MIT OpenCourseWare
http://ocw.mit.edu

8.044 Statistical Physics I

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Physics Department

Problem Set \#4

Problem 1: Moving Impurities along a Wire
In an effort to clear impurities from a fabricated nanowire, a laser beam is swept repeatedly along the wire in the presence of a parallel electric field. After one sweep, an impurity initially at $x=0$ has the following probability density of being found at a new position x :

$$
\begin{array}{rlc}
p(x) & =\frac{1}{3} \delta(x)+\frac{2}{3 a} \exp [-x / a] & \\
& =0 &
\end{array}
$$

where a is some characteristic length.
a) Find the cumulative function $P(x)$. Make a sketch of the result which displays all of the important features.
b) What is the probability that x will be displaced by at least an amount a by a single sweep of the laser beam.
c) Find the mean and the variance of x in terms of a.
d) Give an approximate probability density for the total distance d the impurity has moved along the wire after 36 sweeps of the laser beam.

Problem 2: Thermal Equilibrium and the Concept of Temperature
Systems A, B, and C are gases with coordinates $P, V ; P^{\prime}, V^{\prime}$; and $P^{\prime \prime}, V^{\prime \prime}$. When A and C are in thermal equilibrium, the equation

$$
P V-n b P-P^{\prime \prime} V^{\prime \prime}=0
$$

is found to be satisfied. When B and C are in equilibrium, the relation

$$
P^{\prime} V^{\prime}-P^{\prime \prime} V^{\prime \prime}+\frac{n B^{\prime} P^{\prime \prime} V^{\prime \prime}}{V^{\prime}}=0
$$

holds. The symbols n, b, and B^{\prime} represent constants.
a) What are the three functions which are equal to one another at thermal equilibrium and each of which is equal to t where t is the empirical temperature?
b) What is the relation expressing thermal equilibrium between A and B ?

Problem 3: Work in a Simple Solid

In the simplest model of an elastic solid

$$
d V=-V \mathcal{K}_{T} d P+V \alpha d T
$$

where \mathcal{K}_{T} is the isothermal compressibility and α is the thermal expansion coefficient. Find the work done on the solid as it is taken between state $\left(P_{1}, T_{1}\right)$ and $\left(P_{2}, T_{2}\right)$ by each of the three paths indicated in the sketch. Assume that the fractional volume change is small enough that the function $V(P, T)$ which enters the expression for $d V$ can be taken to be constant at $V=V_{1}=V\left(P_{1}, T_{1}\right)$ during the process.

Problem 4: Work in a Non-Ideal Gas
An approximation to the equation of state for a real gas is

$$
\left(P+a / V^{2}\right)(V-b)=N k T
$$

where a, b, and k are constants. Calculate the work necessary to compress the gas isothermally from V_{1} to $V_{2}<V_{1}$.

Problem 5: Work and the Radiation Field

The pressure P due to the thermal equilibrium radiation field inside a cavity depends only on the temperature T of the cavity and not on its volume V,

$$
P=\frac{1}{3} \sigma T^{4} .
$$

In this expression σ is a constant. Find the work done on the radiation field as the cavity is taken between states $\left(V_{1}, T_{1}\right)$ and $\left(V_{2}, T_{2}\right)$ along the two paths shown in the diagram.

