MIT OpenCourseWare
http://ocw.mit.edu

8.044 Statistical Physics I

Spring 2008

For information about citing these materials or our Terms of Use, visit: $\underline{\text { http://ocw.mit.edu/terms. }}$

Thermodynamics focuses on state functions: $P, V, M, \mathcal{S}, \ldots$

Nature often gives us response functions (derivatives):

$$
\begin{aligned}
\alpha \equiv \frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P} \quad \kappa_{T} & \equiv-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T} \\
\chi_{T} & \equiv\left(\frac{\partial M}{\partial H}\right)_{T}
\end{aligned}
$$

$$
\kappa_{S} \equiv-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{\text {adiabatic }}
$$

Example Non-ideal gas

Given

- Gas \rightarrow ideal gas for large $T \& V$
- $\left(\frac{\partial P}{\partial T}\right)_{V}=\frac{N k}{V-N b}$
- $\left(\frac{\partial P}{\partial V}\right)_{T}=-\frac{N k T}{(V-N b)^{2}}+\frac{2 a N^{2}}{V^{3}}$

Find P

$$
\begin{aligned}
d P & =\left(\frac{\partial P}{\partial V}\right)_{T} d V+\left(\frac{\partial P}{\partial T}\right)_{V} d T \\
P & =\int\left(\frac{\partial P}{\partial T}\right)_{V} d T+f(V)=\int\left(\frac{N k}{V-N b}\right) d T+f(V) \\
& =\frac{N k T}{(V-N b)}+f(V)
\end{aligned}
$$

$$
\begin{aligned}
\left(\frac{\partial P}{\partial V}\right)_{T} & =-\frac{N k T}{(V-N b)^{2}}+\underbrace{f^{\prime}(V)}=-\frac{N k T}{(V-N b)^{2}}+\underbrace{\frac{2 a N^{2}}{V^{3}}} \\
f(V) & =\int \frac{2 a N^{2}}{V^{3}} d V=-\frac{a N^{2}}{V^{2}}+c \\
P & =\frac{N k T}{(V-N b)}-\frac{a N^{2}}{V^{2}}+c
\end{aligned}
$$

but $c=0$ since $P \rightarrow N k T / V$ as $V \rightarrow \infty$

Internal Energy U

Observational fact

Final state is independent of how ΔW is applied. Final state is independent of which adiabatic path is followed.
\Rightarrow a state function U such that

$$
\Delta U=\Delta W_{\text {adiabatic }}
$$

$U=U$ (independent variables)
$=U(T, V)$ or $U(T, P)$ or $U(P, V)$ for a simple fluid

Heat

If the path is not adiabatic, $d U \neq d W$

$$
\not d Q \equiv d U-\not d W
$$

ϕQ is the heat added to the system.

It has all the properties expected of heat.

First Law of Thermodynamics

$$
d U=d Q+d W
$$

- U is a state function
- Heat is a flow of energy
- Energy is conserved

Ordering of temperatures

When $d W=0$, heat flows from high T to low T.

Example Hydrostatic System: gas, liquid or simple solid

Variables (with N fixed): P, V, T, U.
Only 2 are independent.

$$
C_{V} \equiv\left(\frac{d Q}{d T}\right)_{V} \quad C_{P} \equiv\left(\frac{d Q}{d T}\right)_{P}
$$

Examine these heat capacities.

$$
d U=\not U Q+\phi W=\phi Q-P d V
$$

$$
\not d Q=d U+P d V
$$

We want $\frac{d}{d T}$. We have $d V$.

$$
d U=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\frac{\partial U}{\partial V}\right)_{T} d V
$$

$$
\begin{aligned}
& \not d Q=\left(\frac{\partial U}{\partial T}\right)_{V} d T+\left(\left(\frac{\partial U}{\partial V}\right)_{T}+P\right) d V \\
& \Rightarrow \frac{\phi Q}{d T}=\left(\frac{\partial U}{\partial T}\right)_{V}+\left(\left(\frac{\partial U}{\partial V}\right)_{T}+P\right) \frac{d V}{d T} \\
& C_{V} \equiv\left(\frac{d Q}{d T}\right)_{V}=\underline{\left(\frac{\partial U}{\partial T}\right)_{V}}
\end{aligned}
$$

$$
\begin{aligned}
& C_{P} \equiv\left(\frac{d Q}{d T}\right)_{P}=\underbrace{\left(\frac{\partial U}{\partial T}\right)_{V}}_{C_{V}}+\left(\left(\frac{\partial U}{\partial V}\right)_{T}+P\right) \underbrace{\left(\frac{\partial V}{\partial T}\right)_{P}}_{\alpha V} \\
& C_{P}-C_{V}=\left(\left(\frac{\partial U}{\partial V}\right)_{T}+P\right) \alpha V
\end{aligned}
$$

The $2^{\text {nd }}$ law will allow us to simplify this further.

Note that $C_{P} \neq\left(\frac{\partial U}{\partial T}\right)_{P}$.

