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Practice Problems 

Not to be graded or handed-in. Solutions will be available on the web. 

Problem 1: Two Identical Particles 

A system consists of two identical, non-interacting, spinless (no spin variables at all) 
particles. The system has only three single-particle states φ1, φ2, and φ3 with energies 
ǫ1 = 0 < ǫ2 < ǫ3 respectively. 

a) List in a vertical column all the two-particle states available to the system, along 
with their energies, if the particles are Fermions. Use the occupation number 
notation (n1, n2, n3) to identify each state. Indicate which state is occupied at 
T = 0. 

b) Repeat a) for the case of Bose particles. 

c) Use the Canonical Ensemble to write the partition function for both Fermi and 
Bose cases. 

d) Using only the leading two terms in the partition function, find the temperature 
dependence of the internal energy in each case. Contrast the behavior of the 
internal energy near T = 0 in the two cases. 

Problem 2: A Number of Two-State Particles 

Consider a collection of N non-interacting, spinless Bose particles. There are only two 
single-particle energy eigenstates: φ0 with energy ǫ = 0 and φ1 with energy ǫ = Δ. 

a) How would you index the possible N -body energy eigenstates in the occupation 
number representation? What are their energies? How many N -body states 
are there in all? 

b) Find a closed form expression for the partition function Z(N, T ) using the 
Canonical Ensemble. 

c) What is the probability p(n) that n particles will be found in the excited state 
φ1? 

d) Find the partition function Zd(N, T ) that would apply if the N particles were 
distinguishable but possessed the same single particle states as above. 
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Problem 3: A Fermi System at Low Temperature 

A hypothetical system of N fermions has a single-particle density of states given by 
the linear relation D(ǫ) = ǫ/ǫ

0

2, where ǫ0 is a positive constant with the dimensions 
of energy. The fermions do not interact among themselves. Calculate: 

a) The system’s Fermi energy. 

b) The chemical potential as a function of T under the condition that 0 ≤ T ≪ TF . 

c) The total energy < E > and heat capacity CV under the same condition. 

In parts (b) and (c), it suffices to work through the lowest non-vanishing order in 
powers of the temperature, that is, through the first temperature-dependent term. 
Express all final answers in terms of N , ǫ0, k, and T . 

Problem 4: Relativistic Electron Gas 

Consider a 3 dimensional non-interacting quantum gas of ultra-relativistic electrons. 
In this limit the single particle energies are given by ǫ = ch̄|~k|. The density of allowed 
wavevectors in k space is V/(2π)3 . 

a) Find an expression for the Fermi Energy ǫF as a function of c, h̄, N and V . 

b) Find the density of states as a function of energy D(ǫ). Sketch the result. 

c) Find the total kinetic energy E of the gas at absolute zero as a function of N 
and ǫF . 

d) Find the pressure exerted by the gas at T = 0. How does it depend on the 
particle density N/V ? Is this a stronger or weaker dependence on density than 
in the non-relativistic gas? 

e) Assume that this gas represents the electrons in a white dwarf star composed 
of α particles (a bound state of two neutrons and two protons: a 4He nucleus) 
and electrons. Express the kinetic energy EK in terms of the total mass of the 
star M and its radius R (as well as a handful of physical constants including 
the α particle mass). Recall that the potential energy of a self gravitating star 
of radius R with uniform density is given by EP = −

5

3 GM2/R where G is the 
gravitational constant. Proceed as we did in class to find the equilibrium R as 
a function of M by minimizing the total energy, ET = EK +EP . What can you 
conclude about the stability of the star in this model? 
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f) We know from observation that white dwarfs of mass less than a certain critical 
mass (of the order of the Sun’s mass) are stable. The results of e) show that 
determining this critical mass will require a more sophisticated model of the 
star, certainly taking into account the dependence of the mass density on depth 
in the star and using a dispersion relation for the electrons, ǫ(k), valid for 
all energies. However the calculation in e) allows us to find how the critical 
mass might depend on the important parameters in the problem: c, h̄, G, and 
a reference mass such as mα. Use your results to find an expression for the 
critical mass of a white dwarf, Mc, in terms of these parameters but neglecting 
any purely numerical constants of the order of one. 
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