MIT OpenCourseWare
http://ocw.mit.edu

8.044 Statistical Physics I

Spring 2008

For information about citing these materials or our Terms of Use, visit: $\underline{\text { http://ocw.mit.edu/terms. }}$

Microcanonical: E fixed + equal a priori probabilities
\Rightarrow microscopic probability densities [S.M.]

Together with the definition of entropy
\Rightarrow temperature scale and $2^{N D}$ law inequalities [Thermodynamics]

$$
\left.\begin{array}{ll}
\Delta S \geq 0 & (3 \cdot 4 \cdot 7) \\
d S_{1} \geq \frac{d Q_{1}}{T} & (3 \cdot 6 \cdot 5)
\end{array}\right\} 2^{N D} \text { Law }
$$

Quasi-static means arbitrarily close to equilibrium.

- Necessary for work differentials to apply
- Required for $=$ in above $2^{N D}$ law relations

7. Entropy as a Thermodynamic Variable

$$
\left(\frac{\partial S}{\partial E}\right)_{d W=0} \equiv \frac{1}{T} \quad \text { gives us } T
$$

Other derivatives give other thermodynamic variables.

$$
d W=\left\{\begin{array}{r}
-P d V \\
\mathcal{S} d A \\
\mathcal{F} d L
\end{array}\right\}+H d M+\mathcal{E} d \mathcal{P}+\cdots \equiv \sum_{i} X_{i} d x_{i}
$$

We chose to use the extensive external variables (a complete set) as the constraints on Ω. Thus

$$
S \equiv k \ln \Omega=S(E, V, M, \cdots)
$$

Now solve for E.

$$
S(E, V, M, \cdots) \leftrightarrow E(S, V, M, \cdots)
$$

We know

$$
\begin{aligned}
& \left.d E\right|_{d W=0}=d Q \quad \text { from the } 1^{S T} \text { law } \\
& \left.d E\right|_{d W=0} \leq T d S \quad \text { utilizing the } 2^{N D} \text { law }
\end{aligned}
$$

Now include the work.

$$
\begin{aligned}
d E & =\not d Q+\not d W \\
d E & \leq T d S+\not d W \\
d E & \leq T d S+\left\{\begin{array}{r}
-P d V \\
\mathcal{S} d A \\
\mathcal{F} d L
\end{array}\right\}+H d M+\mathcal{E} d \mathcal{P}+\cdots
\end{aligned}
$$

The last line expresses the combined
$1^{S T}$ and $2^{N D}$ laws of thermodynamics.

Solve for $d S$.

$$
d S=\frac{1}{T} d E+\frac{P}{T} d V-\frac{H}{T} d M-\frac{\mathcal{E}}{T} d \mathcal{P}+\cdots
$$

Examine the partial derivatives of S.

$$
\begin{array}{lll}
\left(\frac{\partial S}{\partial E}\right)_{V, M, \mathcal{P}} & =\frac{1}{T} & \left(\frac{\partial S}{\partial M}\right)_{E, V, \mathcal{P}}=-\frac{H}{T} \\
\left(\frac{\partial S}{\partial V}\right)_{E, M, \mathcal{P}}=\frac{P}{T} & \left(\frac{\partial S}{\partial x_{j}}\right)_{E, x_{i} \neq x_{j}}=-\frac{X_{j}}{T}
\end{array}
$$

INTERPRETATION

8.044 L15B7

UTILITY

Internal Energy

$$
\left(\frac{\partial S(E, V, N)}{\partial E}\right)_{V}=\frac{1}{T} \rightarrow T(E, V, N) \leftrightarrow E(T, V, N)
$$

Equation of State

$$
\left(\frac{\partial S(E, V, N)}{\partial V}\right)_{E}=\frac{P}{T} \rightarrow P(E, T, V, N) \rightarrow P(T, V, N)
$$

Example Ideal Gas

$$
\begin{gathered}
S(E, N, V)=k \ln \Phi=k N \ln \left\{V\left(\frac{4}{3} \pi e m\left(\frac{E}{N}\right)\right)^{3 / 2}\right\} \\
\left(\frac{\partial S}{\partial V}\right)_{E, N}=\frac{k N}{\{ \}} \frac{\{ \}}{V}=\frac{k N}{V}=\frac{P}{T} \\
\underline{P V}=N k T
\end{gathered}
$$

COMBINATORIAL FACTS

\# different orderings (permutations) of K distinguishable objects $=K$!
\# of ways of choosing L from a set of K :
$\frac{K!}{(K-L)!}$
$\frac{K!}{L!(K-L)!}$ if order does not matter

EXAMPLE Dinner Table, 5 Chairs (places)

Seating, 5 people

$$
5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=5!=120
$$

Seating, 3 people

$$
5 \cdot 4 \cdot 3=\frac{5!}{2!}=60
$$

Place settings, 3 people

$$
5 \cdot 4 \cdot 3 / 6=\frac{5!}{2!} \frac{1}{3!}=10
$$

