MIT OpenCourseWare http://ocw.mit.edu

8.044 Statistical Physics I Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Microcanonical: E fixed + equal a priori probabilities

 \Rightarrow microscopic probability densities [S.M.]

Together with the definition of entropy

 \Rightarrow temperature scale and 2 ND law inequalities [Thermodynamics]

$$egin{array}{lll} \Delta S & \geq 0 & \left(3 \cdot 4 \cdot 7
ight) \ dS_1 & \geq rac{d\!\!/ Q_1}{T} & \left(3 \cdot 6 \cdot 5
ight) \end{array}
ight\} 2^{ND} \; \mathsf{Law}$$

Quasi-static means arbitrarily close to equilibrium.

- Necessary for work differentials to apply
- Required for = in above 2^{ND} law relations

7. Entropy as a Thermodynamic Variable

$$\left(\frac{\partial S}{\partial E}\right)_{dW=0} \equiv \frac{1}{T} \qquad \text{gives us } T$$

Other derivatives give other thermodynamic variables.

We chose to use the extensive external variables (a complete set) as the constraints on Ω . Thus

$$S \equiv k \ln \Omega = S(E, V, M, \cdots)$$

Now solve for E.

$$S(E, V, M, \cdots) \leftrightarrow E(S, V, M, \cdots)$$

We know

$$dE|_{\not dW=0}=\not dQ \quad \text{ from the } \mathbf{1}^{ST} \text{ law}$$

$$dE|_{d\!\!/W=0} \leq TdS$$
 utilizing the 2^{ND} law

Now include the work.

$$dE = dQ + dW$$

$$dE \leq TdS + dW$$

$$dE \leq TdS + \left\{ \begin{array}{c} -PdV \\ \mathcal{S}dA \\ \mathcal{F}dL \end{array} \right\} + HdM + \mathcal{E}d\mathcal{P} + \cdots$$

The last line expresses the combined 1^{ST} and 2^{ND} laws of thermodynamics.

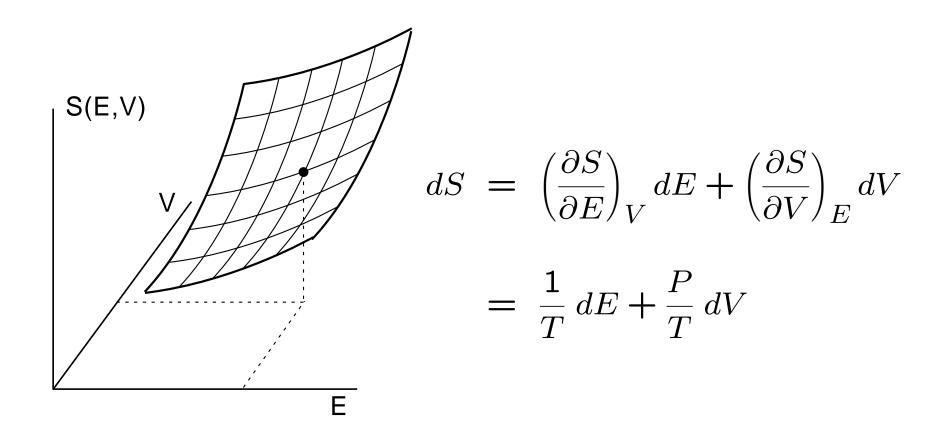
Solve for dS.

$$dS = \frac{1}{T}dE + \frac{P}{T}dV - \frac{H}{T}dM - \frac{\mathcal{E}}{T}d\mathcal{P} + \cdots$$

Examine the partial derivatives of S.

$$\left(\frac{\partial S}{\partial E}\right)_{V,M,\mathcal{P}} = \frac{1}{T} \qquad \left(\frac{\partial S}{\partial M}\right)_{E,V,\mathcal{P}} = -\frac{H}{T}
\left(\frac{\partial S}{\partial V}\right)_{E,M,\mathcal{P}} = \frac{P}{T} \qquad \left(\frac{\partial S}{\partial x_j}\right)_{E,x_i \neq x_j} = -\frac{X_j}{T}$$

INTERPRETATION



UTILITY

Internal Energy

$$\left(\frac{\partial S(E, V, N)}{\partial E}\right)_{V} = \frac{1}{T} \rightarrow T(E, V, N) \leftrightarrow E(T, V, N)$$

Equation of State

$$\left(\frac{\partial S(E,V,N)}{\partial V}\right)_E = \frac{P}{T} \rightarrow P(E,T,V,N) \rightarrow P(T,V,N)$$

Example Ideal Gas

$$S(E, N, V) = k \ln \Phi = kN \ln \left\{ V \left(\frac{4}{3} \pi em \left(\frac{E}{N} \right) \right)^{3/2} \right\}$$

$$\left(\frac{\partial S}{\partial V}\right)_{E,N} = \frac{kN}{\{\}} \frac{\{\}}{V} = \frac{kN}{V} = \frac{P}{T}$$

$$PV = NkT$$

COMBINATORIAL FACTS

different orderings (permutations) of K distinguishable objects = K!

of ways of choosing L from a set of K:

$$\frac{K!}{(K-L)!}$$
 if order matters

$$\frac{K!}{L!(K-L)!}$$
 if order does not matter

EXAMPLE Dinner Table, 5 Chairs (places)

Seating, 5 people

$$5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 5! = 120$$

Seating, 3 people

$$5 \cdot 4 \cdot 3 = \frac{5!}{2!} = 60$$

Place settings, 3 people

$$5 \cdot 4 \cdot 3/6 = \frac{5!}{2!} \cdot \frac{1}{3!} = 10$$