MIT OpenCourseWare
http://ocw.mit.edu

8.044 Statistical Physics I

Spring 2008

For information about citing these materials or our Terms of Use, visit: $\underline{\text { http://ocw.mit.edu/terms. }}$

Facts about sums of RVs

- Exact expressions for $\langle s\rangle$ and $\operatorname{Var}(s)$ if S.I.
- $p(s)=p(x) \otimes p(y)$ if S.I.
- $p(s)$ slightly more complicated if not S.I.
- \otimes usually changes functional form
- But not always
- Fourier techniques are very useful

Very important special case: Central Limit Theorem

- RVs are S.I.
- All have identical densities $p\left(x_{i}\right)$
- $\operatorname{Var}(x)$ is finite but $\langle x\rangle$ could be zero
- n is large

If x is continuous

$$
\begin{gathered}
p(s)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \mathrm{e}^{-(s-<s>)^{2} / 2 \sigma^{2}} \\
<s>=n<x> \\
\sigma^{2}=n \sigma_{x}^{2}
\end{gathered}
$$

If x is discrete in equal steps of Δx

$$
p(s)=\sum_{i} \underbrace{\frac{\Delta x}{\sqrt{2 \pi \sigma^{2}}} \mathrm{e}^{-\left(s-\langle s>)^{2} / 2 \sigma^{2}\right.}}_{\text {envelope }} \underbrace{\delta(s-i \Delta x)}_{\text {comb }}
$$

Example K.E. of an ideal gas

$$
\begin{array}{ll}
\qquad p\left(v_{x}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \mathrm{e}^{-v_{x}^{2} / 2 \sigma^{2}} & \sigma=\sqrt{k T / m} \\
\text { K.E.x }=\frac{1}{2} m v_{x}^{2} & \mathrm{P}(\mathrm{~K} . \mathrm{E} \cdot \mathrm{x}) \\
\text { mean }=\frac{1}{2} m \underbrace{\left\langle v_{x}^{2}\right\rangle}_{\sigma^{2}}=\frac{1}{2} k T & \\
\text { mean sq. }=\left(\frac{1}{2} m\right)^{2} \underbrace{\left\langle v_{x}^{4}\right\rangle} \\
=\frac{3}{4}(k T)^{2} & \\
\text { variance }=\frac{1}{2}(k T)^{2} &
\end{array}
$$

3 directions, N atoms
$E=$ total K.E.
$U \equiv\langle E\rangle=3 N\langle K . E \cdot x\rangle=\frac{3}{2} N k T$
$\operatorname{Variance}(E)=3 N \operatorname{Variance}(K . E \cdot x)=\frac{3}{2} N(k T)^{2}$

$$
p(E)=\frac{1}{\sqrt{2 \pi\left\{(3 / 2) N(k T)^{2}\right\}}} \exp \left[-\frac{(E-(3 / 2) N k T)^{2}}{2\left\{(3 / 2) N(k T)^{2}\right\}}\right]
$$

$$
\frac{\mathrm{s.d.}}{\text { mean }}=\frac{\sqrt{\frac{3}{2} N} k T}{\frac{3}{2} N k T}=\frac{1}{\sqrt{\frac{3}{2} N}}
$$

