE) = - Ok k bi 12 I A 12  4.3(33)

where g is defined in 4. 3(22). Similarly from 4. 3(19):

(S = k lb I2 A.i 2 , 4.3(34)
m ii
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2 2where in deriving 4. 3(19) it was assumed that kMS >> kt , or

2 2 4
equivalently kMS kEX = kTP As a consequence, from the dispersion

relation 4. 3(8) we have

k k kT 4. 3(35)1 3 TP

Now evaluating the total power flow (Stot) = SEM) + (S M)'

substituting for the b. from 4. 3(32) and using 4. 3(35) we find:

(St t) = A i12 -kP ki + k 5)bi12 ± jAi2 . 4. 3(36)

Here the minus sign applies for i = 1, 4 and the plus sign for i = 2, 3,

corresponding to the fact noted earlier that the "magnetostatic" wave is

a backward wave, carrying energy in the positive z direction when k is

negative, and vice versa. We have chosen k to be positive, so k2 must

then represent a "magnetostatic" wave traveling from z = -c to z = +o.

Note particularly in 4. 3(36) that the total power in a quasi-normal mode is

approximately constant as long as its amplitude I A is approximately

constant even though the k. are functions of distance. Hence we have

shown that the Q. have the desired characteristic of WKB quasi-normal

mode solutions for this system.

Recall now from section 2. 2, that the amplitudes A. of the quasi-

normal modes Q. are coupled according to

4 z

A!= - exp j(k, - k) dI C A 4. 3(37)

i =1

where C is a 4 x 4 coupling matrix whose diagonal elements C are all

zero. The off diagonal elements C become very small in small field
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gradients and far from the turning point where k = k3 = kTP. In those

circumstances, the A are practically constant. In view of 4. 3(36) and

the requirement of power conservation, the formal solution 4. 3(27) with

constant LIi will then be approximately valid.

Explicitly evaluating the expression C = B~ 1 B + B~ L 1 L')B' from

2. 2(11), using the form of the matrix L given in Appendix 1 and the

expressions for B = b. in 4. 3(32) for the diagonal matrix B, we obtain

0 C1 2

C12 0

C13 ~ 14

-C 1 4
C1 3

C
1 3

C 1 4

0

.C
1 2

C 1 4

C1 3

C1 2

0

4. 3(38)

where

C1 2  = - 1k/2k1  =

k' k
k1k3

C1 3  kTP(k3 - k1)

k' k
C~ 1 3

14 - kTP(k 3 +kl)

The second equality in each of t]

from 4. 3(35), which requires that

+ kg /2k 3

3 31

- kTP(k3 - k) 4. 3(39)

k' k1
kTP(k

3 +k)

hle expressions in 4. 3(39) follows

kI k + k k3 = 0.1 3 13 4. 3(40)

Note that the element C 1 2 represents reflections from a spin wave

of either type traveling in one direction into the oppositely-traveling

spin wave of the same type. The form of C12 is the same as that which

,
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would be derived for these reflections using a simple second-order

analysis. Observe that even for small gradients in H(z), C12 will

become very large at the turning point since k and k 3 change rapidly in

that region even for small changes in H(z) (see the dispersion relation

in Fig. 4). Since A 1 represents the amplitude of a "magnetostatic"

spin wave carrying energy in the negative z direction while A represents

that of an exchange-dominated spin wave carrying energy from z = -Co to

the turning point at some finite z = zTP, we see that C 1 3 represents the

coupling between these two waves (or alternatively, between the corres-

ponding pair carrying energy in the opposite directions). This coupling

element becomes infinite at the turning point k1 = k 3 = k TP. Finally,

C1 4 represents the coupling between one spin wave of each type carrying

energy in the same direction. C14 becomes large at H T- HP = M(2kt

where k = -k3 = jk (see the discussion following 4. 3(10)). Since the

wavenumbers become purely imaginary at this point, however, C 1 4

represents primarily the coupling between decaying (evanescent) waves

and thus is not usually important.

Since C 1 2 and C 1 3 become very large near the turning point, the

quasi-normal mode amplitudes A will change rapidly according to

4. 3(37), and the formal solutions for h is 4. 3(6) given by 4. 3(27) and

4. 3(30) will not be very useful. Ordinarily, one would try a successive

approximation (perturbation) approach based on 4. 3(37) assuming that

the amplitude A2 or A3 representing an incident wave is unity, and then

integrating to find the waves of the "scattered waves" A1 and A4 (see

subsection 2. 3(a)). However, the amplitude of such an incident wave

must actually go rapidly almost to zero near the turning point since it is

evanescent beyond that point. Furthermore, energy incident upon
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z = zTP from z = -co couples not only to the reflected waves Q1 and Q4

but also to the evanescent waves beyond the turning point Q2 and Q3.
Thus it also does not seem feasible to approximate the problem by any

second order system, such as is done for certain coupling points in the

ionosphere. (See, for example, BUDDEN 1961 sections 20. 6 and 20. 7,

HOUGARDY and SAXON 1963, and part 2. 4(b)2 of the present work.) It

is intriguing, nevertheless, to apply in the next subsection the phase

integral formula 2. 4(13) developed by RYDBECK 1967 for such a second-

order approximating system, extracted from 4. 3(37), 4. 3(38), and

4. 3(39).

The remaining two subsections indicate how to find the distribution

in energy reflected into the two types of spin waves at the turning point.

The WKB method uses asymptotic expansions of solutions of an equation

modeling 4. 3(6) near the turning point to find the approximate

multiplicative factors (reflection coefficients) L 1 for the formal solution

of 4. 3(6), in terms of quasi-normal modes valid far from the turning

point. The method using generalized hypergeometric functions assumes

that the medium becomes homogeneous far from the turning point, so

that the solutions can be identified in terms of ordinary normal modes

there. These solutions are then compared with the results of the phase-

integral method and the WKB method.

4. 3(c) Application of the phase-integral method.

In this section we apply formula 2. 4(13) developed by RYDBECK

1967 and quoted in part 2. 4(b)2. Consider the amplitude A3 of an

exchange-dominated spin wave incident upon the turning point, and that

of the reflected "magnetostatic" spin wave, A If we neglect the

amplitudes A2 and A4 of the other quasi-normal modes, then from
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4. 3(37) and 4. 3(38) we obtain:

= -C 1 3 exp

= -C 1 3 exp

j (k1 - k3) d(j A 3

4.3(41)

[i (k3 -k1 ) d4 A,

Ak = (k 3 - k1)/2 , 4. 3(42)

and using 4. 3(40), we find for the factor -C13 defined by 4. 3(39):

-C
1 3

k' k
3 1

kT(k - k
TP 3 1

(Ak)
Ak

T TP

k3 +1k/
4. 3(43)

From 4. 3(9) we can also write

k 2EX)2 2 72r(kEX)
+kTP j\2,

2 k 
2

k3 + k

1

+k2 ~2
+TPj

2Ak = k3 k
= 2 k 2 k 2 4. 3(46)

Now the branch points are defined as the places where k3 = k = kTP

From 4. 3(36) these occur where

4. 3(1) for k .

k = 4k .
EX TP* Using the definition

and labeling the branch points z1 and z 2, we thus have:

2
H(z 1 , 2 ) = HTP T- 4 MXk TP 4.3(47)

A 3

Defining

k3 , 1

so that

1
2

and

4. 3(44)

4. 3(45)

k P]
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with H = w/ ypI as in 4. 3(3) (compare 4. 3(10) and following).

Between the branch points z1 and z2, moreover, we can approximate

4. 3(45) by k3 + kg 1 2 k , with an error of no more than a factor of

/2. With the convention z2 > z1 4. 3(43) then becomes

-C3 t(Ak) ; z s z s z 4.3(48)13 2,Ak '1 243(8

Consequently, equations 4. 3(41) now take on the form:

A 21 exp - j 2 (Ak) d A3

z 4. 3(49)
(Ak)A3 = 2Ak exp L+ j 2 (Ak) d A,

With A replaced by A2, A3 replaced by Al, and Ak replaced by ki,

equations 4. 3(49) become identical to those resulting from the combination

of 2. 2(34) and 2. 2(26), in the example of reflections of an x-polarized

electromagnetic wave. The equations in that example resulted from

Maxwell's equations 1. 2(3) with C = c(z) and c = 0. Furthermore,

the two coupled first-order equations were combined into one second-

order equation, 3. 2(1), which has the form E" + k E = 0, withx 1-x
2 2

k - 2 yo c. By analogy, then, we infer that

F" + (Ak) 2F = 0, 4.3(50)

where

F = (Ak) 2 [A1 exp j k1 d4) + A 3 exp (-j Sk 3 d)] 4.3(51)

(Compare equation 2. 2(33) for E x(z) in terms of quasi-normal mode

amplitudes. ) Equation 4. 3(50) can be proved explicitly by differentiating
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4. 3(51), followed by substitution of 4. 3(49). Note that it has the same

form as 2. 4(12).

If (Ak)2 varies linearly with z, then 4. 3(50) has the form of the

Airy equation 2. 4(7). Hence we postulate that we can apply a phase-

integral formula similar to 2. 4(10) or 2. 4(13):

z2

R = exp -2 Im (Ak) dz. 4. 3(52)
zi

RYDBECK 1967 integrated only between the two branch points z 1 and z2

in 2. 4(13) because Ak was real elsewhere. In our case, Ak from

4. 3(46) is real for z < z (H < H(z 1 )), but imaginary for all z > z .

However, we may still take the upper limit of integration in 4. 3(52) to be

z2, if we assume most of the coupling occurs between z and z2'

Beyond z2 the energy attenuates rapidly. We also postulate that R I

represents the magnitude of reflection from the incident exchange wave

(A 3 ) into the oppositely-traveling wave of the same type.

If (Ak)2 varies linearly with z, then 4. 3(46) combined with the

definition 4. 3(1) for k shows that H(z) varies linearly with z. LetEX

H y be the constant value of H'(z) in the region of the turning point.

Changing the variable of integration in 4. 3(52) from z to H(z), we obtain

H(z 2 )

IRI = exp - Im (Ak) dHj. 4. 3(53)

TP H(z 1 )

Now let x = (H - HTP + 4MXk 2 )/4MX. Using 4. 3(46) and 4. 3(47)

we then find that 4. 3(53) becomes 2k2
TP

R = x 8MX x 2dx. 4. 3(54)

TP 0
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Consequently, we have finally

R 2 - exp - 30 Mk 3/H~p). 4.3(55)

3
If we interpret 30 MXk T as a critical gradient H' in the manner ofTP crit

section 4. 2, then for yttrium iron garnet with MX ; 5 x 10~ 9 Oe cm 2

and for k = 10 cm~1 , t % 1200 oersted/cm. Recall that I R 12
t ' crit

is supposed to denote the fraction of power in the reflected "exchange"

wave when a wave of the same type is incident. The corresponding

result for power reflected into a "magnetostatic" wave when a

"magnetostatic" wave is incident is the same as 4. 3(55), since in

4. 3(38) C2 4 C 1 3 .

The validity of the entire procedure leading to 4. 3(55) is, of

course, open to serious question. First of all, we have only postulated

without proof that I R I represents a reflection coefficient of the type

indicated. The reflected exchange-dominated spin wave is actually the

quasi-normal mode with amplitude A which we neglected in going from

4. 3(37) to 4. 3(41). There is also no formula to check that 1 - I RI 2

represents the power converted to the other wave type, as it should for

power conservation. Furthermore, the function F which satisfies

4. 3(50) has the form of a linear combination of modes, rather than a

single mode. Next, the formula 4. 3(52) was the result of a plausibility

argument only. Finally, the use of z2 as the upper limit in 4. 3(52) is

questionable. If a higher limit is used, the formula changes

drastically, as 4. 3(54) shows. Nevertheless, comparison of the result

4. 3(55) with a rigorous solution using generalized hypergeometric

functions shows that 4. 3(55) may be approximately valid for magnetic

field variations as in Fig. 3 (see the discussion near the end of

L
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subsection 4. 3(e)). In the meantime, however, we apply the WKB

method in the next subsection.

4. 3(d) Application of the WKB method.

In this subsection, we model the equation 4. 3(6) for h (z) by a

simpler one which is approximately valid near the turning point. We

then find solutions of this new equation in terms of contour integrals, as

indicated in section 2. 4. When the magnetic field gradient is small, and

far enough from the turning point, asymptotic expansions of these

solutions may be identified with various linear combinations of the WKB

quasi-normal modes constructed above from 4. 3(6).

First of all, near the turning point 4. 3(7) and 4. 3(35) are valid, so

2
that k k = k k = kTP, where k and k are solutions of the

EX MS 1 3 TP 1 3

dispersion relation 4. 3(8). Secondly, we assume that the variation of

2
k E and H(z) can be approximated by a straight line near the turningEX

point:

H - H(z) = -I4pz 4. 3(56)TP TP

where we assume that HTP = H(z) at z =0. For further work, it is

convenient to transform 4. 3(6) into an equation with dimensionless

quantities. Setting

s = -cz, 4.3(57)

where c has the dimensions of a wavenumber, we find that 4. 3(6) has the

simple form

F(4)(s) + 2b 2 s F(2)(s) + b 4 F(s) = 0; F(s) = h [z(s)] 4. 3(58)--x

L



-U

217

as long as

b = 2MX k 3 /H

and 4. 3(59)

c = kTP/b.

In this notation, H P denotes the gradient of H(z) with respect to z

evaluated at the turning point z =0, while F(m)(s) denotes the mth

derivative of F(s) with respect to s. Note that b and s are dimension-

less, with s proportional to the change in H(z) from z = 0. The minus

sign in 4. 3(57) allows the propagating side of the turning point to be at

positive s when the waves are propagating for negative z, so that energy

incident upon the turning point comes from z = -co, in accordance with

the other treatments in this work.

Equation 4. 3(58) has the same form as the one studied by

RABENSTEIN 1958, 2. 4(16). Equivalence is established if we set

2 =b
2  2

p2 = 2b , 1P1 =0, and p 2 = b /2. In the solutions developed by

Rabenstein, p0 was assumed to be a large parameter, and thus his

solutions can be applied here when b is large or, from 4. 3(59), when the

gradient H!P is small. In the equation 2. 4(15) used by WASOW 1950,

however, there is no independent parameter p2 . To transform 4. 3(6)

to the form of 2. 4(15) then requires that p0 be proportional to HTP,

which means that Wasow's solutions cannot be used for cases with

reasonably small gradients H TP For large gradients his solutions

may also not be applicable, because the constant c in 4. 3(57) again will

be proportional to H' and thus for finite distance z, s may be too
TP

small for the asymptotic expansions to be valid.

Rather than try to apply the solutions of RABENSTEIN 1958 which
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were developed for hydrodynamical instability problems, it is more

convenient to find solutions of 4. 3(58) in a manner which allows easier

identification with traveling waves. Although very similar to

Rabenstein's, the treatment outlined below seems more systematic and

elegant for our application, and also produces explicit expressions for

the error terms in the asymptotic expansions.

The difference lies in the way the steepest descent integrals are

done. To begin, however, we assume the same Laplace integral form

for the solutions of 4. 3(58);

F(s) = eSt f (t) dt, 4. 3(60)

C

where t is a complex variable. Substitution of 4. 3(60) into 4. 3(58)

produces a first order differential equation for f(t), whose solutions are

readily found. Consequently, F(s) has the form

F(s) = t- 2 exp [g(s, t)] dt , 4.3(61)

C

where

t3 b2
g(s,t) = 6b - 2 + St. 4.3(62)

The contour C in 4. 3(61) can be any for which exp [g(s, t)] goes to zero at

the endpoints. Some such contours are shown in Fig. 10.

To find the saddle points to in the complex t plane for g(s, t) at

constant s, set g'(t) = 0, giving

t4 + 2b2 st2 + b = 0. 4. 3(63)
0 0
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Notice the similarity between this equation and the "local" dispersion

relation for k(s) which would be obtained from 4. 3(58) assuming constant

2
s (equivalent to constant kEX or H). In fact, we can identify

t0 (s) = - jk(s), 4. 3(64)

where k(s) is one of the four "local" wavenumbers.

4. 3(63) are (compare 4. 3(44)):

The solutions of

t = j0 /2

S 1 S 1

(+ 1)2 -s (s - 1) .j

For large s (large I H(z) - H(o)I), we have, approximately:

1

t1 ± ijb(2s) 2 t
0 3,4

1

- ± jb(2s) 2

with the labels 1 and 2 denoting "magnetostatic" wave solutions, and

3 and 4 denoting solutions for the exchange spin waves. Clearly

It0 1 << b while It 31 >> b, for large s. Note from 4. 3(65) for

arbitrary s, that

-t t01 03

2
= + b = k 1 (s) k3 (s) 4.3(67)

where we have used 4. 3(64) also. Clearly the second equation in

4. 3(67) is equivalent to 4. 3(35), since from 4. 3(57) and 4. 3(59),

b = kTP/c and

k(s) = - k(z)/c 4. 3(68)

The next step is to evaluate exp Cg(t 0 )], which in a steepest descent

4. 3(65)

4. 3(66),2
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integration is pulled outside of the integral in 4. 3(61). Combining

4. 3(62) with s in terms of t from 4. 3(63), we find

g(t) = - 3(t + 3b 4 t ). 4.3(69)o3b 2 to0

Now evaluate to and to in terms of s from 4. 3(65), and compare with

the integral of to from the same equation to find:

s s

g(t 0 ) = t(s) ds = -j k(s) ds 4. 3(70)

where the second relation follows from 4. 3(64). Observe that

exp [g(t 0 )] thus represents the exponential phase integral which occurs

in the WKB quasi-normal modes. Thus we have finished the first step

in identifying the solutions of 4. 3(58) in terms of these modes.

Equation 4. 3(70) follows easily from 4. 3(66) in the limit of large s,

since then only one of the two terms in 4. 3(69) is important, but with

some manipulation it can also be derived from 4. 3(65) for arbitrary s,

as mentioned above.

To apply the method of steepest descents, it is necessary to write

g(t0 ) - g(t, s) in terms of some parameter a 2, which will be real and

positive on the steepest descent paths and negative on the steepest

ascent paths leading away from the saddle point to at (t, s) = 0.

Again substituting for s in g(t, s) in terms of t from 4. 3(63), we find

that

b 2 2 2 1 t+ 2t 0
b2 = g t0) - g(t) = 2 (t - t ()2 3b 4. 4.3(71)

In this case it is not necessary to expand g(t) in a power series about
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t =t , as is often necessary in steepest-descent integrations. Note

2that a as defined in 4. 3(71) is insensitive to b for t near t , since to is

proportional to b from 4. 3(65). Thus we have factored out the

dependence on H through the parameter b/2, which becomes large forTP

small H . Now we can write the contribution from the saddle point

t to the integral in 4. 3(61) for F(s) as:

/ b 2\ -2 dI.(s) exp exp -a t ( ) Jdc. 4.3(72)

(A minus sign must be added if the direction of positive a makes an

angle of magnitude more than IT/2 with the positive real t direction; see

section 2. 4.)

In general, a solution for F(s) along some contour C will involve

more than one contribution I m(s). We suppose nevertheless that the

limits on a can be taken as infinite when the contour C has passed by

the region of significant contribution from to. For large s, inspection

of 4. 3(71) in conjunction with 4. 3(66) shows that when I(t - t )/t = 1,

a2 is approximately b/t 0 for to with it I << b, and approximately

/b3 for to with Ithus a is likely to be large, and

exp [ 2 quite small, before the contour C begins to encounter

contributions from other saddle points. These saddle points for large

s are well separated. Near s = 0 (near the turning point), however, t001

and t coalesce and the treatment described above clearly becomes
03

invalid.

To evaluate the integral in 4. 3(72), it is desirable to express

-2- ) as a power series in a. This is evidently

possible if - can be found as a power series in a:



1 1
T t-

0
C 1 a + C22 3+ c33

in which case

= - c1 - 2c 2 a -

b2 )2n dcr 1 - 3 - 5 - -(2n - 1)

we find finally from 4. 3(72) and 4. 3(74) that

I (s) - exp g(t] () )f Z
1 n=0

(2n+1)c 1 - 3 . 5 - - - (2n - 1)
2n±1 b n

Note that only the c with odd subscripts m contribute.

The coefficients cn in 4. 3(73) can be found if a in 4. 3(71) is

written as a function h(r) of t-

i(r - r ) r 2
h(r) = b r r rr r -

r and t- r:
( 0

+V +2 r-
0

3b 4
I

Then we apply Lagrange's formula for series inversion:

cn =

n-1

n-1 -

from which it follows easily th

C = b3/2 t 2
1 0. 1

r - r n

h(ri r
0

Lat for r =t-1.o 0.
I

(b4 - t 4 ) 1.
0.1
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4. 3(73)

Since

2

Sexp (-

4. 3(74)

4. 3(75)

4. 3(76)

4. 3(77)

4. 3(78)

4.3(79)

-2 (C) d

2/ I
b 

T

n1.
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Hence the leading term in 4. 3(76) becomes

I. (s) a exp L-j kss k L k 217 2 b, 4.3(80)

i 3 1

where 4. 3(64), 4. 3(67), and 4. 3(70) have been used, and the wavenumbers

k are all taken to be functions of s. Since the dimensionless k(s) are

related simply to the corresponding k(z) through 4. 3(68), however, the

form of the multiplicative factor in 4. 3(80) remains unchanged, except

for constants, when written in terms of wavenumbers k(z). Furthermore,
s z

the integral k (s)ds is similarly just k (z) dz. Thus the Is) are

identified exactly with the WKB quasi-normal modes Q (z) defined through

4. 3(30) and 4. 3(32).

To determine which saddle points t contribute to the various

solutions for F(s) appearing in 4. 3(61), through deformations of the

contours C shown in Fig. 10, we must at least know where the t lie and

in what direction the steepest descent contours pass through those points.

The latter information can be found in the limit of large s by noting then

from 4. 3(71) that near t t9

t - t i b -2 t3/2 ; it I << b (h"magnetostatic" waves)

and 4.3(81)

t-t 0  ijb3/2 t 0 2r; t >> b ("exchange" waves)

Then for reala, the argument 4 of (t - t ) is given as

3 i
2 (magnetostatic" waves)

or 4.3(82)

- ("exchange" waves)2) 2
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where

0 = arg (t - t ), areal; P = arg t .* 4. 3(83)

Using these equations and 4. 3(66), the locations of the saddle points and

the directions of the steepest descent contours through those points are

shown schematically in Fig. 10 for large positive and negative s.

Denoting the solution for contour C as F (s), we find from

inspection of Fig. 10 (compare similar figures in BUDDEN 1962,

Chapter 15) that

F 2 (+ co)

F 3 (+o)

F 5(±co)

F 6(+co)

F 7 (+co)

- 14

4 + I2 1 + I3

3

I+ I2

1 + 3

1 3

= -I2 +1I

4. 3(84)

where the minus signs arise for the reason mentioned following 4. 3(72).

Only four of these solutions are independent since relations can be

found between then through Cauchy's formula, as was done by

RABENSTEIN 1958. For s -+ -o, where the wavenumbers k.(s) are

purely imaginary, we have:

224
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Fi-0 = I4F 1CO~) 134

F 2 O)3

F3 1 3 4

F 4- ) -1 4. 3(85)

F5 2 + I3

F6 2 1 - 14

F 7 (-O) = I2

The only allowed waves in the cutoff region for s 4 -c are those

which are evanescent; all others are exponentially growing. From

4. 3(66) and 4. 3(70), we see that the evanescent waves are denoted by

the subscripts 2 and 3. These same subscripts 2 and 3 represent

waves incident from s = +o to the turning point, incident "magnetostatic"

and "exchange" spin waves, respectively. (Recall that the

"magnetostatic" wave is a backward wave carrying energy opposite to

the direction of phase increase. See the discussion following 4. 3(36).)

Thus for s 4 -c, the only possible physical solutions for F(s) in

4. 3(85) are F2, F5, and F7. Looking back to 4. 3(84), we see that of

these three solutions, only F 5 and F 7 represent situations where only

one type of wave is incident from s = +oo. Furthermore, since the I

are identifiable in terms of the WKB quasi-normal modes, equation

4. 3(36) shows that the total power flow in one of these waves I. is just

proportional to the square of its amplitude. Thus 4. 3(80) in convection

with solution F5 implies that energy incident in the form of an "exchange"

spin wave (13) is entirely converted into energy in a reflected "magneto-

static" wave (I ) Solution F7 simply implies the reverse conversion.

No energy reflected into the wave of the same type as the incident wave
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is evident.

It is now necessary to examine the higher-order correction terms

in 4. 3(7 6). The error ratio E of the first such term to the leading term

4. 3(80) is found from 4. 3(76), 4. 3(79), and the expression for c 3 in

4.3(78) as

E = b 2 t (b4 -t )-3 (b8 10 b4 t 4+ t ) 4. 3(86)6 o o 3 0 9~--) 4.(6

4 4
Note that E becomes infinite near the turning point where to = b . Away

from the turning point,

EMS 6b~ (2s) 0; tj<< b ("magnetostatic" waves)

4. 3(87)

EEX 1 b~- (2s)-3/2; t1>> b ("exchange" waves) ,E 540

where 4. 3(66) has been used.

Substituting 4. 3(57) and 4. 3(59) into 4. 3(87), we find:

21

EMS - Hgp L72 Mk IH - H(o)

4. 3(88)

EEX - H P (MX) 2H - H(o)- 3/2

When these error ratios become comparable to unity, we can conclude

that there may be substantial energy reflected into the same type of wave

as is incident upon the turning point. Since both ratios in 4. 3(88) are

proportional to Ht., we infer that these latter reflections are stronger
TP

for stronger field gradients, as might be expected. Note that the errors

also become larger closer to the turning point where H approaches H(o).
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One reason we cannot consider jH - H(o)l to be arbitrarily large

is that physically this does not occur. Secondly, for rather small

H - H(o)I, the exchange-dominated spin waves may couple to elastic

waves at the magnetoelastic crossover point, where kp = kEX. Typically,

H- H(o)j is only about 1 oersted or less at this crossover point, if H(o)

is the value at the turning point. Then E is equal to unity when HIEX TP

is about 104 oersted per centimeter. In typical rods of yttrium iron

garnet used in practice, HI may reach several thousand Oe cm .

Hence a substantial fraction of exchange power incident upon the turning

point may be reflected as exchange power, rather than being converted

to electromagnetic power. This would agree with the highQ magneto-

elastic resonances observed by KOHANE, SCHLOMANN, and JOSEPH

1965.

Furthermore, for somewhat larger IH - H(o)I, the "magnetostatic"

wave will couple to the electromagnetic fields of a fine wire antenna, or

be reflected from the end of the delay line. Assuming IH - H(o)I -,M at

that point, and assuming kt = 10 cm 1, we find EMS unity if HI is

about 105 Oe cm~ . Hence electromagnetic power incident upon the

turning point will probably be almost entirely converted to reflected

exchange power. A noticeable fraction may well be reflected into

electromagnetic power, however, in agreement with experimental

results cited in 4. 3(a).

It is interesting to note that EMS calculated here is essentially the

same as would be obtained from solution of the second-order "magneto-

static" wave equation 4. 1(23) without coupling to the "exchange" waves.

Then the asymptotic expansions involved are those for Hankel functions

(see RABENSTEIN 1958). See STIX 1962, Chapter 10, for a treatment
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by the WKB method of the corresponding extraordinary (medium-k) wave

having a resonance (wavenumber approaching infinity) in a plasma.

Since the high-k waves were not included and the error terms were not

considered, it appeared in that analysis that all the incident energy was

absorbed by the plasma, regardless of how large the gradients or how

small the losses.

When losses are included, the real part of the fourth-order

dispersion relation splits, in proportion to the amount of loss, as shown

in Fig. 9. It then could be conjectured that fairly substantial gradients

might be necessary at the turning point in order to have energy converted

from one type of spin wave to the other. In the magnetoelastic coupling

case, higher gradients were necessary for energy to jump across the

split in the dispersion relation when the splitting parameter a was

increased. In medium-k to high-k spin wave conversion, on the other

hand, it is clear that large losses will cause much of the energy to be

absorbed before it gets to the turning point. Furthermore, the smaller

the field gradients, the longer the time it takes a wave to travel through

this lossy region. It is not clear from a study of the relative size of

the error ratios E whether reflections into the same type of wave as is

incident will be increased by excessively small field gradients.

4. 3(e) Solution by hypergeometric functions

As an alternative to the WKB method of the last subsection, we now

apply the method described in section 3. 3 to the solution of the fourth-

order equation 4. 3(6) for h (z). Instead of assuming a linear variation

of magnetic field H(z) near the turning point, as in the WKB method, we

choose H(z) to have a hyperbolic tangent variation such as depicted in

Fig. 1. (Solutions of 4. 3(6) with H(z) having a symmetrical hump are

i .-MM, - - , __ .
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indicated in section 3. 4. ) Thus in this method we match the solutions

of the fourth-order equation to the normal modes in the homogeneous

regions away from the turning point, whereas in the WKB method we had

to match to the WKB quasi-normal modes, since the inhomogeneity

continued indefinitely even for large distances from the turning point.

The advantage of the hypergeometric function solutions is the possibility

of studying analytically the effects on reflections of high magnetic field

gradients and nearness to the turning point. Recall that in the WKB

method we had to be satisfied with conjectures based upon error ratios

such as in 4. 3(88).

Mathematically, both methods involve contour integral solutions.

The WKB contour integrals resemble Laplace transforms and are given

in 4. 3(60) and 4. 3(61), while those for hypergeometric functions resemble

inverse Laplace transforms and are given by 3. 1(24). In both cases, a

given contour integral turns out to be expressible as a different linear

combination of normal or quasi-normal modes for different sides of the

turning point, allowing reflection coefficients to be determined. In the

WKB method, this phenomenon is caused by the motion of saddle points

in the complex plane of integration as the physical distance from the

turning point is changed, so that a given contour will begin to pick up

contributions from new saddle points. With the hypergeometric function

method, however, the contour must be closed on different sides of the

complex plane depending on which side of the turning point one is

located. In that way, residues from different poles are picked up.

Solutions using hypergeometric functions have the advantage that the

basic mathematical results are given by 3. 1(29) through 3. 1(32)

independent of the exact differential equation involved, whereas in the
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WKB method the mathematics has to be redone for each new equation.

To solve 4. 3(6), we again make the assumption that the magnetic

field H(z) does not deviate too substantially from the turning point value

2 2 4
H so that k2 k 2 can be assumed to have the constant value kT.

TP' EX MS *

Otherwise, 4. 3(7) shows that the coefficient of h (g) in 4. 3(6) involves a-x
2.

nonlinear combination of H(z), whereas kEX involves H(z) linearly in

view of 4. 3(1). Recall that to apply the method of 3. 3, only linear

combinations of one varying parameter are allowed. With this restriction,

we have

F''''(z) + k 2 (z) F"(z) + k4  F(z) = 0; F(z) = h (z). 4.3(89)
EX TP -x

Since this equation already has the same form as the dispersion relation

4. 3(8), we can transform it directly to a generalized hypergeometric

equation as in part 3. 3(b). That is, in this case the original equation is

already the " source equation. " Note, however, that m (z) is given in

2 2
terms of h and its second derivative through 4. 3(4). Since kMS >> kt

not too far from the turning point, we can neglect h compared with h-x

there. Then from 3. 3(39) we see that the equation for m has the form

as 3. 3(38), since 4. 3(89) has the same form as the "source equation"

3. 3(37).

By convention, we have been assuming in this section that the

subscripts 2 and 3 denote waves incident from z = -o on the turning point,

the "magnetostatic" and "exchange" spin waves respectively. The

solutions of the biquadratic dispersion relation 4. 3(8) for k occur in

pairs as in 4. 3(31): k2 = -k 1 , k4 = -k 3, where in this convention,

with normal mode solutions of the form exp (-jkz), k and k3 are the

solutions with non-negative real parts. The wavenumber k 2 for the
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"1magnetostatic" wave carrying electromagnetic power in the positive

z-direction must have a negative real part since equation 4. 3(17) showed

that "magnetostatic" waves are backward waves. In the cutoff region

for H(z) > H , the waves must decay with increasing z, which imposes

the requirement that both k2 and k3 have non-positive imaginary parts.

Note that all these requirements are compatible with 4. 3(35) and 4. 3(31).

In deriving the reflection factor R12 in 3. 3(63) from the hyper-

geometric function solution for an equation such as 4. 3(89), it was

assumed that subscript 1 indicated an incident wave, and 2 a reflected

wave of the same type. Since the reverse is true for "magnetostatic"

waves in our case, we must interchange the subscripts 1 and 2. Then

from 4. 3(21) the ratio of time-averaged total power in the reflected and

incident "magnetostatic" waves is

( tot 1 2 = - 1R2 112  4. 3(90)
(Stot 2 h |2

-x 2

since k 2 = k. Note that there are no extra factors multiplying I R 2 1

in 4. 3(90), since we are considering a reflected wave of the same

physical type as the incident wave. See the discussion in subsection

1. 2(d), and the examples of subsection 4. 2(c). Now the p and a in R21

satisfy p2 = - 1 ' P4 = - ~ = - al, and 4 -- - a 3 because of relations

3. 3(18) between the p , and the k . Hence from 3. 3(63) we can write

Sr(-2p) r(-P3 -p) r( +p +) r ( 3 +p)r (l- +p 1 ) (l+a3 +p) r (l- p 3 P 1)
21 F(2p1 ) (-p 3 + pi) (-r 1 -p 1 ) r(a 3 - 1 ) r(1 -aj -p) r( +a 3 ~P1 )Fl-P3 +pl)

4. 3(91)

In lossless media, the a. are all real because the wavenumbers kt



to the right of the turning point are all imaginary (cutoff). On the other

hand, the p. are all imaginary because the k are real (see 3. 3(18)).

Since r(w*') = "*(w), we then observe that most of the terms in the

numerator of 4. 3(91) are the complex conjugates of those in the

denominator, and hence drop out when the absolute magnitude I R2 1 1 is

taken. In fact, we have:

r(-p 3 -p 1 ) r( - P3 - p1 )

S(-p 3 +p,) r( -p 3 + PI)

2

4. 3(92)IR 21 1 _

Writing I r (w)1 2 = r(w

property T (w) r (1 - w)

)W) as in part 3. 2(a)5, and again noting the

= 'n/sin ( w) as in 3. 3(60), we find

sin (p1 p 3 )
sin (p 1 + p 3 )

3
sinh (k 3 - k~)]

3[-k 1  ,
sinh (k- +k-~ )7

4.3(93)

where the second half of this equation follows from 3. 3(18).

Since the coefficient of F"(z) in 4. 3(89) is kEX(z), we find from

3. 3(20) that

x = 4 (kEX =0 (kEX+
(k ) ] 4. 3(94)

2When MX is constant, expression 4. 3(1) for k shows thatEX

a = 4 H (o)/(H+ - H-) 4. 3(95)

The reflection coefficient R21 should not depend on the value of H+ as

long as it is greater than HTP. since then the waves are all cutoff for

z = +Co. Thus we let H+ - HTP >> HTP - H_ to allow us to write ain

232
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the form of 3. 3(24):

HgP/(HTP - H_), 4.3(96)

where H P denotes the gradient H'(z) of the magnetic field at the turning

point H = HTP. Note that we are now assuming that the turning point

occurs not at z = 0 in the tanh (o z/2) curve for H(z) as in 4. 3(95), but

considerably to the left of z = 0. See in this connection the various

tanh (az/2) curves shown in Fig. 1.

In the limit (k - k ~) >> 1, the hyperbolic sines in 4. 3(93) may bea 3 1

replaced by exponentials, leaving

R 21 12 exp [- 41T k~/ ]. 4. 3(97)

Thus for decreasing a, the amount of energy reflected into a '"magneto-

static" wave when a "magnetostatic" wave is incident upon the turning

point decreases to zero. Note that this is in complete agreement with the

result of the WKB method in part 4. 3(c), since the error ratio EMS in

4. 3(88) has generally the same form as a in 4. 3(96).

More precisely, from 4. 3(9) we see that k approaches kMS far

from the turning point, and that for not too large HTP - H_, kMS from

4. 3(2) is approximately C k /(HTP - H_) ] 2 . Combining 4. 3(96) and

4. 3(97) with this latter fact shows that

IR 2 1I2 expj- 2 /2 ITMk (HTP - H_)] 2 /H . 4.3(98)

Thus I R212 exp - E1 ], showing that this reflection only becomes

important when EMS becomes comparable to unity, exactly as was

===It- - txl
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conjectured from the WKB treatment. Note again that for small

reflections of this type it is not sufficient just to have a small gradient

H I at the turning point, but that the incident wave must also start at a

value H_ of magnetic field not too close to the value at the turning point.

If HTP - H_ is too small, k - k will also become small since k3 f k1

at H = H TP and then the assumption leading from 4. 3(93) to 4. 3(97)

also breaks down. Finally, note the similarity of expression 4. 3(97) to

the reflection factor 4. 2(45) for magnetoelastic conversion and that for

plane electromagnetic waves traveling in a varying dielectric, equation

3. 2(29). All of these factors become large when the WKB quasi-normal

mode solutions become poor approximations, due to steep gradients or

nearness to a critical point where a wavenumber gets small or, in the

present case, coalesces with another wavenumber.

The other reflection coefficients may be obtained explicitly in the

manner indicated in part 3. 3(g). The fraction of total power reflected

from an incident' rnagnetostatic" wave energy into an "exchange" wave

will involve the reflection factor R 2 4 multiplied by factors from the total

power flow expression 4. 3(21). Note that these factors canceled in

obtaining (Stot )2 /Stot )I in 4. 3(90). R 2 4 may be calculated as indicated

by 3. 3(54) from R2 1 given by 3. 3(63), with the subscripts 1 and 2

interchanged everywhere as discussed above. In the lossless case, the

result is just that which conserves power with I R2 1 12 as in 4. 3(93),

namely 1 - I R 2 1 
2 . The reflection coefficients R31 and R34 for an

incident exchange wave are obtained from R21 and R 2 4 by interchanging

p and p 3 before 3. 3(64) is used. Again for the lossless case, the

fraction of total power reflected from an incident "exchange' wave into

the oppositely-traveling wave of the same type is identical to the

. ...... .... ..
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expression in 4. 3(93), as might have been expected from the results of

the treatment by the WKB method.

Compare now 4. 3(97) with the corresponding result 4. 3(65)

obtained from the phase integral method of 4. 3(c). For this purpose,

assume that the hyperbolic tangent transition is symmetric, with

2
H(o) = HTP, and H± = HTP ± 4MXkTP In that way, H+ and H

TP PTP * -

correspond to the values of H(z) at the branch points z 2 and zi,

respectively, which were the limits of integration on the phase integral.

Then a from 4. 3(95) is 4H P/8MXk P. Substituting this value into

4. 3(97) gives R 2 1 12 the form exp (-Hrit /H p) as in 4. 3(55). This

last step is not actually valid, since k = k at H_ as given above, and

thus V (k~ - k-) is not much greater than unity, as is required for 4. 3(97).

If we assume, nevertheless, that 4. 3(97) is approximately valid, we get

Hri 8IT Mfk 2 k This value is within a factor of two of the HHrit ~ "TP 1* crit

of 4. 3(55), since k = kTP here. Choosing H_ to be somewhat smaller

so that k will be in the region where the WKB solutions would be approxi-

mately valid, we find that the factors in the two expressions can become

identical. (6H increases faster than k decreases.) Hence the phase-

integral result 4. 3(55) may well be approximately valid for situations,

as in Fig. 3, where the magnetic field H(z) varies approximately

linearly rather than as in Fig. 1. Note finally that H'(z) is a function of

the transverse dimensions of the sample, just as is k TP through 4. 3(7).

See JOSEPH and SCHL6MANN 1965 for plots of the internal demagnetizing

factor N for various sample shapes. The internal magnetic field H(z)

is just H - N M, where H is the external applied field.

When losses are included, the gamma functions in the reflection

coefficients may be reduced using Stirling's formula, 3. 3(65), under the



236

same conditions that 4. 3(97) was valid. The result for the fraction

of total power reflected from an incident '"exchange" wave into the wave

of the same type is:

IR 34 12  exp[ 8 +2/n 2 Im k ]exp [( Re k - Im k). 4.3(99)

This formula was confirmed by a computer evaluation using the sub-

routine LOGGAM mentioned in part 3. 3(i). Note that usually Im k 1

Re k., but that jIm k31 can be approximately equal to Re k, (see Fig. 9).

In fact, IIm k 3 1 becomes greater than Re k when the spin wave linewidth

AHk exceeds the critical value given in 4. 3(11). Since Im k is negative,

the reflection factor IR 3 4 
2 is then greatly decreased, corresponding

probably to absorption in the lossy medium. There is no indication in

4. 3(99) that there would be increased reflections caused by the splitting

in the real part of the dispersion relation when AHk exceeds AHcrit'

The value of IR2 1 12, on the other hand, was seen by computer evaluation

consistently to increase slightly when losses were included. The net

power reflected does not increase, however, because of the attenuation

factor exp (-2 Im k z) which must now be included in the expression for

(S tot )I /(Stot 2'

Note finally that equation 3. 4(7) treated in section 3. 4 has the same

2 4 4
form as 4. 3(89) with kEX = p(z) and k = K . It is shown there that

2
hypergeometric function solutions may be obtained when k has the

EX

o2 sech2 (az /2) variation of 3. 4(16). In that case, 4. 3(1) shows that

H(z) would have a symmetrical valley as in Fig. 2. In rods of yttrium
garnet k2 4 -1

iron garnet, kEX can typically change from 10 to 10 cm in distances

of 10-2 to 10~4 centimeters. Hence a variation such as that of 3. 4(16)

might be useful in certain studies of spin waves near the center portion
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of the rod where H(z) has a symmetrical variation (see Fig. 1).
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4. 4 Solutions for wave conversion with simultaneous presence of

spin-wave turning point and magnetoelastic crossover point.

Since the magnetoelastic crossover point of section 4. 2 and the

fourth-order turning point of section 4. 3 often lie very close together in

practical situations, we would like to know if wave conversion at one of

these points is affected by the proximity of the other. Typically, the

difference between these points amounts to about 1 oersted of internal

magnetic field H(z), or equivalently a few micro-meters of distance z, or

a factor of about 10 in the wavenumber k. In particular, it would be

desirable to know whether the reflections represented by the factor y in

equation 4. 2(43) and in Fig. 7 still persist when the region to the right of

the crossover contains a turning point for the spin waves rather than a

homogeneous propagation region (compare Figs. 11 and 7). In this

section we find expressions for the overall efficiency for conversion from

elastic waves to the medium-k "magnetostatic" spin waves and vice versa.

The solutions are found by applying the method described in section 3. 3 to

the relevant sixth-order differential equation.

(a) Derivation of the sixth-order differential equation.

To treat the simultaneous interaction of "magnetostatic" waves,

"exchange" waves, and elastic waves, it is necessary to combine the

three coupled second-order differential equations 4. 1(19), 4.1(20), and

4.1(21). For convenience, we repeat these equations here:

2
R" + k R = -(b 2 /c4 M) m , 4.4(1)-x p -x 2 44 -x

mI + k2 m = (b / M) R' - [H/(H + H )X] h, 4.4(2)
-x EX -x 2o _x TP -x

and

h -k2 h = k2 m. 4.4(3)
-x t -x t -x
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Recall that these equations were written assuming that h ~ 0
-y

(assumption 6(a) - see Appendix 3), but that similar equations could be

written with r replacing x everywhere if h a 0 instead (assumption 6(b)).

Equations 4. 4(1) through 4. 4(3) are generally valid whenever at least one

transverse dimension of the sample and the wavelengths of the waves in

question are much smaller than the wavelength of the ordinary electro-

magnetic wave at the frequency of interest. Specifically, the major

applicable assumptions include numbers 1, 2, 3, 4, 5, 6a, 7, 8, 9, 11, 12a,

12c, 13, 17, and 18. (See Appendix 3 for the basic physical implications

of these assumptions. )

In obtaining one single sixth-order equation from 4. 4(1) through

4. 4(3), it is most convenient to choose m x(z) as the dependent variable.

Equations 4. 4(1) through 4. 4(3) show clearly that the magnetic field

h (z) and the lattice displacement R are coupled only through the

magnetization m . Furthermore, in homogeneous regions where the

fields have the form exp (-jkz), Rx and h can be obtained directly in

terms of mx from 4. 4(1) and 4. 4(3), respectively. This feature is

necessary in order to calculate the dominant power in the various waves.

Specifically, the forms for the time-averaged elastic, exchange,

and electromagnetic power flows in homogeneous regions are,

respectively:

(Sp) = WC 4 4 I R 12 Re(k) , 4.4(4)

(Sm) = WXm 12 Re(k), 4.4(5)m Io -x

and

(SE - o/kt) hlxi Re(k) . 4.4(6)

The above expression for (S ) results from 4. 2(39) when the definition
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in 4. 2(3) for v in terms of R is used. Note also that R = 2R
ZZ- -:.+ -x

follows from assumption 18 (see 4.1(18)). Equation 4. 4(5) follows from

4. 3(18) when it is assumed (assumption 16) that the magnetization is also

circularly polarized, so that m = 2 _m . This latter assumption is valid

for "exchange" spin waves reasonably far from the turning point.

Equation 4. 4(6) is just 4. 3(17), assuming k >> k (assumption 5).

From 4. 4(1) and 4. 4(3) we now write IR_ 2 and Ih in terms of Im 2

again for homogeneous regions:

2 ,b 2 \ 2 ,k\ 2  2
=R Ic 4( M b 2 2 k_2 1m 124.4(7)RX c M i 2) 2 x 447

44 k -
p

and

Ih 12  (k2/k2, 2 Im 12 , 4.4(8)
-x t -x

where we assume that the wavenumber k is real and considerably larger

than k (The latter assumption is necessary in ay case to apply the

method of section 3. 3, as noted below.) Finally, using the definitions
b2-1 4 2

for a = M(X go 4 4 ) 2 from 4.2(3) andfor k P = k /2X from 4. 3(7), we

obtain after combining 4. 4(4) and 4. 4(7), and 4. 4(6) and 4. 4(8):

i_ 2 2 2 2
(S) = woXk Lak/(k - k2) m 4.4(9)

and

(SE WAO k (k P/k4) 1 m . 4.4(10)

Together with 4. 4(5), these expressions allow all three kinds of power

flow to be calculated from m

Now we outline the derivation of the sixth-order differential

equation for mx from 4. 4(1) through 4. 4(3). The only new assumption is
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that H(z) varies much slower than h (z), in accordance with assumption

10, which is certainly completely valid in practical cases. Thus in

4. 4(1) through 4. 4(3) there is effectively only one varying parameter,
2

k . In the following steps, there will be occasion to differentiate withEX'

respect to z equations 4. 4(1) through 4. 4(3). For simplicity, label the

th (n)(4
n derivative of 4. 4(x) as (x)(. For example, (2) denotes the

fourth derivative of the entire equation 4. 4(2) with respect to z.

Similarly, m(n) denotes the nth derivative of m .-x
(4) (6)Step 1. Evaluate (2) , yielding an equation having m and

(5) (4)
lower derivatives on the left-hand side and R and h on the right--x -x

hand side.

Step 2. Find R(5) in terms of R 3) and m 4) from (1)(3), and h 4
-x -x -x _

in terms of h(2 ) and m(2) from (3)(2). After we have evaluated P and-x -x

h (2) these expressions will be substituted into the right-hand side of
x

(2) 4 obtained in step 1.

Step 3 To find R(3) in terms of m and its derivatives, first use

(1) (3) (1) (2)
(1) to find R in terms of R and m . Into this expression

substitute for R in terms of m (2) , and h from (2) itself.x x -x -x
(2)

Substitute in turn for h in terms of h and m from (3). Finally,-x -x -x
(2)(3) (4)

substitute for h(2 ) in terms of R , m , and lower derivatives of m- x -x -x

using (2)(2). By collecting terms, the equation resulting from all these

(3) (4)
substitutions can be solved for R in terms of only m and lower

derivatives of m

Step 4. We now must find h(2) in terms of m and its derivatives.

(2) (2) (3) (4)
First, we again use (2) to express h in terms of R , m , and

-x -x'-x

lower derivatives of m. Substituting for R(3) from the result of step 3
x -x

completes the present step.
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(5) (4)
Step 5. Now R and h in step 2 are known in terms of m

- X -x
and its first four derivatives, since we know R(3) and h 2) from steps 3- x

and 4. Finally, these expressions for R(5) and h may be substituted-x

into the right-hand side of (2)(4) from step 1. The result is the

following equation for m(6) in terms of m and its first four derivatives:

m (6) +(4) (k 2  ±k2 + 2 k2 +rn(3 )r- 2 (1)
_X _ EX +p t 4 (kEX

+ im(2) 6 (k )(2) + k k + k H HT I (k 2 + k 2+ a2x E EXp t LH +H TPIX EX p

4.4(11)

+ m [4 (k E)) + 2 (k E) (k - k )

+ m (k 2) ( 4 ) + EX (k-kkt + k )k(+ 2 HT - k .
X EX EX p p t H + HTPX E 0

The "source equation" for 4. 4(11) is found by eliminating all terms in the

2
derivatives of kEX. If we label the dependent variable in this "source

equation" as F 0 , we find using the method of subsection 3. 3(f) that

m = F(4) + (k2 k2) F(2) - k2 k2 F
x p t F p t 0

To be consistent with the assumptions inherent in 4. 4(1) through

4. 4(3), however, we must eliminate some terms in 4. 4(11). First of

all, recall that k2 << k2 (assumption 12(a)) was assumed in deriving
t p

4. 4(1), or 4. 1(20). If assumption 12(a) were ever invalid, as perhaps

in a thin film, it would still be possible to derive an equation corres-

ponding to 4.1(20). Assuming _R had a transverse variation describable

2 2
by kt this would involve retaining terms in ki. Otherwise, apply

assumption 12 (a) to 4. 4(11). Also, ignore k 2compared withk2
t EX
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(assumption 13) as was done in deriving 4. 4(2) (4. 1(19)) and in section

4. 3. If this assumption were not valid, 4. 1(19) could also be modified.

Next note that in practical situations, 2Xk2 << 1 (assumption 12(b)).
p

To be consistent with assumption 11 used in deriving 4.1(19), we must

also assume 2Xk << 1 (see assumption 12(d)). Finally, as in sectionEX

4. 3, we must approximate H/(H + HTP) by - (assumption 14), if we hope

to solve 4. 4(11) using the method of section 3. 3. With these observa-

tions, 4. 4(11) becomes the following consistent and useful equation:

m(6) r( 4 ) 2 k 2  2 ()F 2(- 2 21m() + mX(kEX + k p+ a2) + 3)x 4 (k ) + 2)x [6(k X)(2+ kEX k p+ k P

+ m 4(k )( 3 )+ 2(k )k + k +(k )± +k + k pk =]0

4.4(12)

The "source equation" for 4. 4(12) is

F(6)+ F (k +k + a2) + F(2) (k k + k T) + F(k P k ) = 0. 4. 4(13)

After comparing 4. 4(12) and 4. 4(13) with 3. 3(40) and 3. 3(41), we see

from 3. 3(42) that

m = F( 4 ) +k 2 F( 2 ) 4.4(14)
-x p

When it is not necessary to solve 4. 4(12) using generalized hyper-

geometric functions, note that 4. 4(12) would also be consistent if

2 4 2
k H/(H + HTP) X in 4. 4(11) were not approximated by k TP k t/2X as

in 4. 4(12) and 4. 4(13). Equation 4. 4(14) would also still be valid.

Note, however, that assumption 10 must still be satisfied.
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(b) Solution using generalized hypergeometric functions.

We now proceed to use the method of section 3. 3 to solve 4. 4(13).

2
As before in subsections 4. 2(b)2 and 4. 3(e), we assume that k has aEX

2
hyperbolic tangent variation. The definition for k in 4. 3(1) showsEX

that if MX is constant H(z) will also have a hyperbolic tangent variation

such as those pictured in Fig. 1 or that at the bottom of Fig. 11. The

corresponding variation of the wavenumbers is shown schematically in

the top of Fig. 11 (compare Fig. 1 in COLLINS and WILSON 1968).

Note from 4. 4(13) that the dispersion relation for normal mode solutions

2
exp (-jkz) is cubic in k2. Thus the solutions for k come in pairs of

equal magnetude but opposite sign. Far from the crossover and turning

points, the solutions for k can be obtained approximately from the

unperturbed second-order dispersion relations.

We assume by convention for regions of propagation that the positive

roots of the dispersion relation are k,, k3 , and k5 , corresponding to

elastic waves, "exchange" waves, and "magnetostatic" waves respectively.

Also define

k2 = -k, kg = -k, k6 = -k5.4 (5
k2 k1.' 4 k3'P 6 k54.4(15)

Since the former two wave types are forward waves, k and k3 represent

waves traveling from z = -o to z = +o . When loss is included, k1 and

k3 must have negative imaginary parts in order to represent waves which

decay rather than grow with increasing z. Even in lossless media,

Im (k 3 ) < 0, whenever the "exchange" wave reaches a cutoff region

(H > H ) where k < 0. The "magnetostatic" wave is, however, a
TP 3

backward wave. Thus k6 with a negative real part will denote a

"magnetostatic" wave carrying power in the positive z-direction (see
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4. 4(10)). Since k6 must then have a non-positive imaginary part in order

that exp (-jk 6 z) = exp (+ jk 5 z) not grow exponentially with increasing z,

we conclude that Im (k 5 ) > 0. Notice that both types of spin waves are

evanescent in the region to the right of the crossover and turning points

in Fig. 11. Only the elastic wave is propagating there.

The reflection and transmission factors for the "'source equation"

4. 4(13) can now be found by generalization of the techniques of subsection

3. 3(g), which treated fourth-order systems explicitly. Instead of 3. 3(43)

and 3. 3(44) we write

6

F1 =G + J13 G +J = (P J +g)G~, 4. 4(16)
1 13 3 16 6 1Pg 13 3g+ 16 6gg

g =1

where the subscript on F and the first subscript on the J's indicate that

the elastic wave G is considered to be the only wave incident from

z = -O. Thus we must determine J13 and J16 such that the coefficients

of the other incident waves G3 and G vanish. This is done by solution

of two simultaneous equations for J13 and J16 with the result

13 P16 63 1 3 6 6 )/(P 3 3 P 6 6 - P 3 6 P 6 3) 4.4(17)

where the elements Phg are given in 3.1(32). Application of the inter-

change operator (a3 - a6 op to J13 produces J16 (see the discussion of

the properties of such operators preceding 3. 3(53)).

In order for the incident wave to have unit amplitude, we must also

divide 4. 4(16) by the coefficient of G~. The transmission factor T 1 1 for

G to G then becomes:

T P = P 11 + J 1 3 P 3 1 + J 1 6 P 6 1 )~ 1 4.4(18)
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Using the same arguments as in 3. 3(g), we find that the reflection factor

R 1 2 for G~ to G is again given in terms of T1 1 by equation 3. 3(55).

Furthermore, relations such as 3. 3(53) and 3. 3(54) also hold, so that

all the other transmission and reflection factors may be obtained from

T 1 simply by interchange of symbols. For example, (ac 1 .6 op 11

T16, and (p2 ' P5op R1 2 = R1 5 . Finally, interchange of p1 and p2

yields the corresponding factors T6i and R for the case of an incident

"magnetostatic" wave. We thus conclude that only the form of T 1 need

be calculated explicitly, just as for the fourth order case.

To simplify the expression 4. 4(18) for Ti 1 , we must write J13 and

J16 in terms of the Phg as in 4. 4(17) and then cancel out common

factors in the products of gamma functions arising from the definition

3. 1(32) for the P hg In the process of combining terms we also use

3. 3(60) and relations similar to 3. 3(61). As a result, we obtain:

6
r (or +CT - 6 r pi +a,) )r ( - ci - pl)

T 3 = ad)I (p a 3  6 '=l 4.4(19)

1 Il~i=2 1+ )

where

C(pi) r (a 3 a6 ) 1+p ) ra( 1 -a -P)

+ r(a 6 -~ 1 )(l -6 + 1 )r( 3 +pi) T(l -3 -pi) 4.4(20)

+ r (cr 1 r3 ) ra( -a orI+r3 )rc6 + pi) r (1 - C6 Pi)

Note that the last two terms in C(p.) simply involve a £yclic permutation

of a1 , a3, and a6 in the arguments of the gamma functions. To calculate

the conversion from an elastic wave to a reflected "magnetostatic" wave,



we first need the reflection factor R 1 5 .

p 2 and p 5 in the result, we find

1
C(p 5 ) i1 5

r(p- P5)

C(pl) nl6= 2 r(Pi - p1 )

Using 3. 3(55) and interchanging

6 r(1 -. i-P1 )
i=1 r~l-ori~P5))

(To obtain the reflection factor R 6 2 for the reverse conversion,

interchange p1 with p 6 and p 2 with p 5 in 4. 4(21). )

The desired conversion efficiency is the ratio (SEM )/S)-.

4.4(21)

simply

To

write this ratio in terms of 4. 4(21), first use the power flow expression

4. 4(9) and 4. 4(10) to write the ratio in terms of Im 12:

k 4 k - (k~) 2
TP) ak1(SEM) 5

(Sp )

M 12s
lmI5 4. 4(22)

From 4.4(14) which gives m in terms of the source

evaluate the ratio of the L2 factors:

Im 2
- x 5

_ m 1

(k~)4 - k2  (k~) 2

5 p 5

(k- )4 -k 2(k- )2

2
G25

where G5 and G are the waves of interest in 4. 4(16).

discussion surrounding 3. 3(47) and 3. 3(48). )

function F we can

4. 4(23)

(See the

Recall from section 3. 3(a)

that these waves reduce as z -+ -c> to the form exp (-jk5 z) and

exp (-jk z), respectively. Finally, note that

G5 12/ IG 1 2 = IR15 12 4. 4(24)

Combining equations 4. 4(22) through 4. 4(24) gives the desired result:

247

k 5

k
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(S )~ _ k4  (k-)EMV__ _ _TP 5 - I (k~5) 2 - k R12 R . 4.4(25)
(S) 2 (k-)7 '5 -p 15

p a (k1)

As was the case for similar expressions in part 4. 2(c)1, the conversion

efficiency is not given by IR 1 5 12 alone, since the elastic and "magneto-

elastic" waves represent two different physical wave types. Furthermore,

the reflection factors for F(z) must be different from those for m (z)

because of 4. 4(14).

In lossless media, the expression for 1R1 5 12 from 4. 4(21) can be

written in terms of hyperbolic sines only, following the method

described in subsections 3. 3(h) and illustrated in parts 3. 2(a)5 and

4. 2(c)1. First of all, note that C(p.) in 4. 4(20) can be written in terms

of hyperbolic sines (or sines) even in lossy media, in view of the property

3. 3(60). Recall from 3. 31(18) that p and c are imaginary when k and

k are real, respectively. Hence in our case, all the p and ci are

imaginary, except for a 3 , a 4 , 5 , and a 6 . Furthermore, all of the p

and a occur in pairs with opposite sign, as in 3. 3(64), since the

dispersion relation is written in terms of k2 only (see 4. 4(15)).

With this information, the remaining factors in IR 1 5 1
2 from 4. 4(21)

can be reduced to products and quotients of sines, sometimes with

imaginary or complex arguments:

R15 1= C(p 5 ) r(pl)/C(pl) r(p5 ) 4.4(26)

where

C(p) = 2 [sin 7T (a3 + 5) sin 7 (pi + ad]
C + [i7(--(i G4. 4(27)

+±[sin r (- a5 -a)sin (pg±a3)]~ I sing (a -a 3 ) sin'7(pia-) l
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and

r(p ) = p ( p - sin 2 T p sin ( ~) sin ( +

4. 4(28)

2 2 -
11 (p -oP) [sin1(p +a) sin T(p -o)]

P=1, 3, 5

From 3. 3(18), the p and a in these expressions may be written in terms

of the wavenumbers in the limiting homogeneous regions. We can also

choose the magnetic field for these limiting regions to be far enough

from the turning point and crossover point that the wavenumbers can be

found approximately from the unperturbed second-order dispersion

relations. More effort, however, is needed to interpret the results.
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APPENDIX 1

Calculation of the linear combination matrix L for use in finding

the WKB quasi-normal modes

Section 2. 2 showed how to find n quasi-normal mode solutions Q for

a set of n coupled first-order equations of the form of 2. 2(1): U = DU.

Furthermore, every solution for the field component U1 could be

expressed formally as a linear combination of these Q through 2. 2(20),1

which is a component of the transformation U = LQ defined in 2. 2(2).

For this linear combination to be independent of distance, the first row

of L must consist of constants L i, i = 1, 2, - - -, n. In this case the Q

then appear as pseudo-basis functions for every solution of 2. 2(1) for U 1 .

Since the amplitudes A of these quasi-normal modes Q., however, are

free to change through coupling to other waves as described by 2. 2(26),

we expect that it will always be possible to choose the L to be constants

(see 2. 2(27)). In this appendix we show how this can be done system-

atically for systems initially describable by one fourth-order equation, by

two sets of coupled second-order equations, or by four coupled first-order

equations. The importance of having constant L lies in the fact that

th
the total power in the i mode Q will then normally be proportional

simply to A i 2 . (See the discussion following 2. 2(20), and the example

leading to 4. 3(36).)

Consider first the transformation to four coupled first-order

equations. For a fourth order differential equation of the form

F''' (z) + v F''(z) +v 2 F(z) + v3 F'(z) + v4 F(z) = 0, A1(1)

where the v. may be functions of z, we obtain 2. 2(1) by defining U1 = F(z),
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U 2 = F'(z), U 3 = F (z), and U (z)

D =1

= F 'I(z). Then U' = D1U with

0

0

0

- V4

1

0

0

v
3

0

1

0

-
2

0

0

1

-v

A1(2)

(Compare 4. 3(23) and 4. 3(25). )

A set of two coupled second-order equations can be written most

generally as

F + k 2F

F + k F2 2 2

= a12 F2 + b12 F'

= a21 F1 + b21 F'

If any first derivative terms appeared on the left-hand sides of A1(3),

they could be eliminated by the standard transformation for such a

purpose for second order differential equations (see, for example, KORN

and KORN 1961, section 9. 3-8(c)). Any second derivative terms on the

right-hand sides of A1(3) could be eliminated by substituting from the

other equation in the pair. If we define U1 = F 1 (z), U 2 = F (z),

U 3 = F 2(z), and U4 = F'(z), then equations A1(3) also reduce to the form

U = D2 U, with

D =

K0 1 0 0

U21k, 0 a 12

0 0 0

a2 1  b -k 2
21 21 2

b 12

1

0

A1(4)

A1(3)
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Now we have to find the matrix L which diagonalizes D, with eigen-

values X.. These eigenvalues are found as solutions of the equation

D - XIj = 0, where I is the unit matrix. Explicitly evaluating this

determinant, we obtain from D 1 :

4 + v X3 + v 2 +v + = 0, Al(5)

and from D2

4 2 2 2 2 2
X + A (1 + -2  - 1 2 b 2 1  + ? -a1 2 b21 - -2 2 12 + 12 -1 2 -2 1 ) = 0

Al(6)

Clearly, these have the form of the dispersion relations for the

respective systems, with solutions X. = -jk., as long as all the coefficients

2
y , k1, a12' 12, etc., are taken to have the form their counterparts in

Al(1) and A1(3) would have in a homogeneous medium. In other words,

we drop all terms in A1(1) and A1(2) involving derivatives of the

parameters of the system. An analysis can be performed without

dropping these terms, but there is commonly no advantage to such a

procedure (see RYDBECK 1967).

Next, we wish to observe that an eigenvector for any X. is given by

any column of the matrix adj (D - X I), where the adjoint matrix is the

transpose of the original matrix replaced by its cofactors. The

possibility of choosing the eigenvectors in this way follows from the fact

that W(adj W) = I W J I for any n x n matrix W (see, for example,

HILDEBRAND 1965). Indeed, for any eigenvector c. for X., we must
1 1

have (D - X.I)c. = 0, which can be satisfied by non-zero c. since
1 1 1

D - k I j = 0. Letting W = D - X. I in the formula cited just above,
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therefore,

(D - X.I) adj (D - .I) = 0, Al(7)

showing that any column of adj (D - X. I) will serve as an eigenvector c

of X..

Choose now the ith column vector forming the n x n matrix L to

consist of one eigenvector found in the above manner for each eigen-

vector X.. Defining A as the diagonal matrix formed from these

eigenvalues, we find from A1(7):

DL = LA. A1(8)

According to a standard theorem in matrix algebra, the eigenvectors

corresponding to unequal eigenvalues are linearly independent.

Consequently, if no two X. are equal, L has an inverse and A1(8) becomes

L 1DL = A. Al(9)

Thus the diagonalization of D is completed. Since the diagonal elements

A.. = X. = -jk.(z), we also obtain 2. 2(6).
11 1 1

We still have some latitude in choosing L, however, since we can

choose any column of adj (D - X. I) to be column i of L, and each column

can be multiplied by any non-zero constant. Consider, for example,

X. -1 0 0

0 X. -1 0
-(D - =I) = A1(10)

0 0 X. -1

Y4 v 3 v2 v+\i
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The cofactor c4 1 of this matrix is easily seen to be +1. Thus, the first

element in column 4 of -adj (D 1 - X. I) is also +1, independent of X.(z).

Therefore, the first row of L will consist of ones if we choose column i

of L to be column 4 of - adj (D 1 - I). Constants other than unity can be

obtained for Lii by multiplying column 4 of -adj(D 1 - X iI) by the desired

L before placing it into the matrix L.

When the L are all chosen to be unity, the rest of the matrix L is

easily found from A1(10). For example, the second element in column 4

of -adj (D 1 - X iI) is simply the cofactor c 4 2 = X . Similarly, the third

2 3and fourth elements are given by c 4 3  i and c4 4 - Xi, respectively. In

summary, then:

1 1 1 1

1 2 3 4
L= Al (11)

2 2 2 2
1 2 3 4

3 3 3 3
X1  2  3  4.

A matrix with the form of A1(11) is called an alternant matrix. It is also

the transpose of a Vandermode matrix. In calculating (-L~ L ) for use

in section 2.2, and for the result quoted at the end of section 1.2, it is

helpful to be aware of the simple formula for the determinant of such

matrices, namely:

I = i - X ) Al(12)
i <1

where the product is over all distinct factors with i from 1 to n - 1 and P

from 2 to n. When n = 4 as in Al(11):
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I L I= (X - X 2 3X 1 - 42 - X3 )(X 2 - X4 )(X3 - X4). A1(13)

The calculation of the matrix L for D2 is more complicated. First

of all, we have:

X. -1 0 0
1

2
k 2 X. -a _b11 i -12 12

-(D 2 - X i I) Al(14)

2
21 ~ 21 -2

For this matrix, the cofactor c4 1 is (a 1 2 + b12 Xi). To make the first

row of L consist of ones, we can thus choose column i of L to be the

fourth column of -adj (D 2 - X. I), divided by (a12 + b1 2 X.). Note that it

is permissible to divide by such a factor even though it varies with z,

since we diagonalize D only at fixed z. The diagonalization of D must be

different at each point since D varies with z. The other elements L

are given in terms of the cofactors c 4 0 of Al(14) as

L = c )i, Xi = 1, 2, 3, 4. A1(15)

where the cofactors are considered as functions of X..

In Appendix 2 it is shown that any system of two coupled second-

order equations such as A1(3) can be reduced to one fourth-order

equation such as A1(1), with F = F 1 . The eigenvalue equation A1(6)

must, however, remain unchanged, since it corresponds to the

dispersion relation of the physical system in homogeneous regions.

Thus from comparison of A1(5) and A1(6) we can conclude that, for the
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equivalent fourth-order equation, v =0, v 2 k2 + k~ 1 2 b 2 1, etc.

The actual coefficients v in A1(1) may include derivatives of system

parameters and thus cannot be obtained so simply. They can be

calculated explicitly by the technique of Appendix 2, or by a different

method in RYDBECK 1960. Without such calculation, however, the

"WKB amplitudes" B.. can still be derived for the new fourth-order

system by using Al(11), 2. 2(16), and 2. 2(13), since L in Al(11) depends

only on the X. calculated from A1(6). The quasi-normal modes Q. will

now be expressed in terms of F1 and its first three derivatives, rather

than in terms of F1 , Ft F2, and F .

Finally, note that similar statements must hold if the system is

initially describable by four coupled first-order equations. Although the

form of -(D - X. I) will generally be more complicated than A. 1(10) or

A. 1(14) for such systems, A1(15) can still be used to obtain L with ones

in the first row. Alternatively, the system could first be transformed

to one fourth-order equation using the technique of Appendix 2, or Al(11)

could be used directly, once the eigenvalues of D are known.

-
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APPENDIX 2

Transformation from four coupled first-order equations to

one fourth-order differential equation

In this appendix, we assume that we have a system initially

described by four coupled first-order equations. If there are initially

two coupled second-order equations, such as A1(3), these can easily be

converted to four coupled first-order equations as indicated in connection

with equation Al(4). Alternatively, RYDBECK 1960 may be consulted

for a closed form expression for the fourth-order equation resulting

from Al (3). Much further calculation is involved in that expression,

however, to calculate explicitly the coefficients of each derivative term.

In the following we show how to find the coefficients of each derivative

term in the fourth-order equation resulting from any set of four coupled

first-order equations. Because of the nature of the determinants

involved, this appendix consists more of an existence theorem than a

practical method. In order to apply a solution method such as that of

section 3. 3 for the fourth-order equation, it will probably be necessary

to have a fairly simple set of coupled first-order equations. In such

cases, the relevant fourth-order equation can probably be calculated

conveniently by multiple substitutions, without using the present method.

The following procedure originated from discussions with

A. Platzker. Consider the coupled equations in the form of 2. 2(1):

U' = DU, A2(1)

where now D is a 4 x 4 matrix, and U is a 4 x 1 column matrix. In

component notation, A2(1) becomes
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4

U D U A2(2)

2=1

Now write the next three derivatives of A2(2):

4
U. = (D. U + D. U ) A2(3)

1 1i2 i2 2
2=1

4

U (DI U + 2D U + D U) A2(4)

2 =1

4

U. = (D.. U + 3D U + 3D' Ul + D U A2(5)

2 =1

where Leibniz' theorem for differentiation of a product has been used to

collect terms. Equations A2(2) through A2(5) constitute 16 equations in

20 variables, since i can range from one to four and we have for each i

the variables U., U., U, U. , and U. . The desired fourth-order
1 1 1 1

differential equation has 5 variables, namely Um and its four derivatives

for some m. Hence we must eliminate 15 variables using 15 equations.

To effect the desired elimination of the variables, write down the

16 equations in A2(2) through A2(5), placing all the terms in Um, U' ,

U" , and U"'' on the right-hand sides. Consider these as the known or
m m

"driving" terms in the system of linear equations. The remaining 16

variables are to be treated as "unknowns, " on the left-hand sides of the

equations. One of these "unknowns" is U... Now we can solve for
m

U'''' in terms of the lower derivatives of U by using Cramer's rule
m m

for the solution of simultaneous linear equations. The formal expression

is clearly a ratio of two 16 x 16 determinants. Calculation of these
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determinants is simplified if they appear in block form. This can be

accomplished by writing the "unknowns' in the following order, assuming

1 1 1 1 li f l i i i i i i i iilt 1 1 1
for simplicity that m = 1: U U U U ; U U U U1 ' 2 ' 3 '1 4 ' 2' U2'1 2'9 U2'

U3 U' U U U U, U", U'''. The 16 x 16 matrix of coefficients

is thus partitioned into 16 4 x 4 submatrix blocks, several of which consist

entirely of zeros. Alternatively, the matrix can be considered as

consisting of 4 8 x 8 blocks. The evaluation of the two determinants in

Cramer's rule may then be simplified by use of formulas given by

GANTMACHER 1959, volume I, page 46, as was suggested to the present

author by A. Platzker. For example, if an n x n matrix is written in

block form

M =[A B]
C Dj

where A, B, C, and D are square matrices, the determinant IM I is

IM = AD - BDI CDI IDI / 0 A2(6)

or

M = AD - ACA 1 B I; JA 0. A2(7)

(The matrix D here is not to be confused with that of equations A2(1)

through A2(5).) If C and D or A and C commute, these formulas may

be further simplified in the obvious way. The restrictions D 0 or

A I 0 are then not necessary.
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APPENDIX 3

The major assumptions used in deriving the differential equations

in section 4. 3, and their physical implications

(Not all of these assumptions are used in any given derivation.)

1. Fields can all be written in the form of 1. 2(1): F (r, t) =

Re EF(r) cj t]; that is, single frequency excitation is assumed. Only

spatial variations are considered in this case; no time variation of the

material parameters is assumed. Also pulse excitation is not explicitly

handled; a Fourier integral treatment on the results would be required to

handle pulses.

2. m << h . This assumption may break down only for wavelengthszz

close to those of slowly-varying electromagnetic waves on the one hand

or those of the very-rapidly evanescent left circularly polarized waves

on the other, as long as only small signal linear excitations are involved

(see assumption 7). In the former region, the modes may approach

transverse magnetic configurations with hz f 0, but then mz will also

become very small. In the latter regions, hz may also become very

small, but then Maxwell's equations may be neglected.

3. e z 0. This implies that a transverse-electric ("TE") type of

mode is excited. Figure 3 shows that fine wire antenna configurations

normally used are likely to excite TE modes since they provide strong z

and transverse components of dynamic magnetic field, but only a trans-

verse component of electric field. This assumption also implies that

transverse-electric modes do not couple to transverse-magnetic (TM)

modes, which is not true for most modes even in open (unshielded) simple
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dielectric waveguides, for example. However, VASILE 1967 has shown

for axially magnetized magnetic samples that the axial (z) component of

electric field is small compared with all other field quantities when at

least one of the transverse dimensions is much smaller than the dielectric

wavelength, so that our assumption 5 holds. If such a sample is enclosed

by a metallic conductor, the "TE" mode with negligible ez fills the

interior of the waveguide. A rapidly decaying "TM" surface mode of

small amplitude is present at the walls, however, to satisfy the boundary

condition by cancelling the small e of the "TE" volume mode (see also

VASILE and LAROSA 1968b). Note that assumption 3 is less restrictive

than the ordinary "magnetostatic" assumption that v x _ , 0. However,

the same equations are obtained for both cases after assumption 5 is also

included. The above argument, moreover, shows that assumption 3 is

likely to be dependent upon 5.

4. Separation of variables in h z. The complex field components

-4
h (r) satisfying partial differential wave equations can be written in the

-4
form h (r) = T (x, y) Z (z). This assumption is dependent upon the

satisfaction of two conditions:

2 2 2 2 2 2
(a) v h = - hk h_, where V= + and k is a constant

independent of z;

(b) The permeability is independent of x and y so that the longi-

tudinal wave equation is also independent of transverse

coordinates.

The equation in (a) is the ordinary transverse wave equation for

transverse electric modes in waveguides with conducting walls and

homogeneous cross sections. In magnetized non-ellipsoidal samples
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such as rods the magnetic field and hence the permeability is a function

of position. Then, even with a conducting wall, the boundary conditions

2and hence k will be dependent on z (see BURKE and BHAGAT 1967).t

The variation of the magnetic field in the transverse plain invalidates

condition b), and results from the necessity of the net internal static

magnetic field to satisfy Laplace's equation. Near the ends and center

of an axially-magnetized rod, however, the z-variation of this field is

almost linear, and the radial variation for long rods is then small (see

JOSEPH and SCHL6MANN 1965, Figs. 12 and 13). Only when there is

substantial curvature in the z direction does the radial variation become

important. In that case, it may be possible to obtain the transverse

wavenumber kt by finding an effective radius for the rod as in LEWIS and

SCOTTER 1969.

The radial field variation can also cause the turning point to be a

function of radial distance from the rod axis. The result is a turning

point "surface" as drawn for one special case in Fig. 9 of ADDISON and

AULD 1968.

In conclusion, separation of variables is most valid near the center

of an axially magnetized rod, where the static magnetic field varies little

in either the radial or longitudinal directions. The rapid longitudinal

variation near the ends of the rod may affect which mode is excited by

affecting the effective kt for each mode. See BURKE and BHAGAT 1967,

page 18, for a discussion of this effect and critique of results based on

the assumption of excitation of the mode treated by FLETCHER and

KITTEL 1960.
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2 2 25. k >> k w s . This assumption implies that at least one oft 0

the transverse dimensions is much smaller than the dielectric wavelength.

and that the fields do not extend too far outside the sample. This

assumption is likely to be necessary for assumption 3 to be valid in

magnetic samples. The combination of 3 and 5 is equivalent to the

"magnetostatic approximation. "

6(a) h y 0. This assumption follows from v x = jw fe and ez f 0

(assumption 3), if the y-variations in the field are small, since then
ah ahx h

0 m (x h) = - - - a. This situation can arise from two
-z 3x sy 3

causes. First of all, the sample may be much longer in the y than in

the x direction, so that y-variations are relatively negligible. Secondly,

a mode may be excited which has no y-variation. For example, the

magnetic field produced by a fine wire antenna placed parallel to the y

direction at the end of a slab which is thin in the x- direction will have

only x and z components.

6(b) h , 0. In a rod of cylindrical symmetry, this situation can occur

as long as a mode with no (p-variation is excited, as can be shown again

from the z-component of the curl-h equation, assuming e z f 0. It is

easy to construct a fine-wire "loop" antenna which will produce only r

and z components of magnetic field at the end of a rod, for example.

Such an antenna configuration is pictured in Fig. 9b of AULD, COLLINS,

and WEBB 1968. Of three configurations they tried, they found

experimentally that this configuration had the lowest optimum insertion

loss for the excitation of magnetoelastic waves in rods.
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7. m « <m,__, where it is assumed that the saturation

magnetization M and the static magnetic field H(z) lie approximately in

the z-direction. Note that m represents only the dynamic magnetization

1 2component: m = M (1 - cose) - , for e << 1, where a is the

angle of precession of the total magnetization about the z-axis. On the

other hand, the transverse components m and m are proportional to

M sin e f MO, for e << 1. This assumption is justified when only

small-signal, linear excitations are considered. From the torque

equation, assuming time-harmonic fields (assumption 1): jiML =
-4-

yp(m-t x iv), where the subscript t denotes a transverse component.

This equation can normally be neglected because the right-hand side

contains products of two quantities small compared with M and H(z). To

analyze the instabilities, harmonic generation, etc., caused by large-

signal excitation, this non-linear equation must be included.

8. hz << H(z), where H(z) is the net static magnetic field, which in

nonellipsoidal samples is a function of position. In every case of interest

the dynamic field hz is certainly small compared to the static field.

Otherwise fantastic power would have to be in the system, or the

demagnetizing field must be so large as almost to cancel the applied field.

This latter event may possibly be approximated near the surface of

barely-magnetized samples.

I 2M _+12 w ee -9. M < -=, where m is the dynamic magnetization. In the
m

interior of most samples magnetized to "saturation, " the magnetization

M varies little or not at all (see JOSEPH and SCHL6MANN 1965).

Certainly the effective "wavelength" of its variation is much longer in any
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case than the wavelengths of the waves of interest. This assumption

may become invalid only near the boundary between two materials of

different magnetization. If it is invalid, then one of the boundary

conditions may also be affected. From equation 14 of RADO and

WEERTMAN 1959, we can infer that one boundary condition is the

c dM d
continuity of M x d, where is the derivative taken normal to the

plane of the boundary. When assumption 9 is valid, this condition
4 d4

reduces to the continuity of XM x -n (see MORGENTHALER 1967).
-4

4 dMOtherwise there is an additional term Xm x dn

d.lo H ) d,_10. log H(z) + H < , where H TP iIYM

This assumption is very similar to 9 and holds generally where 9 does,

since the net static field H(z) in the interior of magnetized samples

varies slowly compared to wavelengths of interest.

2H + Mk+ w/ |yM pI d2 m~I11. Mk m _>> 2 , where m~ m - jmMx ~dz~ -x -y
is the negatively circularly polarized component of m. The essence of

this assumption is that the wavelengths of the waves of interest are much

greater than those of the very-rapidly evanescent negatively circularly

polarized waves. When the wavelengths of the positively circularly

polarized waves are near those of the elastic waves, this assumption is

valid.

2 212(a) kt << k . This is true whenever all effective transverse

dimensions of the sample are much longer than elastic wavelengths,

which are on the order of micro-meters at gigahertz frequencies.
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212(b) 2Xk << 1. This assumption is normally well satisfied at the
p

low microwave frequencies. Note that assumption 12(a) implies

2
Xkt <<< 1 whenever 12(b) is valid.

12(c) Xk 2 <<< , where H p Thist M TPrHTIvj
assumption is valid for usual operating parameters whenever 12(b) is

satisfied.

2
12(d) 2XkEX << 1. In practice, this assumption breaks down only

EX

when the wavenumber of the positively circularly polarized spin wave

approaches that of the rapidly-evanescent negatively circularly polarized

wave (see assumption 11).

13. k2 is ignored compared with k2 X = (H - H(z))/MX. Thist EX (TP Hz)/X

assumption is not valid near the turning point where H(z) HTP

w/ Iypo I, and the coefficient of the second derivative term in 4. 3(6) gets

2
very small. Including kt in this term, however, only has the effect of

changing very slightly the physical location of the turning point defined

as the point where the second derivative term goes to zero. The

difference in magnetic field H(z) between the real "turning point" and

2 2 -6
the shafted one (neglecting kt ) is approximately Mkt ~ 10 oersted

for k t 10 cm , which is a reasonable value for kt in practice.

Alternatively, one can view this assumption as being equivalent to shifting

the excitation frequency in the definition of kEX by about 2. 8 HertzEXbyaot28Het

(IvyM 1 - 2. 8 MHz per oersted).

14. H -H P<< 1. This assumption is valid only reasonably
H(z) + HTP

near the turning point where H(z) - HTP. For longer wavelengths
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approaching the transverse dimensions of the sample, this approximation

no longer gives the correct "magnetostatic" wave dispersion relation.

When the wavelengths become comparable to electromagnetic wave-

lengths, of course, then assumptions 5 and possibly 3 also break down,

and the "magnetostatic" approximation is also not valid. Assumption 14

must be made in order to model conveniently wave-conversion at a

turning point by generalized hypergeometric differential equations, by

the WKB method, or by the phase-integral method.

1 dm
15. k << This assumption simplifies the expressions for

power flow. It is implied by assumption 14, but is also true for the

short-wavelength exchange waves when 14 is not valid. It is not valid,

however, for "'magnetostatic" waves with wavelengths large enough to be

comparable with transverse dimensions.

16. m 0, where m = m - jm , so that the magnetization is

positively circularly polarized. This assumption is equivalent to

assumptions 13 and 14 together, as far as determining the differential

equation is concerned. It is also a good approximation when assumption

15 is valid. Note that it is not assumed that A is circularly polarized,

so that h = 0. Normally in fact one transverse component of the

magnetic field may be zero (assumptions 6(a) or 6(b)), so that h _ = h .

17. R = 0. This assumption implies that longitudinal elastic waves
-z

are absent, that only shear elastic waves interact with the spin waves.

This is true when the magnetization is parallel to a crystal axis in a

cubic crystal, for example. In certain other practical cases this may
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not be true (see MORGENTHALER, REZENDE, HU, and PLATZKER

1970), but then similar equations can be developed for the conversion to

longitudinal waves from spin waves. It is then assumed that the longi-

tudinal elastic waves interact with spin waves at a point distinguishable

from where the shear waves interact.

Note: Assumption 17 also implies that the term

2 ___xL / +yb)(c 4 4  12 -+ ( + b

coupling R and R in the ignored equation for R is negligible (see 4. 1(1)).-z :-it z

18. R = 0, where R _ = R - jR . This assumption means that

the elastic shear system which interacts with the spin system is

positively circularly polarized. It is basically equivalent to assumptions

12(a) and 15, and those mentioned preceding 4. 1(1).

Ib

b2 d
19(a) << , where h and R are the transverse

IM0 M dz-at t =-t

components of the dynamic magnetic field and the elastic displacement,

respectively. With assumption 6(a), l -th x, or with 6(b),

11  -r. With assumption 18, 1tR = 2 IR or 2|R . When

19(a) is valid, the sixth order system decouples so that "magnetostatic"

waves do not enter into the fourth-order magnetoelastic coupling equation

of the form 4. 2(33). Effectively this means that the waves act like

plane waves and do not notice the transverse boundaries of the sample.

b_2 d -+

19(b) h --- R When 19(b) is valid, the elastic wavesI-+I > I 0 Mdz -ti

do not influence the conversion of "magnetostatic" to exchange waves,

described by the fourth-order turning point equation 4. 3(6).

The validity of 19(a) and 19(b) for the respective wave-conversion
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problems will depend upon how close are the turning point and magneto-

elastic crossover point. The further apart these points are, the better

the approximation is that the sixth order equation can be treated by the

two separate fourth-order equations for which 19(a) is valid in one case

and 19(b) in the other. Spreading the points apart is accomplished with

larger kp (slower elastic waves) and smaller kt (larger transverse

dimensions to the sample. Longitudinal elastic waves usually have

faster velocities than shear waves.
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FIELD VARIATIONS HAVING A SYMMETRIC VALLEY
DESCRIBED BY EQUATIONS 3.4 (16) AND 3.2(20)
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FIGURE 2
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SOLUTIONS FROM COUPLED MODE EQUATIONS
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NUMERICAL RESULTS FROM FOURTH ORDER EQUATION
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DISPERSION RELATION INCLUDING LOSS FOR
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SCHEMATIC VARIATION OF WAVENUMBERS OF

MAGNETOSTATIC, EXCHANGE, AND ELASTIC WAVES

FOR THE MAGNETIC FIELD VARIATION SHOWN

k3

.LXCI.AAA.

ELASTIC /

+

ELASTIC

k-I lI-
J5I TP

MAGNETOSTATICT

I H

I I

I H

H

I I
zCR ZTP

CROSSOVER

TURNING

FIGURE II

k(z)

H( z)

HTP= / - o

z CR

ZTP

POINT

POINT

z

k p



281

a

INDEX OF NOTATION

(Other ad hoc notation is explained in the text near where it occurs.)

= characteristic wavenumber measuring the
strength of the magnetoelastic interaction

A.(z)

B..(z), b.(z)
11 1

C (z)

D(z)

E (z), E (z)

e , e , ex -- --z

E..(z)
11

E MSE EM'EX

f(z)

F(z)

G( C)

H(z)

= the amplitude of the i quasi-normal mode

= magnetoelastic interaction constant

.th
= WKB amplitudes for the i quasi-normal mode

= elastic stiffness constant for transverse shear

= matrix elements describing coupling from the
ith to the eth quasi-normal mode

= the matrix in the equation for coupled first-
order differential equations

= components of electric field for ordinary
electromagnetic waves

= components of the electric field for spin waves
z

= the exponential phase integral factors exp(-j Skidj)

= the first error terms in the asymptotic
expansions for "magnetostatic" and "exchange"
waves, respectively, in the WKB method

= function transforming the dependent variable
in differential equations

= function satisfying a differential equation which
can be transformed to a generalized hyper-
geometric equation, or which can be solved by
the WKB method

= function satisfying a generalized hypergeometric
equation in the transformed variable C

= generalized hypergeometric functions identifiable
as normal modes at C -+ 0 (z - -co) and

C 4 -0 (z -* +o), respectively

= the z-component of the internal static magnetic
field

c 4

G~(C), G (C)



H TP

H (z), H (z)

h ,9 h , h , h ,9 h-x -y z r

HI = H ' .c crit

k.(

1

k
0

k k =k kMS' m EX' p

kt T
k

kzT

L

= the static magnetic field at the turning point

= components of magnetic field for ordinary
electromagnetic waves

= components of the dynamic magnetic field for
spin waves

= critical gradient of the static magnetic field

= the square root of (-1)

= wavenumber for the ith normal mode

= "local" wavenumber for the i th quasi-normal
mode

= wavenumber of ordinary electromagnetic waves

= z-components of the wavenumbers for the
unperturbed "magnetostatic" spin wave
(extraordinary electromagnetic wave), the
exchange-dominated spin wave (magnon), and
the elastic wave (phonon), respectively

= the transverse wavenumber for bounded samples

= z-component of the common wavenumber for
spin waves at the turning point

= the z-component of a general wavenumber

= effective transition width of a hyperbolic tangent
variation

= elements of the linear combination matrix which
giagonalizes D

= the saturation magnetization

mr, m , M

Mgh

N.
1~)

= components of the dynamic magnetization

= matrix element relating the gth normal mode at
z = - o to the hth normal mode at z = o

= the 1th normal mode

= the varying parameter in equations which can be
transformed to a generalized hypergeometric
differential equation
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rm

Rx, R R

s

s m

S S SEM' m' p

= matrix element arising from circuit relations
for generalized hypergeometric functions,
relating the hth normal mode at z = +o to the
gth normal mode at z = - w

= the ith quasi-normal mode

= symmetric sum of m-fold products of (- pi)

= components of the dynamic lattice displacement
for elastic waves

= reflection factor from wave i to wave I

= normalized distance z in the WKB method

= symmetric sum of m-fold products of (a.)

= z -components of electromagnetic, exchange
(magnon), and elastic (phonon) power flows,
respectively

= transmission factor from wave i to wave &

= normalized dynamic magnetization

= column vector of fields related by coupled first-
order differential equations

= normalized lattice displacement

= coefficient of (q - m)th derivative term in a qth
order differential equation

= as a subscript, a transverse direction

= fraction of power unconverted at magnetoelastic
crossover point (section 4. 2)

= as a subscript, a transverse direction

= fraction of power reflected due to WKB break-
down for the "exchange" waves (section 4. 2)

= the direction of propagation, and direction of any
applied static fields
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u(z)

U

v(z)

wm

x

x

y

y

z
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the parameter in the transformation of the
independent variable in transforming to a
generalized hypergeometric differential
equation

Y - the gyromagnetic ratio

6H = the difference in magnetic fields, H+ - H,
evaluated at z = to

AH = the full spin-wave linewidth

AH rit the critical spin-wave linewidth

the permittivity

the independent variable in generalized hyper-
geometric differential equations

phonon/magnon conversion efficiency at the
Ipm magnetoelastic crossover point

d

X = the exchange constant

the permeability

p , -. = parameters in generalized hypergeometric
1 equations related to the wavenumbers k. at

z = -o and z = +c, respectively

W= the radian frequency of the single frequency
excitation

+- as superscripts and sometimes subscripts, these
denote limiting forms at z = +o and z = - o ,
respectively, as in kt and k-, H and H_, p and
A _, and z+ and z+. 1

,- = as subscripts, these denote a circularly
polarized component, as in m = m ± jm , or
a characteristic of a circulary
polarized wave, such as k+ and k- and +and +

± jat x BY
2 2 2

2 transverse Laplacian 2 +
Vt ~x 2 y2

=) time average( )
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