
Coxeter Systems, Multiplicity Free Representations,

and Twisted Kazhdan-Lusztig Theory

by

Eric Marberg

Submitted to the Department of Mathematics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARCHNES
MASSACHUSETTS INSTI t E

OF TECNLG Y

JUL 2 5M3

L BRARIES

June 2013

@ Massachusetts Institute of Technology 2013. All rights reserved.

Author.......................................................... ...
Department of Mathematics

May 2, 2013

Certified by ..............................-
DAd A. ?ogan

Professor
Thesis Supervisor

Accepted by .................................................... .......
Paul Seidel

Chairman, Department Committee on Graduate Theses



2



Coxeter Systems, Multiplicity Free Representations, and Twisted
Kazhdan-Lusztig Theory

by
Eric Marberg

Submitted to the Department of Mathematics
on May 2, 2013, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis considers three topics related to the representations of Coxeter systems, their
Hecke algebras, and related groups.

The first topic concerns the construction of generalized involution models, as defined by
Bump and Ginzburg. We compute the automorphism groups of all complex reflection groups
G(r, p, n) and using this information, we classify precisely which complex reflection groups
have generalized involution models.

The second topic concerns the set of "unipotent characters" Uch(W) which Lusztig has
attached to each finite, irreducible Coxeter system (W, S). We describe a precise sense in
which the irreducible multiplicities of a certain W-representation can be used to define a
function which serves naturally as a heuristic definition of the Frobenius-Schur indicator
on Uch(W). The formula we obtain for this indicator extends prior work of Casselman,
Kottwitz, Lusztig, and Vogan addressing the case in which W is a Weyl group.

Finally, we study a certain module of the Hecke algebra of a Coxeter system (W, S),
spanned by the set of twisted involutions in W. Lusztig has shown that this module has
two distinguished bases, and that the transition matrix between these bases defines interest-
ing analogs of the much-studied Kazhdan-Lusztig polynomials of (W, S). We prove several
positivity properties related to these polynomials for universal Coxeter systems, using com-
binatorial techniques, and for finite Coxeter systems, using computational methods.
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Introduction

This thesis studies several related questions concerning the representations of Coxeter sys-
tems and their Hecke algebras, and is divided into three self-contained chapters.

The first is devoted to the construction and classification of certain types of multiplicity
free representations of complex reflection groups. (By a multiplicity free representation, we
mean one for which no distinct subrepresentations are isomorphic.) Central to the story
told in this section is the notion of a generalized involution model, as defined by Bump
and Ginzburg in [24]. As our first significant result, we prove that if a finite group H
has a generalized involution model, then the wreath product H? S, also has a generalized
involution model. We go to compute the automorphism groups of all complex reflection
groups G(r, p, n) and using this information, we classify precisely which complex reflection
groups have generalized involution models. Our final result is to derive a formulation of this
classification in terms of the existence of isomorphisms between certain projective reflection
groups, as defined by Caselli [25].

The second chapter concerns the set of "unipotent characters" Uch(W) which Lusztig has
attached to each finite, irreducible Coxeter system (W, S). There is a notion of a "Fourier
transform" on the space of functions Uch(W) --+ R, due to Lusztig for Weyl groups and to
Brou6, Lusztig, and Malle in the remaining cases. We show that the irreducible multiplicities
of a certain W-representation Pw, defined on the vector space generated by W's involutions,
are given by the Fourier transform of a unique function E : Uch(W) --+ {-1, 0, 1} which for
various reasons serves as a heuristic definition of the Frobenius-Schur indicator on Uch(W).
The formula we obtain for c extends prior work of Casselman, Kottwitz, Lusztig, and Vogan
addressing the case in which W is a Weyl group. We also prove that a conjecture of Kottwitz
connecting the decomposition of pw to the left cells of W holds in all non-crystallographic
types, and observe that a weaker form of Kottwitz's conjecture holds in general. In giving
these results, we carefully survey the construction and notable properties of the set Uch(W)
and its attached Fourier transform.

The final chapter concerns some conjectural properties associated with a certain module
of the Hecke algebra of a Coxeter system (W, S). Let w -* w* be an involution of W which
preserves the set of simple generators S. Lusztig [70] has recently shown that the set of
twisted involutions (i.e., elements w E W with w- 1 = w*) naturally generates a module of
the Hecke algebra of (W, S) with two distinguished bases. The transition matrix between
these bases defines a family of polynomials & which one can view as "twisted" analogs of
the much-studied Kazhdan-Lusztig polynomials of (W, S). The polynomials P"W can have
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negative coefficients, but display several conjectural positivity properties of interest. We
review Lusztig's construction and then prove three such positivity properties for universal
Coxeter systems (i.e., such that st has order 2 or oo for all s, t E S), generalizing previous
work of Dyer [35]. We present in addition a computational proof of a subset of the same
conjectures for finite Coxeter systems, relying on extensions to Fokko du Cloux's algebra

system Coxeter [34].
The three chapters of this thesis are independent from one other, and can be read in any

order. The results included here appear elsewhere in the papers [29, 78, 79, 80, 81, 82], the
first of which is joint work with Fabrizio Caselli.
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Chapter 1

Generalized involution models of
finite complex reflection groups

The material in this chapter is drawn primarily from the articles [78, 79]. Section 1.8 includes
results from the paper [29], which is joint work with Fabrizio Caselli.

1.1 Introduction

A model for a finite group G is a set {Ai : Hi -+ C} of linear characters of subgroups of G,
such that the sum of induced characters Ei IndG (Ai) is equal to the multiplicity free sum of
all irreducible characters Egrr(G) b. Models are interesting because they lead to interesting
representations in which live all of the irreducible representations of G. This is especially
the case when the subgroups Hi are taken to be the stabilizers of the orbits of some natural
G-action. A canonical example of this phenomenon comes from the following model for the
symmetric group S., described (among other places) by Inglis, Richardson, and Saxl in [49].

Example 1.1.1. The symmetric group S,, acts by conjugation on its involutions (elements
of order < 2). For each nonnegative integer i with 2i < n, choose an involution wi with
n - 2i fixed points and write Hi for its centralizer. The elements of Hi permute the support
of wi (i.e., the set of points not fixed by wi), inducing a map 7ri : Hi -+ S 2i. If A E Irr(Hi) is

the linear character A d sgn o wri then {Ai : Hi -+ {±1}} is a model for S, [49].

Generalizing the preceding construction, Adin, Postnikov, and Roichman proved that the
following gives a model for the wreath product of a symmetric group and a cyclic group of
odd order. We will rederive this result from a more general theorem in Section 1.3.

Example 1.1.2. Let G = G(r, n) be the group of complex n x n matrices with exactly one
nonzero entry, given by an rth root of unity, in each row and column. Assume r is odd.
Then G acts on its symmetric elements by g : X - gXgT, and the distinct orbits of this
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action are represented by the block diagonal matrices of the form

where J, denotes the n x n matrix with ones on the anti-diagonal and zeros elsewhere. Write
Hi for the stabilizer of Xi in G. The elements of Hi preserve the standard copy of C2 in

C" , inducing a map 7ri : Hi -+ GL 2i(C). If A/ det o 7ri then {Ai : Hi -+ C} is a model for
G(r, n) [2, Theorem 1.2].

The following definition of Bump and Ginzburg [24] captures the salient features of these
examples. Let -r be an automorphism of G with T 2 = 1. Then G acts on the set of generalized
involutions

def
IG,r = {w c G: w T(W)}

by the twisted conjugation g : w - g - r(g)-1 . We write

CG,,(w) f{fg E G : g - w - r(g)-' = w}

to denote the stabilizer of w E IG,r under this action, and say that a model {Ai : Hi --+ C}
is a generalized involution model (or GIM for short) with respect to r if each Hi is the
stabilizer CG,T(w) of a generalized involution w E IG,r, with each twisted conjugacy class in
IG,, contributing exactly one subgroup. The model in our second example is a GIM with
respect to the inverse transpose automorphism of G(r, n). The model in Example 1.1.1 is a
GIM with respect to the identity automorphism; we call such a GIM an involution model.

The main object of this chapter is to classify the finite complex reflection groups pos-
sessing generalized involution models. Recall that a complex reflection group G is a group
generated by a set of pseudo-reflections of some finite-dimensional complex vector space V.
By pseudo-reflection we mean an element of GL(V) which fixes every point in some hyper-
plane. Complex reflection groups include Coxeter groups as a special case, and one can view
our classification of GIMs for complex reflection groups as a natural extension of the classi-
fication of involution models for Coxeter groups. The latter classification is due to Baddeley
[111 and Vinroot [101); consult Corollary 1.7.3 below.

We may summarize the main results of this chapter as follows. For positive integers
r, p, n with p dividing r, define G(r, p, n) as the subgroup of G(r, n) (as given in Example
1.1.2) consisting of matrices whose nonzero entries, multiplied together, form an (r/p)th
root of unity. A complex reflection group G C GL(V) is irreducible if V has exactly two
G-invariant subspaces (namely, {0} and V). Every complex reflection group is isomorphic
to the direct product of a list of irreducible groups (which is unique up to permutation of
factors). The irreducible finite complex reflection groups are given by the groups G(r, p, n)
along with thirty-four exceptional groups labeled G 4 ,... G 37 ; see Section 1.4.1 for a more
extensive discussion.

We prove the following theorem in Section 1.7.3.

Theorem. A finite complex reflection group has a generalized involution model if and only

18



if each of its irreducible factors is one of the following:

(i) G(r, p, n) with gcd(p, n) = 1.

(ii) G(r,p, 2) with r/p odd.

(iii) G 23 , the Coxeter group of type H3 .

There is an interesting reformulation of this classification, due originally to Caselli and
described in the joint work [29], in terms of isomorphisms between projective reflection groups.
These groups were introduced in [25] and studied, for example, in [15). They include as an
important special case an infinite series of groups G(r,p, q, n) defined as the quotient

G(r, p, q, n) 4 G(r,p,n)/C

where Cq is the cyclic subgroup of scalar n x n matrices of order q. For this quotient to be
well-defined we must have Cq c G(r,p,n), which occurs precisely when q divides r and pq
divides rn. Observe also that G(r,n) = G(r, 1,n) and G(r,p,n) = G(r,p, 1,n).

We now have our second main theorem, which we prove in Section 1.8.3.

Theorem. The complex reflection group G(r, p, n) = G(r, p, 1, n) has a GIM if and only if

G (r, p, 1, n) G G(r, 1,7 p, n).

On the way to establishing the main theorems just mentioned, our discussion will uncover
a number of intermediate results. Most prominently:

(a) Given a finite group H with a generalized involution model, we describe how to con-
struct a GIM for the wreath product H? S,; see Section 1.3.

(b) Using (a) we give an alternate proof of the main result [2, Theorem 1.2] in Adin,
Postnikov, and Roichman's paper [2]; see Section 1.3.4.

(c) We compute the automorphism group Aut(G(r,p,n)) in Section 1.6.

(d) In Section 1.8, we give necessary and sufficient conditions for two projective reflection
groups G(r, p, q, n) and G(r, p', q', n) to be isomorphic.

The results in this chapter completely solve the problem of determining whether a complex
reflection group has a generalized involution model. The same problem for projective reflec-
tion groups is still not yet fully understood; one can find some partial results and conjectures
stated in the followup work [29].

1.2 Preliminaries

Let G be a finite group. Throughout this chapter we employ the following notational con-
ventions:
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We let T G = _TG,1 = {g E G: g2 = 1} denote the set of involutions in G.

We let CG(w) = CG,1(w) = {g E G: gwg 1 = w} denote the centralizer of an element.

We write R = lG for the trivial character defined by 1(g) = 1 for g E G.

We write 0 to denote the internal tensor product;

We write 0 to denote the external tensor product.

Thus, if p, p' are representations of G, then p 0 p' is a representation of G while p 0 p' is a
representation of G x G, and similarly for characters.

1.2.1 Facts about models

Fix a finite group G with an automorphism T E Aut(G) such that T 2 = 1. We denote the
action of T on an element g E G by 7g or T(g). For each 0 E Irr(G) let '0 denote the
irreducible character r = 0 o r. Define c, : Irr(G) -+ {-1, 0, 1} as the function with

S1, if # is the character of a representation p with p(g) = p(Tg) for all g E G,

ET(b) = 0, if ' # T4,

S-1, otherwise.

When r = 1, this defines the familiar Frobenius-Schur indicator function. Kawanaka and
Matsuyama prove in [52, Theorem 1.3] that the twisted indicator c, has the formula

1() = V(g .g), for P E Irr(G).
gEG

In turn, we have the following result which appears in a slightly different form as [24, The-
orems 2 and 3].

Theorem 1.2.1 (Bump, Ginzburg [24]). Let G be a finite group with an automorphism
-r E Aut(G) such that T 2 = 1. The following are equivalent:

(i) The function x : G -+ Q defined by

x(g) = |{u E G: u - 'u = g}f, for g E G

is the multiplicity free sum of all irreducible characters of G.

(ii) Every irreducible character / of G has E,(/) = 1.

(iii) The sum EZ4EIrr(G) 4'(1) is equal to I2TG,,l = l{w E G : w = 1}.
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This theorem motivates Bump and Ginzburg's original definition of a generalized in-
volution model. In explanation, if the conditions (i)-(iii) hold, then the dimension of any
Gelfand model for G is equal to the sum of indices Z[G : CG,,(wi)] where wi ranges over a
set of representatives of the distinct orbits in IG,r. The twisted centralizers of a set of orbit
representatives in 'G,r thus present an obvious choice for the subgroups {H} from which to
construct a model {Aj : Hi -+ C}, and one is naturally tempted to investigate whether G
has a generalized involution model with respect to the automorphism r.

Remark. Bump and Ginzburg's definition of a generalized involution model in [24] differs
from the one we have given here in the following way: in [24], the set IG,, is defined as
{ w c G : w -Tw = z} where z E Z(G) is a fixed central element with z 2 = 1. One can show
using the preceding theorem that under this definition, any generalized involution model with
respect to r, z is also a generalized involution model with respect to T', z', where r' is given
by composing r with an inner automorphism and z' = 1. Thus our definition is equivalent
to the one in [24], in the sense that the same models (that is, sets of linear characters) are
classified as generalized involution models.

The following observation concerns the relationship between a generalized involution
model and a corresponding Gelfand model, by which is meant a representation equivalent to
the multiplicity free sum of all of a group's irreducible representations. Given T E Aut(G)
with T 2 = 1 and a fixed subfield K of the complex numbers C, let

VG,T = K-span{C : w E IG,r} (1.2.1)

be a vector space generated by the generalized involutions of G. We often wish to translate
a generalized involution model with respect to T E Aut(G) into a Gelfand model defined in
the space VG,,. For this purpose, we repeatedly use the following result.

Lemma 1.2.2. Let G be a finite group with an automorphism T E Aut(G) such that T2  1.

Suppose there exists a function signG : G x IG,, -+ K such that the map p : G -+ GL(VG,,)
defined by

p(g)C = signG(g, w) -C9,.r-1, for g E G, u E 'G,r (1.2.2)

is a representation. Then the following are equivalent:

(i) The representation p is a Gelfand model for G.

(ii) The functions { sign(-,W) : CGT(w) -- K

g signG(g, f'
with w ranging over any set of orbit representatives of IG,,, form a generalized involu-
tion model for G.

Remark. If G has a generalized involution model {Aj : Hi -+ K} with respect to r E
Aut(G), then there automatically exists a function signG : G x IG,, -+ K such that p is
a representation and (1) and (2) hold. One can construct this function by considering the
standard representation attached to the induced character _' IndG (Ai).
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Proof. This proof is an elementary exercise involving the definition of a representation and
the formula for an induced character. Fix w E TG,r. Since p is a representation, the function

signG(-, w) : - K restricts to a linear character of CG,r(w). Let - = x - w - Tx-X for some

X E G. Then g E G has x-igx E CG,,(w) if and only if g E CG,r(u), and signG(X§'gXjW)
signG(g, -) since by the definition of a representation

1 = signG(1, w) = signG(Xx, w) = signG(X, W) - signG(V 1 , a)

and so

signG(X1gXW) = signG(x, W) signGX19)
= signG W)SG g or - signG(X- 1, a) = signG 9, 0-)

If Q is a set of orbit representatives of IG,r and XP is the character of p, then it follows that

xP(g)= > signG(g,O)

gECc,,(o-)

= |CG, G signG 9, X '-)
ujEQCGTxEG

>= 3 1WC signG(xgxw) = 3IndC,0 (w) (signG ( W)) (9)-
WEQ ' xEG WEE

x-gxECC, (w)

Thus p is a Gelfand model if and only if {sign(-, w) : CG,,(w) -+ K}WEQ is a generalized
involution model. 0

1.2.2 An involution model for the symmetric group

Here we review what is known of the generalized involution models for the symmetric groups
from [1, 24, 491. Since the symmetric group typically has a trivial center and a trivial outer
automorphism group, the group's generalized involution models are always involution models
in the classical sense. In preparation for the next section, we quickly review the proof of [1,
Theorem 1.21 using the results of [49].

Klyachko [56, 57] and Inglis, Richardson, and Saxl [49] first constructed involution models
for the symmetric group; additional models for the symmetric group and related Weyl groups
appear in [3, 7, 8, 10, 91]. More recently, Adin, Postnikov, and Roichman [1] describe a
simple combinatorial action which defines a Gelfand model for the symmetric group. Their
construction turns out to derive directly from the involution model in [49], and goes as
follows. Let S, be the symmetric group of bijections {1, 2, ... , n} -+ {1, 2, ... , n} and define
-s.= {w E Sn:w2 = 1}. Let

V = Q-span{C, : w E Is,}
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be a vector space with a basis indexed by Is,. For any permutation 7r E Sn, define two sets

Inv(7r) = {(i, j) :1 < < j < n, 7r(i) > r(j)},

Pair(7r) = {(Zi, j) : < i < j < n, 7r(i) = j, -r(j) = i}

The set Inv(wr) is the inversion set of 7r, and its cardinality is equal to the minimum number
of factors needed to write 7r as a product of simple reflections. In particular, the value of the
alternating character at wr is sgn(ir) = (-1)Imv&rI). The set Pair(wr) corresponds to the set of

2-cycles in 7r.

Define a map pn : S, - GL(Vn) by

Pn(7r)Cw = signs (7r, w) -Ciri-', for 7r, w E Sn, w2  1

where
signs"(7r, W) = ( 1 )Iv(r)Pair(w)1. (1.2.3)

Adin, Postnikov, and Roichman [1] prove the following result.

Theorem 1.2.3 (Adin, Postnikov, Roichman [1]). The map pn defines a Gelfand model for
Sn.

Kodiyalam and Verma first gave a proof of this theorem in the unpublished preprint [58],
but their methods are considerably more technical than the ones used in the later work [1].
We provide a very brief proof of this, using the results of [49], which follows the strategy
outlined in the appendix of [1]. This will serve as a pattern for later results.

The fact that p, is a representation appears as [1, Theorem 1.1]. We provide a slightly
simpler, alternate proof of this fact for completeness.

Lemma 1.2.4. The map Pn : Sn -> GL(Vn) is a representation.

Proof. It suffices to show that for w E Isn and r1 , 7r2 E Sn,

IInv(7r17r2) n Pair(w)| Inv(7ri) n Pair(7 2Wr21 )1 + IInv(7r2) n Pair(w)I (mod 2).

Let Ac denote the set {(ij) :1 i < j 5 n} \ A. The preceding identity then follows by
considering the Venn diagram of the sets Inv(7r1 7r 2 ), Pair(w), and Inv(7r2 ) and noting that

IInv(7ri) n Pair(r2w7r 1 )| = |Inv(7r1 7r2 ) n Pair(w) n Inv(7r2 )I Ilnv(7r1 7r2 )c n Pair(w) n Inv(wr2 )

since if i' = 7r 2 (i) and j' = r2(j), then we have

i < j and (i', j') E Inv(7r1 ) n Pair(7r2U)rg') iff (i, j) E Inv(7r17r2 ) n Pair(w) n Inv(7r2 )c,

i > j and (i', j') E Inv(7r1) n Pair(7r2U7ri 1 ) iff (j, i) E Inv(7r,7r2 )c n Pair(w) n Inv(7r2).

0
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The preceding proof shows that as a map

signs".,w): Cs"(w) - C

the symbol signs.(-, w) defines a linear character of the centralizer Cs, (w). To name this
character more explicitly, observe that elements of Cs, (w) permute the support of w and
also permute the set of fixed points of w. In particular, if w E Ys,, has f fixed points, then
Cs.(w) is isomorphic to (S2 ? Sk) x Sf, where k = (n - f)/2 and where the wreath product

S 2 ? Sk is embedded in Sn so that the subgroup (S2)k is generated by the 2-cycles of w. We
now have a more intuitive definition of signs.(7, w).

Corollary 1.2.5. The value of signs. (7, w) for w E Is, and 7r E Cs, (w) is the signature of
7r as a permutation of the set {i : 1 < i < n, w(i) # i}.

Proof. If in cycle notation L = (i1, il) ... (ik, jA) where each it < Jt, then Cs, (w) is generated
by permutations of the three forms a,#,3-y, where a = (it,+it+,)(jt,jt+1), /3 = (it,it), and y
fixes ii, Ji, . . , ik, jk. By inspection, our original definition of signs. (ir, w) agrees with the
given formula when 7r is one of these generators, and so our formula holds for all w E Cs' (w)
since signs,(_, w) : Cs,(w) -+ C' is a homomorphism. 0

That p, is a Gelfand model now comes as a direct result of the following lemma, which
appears as [12, Lemma 4.11 and [49, Lemma 2]. In the statement, we implicitly identify
partitions with their Ferrers diagrams.

Lemma 1.2.6 (Barbasch and Vogan [121; Inglis, Richardson, Saxl [49]). Let W E Sn be an
involution fixing exactly f points. Then the induced character

Inds-". (signs", -> W))

is the multiplicity free sum of the irreducible character of S, corresponding to partitions of
n with exactly f odd columns.

Corollary 1.2.7. The linear characters {signs,(-, w) : Cs.(w) -+ C}, with w ranging over
any set of representatives of the conjugacy classes in Isa, form an involution model for Sn.

Remark. [49, Lemma 2) actually concerns the function signs,., w) 9 sgn, whose value at
def

7 E Cs,(w) is the signature of w as a permutation of the set Fix(w) = {i : w(i) = i}. Our
version follows from the fact that tensoring with the alternating character commutes with
induction. Specifically, the authors of [491 prove that if W E 1s, is an involution with no
fixed points, then the induction of the trivial character

Inds; (1)

is equal to the multiplicity free sum of the irreducible characters of Sn corresponding to
partitions with all even rows. Proposition 1.3.5 gives a generalization of this result.

24



1.3 Generalized involution models for wreath products

In this section we fix a finite group H and a positive integer n and let G, = H? Sn denote the
wreath product of H with S,. By definition, G, is then the semidirect product Gn = H" X Sn
where S, acts on Hn by permuting the coordinates of elements. We denote the action of
7 E Sn on h = (hi,..., h,) E H" by

7r(h) = (hr-1(1), . .. , hr-l(n))

and write elements of Gn as ordered pairs (h, w) with h E Hn and 7r E Sn. The group's
multiplication is then given by

(h, 7)(k, o) = (a-'(h) - k, ro-), for h, k E H", 7, o- E Sn.

Throughout, we identify H" and Sn with the subgroups {(h, 1) : h E H'} and {(1, 7) : r E
Sn} in Gn, respectively.

The main goal of this section is generalize several results [10], in order to show how to
construct a generalized involution model for the wreath product H? Sn given a generalized
involution model for H. From this construction we will give a simple alternate derivation
of Adin, Postnikov, and Roichman's proof [2] that the complex reflection group G(r, n) =
G(r,1, n) has a GIM.

1.3.1 Irreducible characters of wreath products

Here we review the construction of the irreducible characters of Gn. Our notation mirrors
but slightly differs from that in [10]. Given groups Hi and representations pi : Hi --+ GL(V),
for i = 1,... , m, let

iO j Oi : rE21 Hi ->GL( = i

denote the representation defined for hi E Hi and vi E Vi by

(Omi Pi) (h,.. ., hm)(vi 0 ... 9 vm) = ol(hi)vi 0 ... 0 pm(hm)Vm.

If Xi is the character of pi, then we let O Xi denote the character of Di1 Pi.
Given a representation L : H --+ GL(V), we extend QD' L to a representation of G" by

defining for h E H", 7 E Sn, and vi E V,

(' ) (h, w)(vi 0 ... - vn) = (L (h,-1(l)) V,-1(l) ® -- (h,-()) v.-1("))-

Remark. This formula differs from the corresponding formula in [10]: there the right hand
side is (p(hi)Vr-1(1) 0 - - - 0 p(hn)v,-1(n)). This is an artifact of our convention for naming
elements of Gn, which differs from the one implicitly used in [10], but which will later make
some of our formulas nicer.

Let P(n) denote the set of integer partitions of n > 0 and let 2 = U'- 0 Y(n). Given
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A E Y(n), let pA denote the corresponding irreducible representation of S" (as specified, for
example, in [10)) and write XA : Sn -+ Q for its character. One extends the representation

pA of Sn to a representation pA of Gn by setting

pA(h, ) = p (-r), for h E H", 7r E S,.

If g is a representation of H and A E Y(n), then we define p? A as the representation of Gn
given by

de (on ) PA

If V is the character of p, then we define V) A as the character of ? ? A. We now have the
following preliminary lemma.

Lemma 1.3.1. Let 4 be a character of H and let A E Y(n). If the cycles of ir E Sn are

(i f, (t)) for t = 1, .. ., r, then

r

('VUA)(hwr) =x'('r)rJ (hi ... hihit , for h = (hi, ... , h,) E Hn.
t=

Proof. Suppose V; is the character of a representation p in a vector space V with a basis
{vj}. Observe that if hi1, hi2 ,... hi, EH, then

(hi, .- hi2hl) = (o(hi) v311 ) (p(hi2 )v ) -- (1 (hi,) )v .)

Therefore, it follows by definition that

(4 2A)(h,7r) = x'(wr) ((hn.-1( 1)) v 3  (1 )) 0 0 (p (h--1(n)) vj..-)) 1(V,(9...®vn)

n r

x^(r) i (o(hi )  )= X (7r) l7I(hit- .. hh) .
ji,..,jni=1t=1

Let 5H denote the set of all maps 0 : Irr(H) -- q and define

'PH (n) = {O E ?H >: iPEIrr(H) (0 1 = n

The following classification appears, among other places, in [10] and as [98, Theorem 4.1].
Stembridge [98] attributes its original proof to Specht [94].

Theorem 1.3.2 (Specht [94]). The set of irreducible characters of Gn is in bijection with

26



JH(n). In particular, each element of Irr(Gn) is equal to Xo for a unique 0 E YH(n), where

XLe IndG ( ? 0 (7) and So clef Gl(0)1-

(VEIrr(H) OEIrr(H)

In addition, the degree of the character Xo is

deg(Xo) = n! fi deg(?P)1O(2')l deg (x 0 )
#,bEIrr(H)

All products here proceed in the order of a some fixed enumeration of Irr(H). The
character X0 is independent of this enumeration because reordering the factors in So yields
a conjugate subgroup.

1.3.2 Inducing the trivial character

Fix an automorphism T E Aut(H) with r2 = 1. In this section, we describe the irreducible
constituents of the induced character

Ind k (I),

where I E Irr(Vkr) denotes the trivial character of Vkr, a subgroup which will be one of the
twisted centralizers in our generalized involution model for G".

Fix a nonnegative integer k, and define Wk C S2k as the subgroup

Wk = (S2 ? Sk), (1.3.1)

where S S2 ? Sk -+ S2k embeds S2 ? Sk in S2k such that the wreath subgroup (S 2 )k C S 2 ? Sk
is mapped to the subgroup of S2k generated by the simple transpositions (2i - 1, 2i) for
i = 1, .. , k. In other words, let Wk be the centralizer in S2k of the involution

clef
Wk = (1, 2)(3, 4) ... (2k - 1, 2k) E S 2 k, (1.3.2)

where by convention wo = 1. Next, define 6J(H) as the subgroup

6k(H)={(hl,,h1,h2,T h2,...,hk, T hk) :hiEH}CH2k

Observe that the action of Wk preserves 6J(H), and let VkT denote the subgroup of G2k given
by

V,[ = 6k(H) - Wk = {(h, 7r) E G2k : h E 6J(H), 7E Wk}.

The most difficult step in constructing a model for G, from a model for H will be to determine
the irreducible constituents of the character of G, induced from the trivial character of the
subgroup Vk4 . The following two lemmas address some the calculations needed to compute
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this. In what follows we write (-, -)G for the L2-inner product on functions G -> C given by

(f,g)G = -~--f (X)g(x)-
xG XEG

Recall that the irreducible characters of G are orthonormal with respect to this inner product.

Lemma 1.3.3. Let ' be an irreducible character of H with Er(I) = t1 and let A E Y(2k).
Then

I if ET (7p) = 1 and A has all even rows;

it , Resy 7'# A) = I if c,(ip) = -I and A has all even columns;K Vk A) k 0 otherwise.

Proof. Fix 7r E Wk. The cycles of 7 are either of the form (2i, - 1, 2is) for s = 1,. .. , S, or
come in pairs of the form (ii, .. -- t), (it, 7 -I - jig)) for t = 1,. , T, where (ii, jt) is a
cycle of Wk for each a, t. If h E Jk(H), then in the former case hk+i = Thi and in the latter
case hit = 'hi. In addition, note that sgn(ir) = (-I)S. By Lemma 1.3.1,

S T

(yOA)(h,x) = xA(-r) E JP(hk+i~hi.,)J0(hit() ... hit hit) x0 (h ... -- h2h
hE6 (H) hE6 (H) s=1 t=1

?p (h, -- - he(t)) 4 ('h - - -Thr) .W v (h)= '? ( E) (h - 'r h) 1 E
s=1 (hEH )t=1 (hj,...,hj(t)EH

We have V)(h) = V)('h-1) since c (?P) = ±1. Therefore

E i (h, ... he(t)) 0 (Thi ) - -TIht) =Hj'(t)~1 E ?p (h) V4 (Th- 1)
hj,...,hj(t) EH hEH

-H i'()(0,0)H =H Ift).

Substituting this and c,(V4) = 1k1 EEH V (h - 'h) into our expression above, and noting

that 2S + X:_ 2e(t) = 2k, we obtain EhESk(H)(0 ? A)(h,7r) = IH Ik(E_())SxA (-r). Since

sgn(7r) = (-I)S, applying this identity gives

(1., ResGk (V5uA)) (V1 ( A)(h, 7r)
k ,kr 7Ewk hEr(H)

(IL, Res W(x))wk
sgRes S(A)wk

if E( = 1
if cr) = -1.

Our result now follows from applying Frobenius reciprocity to Lemma 1.2.6.
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Define another subgroup of G2k by

Ik = {(h,(7r, 7r)) E G2k : h = (hi, ... hi h, ... Thk) E H 2k, 7r E Sk I

where we view (7r, 7r) E Sk x Sk as an element of S2k in the obvious way. We then have a

second lemma.

Lemma 1.3.4. Let 0 be an irreducible character of H with 'ET() = 0 and let A, p E Y (k).

Define 10k E S2k C G2k as the permutation given by

Ck(2 -- 1) = i,
LVk(2i) = i + k,

for i = 1, ... k.

Then Ik = (G x G) n L- 1(VTLwk and

1, ReskxGk ((V) A) O (54 [0)) i

Proof. We first observe that if w = (1, k + 1)(2, k + 2) ... (k, 2k) = kWkuk1 E S2k then

Wk - (Vkr)Wk =(h, 7r) : 7r E GS2k (w), h , .hl..., hk,rhi, ... , rhk) E H2kl

It immediately follows that Ik = (Gk x Gk) nW- 1 (Vr) Zk. Next note that

for h E H and that xA E Irr(Sn) is real-valued. Hence

(h,) (rh,) = (Vi2 )(h, 7r), for 7rE Sk and h E Hk,

where we let Th = (hi, ... , 'h). Therefore by Lemma 1.3.1 and an argument similar to the

one used in the previous lemma, if -r E Sk then we have

(? A)(h,r) - ( Z p)(h, 7r) = |H k XA (7r)x (7).(0 ? A)(h, ( (h, 7r) = hH
hEH ' hEHk

Our result now follows from

A, Reskx Gk ((V BA) 0D 1~
(7r,h)EIk

(( 7 A) (D (7*-

1 Z(0 A)(h,7)
,r-ESk hEHk

= xA ,X')Sk -

El

We are now prepared to prove the following instrumental proposition.
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Proposition 1.3.5. The induction of the trivial character of Vk, to G2k decomposes as the
multiplicity free sum

IndGk()= x ,
0

where the sum is over all 0 E YH(2k) such that for every irreducible character ?P E Irr(H),

(1) 0(,0) = 0("0);

(2) 9(V)) has all even columns if c,(O) = -1;

(3) 0(7p) has all even rows if c-(O) = 1.

This result generalizes [10, Proposition 31, which treats the case r = 1. Our proof derives

from a pair of detailed but straightforward calculations using the preceding lemmas. This
approach differs signficantly from the inductive method used by Baddeley in [10].

Proof. Choose 0 E YH(2k) satisfying (1)-(3). We first show that xv appears as a constituent

of Ind (11.) and then demonstrate that the given decomposition has the correct degree. To
this en , define

rio = 7P 4 0(qp), so that Xo = IndG2(7).

iIEIrr(H)

Let s E S2k and define the subgroup D, = So n s-1 (V)s. Then by Frobenius reciprocity and
Mackey's theorem, we have

Indgk( ) G2k = KRes,2k (Ind(2 () ' so) (by Frobenius reciprocity),

> (Indso (11), 7o) (by Mackey's theorem),

= K1, Resst, (nvo) (by Frobenius reciprocity).

Recall from Section 1.2.1 that if V' E Irr(H) then the two irreducible characters 4, "0 of
H are distinct if and only if cT(4') = 0. Therefore we can list the distinct elements of Irr(H)
in the form

where for all i we have V) = T'O and ET(Oi) = er(4') = 0 and c(Oi) -# 0. Without loss
of generality, we can assume that the products defining po and So proceed in the order of
this list; a different ordering corresponds to a conjugate choice of s in what follows. Since
|0(o4)l = |0(4'j)| and |9(Vi)I is even for all i, if we define s E S2k as the element

r S

s = (rulo(o1),. -.. ,0(lr)J, 1, . .. , 1) E Ji SIv(,1e0+1M)lI x J7 Slv(Oi) C S2k
i=1 i=1
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where Zwk for k = 9("1),..., IO(P) is as in Lemma 1.3.4, then D, = H'_IT.) X
H= 1 V9(d.)1/2 . Consequently (1, ResS ro))D= 6oE+1 where

E==1 Vl'(Oi1/-r0 =J 1fRS I6(pj)I XCIG(Vp)j 9~) ?~ '

S

E+1 = 1J , Res ji)j (di 9 O(oj)))
i=1 0(4d)1/2

We have 6O = 1 by Lemma 1.3.4 and E±1 = 1 by Lemma 1.3.3 and so we conclude that if
9 E YH(n) satisfies (1)-(3), then xo appears as a constituent of IndG(1) with multiplicity
at least one.

To prove that this multiplicity is exactly one and that these are the only constituents,
we show that both sides of the equation in the proposition statement have the same degree.
Define F as the set of functions f : Irr(H) -+ Z;o which have f(V)) = 19(/,)I for some
0 E YH(2k) satisfying (1)-(3). Then the sum of the degrees of xo as 0 E YH(2k) varies over
all maps satisfying (1)-(3) is

deg(Xo) = E(2k)! Q deg(4') 0 1)1 deg (x 0)!) 5 n! -fOl(f) -H+(f) - (f)
0 0 a/EIrr(H) f ELF

where

and
de(bf1deg (A)(' e X

1-10(f ) 4 deg (0j) f(VQ deg (W) de(j/ )dg(

=1 (AE(f() (0) ) 02D!

d+(f) r deg (V)f) deg (X,\)

akEIrr(H) AEP(f(V,)) with
( all even rows

and

l_ (f) fi
V'EIrr(H)
f,(O)=-1

AEY(f(k)) with
all even columns

deg(V/)f(k) deg (xA)

Note that deg(Vi) = deg(V i) and f (Vi) = f(VV) for all i if f E F. Therefore

deg(, )2 (VQ)

f =1
deg (XS)2

(2 deg (i)f

i=1
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Next, recall from Lemma 1.2.6 that the sum E, deg (xA) as A varies over the partitions of

2n with all even rows is equal to 2, and that the sum over A with all even columns has

the same value. Thus
S(deg (,O)2)f (%)/

fl+ (f) = f 2f(0)/2 (f (,d)/2)!

As f varies over all elements of .F, the numbers f(01),... , f(7,), f(?91)/2, .. ., f(0,)/2 range
over all compositions of k. Therefore, following substitutions in the preceding expressions,
we obtain by the multinomial formula

( (2k) ! deg(7Pj)2)f('i) (deg(d)2)f(0j/
deg(x9) = 2 kE! k! ( (f (Oi)/2)!

9 fE.Y i=1 i) =1

k 2 2e e
k i=1 =1k

k

(2k)! (j2deg(V)) 2

_ (2k
(?EIrr(H)

jG2k|

V

Since this is precisely the degree of Ind (1), the given decomposition now follows by di-
mensional considerations. El

1.3.3 Construction of a model

With this proposition in hand, we can now construct a generalized involution model for Gn
from any generalized involution model for H. As above, we fix an automorphism T E Aut(H)

with r2 = 1. Throughout this section, we assume there exists a model for H given by a set of

linear characters {Ai : Hi -- C}1T for some positive integer m and some subgroups Hi C H.

Our notation is intended to coincide with that of [10] when r = 1. Let 0&/m denote the

set of vectors (x 0 , X1,..., Xm) with all entries nonnegative integers, and define

m

I&M = {x E r: 2xo + xi = n}.
i=1

Let o : VJ -+ {±1} be the linear character given by

o, (h, 7r) = sgn(7r) for (h, 7r) E V?[.
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For each x E %,m(n), we define a subgroup G; c G,, and a linear character 0- : G; -+ C by

in m

G = x J(Hi ? Sx) and #; = o(D 0 (Ai (1.3.3)
i=1 i=1

where on the right hand side (xi) denotes the trivial partition in Y(xi) and we ignore terms
corresponding to i if xi = 0.

Given x E 1&m(n), define

for each i > 0, xi is the sum of the number of odd columns in
R) = 0 E 9Y(n) : 0(0) as V; ranges over the irreducible constituents of Ind H(A,) {

We then have the following extension of [10, Theorem 13, which treats the special case r = 1.

Theorem 1.3.6. Suppose cr(i) = 1 for every irreducible character V; of H. Then

IndG(#$) = Z Xo for each x E O(n),

and {0 : G; -+ C}xE.%'(n) is a model for Gn = H 2 Sn.

Proof. By the transitivity of induction we have

Gn X7xX*ndXG LndvO (or-TO Q x \ni? (Xi)))
IndT() = IndGIn ( x Go x --- (1.3.4)

Note that if 9 E YH(n), then Xo 0 sih = X,' where 0' E YH(n) is defined by setting 9'(0)
equal to the transpose of 0(*). Therefore, since Er(V) = 1 for all 0 E Irr(H), we have by
Proposition 1.3.5 that IndG (cI) = Ind (t(1) 0 sgn = EO po where the sum ranges over all

0 E PY(n) such that 0(0) has all even columns for all 4 E Irr(H). Also, [10, Proposition 13
states that Ind Gxs (Aj? (xi)) = EOXo where the sum is over all 0 E YH(Xi) such that 9(V)

is the zero partition if 7P is not a constituent of Ind H (Ai) and a trivial partition otherwise.

Given these facts, we can completely decompose IndT (O;) by using [10, Lemma 1],
which shows that if 7P is a representation of H and a E Y(a) and 3 E Y(b), then
IndTb'i$u ) ( = 6( (4 'y) where the coefficients c, are the non-

nLG. xGb (O )( ' 3)=EE-,a+b) Ca,O 0?7 , r tenn

negative integers afforded by the Littlewood-Richardson rule. Thus, after applying our
substitutions to (1.3.4) we can invoke Young's rule to obtain the desired decomposition. l

The automorphism T E Aut(H) extends to an automorphism of Hn and of Gn via the
definitions

(h ,.. .,h ) (Thi,.. .. Th,) for (hi,... , h) E H , (1.3.5)

(h, r) = (7h,7 r) for 7r E Sn, h E H.
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As in (1.3.2), let Wk = (1,2)(3, 4) - (2k - 1,2k) E S2k, where by convention wo = 1. We
now have the following generalization of [10, Theorem 2].

Theorem 1.3.7. Suppose {A : Hi -- C}gi is a generalized involution model for H with
respect to T E Aut(H), so that there exists a set {ei} 1 of orbit representatives in IH, with
Hi = CH,,(Ei). For each x E Q/m(n), define

EX = (1 .. 1,61, E 1...2 - E2 -,2...,iEm, ... , M),I wxo EGn.

2xo times x1 times X2 times xm times

If we extend r to an automorphism of G, by (1.3.5), then the linear characters {#V : G'-

C}LE(m(x) form a generalized involution model for Gn with respect to r.

Proof. By Theorem 1.2.1, we have e,(b) = 1 for all 0 E Irr(H). Since {A}%i1 is a model
for H, it follows from Theorem 1.3.6 that {0'k}xEm(x) is a model for Gn. To show that this
model is a generalized involution model, we must prove both of the following:

(1) For each x E 0&,m(n), the group G* is the r-twisted centralizer in Gn of ex E 'Gn,r-

(2) The set {6E}xEm(l) contains exactly one element from each orbit in IG,-.

To this end, fix x E 0&rn(n) and let E' E Hn be the element with ex = (', w 0 ). Since
4 E' = 1 E H" and w, (E') = E' by assumption, we have Ex E T Gn,.

Next, let 7r E Sn and h E Hn and consider the twisted conjugation of Ex by the arbitrary
element g = (7r-(h),7r) E Gn. This gives

(k, o-) g - Ex - Tg-l = (w r 1 (h) - 7r(E') - T-, irw~7r ). (1.3.6)

Hence g E CGnr(WX) only if 7r E CSn(WX1). Assume this, and define Jo = {1,.I..,2o} and
Ji = {2xo+(x +---+xi_)+j:1 <j 5 xi} for i = 1,...,m. Then 7r permutes the sets

Jo and J1 U ... U Jm, so

hj, 'h.i, if j E J0 , where j' = wxO (j); (1.3.7)
h -Ei - 'hi, otherwise, where i is the unique index with r-1 (j) E Ji.

It follows from the first case in this identity that k = E' only if hy = T h for all j E Jo. It
follows from the second case that if j E Ji U .. U J then ky lies in the H-orbit of ei, where
i is the unique index with Gr-1 (j) E Ji. Thus, k = E' only if -r also permutes each of the sets
Ji and hj E CH,r(Ei) = Hi for all j E Ji and i = 1, ... , m. Combining these observations, we
see that g E CG,,T(Ex) only if g E G'. The reverse implication follows easily, and so we have
CG., (Ex) = G;.

It remains to show that the elements ex for x E &m(n) represent the distinct T-twisted
conjugacy classes in -G.,,. This requires a straightforward but tedious calculation, similar
to the one in the previous paragraph, which we omit. 0
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We conclude this section with an observation on how to construct a Gelfand model for
G, from a generalized involution model for H. To make our notation more concise, we adopt
the following convention: given g = (h, 7r) E Gn, define IgI E Sn and zg: [n] -- H by

IgI = 7r E S, and zg(i) = hi E H. (1.3.8)

We can identify Gn with the set of n x n matrices which have exactly one nonzero entry in
each row and column, and whose nonzero entries are elements of H. Viewing g E Gn as a
matrix of this form, IgI is the matrix given by replacing each nonzero entry of g with 1, and
zg(i) is the value of the nonzero entry of the matrix g in the ith column.

In the following statement, it helps to recall the definition of signsn from (1.2.3). The
symbol T continues to denote a fixed automorphism of H with T2 = 1, which we have
extended to an automorphism of Gn by (1.3.5). Also, K here denotes a fixed subfield of C
and VH,,, VG,, are the vector spaces over K defined by (1.2.1). Finally, we write Fix(ir) for
the set of fixed points of a permutation ir E S,.

Proposition 1.3.8. Suppose signs : H x IH,, -+ K is a function such that the map p
H -> GL(VH,,) defined by

p(h)C = SignH(h,w) - Ch.,.'h-1 for h E H, w E 'H,r

is a Gelfand model for H. Then the map pn,H : Gn -+ GL(VG,,) defined by

pn,H (g)C = signG (g, w) -Cg..rg-1 for g E Gn, L E EG,,,

where
signGn(g1w) = signS (IgI wI) 11 signH(Zg(i), Ze())

iEFix(wj)

is a Gelfand model for Gn = H? S,.

Proof. By Lemma 1.2.2, H possesses a generalized involution model {Ai : Hi -+ K}T
with respect to r. Retaining the notation of Theorem 1.3.7, we may assume without loss of
generality that Aj(h) = signH(h, ei) for all h E Hi and Hi = CH,,(ei) for each i = 1,. .. , m. To
prove that pn,H is a Gelfand model, it suffices by Lemma 1.2.2 to show only two things: that

O (g) = signG (g, Ex) for all g E G; and each x E &,m(n), and that Pn,H is a representation.

To this end, fix x E &/,(n) and consider g E Hi ? Sx,. Since A is a linear character, we
have by Lemma 1.3.1 that

Xi X
(Ai ? (xi))(g) = rAi(zg(j)) = f~signH (zg(j), ei).

j=1 j=1
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Thus if g = (go, gi,. .. ,gm) E Gx, where go E VXLO and gi E Hi? S., for i = 1,... , m, then

m

OT(g) = cX0w (go) J(Ai ? xi)(gi)

= signs,(jgj, 1ex1) J signH(zg(i),zwx(i)) =sign0 n(g, Ex).

iEFix(w-)

It remains to show that Pn,A is a representation. Let g, h E G, and W E IG.,, and write

W' = h - w - Th-. First, by Lemma 1.2.4 we have

signsn(Ig, 1') - signs,(Ihl, Iwi) = signs(fghj, Iwl). (1.3.9)

Now let -r = Jh. Choose i E Fix(lwl) and observe that ir(i) E Fix(IW'I). It follows from the

fact that w - 'w = w' - Tw' = 1 that both z,(i) and z, o -r(i) belong to IH,,. Furthermore,
one can check that

Zg 0 ir(i) Zh(i) = Zgh(i) and z,' a ir(i) = Zh(i) z(i) - z(i).

Since signH(a, b - x '-b 1 ) - signf(b, x) = signH(ab, x) for a, b E H and x E IH,,, it follows

that

signH(zg o ir(i), z,, o ir-(i)) - signH (zh(i), z,(i)) = signH (ZghW, z(i)). (1.3.10)

Since Fix(lw'I) = {7r(i) : i E Fix(Iwl)}, combining the identities (1.3.9) and (1.3.10) shows
that signG,(9, W') - signG,(h, w) = signG (gh, w), which suffices to show that pn,H is a repre-

sentation, and therefore a Gelfand model.

1.3.4 Applications

We now construct a generalized involution model and a Gelfand model for G, = H ? S"

when H is abelian. This gives a simple proof of [2, Theorem 1.2], which asserts that the

representation p,n,, from the introduction is a Gelfand model for G, in the special case that

H is the cyclic group of order r. Using Theorem 1.3.6, we prove some facts concerning the

decomposition of this representation into irreducible constituents, and in so doing prove a

conjecture of Adin, Postnikov, and Roichman from [2].

Throughout this section, let A be a finite abelian group and let T E Aut(A) be the

automorphism defined by Ta = a-1 . For this particular case, we note that

IA = {a E A: a2 = 1}, C(a) = {b E A: bab-' = a} = A,

-TA,T= {a E A : a -'a = 1} = A, CA,,(a) = {b E A : b -a -'b 1 = a} = IA.

The automorphism T gives rise to the following generalized involution model for A.
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Lemma 1.3.9. If A is abelian, then the set Irr(IA) of all irreducible characters of the
subgroup 1A = {a E A : a 2 = 1} forms a generalized involution model for A with respect to
the automorphism r : a - a-1 . In particular, for each A E Irr(IA), the induced character
IndA (A) is the sum of all , E Irr(A) with ResjA (V) = A.

Remark. This generalized involution model is clearly unique, up to the arbitrary assignment
of irreducible representations of A to orbits in -A,,, since we must have 'A,, = A as the
degree of any Gelfand model for A is JAl.

Proof. Since TA,, = A and 1A = CA,,(a) for every a E A, there are |I'A distinct twisted
conjugacy classes in -A,, and so each irreducible character of 'A can be viewed as a linear
character of the r-twisted centralizer of a representative of a distinct orbit in A,,. The
claimed decomposition of IndIA (A) is immediate by Frobenius reciprocity, and since each
element of Irr(A) restricts to an element of Irr(TA), our assertion follows. E

Seeing this result, we naturally want to use Proposition 1.3.8 to obtain a Gelfand model
for the wreath product A ? S,. In order to do this, we must first define a function signA :
A x A -+ C which corresponds to the generalized involution model for A just described. We
will define this function in two different ways: first from a completely abstract standpoint
which does depend on the structure of A, and then with an explicit construction which relies
on a given decomposition of A as a direct product of cyclic groups.

For our first definition, we must introduce a few pieces of notation to keep track of our
arbitrary but unspecified sets of orbit representatives. Let B = {a 2 : a E A} and observe that
the cosets of this subgroup in A are precisely the orbits in IA,, under the twisted conjugacy
action a : x f-* a - x - Ta- 1 = a2x. Fix a bijection between A/B and Irr(IA), and for each
x E A, let A. : 'A -+ C denote the linear character corresponding to the orbit xB. Now
choose two maps

9orb : A/B -+ A and i: A/IA - A

assigning representatives to the cosets of B and 'A in A, and let

Sorb(a) = sorb(aB) and s(a) = i'(aIA), for a E A.

The image of Sorb is then a set of orbit representatives in A, which explains our notation.
Our next definition is our most complicated: let q : A -+ A be the map

q(a) = a ({b E A : sorb(a) - b2 = a}) , for a E A,

The set {b E A: Sorb(a) - b2 = a} is a coset of 'A in A and so the map q is well-defined. We
can think of the value of q(a) as the square root of a modulo B. In the case that A is cyclic,
q has a much more direct formula which we will compute.

We now define signA : A x A -+ C as the function

signA(a, x) = Ax (a - q(x) - s (a - q(x) 1 ) (31)
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and let PA: A -+ GL(VA,,) be the map given by

PA(a)C. = signA(a, x) -Ca2X, for a, x E A. (1.3.12)

These definitions come with the following result.

Proposition 1.3.10. The map pA defines a Gelfand model for the abelian group A.

Proof. If a E TA, then s(a -q(x)) = s(q(x)) = q(x) and so signA(a, x) = Ax(a). Therefore, by
Lemma 1.2.2 and the preceding lemma, it suffices to show that pA is a representation. For

this, fix a, b,x zE A and observe that q(b 2x) = s(b - q(x)) since

Sorb(x) - (b ' q(x))2 =2 sorb(x) - q(X) 2 = b2 X.

In addition, since s (c)IA = cIA for all c E A, we have s (a - s(b -q(x))) = s (ab - q(x)). Thus,
since A,, = Apx by construction, signA(a, b2 x) = Ax (a - s(b - q(x)) - s (ab - q(x))-') and so
signA(b, x)-signA(a, b2x) = signA(ab, x), which suffices to show that pA is a representation. L

Using this abstract formulation, we can provide a concrete definition of signA using the
structure of A as a finite abelian group. For any two integers a < b, let

[a,b] = {i E Z: a < i < b} and define [n] = [1, n].

Identify the cyclic group Z, with the set [0,r - 1] so that the group operation is addition
modulo r, and define a function sign, : Z, X Zr - {±I} by

-I if r is even and there exists k E [0, r/2 - 1]

sign,(a, X) = with x=2k + and a+k E [r/2,r- 1] for a, x E Z,.

I otherwise

If A = f 1 Zr where each ri is a prime power, then we define signA : A x A -+ {±1} by

k

signA(a, x) = signr., (ai, xi), for a = (a,,... , ak) E A, x = (X 1 , ... , Xk) E A. (1.3.13)

Every finite abelian group is isomorphic to a direct product of this form which is unique up
to rearrangement of factors, so the formula (1.3.13) is well-defined for all abelian groups. The
definition (1.3.13) is just a special case of (1.3.11), which explains the following corollary.

Corollary 1.3.11. If A is abelian then the map pA with signA defined by (1.3.13) is a
Gelfand model.

Proof. It suffices to prove this when A = Z, is cyclic, for this we only need to show that
signA = sign, for some choice of the sections sorb and s and of the arbitrary correspondence
between orbits in IA,, and irreducible representations of IA. If r is odd then this always
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happens since 1A = {1} so signA(a, x) = sign,(a, x) = 1 for all a, x E A. Suppose r is even.
Then A = {0, r/2}; the cosets A/IA are [0, r/2 - 1] and [r/2, r - 1]; and the two orbits
in -A,, = A are given by the sets of odd and even integers in [0, r - 1]. Assign the trivial
representation of -A to the even orbit and the nontrivial representation to the odd orbit, so
that the notation A., :A -+ C becomes

A,(0) =1 and Ax(r/2) = I ifx is even; for x E A.
_-I if x is odd;

If we define the sections sorb and s by

Sorb(a) = n)0 if a is even (a) a if a E [0, r/2 - 1]

1  if a is odd a - r/2 if a E [r/2, r - 1]

then the function q : A -+ A is given by the simple formula q(a) = [a/2] for a E A, where
the floor function takes its usual meaning for integers. It now follows by inspection that
with respect to these choices, the definition (1.3.11) of signA matches sign, as required. E

We are now in a position to apply Proposition 1.3.8 to obtain a Gelfand model for the
wreath product G, = A S,. In particular, extend r to an automorphism T E Aut(Gn) by
'(a,7r) = (a-',r), and define a map PA,A : Gn -+ GL(VG,-r) by

pn,A(9)CG = signGn (9W) -C9-rg-1, for g E Gn, w E -Gn,r7

where

signon(g, w) = signs (Igl, jIw) J signA(zg(i),zW(i)).
iEFix(wI)

Here signsn is given by (1.2.3) and signA is given by either (1.3.11) or (1.3.13). The following
theorem is now immediate from Proposition 1.3.8 and the preceding two results.

Theorem 1.3.12. The map Pn,A defines a Gelfand model for Gn = A? Sn when A is abelian.

By restating this theorem in slightly greater detail in the special case that A is cyclic,
we can provide an alternate proof of [2, Theorem 1.2]. For this, we view Z, as the additive
group of integers [0, r - 1], so that

(a, w)(b, a-) = (-'(a) + b, rwa), for (a, 7r), (b, o) E Zr ? Sn - (1.3.14)

We let (a, -x)T = (-a, 7r)- 1 = (ir(a), 7r- 1) for (a, 7r) E Zr ? Sn and define

Vrn = Q-span {C : W E Z, ? Sn, WT = W}.

Observe that gT = g~1 for g E Z, Sn, where r is the automorphism '(a, 7r) = (-a, 7r).
Therefore Vr,n = VG,, with G = Z, Sn in our earlier notation. Also, if we view elements
of the wreath product Zr ? Sn as generalized permutation matrices, then gT is to the usual
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matrix transpose of g. An element g e Z, 2 S,, is symmetric or an absolute involution if

g =g.
Recall the definition of IgI and z. for g E Z, ? Sn from (1.3.8). The following notation

comes from [2, Definitions 6.1 and 6.3]. For g, w E Z, ? Sn, let B(g, w) denote the subset of

[n] given by

0 if r is odd;

B(g,w) = z,(i) is odd and zg(i) + k E [r/2, r - 11 .
E for the k E [0, r/2 - 1] with 2k + 1 = zw(i)

Next define
sign,,(g, W) = (-1) B(g,w)j . (_ 1 )Inv(gl)nPair(wI)

with Inv(.) and Pair(-) given as in Section 1.2.2, and let Pr,,n : Zr -Sn+ GL(Vr,n) be the map

given by

pr,.(g)Cw = sign,,n(g, w) - C 9,sg, for g,w E Zr Sn with wT = W. (1.3.15)

The map Pr,n is precisely the representation P,A above with A = Zr and signA = sign,, and

one can check that our definition of signr,n agrees with the one given on generators in the

introduction. We thus obtain the following corollary, which appears as [2, Theorem 1.2].

Corollary 1.3.13 (Adin, Postnikov, Roichman [2]). The map Pr,n defines a Gelfand model
for the wreath product Zr ? Sn.

By directly applying Theorem 1.3.7 to Lemma 1.3.9, we can explicitly describe the gen-

eralized involution model for Zr ? Sn whose existence is implicit in our construction of Pr,n.

In this situation, it is convenient to identify Zr with the multiplicative subgroup of C' given

by all rth roots of unity; thus Z 2 = {±1}. Let (r = e 2,i/r be a primitive rth root of unity.

We view Z, Sn as the multiplicative group of n x n generalized permutation matrices whose

nonzero entries are taken from Zr. Given g E Zr Sn, let IgI denote the permutation matrix

given by replacing each entry of g with its absolute value, and let zg(i) for i = 1, ... , n denote

the nonzero entry of g in its ith column. Under our previous conventions, the matrix g can

then be identified with the abstract pair (x, 7r) where 7r = IgI E Sn and xi = zg(i) E Zr for

i = 1, ... , n. The matrix transpose gT then coincides with our previous definition of the

transpose.

For each i E [0, r - 1], let Vi : Zr -+ C denote the irreducible character

Vj(X) = X , for x E Zr viewed as an element of Cx,

so that Irr(Zr) = {Vi : i E [0, r - 1]}. Additionally let F,(n) denote the set of r-tuples

0 = (0o, 01, .. , Or,) of partitions with I0ol +011 + - - - + j0r_i = n. We refer to elements of

Yr (n) as r-partite partitions of n. Define fi ? A for i E [0, r - 1] and A E Y as the character
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of Zr ? SIA given by

('ikiA)(g) = XA (I g ) (zg (j) for g E Zr ? Sp.
(j=1

One checks via Lemma 1.3.1 that this coincides with our constructions in Section 1.3.2 since
Zr is abelian and since det(g)/det(jgj) is the product of the nonzero entries of generalized
permutation matrix g. Now, following Theorem 1.3.2, each irreducible character of Zr Sn

is of the form

r-1 r-1

X0 = Ind= s OVgi ? r \ where So = Z. S(ri 1 (1.3.16)so n i= i=

for a unique 0 E r(n). We refer to the r-partite partition 0 of n as the shape of the
irreducible character Xo. The shape of an irreducible Zr ?Sn-representation is then the shape
of its character.

We recall also the following additional definitions from Section 1.3.2:

Wk = (1,2)(3,4) ... (2k - 1, 2k) E S2k,

V = {g E Z, S 2k : Ig| E Cs.(Wk), zg(2i - -zg(2i) = I for all i.

The next pair of theorems says precisely how to construct Pr,,n by inducing linear represen-
tations.

Theorem 1.3.14. Assume r is odd. Then the wreath product G(r, n) = Zr ? S has a
generalized involution model with respect to the automorphism g - (g- 1 )T, given by the
1 + [n/2J linear characters Ak : CGn,T(Ek) -+ Q with 0 < 2k < n, where

Ek =(Wk ) for 0 < 2k < n are orbit representatives in TGn,r,0 In-2k)

CLef(E ( vE , 7V E Sr-2kCGn,(k) {( =):19V1r0S7k

Ak(g) = det(v) for g E CG.,r(Ek)-

If 0 E Yr(n) then the irreducible character X9 is a constituent of IndG;( (:)(Ak) if and only

if the partitions 00, 01, ... , 0,- have n - 2k odd columns in total.

Theorem 1.3.15. Assume r is even. Then the wreath product G(r, n) = Z, S has a
generalized involution model with respect to the automorphism g '-+ (g-1 )T, given by the
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'-f-~l - [-3j linear characters Ak,: CG,,T(Ek,t) -- Q with 0 < 2k + e < n, where

Wk 0 0

Ek,= 0 n-2k-t 0 for 0 < 2k + f < n are orbit representatives in IGn,r,

0 0 (r it

S0 0defe

CGnr (Ek,t) {9 0 x 0 Ek, x E Z2 Z Sn-2k-t, Y EZ 2 ? Se}
0 0 y

Ak,i(g) = det(v) det(y) for g E C Gn,r (Ek,1)-

If 0 E 6r(n) then the irreducible character xo is a constituent of IndG ()(Ak) if and only

if the partitions 00, 02, , Or-2 have n - 2k - f odd columns in total and the partitions 01,
03, ... , Or-1 have f odd columns in total.

The proofs of these results are straightforward exercises in translating the notations of

Theorem 1.3.7 and Lemma 1.3.9. We prove only the second theorem, since the proof of the

odd case is the same but less complicated.

Proof of Theorem 1.3.15. Let Ir = Z 2 = {±1} denote the subgroup of involutions in Zr,
and define 1, x : Tr -+ C to be the trivial and nontrivial characters of 1r, respectively. By
Lemma 1.3.10,

Indz(L) = o + #I2 + - + ± r- 2  and Indz;(X) = 1 +'03 + -+ ± r-1.

As in Section 1.3.3, let &2(n) denote the set of triples of nonnegative integers x = (XO, X1 , x 2 )
with 2xO + x, + X2 = n. For each x E 9&2(n) define OT : G, -+ C by (1.3.3) and Ex E G as
in Theorem 1.3.7, where we take H1 = H 2 = Tr, define r by Tg = (g-1)T, set E1 = 0 E Zr
and E2 = 1 E Zr- By Theorems 1.3.6 and 1.3.7, the linear characters {; : x E V 2 (n)} form
a generalized involution model for Gn, and Xo is a constituent of Indh (O5r) if and only if

the partitions 0o, 02, ... , 0 r-2 have x1 odd columns in total and the partitions 01, 03, . ,
Or-1 have X2 odd columns in total. The theorem is immediate after noting that e. = 6

XO,X2

and #x = A, 0,; 2 in the notation of the current theorem, which follows easily from the fact

that the product of the nonzero entries of an invertible generalized permutation matrix g is

precisely det(g)/ det(Ig1). El

In the following corollary, let 2Z, = ((r), where (r = e 2,i/r generates Z,. If r is odd then

of course 2Z = Zr, while if r is even then 2Zr = Zr/ 2 = {1 = r, (,r 2- , (r- 2

Corollary 1.3.16. Fix w E Zr ? Sn such that w = wT. Let

k = the number of 2-cycles in IwI,
f = the number of i E Fix(|wl) with z,(i) V 2Zr.
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The character of the subrepresentation of p,,, generated by vector C, E Vr,n is then the sum

E Xo over all 0 E r(n) such that

(i) When r is odd, the partitions 0, 01, ... , 0r_1 have n - 2k odd columns in total.

(ii) When r is even, the partitions 00, 02, - - -, 0r-2 have n - 2k - f odd columns in total
and the partitions 01, 93, ... , 0r-1 have e odd columns in total.

Proof. This follows from the preceding theorem after checking that the orbit of W under the
twisted conjugacy action g : w - gwgT contains 6 k when r is odd and Ek,f when r is even. 0

This corollary allows us to prove [2, Conjecture 7.1]. Recall the definition given above
of an r-partite partition of n. One obtains an r-partite standard Young tableau of shape
0 E Yr (n) by inserting the integers 1, 2, .. ., n bijectively into the cells of the Ferrers diagrams
of the partitions 0, 01,... ,r-1 so that entries increase along each row and column of each
partition.

The natural subrepresentations considered in the preceding corollary have the following
connection with the generalized Robinson-Schensted correspondence for wreath products
due to Stanton and White [100]. Recall, for example from [97], that the usual Robinson-
Schensted-Knuth (RSK) correspondence is a bijective map

a1 a2 - an RSK
b1 b2 - -bn

from two-line arrays of lexicographically ordered positive integers to pairs of semistandard
Young tableaux (P, Q) with the same shape. Viewing a- E Sn as the two-line array with ai = i
and bi = a(i), this map restricts to a bijection from permutations to pairs of standard Young
tableaux with the same shape. Schiitzenberger proves in [99] that the RSK correspondence
associates to each involution w E I s, with f fixed points a pair of standard Young tableaux
(P, Q) with P = Q whose common shape has f odd columns.

To define Stanton and White's colored RSK correspondence for wreath products, fix an
element g E Zr ? Sn and for each j E [0, r - 1], let (Pj, Q3) be the pair of tableaux obtained
by RSK correspondence applied to the array

il i2 ... it
a-(ii) c-(i 2 ) ... (it) (1.3.17)

where {i 1 < i 2 < ... < ie} is the set of i E [n] with zg(i) = (j. The colored RSK corre-
spondence is then the bijection from elements of Zr Sn to pairs of r-partite standard Young
tableaux of the same shape defined by

g - (P, Q) = (P, P, .. . ,Pr_1), (QO, Q1, ... Qr._1)).

To begin, we have the following easy corollary of Schintzenberger's result.
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Lemma 1.3.17. Fix w E Z, S S, such that w = wT and suppose w -* (P, Q) under the

colored RSK correspondence. Then P = Q and for each j E [0, r - 1], the number of odd

columns in the shape of P is equal to the cardinality of {i E Fix(IwI) : z,(i) = (j}.

Proof. Since w is a symmetric element, we have z,(i) = zw(j) whenever i and j are in the

same cycle of the involution Iwl E S,. Therefore each array (1.3.17) corresponds to an invo-

lution in the group of permutations of the set {i 1 , ... , it}, and it follows by Schiitzenberger's

result that P = Q and the number of odd columns in the shape of P is as claimed. 0

We can now prove the theorem promised in the introduction.

Theorem 1.3.18. Let X be a set of symmetric elements in Z, ? S". If the elements of X

span a p,,,-invariant subspace of V,,,, then the subrepresentation of p,,, on this space is

equivalent to the multiplicity free sum of all irreducible Z, 1 Sn-representations whose shapes

are obtained from the elements of X by the colored RSK correspondence.

Remark. Caselli and Fulci prove a similar result concerning the decomposition of a different

Gelfand model for Z, S , in [28]. Comparing the preceding theorem with [28, Theorem 1.2]

shows that there exist abstract isomorphisms between various natural subrepresentations of

these two Gelfand models.

The symmetric elements w E Z, ? S,, whose underlying permutations IwI E S,, have

a fixed number of 2-cycles form a union of twisted conjugacy classes with respect to the

inverse transpose automorphsim, and so they span an invariant subspace of V,,n. Hence, this

result implies [2, Conjecture 7.1].

Proof. It suffices to prove the theorem when X = {gwgT : g E Z, ? S,,} is the orbit of some

W E Z, S,, with wT = W. In this case, it follows by comparing Corollary 1.3.16 and

Lemma 1.3.17 that the colored RSK correspondence defines an injective map from X to

the set of r-partite standard Young tableaux whose shapes index irreducible constituents of

the subrepresentation generated by X. Since the number of such tableaux is equal to the

cardinality of X due to the well-known fact that the number of r-partite standard Young

tableaux of shape 0 is equal to Xo(1), this map is in fact a bijection, which proves the

theorem. u

We conclude by deriving two additional results which will be useful in the subsequent

work [79]. Assume r is even. We then have two p,,-invariant subspaces of V,,, given by

V+ = -span C, : w E Zr ? Sn, wT = w, det(w)/ det(Iwl) E 2Z,, ,
r~n WT(1.3.18)

Vrn = Q-span {Q : w E ZlSn, 2' = w, det(w)/ det(lw) V 2Zr}.

Let x+ and X- denote the characters of Z, S, corresponding to the subrepresentations of

pr,n on V+ and V,-, respectively.
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Corollary 1.3.19. Let r, n be positive integers with r even. Given 0 E Yr(n), define Q(9)
as the sum of the numbers of odd columns in the partitions 01, 03, .- , 0,-1. Then

X = Z ye and x7n= Z Xo-
E) ir(n), nE Rr (n),

Q(O) is even Q(O) is odd

Proof. Since det(w)/ det(|wI) E 2Zr for a symmetric element w E Zr ? S" if and only if
the union of the disjoint sets {i E Fix(JwJ) : z.(i) = (} over all odd j E [0, r - 1] has even
cardinality, this is immediate from Lemma 1.3.17 and Theorem 1.3.18. L

Suppose p is a positive integer dividing r. Let y: Zr Sn -+ C denote the linear character
defined by

7y(g) = (Or/p ? (n)) (g) =
( ) r/p

zg() for g E Zr ? Sn.

Here (n) denotes the trivial partition of n. A straightforward calculation shows that for all
0 E Yr(n) we have

7 0 Xo = Xo', where 9i = Oi-r/p for i E [0, r - 11

where with slight abuse of notation we define i-r = Oi for i E [0, r - 1]. This observation
leads to the following lemma.

Lemma 1.3.20. Let r, p, n be positive integers with r even and p dividing r. Then

+ X-, if n and r/p are odd,
7+Xterw +s7 (9XX-,n, otherwise;

Xr, if n and r/p are odd;
7 0 Xr,=

Xn, otherwise.

Proof. Recall the definition of Q from Corollary 1.3.19 and let Q'(0) for 0 E r.(n) be the
sum of the numbers of odd columns in the partitions 00, 02,... , 9 r-2. Suppose r/p is odd;
then (1.3.20) implies that the map X - -y 0 X exchanges the two sets

{Xo : 9 E r(n), Q(9) is odd} and {Xo : 0 E Yr (n), Q'(0) is odd}.

If n is odd, then 0 E r(n) has Q'(0) odd if and only if Q(9) is even, and it follows
immediately from Corollary 1.3.19 that -y 0 X n = Xrn If n is even, then 9 E Y,(n) has
Q'(0) odd if and only if Q(9) is odd, so the two sets in (1.3.21) are the same, and necessarily

0 + = + +>. Alternatively, if r/p is even, then by (1.3.20) the map X -y 0 X defines a
permutation of the set of irreducible constituents of X+ so 'YX+n = y+. Similar arguments
show that -y 0 X- = X n if n or r/p is even.
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1.4 Complex reflection groups

We devote the rest of this chapter to the problem of showing how and when the Gelfand
model pr,, for G(r, 1, n) = Z, Sn can be extended to the complex reflection groups G(r, p, n).
More generally, we will classify all finite complex reflection groups which have generalized
involution models.

1.4.1 Definitions and notation

Before proceeding we recall a few general facts about complex reflection groups. As men-
tioned at the beginning of this chapter, every finite complex reflection group decomposes
as a direct product of irreducible complex reflection groups. The finite irreducible complex
reflection groups were identified through the work of a number of mathematicians in the
nineteenth and first half of the twentieth century. Shephard and Todd completed this clas-
sification in their seminal paper [92]; a useful modern treatment of this material appears in
[60].

The finite irreducible groups include one infinite family G(r, p, n) and thirty-four excep-
tional groups labeled G4, ... G37. Presentations for the exceptions as abstract groups appear
in [21]. We can describe the infinite series of groups G(r, p, n) more concretely. Let r, p, n
be positive integers with p dividing r. As a subgroup of GLn(C), the group G(r, p, n) can be
realized as the set of generalized permutation matrices whose nonzero entries are complex
rth roots of unity, such that the product of the nonzero entries in any matrix is an (r/p)th
root of unity. This group acts irreducibly on C" when r > 1 and (r, p, n) : (2, 2, 2), and on
the codimension 1 subspace of Cn consisting of vectors whose coordinates sum to zero when
r = 1 and n > 1.

The wreath product ZrS, (viewed a group of matrices following the conventions set down
after Corollary 1.3.13) is just G(r, 1, n), and henceforth we refer to elements of G(r, 1, n) and
its subgroups G(r, p, n) by the notation (x, 7r) exactly as for elements Of ZrS, in Section 1.3.4,
with multiplication again given by (1.3.14). Likewise, every finite Coxeter group is a finite
complex reflection group. The Coxeter groups of type An, Bn, Dn, G 2 , and 12 (n) appear
within the infinite series as G(1, 1, n + 1), G(2, 1, n), G(2, 2, n), G(6, 6, 2), and G(n, n, 2)
respectively. The remaining finite Coxeter groups of type H3, F4 , H 4 , E6 , E7 , and E 8 appear
as the exceptional groups G 23 , G 28 , G30 , G3 5 , G36 , and G 37 , respectively.

Given an element g = (x,r) E G(r,1,n), we define JgJ E Sn and zg : [n] -+ Zr and
, gT E G(r, 1, n) in the same way as for Zr Sn above, by setting

JgI de z(i) x , x d -7) and gT dF!g = (7r(x),7r 1 ) 141

We call gT the transpose of g, and say that g is symmetric if g = gT. After fixing a primitive
rth root of unity (,, it makes sense to view each element (x, ir) E Z, S as the n x n
matrix with (x in the position (ir(i), i) for i = 1, ... , n and zeros in all other positions. If
we identify g with a generalized permutation matrix in this way, then gT corresponds to the
usual matrix transpose of g, and F is the complex conjugate of g. In particular, the map
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g -+ gT is an anti-automorphism and g g = (g-1 )T is an automorphism.
There is a homomorphism A: (Zr)' "Zr given by

A() = X 1 + X2 + + X, for X E (Z,)n.

This map extends to a homomorphism A : G(r, 1, n) -+ Z, by the formula A(x, r) = A(x)
for x E (Zr)n and 7r E Sn. Observe that A(7) = A(g-1) = -A(g) and A(g) = A(gT) for
g E Zr S, . Given positive integers r, p, n, the complex reflection group G(r, p, n) is then the
normal subgroup of G(r, p, n) given by

G(r, p, n) = {g E Zr ? Sn : A(g) E PZr},

where pZr denotes the subgroup {0, d, 2d, . . . , r - d} C Zr generated by the greatest common
divisor d = gcd(r, p). In particular, if d = r then pZr = {O}. To avoid redundancy in this
definition, we from now on require that p divide r.

1.4.2 Irreducible characters

To understand the irreducible characters of G(r, p, n) we begin from a more general stand-
point. Throughout, let Irr(G) denote the set of irreducible characters of a finite group G.
Now consider a finite group G with a normal subgroup H such that G/H is cyclic. Let
C G G/H denote the cyclic group of linear characters y of G with ker -Y D H. Then the
tensor product 0 defines an action of C on the irreducible characters of G, and we can say
the following:

(i) Each irreducible character X of G restricts to a multiplicity free sum of k irreducible
characters of H, where k is the order of the stabilizer subgroup {-Y E C : -Y 0 X = X}.
Furthermore, each irreducible character of H is a constituent of some such restriction.

(ii) If X, / are irreducible characters of G, then the following are equivalent:

(a) Res'(X) and Res' i() share a common irreducible constituent.

(b) Res'(X) = Res'(7p).

(c) X = -y 9 for somey E C.

These statements follow from Clifford theory; see [98, Section 6] for proofs.
Specializing to the case at hand, we fix r, p, n with p dividing r and let G = G(r, 1, n) and

H = G(r, p, n). Observe that H is a normal subgroup of G whose corresponding quotient
group is cyclic and of order p. The irreducible characters of G are the functions Xo for
0 E Yr(n) defined by (1.3.16). If -y : G -+ C denotes the linear character given by (1.3.19),
then ker -y D H and, since -y has order p in the group of linear characters of G, it follows
that C = (-y) = {L, y, -y2 1.. YP-1} in the notation above. In light of (1.3.20), it follows for
i E [0, p - 1] and 0 E Yr(n) that -y 9Xo = Xo if and only if

3i = 3_-r/p = Oj-2,/p = -.. = oj-(P-1)i,/p
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for all j. If this holds then P is a nontrivial divisor of both p and n since E'- 19 I = n.
gcd(p,i) =

Hence, if gcd(p, n) = 1, then -y' 0 Xe # X0 for all 0 < i < p, so by the observations above we

arrive at the following fact.

Observation 1.4.1. If gcd(p,n) = 1, then each irreducible character of G(r, p,n) is equal

to the restriction of exactly p distinct irreducible characters of G(r, 1, n).

Concerning the irreducible characters of G(r, p, n), we will make use of one additional

result due to Caselli. The next theorem derives from the combination of [26, Proposition

4.4, Theorem 4.5, and Proposition 4.6].

Theorem 1.4.2 (Caselli [26]). Let r, p, n be positive integers with p dividing r. Then

{ E G(r, p,n) : WT = } 15 E V(1)
4'EIrr(G(r,p,n))

and we have equality if and only if gcd(p, n) < 2.

1.5 Constructions for the infinite series

In this section we describe how one can obtain a generalized involution model for G(r, p, n) in

the cases where this is possible. We have two methods for doing this: by explicitly identifying

the set of linear characters comprising our model, or by giving a Gelfand model of the

particular form appearing in Lemma 1.2.2. We apply the second method when gcd(p, n) = 1

and the first when gcd(p, n) = n = 2 and r/p is odd. In Section 1.7 we will discover that

G(r, p, n) does not have a generalized involution model in any other cases.

1.5.1 Gelfand models with p and n coprime

Some work has been done on this topic. In [26], Caselli describes a representation for

G(r, p, n) in the complex vector space

r,p,n C-span {CW : u E G(r, p, n), W = }

which defines a Gelfand model whenever equality obtains in Theorem 1.4.2, i.e., when

gcd(p, n) < 2. He calls such complex reflection groups involutory. Caselli's constructions do

not arise from generalized involution models and require the field of complex numbers for

their definition. The Gelfand models we present coincide with Caselli's only when r = 1,
and are by contrast rational representations.

To give these, we begin by noting that the Gelfand model Pr,,n for G(r, 1, n) restricts to

a representation of G(r, p, n) for any p dividing r, and that one obvious subrepresentation

of this restriction poses a natural candidate for a Gelfand model. Specifically, if we define

V,,p,n C V,,n as the subspace

Vr,p,n = Q-span {C, : w E G(r, p, n), WT = W}
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then since G(r,p, n) is closed under taking transposes-as defined by (1.4.1)-the map Prpn

G(r, p, n) - GL(Vp,n) given by

pr,p,n(g)Cw = sign,,(g, W) - CgWgT, for g, w E G(r, p, n) with w' = W

is automatically a well-defined G(r, p, n)-representation. The following theorem says exactly
when this representation is a Gelfand model.

Theorem 1.5.1. Let r, p, n be positive integers with p dividing r. Then the representation

Pr,p,n is a Gelfand model for G(r, p, n) if and only if gcd(p, n) = 1 and p or r/p is odd.

Proof. Let G = G(r, 1, n) and H = G(r, p, n). By Theorem 1.4.2, Prp,,, can only be a Gelfand
model for H if gcd(p, n) = 1 or 2, so we only consider those cases. View V,,n as a G-module by
defining gC = pr,n(g)C for g E G, and for any i E Z, let Vr,n(i) denote the H-submodule

V,,n(i) = Q-span {C, : w E G, W' = W, A(w) - i E PZr-.

Observe that Vrp,n = Vr,n(0) and that Vr,n = Vr,n(O) E Vr,,,(1) ( ... D Vr,n(p - 1).
Suppose gcd(p, n) = 1, and let c E G denote the central element

c = ((1, 1, ...,7 1), 1) E G so that c' = ((i, i, ... ,7 i),11) . (1.5.1)

Observe that Vr,n(2ni + j) = cVr,n(j) and so Vr,n(j) = Vr,n(2ni + j) as H-modules since
c is central. Consequently, if p is odd then gcd(p, 2n) = 1 and the H-modules Vr,n(i) are
all isomorphic, since as i ranges over 0, 1,. .. , p - 1 E Zr, the elements 2ni represent every
coset of pZ, in Zr. In this case, it follows that an irreducible H-module U is a constituent of

Vr,p,n = Vr,n(0) with multiplicity m if and only if U is a constituent of Vr,n with multiplicity
pm. Therefore if p is odd then Pr,p,n is a Gelfand model for H since gcd(p, n) = 1 implies that
each irreducible H-module appears as a constituent of Vr,n with multiplicity p by Observation
1.4.1.

Suppose alternatively that gcd(p, n) = 1 but p is even, so that n is odd. Then by the
same considerations the H-modules V+ and V, defined by (1.3.18) are isomorphic to p/2
copies of Vrn(O) and Vr,n(1), respectively. Since every irreducible H-module is isomorphic
to a constituent of Vr,n with multiplicity p as gcd (p, n) = 1, it follows that every irreducible
H-module is isomorphic to a constituent of Vrp,n = Vr,n(0) with multiplicity one if and only
if V+, 2- V-, as H-modules. We claim that this holds if and only if r/p is odd.

To show this, observe that V, - as H-modules if and only if -y 0 Xn X-,, where

- is the character defined by (1.3.19). The "if" direction of this statement is immediate since
-y restricts to the trivial character of H, and the other direction follows from Lemma 1.3.20,
since if -y 0 X+, # x- then -y 0 X- = which implies that no irreducible constituent of
the nonzero H-module Vr- appears as a constituent of V+,. Since n is odd, Lemma 1.3.20
implies that - 0 x, = X if and only if r/p is odd, which proves our claim. Thus if

gcd(p, n) = 1 then Prp,n is a Gelfand model for H if and only if p or r/p is odd.
To complete the proof, suppose gcd(p, n) = 2 so that n and p are both even. Then r is

even and it follows from Lemma 1.3.20 that -yox- = Hence any irreducible constituent
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of the nonzero H-module V,~ does not appear as a constituent of V--, or in the submodule

V,,,,. = V,,n(O), SO Pr,,,. cannot be a Gelfand model for H. 0

Suppose gcd(p, n) = 1 but both p and r/p are even. Then while Theorem 1.5.1 does
not hold, by modifying our construction slightly we can still produce a Gelfand model for

G(r, p, n) in Vr,,,. In this case, for every w E G(r, p, n) exactly one of the containments

A(w) E 2pZ, or A(w) - p E 2pZ holds. Thus, we may define B(g, w) for two elements

g, w E G(r, p, n) as the subset of [n] given by

~ . z.(i) is odd and zg(i) + k E [r/2, r - 1]
B(g w) =- ix||

for the k E [0, r/2 - 1] with 2k + 1 = z,(i)

when A(w) E 2pZr, and by

~ E:zW(i) is even and zg(i) + k E [r/2, r - 1]

for the k E [0, r/2 - 1] with 2k = z (i)

when A(w) V 2pZr. Let ,,,,, : G(r, p, n) -+ GL(Vp,n) be the map given by

'p,n(g)CW = signrpn(g, w) - CgwgT, for g, w E G(r,p, n) with wT = w

where
sign ,,e(g, w) = (-1) (gw) (-1) nv(jgj)fPair(jwj)

for g, w E G(r, 1, n). We then have the following result.

Theorem 1.5.2. Let r, p, n be positive integers with p dividing r. If gcd(p, n) = 1 but r/p

and p are both even, then pr,p,n is a Gelfand model for G(r, p, n).

In the following proof, it is helpful to note that if c C G(r, 1, n) is the central element
defined by (1.5.1), then

signr,,(g, W) - CgwgT if A(w) E 2pZr,
signr,(g,wc) -CggT if A(w) - p E2pZ,

Given this observation, one can check without difficulty that pr,p,n is a well-defined represen-
tation when p and r/p are both even, using the fact that Pr,p,n is a representation and that
A(gWg T ) - A(w) = 2A(g) E 2pZ, for all g, w E G(r, p, n).

Proof. Again let G = G(r, 1, n) and H = G(r, p, n), and view Vr,,, as a G-module as in the
proof of Theorem 1.5.1. Since 2p divides r, Vr,p decomposes into a direct sum of 2p distinct

H-submodules as Vr,,, = V,(0) @ V,(1) ( - V,,n(2p - 1) where

Vr,n(i) =Q-span {C, : w E G, WT = W, A(w) - i E 2pZr.
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Defining c E G by (1.5.1), we again have V,(2ni + j) = Ci,,n(j) for all i, j E Z,, so since
gcd(2p, n) = 1 as p is even, the H-modules Vrt and n defined by (1.3.18) are isomorphic
to p copies of Vr,n(0) and V,n(1), respectively. Since 6 9 V® , = Vgn by Lemma 1.3.20, the
H-modules V;t and V;-n do not share any irreducible constituents. Therefore, since each
irreducible H-module appears as a constituent of Vr,n with multiplicity p by Observation
1.4.1, it follows that each irreducible H-module appears as a constituent of V,,n(0) E Vr,n(1)
with multiplicity one.

If we view Vrp,n as an H-module by defining gC, = pr,p,,(g)C for g E H, then Vr,p,n
decomposes into H-submodules as V,,p,n = Vo @ V where

Vo = Q-span{C, : A(w) E 2pZ,} and V1 = Q-span{C : A(w) - p E 2 pZr}.

By definition Vo = Vr,n(0), and the linear map V -+ Vr,(p + n) defined on basis elements
by C, -* C,, is an isomorphism of H-modules. Since n is odd, Vr,n(p + n) a Vr,n(1) as
H-modules, and so we conclude that pr,p,n is a Gelfand model. L

Since in the notation of the previous section Vrp,n is precisely the vector space VG,, with
K = Q, G = G(r, p, n), and T E Aut(G) the inverse transpose automorphism T : g -+ g, we
are afforded the following corollary by Lemma 1.2.2.

Corollary 1.5.3. Let r,p, n be positive integers such that p divides r. Then G(r,p, n) has
a generalized involution model with respect to the inverse transpose automorphism g '-- g if
gcd(p,n) = 1.

One can form a generalized involution model for G = G(r, p, n) by choosing a set of
representatives {w} for the r-twisted conjugacy classes in 2~G,T, and then taking the linear
characters A : CG,,(w) -> Q defined as the coefficients in Q such that p(g)C = A(g)C for
those g E G with gwgT = W, where p is our Gelfand model.

1.5.2 Models in rank two

We can only expect to be able to construct a generalized involution model for G(r, p, n)
when gcd(p, n) < 2, and we will in fact be unable to do so when gcd(p, n) = 2 in most cases.
Here we deal with the one exception to this rule, occurring when n = 2 and r/p is odd. In
contrast to the previous section, here we produce the generalized involution model directly.

Throughout this section, fix positive even integers r, p with p dividing r such that r/p is
odd. We write G = G(r, p, 2) and let r E Aut(G) denote the inverse transpose automorphism
r : g -+ 7. Of immediate relevance is the following consequence of Theorem 1.2.1.

Lemma 1.5.4. Let g = ((a, b), 7r) E G, so that a, b E Z, such that a + b E pZ, and 7 E S 2 .
Then

(r2 +2r)/p ifa=b=0andir=1,

(g) = 2r/p if a = -bE 2Z,\{0} and 7 = 1, (1.5.2)
4'EIrr(G) 0 otherwise.
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Proof. By Theorems 1.2.1 and 1.4.2, it suffices to show that the right-hand side is equal

to the number of w E G with w - 'r= g. Let w = ((x, y), o-) E G; then (x, y) E (74)2

can assume r 2 /p distinct values. If - = 1 then w - = ((0, 0), 1) while if a # 1 then

W . To = ((y - x, x - y), 1). As there are 2r/p choices of (x, y) E (Zr) 2 such that x + y E PZr

and x - y = b if a, b E 2Z and zero choices if a, b 2Z,, the lemma follows. l

Let s, E S 2 denote the simple reflection s 1 = (1,2). One checks that the elements

W1 = ((0, 0), 1) , W2 = ((1, -1), 1) , W3 = ((0, 0), si)

represent the distinct T-twisted conjugacy classes in IG,T, and that

CG,T(l) = {(0, 1), ((L, ), 1), (0, S I , s i)} S 2 x S2

and

CG, (2)= {(0, 1) , ((2, Z), 1), ((-1, 1), S, ((L - 1, ± 1),) S2 X S2

and

CG, (U)3) = CG,, (W4) = G(r, r, 2).

Define linear characters Ai : CG,r(wi) -> Q by

A2

((0,0),1)
1

((, L ), 1)
- I

((-1,1), Si) ((Z - 1, L + 1), s)
-1 1

A1(g) = 1, A3(g) = sgn(1gj), A4(g) = sgn(Igl) - (-1)z(1)

In the definition of A4 we are of course viewing zg(1) E Zr as an integer in

given formula only makes sense because n = 2.

We now have the following result.

[0, r - 11; the

Proposition 1.5.5. Let r, p be even positive integers with p dividing r, such that r/p is odd.

Then the linear characters Ai : CG,r (wi) -- Q for 1 < i < 4 form a generalized involution

model for G = G(r, p, 2).

Proof. If we define hij = ((ip + j, -j), 1) E G for i, j E Zr and let

C= C2 ={hij :i E [0, r/p - 1], j E [0, r/2 - 1]},
C3 = C4 = {hio i E [0, r/p - 1]},

so that ICI1 = IC21 = r 2 /(2p)

so that IC3 1 = IC4 1 = r/p

then each Ci forms a set of left coset representatives of CG,,(wi) in G. Let g = ((a, b), 7r) E G

denote an arbitrary element of G with a, b E Zr, 7r E S 2 and a + b E pZ,. Observe that

h -g- (h)' -1 ((a, b), 1), if ?r = 1,
((a-ip-2j,b+ip+2j),si), if#7r #1.
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Write Ai = Ind cc(Pi)(AX). Using the preceding observation with the Frobenius formula for
induced characters, it is not difficult to check that:

(i) Ifa+b40thenAj(g)=Ofor1<i<4.

(ii) If a+b=O andwr= 1 then

( r2 /(2p), if a = b E {0, r/2},
A1(g) = ~ , tewsA 3 (g) = r/p,0, otherwise,

r2 /(2p), if a = b = 0, r/p, ifaE2Zr
A2 (g)= -r2 (2p),otherise, r/p, if a E 2ZrA2() = -r2/j(2p), if a = b = r/2, A 4 (g) = ' . V ,

10, otherwise,

(iii) If a + b =0 and 7r I then

2r/p, if a E 2Zr and r/2 is even,
A1 (g) = 0, if a V 2Z, and r/2 is even, A3 (g) = -r/p,

r/p, if r/2 is odd,

0, if r/2 is even, -r/p, ifaE 22,
A2 (g) r/p, if a E 2Z, and r/2 is odd, A4 (g) = r/p if a 2Zr.

-r/p, if a V 2Z, and r/2 is odd,

In turn, these formulas imply that (A1 + A2 + A3 + A4) (g) is precisely equal to the right-
hand side of (1.5.2), which completes our proof.

1.6 Automorphisms for the infinite series

To prove that the groups G(r, p, n) do not have generalized involution models other than
in the situations addressed by the previous section, we require some understanding of these
groups' automorphisms. In particular, we require a sufficiently explicit description of the
elements of Aut (G(r, p, n)) to be able to deduce precisely which automorphisms can satisfy
the conditions of Theorem 1.2.1.

Marin and Michel provide in [84] several useful general results concerning the structure
of Aut(G) when G is any finite complex reflection group. In particular, they prove that
when G is an irreducible complex reflection group not equal to the symmetric group S6 , each
automorphism of G is the composition of an automorphism which preserves the pseudo-
reflections in G and a "central automorphism," by which we mean a map r such that 'g -g-1
is always central. Letting V denote the vector space on which G acts irreducibly, Marin
and Michel describe how each reflection-preserving automorphism can be interpreted as
the composition of an automorphism induced from the normalizer of G in GL(V) and an
automorphism induced from the Galois group of K over Q, where K is the field of definition,
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i.e., the extension of Q generated by the traces of elements of G. They further discuss how
to construct central automorphisms from the linear characters of G.

Marin and Michel's paper does not go as far as to actually write down the definitions of
all the automorphisms in a very accessible fashion. Shi and Wang in the article [93] do write
down explicit formulas, but only for the subgroup of reflection-preserving automorphisms
of G(r, p, n). From elementary considerations and without too much difficulty, one can
give a complete and explicit description of Aut (G(r, p, n)), and we provide this here for

completeness. It is possible to glean many of these results from Shi and Wang's classification

[93] and Marin and Michel's work [84]. The content of this section is, as such, to produce
from a short, self-contained argument actual formulas for all the automorphisms of G(r, p, n)
which we can use to classify their generalized involution models.

In what follows, we denote by Inn(G) the group of inner automorphisms of a group G;
by Out(G) the quotient group Aut(G)/Inn(G); and by Z(G) the center of G. Fix positive
integers r,p, n with p dividing r. Let ej = (0,..., 0,1,0,... ,0) E (Zr)" denote the standard
vector in the obvious free basis of (Zr)" over Z,, and define elements si, s', s E G(r, r, n) and
t, c E G(r, 1, n) by

si = (0, (i, i + 1)) for i = 1, . .. , n - 1,

s' = (ei - ei+1, (i, i + 1)) for i = 1,... , n - 1,
s = (ei - e2 , 1), (1.6.1)
t = (el, 1),

c= (el + e2 + --- + en, 1) .

Note that the elements s', s, are only defined for r > 2 and n > 2, and that s' = s 1 s. Also,
observe that each si and s' has order 2 while s, t, c all have order r. In particular when
r = 1 we have s = t = c = 1.

The group G(r, p,rn) is generated by s', si, ... , snP, ' or by s1, ... , sa_, s, tP; we can

omit from these lists s' and s if p = 1 and tP if p = r. Brou6, Malle, and Rouquier [21] give
presentations for G(r, p, n), as well as for the exceptional groups Gi, using the former set of
generators; however, the latter set will be more convenient in many of our definitions.

For each integer j we note that

ci = t - (sitisi) - (s 2 sitjsis2 ) ... (s -- s 2 sitjsis 2 ... sn-1) E Z (G(r, p, n)). (1.6.2)

The center of G(r, p, n) almost always lies in the subgroup of G(r, 1, n) generated by c, as
we note for later use in the following basic lemma.

Lemma 1.6.1. Let r, p, n be integers with p dividing r. If d = gcd(p, n) then

(Z,)n n Z (G(r, p, n)) = {cp/ : j E [0, dr/p - 11}.

This subgroup is equal to the center of G(r, p, n) unless (r, p, n) is (1, 1, 2) or (2, 2, 2), in
which case G(r, p, n) is abelian.

Proof. We leave this easy exercise to the reader. E
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To make our notation less cumbersome, we set

C(r, p, n) = (Z,), n Z (G(r, p, n)) .

The following definition in some sense names all nontrivial outer automorphisms of G(r, p, n).
Given j, k E Z and z E C(r, 1, n), let Ozj,k,z : G(r, 1, n) -+ G(r, 1, n) be the map

aj,k,z : (x, ) -* z e(c)C(x).k(jX, 7), for x E (Zr)n, 7 E Sn. (1.6.3)

We recall that A : (Z,)n -> Zr is the homomorphism A(x) = x 1 + x 2 + ... X. In our
superscripts we naturally identify Zr with the integers [0, r - 1] and view Zr as a Z-module.
Since c has order r, this is well defined. Also, f : Sn -+ Z>0 denotes the usual length function,
defined as the minimum number of factors needed to write a permutation as a product of
the simple transpositions si, or equivalently the cardinality of a permutation's inversion set.

The map aj,k,, has the following effect on our generators:

Si - zsi, s; zs'ss )S1 s - si, C cts, C -4 C+nk.

Observe that a1,0,1 is the identity and a- 1,0 ,1 is the inverse transpose automorphism g - .
The map aj,k,z is often but not always an automorphism, as we see in the following lemma.

Lemma 1.6.2. Let r, p, n be positive integers with p dividing r. If j, k E Z and z E C(r, 1, n),
then the map ae,k,z restricts to an automorphism of G(r, p, n) if and only if

gcd(j, r) = gcd(j + nk, r/p) = 1 and z E C(r, p, n) and z 2 = 1. (1.6.4)

Proof. Assume aj,k,z restricts to an automorphism of G(r, p, n). The image zsi of si then
has order two and belongs to G(r, p, n), so z2 = 1 and z = zsj - si E G(r, p, n), which implies
z E C(r,p,n) since z E C(r, 1,n). Likewise, the image si of s has order r so gcd(j, r) = 1,
and the image Cp(j+nk) of cP has order r/p so gcd(j + nk, r/p) = 1.

Conversely, suppose (1.6.4) holds. Since cP E G(r, p, n) and A(jx) = j - A(x), it follows
that aj,k,z maps G(r, p, n) into itself. One easily checks that aj,k,z is a homomorphism
using the following observations: c, z are central; if 7r, a E S, then f(w) + f(o-) - (ro-)
is even; and A(u(x)) = A(x) for all x E (Zr)" and o- E Sn. It remains only to show
that ajk,, : G(r, p, n) -> G(r, p, n) is bijective, and for this it suffices to show that aj,k,z is
surjective.

To prove this, we first observe that z is either the identity or the element cr/ 2 when r is
even and nr/2 is a multiple of p. Assume this latter case occurs; since A (Lei + - - - + 1e)=
nr/2 we then have aj,k,z(z) = C(j+nk)r/2. If r/p is even then gcd(j + nk, r/p) = 1 implies that
j + nk is odd. If r/p is odd then p is even and r/2 is an odd multiple of p/2, so n must
be even in order for nr/2 to be a multiple of p. Since r is even and gcd(j, r) = 1, j is odd,
so again j + nk is odd. Hence (j+nk)r/2 = Cr/ 2 = z, and we conclude that in either case
aj,k,z(z) = z.

Given this observation, it follows that aj,k,z(zsi) = si for all i. Furthermore, if j' is an
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integer such that jj' 1 (mod r), then aj,k,,(si') = s. Finally, if k' is an integer such that

(j + nk)k' = -j'k (mod r/p), then

aj,k,z (ek' tP') _ (j+nk)k' . j'ktpjj' = tp.

Since there exist such integers j', k' by assumption and since s,... sn-1, s, tP generate G(r, p, n)
it follows that our map is surjective and hence an automorphism. l

Given g E G(r, 1, n), let Ad(g) : x -* gxg-1 denote the corresponding inner automor-

phism. Each such Ad(g) of course restricts to an automorphism of the normal subgroup

G(r, p, n), and with slight abuse of notation we regard Ad(g) for g E G(r, 1, n) as an element

of Aut (G(r, p, n)). The following lemma gives a useful characterization of which maps Ad(g)

restrict to elements of Inn (G(r, p, n)).

Lemma 1.6.3. Let r, p,n be positive integers with p dividing r. If g E G(r, 1,n), then the

following are equivalent:

(i) Ad(g) restricts to an inner automorphism of G(r, p, n).

(ii) Ad(g)(w) is conjugate to -x in G(r, p,n) for all 7r E S,.

(iii) A(g) E dZr where d = gcd(p, n).

Proof. The lemma is trivially true if n = 1 so assume n > 2. Clearly (i) implies (ii), so

assume (ii) holds. Choose a E [0, p - 1] such that g = g'ta for some g' E G(r, p, n) and let

7r = (1, 2, .. n) E Sn. Then (ii) implies

Ad(t')(ir) = (-ae1 + ae2 ,7r) = (x, -)r(x, o-)~ 1

for some (x, a) E G(r, p, n). Conjugating both sides of this equation by a-' gives

(-ae,-1(1) + ae-1(2), O' 7r-) = ((Xn - xi)ei + (xi - X2 )e 2 + - + (Xn-1 - Xn)en, 7r).

(1.6.5)

Since Cs.(7r) = (-r), we must have o- = ?ri- 2 for some i E [n]. In this case a-'(2) = i and

a 1 (1) = i - 1 or n, and so if we make the abusive definition X-, = xj for j E [n], then

equation (1.6.5) implies

def
xi_1 - xi = a, Xi-2 - Xi-1 = -a, and i-2 = Xi-3 = Xin = b E Zr-

From these identities, one computes a+bn = X 1 +X2 +- - -+ E pZr, so we have A (g)+bn =

A(g') + a + bn E pZ, C dZr. Since bn E dZr, (iii) follows.
Finally assume (iii) holds. Then since d = ip + jn for some i, j E Z, it follows that

(viewing Zr as a Z-module) A(g) - kn E pZr for some k E Z in which case gc-k E G(r, p, n).

Since c is central, we have Ad(g) = Ad(gc-k) which gives (i). E
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In almost all cases every automorphism of G(r, p, n) arises by composing Ad(g) for some

g E G(r, 1, n) with some a,k,z. To make this precise, we first require the next lemma.

Lemma 1.6.4. Let r, p, n be positive integers with p dividing r. Then every automorphism of
G(r, p, n) which preserves the normal subgroup (Zr)n n G(r,p, n) = {g E G(r,p, n) : Ig = 1}
is of the form

Ad(g) o aik,,, for some g E G(r, 1, n) and j, k, z as in (1.6.4),

unless (r, p, n) is (1, 1, 6).

The following elementary proof uses many of the same arguments as the proof of [84,
Proposition 4.1], which describes a related but less specific result.

Proof. Let G = G(r, p, n) and N = (Zr)n n G, so that G = N x Sn. For the present
we assume n $ 6. Fix v E Aut(G) and suppose v(N) = N. If proj : G -+ S, denotes
the homomorphism (x,,r) - 7r, then it follows that map 7r - proj o v(0, 7r) is an inner
automorphism of Sn, and so v = Ad(w) o v' for some w E Sn and some V' E Aut(G) with

v'(si) = (xi,1ei + - - -+ xi,en, (i, i + 1)) for some choice of xj,3 E Zr (1.6.6)

for i = 1, ... ,n - 1. Since s? = 1 we must have xi,j = -xj,j+1 and 2xij = 0 for j g
{i, i + 1}. Since si and s1 commute for j > 2, inspection of the equal expressions v'(si) and
v'(sj)v'(si)v'(sj) shows that X1,3 = X1,4 = ... = X1,.. Therefore

v'(si) = zsaisi, for some a1 E Zr and some z E C(r, p, n) with z2 = 1.

The conjugacy class of zsa1s 1 consists of elements of the form z (aej - aej, (i, j)) for a E Zr
and 1 < i <j5 n. The element v'(si) must be of this form, as well of the form (1.6.6), so we
conclude that v'(si) = z (ajej - aiei±1 , (i, i + 1)) for some ai E Zr for each i = 1,.. , n - 1.
Once can check that if

= j1 I=i , i) E G(r, 1, n) then y1 v'(si) - y = zsi for all i,

and so v = Ad(wy) o v" where v" E Aut(G) has v"(si) = zsi for all i. Since N is normal in
G(r, 1, n), it follows that v"(N) = N.

Since s and t commute with sj for j > 2 and j > 1 respectively, and since sissi = s-1,
it follows that we can write

v"(s) = z'si and v"(t) = z"tri', for some j, j' E Zr and z', z" E C(r, p, n) with (z')2

If n = 2 then it follows that either z' = 1 or z' = Sr/2, and so in this case we lose no generality
by assuming z' = 1. If n > 2, then since s1 si = (s 2 SjS 2)-'S1 (S 2SjS2 ), we have

zz'sIs-1 = v"(sis) = v"((s 2 ss2)>1S1(s 2 sS2)) = zsisj
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so z'= 1 automatically. Hence v"(s) = si for some j E Z,. Since sP = tPsit~Ps1 , we obtain

(pjej - pje 2 , 1) = v"(st) - zsi - v"(tP)-l - zsi = (pj'ei - pj'e2 , 1) -

Therefore tPi = tra' so we can assume ' = j. Since IP has order r/p, the central element z"

must be of the form cPk for some integer k, and so v"(tP) = cPktpi. But now v" agrees with

the map aJ,k,Z on the generators i, ... , s,_-, s, tP, and so we conclude by Proposition 1.6.2
that v" = a

3
,k,z. Thus v = Ad(wy) o aJ,k,z as desired.

To finish our proof we must treat the case n = 6 and r > 1. In this situation, N is

a characteristic subgroup by [84, Lemma 4.21 and so the map ir -+ proj o v(O, 7r) again

induces an automorphism of S,. Our desired conclusion will follow if we can show that this
automorphism is inner, since then we can invoke all of the preceding arguments. This is

shown in the last paragraph of the proof of [84, Proposition 4.1]. L

Barring a finite number of cases, the subgroup (Z,)n n G(r, p, n) is typically characteristic
and so every automorphism of G(r, p, n) is of the form given in the lemma. To account for
the possible exceptions, we define additional automorphisms 77 rp,n, 'r,, E Aut (G(r, p,r))
on generators by

772,2,2 :i 1 S+ 774,2,2 S 81 t2 773,3,3 :i S1 S2
772,1,2 : S 1 tII

i 8 + S s1 S + 1 1 S2 1 + 1

t +s 2 +1 S f( 8+1
1

771,1,6 S 1 - (1, 2)(3, 4)(5, 6)
772,2,4 S1  s

773,3,3 :1 -+ S1 ' 2 '2 S2 (1, 5) (2, 3) (4, 6)

S2 S2  S3 -+ (1, 2) (3, 6) (4, 5)
S3  1+ S

s'1 as2 1S 4 -+ (1, 5)(2, 6) (3, 4)
S 1 S3 S5 F-+ (1, 2) (3, 5) (4, 6)

and in all other cases 77r,p,n = 1 and q',p, = 1. Thus ?',.,,,, is the identity unless (r, p, n) =

(3,3,3).
Many of these automorphisms are well known: for example, 7q2,1,2 and 772,2,4 are the graph

automorphisms 2 B 2 and 3 D 4 , and 771,1,6 is the outer automorphism of S 6 . The automor-

phisms 774,2,2 and 773,3,3, 77,3,3 and 772,2,4 derive from normal embeddings of G(4, 2,2) < G6
and G(3, 3, 3) < G 26 and G(2, 2,4) < G 28 in exceptional groups. For more information on

the structure of this embedding, see [20, Proposition 3.13] or [84, Section 31.

Theorem 1.6.5. Let r, p, n be positive integers with p dividing r. Then every automorphism

of G(r, p, n) is of the form

(77r,p,n)" 0 (77r,,,)i o Ad(g) 0 aj,k,z

for some g E G(r, 1, n), ii, i 2 , j, k E Z, and z E C(r, p, n).
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Remark. Of course, by Lemma 1.6.2 the given expression is an automorphism of G(r, p, n)
if and only if gcd(j, r) = gcd(j + nk, r/p) = 1 and z2 = 1. Note, furthermore, that 7 r,,n =

r,p,n = 1 if (r, p, n) is not (2, 1, 2), (2, 2, 2), (4, 2, 2), (3, 3, 3), (2, 2, 4), or (1, 1, 6). In these
cases, it is easy to see that the reflection-preserving automorphisms of G(r, p, n) are precisely
the maps of the form Ad(g) o aj,o, 1 , as predicted by [93, Theorem 7.1].

Proof. One can check directly that the theorem holds if (r, p, n) is (2, 1,2), (2, 2,2), (4, 2,2),
(3, 3,3), (2,2, 4), or (1, 1, 6); we have done so using the computer algebra system GAP. If

(r, p, n) is not one of these exceptions, then by [84, Lemma 4.2] the subgroup (Zr)"nG(r, p, n)
is characteristic, and hence preserved by Aut(G), in which case the theorem follows imme-
diately from Lemma 1.6.4. L

We can be a little more specific about the uniqueness of the decomposition given in the
theorem, and this will allow us to give a formula for the order of Aut (G(r, p, n)). Given
integers j, k and z E C(r, 1, n), we adopt the shorthand

,j a1% j,1 : (X, 7F) F-+ (jX, w) and Yk,z ai,k,z : (xwx) - z C (X 7 )

One checks that

Yk,z 0 7k',z' = 7k",zz' and 3j 0Y k,z = 7(k,z O 3 = ej,jk,z,

where k" = k + k' + nkk'. Since in this notation ao,1,1 = #1 = yo,1
automorphism of G(r, p, n), it follows that the sets

all equal the identity

and C = f -yk,, : gcd(1I+nk, r/p) = 1, z E C(r, p, n), z2

are subgroups of Aut (G(r, p, n)). Define additionally the subgroups

def 
,X = ('lrp,ni 7$,p,n)

def
and A = f{Ad(g) :g E G(r, 1, n)}

of Aut (G(r, p, n)). Using the previous result, we have the following.

Proposition 1.6.6. Let r, p, n be positive integers with p dividing r. Then

(i) Aut (G(r, p, n)) = XABC and XA is a normal subgroup of Aut (G(r, p, n)).

(ii) a. Ifn= I thenB=C, andifn> I then BnC={1}.

b. We have

c. We have

A n BC = f {Oj,k,z : (j, k) E {(-1, 1), (1, 0)}} if n = 2

{M} ifin #2.

XnABC= A
{1}

if (r, p, n) =(3, 3, 3)

if (r, p, n) # (3, 3, 3).

(iii) If n > 2 then Aut (G(r, p, n)) 2 (XA x B) x C.
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This result is closely related to [84, Proposition 4.11, which asserts that any automorphism

of G(r, p, n) is the composition of an automorphism which preserves the pseudo-reflections

in G(r, p, n) and a central automorphism. The subgroup C C Aut (G(r, p, n)) is the set of

central automorphisms of G(r, p, n) and XAB C Aut (G(r, p, n)) is the subgroup of automor-

phisms which preserve the reflections. Furthermore, if we view G(r, p, n) as a subgroup of

GL(C") whose elements are generalized permutation matrices, then the subgroup XA con-

sists of all automorphisms induced from elements of the normalizer of G(r, p, n) in GL(C").

The subgroup B likewise consists of all automorphisms induced from elements of the Galois

group of Q((.) over Q.

Proof. To prove the first half of (i), one checks that BC is precisely the set of all automor-

phisms of G(r, p, n) of the form a,k,z; hence, by the preceding theorem Aut (G(r, p, n)) =

XABC. One can check the remaining assertions in the finite number of cases when X # {1}

directly, by hand or with a computer algebra system. Therefore assume X = {1}.

To show A < Aut (G(r, p, n)) we observe that if g = (y, w) E G(r, 1, n) then aj,k,z oAd(g) o

a 1,z = Ad(g') where g' = (jy, w). Our description of B n C is trivially verified. Suppose

n = 2 and z E C(r,p,n) has z2 = 1. We have two cases: either z = 1 or z = (jei + le 2 , 1),
the latter of which can only occur if r is even. One checks that a1,1,z = Ad(g) for g = si if

z = 1 and for g = (Eei, (1, 2)) if z 4 1. Likewise, 7yo,z is the identity if z = 1 and Ad(g) for
g = (Qei, 1) if z $ 1. Since n = 2 we have

( Ad(g)(s) = s Ad(g)(s) = s1 '
Ad(g)(si) = sasi for some a E Z and I or =

\Ad(g)(tP) = tP Ad(g)(tP) = cPt-P

and it follows that only elements of the form O3 ,k,z with (j, k) = (1,0) or (-1,1) can be

contained in A n BC, which proves (ii).

If n = 1 then A = {1}. Suppose n > 2 and Ad(g) = aj,k,z for some g = (y, -x) E

G(r, 1, n) and j, k, z. This implies wuir-1 = - for all o E Sn so 7 = 1 since Z(Sn) is trivial.
Consequently Ad(g) fixes both s and t so we must have j = 1 and k = 0. Furthermore,
Ad(g)(si) = sM-'12 s1 so we must have yi = y2 and z = 1 since n > 2. Therefore a,k,z = 1 SO
A n BC = {1}. Since each element in C commutes with all elements of A and B, part (iii)

now follows from (i) and (ii). l

From this proposition we are now able to derive a formula for the order of the auto-

morphism group of G(r, p, n). Here #(x) denotes Euler's totient function, which we recall is

defined as the number of positive integers y < x with gcd(x, y) = 1.

Corollary 1.6.7. Let r, p, n be positive integers with p dividing r. Assume n > 1 and write

e for the greatest divisor of r/p with gcd(e, n) = 1. Then

Aut (G(r, p, n)) ' = ''' 0(r) -(e)/e - n! - r"/p
r,p,n

j Out (G(r, p, n)) I = c,,p,n 0(r) -(e)/e - r/p - gcd(p, n)
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* IZ (G(r,p,n)) = c', - r/p - ged(p, n)

where
c1,1,2 = 1, c2,2,2 = 3, c2,1,2 = 1, c4 ,2 ,2 = 3/2,

C3,3 ,3 = 4, c 2,2,4 =6, c1,1,6 = 2,

1,1 ,2  2 2,2,2 2

and in all other cases

1/2 if n = 2,
=n I ifr is odd andn >2, and / 1.

1 if p is even but r/p and n > 2 are odd, 'p'"
2 otherwise,7

Remark. If n = 1 then G(r, p, n) =Z,/p so |Aut (G(r, p, n)) = Out (G(r, p, n))| = q(r/p).

Proof. The formula for the order of the center of G = G(r, p, n) follows immediately from
Lemma 1.6.1, so it suffices to prove our formula for IAut(G). If (r,p,n) is one of the
exceptional cases (1, 1, 2), (2, 2, 2), (2, 1, 2), (4, 2, 2), (3, 3, 3), (2, 2, 4), or (1, 1, 6), then our
formula asserts that jAut(G)J is 1, 6, 8, 48, 432, 1152, or 1440, respectively. One easily
checks that these orders are correct: all but two of the exceptions are Weyl groups whose
automorphisms are well known (e.g., see [9]), and one can compute the outer automorphisms
of G(4, 2, 2) and G(3, 3,3) by hand or with a computer.

Assuming (r, p, n) is not one of these exceptions, we have JAI = JG(r, 1, n)I/IC(r, 1, n)j =

n! - rn- by Lemma 1.6.1 and IBI = 0(r). To compute ICI, we note that yk,z = yk',z, if and
only if k = k' (mod r/p) and z = z'. Thus the elements of C are in bijection with all choices
of k E [0, r/p - 1] and z E C(r, p, n) such that gcd(1 + nk, r/p) = 1 and z 2 = 1. To satisfy
these conditions, the central element z must be the identity if r is odd, or if r is even but
nr/2 is not a multiple of p, which occurs if and only if p is even but r/p and n are odd.
In all other cases, z can be either 1 or c,/2. Additionally, since 1 + nk is coprime to r/p if
and only if 1 + nk is coprime to e, it follows that there are O(e) - (r/p)/e possible choices of
k E [0, r/p - 1] with gcd(1 + nk, r/p) = 1. Thus |C| = ar,,,, - #(e)/e - r/p where

{ 1, if r is odd, or if p is even but r/p and n are odd,
c,, = 2 otherwise.

As n > 1 and X = {1}, by the preceding proposition we thus have

IAut(G) = jAn BC|BnC| | An BC| - 0(r) - #(e)/e -n! -r /p.

If n > 2, then JA n BCj = 1 and if n = 2 then it follows from part (ii) of Proposition
1.6.6 that JA n BC = 2 2,,p,, so in both cases we obtain Ei,,,/A n BCI = c,,,1,/',,,, as
desired. 0
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1.7 First main theorem

In this section we complement the results of Section 1.5 by proving that G(r, p, n) does not
have a generalized involution model if gcd(p, n) ;> 2, unless gcd(p, n) = n = 2 and r/p is
odd. Combining this with a computer assisted investigation of the exceptional groups, we
will be able to completely determine which finite complex reflection groups have generalized
involution models.

1.7.1 Reductions

We begin by observing that finding all generalized involution models of a group often is

equivalent to classifying the generalized involution models defined with respect to a single,
fixed automorphism. Say that an automorphism r E Aut(G) of a group G is class-preserving
if 'g is conjugate to g for all g E G, or equivalently if 7P o r = $ for all 0 E Irr(G).

Clearly all inner automorphisms are class-preserving, but a finite group can possess outer

automorphisms which are class-preserving, as was first shown by Burnside [23]. The non-
existence of class-preserving outer automorphisms can greatly reduce the problem of finding

all generalized involution models of a group by the following lemma.

Lemma 1.7.1. Let G be a finite group with an automorphism T E Aut(G) such that T 2 = I
and

Z ?(1)=jf{geG:g-*g = 1}. (1.7.1)
ikEIrr(G)

If G has no class-preserving outer automorphisms, then the following hold:

(i) The image of r in Out(G) is central.

(ii) Any generalized involution model for G can be defined with respect to r.

Remark. The conclusion of the lemma can fail if G has class-preserving outer automor-
phisms. Wall [102] showed that the semidirect product G = Zm x Z' consisting of all pairs

(a, x) E Zm x Zx with the multiplication

(a, x)(b, y) = (a + xb, xy), for a, b E Zm, x, y E Zx

has a class-preserving outer automorphism r of order two if m is divisible by 8. Taking m = 8
gives a group G of order 32, the smallest group with a class-preserving outer automorphism.
One can check using a computer algebra system (we used GAP) that this G has a generalized

involution model with respect to 1 E Aut(G) but not with respect to the class-preserving
outer automorphism r, even though (1.7.1) holds.

Proof. Assume G has no class-preserving outer automorphisms. If a E Aut(G) and r' =

a 0 T 0 a-1, then by Theorem 1.2.1, we have c.(V') = 1 and c.,(7p) = c,(V o a) = 1 for

all V/ E Irr(G). Therefore, by [24, Proposition 2], rg is conjugate to ig for all g E G, so
a o T o a-1 0 r-1 is class-preserving, and therefore an inner automorphism. This proves (i).
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Now suppose G has a generalized involution model with respect to v E Aut(G) with
v2 = 1. By Theorem 1.2.1, it follows that c,(0) = E,(7) = 1 for all 0 E Irr(G), so by [24,
Proposition 2] each g E G is conjugate to both rg-1 and "g-l. Replacing g with g-1, one
sees that 'g is therefore conjugate to "g for all g E G, which suffices to show that r o v-i is
a class-preserving automorphism. Hence r = Ad(x) o v for some x E G. Since T2 = V2 = 1,
the element z def X - Vx E G is central. Fix / E Irr(G) and let wV,(z) t denote the
value of its central character at z; then O(zg) = w.(z)O(g) for all g E G, and it follows
that wp(z)ET(I) = ic,(*) = c,-() = 1 so O(z) = V(1). Since this holds for all irreducible
characters of G, we have z = 1. This means that g - 'g = gx - 'g - x-1 = (gx) - g)
and it follows that the map IG,T -- IG,v given by g -* gx is an isomorphism of G-sets. In
particular, the twisted conjugacy classes with respect to T and v are in bijection and have
the same twisted centralizers. Therefore the generalized involution model with respect to v
can also be defined with respect to r, which proves (ii). 0

As a consequence of this result, to determine whether a group G with no class-preserving
outer automorphisms has a generalized involution model, one only needs to check (1) if there
exists r E Aut(G) with T

2 = 1 such that (1.7.1) holds, and (2) if G has a generalized invo-
lution model with respect to r. This strategy is especially apposite for irreducible complex
reflection groups in light of the following result given in a slightly different form as [84,
Proposition 3.1].

Lemma 1.7.2 (Marin, Michel [84]). A finite complex reflection group has no class-preserving
outer automorphisms.

Remark. We remark that it is a tedious but not overly difficult exercise to prove the lemma
directly for the irreducible groups G(r, p,n), and via computer calculations for the excep-
tional groups. The lemma then holds for all finite complex reflection groups because a
class-preserving automorphism of a direct product must restrict to a class-preserving auto-
morphism of each factor.

These results become especially useful when doing calculations. To determine which of
the exceptional irreducible complex reflection groups G4 ,.. ., G 37 have generalized involution
models, we will rely on a computer-assisted brute force search. The preceding lemmas greatly
diminish the size of this calculation, because they show that one needs to examine at most
one automorphism for each group to determine if a generalized involution model exists. In
Table A.1 we provide a list of automorphisms r E Aut(G) for which (1.7.1) holds, if this
is possible. These automorphisms are defined on the generators s, t, u, v, w which appear in
the presentations for G 4 ,. . . , G 37 in the appendix of [21]. These generators coincide with the
generators for the exceptional groups in the GAP package CHEVIE, which allows one easily to
compute things with this data.

Vinroot, elaborating upon the work of Baddeley [11], describes in [101] all finite Coxeter
groups with involution models in the classical sense; in particular, the only irreducible finite
Coxeter groups which fail to have involution models are those of type D 2" (n > 1), E6 , E7 ,
E8 , F4 , and H 4 . If G is a finite Coxeter group then all of its representations are equivalent
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to real representations, and so by the Frobenius-Schur involution counting theorem, (1.7.1)

holds with T = 1. Hence, by Lemmas 1.7.1 and 1.7.2, a finite Coxeter group has a generalized

involution model if and only if it has an involution model, and we are left with the following

corollary of [101, Theorem 1].

Corollary 1.7.3. A finite Coxeter group has a generalized involution model if and only if it

has an involution model, which occurs if and only if all of its irreducible factors are of type

An, Bn, D2 .+l, H3 , or 12(n).

Remark. The Coxeter group of type G2 is omitted from this list only because it is isomorphic

to the one of type 12(6). We note that the Coxeter group of type 12(n) is the involutory

complex reflection group G(n, n, 2), and that restricted to this group the map r : g -+ g

is a nontrivial inner automorphism. Thus, while the group has an involution model in the

classical sense, it also has a generalized involution model with respect to T, which is consistent

with Lemmas 1.7.1 and 1.7.2. The same is true for groups of types An, Bn, and D 2n+l, but

vacuously since in these cases the inverse transpose T acts as the identity map.

In order to reduce our investigation of finite complex reflection groups to irreducible

groups, we require one additional lemma. This next statement generalizes [101, Lemma 1]

which considers only involution models.

Lemma 1.7.4. If H 1,... , H,, are finite groups then H = H~n> Hi has a generalized involution

model if and only if each Hi has a generalized involution model.

Proof. If H has a generalized involution model with respect to T E Aut(H), then each

h E H is conjugate to Th-1 by [24, Theorem 1.2.1 and Proposition 2], and so T restricts to

an automorphism of each factor Hi. Given this fact, it follows that any generalized involution

model for H decomposes in an obvious way as a "product" of generalized involution models

of the factor groups Hi, and the proof of the lemma becomes a simple exercise. L

1.7.2 Addressing the case with p and n not coprime

We now demonstrate that G(r, p, n) does not have a generalized involution model if gcd(p, n) =

2, unless n = 2 and r/p is odd. Our proof of this proceeds in two steps, and will use somewhat

different methods. We begin in the case when gcd(p, n) = 2 and r/p is even.

Lemma 1.7.5. Let r, p, n be positive integers with p dividing r. If gcd(p, n) = 2 and r/p is

even, then G(r, p, n) does not have a generalized involution model.

Proof. We can tackle this case by much more direct methods than when r/p is odd. Let

G = G(r, p, n) and define -r as the usual inverse transpose automorphism g - 7. Since

gcd(p, n) = 2, it follows from Theorem 1.4.2 that equation (1.7.1) is satisfied, so by Lemmas

1.7.1 and 1.7.2, we need only show that G has no generalized involution models with respect

to r. Towards this goal, our strategy is simple. Since r/2 is a multiple of p, the central

element z = Cr/ 2 E G(r, 1,n) is contained in G; here c is defined as in (1.6.1). We claim that
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z lies in the commutator subgroup of the twisted centralizer CG,, (w) for every generalized
involution w E IG,.

If this holds, then z lies in the kernel of every linear character A of CG,,(w) and therefore
also in the kernel of the induced character Indg0 s(.)(A) since z is central. In this case, if G
has a generalized involution model {Ai : Hi -+ C} with respect to r, then z lies in the kernel
of E; IndG (A), implying the contradiction

1 z E ker()=
4'EIrr(G)

To prove our claim, suppose w = (a, 7r) e G has w - Tw = (7r- 1 (a) - a, w2 ) (0,1) = 1.
Then -x E Sa, must be an involution with wr(a) = a. We lose no generality by conjugating
w by an element of Sn C G since this has the effect of conjugating the twisted centralizer
CG,. (w) and fixing z. Therefore, we can assume that w = (1, 2)(3, 4) ... (2k - 1, 2k) for some
k < n/2, in which case wr(a) = a implies a 2i- 1 = a 2i for all i = 1,... , k. Since r and p are
even and A(a) E pZr, the number of ai V 2Zr is even; therefore, letting f = n/2 - k, there
are distinct indices {i 1 ,, ji, ... , i1, je} = [2k +1, n] such that ai, - aj E 2Zr for all t = 1, ... , f.
For each t, let bt E Zr such that 2bt = ai, - aj. Now define g = (x, a) E G by

0, if i E [1, k],
c = (1, 2) ... (2k - 1, 2k)(ii, ji) (iZ, je) E S, and xi = bt, if i = it,

-be, if i = it.

One can check that we then have a E Cs,(7r), 7r(x) = x, and a + 2x = c(a), and so

g - W - "g-1 = (o- 1 r-1 (x) + or 1(a) + o7- 1 (x), oa'ro-) = (or-'(a + 2x), 7r) = w.

Thus g E CG,r(w). Since r is divisible by 4 and r/2 is divisible by p, we can define h =

(y, 1) E G by setting y E (Zr)n to have

r/4, if i E {1,3, ... ,2k - 1},

-r/4, if i E {2,4, ... 2k},
r/2, if i = it,

0, if i = jt.

Observe that 7r-1(y) = -y since r/2 = -r/2, so h - w - 'h-1 = wh-'h = w and h E CG,r().
Our claim now follows by calculating ghg- 1 h- 1 = (9-1(y) - y, 1) = z, which completes the
proof. 0

If gcd(p, n) = 2 but r/p is odd, then the crucial step in the preceding proof does not
hold. However, in this case the group G(r,p,n) still fails to have a generalized involution
model, provided n > 2. To show this, we will use two results from Baddeley's thesis [11].

First, recall that a model for a group G is a set {Ai : Hi -+ C} of linear characters of

subgroups of G such that >1 Ind% (A) = E Ir-(G) 0. Following Baddeley, we say that a
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model {Ai : Hi -+ C} is based on a set S of subgroups of G if for each i there exists a
subgroup Hi E S with a linear character A' : H -+ C such that IndG (A;) = Ind&, (A'). Thus

{Ai : Hi -+ C} is based on the set of subgroups {Hi}, as well as on any set of subgroups
which are conjugate in G to the subgroups Hi, as well as on the set of all subgroups of G.
For each n > 1, let g(n) denote the set of subgroups of Sn of the form

Wk x Si x Sj, where i, j, k are nonnegative integers with i + j + 2k = n

and Wk C S2k is the centralizer of the permutation (1, 2)(3, 4) ... (2k - 1,2k) E S2k. The
centralizer of any involution in Sn is conjugate to a subgroup of the form Wk x S = Wk x So x
S E 9(n) for some j, k with j + 2k = n, so any involution model for Sn is based on g(n).
(This is not a vacuous statement; [49] constructs an involution model for the symmetric
group.) Baddeley states the following result as [11, Corollary 4.3.16].

Lemma 1.7.6 (Baddeley [11]). Suppose M is a model for Sn based on g(n). If M contains
both the trivial character IL E Irr(Sn) and the sign character sgn E Irr(Sn) then n = 2.

To state our second needed result, let 4 : G -+ G' be a surjective group homomorphism.
Suppose H C G is a subgroup and V) E Irr(H). If ker(4') D ker() n H, then there
exists a unique irreducible character V' E Irr(D(H)) such that 0 = ?' o D, and we define

R1Z(0) E {O} U Irr(4(H)) by

f /', if ker(V)) D ker(f) n H,
0, otherwise.

The following appears as [11, Theorem 4.2.3].

Theorem 1.7.7 (Baddeley [11]). Let ( : G -- G' be a surjective group homomorphism. If
M is a model for G and

A = {A E M : R.(A) / 0},

then M. De= {ZR.(A) : A E M} is a model for G'.

We now apply the preceding lemma and theorem to prove that most of the complex
reflection groups G(r, p, n) with gcd(p, n) = 2 do not have generalized involution models.
We proceed by an argument similar to one used by Baddeley to prove that the Weyl group
of type D 2, does not have an involution model if n > 1 [11, Proposition 4.8.1].

Lemma 1.7.8. Let r, p, n be positive integers with p dividing r. If gcd(p, n) = 2, then
G(r, p, n) has a generalized involution model if and only if n = 2 and r/p is odd.

Proof. Assume gcd(p, n) = 2 so that n and r are both even. Given Lemma 1.7.5, we may
assume that r/p is odd. Suppose M = {Ai : Hi -+ C} is a generalized involution model for
G = G(r, p, n) with respect to some automorphism T E Aut(G). Then each Hi = CG,,(wi)

for a set of orbit representatives wi E TG,,, and by Theorem 1.4.2 and Lemmas 1.7.1 and
1.7.2, we may assume that r is the usual inverse transpose automorphism g 4 g. Identify
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Z2 C Z, as the subgroup Z2 = {O, r/2} = (r/2)Zr, so that we can view G(2, 2, n) as a
subgroup of G.

If we define 4 : G(r, 1, n) -+ Sn as the surjective homomorphism given by (D : (x, 7r) -- 7r
then D restricts to a surjective homomorphism G(r, p, n) -> Sn, and the image under ' of
each r-twisted centralizer Hi is conjugate to some subgroup Wk x Si x Sj in g(n). Thus the
model M. for S, defined by Theorem 1.7.7 is based on g(n).

We now observe that the generalized involutions

e = ((0,..., 0), 1) = I E _TC and w = ((1, -1, 1, -1... 1, -1),1) E G,,

belong to disjoint twisted conjugacy classes, since every element of the orbit of e is of the
form (x, 1) E G with xi E 2Zr for all i. Since the stabilizers of elements in a given orbit are
all conjugate, we may therefore assume without loss of generality that one linear character
of CG,,(e) appears in M and one linear character of CG,r(w) appears in M.

Because r/p is odd, so that r/2 E Z2 C Z, is an odd multiple of p/2, we have

CG,,(e) = (Z2 2 Sn) n G = G(2, 2, n).

To calculate CG,r (w), we observe that if z = ((1, 0, 1, 0, . .. ,1 , 0), 1) E G(r, 1, n) and c E
G(r, 1, n) is the central element defined by (1.6.1),then z - e - 7Z-1 = Wc. Consequently, if
g E G then g -w -rg- 1 = w if and only if g -wc -Tg-1 = wc, and so CG,,(w) = Ad(z) (G(2, 2, n)).

The group CG,.(e) = G(2, 2, n) has only two linear characters A, and A2 , given by restrict-
ing the linear characters tz,. (n) and 1Zr?(1") of G(2, 1, n) = Z2?Sn, respectively. It is evident
from the definition of these characters that ker(D) n G(2, 2, n) = (Z,)" n G(2, 2, n) c ker(Ai)
for i = 1, 2 and that

RZ(.A=) = = Lt E Irr(Sn) and R7 (A2) = X( = sgn E Irr(Sn).

Let X = A2 o Ad(z)- 1; then A', A' are the only linear characters of CG,,(w), and since
DoAd(z)- = as z E ker(4), we have R1Z (A) = R (Ai) $ 0. Thus either R'Z(A 1), R1(A) E
M, or RD (A 2 ), R (A') E M,. In particular I and sgn must both appear in M,, so by
Lemma 1.7.6 we have n = 2. In this case we know by Corollary 1.5.3 that G indeed has a
generalized involution model, which completes the proof.

1.7.3 Summary

We may now prove the theorem promised in the introduction.

Theorem 1.7.9. A finite complex reflection group has a generalized involution model if and
only if each of its irreducible factors is one of the following:

(i) G(r, p, n) with gcd(p, n) = 1.

(ii) G(r, p, 2) with r/p odd.

67



(iii) G2 3 , the Coxeter group of type H 3.

Proof. Let G be a finite complex reflection group. Then G is a product of irreducible complex

reflection groups, so by Lemma 1.7.4 it suffices to prove that the only irreducible complex

reflection groups are those of types (i), (ii), and (iii).

To this end, first suppose G = Gi for some 4 < i < 37 is an exceptional irreducible

complex reflection group. If G = G 2 3 is the Coxeter group of type H 3 , then G has a

generalized involution model by Corollary 1.7.3. To prove no other exceptional groups have

generalized involution models, we resort to an exhaustive computer search using the GAP

package CHEVIE. Several fortunate circumstances make this computation tractable. First, by

Corollary 1.7.3, we do not need to examine the Coxeter groups G 28 , G 30 , G35 , G36 , and G37 .

Second, it follows from Theorem 1.2.1 that the exceptional groups G 27 , G 29 , and G 34 do not

have generalized involution models because, upon examination of their character tables, one

finds that if G is one of these groups then EfErrr(G) V) assumes negative values. Checking

that each of the remaining exceptional groups does not have a generalized involution model

by a brute force search is a feasible and not very time consuming calculation. In particular,

by Lemmas 1.7.1 and 1.7.2 one only needs to examine at most one automorphism for each

group; we list candidates for this automorphism in Table A.1. The remaining exceptional

groups neither are prohibitively large nor have an excessive number of twisted conjugacy

classes.
To deal with the infinite series, suppose G = G(r, p, n) for some positive integers r, p, n

with p dividing r. If gcd(p,n) < 2 then it follows from Corollary 1.5.3 and Lemma 1.7.8

that G has a generalized involution model if and only if G is of the form (i) or (ii). We may

therefore assume gcd(p, n) > 2, so that n > 2 and r > 2.

Suppose G has a generalized involution model with respect to some v E Aut(G) with

V2 = 1. By Theorem 1.2.1 we then have ZEfrr(G V(1) = JIG,,I and ev(0) = 1 for all

E E Irr(G), so by [24, Proposition 2] the elements g- 1 and Vg are conjugate for all g E G.

It follows that v preserves the normal subgroup N = (Z,)" n G, and so by Lemma 1.6.4 we

can write

V = Ad(g) 0 aj,k,z, for some g E G(r, 1, n) and j, k, z as in (1.6.4).

For some a E Z, we have gt-a E G, and if we let v' = Ad(ta) 0 aik,, then g- 1 and 'g are

conjugate for all g E G. This fact implies that v is the composition of an inner automorphism

with the inverse transpose automorphism.

To see this, observe that Ad(ta) fixes all element of N. Therefore, if x = (el - 2e 2 + e3 , 1) E

N then v'x = (j(ei - 2e 2 + e), 1), while all conjugates of x- 1 in G are of the form

(-ei, + 2ei2 - ei3 , 1) for distinct i 1 , i 2 , i 3 E [n].

Since r > 2, we must have j = -1 (mod r), and we may assume j = -1. If p = r then

aj,k,z = aj,o,z for all k. If p < r, then

v'tp = cpkt-P = (p(k - 1)ei +pk(e 2 + + en),1)
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while all conjugates of t-P are of the form (-pe, 1) for i E [n]. Since n > 2, it follows that t~P
and "'tP are conjugate only if pk = 0 in Z,, in which case aj,k,, = a-1,O,z. As Ad(ta)(s 2 ) = s2,
we have "S 2 = zs 2 while all conjugates of s21 = s 2 in G are of the form (bei, - bei, (il, i 2 ))
for b E Zr and 1 < i1 < i 2 < n. Again since n > 2, it follows that "'s2 and s =s 2

are conjugate only if z = 1. Thus aj,k,z = a_1,0,1 is precisely the inverse transpose map.
Furthermore, since a- 1,o, 1 fixes all elements of Sn and since each ir E Sn is conjugate in Sn
to r-1, it follows from Lemma 1.6.3 that Ad(ta) defines an inner automorphism of G.

We therefore may assume that v = Ad(g) o r where g E G and r : g H-+ g is the
inverse transpose automorphism. We now observe that w E G has w - = 1 if and only if

(Wg) - (Wg) = g -'g, so I IG,,J {w E G : w - 7 = g - Tg . Since T = -r and V 2 = 1, the
element g - 'g is central, and as n > 2, this implies that |g -Tg| = 1. Define X,(h) C (Z,)"
for each fixed -x E S, and h E G as the set of x E (Zr)n with

Xi + - - - +Xn E PZr and (X 7) - (x, x) = (7-1(x) -, 72) = h - 7'h.

If x, y E X,(g) then x - y E X, (1) since if X,.(g) is nonempty then 72 = g. Tg| 1. Hence

lX,(g)I < JX,(1)J for all 7 E Sn. Since {w E G: w-. = h -T h} = {(x, w) : 7 E Sn, X E
X,(h)}, it follows that

|IG,,| = |{w E G: w - = g g} = 9 -|T.g) X,( g| |X,(1)| = |{w E G: = }f.
rES, wESn

We thus have EEIrr(G) G(1 i III KEG,rI. By Theorem 1.4.2 this inequality must

become equality, which contradicts the assumption that gcd(p,n) > 2. We conclude that
the only irreducible groups with generalized involution models are those of types (i)-(iii),
which completes our proof. 0

1.8 Second main theorem

In this section we derive necessary and sufficient conditions for two projective reflection
groups G(r, p, q, n) and G(r, p', q', n) to be isomorphic. From this will derive the second
formulation of Theorem 1.7.9 given in the first section of this chapter. The results here are
joint with Fabrizio Caselli and appear also in the preprint [29].

To begin, we recall the definition of the groups G(r, p, q, n) and some notation for referring
to their elements. Fix positive integers r, p, n with p dividing r. As we did in (1.5.1), we
again write c to denote the central element

c = (ei + e2 + - - -+ en, 1) E G(r, n). (1.8.1)

If q divides r and pq divides rn, then G(r,p, n) contains the cyclic central subgroup Cq =

(c/a) of order q, and G(r, p, q, n) is the quotient group

G(r, p, q, n) = G(r, p, n)/C
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of order 'n - n!. We continue to denote by c the image of the element (1.8.1) in G(r, 1, q, n).

1.8.1 Isomorphisms between projective reflection groups

Let r and n be positive integers and let p, p', q, q' be positive integer divisors of r. Throughout
we assume pq = p'q' and that this product divides rn, and we let

G = G(r, p, q, n) and G' = G(r, p', q', n).

In this subsection we determine a necessary and sufficient condition for G and G' to be
isomorphic when n 0 2. (Note thus that only the case pq 5 p'q' is of interest, since otherwise
IG 5 (G'(.) We start with following result, which is equivalent to [25, Proposition 4.2].

Proposition 1.8.1 (Caselli [25]). If gcd(rn,p') = gcd(M,p) then for every g E G there
exists a unique g' E G' such that g and g' have common representatives in G(r, n), and in
this case the map g H-- g' determines an isomorphism G a G'.

Results in [25, §4] completely characterize when G 2 G* if n = 2 (where we define

G* = G(r, q, p, n)). Our strategy is to generalize the ideas in that work to the present
context.

Say that a prime integer P appears in a number k with multiplicity e if P' divides k
and Pe+1 does not divide k. A prime is then special if it appears in p and p' with different
multiplicities. Since pq = p'q', a prime is special if and only if it also appears in q and q'
with different multiplicities. We now have the following proposition.

Proposition 1.8.2. Assume that

gcd(p, n) = gcd(p', n) and gcd(q, n) = gcd(q', n),

and write = where 77 (respectively, 6) is a positive integer equal to a product of

non-special (respectively, special) primes. Then G(r, 6 p, q, n) is well-defined and

G(r, p, q, n) e G(r, 6p, q, n) x Z6.

Proof. Since gcd(q, n) = gcd(q', n), the multiplicity of any special prime in n is not greater
than the corresponding multiplicity in q. As n divides 77Jq = M, it follows that n divides
q= . Thus 6p divides r, and since 6pq likewise divides rn as = , we conclude that

G(r, Jp, q, n) is well-defined.
A symmetric argument using the assumption that gcd(p, n) = gcd(p', n) shows that Jq

likewise divides r. Therefore cr is a well-defined element of order J in G; let 03 Z be the
cyclic subgroup it generates. Both G(r, Jp, q, n) and CQ are normal subgroups of G(r, p, q, n),
so to complete the proof of the proposition, we have only to show that G(r, Jp, q, n) and C
intersect trivially. For this, it suffices to verify that

(ci)k E G(r, 6p, q, n) iff 0 (mod Sp) iff k = 0 (mod 6).
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The first equivalence follows by definition, and the second equivalence follows from the fact
that if L = 6pk' for some integers k, k', then by dividing both sides by p one obtains
qk = 6k', which can only hold if k is a multiple of 6 as q and 6 are necessarily coprime. 0

The next pair of results establish Theorem 1.8.10 in the case n 5 2. This generalizes [25,
Theorem 4.4].

Theorem 1.8.3. If pq = p'q', then the groups G(r, p, q, n) and G(r, p', q', n) are isomorphic
whenever gcd(p, n) = gcd(p', n) and gcd(q, n) = gcd(q', n).

Proof. Write ! = q6 as in Proposition 1.8.2. The theorem will follow immediately from
Proposition 1.8.2 once we show that G(r, 6p, q, n) _ G(r, 6p', q', n). Since q = 6p and

qq
7 = qop', it suffices by Proposition 1.8.1 to verify that gcd(,qop, 6p') = gcd(776p', 6p), which is
equivalent to the identity gcd(7p, p') = gcd(rjp', p). This holds because every prime dividing
7 appears in p and p' with equal multiplicity, and so we have in fact that gcd(77p, p') =

gcd(77p', p) = ged(p, p').

The next proposition implies the converse of Theorem 1.8.3, provided n = 2.

Proposition 1.8.4. Assume n $ 2 and let G = G(r, p, q, n).

(1) The center of G has order 2L- gcd(p, n).

(2) The abelianization G/[G, G] of G has order k -gcd(q, n).
Pq

Proof. One can easily check that, since n 4 2, the center of G is given by the set of its scalar
elements (i.e. of the form ci). The number of scalar elements in G is . times the number of
scalar elements in G(r, p, n), which is - gcd(p, n) by [79, Corollary 4.1].

p
To prove (2), it suffices to count the linear characters of G since these are equal in number

to the order of G/[G, G]. By [25, §6], the linear characters of G(r, n) are parametrized by
r-tuples of partitions (Ao,..., A,- 1 ) where all partitions Ai are empty except one which can
be either (n) or (In). The linear representations of G(r, 1, q, n) are parametrized by these
r-tuples of partitions where, if the only non-empty partition appears in a position i, then
ni = 0 (mod q) (i.e. (A0 , ... , A,. 1) E Fer(r, q, 1, n) in the notation of [25, §6]). Therefore the
number of linear characters of G(r, 1, q, n) is L -gcd(q, n). One can likewise check that, since
n h 2, each linear character of G is given by the common restriction of exactly p distinct
linear characters of G(r, 1, q, n). Thus the number of linear characters of G is 1 times the
number of linear characters of G(r, 1, q, n).

Combining the preceding theorem and proposition gives this corollary.

Corollary 1.8.5. Assume n : 2 and pq = p'q'. Then G(r, p, q, n) - G(r, p', q', n) if and
only if gcd(p, n) = gcd(p', n) and gcd(q, n) = gcd(q', n).
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1.8.2 Isomorphisms in rank two

In this section we fix n = 2, and assume that p, p', q, q' divide r and pq = p'q' divides 2r. We
now determine when the two groups G = G(r, p, q, 2) and G' = G(r, p', q', 2) are isomorphic.

In referring to elements of these groups, it is convenient to abbreviate our notation by
writing (a, b; 7r) for the image of the element ((a, b), r) E G(r, p, 1, 2) in G(r, p, q, 2). We thus
view G(r, p, q, 2) as the set of triples (a, b; 7r) E S 2 X Zr X Zr with a + b divisible by p, where

(a, b; 7r) = (a', b'; 7r') if and only if 7r = 7r' and a - a' = b - b' = k' (mod r) for some integer
k. Multiplication is given by

(a b; r)(a', b,; ') (a + a', b + b';7r7r') if wr' = 1 ES 2 ,
(b + a', a + b'; rir') if wr' $ 1 ES 2 -

We now have this lemma:

Lemma 1.8.6. If p + p' and q + q' are both odd and r is even then G 9 G'.

Proof. Since pq = p'q' we may assume without loss of generality that p' and q are odd and
that p and q' are even. By Theorem 1.8.3 we then have that G r G(r, pq, 1,2) and G' s
G(r, 1, p'q', 2), and so it is enough to show that if p and 1 are both even then G(r, p, 1, 2) #

p
G(r, 1, p, 2).

To this end, let A = {gr/P : g E G(r, p, 1, 2)} and B = {gr/P : g E G(r, 1, p, 2)}. It suffices
to show that JAl = p and IBI = p + 1. It is easy to check that A consists of the distinct
elements (), -E; 1) E G(r, p, 1, 2) for i E [p]. It is likewise a straightforward exercise to show

that B consists of the distinct images in G(r,1, p, 2) of (0, i; 1) E G(r, 2) for i E [p] together
p

with (-, ; 1) E G(r, 2).

The next lemma is similar.

Lemma 1.8.7. If exactly one of the four parameters p, p', q, q' is odd then G 9 G'.

Proof. We may assume that the unique odd parameter is either q' or p'. By Theorem 1.8.3, if
q' is the unique odd parameter then G' s G(r, pq, 1, 2), and if p' is the unique odd parameter
then G' s G(r, 1, pq, 2), and in either case G a G(r, 2, 2, 2). It thus suffices to show that
if p and are even then G(r, 2p, 1, 2) t G(r, p, 2,2) and G(r, 1, 2p, 2) t G(r, p, 2, 2). With

p
these hypotheses on p and L, let

A = {gr/P : g E G(r, 2p, 1, 2)},

B = {gr/P : g E G(r, 1, 2p, 2)},

C = {gr/P : g E G(r, p, 2,2)}.

As in the proof of Lemma 1.8.6, it is not difficult to check that A consists of the distinct
elements (f., - ; 1) E G(r, 2p, 2) for i E [p]. On the other hand, one finds similarly that

B consists of the distinct images in G(r, 1, 2p, 2) of the elements (0, L; 1) E G(r, 2) for
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i E [p]. Finally, C consists of the distinct images in G(r, p, 2, 2) of the elements (i, -; 1) E

G(r,p,2) for i E [P-. Thus JAI = JBI = p and CI = P, which establishes the desired2 2'
non-isomorphisms. L

We now examine a particular class of groups G = G(r,p, 2) where we can explicitly
describe an isomorphism q: G -+ G*.

Lemma 1.8.8. If p or L is odd then G(r, p,1, 2) a G(r, 1, p, 2).
p

Proof. If p is odd then G(r, p, 1, 2) c G(r, 1, p, 2) by Theorem 1.8.3, so assume that 1 is odd.
p

Let p' be the largest power of 2 dividing p (and hence also r), and let q = 1 and q' = p/p'.
With respect to these choices of p, p', q, q', the special primes are precisely the odd primes
dividing p. Write 2 = ' = r7J as in Proposition 1.8.2, so that q is a product of non-special

p pq
primes and 6 is a product of special primes, and we have

G(r, p, 1, 2) c-- G(r, Jp, 1, 2) x Zj

and
G(r, 1, p, 2) G(r, 6, p, 2) x Zs G(r,1, 6p, 2) x Z',

the second congruence on the right following from Theorem 1.8.3 as 6 is odd. Because Lis
also odd, q is even and R = is odd; thus - is a product of odd primes not dividing p, and2 45 p
so is coprime to both p and T and in particular to Jp.

Since G(r, p, 1, 2) a G(r, 1, p, 2) if G(r, Sp, 1,2) c G(r, 1, 6p, 2), the preceding argument
shows that we may assume without loss of generality that and p are coprime. One checks

p
that for d = r/p' the map

q : G(r,p,1,2) - G(r,1,p,2)

(i 7j; 7r) Z(7 j + di; 7r)

is a well-defined group homomorphism. To show that # is an isomorphism it is enough to
demonstrate injectivity, so let g E G(r, p, 1,2) such that 0(g) = 1. Then g is necessarily of
the form (i, j; 1) with

i +j = 0 (mod p) and ij + di =_k 0 (mod r) for some k E [p],

the second congruence following from the assumption that 0(i, j; 1) = (i, j + di; 1) represents
the identity in G(r, 1, p, 2). These two congruences imply that k (2 - d) is a multiple of p.
Since d is odd, no number dividing 2- d divides either 2 or d, and as every odd prime dividing
p also divides d, it follows that gcd(2 - d, p) = 1. Since is coprime to p by hypothesis, we

conclude that k is a multiple of p, which implies that i j = 0 (mod r) and in turn that
g = 1, as desired. 0

Gathering together the preceding results yields the following proposition.
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Proposition 1.8.9. Assume pq = p'q'. Then G(r, p, q, 2) e G(r, p', q', 2) if and only if one
of the following mutually exclusive conditions holds:

(i) p + p' and q + q' are both even;

(ii) p + p', q + q', and - are all odd integers.
Pq

Proof. If the first condition holds then G 2 G' by Theorem 1.8.3. If the second condition
holds then since pq = p'q', exactly one of p, q is odd and it follows that pq in fact divides
r. In this case, we may assume that p and q' are even and that p' and q are odd. Theorem
1.8.3 then implies that G c G(r, pq, 1, 2) and G' - G(r, 1, pq, 2), while Lemma 1.8.8 implies
that G(r, pq, 1, 2) e G(r, 1, pq, 2).

If p + p' and q + q' are both odd but - is even then G 7 G' by Lemma 1.8.6. If p + p'
and q + q' have different parities then exactly one of the parameters p, p', q, q' is odd as
pq = p'q', so G # G' by Lemma 1.8.7. f

1.8.3 Conclusions

As in the previous sections, we let r, n be positive integers and p, p', q, q' be positive divisors
of r such that pq = p'q' divides rn. Combining Corollary 1.8.5 and Proposition 1.8.9 gives
this summary theorem.

Theorem 1.8.10. The projective reflection groups G(r, p, q, n) and G(r, p', q', n) are isomor-
phic if and only if either (i) gcd(p, n) = gcd(p', n) and gcd(q, n) = gcd(q', n) or (ii) n = 2
and the numbers p + p' and q + q' and are all odd integers.

Finally, by combining this with Theorem 1.7.9 we get the result promised at the beginning
of this chapter.

Theorem 1.8.11. The complex reflection group G(r, p, n) = G(r, p, 1, n) has a GIM if and
only if G(r, p, 1, n) e G(r, 1, p, n).

Proof. Replacing (p, q, p', q') by (p, 1, 1, p) in Theorem 1.8.10 implies that G(r, p, 1, n) e
G(r, 1, p, n) if and only if gcd(p, n) = gcd(1, n) = 1, or n = 2 and p+I is odd and r/p is odd.
Since if p + 1 then gcd(p, 2) = 1 automatically, it follows that G(r, p, 1, n) C G(r, 1, p, n) if
and only if gcd(p, n) = 1, or n = 2 and r/p is odd. These conditions coincide precisely with
the ones given in Theorem 1.7.9 for G(r, p, n) to have a generalized involution model. 5

On seeing this theorem one naturally asks whether for arbitrary projective reflection
groups the property of having a GIM is equivalent to self-duality; i.e., the existence of an
isomorphism G(r, p, q, n) a G(r, q, p, n). This turns out to be false, and much of the preprint
[29] (only a small part of which is incorporated into this thesis) is devoted to clarifying which
groups G(r, p, q, n) have GIMs. The classification in [291 is ultimately incomplete; however,
the partial results in that work suggest some plausible conjectures as to a complete answer,
which is the subject of future work.
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Chapter 2

A Frobenius-Schur indicator for

unipotent characters

This chapter represents a revised and expanded version of the semi-expository paper [80].

2.1 Introduction

Each finite, irreducible Coxeter system (W, S) possesses a set of "unipotent characters"
Uch(W), introduced by Lusztig in [66]. When (W, S) is crystallographic, Uch(W) arises
from Lusztig's set of "unipotent representations" of a corresponding finite reductive group;
Lusztig's result that this set depends only on (W, S) (and not on the root datum) was a
primary motivation for the definition. By construction, Uch(W) always contains as a subset
the set Irr(W) of complex irreducible characters of the Coxeter group W. However, we
typically view the elements 4 E Uch(W) not as characters but simply as formal objects with
three defining attributes:

" A polynomial FakeDeg(f) E N[x] with nonnegative integer coefficients, called the fake
degree.

" A nonzero polynomial Deg(D) E R[x] with real coefficients, called the (generic) degree.

" A root of unity Eig(D) E CX, called the Frobenius eigenvalue.

It takes some care to adequately describe Uch(W) for all finite, irreducible Coxeter systems
(W, S), and this description is not so well-known as that of, say, Irr(W). Section 2.2.2
supplies these missing details, which for the moment we can work without.

This chapter concerns an interesting way of making sense of the question: is there a
well-defined notion of a Frobenius-Schur indicator for a "unipotent character" (D E Uch(W)?
Recall that if G is a finite group, then the Frobenius-Schur indicator of an irreducible char-
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acter D E Irr(G) is the number

1, if D is the character of a representation of G in a real vector space,
defI

c(c) 0, if the values of (D are not all real,

-1, otherwise, in which case D is called quaternionic.

(2.1.1)
Alternatively, c(,D) is also the average value of 4(g 2) over g E G (as is explained, for example,
in the proof of [51, Theorem 23.14]). Since Uch(W) consists of formal objects and not

characters, one cannot apply this definition directly, and it is not at all obvious what kind

of definition could serve as an appropriate substitute.

If (W, S) is crystallographic, there is an easy way of circumventing this difficulty. In this

case the elements of Uch(W) are in bijection with the unipotent characters of various finite

reductive groups having W as Weyl group. While not clear a priori, it turns out that all

of the actual characters corresponding to a given ( E Uch(W) have the same indicator-an

observation of Lusztig [68] which we state precisely as Proposition 2.2.3. There is thus a

logical definition of c on Uch(W) when (W, S) is crystallographic, which happens to have

the following simple description: define c(f) to be 1 if Eig(f) is real and 0 otherwise.

Things become more interesting in the case when (W, S) is non-crystallographic. In this

situation, to describe the Frobenius-Schur indicator in a satisfactory way, we require a heuris-

tic definition which is consistent with the crystallographic case but which makes sense for

all types. A series of papers appearing in the past decade, beginning with Kottwitz [55] and

Casselman [31] and proceeding through Lusztig and Vogan [72], suggests such a definition,
surprisingly, in terms of the irreducible multiplicities of a certain W-representation. As we

will see in a moment, this approach unexpectedly leads to an extension of the Frobenius-

Schur indicator to the non-crystallographic case which forces us to assign an indicator of -1
to some elements of Uch(W); that is, which suggests the existence of quaternionic "unipotent

characters."

The W-representation of interest is given as follows. It is interesting to note that Adin,
Postnikov, and Roichman studied exactly this representation in type A, in their paper [1].

Definition 2.1.1. Given a finite Coxeter system (W, S) with length function f : W -+ N,
let

Invol(W) = Q-span{a, : w E W such that w 2 = 1}

be a vector space with a basis indexed by the involutions in W, and define Ow : S -+

GL(Invol(W)) by the formula

Ow(s)aw -awl ifsw=wsandf(ws) <(w), for s E S and w E W with w 2 = 1.
as, otherwise,

The map Lw extends to a representation of W (a nontrivial fact, whose derivation from

results of Lusztig and Vogan [72, 70] will be explained in Section 2.2.1), and each conjugacy

class of involutions in W spans a ow-invariant subspace in Invol(W). Let gw, denote this
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subrepresentation on the space spanned by the conjugacy class of the involution 0- E W.

Notation. We write Xw and Xw,a (when o- E W and o.2 = 1) for the characters of pw and

Lw,a-

Kottwitz [55] found a formula for the multiplicities of the irreducible constituents of

Lw in the case that (W, S) is a Weyl group, in terms of Lusztig's "non-abelian Fourier
transform" [63]. (More precisely, Kottwitz computed the irreducible constituents of certain
representations induced from the centralizers of involutions in W. The sum of these induced
representations is isomorphic to pw, although this is not an obvious fact; see [43, Remark
2.2] for a detailed explanation.) Kottwitz proved this formula in the classical cases, while
Casselman [31] carried out the calculations necessary to check it in the exceptional ones.
In more recent work, Lusztig and Vogan re-encountered ow as a specialization of a certain
Hecke algebra representation, and noted a way of restating Kottwitz's results to involve the
Frobenius-Schur indicator [72, §6.41.

Our main object is to describe how this last formulation extends even to the case when
(W, S) is non-crystallographic. To this end, we must briefly introduce the Fourier transform
matrix of Uch(W). For any finite, irreducible Coxeter system (W, S), this is a real symmet-
ric matrix M, with rows and columns indexed by Uch(W), which possesses the following
distinguishing properties (among others; see [42, Theorem 6.9] and also Section 2.5.4):

(P1) M transforms the vector of fake degrees of Uch(W) to the vector of (generic) degrees,
permuted by a certain involution (see Theorem 2.5.3).

(P2) M is block diagonal with respect to the division of Uch(W) into families (see Section
2.2.4).

(P3) M fixes each of the vectors indexed by Uch(W) whose entries are the irreducible
multiplicities, extended by zeros, of the left cell representations of W (see Theorem
2.6.3).

(P4) M and the diagonal matrix of Frobenius eigenvalues of Uch(W) determine a represen-
tation of the modular group PSL2 (Z) (see Theorem 2.5.6); in particular, M 2 = 1.

Section 2.5 provides, with accompanying references, a careful description of the matrix M
attached to each finite, irreducible Coxeter system. While the literature often tends to
present these matrices as a somewhat heuristic construction, work in preparation of Broue,
Malle, and Michel shows that when W is a primitive (complex) reflection group, M is
uniquely determined under a suitable set of natural axioms [22].

As a final preliminary, we recall that an element 1 E Uch(W) is special if the largest
powers of x dividing the polynomials FakeDeg(f) E N[x] and Deg(4) E R[x] are equal.
Every special (D E Uch(W) belongs to the subset Irr(W). Such characters play an important
role in the theory of unipotent characters for finite reductive groups and have been classified
by Lusztig [63, Chapter 4].

The Fourier transform M acts on functions f : Uch(W) --+ C by matrix multiplication,
since we may view f as a vector whose entries are indexed by Uch(W). The following
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theorem, which is our main result, extends [55, Theorem 1] and [72, §6.4] to define a function
on Uch(W) which we might naturally view as the FRobenius-Schur indicator. The proof of
this result appears at the end of Section 2.5.

Theorem 2.1.2. Suppose (W, S) is a finite, irreducible Coxeter system with associated
Fourier transform matrix M. There then exists a unique function E : Uch(W) -> R such
that

(1) c((D) E {-1, 0, 1} for all (D E Uch(W).

(2) E(1i) = 0 if and only if the Frobenius eigenvalue of ( E Uch(W) is not real.

(3) (Me)(f) is the multiplicity of D in Xw for each special D E Irr(W) c Uch(W).

For this function c, it in fact holds that

Xw = Z (ME)($),. (2.1.2)
1kEIrr(W)

Furthermore, if (W, S) is crystallographic, then c coincides with the Frobenius-Schur indi-
cator on Uch(W), i.e., c(T) is 1 or 0 according to whether Eig('1) is real or non-real for
) E Uch(W).

Conditions (1) and (2) are basic properties one would desire of a prospective Frobenius-
Schur indicator. In particular we can restate (2) as the requirement that e(1) = 0 if and
only if 4 is not fixed by an operator on Uch(W) which we reasonably view as complex
conjugation (see Proposition 2.2.4). The simplicity of condition (3) and the surprising fact
that it implies (2.1.2) make the function defined in the theorem an attractive extension of the
Frobenius-Schur indicator to the non-crystallographic case. Admittedly, this is not evidence
that e is the "right" extension, only that it is a suitable and interesting one.

This Frobenius-Schur indicator gives rise to two quaternionic "unipotent characters" in
type H4. We record this phenomenon and some other properties of E which become evident
in the proof of Theorem 2.1.2 in the following proposition.

Proposition 2.1.3. Let e : Uch(W) -- {-1, 0, 1} be the function defined in Theorem 2.1.2.

(a) e(4) = 1 for all ( E Irr(W). If (W, S) is classical, then E(f) = 1 for all D E Uch(W).

(b) e((D) = -1 if and only if (W, S) is of type H4 and (D is either of two elements of Uch(W)
with

Deg(f) = 1X 6 + higher powers of x.

(c) (Me)(f) is a nonnegative integer for all c1 E Uch(W). If (W, S) is classical, then
(Me)() is nonzero if and only if D is special. More generally, (Me)((D) is nonzero only
if 4J e Irr(W) or if (D a single element of Uch(W) \ Irr(W) in each of the types F4 , E8 ,
and H 4 .

78



Remark. A lengthy computation shows that in type H 4 , there is no symmetric matrix M
satisfying (P1) and (P2) for which there exists a function c : Uch(W) -+ {0, 1} such that
(2.1.2) holds. Thus, in this sense even a different choice of Fourier transform matrix in type
H 4 still leads to quaternionic unipotent characters.

It is an interesting open problem to describe how much of the preceding theory extends
from Coxeter systems to larger classes of groups. The preprint [43] of Geck and Malle, for
example, describes analogues of many statements here for Coxeter systems with an involution
preserving the set of simple reflections. Moreover, for some but not all complex reflection
groups, there are analogous notions of "unipotent characters" and Fourier transforms (see
[20]), for which one expects some meaningful generalization of Theorem 2.1.2 to hold.

Independent of any connection to unipotent characters, the representation Pw is itself an
interesting thing to study (e.g., see [1] which analyzes ow in type A,). When W is classical
of type A., BCs, or D., it is a natural problem to describe the irreducible decomposition
of gw in terms of the familiar sets of partitions a, bipartitions (a, /), and unordered bipar-
titions {a,#3} indexing Irr(W). One can find such a description in Kottwitz's paper [55]-in
particular, Kottwitz shows that the irreducible constituents of Xw are precisely the special
characters of W when W is classical (note also part (c) of Proposition 2.1.3). Many proofs in
[55] are abbreviated or omitted, and we take the opportunity in this thesis to provide more
detailed proofs of Xw's decomposition in types BC, and D,. (Proofs of the type A, decom-
position, which we de not reproduce here, already appear in several places in the literature.)
This material appears in Section 2.3.

One notable corollary of the calculations in Sections 2.3 and 2.4 is the following state-
ment, which is interesting to compare with [101, Theorem 1]. Here, a Gelfand model is
a representation of a finite group which is the multiplicity free sum of all of the group's
irreducible representations.

Theorem 2.1.4. If (W, S) is a finite, irreducible Coxeter system then the representation Pw
is a Gelfand model if and only if (W, S) is of type An, H 3 , or 12(m) with m odd.

Our final results concern a conjecture of Kottwitz connecting the decomposition of Xw
to the left cells of W. (See Section 2.6 for the definition of the left cells and left cell
representations of W.)

Conjecture 2.1.5 (Kottwitz [55]). Let F be a left cell in W and let Xr denote the character
of the corresponding left cell representation. Let o- E W be an involution and write E for its
conjugacy class in W. Then (xw,,, Xr) = nE f F|, where (-,-) denotes the standard L 2-inner
product on functions W -+ C.

Kottwitz [55] observed that in type A, the conjecture is true, following from the known
description of the left cells of W in terms of the RSK-correspondence. Casselman [31]
meanwhile verified the conjecture in types F4 and E6 by a computer calculation. In Section
2.6, we show ourselves that the conjecture holds in all of the non-crystallographic cases H 3 ,
H 4 , and 12 (m). Two recent preprints of Geck and Bonnaf6 [17, 40] establish several more
cases, leaving the conjecture open only in type E8.
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We note here that a weakened version of the conjecture follows immediately from Theorem

2.1.2 and recent work of Geck [39].

Theorem 2.1.6. Let F be a left cell in W and let Xr denote the character of the corre-

sponding left cell representation. Then the inner product (Xw, Xr) is equal to the number
of involutions in F.

Proof. Proposition 2.1.3 and property (P3) of the Fourier transform matrix imply that

(Xw, Xr) = ZVCIrr(W)(V, Xr), which is the cardinality of the set {- E r : o.2 = 1} by
[39, Theorem 1.1]. 5

We organize this chapter as follows. In Section 2.2, we note several preliminaries con-

cerning Coxeter systems, the representation Lw, and the set Uch(W). Section 2.3 provides
a detailed survey of Kottwitz's results [55]. In Section 2.5, we describe in detail the Fourier

transform matrices attached to Uch(W) and derive from this information the proof of Theo-

rem 2.1.2. Finally, in Section 2.6 we prove Kottwitz's conjecture in the non-crystallographic
types H 3 , H 4 , and 12 (m). This last section explicitly describes the left cells in these types,
and includes a proof of property (P3) for the Fourier transform matrix of Uch(W).

2.2 Preliminaries

Throughout, we adopt the following notational conventions: N is the set of nonnegative

integers, P is the set of positive integers, and [n] is the set of the first n positive integers,
with [0] = 0.

2.2.1 Representing W in Invol(W)

Let (W, S) be a finite Coxeter system with length function e: W -> N, and define the vector
space Invol(W) as in the introduction. Here, we briefly confirm that the map Ow given in
Definition 2.1.1 indeed extends to a representation of W. The easiest way of deriving this

from known results is to prove a slightly more general fact, which goes as follows.

For each constant k E Q, let Qwk : S -> GL(Invol(W)) be the map given by the formula

a, + ka8 e, if sw = ms and s V DesR(w),

QW,k(s)aw = -a., if sW = ws and s E DesR(w),

as,, if SW $ WS,

for s E S and w E W with w 2 = 1. Here we have written DesR(w) = {s E S : f(ws) < f(w)}
for the right descent set of w E W, which coincides with the left descent set when w 2

In this notation, the map Qw from the introduction is precisely ewo-

Define 'Hq2 as the Hecke algebra with parameter q2 corresponding to (W, S): for us, this
is the unital associative Q[q]-algebra with basis {Tw : w E W} and multiplication given by
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the rules {TWT, = TW, for w, w' E W with f(ww') = f(w) + f(w'),
(T+1)(T,-q 2) =0, for s E S.

In [72, 70], Lusztig and Vogan show that the multiplication defined for s E S and w E W by

qaw + (q + 1)as, if sw = ws and s DesR(w),

T~a. J (q2 - q - 1)aw + (q2 - q)asw, if sw = ws and s E DesR(w),
as, if sw : ws and s DesR w,

(q2 - 1)aw + q2aswa, if sw 5 ws and s E DesR(w).

makes the Q[q]-module Invol(W) OQ Q[q] into an 'Hq2-module. (It is interesting to compare
this with the Hecke algebra module in [1], which in type A, is isomorphic to the one here
once we replace q in [1] with q2.) Specializing q to 1 shows that Pw,2 is a well-defined
W-representation, and from this we deduce the following stronger statement.

Proposition 2.2.1. Let (W, S) be a finite Coxeter system.

(1) The map Ow~k extends to a representation of W in Invol(W) for any k E Q.

(2) The representations Owka and 9w,k' are isomorphic for all k, k' E Q.

Recall that the geometric representation V of W is a real vector space with a basis
I = {a, s E S} indexed by S and a bilinear form (.,-) defined by linearly extending the
formula

(as, at) = - cos ( for s, t E S, where m(s, t) denotes the order of st in W.

Elements in the generating set S C W act on V as reflections by the formula s(v) =

v - 2(as,v)as for s E S and v E V, and this action extends to W, making V into a
faithful W-module. The root system of (W, S) is the set D = {w(a) : a E I}. The
basis H serves as a set of simple roots, with respect to which we let D+ denote the set of
positive roots in D. The right descent set of w E W then has the alternate characterization
DesR(W) = {s E S : w(as) V(D+)

Proof of Proposition 2.2.1. Let n(w) denote the dimension of the -1-eigenspace of w E W
in its geometric representation. Clearly n(sws) = n(w) for all w E W and s E S. Suppose
W2 = 1 and sw = ws and s V DesR(w). Then (with respect to the geometric representation
V) all eigenvalues of w and s are equal to ±1, and s and w are simultaneously diagonalizable.
Since a. E V spans the -1-eigenspace of s, it follows that a, must be an eigenvector of w,
and that n(sw) = n(w) ± 1 according to whether the corresponding eigenvalue is ±1. As
w(as) E 4+ since s V DesR(w), we must have w(as) = as, so n(sw) = n(w) + 1.

List the involutions wI,. .. , WN E W in an order such that i < j implies n(wi) < n(wj),
and write ai for the vector a, E Invol(W). By the preceding paragraph, for each s E S the
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matrix of q k(s) with respect to the basis {ai : 1 < i < N} has the block lower triangular
form

Ao
kB 1  A 1

k () kB 2 A2  (2.2.1)

kBr Ar

where each Ai is a signed ni x ni permutation matrix, with ni denoting the number of
involutions w E W with n(w) = i, and each Bi is an ni x ni_1 matrix whose entries are
either 0 or 1. In particular, the matrices Ai and Bi have no dependence on k, and it is easy

to see that the braid relations (Lk(s)gk(t)) '" = 1 for s, t E S hold for all k E Q if and

only if they hold for a single nonzero value of k.
From [72], we know that the braid relations hold when k = 2, which suffices to prove (i).

Part (ii) follows by similar considerations: the trace of any product of matrices of the form

(2.2.1) has no dependence on k, so the character of Lo is the same for all values of k E Q
and we conclude that L and ok are isomorphic representations. E

2.2.2 References for the construction of Uch(W)

In this section we provide references for the construction of Uch(W) for each finite, irreducible

Coxeter system (W, S), and also for the associated data FakeDeg, Deg, and Eig.

Even before discussing Uch(W), we may give the general definition of the fake degree
attached to a unipotent character. The fake degree of an irreducible character 4D E Irr(W) is
the polynomial FakeDeg(1i) E N[x] whose coefficients are the multiplicities of P in the graded
components of the coinvariant algebra of W (see [30, §2.4 and §11.1]). The set of irreducible
characters Irr(W) always forms a subset of Uch(W), and we define the fake degrees of all

P E Uch(W) \ Irr(W) to be zero. For D E Irr(W), Deg(f) and Eig(f) are defined by

Deg(f) = the generic degree of ( (see [30, §10.11]) and Eig(b) = 1,

while the polynomial FakeDeg(D) has the following formula [30, Proposition 11.1.1].

Proposition 2.2.2. For D E Irr(W) we have

FakeDeg() = (1 xd (W)
( = (WI E det(1 - xw)'i=1 wEW

where di, ... , d, are the degrees of the basic polynomial invariants of W (see [30, §2.4]), and

the determinant of 1 - xw is evaluated by identifying W with the image of its geometric
representation.

Explicit expressions for the right-hand side of this formula when (W, S) is classical appear
in [30, §13.8]. We list the fake degrees in type I 2 (m) in Section 2.2.5. In the remaining
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exceptional and non-crystallographic types, one can readily compute the fake degrees using
the proposition and the character table of W (see also [5, 6, 14]).

Now to describe Uch(W) itself. When (W, S) is crystallographic, Uch(W) corresponds to
the actual set of unipotent characters of an associated finite reductive group. Carter's book
[30] contains an excellent exposition of this correspondence; Geck and Malle's paper [42, §2]
also serves as a useful reference. We emphasize, however, that the construction of Uch(W)
is due originally to Lusztig [63, 66], as are the following facts. In brief, if G is a simple
algebraic group defined over a finite field with q elements, with Frobenius map F : G -+ G
and Weyl group (W, S), and if the finite group GF = {g E G : F(g) = g} is split so that F
acts trivially on W, then the following hold:

" The number of unipotent characters of GE, together with their Frobenius eigenvalues

(as defined in [63, Chapter 11]), depends only on the isomorphism class of (W, S).

" The degrees of the unipotent characters of GF are given by the values at q of a set
of generic degree polynomials, which also depends only on the isomorphism class of

(W S).

A complete parametrization of Uch(W) in these cases, together with a list of the associated
degree polynomials, appears in [30, §13.8 and §13.9], while [63, Theorem 11.2] classifies in
very simple way all of the Frobenius eigenvalues (see also Observation 2.2.7). From this
description derives the following proposition, which summarizes some results of Lusztig [68]
and shows that there is a natural definition of the Frobenius-Schur indicator on the formal
set Uch(W) when (W, S) is a Weyl group.

Proposition 2.2.3 (Lusztig [68]). Let G be a simple algebraic group over an algebraically
closed field of positive characteristic, with a Frobenius map F : G -+ G for which the finite
group GF is split. Then the irreducible unipotent characters of G' all have Frobenius-Schur
indicator 1 or 0, according to whether their Frobenius eigenvalues are real or non-real.

Proof. Perhaps the simplest way to extract this result from [68] is to compare [63, Theorem
11.2] with the description of c(f) (from [68]) given in [72, §6.4]. Alternatively, the result
follows by comparing [63, Theorem 11.2] with [68, Corollary 1.12] if G is classical, or with
Table 1 and Proposition 5.6 in [37] alongside the tables in [30, §13.9] or [63] if G is exceptional.

5

When the Coxeter system (W, S) is non-crystallographic there is no corresponding reduc-
tive group, and the definition of Uch(W) is instead based on heuristic arguments involving a
list of postulates considered plausible desiderata. Lusztig's paper [66] lists these postulates
and constructs the set Uch(W) with the associated degree polynomials when (W, S) is of any
of the non-crystallographic types H3, H 4 , or 12 (m). The corresponding Frobenius eigenval-
ues are given in [66] for H3, in [75] for H 4 , and in [67] for I 2 (m); however, this information
is not presented in the literature as clearly as in the crystallographic case. Helpfully, one
can access all the relevant data in types H 3 and H4 (as well as in the exceptional types
E6 , E7 , E8 , F4 , and G 2) from the UnipotentCharacters command in the computer algebra
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system CHEVIE [41]. To deal with the dihedral case, it is expedient to review an explicit

construction of Uch(W); we do this in Section 2.2.5.

2.2.3 Two involutions A and j of Uch(W)

We now define two canonical involutions A and j of the set Uch(W) which will be of im-

portance in Section 2.5. The first of these, A, arises from the observation that there is a

well-defined notion of formal complex conjugation on Uch(W). This fact derives easily from

the descriptions we cited in the previous section, and we record it as the following proposition

for future reference.

Proposition 2.2.4. For each finite, irreducible Coxeter system (W, S), there exists a unique

involutory permutation A of Uch(W) with the following properties:

(i) A preserves Deg() and inverts Eig(D) for each ( E Uch(W).

(ii) A fixes d) E Uch(W) if and only if Eig() = ±1.

The involution A is the identity permutation if and only if (W, S) is of classical type. Fur-

thermore, in all types, A fixes all elements of Irr(W) c Uch(W)

To define our second involution j, we recall that a polynomial f(x) is palindromic if

there exists a nonnegative integer c E N such that f(x) = xC . f (x-). In particular, the

zero polynomial is palindromic. As noted by Opdam [871, the fake degree of nearly every

(D E Uch(W) is palindromic and reflecting the coefficients of FakeDeg(') about a certain

central power of x gives rise to a well-defined and meaningful involution of Uch(W). (For

Weyl groups W, this was first observed by Beynon and Lusztig [14].) To explain what we

mean, define a constant ND for each (D E Uch(W) by the formula

Ne = -jy E, D(r) for (D E Irr(W) and N = 0 for 1 E Uch(W) \ Irr(W),

where the sum on the left is over all reflections r E W (i.e., those r E W conjugate to

elements of the generating set S). Also, let N denote the total number of reflections in W.

The following proposition now summarizes several observations of Opdam [87, Page 448]. (In

comparing this proposition to Opdam's paper, the reader should note the following misprint:

the exponent of T on the right-hand side of [87, Eq. (2)] should be N, - N and not N - N,.)

Proposition 2.2.5 (Opdam [87]). For each finite, irreducible Coxeter system (W, S), there

exists a unique involutory permutation j of Uch(W) with the following properties:

(i) The fake degree of j(f) is xN-N4 - FakeDeg(D)(x- 1) for each D E Uch(W).

(ii) j fixes ( E Uch(W) if and only if FakeDeg(D) is palindromic.

The involution j is the identity permutation if and only if (W, S) is not of type E7 , E8 , H 3 ,
or H4 . Furthermore, in all types, j fixes all elements of Uch(W) \ Irr(W).
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Remark. Under the assumption that W is a Weyl group, this result first appeared as
Proposition A in Beynon and Lusztig's paper [14]. There is also another interpretation of the
involution j in terms of rationality properties of the corresponding characters of cyclotomic
Hecke algebras; see [77, Theorem 6.5].

Even in types E7 , E8 , H3, and H4 , the permutation j is very nearly the identity. In
particular, adopting Carter's notation for the elements of Irr(W) (see our explanations in

Sections 2.4.2 and 2.4.3), we may describe the nontrivial actions of j on Uch(W):

" Type E7 . j exchanges 0 51 2,1 1 with 0 51 2 ,1 2 .

" Type E8 . j exchanges #4096,11 with 04096,12 and 4096,26 with 04096,27.

" Type H 3 . j exchanges 04,3 with 04,4.

" Type H 4 . j exchanges 0 16,3 with 016,6 and 0 16,18 with 0 16 ,21 .

One consequence of this description is that (P E Irr(W) is special if and only if j( 0 sgn)
is special, a fact which Carter notes as [30, Corollary 11.3.10] when W is crystallographic.
Moreover, as Beynon and Lusztig observed in [14], the irreducible characters 1P E Irr(W)
with j(l) 5 4D are precisely the characters corresponding to irreducible representations of
the corresponding Hecke algebra of W which are not rational. For more on this property,
see also [30, Section 11.3 and [61].

2.2.4 Families in Uch(W)

The set Uch(W) possesses a distinguished decomposition into disjoint subsets called families.
When (W, S) is crystallographic, these arise as the equivalence classes of a certain relation

(see [30, Section 12.3]), but in general the families are defined heuristically (see [66]). To
specify the Fourier transform matrix of Uch(W) it suffices to attach Fourier transform ma-
trices to each of the families, and we therefore discuss some of their significant properties
here.

To begin, each family F c Uch(W) contains a unique special element 4D-special, we recall
from the introduction, means that there exist an integer e E N and nonzero real numbers
a, b such that

FakeDeg(4') = axe + higher order terms and Deg(4') = bxe + higher order terms.

Since FakeDeg(4') = 0 if 4' V Irr(W), each special 4 necessarily belongs to the subset of
irreducible characters Irr(W) c Uch(W). If 4 is the unique special element of a family F
and e is defined as above, then xe is also the largest power of x dividing Deg(T) for all
other T E F. Furthermore, if xe is the largest power of x dividing FakeDeg(T) for some

xI E F n Irr(W), then e < e' unless 4D = T.
From this discussion we see that each family F in Uch(W) has a nonempty intersection

with Irr(W). Thus the division of Uch(W) into families induces a similar partition of Irr(W)

85



into families. The family decomposition of Irr(W), in contrast to that of Uch(W), has a
simple definition in terms of the two-sided cell representations of W which applies in all

types. Namely, a family in Irr(W) consists of the characters appearing as constituents of
two-sided cells having the same special constituent; see [30, §12.4] for a detailed explanation.

Let A and j be the involutions of Uch(W) defined in Propositions 2.2.4 and 2.2.5 above.
Every family in Uch(W) is preserved by both of these permutations, and we make the

following definition concerning the action of j on a family.

Definition 2.2.6. An element of Uch(W) is exceptional if it is not fixed by the involution j,
or equivalently if its fake degree is not palindromic. (All such characters are listed at the end

of Section 2.2.3.) A family in Uch(W) is exceptional if any of its elements are exceptional.

Remark. This notion of exceptionality originates in Beynon and Lusztig's paper [14] and
has since become a standard definition, appearing in various places [55, 87]. All exceptional
families have size 4, and they only occur in types E7 , E8 , H 3 , and H4. In types E7 and H 3 ,
Uch(W) contains exactly one exceptional family, while in types E 8 and H4, Uch(W) contains
two exceptional families.

As Lusztig first observed [63], a single construction provides an extremely convenient way
of parametrizing nearly every family in Uch(W). Given a finite group F, let Cr(x) = {g E
F : gxg-1 = X} denote the centralizer of an element x E F, and define

,W(r) (2.2.2)

as the set of equivalence classes of pairs (x, -) for x E F and o- E Irr(Cr(x)), with respect to
the relation

(x, a-) - (gxg- 1, ag) for g E F. (2.2.3)

Here o- denotes the character of Cr(gxg-1) with the formula z -* o-(g-lzg). Apart from
one family in type H4 and one family in type I2 (m), each family F C Uch(W) is naturally
in bijection with a set ,w(F) for some finite group F, given either by a product of 2-element
cyclic groups or a symmetric group. In particular, each F has one of the following sizes:

Family size IF(: 22k 8 21 39 74 k2  k2 + k + 2
Corresponding group F: (Z/ 2 Z)k S 3  S4  S5

Families of size 74, k2 , and k2 + k + 2 occur only in types H4, I 2 (2k + 1), and I 2 (2k + 2),
respectively.

If (W, S) has one of the classical types A., BC, or D., then the families in Uch(W) each
correspond to sets -Y ((Z/2Z)k) for various integers k > 0. If (W, S) has type E6 , E7 , E8 ,
F4 , or G 2 , then the families in Uch(W) each correspond to .1(Sk) for some k E {1, 2, 3, 4, 5}.
A detailed list of the families F c Uch(W) when (W, S) is crystallographic, alongside the
corresponding bijections F <-+ W(F), appears in [30, §13.8 and §13.9]. With respect to these
correspondences, the following observation is a consequence of [63, Theorem 11.2]:
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Observation 2.2.7. Suppose (W, S) is crystallographic and F C Uch(W) is a family
parametrized as in [30, §13.8 and §13.9] by the set /,f(F) for a finite group F. Let (D E F be
the element corresponding to (x, a) E /(r).

(a) If F is not exceptional then Eig(4) = £(x and A(f) is the unique element of FU(1)
corresponding to the equivalence class (x,-5) E ,W(F).

(b) If F is exceptional then F = S2 and Eig(f) = 1 if x = 1 and Eig(1) = -(x)-i otherwise.
In this case, A fixes the elements of F with Frobenius eigenvalue 1, and exchanges the
two elements with Frobenius eigenvalue ±i.

Furthermore, in either case 4D is special if and only if (x, a) = (1, 1), where 1 denotes the
principal character of F.

Carter's book [30] does not similarly address the non-crystallographic case; however, in
these types, only a small number of families exist. A description of these families appears in
Lusztig's papers [67, 66], which we may summarize as follows:

" Type H 3 . There are 7 families: 4 of size 1 and 3 of size 4.

" Type H 4 . There are 13 families: 6 of size 1, 6 of size 4, and 1 of size 74.

" Type I2 (m). There are 3 families: they are described by (2.2.4).

One can find an exact parametrization of the families in types H 3 and H 4 (and also for the
crystallographic exceptional types) in the computer algebra system CHEVIE [41]. We will
discuss these families at greater length in Section 2.5.3.

We close this subsection by considering the related combinatorial problem of counting
the elements of -'(F). If F is abelian, then /k (F) = F x Irr(F) and we have 1.-k(F) = rl 2

If F is a symmetric group, then we have the following less trivial result.

Proposition 2.2.8. Let an = lJ(Sn)I and write o-(n) for the sum of the positive divisors of
a positive integer n. The ordinary generating function of the sequence {an},* 1 then satisfies

1 + ~a = J (1 - Xn)a")'
n;>1 n=1

Hence, in the language of [13], {an}* n 1 is the Euler transform of the sequence {o(n)} 1 .

Remark. The sequence {an}" n 1 = (1, 4, 8, 21, 39, 92, 170, 360,... ) appears as [86, A061256].

Proof. If CA denotes the centralizer in Sn of a permutation with cycle type A, then an is
equal to sum over all partitions A of n of the number of conjugacy classes of C\. It is not
difficult to check that if the partition A has m, parts of size r, then C 2 H,> G(r, m,),
where G(r, n) = (Z/rZ) ?, , denotes the wreath product of a cyclic group of order r with Sn.

The conjugacy classes of G(r, n) are indexed by partitions of n whose parts are labeled
by numbers i E [r]. Given a sequence (pr)r>1 of such labeled partitions indexing a conjugacy
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class in CA - Hr, G(r, m,), modify the rth partition M, by multiplying its parts by r
and replacing all labels i by ordered pairs (r, i). Concatenating the parts of these modified

partitions yields a map from the set of conjugacy classes of CA to the set P" of partitions

of n whose parts of size k are labeled by pairs (d, i) where d is a divisor of k and i E [d].
Conversely, any v E P determines a sequence of labeled partitions (ILr)r;> which indexes a

conjugacy class of some CA: namely, take -Lr to be the labeled partition given by dividing by
r all parts of v which are labeled by pairs of the form (r, i). These operations determine a

bijection from P, to the disjoint union of the sets of conjugacy classes of C over all partitions

A of n, and thus an = 1Pn1.
We can view P, as the set of partitions of n whose parts of size k can have o-(k) different

types. The cardinality of this set is what is counted by the coefficient of xn in the right-
hand generating function above, essentially by construction (see [13]), which completes the

proof.

2.2.5 Unipotent characters in type I 2 (m)

It seems difficult to find a single reference which provides all of the data our setup requires

to construct Uch(W) in type I2 (m). We therefore briefly include the relevant details here,
with the papers [67, 66, 76] serving as our primary references.

Fix m > 3 and let (W, S) be of type 12 (m). The set Uch(W) then consists of the objects

" 1(Oj) for integers j with 0 < j < T,

" 'I(ij) for integers ij with 0 < i < j < i + j < ,

together with the additional objects

1 , sgn, if m is odd

1, sgn, '0(o) ,(O , ' if m is even.

Observe that Uch(W) has cardinality k2 + 2 if m = 2k + 1 is odd or k 2 - k + 4 if m = 2k is
even.

Let = exp (2"7) be the standard primitive mth root of unity. The fake degrees and

degrees for Uch(W) are then defined by

" FakeDeg ((D(i'j)) (Xi + xM"-i if i= 0

0, otherwise,

" FakeDeg ('Om)) = FakeDeg ('m)) = Xm/ 2 ,

and

_ DeJ_ _--_ . - (X-1)(X+1) HkE[m](X- k)D (i,)) DeM I (X-)(X- -)(X-_)(X--)'
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* Deg (V,)) = Deg (D'i' = ; - x* o<k<z(x - M(X - m-kh

with FakeDeg (1) = Deg(il) = 1 and FakeDeg (sgn) = Deg(sgn) = xm . Note that in the
right-hand expression for Deg (c(ij)), the denominator of the last factor always divides its
numerator, and so the degree does belong to R[x]. The Frobenius eigenvalues have the
formula

Eig() i, if D = 1 (ij) for some (ij),
I1, otherwise.

We note that in this type, the permutation A of Uch(W) defined in Proposition 2.2.4 fixes all
elements except those of the form D(i,j) with i > 0, on which it acts by A : ((ij) - 4(i,m-j).

Finally, Uch(W) always has exactly three families, given by the sets

{IA}, {sgn}, and Uch(W) \ {1, sgn}. (2.2.4)

The special elements of Uch(W) are then 1, sgn, and D(o,1).

2.3 Decomposing Xw for classical Coxeter systems

Kottwitz's paper [55] gives the decomposition of Xw when W is a Weyl group of one of the
classical types An, BCs, and D,. This section explains Kottwitz's results in detail, and also
describes the special characters and family decomposition in Irr(W) in the classical cases.
Most of this section is expository, our main references being Lusztig's book [63], Carter's
book [30], and Kottwitz's paper [55].

2.3.1 Type A,

Suppose (W, S) is the Coxeter system of type A,. In this situation, we identify W with
the symmetric group S,+ 1 of permutations of [n + 1] and take S to be the set of simple
transpositions

s =s (i,i± +1) E Sn+1 : i E [n]}.

We view permutations as functions and multiplication in S,+1 as function composition, and
so evaluate the product of cycles to be (1, 2)(2, 3) = (1, 2, 3), for example. The involutions
of W are then the permutations of [n + 1] whose cycles all have length one or two, and if
w E W is such an involution, we have

DesR(w) = {si : i E [n] and w(i) > w(i + 1)}.

The conjugacy classes of W are the sets of permutations with the same cycle type; thus the

permutations

Wm (1,m + 1)(2,m + 2) ... (m, 2m), for m = 1,2, ... , ij (2.3.1)
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represent the distinct conjugacy classes of involutions in W.

To describe the irreducible representations of W, we adopt the convention that a partition

of an integer n is a weakly decreasing sequence of nonnegative integers a = (al, a 2, ... ) with

|.| >ej ai = n. We write a H n to indicate that a is a partition of n, and treat all
partitions a as infinite sequences (so that ai is defined for all i E P). The Young diagram of
a partition a is the subset of P2 given by {(i, j) :1 j < Ai}, which we typically represent
in "English notation" as in the following example:

a = (4,2, 1, 0, 0 ... ) 6 has Young diagram .

We often identify a partition a with its Young diagram; for example, we write a C # when the
Young diagram of a is contained in that of,3, which is equivalent to the condition that a </ 3
for all i E P. We denote the transpose of a H n by a'; recall that a' = I{j E P : a < i}I, so
that the Young diagram of a' is the transpose of the Young diagram of a.

The isomorphism classes of irreducible representations of W are indexed by the partitions
of n + 1. In particular, for each partition a H n + 1, it is possible to choose an irreducible
W-representation p' with the property that p' restricted to S 1 x S2 x ... c S,+1 contains
the trivial representation and p' restricted to the S,, x S,, x c Sn+1 contains the
sign representation. No two such representations are isomorphic, and any irreducible W-
representation is isomorphic to p' for a unique partition a H n + 1. We write X' for the
character of pa, so that Irr(W) = {X' : a H n + 1}.

Using this notation, we may state the following theorem assembling several facts from
Lusztig's book [631.

Theorem 2.3.1 (See Chapter 4, Section 4 in [63]). Suppose (W, S) is of type An.

(1) Every irreducible character of W is special.

(2) Each irreducible character of W belongs to its own family with one element.

Concluding this subsection, we have these two results which Kottwitz derives in [55].
Adin, Postnikov, and Roichman independently studied the representation OW in type An in
in [1], and the combinatorial formulation of the first theorem is taken from that paper.

Theorem 2.3.2 (Corollary A.1 in [1]; see also [55]). Assume (W, S) is of type An.

(1) If o- E W is an involution with f fixed points then the character Xw,G is the multiplicity
free sum Ea Xa over all partitions a H n + 1 whose Young diagrams have exactly f
odd columns.

(2) A partition of n + 1 has f odd columns if and only if it appears as the shape of the
standard Young tableaux assigned by the RSK correspondence to an involution in Sn+1

with f fixed points.
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Since Xw = Em Xw,m where the sum is over m = 0,1,..., [1J, the first part of the
preceding theorem leads immediately to this corollary.

Corollary 2.3.3 (Theorem 1.2 in [1]; see also [55]). If (W, S) is of type A, then

Xw = (
A-n+1

is the multiplicity free sum of all irreducible characters of W.

2.3.2 Type BC,

For algebraic groups, the two types B, and C are distinct, but the Weyl groups (W, S) of
the simple groups of types B, and C,, are isomorphic, and for our purposes, all the data of
interest attached to Irr(W) via G is the same in both types. We therefore refer to a single
Coxeter system of type BCn.

An explicit construction of the Coxeter system of type BC,, goes as follows. Let F 2 =
{0, 1} denote the finite field with two elements and write Fn for additive group of n-tuples of
elements of F 2 . The symmetric group Sn acts on Fn by permuting the coordinates of elements,
and we denote the action of a permutation ir E Sn on a vector x = (X1 , X 2 , . .. ,x) E Fn by

d X ef
_rz = Xr-1 (1)> 7 X-- 1(2), ... , X-rlgn)

We let Bn denote the group of pairs (X, w) E Fn x Sn with multiplication given by

(X, 7r)(y,o) = (0- 1 (x) + y, ro-), for x, y E F" and r, o- E Sn.

This is usually referred to as the hyperoctahedral group or the wreath product F 2 Sn. We
view Fn and Sn as subgroups of Bn, by identifying x E Fn with the element (X, 1) E Bn and
7r E Sn with the element (0, 7r) E B,. It is helpful to observe that the map sending (x, 7r)
to the n x n matrix with (-1)'- in position (7r(i), i) for i = 1, 2, ... , n and zeros in all other
positions defines an isomorphism from Bn to the group of n x n signed permutation matrices.

Suppose (W, S) is the Coxeter system of type BCn. In this situation, we identify W with
the hyperoctahedral group Bn and take S = {si, .. , s,-1, tn} where

Si = (i, i + 1) E Sn C Bn for iE [n - 1] and tn = (0, . .. , 0, 1) E F" c B,,. (2.3.2)

An element (X, 7r) E W is an involution if and only if r is an involution in Sn and xi =x

whenever r(i) = j. If (x, 7r) E W is an involution then tn E DesR(x, 7r) if and only if xn = 1,
and si E DesR(x,7r) for i E [n - 1] if and only if one of the following conditions holds:

" ir(i) > ir(i + 1) and xi = xj+1 = 0;

" ir(i + 1) > wr(i) and xi = xj+1 = 1;
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e xi = 1 and xi+ 1 = 0.

Given nonnegative integers k, e, m with 2m + k + f = n, let

def(
k,A,m (0,... , 0, 0, 0 , 0, 1, ,1), Wm E W, (2.3.3)

2m times k times i times

where we define Wm E Sn as in (2.3.1). This element is an involution, and the elements Wk,£,m

with k, f, m ranging over all nonnegative integers with 2m + k + = n represent the distinct

conjugacy classes of involutions in W.
The isomorphism classes of irreducible representations of W are indexed by bipartitions

of n, by which we mean pairs of partitions (a, /) with al + 131 = n. We write (a,/3) I- n to

indicate that (a, /) is a bipartition of n. One typically constructs an irreducible representa-
tion p("',3) belonging to the isomorphism class of each bipartition (a, /3) H- [n] in the following

manner. Any representation p of Sn (in some vector space V) extends to representations p+
and p. of Bn (in the same vector space V) by the formulas

p+(x, 7r) = p(7r) and p.(x, -r) = (-1)x1+-+x-p(,r), for (x, -r) E B,. (2.3.4)

If (a, /3) is a bipartition of n, then p' and p, are irreducible representations of symmetric
groups, and the external tensor product p" ® pP defines a representation of B 01 x B 31. We

define p(,O) as the induced representation

p(cof) d Ind x B +

This representation is irreducible with degree

deg p('0 = (deg e) (deg p),

and any irreducible W-representation is isomorphic to p(') for a unique bipartition (a, 3) -
n. We write X(0', 3) for the character of p(O"'), so that Irr(W) = {x(0) : (a, #) - n}.

The following constructions are taken from Lusztig's book [631. Given a nonnegative
integer m, let SBC denote the set of pairs (A, p), where A = (A1 , A2 , ... , Am+,) and [ =

([i,...,[m) are strictly increasing nonnegative integer sequences of length m + 1 and m,
respectively. The elements (A, ) ESC are often represented as two-line arrays

(A _ A,, A2 , --- , Am, Am+,

A1 , 2, -- [Lm +

Lusztig [63] defines an equivalence relation ~ on the disjoint union SBC - Ur> 0 SBC by
setting

A1, A2, -- ,Am, Am+, 0, A1 + 1, A2 + 1, - - Am + 1, Am+ +1 
M1, [12, - - - , Am 0, 1+ 1, A2 + 1, - - - , Am + I
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and then extending ~ reflexively and transitively. Following Lusztig [63], we call the equiv-
alence classes in SBC under this relation symbols. Accompanying this notation, we have the
following terminology also from Lusztig's book [63].

Definition 2.3.4. The symbol of a bipartition (a, ,3) H- n is the symbol of (A, p) E S,
where

Ai = an+1-(i-1) + (i - 1), for i E [n + 1], (2.3.5)
Ai = ,3n-(i-1) + (i - 1), for i E [n].

(a) We say that the bipartition (a, #) is special if its symbol contains for some m a repre-
sentative (A, p) E Sc such that Ai pi : Aj+ 1 for all i E [IM].

(b) Two symbols A, A' in SBC are said to belong to the same family if for some m there
exist representatives (A, M) E SgC nA and (-, v) E Sncn A' such that the concatenated
sequences

(A1, A2, . ,Am+1,/ l,1 2, ... ,m) and (Y1, 72, ., 7m+1,1, V2, . ,m)

are permutations of each other. Two bipartitions of n belong to the same family if and
only if their symbols belong to the same family.

(c) In any (A, [L) E SBC, a certain number of entries of t do not appear in A and a certain
number of entries of A do not appear in 1L. Denote the former number by d(A, p); the
latter number is then necessarily equal to d(A, M) + 1.

The number d(A, p) is the same for all elements in a given symbol and we therefore define

d(a, #) = d(A, pu) for any (A, IL) E SBC which represents the symbol of (a,/3).

Example 2.3.5. The bipartitions (EE,EF'), (m, ), and @ of 8 constitute a family as
their symbols are respectively represented by

( 0, 3, 4 0, 1, 4 and 3 4
1, 4 ( , 4 ), and 0~4 )

The bipartition (E1, BF) is special, and we have d (E-, EP) = d (m, E) = d @1, -) = 1.

We may now state the type BC, analog of Theorem 2.3.1, also due to Lusztig [63].

Theorem 2.3.6 (See Chapter 4, Section 5 in [63]). Suppose (W, S) is of type BC,.

(1) A character X(a,1) of W is special if and only if (a,,3) is a special bipartition of n.

(2) Two irreducible characters of W belong to the same family if and only if they are
indexed by bipartitions of n in the same family.
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The following lemma provides another of understanding the special bipartitions (a, 3) and
the integer d(a,#3). The first part of this result is similar to Spaltenstein's characterization
of the special representations of Weyl groups of type BC, in [88, Section 4]. Here, we write
a' for the transpose of a partition a, which by definition is the unique partition whose Young
diagram is the transpose of the Young diagram of a.

Lemma 2.3.7. Let (a,3) be a bipartition of n.

(1) The bipartition (a, /) is special if and only if /3i < ai + 1 and a' </ 3 + 1 for all i E P.

(2) If (a,/3) is special then d(a,/3) = I{(aj,i): E P} n {(i,#i) : i E ]P}I, which is the
number of cells which appear both in the last row of a colunm of a and in the last
column of a row of 3.

Remark. The condition for a bipartition (a,3) to be special corresponds to the following
picture:

If the Young diagram of a is the set of gray cells, then (a,3) is special if and only if 3 is
formed from a by adding (a subset of) white cells and/or removing (a subset of) gray cells
marked by o's.

Proof. If (A, I) and (-y, v) belong to the same symbol in SBC then A 5 .i :5 Aj+ 1 for all i if
and only if -yi vi < 7yi+1 for all i. Given this, it follows that a bipartition (a,/3) is special
if and only if aj+1 < 3i < ai + 1 for all i E P. In turn, it is straightforward to check that
ai+1 :5 /3 for all i E P if and only if a, <3 ±j 1 for all i E P, and this gives part (1).

If (a, 3) is a special bipartition and (A, IL) E S C is defined by (2.3.5), then d(a, 3) is
equal to the number of i E [n] with Ai < pui < Ai+ 1 . This is the number of i E [n] with

ai+1 < 3i < ai + 1. In light of part (1), we deduce that d(a, 3) is the number of i E [n] with

ai+1 < 3i < a. Part (2) follows immediately as (i, /3) = (a', j) for some j E P if and only
if ai+i < 3i < a2 .

Recall from (2.3.1) the definition of the permutation wm = (1, m+1)(2, m+2) ... (m, 2m) E
S2m. View Wm as an involution in B2m and note that this involution coincides with the ele-
ment wm,o,o defined by (2.3.3). It will soon be useful to adopt the following notation: given
g = (x, -r) E B, for some n, define |gI = -r E Sn and gi = xi for i E [n].

Lemma 2.3.8. If (W, S) is of type BC2m then the character of the subrepresentation of Ow
on the subspace of Invol(W) spanned by the conjugacy class of Wm E W is Zck-m x
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Remark. This result is mentioned, for example, as [85, Eq. (6)]. We include a detailed
proof for completeness.

Proof. If G is a group then we write CG(g) = { e G : xg = gx} for the centralizer of an
element g. In particular, let Vm = CB2 m (win) and Hm = V, n (Bn x B.). Proofs of the
following facts are left as straightforward exercises:

(a) Vm = ((,7) E B2m : 7r E CS2m(om) and xi = xm+i for all i E [m]

(b) The centralizer CS2m (M) is isomorphic to Bm, and so IVm M! - 2

(c) Hm = {(g, h) E Bm X Bm : IgJ = Jhi and gi = hi for all i E [m]} Bm.

Let A : Vm -- C be the linear character defined by pw(g)am = A(g)awm for g E Vm. The
character of the subrepresentation of ow described in the lemma is just the induced character
Ind 2m (A) and so has degree IB"I (2.)! Since deg ( x (aa)) = (2m) E m(deg x&)2

VMIV,,I in! "dr \M/ C lf

22i, to prove the lemma it suffices to show that x(',') appears in Ind 2m(A) with nonzero
multiplicity for each a 1- m. Let X' and X' denote the characters of the representations p'
and p2 given by (2.3.4) so that we have X(,a') = Ind 2 (40 x0). By applying Frobenius
reciprocity and Mackey's theorem, one obtains the inequality

(IndB2- (A), Xa'a)) = (Res 2xB (Ind2m(A)) , x )Bx (Frobenius recipr.)

> (Ind B (Resv-(A)) x XB (Mackey's theorem)

= (ResVrm (A), ReSB-rxBm (a X) Hm (Frobenius recipr.)

and thus we need only show that the last inner product is nonzero.
To evaluate this, recall that B2m is generated by the elements S1, s2, .. . S2m-1, t2m, and

observe that Hm is generated by the elements s', s', ... s' 1 , t' where s' = sisi+m for
i E [m - 1] and

= S (SiSin - S2m-1) t2m (S2m-1 - Sm+ISm)-

It is easy to see that A(s') = 1 for all i E [m - 1] as win # sm+iumsm+i. With slightly greater
difficulty, we compute A(t') = -1 as follows. Let vo = wm; then define vi+1 = sm+ivism+i
for 0 < i < m - 1; then let /-0 = t2mumt2m; and finally define pi = S2m-i1i-lS2m-i for
1 < i < m. The element t' E Hm is a product of 2m + 2 simple generators, and if we
successively conjugate wm by these generators (beginning with the right most factor) we
obtain the sequence of involutions

M= 1/, 111, V2 , - - - ,m, O, YO / 2l, 12, ... , m, t2mlMint2m = WiM-

One checks that the only pairs of equal adjacent elements in this sequence are Vm-1 = Vm

and o = y,, and that S2 M-1 E DesR(v-1) while S2m-1 V DesR(Uo). By the definition of pw,
it follows that A(t'm) = -1 as claimed, and from this we deduce that A(g) - (-)9m+1+-+92m

for g E Hm. On the other hand, if g E Hn and |gJ = (-, -) E Sm x Sm C S2m, then
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(4 o x_)(g) = (-1)9±+1+.-+g2,ma(c.)
2 . In the product of these two characters the factors

of -1 cancel, and we obtain

(Resv- (A), Res'n'BM (X+ X))Hm =S xC( 2 _ Xa)sm = 1,

which completes the proof of the lemma.

Continue to let Vm = CB2m (win) as in the proof of the preceding lemma. If k, e,m are

nonnegative integers with 2m + k + e = n, then we may naturally identify CB, (Wk,e,m) with

the internal direct sum

CB,(Wk,f,m) = Vm x Bk X Be (2.3.6)

where we view the factor Bk (respectively, Be) as the subgroup of B, consisting of all elements

(x, r) with xi = 0 and x(i) = i for

i V {2m + 1, ... , 2m + k} (respectively, i ( {2m + k + 1, ... ,2m + k + f}).

In addition, if we let Ak,e,m : CB, (Wk,e,m) -+ C be the linear character defined by

pw(g)aWk,,,m = Ak,,m(g)aw1,,,m, for g E CB.(Wk,e,m),

then with respect to the identification (2.3.6) we have Ak,e,m = Am 0 I
1

Bk 0 sgnB,, where

Am = AO,O,m is the character of Vm which we denoted A in the preceding proof. (Here, 0
denotes the external tensor product.) The character Xw,Wkm of the subrepresentation of pw

on the subspace of Invol(W) spanned by the conjugacy class of wk,,,m is IndB B (Ak,e,m).

Using the transitivity of induction, we deduce from the preceding lemma that this character

is equal to the sum of induced characters

XW,Wkt,m = IndmxB xB (")01 B sgnBe)'
a -m

To decompose this, we appeal to the following lemma.

Lemma 2.3.9. If k, f, m are nonnegative integers with 2m + k + e = n, and y F- m, then

Ind B2 m xBkB 0 t Bk 0 sgnB,) X10,

(a,o)

where the sum is over all bipartitions (a,/3) H n such that the Young diagram of a (respec-

tively, 3) is obtained from the Young diagram of -y by adding k cells in distinct columns

(respectively, e cells in distinct rows).

Proof. By comparing the formulas for these characters and using the fact that characters
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are class functions, one finds that the left hand side is the character of

Ind Indk ( sS(P 0 ills ) (Inds-ss'(p7 0 sgnse),

where, as above, we use the notation p+, p.. to denote two extensions of a representation p
of S, to a representation of Bn. By the well-known Pieri rules for the symmetric group, this
representation is isomorphic to

IndBn PaZ0Ind ~kB +I (ta -Z pO),In!m+k xBm+l $+ _ Bm kx Bm4 (PC+ 0 P- P',#
(a, ) (a,3) (a,3)

with all sums over bipartitions (a, 3) H- n as in the statement of the lemma. U

We may now give a detailed proof of the decomposition Kottwitz describes in [551 of the
subrepresentations of ow generated by the involutions Wk,e,m. In what follows, given two
partitions a, 3, let a n 3 be the partition with (a n /)i = min{ai, 3i} for i E P.

Theorem 2.3.10 (Kottwitz [551). Suppose (W, S) is of type BCn. If k, f, m are nonnegative
integers with 2m + k + f = n, then the character XW,,k, of the subrepresentation of pw on
the subspace of Invol(W) spanned by the conjugacy class of Wk,f,m E W is

XW'Wk'11m = E (d(a, ) (a,3)

(Xa 3) ,a n ol - m X

where the sum is over all special bipartitions (a, /) H- n with Ial = m + k and 131 = m + i.

Note that we evaluate the binomial coefficient (k) to be zero if i < 0 or i > k.

Proof. If (a,/3) is a bipartition of n then the multiplicity of X(a,#) in the character under
consideration is, by the preceding lemma, the number of partitions -y H- m to which one can
add k cells in distinct columns to obtain a and f cells in distinct rows to obtain /3.

Suppose X(a',) appears with nonzero multiplicity, so that some such -y H- m exists. Then
necessarily a H- m + k and 3 H- n + k, and we see that (a, /) is special by the following
argument. On one hand, certainly 'yj < /3i 5 ai + 1 for any i E P since /3i E {yi, 7y + 1} and
a > yi. On the other hand, ai+ yj since there are only 7i - 7yi+1 distinct columns to
which one can add cells in the (i + 1)th row of -y. Hence ai+1 < 3i < ai + 1 for all i E P so

(a,/3) is special by Lemma 2.3.7.
Let us now consider what forms the partition -y m may take. Certainly -y C a n 3, and

the set of cells added to y to form a is a subset of {(a[z, j) : j E P} while the set of cells added
to - to form 3 is a subset of {(i,3j) : j E P}. Consequently, any cell in the Young diagram

of a n / which does not belong to -y must belong to the set D 4 {(a,j) : j E P} n {(i, i):
i E P}, which by Lemma 2.3.7 has cardinality d(a,/3) as (a,3) is special. By construction,
each cell in D is a corner cell in the Young diagram of a n 3, and so removing any subset
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of cells S c D from (the Young diagram of) a n 3 yields a valid partition, which we denote

by vs. Since 1-yI = m, we conclude that -y = vs for some subset S C D with Ja n 31 - m

elements. This suffices to show that the multiplicity of X(,) for a special bipartition (a,#)
with a -m + k and # m + f is at most (I _).

To show that this multiplicity is exactly ( d(a,_)) it is enough to prove that (under the

assumption (a, 3) is special) the cells in the skew shape a \ vD lie in distinct columns and

the cells in the skew shape 3 \ vD lie in distinct rows. This follows easily enough, as it is
not hard, using the definition of special in Lemma 2.3.7, to see that the cells in the first
skew shape belong to {(i, /3) i E P} while the cells in the second skew shape belong to
{(Cf, j) : j E P}. E

Corollary 2.3.11 (Kottwitz [55]). If (W, S) is of type BC, then

X(w,s) = S 2d(a,0)X(ao)

(ao)

where the sum is over all special bipartitions (a, 3) of n.

Proof. If (a,,3) F- n is a bipartition, then for each m, there is a unique pair k, f with |a| =

m + k and 11 = m + f. Hence, summing the subrepresentations described in the preceding
result over all integers m, k, e > 0 with 2m + k + f = n yields the given decomposition. E

2.3.3 Type Dn

Suppose (W, S) is the Coxeter system of type D,. In this situation, we identify W with the
normal subgroup B, < B, given by

Bn = {(x,7r) E Bn : X1 + X2+' + Xn = 0

and let S = {s 1, ... , s_1, s' 1} where si is defined as in (2.3.2) and s'_1 = t"snitn, with

tn as in (2.3.2). The involutions of B: are just the involutions of Bn belonging to B:. Let

(x, ir) E W be such an involution. Then si E DesR(x, IN) for i E [n - 1] if and only if si

belongs to the descent set of (x, 7r) viewed as an element of the Coxeter system of type BCn,
i.e., if and only if one of the following conditions holds:

" ir(i) > -(i + 1) and xi = xi+1 = 0;

* ir(i + 1) > ir(i) and xi = xi+1 = 1;

" xi = 1 and xi+1 = 0.

On the other hand, the element s'- 1 E DesR(x, r) if and only if one of these conditions
holds:

* ir(n - 1) > ir(n) and xn._1 = 0 and xn = 1;
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* 7i(n) > r(n - 1) and xn_- = 1 and xn = 0;

* n- = X"= 1.

When n is odd, the distinct conjugacy classes of involutions in W are represented by the
elements wk,t,m with k, f, m ranging over all nonnegative integers with m = 2m + k + f and
f even. When n is even, the distinct conjugacy classes of involutions in W are represented
by the same elements wk,t,m together with the one additional involution W', defined by

WMj = ( (1, 1, 0,..., 0), Wm) E Bim, for m > 1. (2.3.7)

The conjugacy classes of these involutions are the intersection of their conjugacy classes in
Bn with BZ, with one exception: if n = 2m is even then the intersection with BZ of the
conjugacy class of Wm E Sn C Bn splits into two classes, represented by Wm and W'..

Before even describing the irreducible representations of W, let us prove the following
fact.

Lemma 2.3.12. Suppose (W, S) is the Coxeter system of type Dn and (W', S') is the Coxeter
system of type BCs, so that W = B+ is a subgroup of W' = Bn. Write

def def
PD = Lw and PB = 9W',

and suppose m, k are nonnegative integers with 2m + k = n. The subspace V of Invol(BZ)
spanned by the Bn-conjugacy class of Wk,O,m is then both PB- and PD-invariant, and the
restriction from Bn to B[ of the subrepresentation of PB On V coincides with the subrepre-
sentation of PD on V.

Remark. If we replace Wk,O,m by Wk,t,m for an integer f > 0, then the BZ-representations
described in the lemma are still well-defined, but generally not isomorphic. In particular,
while Invol(B+) is a PB-invariant subspace of Invol(Bn), the subrepresentation of PB on
Invol(BZ) does not restrict to a representation isomorphic to PD-

Proof. It is enough to demonstrate that if w = (x, 7r) E BZ is an involution in the Bn-

conjugacy class of Wk,O,m, then pB(s)a, = pD(s)a, for s -s'_1 = tnSn-ltn E Bn. In
particular, this suffices because, as noted above, si for i E [n - 1] is a right descent of an
involution w E Bn[ with respect to the type Dn length function if and only it is a descent
with respect to the type BC, length function.

To this end, note that we have sw = ws if and only if (n -1, n) is a cycle of 7 or if n -1, n
are fixed points of - such that x,_- = Xn. In either case, n_1 = XE {0, 1} and one checks
that

0B(s) a = 9D(s)aw = (-1)xna.

If sw 5 ws then either (i) n - 1, n are fixed points of 7 but x,,- # xz, (ii) ii(n) V {n - 1, n},
or (iii) ir(n - 1) {n - 1, n}. The Bn-conjugacy class of Wk,O,m has no elements satisfying
(i), since if i is a fixed point of 7 then xi = 0. Using this fact, one checks that in cases (ii)
and (iii) we have PB(s)aw = PD(s)aw = ass,, as required. L
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A consequence of Clifford theory is that if a,#3 are partitions with Ia + 131 = n, then the

restricted representations

Res (,,3)) c-- Res)n (pP'A)

are isomorphic. Let p{',01 denote a representation of B+ isomorphic to these restrictions;

here, we view the superscript index {a, ,3} as a set of partitions, so that a priori we have

ploa'1 = pf{Oal. When a = 3, the representation p{a} = p{01 = p{',01 decomposes as a sum

of two non-isomorphic irreducible representations, which we denote (in some order) by p{all

and p{a},2. To distinguish between these two types of representations, we give the index of

p{',01 with a # 3 a special name.

Definition 2.3.13. An unordered bipartition of n is a set {a, } consisting of two partitions

a 4 3 with lal + 131 = n. We write {a,3} F- n to indicate that {a,/3} is an unordered

bipartition of n.

When n is odd, the representations p{'a, 1 with {a,,3} ranging over all unordered bipar-

titions of n represent the distinct isomorphism classes of irreducible representations of BZ.

When n is even, the representations p{'031 for unordered bipartitions {a, } F- n together

with p{al1 and p{a}, 2 for partitions a F- n/2 represent the distinct isomorphism classes of

irreducible representations of Bn. We write X oa'1, x {a,2, and X{' 13 1 for the characters of

p {alj, p{a},2, and p{'t 13}, so that

Irr(W) = {XC'1l, IX{a, 2 : a F- n/2} U {x a,1 : {a,3} F- n}

where the first set in the right hand union is empty is n is odd.

Observation 2.3.14. It is useful to note that with respect to this notation, we have

(a) Ind (x )') = X( , + X 0 if {a, #} is an unordered bipartition of n;

(b) Ind B (X {aj1) = IndBn (x{a},2) = x(',) if n is even and a F- n/2.

Proof. These facts are consequences of Frobenius reciprocity.

Our labeling of the two irreducible constituents of ResB' (p(aa)) for a F- n is not canon-
2n

ical: it depends on an arbitrary choice for which representation to call p{a4l1 and which to

call p{},2. The following result shows that there is a natural way of making these choices;

this is connected to the discussion in Geck's recent work [40, Section 3.9].

Proposition 2.3.15. Suppose (W, S) is of type Dn where n = 2m is even. It is possible to

arrange the indices of the characters X "1 '1 , X 1},
2 for partitions a F- m so that the characters

of the subrepresentations of pw on the subspaces of Invol(W) spanned by the conjugacy

classes of Wm and w' , respectively, are the multiplicity free sums

Z { },' and X
ahm ac-m
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Proof. Let V and V' be the subspaces of Invol(W) spanned by the conjugacy classes of Wm

and 2'. Recall that the centralizer of wm in B, is the group Vm defined in the previous
section. Since Vm C B:, Vm is also the centralizer of Wm in BZ, and so if A : Vm -+ C
is the linear character defined by pw(g)am = A(g)am for g E Vm, then the character

of the subrepresentation of pw on V is Ind? (A). Since by Lemmas 2.3.8 and 2.3.12 we

have IndB (Ind (A)) it follows from the observations (a) and (b) above that

the character of subrepresentation of pw on V contains exactly one of X * 'l or x{oz,2 as a
constituent for each a H m. This suffices to prove the proposition since the character of the
subrepresentation of P(ws) on V D V' is ResB a m X(a'a)) = +asm (x ± X{a}, 2) by
Lemmas 2.3.8 and 2.3.12. L

The following constructions are type D versions of the "symbols" introduced in the pre-
ceding section. This material is again originally due to Lusztig [63]. Given a nonnegative
integer m, let Sg denote the set of pairs (A, M) of strictly increasing nonnegative integer
sequences of length m, represented as two-line arrays

(A,, A2, . , Am "

pi1, A2, --- , ptm

Lusztig [63] defines an equivalence relation on the disjoint union SD I UmrO Sg by
setting

1, A2 , Am pi A2, Pm
Al, /p2, - Ym A,, A,2 -, Am

and
A, A2 , - Am 0(o, +1 1, A2  , ... , Am +1
/4, P2, - --,m 0, 91 + 1, A2 + 1, - - - , pm +1I

and then extending ~ reflexively and transitively. As with SBC, we call the equivalence
classes in SD under this relation symbols. We now recall the following definitions from [63].

Definition 2.3.16. The symbol of an unordered bipartition {a,,3} of n is the symbol of
(A, p) E S , where

Ai = aCn-(-l) + (i - 1), for i E [n],

Ai = /.n-(i-1) + (i - 1), for i E [n].

(a) The unordered bipartition {c, f3} is special if its symbol contains for some m a repre-
sentative (A, M) E Sg with Ai 5 pi for all i E [m] and pi 5 Ai+ 1 for all i E [IM - 1].

(b) Two symbols A, A' in SD are said to belong to the same family if for some m there
exist (A, p) E S9 n A and (-y, v) E Sg n A' such that the concatenated sequences

(A, A2 ,. .. , Am, A, 2,..., PM) and (-Y1, 72, ... ,7m, V1, V2, . , m)

are permutations of each other. Two unordered bipartitions of n belong to the same
family if and only if their symbols belong to the same family.
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(c) In any (A, [L) E SD, a certain number of entries of p do not appear in A and a certain

number of entries of A do not appear in p. Denote these (equal) numbers by e(A, ,i).

The number e(A, p) is the same for all elements in a given symbol and we therefore define

def ESe(a,,3) = e(A, 1L) for any (A, I) E SD which represents the symbol of {a, 0}.

Note that e(a,t#) = e(3, a) > 1 by construction since a 4 /. In general, d(a,#) $ e(a,to),
as shall soon become clear.

Example 2.3.17. The unordered bipartitions {EP,HP}, {EEF}, and {8, } of 8 constitute
a family, since their symbols are respectively represented by

1 3 )7 (1 4 )I ad (1 2
2 4 ' 2 3 , nd 3 4

The unordered bipartition {EP, EE} is special, and e (EP, EP) = e (E, EF) = e (R, E) = 2.

In analogy with Theorems 2.3.1 and 2.3.6, Lusztig [63] shows that the families and special
characters in type D, are given as follows.

Theorem 2.3.18 (See Chapter 4, Section 6 in [63]). Suppose (W, S) is of type D,.

(1) If n is even then the irreducible characters xfaj' 1 and x{a},2 of W are special for all
a F- n/2. The irreducible character x"Ool of W is special if and only if the unordered
bipartition {a, #} - n is special.

(2) If n is even then the irreducible characters xfaJ' and X{, 2 for a I- n/2 all belong
to their own families with one element. Irreducible characters indexed by unordered
bipartitions of n belong to the same family if and only if their indices belong to the
same family.

As in type BCs, one can define the set of special unordered bipartitions {a,#3} and the
numbers e(a,#t) while avoiding the notion of symbols entirely, and this ability, in the form
of the following lemma will prove useful later.

Lemma 2.3.19. Let {a, 0} be an unordered bipartition of n.

(1) An unordered bipartition is special if and only if it is given by {a, t} where a C 3 and
the skew diagram 3 \ a contains no 2 x 2 squares.

(2) If {a,} is special and a C 3, then e(a, t) is the number of connected components in
the skew diagram # \ a.

Before giving the proof we make two remarks.
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Remarks. The condition for an unordered bipartition {a,#3} to be special corresponds to
the following picture:

If the Young diagram of a is the set of gray cells and a C 3, then {a,#3} is special if and
only if 3 is formed by adding (a subset of) white cells to a.

Concerning the second part of the lemma, we recall that the connected components of a
skew diagram are the equivalences classes of cells under the relation of (left-right or up-down)
adjacency. For example, if 3 = (7,5,2,2) and a = (5,4, 1) then the skew diagram 3 \ a,
shown as the white cells in the picture

has e(a, /) = 3 connected components.

Proof of Lemma 2.3.19. Noting (2.3.8), one finds that the definition of a an unordered bi-
partition {a, 31 is equivalent to the condition that a < /i and 3i+1 5 a+ 1 for all i E P (or
the same condition with a and 3 interchanged). It is straightforward to check, remembering
that we assume a i 3, that this holds if and only if a C 3 and 3 \ a contains no 2 x 2
squares.

Suppose {a,/31 is special and a C 3. Then, defining Ai and pi by (2.3.8), one has
A1  p1 < A2 !5 A2 < - - A,, p,, and e(a,/3) is equal to the number of i E [n] with
Ai < pi < Ai+ 1 , where by convention An+1 = oo. Equivalently, e(a, 3) is equal to the number
of i E P with ai < 3i ai_1, where we define ao = oo. It becomes clear on consulting the
picture in the remarks above that the upper right most cells of the connected components
of 3 \ a are precisely those of the form (i, /i) for i E P with a < 3i ai- 1. Hence e(a,/3)
is the number of connected components in the skew diagram 3 \ a. l

Continue to suppose (W, S) is of type Dn, and let k, f, m be nonnegative integers with
2m + k + f = n such that e is even and k or f is nonzero. Recalling (2.3.6), we note that the
centralizer of WkI,m in W = B+ is the index two subgroup of CB' (Wk,e,m) = Vm x Bk x Be c B,
consisting of all elements (x, 7r) E CB (wk,e,m) with Fn 1, = nm+1 x, = 0. In other words,
we may identify

CW(Wk,f,m) = Vm X Uk,1
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where
def

Uk, = {(=x,7r) E Bkx Bj c Bk+t : X1 l + k+t = 0}.

Thus the linear character A : CW(Wk,t,m) -+ C defined by

Qw(g)aw.,',m = (g)aWl,m, for g E CW(Wk,t,m),

decomposes as the external tensor product A = A 0 r where A : Vm -+ C is the linear
character defined in the proof of Lemma 2.3.8 and T is a linear character Uk,e -+ C. It is a
straightforward exercise from the definition of Qw to check that, writing k for the partition
(k,0, 0,....) - k and It for the partition (1, 1,...,71, 0, 0,...) - f, we have

IndvmxBkx B_ (A 0 r) = (A 0 X(kz) 0 X(1',0)) + (A 0 X('k) X(0,1')

By Lemmas 2.3.8 and 2.3.12, it follows that

Ind BjBkXB (A 0 r) = Ind xB xX) x(k,0 ) 0(1,)

+ Ind2B- xB ( ) 0 X(k) 0 X(0,e)

The induced characters in these sums decompose according to the following lemma.

Lemma 2.3.20. If k, e, m are nonnegative integers with 2m + k + f = n and a F- m, then

Ind2m Bkx Be X(a,a) 0 x(k,0 ) X(1,0)) = X(0,0,)

and
Ind B X (a) 0 X(0 ,k) 0 X(0,1)) - ( )

( 3,-y)

where both sums are over all pairs of partitions ()3, -y) with I-yI = m + k and II= m + k + f
such that the Young diagram of -y is obtained from the Young diagram of a by adding k
cells in distinct columns, and the Young diagram of 3 is obtained from the Young diagram
of 7 by adding f cells in distinct rows.

Proof. These identities follow from the Pieri rules for the symmetric group in essentially the
same way as in the proof of Lemma 2.3.9. 0

From this lemma, we may now likewise give a detailed proof of the Kottwitz's decompo-
sition of the characters Xw, in type Dn.

Theorem 2.3.21 (Kottwitz [55]). Suppose (W, S) is of type Dn and k, e, m are nonnegative
integers with 2m + k + f = n such that f is even and either k or f is nonzero. Then the
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character XwW m of the subrepresentation of Lw on the subspace of Invol(W) spanned by
the conjugacy class of wk,t,m E W is

e(a, #) ,4
Xwkt,m = (k f (a,#3)) X,

{a,0}

where the sum is over all special unordered bipartitions {a,#3} Hr n with jal = m and

/1 = m + k + f, and where f(a, 3) is the number of positive integers i with ai $ /3 .

Proof. Let X = XwLJ,,1,m. Continuing in the notation introduced after Lemma 2.3.19, we
have shown that

Ind n(x) = Ind ,,em)(A 0 T) = Z (xa + X (2.3.9)
(cW,/ 3,)y)

where the sum is over all triples of partitions (a, ,7 -y) with a H m and -y H m + k and
# H m + k + , such that -y is obtained from a by adding k cells in distinct columns, and 3
is obtained from 7 by adding e cells in distinct rows.

It is clear from this equation that for any bipartition (a,#) H n, the character X("'
and X('") appear in Ind7 B(X) with equal multiplicity, and that this multiplicity is zero if
a = 3. In light of Observation 2.3.14, the theorem will follow if we can show that the
multiplicity of X(a'0 in (2.3.9) is equal to the binomial coefficient ascribed to xf"'fl in the
theorem statement. To this end, we first note that if a H m and -y is obtained by first adding
k cells in distinct rows to a and 3 is obtained by adding f cells in distinct columns to -Y,
then clearly /3 H m + k + f and a c g and 3 \ a has no 2 x 2 squares. It therefore follows
from Lemma 2.3.19 that {a,3} is a special unordered bipartition.

Let {a, /} be a special unordered bipartition with a H m and / H m + k + f (so that
a C 3). To complete the theorem's proof, we must show that the number ma,, of partitions

H F m + k such that the cells of \ a lie in distinct columns and the cells of 3 \ -y lie
in distinct rows is (kf(a,)). If -Y m + k is such a partition, then every cell in -y \ a

belongs to {(a + 1, j) : j E P} and every cell in 3 \ -y belongs to {(i, 03) : i E P}. Hence
if v is the partition of m + f(a, 3) whose Young diagram is formed by removing from / all
cells (i, /3i) which do not belong to a, then v C 7 and every cell in 7 \ v must belong to

def
D = {(a, + 1, j) : j E P} nf {(i,3#) : i E IP}. For any subset S C D there exists a valid
partition vs of m + f(a, /3) + SI whose Young diagram is given by adding the cells in S to
v. From the preceding observations, we conclude that - must be equal to vs for some subset
S C D with k - f(a,7) elements.

Because the unordered bipartition {a,/3} is special, the cells in V \ a lie in the set
(a + 1,j) : j E P}. As such, it follows by construction that each partition vs for S c D

has the property that the cells in vs \ a lie in distinct columns and the cells in 3 \ vs lie
in distinct rows. Hence, the possible choices for 7 are in bijection with the subsets S C D
with k - f(a, /) elements, so m,,o = (kf, "). Since 3 \ a contains no 2 x 2 squares, each

connected component of 3 \ a contains exactly one cell in D (namely, the upper right most
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cell in the component). Thus JDJ = e(a, #) by Lemma 2.3.19, which completes our proof. l

Corollary 2.3.22 (Kottwitz [551). If (W, S) is of type D, then

X(w,s) = E (X ' + X{, 2) + E 2e(a,)-1X{a,}

4-yn/2 {a,3}

where we omit the sum over -y I- n/2 if n is odd and where the second sum is over all special
unordered bipartitions {a,3} of n.

Proof. If we sum the subrepresentations described in the preceding theorem over all integers
k, 0, m > 0 with 2m + k + = n such that f is even and k or f is nonzero, then the resulting

multiplicity of p{',0} is a sum of binomial coefficients of the form ((e(a,)) ± (e(2'.3) +..

or ((e(aj)) + (e(a,)) +...). These still give familiar powers of two, but with the exponent

diminished by one. E

2.4 Decomposing Xw for exceptional Coxeter systems

Casselman computes in [31] the decomposition of Xw when W is an exceptional Weyl group
of type of type E6 , E 7, Es, G2 , or F4 . Using the computer algebra system MAGMA, we have
in turn computed the decomposition of Xw when W is one of the remaining exceptional finite
Coxeter systems of type H 3 or H 4 . We take the opportunity in this thesis to present all of
this data in one place-namely, as Tables A.2, A.3, A.4, A.5, A.6, A.7, A.8, A.9, A.10, and
A.11 in the appendix. We have structured these tables to serve the additional purpose of
providing a convenient lexicon for various notations used in the literature for the irreducible
characters of the exceptional finite Coxeter groups.

2.4.1 Format of tables

Tables A.2-A.11 are structured as follows: each row corresponds to an individual character
V) E Irr(W), and each collection of rows grouped together represents a family of characters
.F C Irr(W). In each such family, the unique special character is listed first. The first column
gives the multiplicity of 7P in Xw. The second and third columns give two different names
used for the character V'. The remaining columns list data parametrizing the characters
within a family (which is used in Section 2.5 to indicate how the Fourier transform acts on
each 0).

In all of our tables, the second column lists the name of 4 in the notation of Carter's
book [30]. In this notation, each irreducible character of W is generally denoted #d,e, were d
and e are such that

#,e(1) = d and FakeDeg(#d,e) = (nonzero constant) - ±e + higher order terms.
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The two numbers d, e uniquely identify all of the irreducible characters of W in types E6 ,
E7 , E8 , and H 3. In types F4 and G2 , Carter addresses a handful of ambiguities by labeling
certain pairs of characters as #d,e and 0',,; we follow his example. In type H4, the notation
kd,e fails to distinguish the two irreducible characters of W of degree 30. Since we cannot
refer to Carter's labeling of these characters (as he only considers the crystallographic case),
we denote these characters by q30,1 0,12 and 030,10,14, where 030,10,f indicates the irreducible
character with

03,1f(1) = 30 and FakeDeg(0 30,1o,f) = X10 + X + higher order terms.

This data in the columns after the third in our tables is formatted in two different ways
according to whether (W, S) has one of the crystallographic types E6 , E7 , E8 , G2, F 4 and or
one of the non-crystallographic types H3, H4. In Tables A.10 and A.11 addressing the non-
crystallographic types, the fourth and fifth columns indicate the Fourier transform matrix
attached to a given family and the index in this matrix which is assigned to a given character.
A detailed explanation accompanying these assignments appears in Sections 2.5.3.

When (W, S) is crystallographic, to each family F c Irr(W) there corresponds a group
F and a set WT = _W"(F) as defined by (2.2.2). To each ' E F there is then assigned a pair

(x, o-) E WF, which also indexes the unipotent irreducible character <DV, corresponding to 4.
(Our reference for these assignments is [30, §13.2].) In Tables A.2 to A.9, the fourth column
lists the group F for which .44 = .W(F), and the fifth, sixth, and seventh columns indicate
the pair (x, o-) E .ly (as well as the centralizer Cr (x) for clarity) which corresponds to ?P,
as listed in [30, §13.9] and the appendix of [63].

The groups F occurring in the fourth column are all symmetric groups S,, with n < 5.
Accordingly, the elements x E F in column five are permutations written in cycle notation.
The centralizers of these elements which appear are each either

" a symmetric group S, with n < 5;

" a cyclic group Z, with n E {3,4,5};

" a direct product of the form S 2 X S2 or S2 x S3 or Z 3 x S2 ;

" the dihedral group of order eight Dih8.

To indicate the characters o- of these centralizers which appear, we employ the following
notation. Let I denote the trivial character of any group, and let sgn denote the sign
character of a symmetric group. Other characters of the symmetric group are indicated by
listing the Young diagram of the corresponding partition; e.g., EP denotes the reflection
representation of S4 . We will view Dihs as the centralizer of the permutation (1, 2)(3, 4) in
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S 4 , and refer to its irreducible characters as they are labeled in the following character table:

1 (1,2)(3,4) (1,3)(2,4) (1, 2) (1, 4, 2, 3)
I I 1 1 1 1
e' 1 1 1 -1 -1
e 1 1 -1 -1 1
&" 1 1 -1 1 -1
r 2 -2 0 0 0

Finally, we label the characters of direct products as tensor products of characters of their

factors, in the obvious way. This should be ambiguous in only one case, when x = (1, 2) E
F = S 4 and Cr(x) = {1, (1,2), (3,4), (1,2)(3,4)} ((1,2)) x ((3,4)) S S2 x S2 and
- =L gsgn. In this situation, I corresponds to the factor group ((1, 2)) while sgn corresponds

to the the factor group ((3,4)), so that -(1, 2) = 1 and u-(3, 4) = -1.

2.4.2 Type H3

We devote the rest of this section to describing the irreducible decomposition of the characters

Xw,, in type H 3 , H 4 , and I 2 (m), since this will be needed in Section 2.6.

Let (W, S) be the Coxeter system of type H3 , so that W is isomorphic to the direct

product of S 2 and the alternating subgroup of S5 , and S = {a, b, c} consists of three elements,
which we label according to the Dynkin diagram

a 5 b c

(so that a, b, c satisfy the relations (ab)5 = (ac)2 = (bc) 3 = a2 = b-2 c2 = 1). There are
then four conjugacy classes of involutions in W, represented by the elements 1, a, ac, and

(abc)5 , and W has 10 irreducible characters.

Decomposing ow and its subrepresentations is a routine calculation which we have carried

out in the computer algebra system MAGMA [181. From this computation, we obtain the

following:

Proposition 2.4.1. If (W, S) is of type H3 then the characters Xw,, decompose as follows:

(1) Xwi = 01,0.

(2) XW,(abc) 5 = 01,15-

(3) Xwa = 03,1 + 03,3 - 04,3 + 075,5.

(4) Xwac = 03,6 + 03,8 + 04,4 + 05,2.

Consequently, Xw = Z'EIrr(W) O and ow is a Gelfand model.
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2.4.3 Type H 4

Let (W, S) now be the Coxeter system of type H 4 , so that W is a finite group of order 14400
generated by four elements S = {a, b, c, d}, which we label according to the Dynkin diagram

a 5b C d.

There are five conjugacy classes of involutions in W, represented by 1, a, ac, (abc)5 , and
(abcd)15 , and Irr(W) has 34 elements. Again, decomposing Xw and XW,a is a routine com-
putation, which we have carried out in MAGMA.

Proposition 2.4.2. If (W, S) is of type H 4 then the characters Xw,, decompose as follows:

(1) Xw,1 = 01,0-

(2) XW,(abcd)15 = 01,60-

(3) Xwa = 04,1 + 04,7 + 016,3 + 436,5-

(4) XW,(abc) 5 = 4 ,3 1 + 4,37 + #16,21 + #36,15-

XWac = 09,2 + 09,6 + 09,22 + 09,26 ± 016,6 ± 016,18 + 025,4 + #25,16
+ 20 24,6 + 2024,12 + 2018,10 + 20 30 ,10,12 ± 2030 ,10,14 + 204o,8.

2.4.4 Type 12 (m)

Fix m > 3 and let (W, S) be the Coxeter system of type 12 (m), so that W is the dihedral
group of order 2m, generated by the two elements S = {r, s} subject to the relations r 2

s2 = (rs)m = 1. The involutions in W are the elements 1 and (rs)jr for 0 j < m -i,
along with (rs)m/2 if m is even. We always have DesR(1) = 0, and one checks that

{r}, if 2j + 1 < m

DesR ((rs)m/ 2 ) = {r, s} and DesR ((rs)ir) = {r, s}, if 2j + 1 = m (2.4.1)

{s}, if 2j + 1 > .

Write wo for the longest element of W, given by (rs) 7r if m is odd or (rs)m/2 if m is even.
The group W has either two or four conjugacy classes of involutions, represented by 1 and
r if m is odd and by 1, w0 , r, and s if m is even.

The irreducible characters of W are given as follows. There are two linear characters
when m is odd, given by 0 1,0 = I and 01,m = sgn, and four linear characters when m is even,
given by

01,0= I, 01,m = sgn, 0'1,m/ 2 : ris k - )k and #'1,m/2: risk F- (i).
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There are in addition L2-1] distinct irreducible characters of degree two given by the func-
tions

02k (rs)ir -+* 0m,:(rs) - 2, cos( j/for integers k with 0 < k < m
(rs) F- 2 cos(2-rjk/m), 2

These constructions exhaust all elements of Irr(W). We have labeled the characters of W
following our convention in type H 3 and H 4 : the first index of 4d,e indicates the character's
degree while the second index is the largest power of x dividing the character's fake degree.
In the notation of Section 2.2.5, we have

,= 1, 01,m = sgn, 01,m/2 = M'(1,) 01,m/2 = (,'-), 02,k = ((O,k).

Table A.12 describes the irreducible decomposition of the characters Xw, and Xw in type
12 (m). The rows in this table correspond to individual irreducible characters of W, while
the columns list the multiplicity of each row in the characters Xw,,.

Three distinct patterns arise according to the residue class of m modulo 4. The proof
of the given decompositions is a simple exercise using Frobenius reciprocity and the fact
that Xw,, is induced from a linear character A of the centralizer Cw() of or in W. The
character A is determined by formula pw(g)a, = A(g)a, for g E Cw(o), which may be
explicitly evaluated using (2.4.1). In addition, one checks that if m is odd and o, is one of the
representative involutions 1 or r then Cw(a) is W or {1, r} S 2 , and that if m is even and
c is 1, wo, r, or s then Cw(or) is W, W, {1, wo,r, wor} S 2 xS 2 , or {1,wo,8s,os} S 2 x S 2.
Evaluating the inner product of A with the elements of Irr(W) restricted to these subgroups
provides the desired multiplicities of Xw,,-

Summarizing Table A.12, we have the following proposition.

Proposition 2.4.3. Suppose (W, S) is of type 12 (m) with m > 3.

(1) If m is odd then Xw = 01,o + kim + Z27 02,k = ZIkEIrr(W) V)-

m-_2

(2) If m 2 (mod 4) then Xw = 01,o + 01,m + 01,rn/2 + 0',m/2 +E 4 2 k2,2k-1.

(3) If m 0 (mod 4) then Xw = 01,0 + 01,m + E2=1 202,2k-1.

2.5 Fourier transforms and proof of main theorem

Here we describe the Fourier transform matrices associated to Uch(W) for each finite, ir-
reducible Coxeter system (W, S), and derive from this setup the proof of Theorem 2.1.2.
In the crystallographic case, the relevant definitions are well-established and due originally
to Lusztig [63]. We must take more care to describe the associated matrices for the non-
crystallographic types, as the literature [19, 67, 75, 76] presenting this heuristic theory is not
nearly as cohesive or extensive.

We first describe how to attach to each family in Uch(W) (see Section 2.2.4) a Fourier
transform matrix M. The Fourier transform matrix of Uch(W) is subsequently constructed
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as the direct sum of such matrices M over all families. In Section 2.5.4 we describe some no-
table properties of this Fourier transform and discuss in what sense these properties indicate

the choices of matrices M to be "canonical."

2.5.1 Fourier transform matrices in crystallographic types

As described in Section 2.2.4, when (W, S) is crystallographic, every family in Uch(W) is

parametrized by a set -&(F) for some finite group F. (Recall from (2.2.3) the definition of

this set.) Lusztig [63] defines the Fourier transform associated to a family indexed by -&(F)
as the matrix

def(251
Mr = ({m, m'})m m'E(r) (2.5.1)

whose entries are the numbers

{(X),), (yT) (x) 1(Y) z
I~v~xI I~~y)I gEr ( g) (gx )

x-gyg- -y --

for (x, -), (y, -r) E -&(F). Carter helpfully provides an explicit description of the sets -&(F)
and the accompanying matrices Mr in the cases when F = Sn and n < 4 (as well a partial

matrix in the case F = S5 ) [30, §13.6]; see also the overview in [30, §12.3]. We review the

frequently occurring case F = S 2 in the following example.

Example 2.5.1. If s denotes the nontrivial element of S 2 , then

AK (S2) = {(1, 1), (1, sgn), (s, L), (s, sgn)},

and with respect to the order in which we just listed .1(S2), the corresponding matrix is

I
MS -= -1

2.5.2 Fourier transform matrices in type 12(m)

The description of the Fourier transform in this case comes from Lusztig's paper [67]. Assume

(W, S) is of type I 2 (m) for an integer m > 3 and recall the explicit construction of Uch(W)

given in Section 2.2.5. As noted there, Uch(W) has only three families, two of which have

size one: {l} and {sgn}. The Fourier transform of both 1-element families is the 1 x 1
identity matrix.

Let F = Uch(W) \ {1, sgn} denote the remaining family, and define X = X' U X", where
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X' and X" are the disjoint sets given by

X'= {Pairs of integers (i,j) withi+j <mandeither0<i <j <morO=i<j <

= f{(0, M)', (0, M)"}, if m is even,

10, otherwise.

As is clear from our notation in Section 2.2.5, X naturally parametrizes F. Write ( =

exp 2wV-T) for the standard mth root unity. The Fourier transform of F, as defined by

Lusztig [67], is then the matrix

Dm N ({x, x'})x,,Ex

whose entries are the numbers {x, x'} given by

{(i, j), (k, l)} = ( ~+ -jk+il - -ik+1 - ik-JI) , for (i, j), (k, 1) E X',

and if m is even and (i, j) E X', by

{(ij), (0, 2)'} = {(i, j), (0, 2)"} = {(0, )', (ij)} = {(0, M)", (i, j)} =

{(0, ) (0, )'} - {(0, )", (0, !)"} = 1-)m/2 1
2 2' 2m ±2'{(0, i)', (0, !g)"} = {(0, i)", (0, !g)'} = - -1m/ __.

We have labeled this matrix Dm as a mnemonic for "dihedral Fourier transform."

Example 2.5.2. It is helpful to review some examples of this construction.

(i) If m = 3 then X = {(0, 1)} and D 3 is the 1 x 1 identity matrix.

(ii) If m = 4 then X = {(0, 1), (0, 2)', (0, 2)", (1, 2)} and with respect to an appropriate
ordering of indices we have D 4 = Ms 2 . In a similar way, one finds that D6 = Ms.
These equalities are consistent with the fact that the Coxeter systems of types 12(4)
and 12(6) are isomorphic to those of types BC2 and G 2 , whose nontrivial families of
unipotent characters are parametrized by -&(S 2 ) and -19(S 3 ).

(iii) If m = 5 then X = {(0, 1), (0, 2), (1, 2), (1,3)} and with respect to the order in which
we just listed X, one computes

A I I

I A A -1 -1 v/5+ 1 - V5 - I
D5 = - ~ i where A = and A= 2

1-1 -A A )

This is precisely the matrix listed in [19, Eq. (7.3)] and in [67, §3.10].
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2.5.3 Fourier transform matrices in types H 3 and H 4

The definition of the Fourier transform in the remaining non-crystallographic cases comes
from the papers [19, 75, 76]. In type H 3 , Uch(W) has four 1-element families given by {1,0},
101,151, f0 5,2 }, and {05,5}. In type H4, Uch(W) has six 1-element families given by {10},
{ 1,60}, { 25,4}, {$ 25,16 }, {# 36,5}, and {5 3 6,15 }. These families are all subsets of Irr(W) and
we have labeled their (necessarily special) elements according to our conventions in Sections
2.4.2 and 2.4.3. To all such 1-element families, the associated Fourier transform matrix is
the 1 x 1 identity matrix.

In type H 3 (respectively, H 4 ), Uch(W) has three (respectively, six) 4-element families.
One such family is exceptional in type H 3 (see Definition 2.2.6), while two are exceptional
in type H 4 . The following observations concerning these families are derived from the
parametrizations of Uch(W) provided by the UnipotentCharacters command in CHEVIE
[41]. First, in both types the exceptional families always consist of four elements

4(1,1),7 (1 (1,sgn), 7 (s,1), 41(s,sgn)

which can be indexed by the set Iff(S 2), such that

* ((1,1), '1 '(1,sgn) E Irr(W), with (D(1,1) special and Deg (D(1,1)) = Deg (D(1,sgn))-

* (,1), '(s,sgn) V Irr(W), with Deg ((,)) = Deg (s,sgn) and f Eig (41(s,1)) =
Eig (1(s,sgn)) =--

Remark. The computer algebra system CHEVIE stores a large amount of data associated to
Uch(W), which can be accessed by combining the commands Display and Unipotent Characters.
The parametrization by &(S 2 ) just given, however, is not included in CHEVIE, though the
listed properties uniquely determine which index (x, o-) E .1(S 2 ) goes to which 4 E F for
any exceptional 4-element family -F.

The characters (D(1,1), ((1,sgn) E Irr(W) may be respectively either 04,3, 04,4 in type H 3 or
016,3, 0 16 ,6 or #16,18, 0 16 ,2 1 in type H 4 . There is no established notation for the formal elements
4(s,1), D(s,sgn) in each family, however.

The non-exceptional 4-element families in types H 3 and H 4 , on the other hand, always
consist of four elements

4(0,1),7 ((,2), 7 ((1,2), (I(1,3)

which can be indexed by the set X in Section 2.5.2 with m = 5, such that if = exp (2-7r )
is a fifth root of unity, then

* (D(o,1), (o,2) E Irr(W), with 4D(o,1) special and Deg (45(o,1)) $ Deg (D(o,2)).

* (D(1,2), 4(1,3) ( Irr(W), with Deg (1(1,2)) = Deg (D(1,3)) and Eig (D(1,2)) = 3

Eig (4(1,3)) = 2-
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This parametrization by X, though uniquely determined for each non-exceptional family, is

again not actually listed in CHEVIE. The characters 4(o,1), ((0,2) E Irr(W) may be either

0 3 ,1 , 03,3 or 03,6, 0 3,8 in type H 3 or any of the pairs 04,1, 04,7 or 04,31, 0 4,37 or 09,2, 09,6 or

09,22, #9,26 in type H 4 . There is again no established notation for the formal elements I(1,2),

4(1,3) in each family.
The Fourier transforms of these families are now defined thus: if F c Uch(W) is a

4-element family in type H 3 or H 4 , then its Fourier transform matrix is

M = fMs2 , if F is exceptional (see Example 2.5.1),
D 5 , if F is not exceptional (see Example 2.5.2(iii)).

Note that these assignments make sense because we have indicated how each 4-element family
is indexed by the same set as the corresponding matrix.

Remark. In our definition of the Fourier transform matrix for the non-exceptional 4-element
families, we follow the convention of [19, §7]. The Fourier transform of the exceptional 4-
element families in types H 3 and H 4 seems less well-established in the literature. The matrix
assigned to these families here is chosen to be identical to the Fourier transform matrix of
the other exceptional families in types E 7 and E8. We will say more about the "correctness"

of this choice in the remarks following Theorem 2.5.6.

These conventions attach a Fourier transform matrix to all but one remaining family in
type H 4 . In this type, Uch(W) has a single family F of size 74; the intersection of this
family with Irr(W) has size 16 and its unique special element is the character 024,6 E Irr(W).
The Fourier transform of this family is constructed by Malle as the matrix S in his paper
[75]. To do calculations with this matrix, one needs to be able to access it in some computer
format, and the algebra package CHEVIE fortunately provides this capability. In detail, one
can obtain the 74 x 74 Fourier transform matrix of F by the following sequence of CHEVIE

commands in GAP:
W := CoxeterGroup("H",4);

Uch := UnipotentCharacters(W);

F := Uch.f amilies[13];

M := F.f ourierMat * MatPerm(F.perm, 74);

The odd-looking multiplication by MatPerm(F.perm, 74) in the last line has to do with the
indexing conventions of the f ourierMat field in CHEVIE. The code given here produces a
matrix M whose rows and columns have the same indices as Uch, and which is identical to

the one in [75].

2.5.4 Fusion data and proof of main theorem

From the preceding three subsections, we know of a Fourier transform matrix attached to
each family F in Uch(W) for each finite, irreducible Coxeter system (W, S). The Fourier
transform matrix of Uch(W), we reiterate, is the direct sum of these matrices over all families
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F. By construction, this Uch(W)-indexed matrix satisfies property (P2) in the introduc-
tion; i.e., it is block diagonal with respect to the decomposition of Uch(W) into families.

The following theorem explains precisely how this matrix also satisfies property (P1) in the
introduction. This statement should be attributed to Lusztig and Malle via a combination

of results appearing in the papers [63, 67, 75, 76]; see the proof of [42, Theorem 6.9] for a
detailed bibliography.

Theorem 2.5.3. Let (W, S) be a finite, irreducible Coxeter system with associated Fourier

transform matrix M, and write j for the (permutation matrix of the) involution of Uch(W)
defined in Proposition 2.2.5. Then the composition M o j transforms for the vector of fake

degrees of Uch(W) to the vector of (generic) degrees.

Remark. This result is mentioned in several places, but sometimes imprecisely. For example,
Carter asserts, without any mention of j, that the Fourier transform matrix of Uch(W)

transforms the vector of fake degrees to the vector of actual degrees whenever (W, S) is a
Weyl group [30, §13.6]. This statement, at least as we interpret it, is not strictly true in
types E7 and E8 . In particular, one can check that the Fourier transform matrix M that

Carter attaches to the three exceptional families in these types (see Section 2.2.4) does not
literally transform the vector of fake degrees to the corresponding vector of (generic) degrees

as listed in [30, §13.8]. But M does transform a nontrivial permutation of the fake degrees

to the (generic) degrees.

The preceding theorem gives one reason to consider the particular Fourier matrices as-

signed to Uch(W) as somehow "canonical," and our next result provides another. To state

this, we first must recall Lusztig's definition of a fusion datum [67].

Definition 2.5.4. Let X be a finite set with a distinguished element xO, and suppose

" A is the matrix of an involutory permutation of X with xO as a fixed point;

" M is a real symmetric matrix indexed by X;

" F is a diagonal matrix indexed by X whose diagonal entries are complex roots of unity.

The tuple (X, xO, A, M, F) is a fusion datum if the following axioms hold:

(Commutability). M = AMA and F-1 = AFA.

(Positivity). MXXO > 0 for all x E X and FXO,XO = 1.

(Modularity). M 2 = (FAM) 3 = 1.

(Integrality). E ' "m-m'-' E N for all x, y, z e X.(Inegalty. WEX MX,

Remarks. A few comments are helpful in unpacking this not altogether transparent con-

struction.
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(a) In [67], Lusztig actually presents a more general definition of a fusion datum which
involves two involutions i, b of X in place of A. This definition reduces to ours when

if = = A.

(b) The modularity axiom is so-named as it requires that the matrices A, F, M determine
a unitary representation of the modular group PSL2 (Z).

(c) The integrality axiom allows one to define an algebra structure with nonnegative integer
structure coefficients on the complex vector space generated by X. More specifically,
the axiom asserts that one can give this vector space the structure of a based ring in
the sense of [65]; see the discussion in [42, §7].

Before proceeding we note the following short lemma, which identifies a common type of
fusion datum based on the set .W(F) attached to a finite group F.

Lemma 2.5.5. Let F be a finite group equal to (Z/2Z)n or Sn for some n > 0, and suppose

" X = /&(F) as defined by (2.2.3) and xO = (1, 11) E X;

" A : X -+ X is the involution defined by A : (x, o-) - (x, 5);

" M = Mr as in (2.5.1);

" F = diag(tx)xEx where t(x,) = ( for (x, o-) E

Then (X, xO, A, M, F) is a fusion datum in the sense of Definition 2.5.4.

Proof. This is equivalent to [67, Proposition 1.6], provided we show that (x, ) (x- 1 , o-)
for each (x, a) E &(F) when F is either (Z/2Z)" or Sn. This is immediate in the first case,
so assume F = S,, is a symmetric group.

Let A be a partition of n and let x E S, be a permutation with cycle type A. In
the proof of Proposition 2.2.8, we noted that Cs (x) is isomorphic to the direct product
of wreath products Hr>1 G(r, mr), where m, is the number of parts of A with size r. A
less explicit version of this statement goes as follows: the cycles of x generate an abelian
group A 2' F> 1 Z/AjZ, and Cs (x) is isomorphic to a semidirect product of the form

(Smi x S,2 x ... ) x A. It is easy to see that one can choose a permutation g E Sn which
commutes with the left factor of this semidirect product and which has gxg 1 = x- 1 and
in fact g-1 yg = y-1 for all y E A. Noting these properties, it follows from the standard
construction of the irreducible characters of a semidirect product with an abelian normal
subgroup (see [59, Exercise XVIII.7]) that ag = 7 for any a E Irr(Csn(x)). We conclude
that (X, ) = (gxg-,79) = (x- 1, a) for all (x, -) E W(S,), as required. 0

With these preliminaries in tow, we may now state the following noteworthy result due
to Geck, Lusztig, and Malle [42, 67, 75], showing how each family in Uch(W), combined with
its attached Fourier transform matrix, possesses naturally the structure of a fusion datum.
This observation elaborates property (P4) of the Fourier transform matrix noted in the
introduction, and is essentially a special case of [42, Theorem 6.9] (although as stated, that
result drops the positivity axiom of a fusion datum and uses somewhat different terminology.)

116



Theorem 2.5.6. Let (W, S) be a finite, irreducible Coxeter system. Suppose

" F is a family in Uch(W) and (Do E F is its unique special element;

" A is the restriction to F of the involution of Uch(W) given in Proposition 2.2.4;

" M is the Fourier transform matrix of F, as defined in the Sections 2.5.1, 2.5.2, 2.5.3;

" F = diag (Eig(4))4,, is the diagonal matrix of Frobenius eigenvalues of D E F.

Then (F, (o, A, M, F) is a fusion datum.

Remark. For almost all families in Uch(W), our assignment of Fourier transform matrix
follows exactly the convention established in the computer algebra system CHEVIE [41].
For the six exceptional families in types E 7 , E8 , H 3 , and H 4 , however, our assigned matrix
differs slightly from the one stored in CHEVIE-although, these matrices are the same after
a permutation of rows and/or columns. In justification of our assignments, we can say the
following: if one assumes Uch(W) given, then for each exceptional family, there is a unique
matrix M satisfying both Theorem 2.5.3 and Theorem 2.5.6. So at least in this sense our
choice of M is canonical.

We include a brief proof of the theorem for completeness.

Proof. In the case that (W, S) is crystallographic and F is a non-exceptional family of
Uch(W), the theorem follows by combining Observation 2.2.7 with Lemma 2.5.5. If F is one
of the six exceptional families in types E 7 , E8 , H 3 , or H 4 , then since F is A-invariant, the
theorem is equivalent to the claim that (X, x 0 , A, M, F) is a fusion datum for X = {1, 2, 3, 4}
and x0 = 1 and

1 0 0 0 1 1
0 1 0 0 1 1 -1 -1F
0 0 0 1 -1 1 -1F=diag(1,1,i,-i).
0 0 1 0 (1 -1 -1 1

The proof of this is a straightforward computer calculation. All families not covered by these
cases occur when (W, S) is non-crystallographic, and are either singletons; non-exceptional
4-element families in type H3 or H 4 ; the nontrivial family in type 12 (m); or the 74-element
family in type H 4 . In the first case the theorem holds trivially; in the second and third
case, the tuple (F, cIo, A, M, F) coincides with dihedral fusion datum given in [67, §3]; and
in the last case, (F, 4o, A, M, F) is by construction the fusion datum which Malle describes
in [75]. 0

We conclude this section finally by proving our main theorem from the introduction.

Proof of Theorem 2.1.2. If (W, S) is classical, then the function 6 : Uch(W) --+ R which is
identically 1 satisfies (1)-(3) in Theorem 2.1.2 and also (2.1.2) by [55, Theorem 1]. The
uniqueness of this function e follows by Theorem 2.5.6 as a consequence of the positivity
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axiom of a fusion datum, since any function e' : Uch(W) -- R satisfying (1) and (2) must

have e'(@I) < E(() for all ( E Uch(W). The final statement in the theorem holds because the'

Frobenius eigenvalues of Uch(W) all real if (W, S) is classical by Observation 2.2.7 (noting

that the group F in Observation 2.2.7 is (Z/2Z)k in this case).

Assume (W, S) is of type 12 (m), let M denote the Fourier transform matrix of Uch(W),

and let E : Uch(W) -+ R be the function with E(D) = 0 if D = @(ij) for some 0 < i < j <

i +j < m such that j $ M and with e(f) = 1 for all other 4 E Uch(W). From the discussion

in Section 2.2.5, this function satisfies conditions (1) and (2) in the theorem. To show that it

also satisfies (3) and (2.1.2), it suffices by Proposition 2.4.3 to check that if ( = exp m

and 0 < i < j < i +j < m, then when m is odd, we have

M c (I(i,)) {(i,j), (0, k)} I (ik + -ik - Vk - f = t i r0,
/<k< 1,,, otherwise,

and when Tn is even, we have

Mc ('(ij)) ~({(i,ij), (0, k)} + {(i, j), (k, !)}) + {(i,j), (0, M2)'} ± {(ij), (0, M)"}
O<k<m2

= -(-(i)i ( -ik ± ik) Wk +--) (kk ±+ 2.

O<k<m

2, if i = 0 and j is odd,
0, otherwise,

and also, for x E {(0, E)', (0, 2)"b

ME (') Z {x, (0, k)} + {x, (k, M)}) ± {x, (0, 7)'} ± {x, (0, )"}

O<k<m

1-(-1)m 1, if m 2 (mod 4),
2 0, if m 0 (mod 4).

(Note that we need to check that ME(1t) = ME(sgn) = 1 as well, but this is obvious.) Proving

each of these three identities is straightforward. Thus the function C satisfies conditions (1)-
(3) in the theorem, and we deduce that it is the only such function by the positivity axiom

of a fusion datum, exactly as in the classical case.

Suppose finally that (W, S) has one of the remaining exceptional types. If (W, S) is not

of type H 4 , then one can compute directly using the tables in [31] and Proposition 2.4.1

that the function E : Uch(W) -+ R which is 1 or 0 according to whether Eig('b) is real

or non-real satisfies (1)-(3) as well as (2.1.2). That E is the unique function satisfying (1)-

(3) then follows as in the previous cases by Theorem 2.5.6 and the positivity axiom of a

fusion datum. Similarly, if (W, S) has type H4 , then one can calculate using Proposition
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2.4.2 that (1)-(3) and (2.1.2) hold for the function c : Uch(W) -+ R which is 0 on all
D E Uch(W) with Eig(1) R, -1 on the two elements of Uch(W) whose degrees have

the form IX 6 + higher powers of x, and 1 on all other elements of Uch(W). Here, the

uniqueness of E does not follow immediately from Theorem 2.5.6 because the values of E

are not all positive, but it can still be easily checked. In this case, the positivity axiom

of a fusion datum implies that nearly all of the functions E' : Uch(W) -+ R satisfying (1)
and (2) must have Mc'(f) < ME(D) for one of the special characters (D E Irr(W). The

remaining list of functions on Uch(W) which could possibly satisfy (1)-(3) is quite small,
and a short calculation confirms that the given function E is indeed the only one with these

properties. U

2.6 Left cells and Kottwitz's conjecture

In this final section we investigate how the preceding material connects to the left cells of a

Coxeter group, and prove some partial results related to Conjecture 2.1.5 in the introduction.

Let (W, S) be a finite Coxeter system with length function f : W -+ N. We denote the
def

left descent set of an element w E W by DeSL(W) = {s E S : f(sw) < f(w)}, and for each

pair of elements y, w E W, we write

PY,W(X) E= N[X]

for the associated Kazhdan-Lusztig polynomial, as defined in [16, Chapter 5] or [30, §12.5] or

[48, §7.9], among other places. Recall that Pw,w(x) = 1 and that Py,w(x) = 0 unless y < w,
where < denotes the Bruhat partial order on W. From [53], we have the following sequence

of definitions for y, w E W:

" Write y -< w if y < w and Py,w(x) has degree } ((w) - f(y) - 1).

" Write y <L W if there exist elements XO, X 1 , . .. ,Xk E W such that y = xo and W =X

and for each i E [k], these two conditions hold: (1) either xj-1 -< xi or xi -< xi 1 , and

(2) the descent set DesL(Xi-1) is not contained in DesL(Xi).

" Write y -L W if Y L w and W 5L Y.

The left cells of W are the equivalence classes of the relation 'L. Let Vr = Q-span{c:

w e F} be a vector space with a basis indexed by a left cell F in W, and define a map

pr : S -+ GL(Vr) by linearly extending the formula

-c S, if s E DesL(w),

pr (s)c. = c + p(yw)cy, ifs o DeSL(w),
yEr

sEDeSL(y)
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for s E S and w E F, where p(y, w) denotes the coefficient of x1(()-(Y)-1) in Py,(x)
(which is zero unless y -< w). This extends to a representation of W, called the left cell
representation of F, whose character we denote by Xr.

The following properties of left cells and left cell representations are useful to recall (see
[16, Chapter 6]). First, the left cell representations decompose the regular representation of
W and so the sum over left cells Er Xr is equal to EIrr(W) 0(1)0. Second, the singleton
set {1} is always a left cell, and its character is the trivial character IL. Finally, if wo
denotes the longest element of W and F is a left cell, then wOF and Fwo are left cells and

Xwor = Xrwo = Xr - sgn.
We now state a few less well-known facts about the characters Xr-

Theorem 2.6.1. IfF, F' are left cells in a finite Coxeter group W, then (Xr, Xr') = |irf'-'I.

Proof. When W is a Weyl group, this is [63, Proposition 12.15]. Alvis notes how to extend
Lusztig's proof to type H 4 [4, Proposition 3.4], and his argument remains valid in types
H 3 and I 2 (m) (noting the explicit description of the left cells for these groups given in the
following sections.) Alternatively, Geck has given a general proof of this theorem; see [39,
Corollary 3.9]. El

Corollary 2.6.2. If F is a left cell in a finite Coxeter group W, then Xr is multiplicity free
if and only if every w E F n F-1 is an involution.

Proof. The character Xr is multiplicity free if and only if the inequality (Xr, Xr) EPeIr(w) (Xr7
is an equality. The left side is F n F-' I by the previous theorem, while the right side is the
number of involutions in F by [39, Theorem 1.1]. E

The next theorem shows that the Fourier transform matrix of Uch(W) indeed satisfies
property (P3) in the introduction.

Theorem 2.6.3. Let (W, S) be a finite, irreducible Coxeter system with Fourier transform
matrix M, as in Section 2.5. Fix a left cell F of W, and let v be the vector indexed by Uch(W)
whose entries are the irreducible multiplicities of Xr, extended by zeros on Uch(W) \ Irr(W).
Then Mv = v.

We prove this here, even though to do so we must appeal to a few results not yet given.

Proof. When W is a Weyl group, this is [63, Theorem 12.2]. In types H 3 and H 4 , the
theorem follows from a computer calculation using the description of the characters Xr given
in Sections 2.6.1 and 2.6.2. In type I 2 (m) it follows by a short argument using the content
of Sections 2.5.2 and 2.6.3 that the theorem is equivalent to the following identities: if

(=exp ( and 0 <i <j <i+j <m, then when im is odd

E 1 ik + ik _ k _ -jk othei se

O<k<- M 0, otherwise,
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and when m is even

(1)(1) ± + -ik _ ik _ jk - = k fi if i = 0,
O<k< M 0, otherwise,

Provin+ En- ±_12m m g'
O<k<m2

Proving each of these is straightforward arithmetic. 0

The last object of this section is to prove the following theorem. We will accomplish this in
a case-by-case fashion, by examining the left cell representations in each non-crystallographic
type.

Theorem 2.6.4. Conjecture 2.1.5 holds if (W S) has type H 3 , H 4 , or 12 (m).

From this and the results of [31, 55], it follows that Kottwitz's conjecture holds for all
finite irreducible Coxeter groups except possibly those of type BCs, D", E7 , and E8 . Recent
work of Bonnaf6 and Geck [17, 40] has established the conjecture in all of these remaining
cases except E8 .

2.6.1 Left cells of the Coxeter group of type H 3

Let (W, S) be the Coxeter system of type H 3 . The group W decomposes into 22 distinct
left cells which we may describe as follows. (This description does not seem to appear
anywhere in the literature, though one can easily compute the left cells in type H 3 directly,
using for example Fokko du Cloux's program Coxeter [34], which is what was used to derive
the following statements.) Label the generators S = {a, b, c} as in Section 2.4.2 and let
WO = (abc)5 denote the longest element of W. Following Alvis [4], we define

Ri = {w E W : DesL(w) = J}, for each subset J C S, (2.6.1)

and let X* = {wow : w E X} for any subset X c W. We now define 12 subsets i, Ji, Ki c W
as follows:

I, = R{ib,c n R{alaba, Ji = R{a,c} n R{c}cbab, K1 = Ria} - (14 U J3),
12 = Ila, J2 = Jib, K 2 = R{b} - (13 U J* U J2 U J4),
13 = 12b = 12*, J3 = J 2 a, K3= Ric, - J5.

14 = 13a = 1*, J4 = J3b,

J = J4c,

The reader should compute that IIiI = 8 and |Ji = 5 and IKi| = 6. In addition, let L = {1}
so that L* = {wo}. We now have this computational proposition (which is closely related to
the calculations summarized in [61, §5]):
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Proposition 2.6.5. The left cells of the Coxeter system (W, S) of type H 3 are the 22 disjoint

subsets Ii, J, Ji', Ki, KZ, L, L*, and the characters of the associated cell representations

are respectively

(04,3 + 04,4); 05,2; 05,5; (03,1 + 03,3); (03,6 + 03,8); 01,o; 01,15-

Proof. Coxeter [34] outputs a description of the left cells and the associated cell represen-

tations in type H 3 in a few seconds. We have checked that this information matches what

is asserted in the proposition using MAGMA [18]. l

Table A.13 lists the sizes of the intersections of the left cells in W with the group's four

conjugacy classes of involutions, which we recall from Section 2.4.2 are represented by the

elements 1, a, ac, and (abc)5. Each row of the table corresponds to a left cell. Each of the

last four columns of the table corresponds to a conjugacy class of involutions, and lists the

sizes of the intersections of the conjugacy class with the left cells. Comparing Proposition

2.4.1 with Table A.13 yields a proof of Conjecture 2.1.5 in type H 3 by inspection.

2.6.2 Left cells of the Coxeter group of type H 4

The Coxeter group of type H 4 decomposes into a disjoint union of 206 left cells. Alvis

classifies these in [4], and assigns each of them one of the labels Ai, Bi, B', Ci, Cj", Di, D!,

Ei, El F, Fi*, G 1, G*. We refer to [41 for the precise definition of these sets, noting the

following correction:

Remark. On page 162 of the published version of Alvis's paper [4], the left cell A 1 2 is defined

by the equation
A 12 = Alod (INCORRECT)

which should instead be
A 12 = Alid. (CORRECT)

Apart from this quite minor (but inevitably confusing) detail, everything else in Alvis's paper

seems to be completely accurate.

Table A.14 lists the sizes of the intersections of the left cells in W with the group's five

conjugacy classes of involutions, which are represented as in Section 2.4.3 by the elements

1, a, ac, (abc)5 , and (abcd)15 . We have structured this table exactly like Table A.13, and

comparing it to Proposition 2.4.2 similarly yields an immediate proof of Conjecture 2.1.5 in

type H 4 .

2.6.3 Left cells of the Coxeter groups of type I2(m)

Let (W, S) be the Coxeter system of type 12 (m) for m > 3, with S = {r, s} and wo E W

defined as in Section 2.4.4. The group W then decomposes into a disjoint union of four left
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cells, given by the singleton sets X = {1} and X* = {wo} together with

Y = {s, rs, srs,..., (... srs) } = R{., and Y* = {r, sr, rsr,..., (... rsr) } =R,,

m-1 factors m-1 factors

with Rj defined by (2.6.1). The following description of the left cell representations of W

can be found, for example, in [38, Section 7.1].

Proposition 2.6.6 (Geck [38]). The left cells of the Coxeter system (W, S) of type 12 (m) are

the 4 disjoint subsets X, X*, Y, Y*, and the characters of the associated cell representations

are respectively

0 1,0, 01,M, Zo<k<m 42,k, Eo<k<m 02,k, if m is odd,

1,, ,, ,m/2 Ok< 2 1,m/2 + EOck<m 02,k, if m is even.

The description of the left cells is also noted in [48, §7.15]. It is easy to compute the

characters of the left cell representations directly, and we have included a short argument

for completeness.

Proof. We have Xx = 01,o = L and Xx* = 01,m = sgn automatically, and the remaining

left cell characters are multiplicity free by Corollary 2.6.2. Since the left cell representations

decompose the regular representation and since Xy* = Xy - sgn, we must have Xy = Xy* =

Zk 02,k if m is odd, and if m is even, we must have either xy = O1,m/2 + Ek 02,k and

XY* = '1,m/2 + Ek q02,k or the reverse assignments. One resolves the ambiguity when m is
even by computing the values of the characters at r or s. 0

Table A.15 finally lists the sizes of the intersections of the four left cells in W with the

group's two or four conjugacy classes of involutions (see Section 2.4.4). We have structured

this table exactly like Tables A.13 and A.14, and comparing it to Table A.12 completes the

proof of Theorem 2.6.4.
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Chapter 3

Positivity conjectures for
Kazhdan-Lusztig theory on twisted
involutions

This final chapter combines and expands some of the results, background, and proofs in the
preprints [81, 82].

3.1 Introduction

3.1.1 Overview

Let (W, S) be any Coxeter system, and write Hq2 for the associated generic Hecke algebra
with parameter q2 : this is the usual Hecke algebra (namely, a certain Z[q+1/ 2]-algebra with
a basis (TW)WEw indexed by W), but with q replaced by q2 in its defining relations; skip to
Section 3.1.4 for the precise definition. Next, fix an automorphism * : W -+ W with order
one or two which preserves the set of simple generators S. Write L* for the corresponding
set of elements w E W with w- 1 

= w *, which one refers to as twisted involutions, and let
Mq2 be the free Z[q* 1 / 2]-module which this set generates.

Lusztig [70] has shown that Mq2 has an H2-module structure which serves as a nat-
ural and interesting analogue of the regular representation of 7 q2 on itself. (Section 3.1.4
contains the details of this construction.) The regular representation of 7

iq2 possesses a dis-
tinguished Kazhdan-Lusztig basis (CW)Ew, whose transition matrix from the standard ba-
sis (TW)WEw defines the much-studied family of Kazhdan-Lusztig polynomials (PY,W)Y,WEw C
Z[q]. Lusztig's work [70] indicates that one may repeat much of this theory for the module
Mq2: it too has a "Kazhdan-Lusztig basis" whose transition matrix from the standard basis
defines a family of "twisted Kazhdan-Lusztig polynomials" (Py0),,,WEI c Z[q].

Many remarkable properties of the Kazhdan-Lusztig basis of lq2 appear to have "twisted"
analogs for the module Mq2. For example, one of the most famous aspects of the original
Kazhdan-Lusztig polynomials (PY,w)Y,vEw is that their coefficients are always nonnegative.
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(This statement, while known in many cases from the work of a number of people, has only

recently been proved for all Coxeter systems by Elias and Williamson [36].) The twisted

Kazhdan-Lusztig polynomials (PfW),WEI. can have negative coefficients. However, Lusztig

and Vogan [72] have shown by geometric arguments that the modified polynomials !(P,,,

P.) for y, w E L, have nonnegative coefficients whenever W is crystallographic. In fact, for

any choice of (W, S) and *, the polynomials l(P,,, ± Pf,) belong to Z[q], and Lusztig [70]

has conjectured that their coefficients are always nonnegative.

Section 3.1.5 presents two other positivity conjectures for the "Kazhdan-Lusztig basis"

of the twisted involution 'iq2-module Mq2. These serves as analogues of longstanding con-

jectures related to the ordinary Kazhdan-Lusztig polynomials P,,.. After stating these

"twisted" conjectures, we devote the rest of this chapter to proving them in two significant

special cases: for Coxeter systems (W, S) which are universal (i.e., such that st E W has

infinite order for all distinct s, t E S), and for finite Coxeter systems. In the universal case

it is possible to derive explicit formulas for the polynomials P,,, and Pf, to establish the

conjectures of interest. To treat the finite case, we combine Lusztig and Vogan's results for

Weyl groups [72] with computer calculations. A more detailed summary of the main results

in this chapter is given in Section 3.1.6, after some necessary preliminaries.

3.1.2 Setup

Throughout we write Z for the integers and N = {0, 1,2, ... } for the nonnegative integers.

We also adopt the following conventions:

" Let (W, S) be a Coxeter system with length function f : W -+ N.

" Let < denote the Bruhat order on W.

" Let A = Z[v, v 1 ] be the ring of Laurent polynomials over Z in an indeterminate v.

The ring A will now occupy the role which Z[q± 1/ 2] played in the previous section

" Let q = v 2 . In the sequel, we will refer to v in place of the parameter q1 /2 used in

Section 3.1.1.

Thus W is a group and S C W is a nonernpty finite set of elements of order two which

generate W. Recall that the rank of (W, S) is given by the cardinality IS 1, and the length

f(w) is the minimum integer k such that w = s 1 s2 ... Sk for some choice of generators si E S.

The Bruhat order is defined by the condition that y < w for y, w E W if and only if whenever

W = s1 s 2 ... S(w) for some si E S, there are indices 1 < i1 5 i2  --- im < 0(w) such that

y = s .i2 '' - Sim. In particular, if y < w then 0(y) < f(w).
For further background on Coxeter systems and the Bruhat order, see for example [16,

48, 69].
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3.1.3 Kazhdan-Lusztig theory

Here we briefly recall the definition of the Kazhdan-Lusztig polynomials attached to (W, S).
Let Wq denote the free A-module with basis {t,, : w E W}. This module has a unique

A-algebra structure with respect to which the multiplication rule

tStW = t, if f(sw) = f(w) + 1
1 qtsw + (q - 1)tw if 0(sw) = f(w) - I

holds for each s E S and w E W. The element tw E lHq is more often denoted in the literature

by the symbol Tw, but here we reserve the latter notation for the Hecke algebra Rq2, to be

introduced in the next section.

We refer to the algebra lq as the Hecke algebra of (W, S) with parameter q. A number of

good references exist for this much-studied object; see for example [16, 48, 53, 69]. The Hecke

algebra possesses a unique ring involution -: Wq -+ Hq with 7 = v-" and Tw_ = (tw-1)~ 1 for

all n E Z and w E W, referred to as the bar operator, and this gives rise to the following

theorem-definition from Kazhdan and Lusztig's seminal paper [53].

Theorem-Definition 3.1.1 (Kazhdan and Lusztig [53]). For each w E W there is a unique

family of polynomials (PY,w)YEW C Z[q] with the following three properties:

(a) The element cw = v-(w) - EEW PY,,- t, in Hq has cw = cw.

(b) P, = Jy, if y 4 w in the Bruhat order.

(c) Py, has degree at most . (f(w) - f(y) - 1) as a polynomial in q whenever y < w.

Remark. Here and elsewhere, the Kronecker delta 6y, has the usual meaning of 6v,, = 1 if

y = w and JY, = 0 otherwise.

The polynomials (PY,)Yww are the Kazhdan-Lusztig polynomials of the Coxeter system

(W, S). Property (b) implies that the elements (cw)wEw form an A-basis for lq, which one

calls the Kazhdan-Lusztig basis. For more information on the Kazhdan-Lusztig polynomials

and methods of computing them, see, for example, [48, Chapter 7] or [16, Chapter 5].

3.1.4 Twisted Kazhdan-Lusztig theory

We now present Lusztig's definition of the module .Mq2 and the polynomials PO", mentioned

at the start of this introduction. To begin, we let Rq2 denote the Hecke algebra of (W, S)

with parameter q2 : this is the free A-module with basis {Tw : w E W}, equipped with the

unique A-algebra structure with respect to which the multiplication rule

T T if 0(sw) = f(w) +1

q2T ,+(q 2 -1)T if f(sw) = f(w)-i

127



holds for each s E S and w E W. Like lH(, this algebra possesses a unique ring involution
-: lq2 --+H 2 with 7 = v-' and T = (Tw-1)~' for all n E Z and w E W. This bar operator
fixes each of the elements

CW = q-(W) - Py,w(q 2 ) Ty for w E W.
yEW

The elements (Cw)wEW form an A-basis of Jq2 which one refers to as the Kazhdan-Lusztig
basis. The use of the capitalized symbols T., Cw is intended to distinguished elements of
lHq2 from the basis elements tw, cw of the usual Hecke algebra tq.

The following Theorem-Definition of Lusztig [70] defines Mq2 explicitly as a certain
module of the algebra Hq2. This statement requires a few additional ingredients:

" Fix an automorphism w -+ w* of W with order < 2 such that s* E S for each s E S.

" Set I = {w E W : w* = w- 1 }. One calls elements of this set twisted involutions.

" Given s E S and w E I*, let s x w denote the unique element in the intersection of

{sW, ss*} and L* \ {w}. Note that while s x (s x w) = w, the operation x : S x L* -+ L
generally does not extend to a group action of W on L*.

We now have Lusztig's result. This statement first appeared in Lusztig and Vogan's paper
[72] in the special case that W is a Weyl group or affine Weyl group and * is trivial.

Theorem-Definition 3.1.2 (Lusztig and Vogan [72]; Lusztig [70]). Let Mq2 be the free
A-module with basis

{aw : w E 1,}.

(a) Mq2 has a unique Hq2-module structure with respect to which the following multipli-
cation rule holds for each s E S and w E I*:

asxw + aw if s X w = sws* > w

(q + 1)asxw + qaw if s X w = sw > w

(q' - q)aSKW +(q - q - )aw if s X w = sw < w

q2 asxw + (q2 -- 1)aw if s X w = sws* < W.

(b) There is a unique Z-linear involution -: Mq2 -+ Mq2 such that sT = a, and h -m = h-iT
for all h E 7

q2 and m E Mq2. This bar operator acts on the standard basis of Mq2 by
the formula Ij = (-I)e(w) - (Tw-1)- 1 -aw-1 for w E I*.

The bar operator just introduced on Mq2 gives rise, in turn, to the following analogue
of Theorem-Definition 3.1.1. Like the previous result, this was first shown by Lusztig and
Vogan [72] in the crystallographic case (with * trivial). Lusztig [70] subsequently extended
the statement to all Coxeter systems.
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Theorem-Definition 3.1.3 (Lusztig and Vogan [721; Lusztig [70]). For each w E L, there
is a unique family of polynomials (Pw)T C Z[q] with the following three properties:

(a) The element Aw = V EYw* Pu, - a. in Mq2 has A = Aw.

(b) Pvo,' = Jy,w if y / w in the Bruhat order.

(c) Py, has degree at most j (f(w) - f(y) - 1) as a polynomial in q whenever y < w.

Note from (b) that the elements (Aw),,E form an A-basis for the module Mq2. We
sometimes refer to this as the "twisted Kazhdan-Lusztig basis." Likewise, we call the poly-
nomials PK7 the twisted Kazhdan-Lusztig polynomials of the triple (W, S, *). We will discuss
some general properties of these polynomials (and also address how one computes them) in
Sections 3.2.2 and 3.4.3.

Before continuing to state the conjectures concerning PK, which are our main subject, let
us mention a few reasons why one might care about these polynomials or the module Mq2.
First, as detailed in [72], when W is a Weyl group or affine Weyl group, the module Mq2
arises from geometric considerations and in that context the polynomials PO, are expected
to have importance in the theory of unitary representations of complex reductive groups.

While for more general Coxeter groups we lack such an interpretation for M. 2 , there
is nevertheless always a sense in which we can view the left regular representation of the
Hecke algebra of a Coxeter system as a special case of (a submodule of) the module Mq2.
Consequently, one can realize the ordinary Kazhdan-Lusztig polynomials of one Coxeter
system as the twisted polynomials PC, corresponding to another Coxeter system with a
particular choice of *. This is explained in Section 3.2.3.

3.1.5 Positivity conjectures

Many results in the theory of Hecke algebras depend on positivity properties of the Kazhdan-
Lusztig polynomials Py,.. In particular, we recall the following much studied conjectures:

Conjecture A. The polynomials Py,w have nonnegative integer coefficients.

Conjecture B. The polynomials Py,w are decreasing for fixed w, in the sense that the
difference Py,w - P,, has nonnegative integer coefficients whenever y < z.

Denote the structure coefficients of 'iq in the Kazhdan-Lusztig basis by (hx,y;z)xyzEw;
i.e., these are the Laurent polynomials in A satisfying cxcy = EzEW hxy;ZCz for x, y, z E W.

Conjecture C. The Laurent polynomials hx,y;z have nonnegative coefficients.

These conjectures have been proved in the case when (W, S) is crystallographic (i.e., when
W a Weyl group or affine Weyl group), finite, or universal through the work of a number of
people [33, 35, 50, 54, 64, 95]. Elias and Williamson's recent proof of Soergal's conjecture
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[36], finally, establishes Conjectures A and C for any Coxeter system. In this generality

Conjecture B remains open.

The central topic of this work concerns "twisted" versions of the preceding conjectures.

While the parallels between Theorem-Definitions 3.1.1 and 3.1.3 suggest obvious analogues

of Conjectures A, B, and C in the twisted case, these statements turn out not to be the right

ones. Notably, the polynomials P,"w may have negative coefficients. To state the "correct"

conjectures, define P , E Q[q] by

P = (P, + P1"') for each y,w E L . (3.1.2)

Lusztig proves that these polynomials actually have integer coefficients [70, Theorem 9.10]

and conjectures the following:

Conjecture A'. The polynomials P+ and P- have nonnegative integer coefficients.

This statement is a refinement of Conjecture A since P+ ±P-, = PYw for y, w E L . We

introduce the following stronger conjecture, which is likewise a refinement of Conjecture B.

Conjecture B'. The polynomials P± are decreasing for fixed w, in the sense that the

differences P. - PZ,1 and Pw - P-, have nonnegative integer coefficients whenever y < z.

Finally, to provide an analog of Conjecture C, for each x E W and y E I. define

(hx,y;z)ZEW and (hz, as the Laurent polynomials in A satisfying

ccycx*- = Ex,y;zcz and CxAY = [ h",y.zAz. (3.1.3)

zEW zEI.

Note that cx, cy, cz E 1H while Cx E Rg2 and A. E M.2. Now, define h+y;, h;y-z E Q[v, v- 1]
by

hy;z = x,y;z I hoy;z) , for each x E W and y, z E 1.. (3.1.4)

One can show from results of Lusztig [70] that these Laurent polynomials likewise have

integer coefficients (see Proposition 3.2.17 below), which leads to this conjecture.

Conjecture C'. The Laurent polynomials h+;z and h-, have nonnegative integer coeffi-

cients.

Lusztig and Vogan's work [72] establishes Conjecture A' when W is a Weyl group or affine

Weyl group. In these cases, [72, Section 5] also mentions without proof that Conjecture C'

holds (when * is trivial). Conjecture B' is still to be open even in the crystallographic case.
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3.1.6 Outline

Following Dyer [35], we say that a Coxeter system (W, S) is universal if the product st E W

has infinite order for any distinct generators s,t E S. Dyer's paper [35] derives formulas

for the polynomials P,, and for the decomposition of the products c.cy E 'Hq in terms of

the Kazhdan-Lusztig basis, thus establishing Conjectures A, B, and C in the universal case.

(Dyer's results are formulated in somewhat different language than these conjectures; cf.

Theorems 3.3.5 and 3.3.15 below.) Section 3.3 proceeds as something of a sequel to Dyer's

work, as follows:

" In Sections 3.3.1, 3.3.2, and 3.3.3 we derive recurrence relations with coefficients in
dfdefp

N[q] for the polynomials Pf;,, = 0, - Po, and Py,z;, Py,, - P,,, (with y < z).

" These recurrences show that in the universal case POW and P' belong to N[q] and are

decreasing with respect to the index y E L. and the Bruhat order; see Theorems 3.3.12

and 3.3.13 below. Thus Conjectures A' and B' hold for universal Coxeter systems.

" In Section 3.3.4 we describe the decomposition of the product C2Ay in terms of the

distinguished basis (Az)zeI of Mq2; see Theorem 3.3.18. This shows that ha,y,;z E

N[v, v- 1 ] in the universal case; see Corollary 3.3.19.

" Combining these results with Dyer's work finally affords a proof of Conjecture C' for

universal Coxeter systems; see Theorem 3.3.22.

In Section 3.4 we turn our attention to finite Coxeter systems. Most of our effort on this

topic is spent in checking our conjectures for dihedral groups, where one can derive explicit

formulas, and for the exceptional non-crystallographic Coxeter systems of type H3 and H 4 ,
for which one can resort to computer methods.

" In Section 3.4.1 we prove that our conjectures hold a finite Coxeter system if they hold

for all of its irreducible factors.

" In Section 3.4.2 we work out formulas for the polynomials of interest explicitly in the

case that W is a dihedral group, in order to establish Conjectures A' and B' (but,
unfortunately, not yet C') for rank two Coxeter systems.

* Section 3.4.3 includes pseudo-code for algorithms to compute the polynomials (PY,,)',YEw

and (P0) 1. and the structure constants (h ,y;)xEW;Y,zE. and (hXY;Z)XEW;Y,zEI -

" In Section 3.4.4 we discuss our implementation of the algorithms in Section 3.4.3 as

extensions to Coxeter [34], and then summarize the outcome of our computations for

Coxeter systems of rank < 5.

Before carrying all this out, we provide in Section 3.2 a few preliminaries concerning the

Bruhat order on L, the polynomials Py,w and Po', and the associated bases of 'Hq and Mq2.
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3.2 Preliminaries

Here, we preserve all conventions from the introduction. Thus, (W, S) is an arbitrary Coxeter
system (not necessarily universal) with an S-preserving involution * E Aut(W), and attached
to these choices are the following structures:

* Hq2 = A-span{T, : w E W} is the Hecke algebra of (W, S) with parameter q2

" I* = {w E W : w-' = w*} is the corresponding set of twisted involutions.

* Mq2 = A-span{a, : w E L*} is the 7Hq2-module generated by L*.

Recall also the definitions of the special bases (C),EW C 7H.2 and (A,),, C Mq2, and
the polynomials (PY,w)y,WEW and (POj) in Z[q].

3.2.1 Bruhat order on twisted involutions

The set of twisted involutions L is partially ordered by the Bruhat order < on W, and this
ordering controls many important features of the basis (A)I,,E c M 2 and the polyno-
mials (PW)YWI. The subposet (L, <) has a more direct characterization and a number
of interesting properties, which are meticulously detailed in Hultman's papers [45, 46, 47].
Hultman's work extends to arbitrary Coxeter systems many earlier observations of Richard-
son and Springer [89, 90, 96] concerning 1 when W is finite. Here we review some of this
material which will be of use later on, particularly in Section 3.3.3.

Recall from Section 3.1.4 that we define

S W ifsw ws for s E S and w E 1. (3.2.1)
sWS if sw ws*

In [70], Lusztig uses the notation s ew instead of s K w; we prefer the symbol >< to emphasize
that s E S acts to "twist" w E L*. Although this notation does not extend to an action of
W of 1, it does lead to the following definition, adapted from [45, 46, 47]:

Definition 3.2.1. A sequence (s1, s2, ... ,Sk) with si E S is an I-expression for a twisted
involution w E L if W = s1 K (s 2 K (... (sk K 1) ... )). An I-expression for w is reduced
if its length k is minimal. We consider the empty sequence () to be a reduced I-expression
for w = 1.

What we refer to as I-expressions are the left-handed versions of what Hultman terms
"S-expressions" in [45, 46, 47]. (In consequence, all of our statements here are in fact the
left-handed versions of Hultman's.) It follows by induction on f(w) that every w E I* has
a reduced I-expression, and so the next statement (given as [47, Proposition 2.5]) is well-
defined:

132



Proposition 3.2.2 (Hultman [47]). Choose a reduced L-expression (Si, s 2 , .- -, Sk) for w E I,
and define wo = w and wi = si v wj_1 for 1 < i < k. Then the number of indices
i E {1, 2, ... , k} with siwi = wisl depends only on w and not on the choice of I-expression.

Define f* : L - N by setting e*(w) equal to the number k in the preceding propostiion.
(In particular, f*(1) = 0 and f(s) = 1 for any s E S n L.) The function f* coincides with
the map < which Lusztig defines in [70, Proposition 4.5]. This map measures the difference
in size between the (ordinary) reduced expressions and reduced I-expressions for a twisted
involution, in the sense of the following result, which appears as [45, Theorem 4.8].

Theorem-Definition 3.2.3 (Hultman [45]). Let p : L -- N be the map which assigns to
w E L the common length of any of its reduced I-expressions. Then the poset (, <) is
graded with rank function p, and

p =y ( + f*).

In particular, if w E I. and s E S then p(s v w) = p(w) - 1 if and only if f(sw) = f(w) - 1.

We conclude by stating the "subword property" for the Bruhat order on L, which appears
for arbitrary Coxeter systems as [47, Theorem 2.8].

Theorem 3.2.4 (Hultman [47]). If y, w E I are twisted involutions, then y < w if and only
if whenever (Si, S2, . . , Sk) is a reduced I-expression for w, there exist indices 1 < i1 < i 2 <
... < im < k such that (si1, si2 -- - , Sim) is a reduced I-expression for y.

3.2.2 Multiplication formulas and a recurrence for the twisted
polynomials

While Theorem-Definition 3.1.3 establishes the existence of the distinguished basis (Am).El
for the H2-module Mq2, it gives no immediate indication of how Hq2 acts on this basis,
or of how one can compute the polynomials (P) . In this section we summarize the

main results of Lusztig [70] addressing these problems.
The most straightforward method of computing PO involves an intermediate family of

polynomials (Ra,w) YWE.

Definition 3.2.5. For each w E I, define (Ro, E A for y E L. as the family of Laurent
polynomials satisfying

Sq(Y) -RorW

Recall here that q = v 2 and that if f E A then f denotes the Laurent polynomial f(v-).
Knowledge of the polynomials R' determines all of the polynomials Pa, as a consequence
of the following observations. First, the defining identity

Aw t v -(w) Z Pa"ay =
yEL
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implies that
- q_(w)-Ay)pa - e ( ) 0Y) z .P (3.2.2)

zEI.
y<z<,

for each y, w E I. Because the polynomial PUOw has degree at most tf") 2'f) I when y < w,

we have in this case e(we)-(v)pc0 E q- 1 Z[q- 1] and so P", is given by omitting all monomials

with negative exponents from the right hand side of (3.2.2), which can be computed (knowing

the Ra-polynomials) by induction.

To compute the polynomials R,",,, one can appeal to the following recurrences which

Lusztig derives in [70, §4]. (In Lusztig's notation in that section, one has ry,, = v-t(w)+1(Y)ROw

and r"= RO,.) The proof of this result in [70] is elementary, and follows by comparing

both sides of (3.1.1) after applying the bar operator, using the definition of R

Proposition 3.2.6 (Lusztig [70]). If y, w E I*, then RO,' E Z[q], and moreover:

(1) RO,, = 6,,, if y : w in the Bruhat order.

(2) If y < w and s E DeSL(w) then the following holds:

(a) If s x w = sw (which occurs if and only if sw = ws*) then

q2 Ra, + (q2 - q - 1)RO",u ifs x Xy = Sys* > y

(q + I) I(q - q2)RSXY:XW + (q2 - 1)R"o, if s X Y = Sy > Y
±Y'u (q + 1)Ro'sw - 2qRy"xw if s X y = sy < y

R",,x - qR, if s X y = Sys* < y.

(b) If s x w = sws* then

q2ROe,, + (q2 - 1)R KW if s X y = Sys* > Y

(q - q2)Ra 8,u, + (q2 + q - 1)RO, if s X y = sy > y

(q + 1)R C,. - qR or if S X y = Sy < Y

Ro,. if s X y = sys* < Y.

The method of computing the polynomials Pyo, just outlined is not the most efficient in

practice, and still does not tell us how to compute the action of T, E Hq2 on A, E M.2. We

now summarize Lusztig's results in [70] resolving such issues. To this end, we first introduce

some notation to refer to the coefficients of PY," of highest possible order.

Definition 3.2.7. Given y, w E I, we let

pA'(y, w) l the coefficient of q(t(w)-i(y)- 1)/2 in P

v"(y, w) l the coefficient of q(f(w)-()-2)/2 in P .
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In turn, for each s E S define another integer pL(y, w; s) by the following more complicated
formula:

p (y, w; s) de v(y, w) + 6 A,*i.(sy, w) - 6 ,w,,i-p7 (y, sw) - > pi(y, X) p"G (x, w).
xEI.; sx<x

As usual, the Kronecker delta here means J,5ab = 1 if a = b and 6 a,b = 0 otherwise.

Note since Py, is a polynomial in q and not in v = q1 that poa(y, w) (respectively,
vU(y, w)) is nonzero only if y < w and f(w) - f(y) is odd (respectively, even). The numbers
pLo(y, w; s) have an analogous property, which requires a short argument to prove. Here and
elsewhere, for any w E W we write

DeSL(w) = {s E S : f(sw) <f(w)} and DesR(w) = {s E S : e(ws) < (w)} (3.2.3)

for the corresponding left and right descent sets.

Proposition 3.2.8. Let y, w E L. and s E DesL(y) \ DesL(w). Then the integer pa(y, w; s)
is nonzero only if f(w) - f(y) is even and y < s x w.

Proof. All terms in the definition of p'(y, w; s) are zero if f(w) - f(y) is odd. Assume
y / s x w. Then y f w automatically so pI'(y, w; s) = 6,w,,iip(syw). This is zero unless

sy = ys*, but if sy = ys* then sy = s K y 5 w, as s x y < w would imply the contradiction
y < s x w by Theorem 3.2.4. (In detail, if s x y < w then adding s to the beginning of any
reduced I-expression for s K y or w forms a reduced I-expression for y or s x w, respectively.)
Thus po'(s K y, w) = 0. 0

Finally, define m"(y A+ w) E A for y, w E I. and s E S as the Laurent polynomial

m0 (y AW) = fa'p(y,w)(v + v-1 ) if f(w) - f(y) is odd (3.2.4)
p (y, W; s) if 0(w) - f(y) is even.

Lusztig proves the following result, which explains our notation, as [70, Theorem 6.3].

Theorem 3.2.9 (Lusztig [70]). Let w E I. and s E S. Then C, = q- 1 (T, + 1) and

(q+ q- 1 ) Aw if s E DesL(w)

CAW= (V + v-1) A89 + ZYE1; <y<sw m"(y A+w)Ay if s V DesL(w) and sw =ws*

1 ASws. + EyEI*;<y<s8* m"(y A+ w)Ay if s V DesL(w) and sw $ ws*.

We may equivalently rewrite this theorem as a recurrence for the polynomials P"f. This
provides the following "twisted" analog of one of the standard recurrences (see, e.g., [16,
Theorem 5.1.7]) for the ordinary Kazhdan-Lusztig polynomials Py,.

Corollary 3.2.10. Let y, w E I* with y <; w and s E DesL(w).
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(a) PYO = P .

(b) If s E DesL(y) and w' = s x w and c = Jww, and d = 6,yy,,, then

(q + 1)cP", = (q + )dp, + q(q - d)P"- 3 v,(Y)@+c -m"(z + w') -P"
zEI.; sz<z

y<z<w

Proof. The corollary results from comparing coefficients of ay on both sides of the equation
in Theorem 3.2.9. Rewriting the right hand side in the standard basis (aw)WEI is straight-
forward from the definitions in Section 3.1.4, while rewriting the left hand side can be done
using the identities C. = q-1 (Ts + 1) and A, = E() YEI PYOay with the multiplication
rule (3.1.1). -

Remark. Because of the (q + I)c factor on the left, it is not obvious from the recurrence in
part (b) that P.,, E A is actually a polynomial in q (but it is clear that P"w is a rational
function of q). That PO, E Z[q] follows from results in [70], however, and in light of this,
the recurrence shows that (q + )f*(w)-*'Y) divides Py'w. Recall here the definition of e* from
Proposition-Definition 3.2.2.

The recurrence in the preceding corollary leads to an algorithm for computing the poly-
nomials PffW, though there is some subtlety in formulating this. We discuss these details in
Section 3.4.3.

We mention two additional properties of the polynomials Pf".. Both follow from Corollary
3.2.10 in a straightforward manner by induction on f(w). Lusztig states part (b) explicitly
as [70, Proposition 4.10], but this actually serves in [70] as a preliminary to the other results
given here.

Corollary 3.2.11 (Lusztig [70]). Let y, w E 1 with y < w.

(a) P.7 = PF _j ,_ = Po for all S-preserving automorphisms T E Aut(W) which

commutes with * in the sense that r(x*) = r(x)* for all x E W.

(b) PYO has constant coefficient 1.

3.2.3 Recovering untwisted Kazhdan-Lusztig theory

Here we explain how the Kazhdan-Lusztig polynomials Pv,, can occur as instances of the
twisted polynomials Po' for certain choices of (W, S) and *. This makes it possible to
recover several important properties of the Kazhdan-Lusztig basis (cW)WEW C -'H and the
Kazhdan-Lusztig polynomials (Py,).ew C Z[q] from analogous statements for Mq2 in the
previous section.

We begin with the following observation. In approaching this statement it is helpful to
recall the definitions of the Laurent polynomials , Py,", hy;z, h,y;z, hay; from Sections
3.1.3 and 3.1.4.
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Proposition 3.2.12. Suppose that (W, S) has the form

W=W'xW' and S={(s, 1) : s E S'}U{(1,s) :s ES'} (3.2.5)

for some Coxeter system (W', S'), and that * E Aut(W) acts by (x, y)* = (y, x) for y, w E W'.
Let 2 denote the Hecke algebra of (W', S') with parameter q2

(a) The map w -+ (w, w- 1 ) defines a poset isomorphism (W', <) ~+ (L*, 5).

(b) The unique A-linear map 7' 2 -+ 2 with T F-* T(2,1) for w E W' is an injective
algebra homomorphism. With respect to this embedding, the unique A-linear map
H' 2 - M2 with T - a(w,-1) for w E W' is an isomorphism of left H' 2-modules. This
map commutes with the bar operators of H'2 and Mq2 in the sense that T -* a(w,w-i)
for w E W'.

(c) For all y, w E W', we have

P(Yy-),( -= (PYW) 2  and P(Y-l),(w,w-1) = Pyw(2

(d) For all x, y, z E W', we have

h(XX-1),(yy-1);(z,z-1) = (h ,y;z) 2  and h= h,y;z(v 2 ).

Remark. In the four identities in parts (c) and (d), the left expressions are (Laurent)
polynomials attached to the Coxeter system (W, S), while the right expressions are quantities
defined in terms of the (Laurent) polynomials attached to the Coxeter system (W', S'). In
particular, hx,y;z(v 2 ) denotes the Laurent polynomial obtained by replacing the parameter v
with q = v 2 in hx,y;z E A.

Proof. Part (a) is straightforward and has been noted previously as [46, Example 3.2 and
also as [89, Example 10.1]. Since s x w = sws* for all s E S and w E W, part (a) implies
that the map in part (b) is an A-linear bijection satisfying

TxT - T(x,1)a(w,w-1) for x, w E W'.

Thus our map is a left H' 2 -module isomorphism with respect to the embedding H' 2 -- 'Hq2.

To see that this map commutes with the bar operators, note that if w E W' then Tw = T .-T1
and a(W,2-1) = T(w,1) - a1 , so

T5= T.T -Ti - 1 -a = a(w,w-)-

The remaining parts follow as an easy exercise from part (b) and the defining properties of
P, and Po in Theorem-Definitions 3.1.1 and 3.1.2.
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As one application this observation, we may recover the standard formula for the decom-

position of the product cc, in the Kazhdan-Lusztig basis of 14. Define for y, w E W the

integer

p(y, w) = the coefficient of q(f(w)-()-1)/ 2 in Py,.. (3.2.6)

As with pu(y, w), the integer p(y, w) can only be nonzero if y < w and f(w) - f(y) is odd.

If we assume the hypotheses of Proposition 3.2.12, then sw 7 ws* for all s E S and w E I*

and every twisted involution in I has even length. In consequence, if s E S' and y, w E W'

then it follows by part (c) of the proposition that

ma ((y, y-l) 12+ (w, W-1)) = /a ((y, y-1 ), (w, W-1)) = i(y, W).

If we substitute this formula into Theorem 3.2.9 and Corollary 3.2.10 (and then replace

the Coxeter system (W', S') with (W, S) and the parameter q with v) then we obtain the

following "untwisted" analogue of Theorem 3.2.9:

Theorem 3.2.13 (Kazhdan and Lusztig [53]). Let w E W and s E S. Then c. = v- 1(t.+1)

and
(v + v- 1 )c, if s E DesL(w)

CSCW =
CS, + ZEW;,Z<Z<WIp(Zw)cZ ifs V DesL(w).

Rewriting both sides of the preceding equation in the basis {tw : w E W} then comparing

coefficients yields the following standard recurrence for the polynomial PY,, which one can

find also derived in [48, Chapter 7].

Corollary 3.2.14. Let y, w E W with y < w and s E DesL(w).

(a) Py, = P .

(b) If s E DesL(y) then

PY, = PSY,8s + qP,, - (W)-I(Z) -1(z, s) - PV,z.
zEW; sz<z

y<z<w

From this one can derive several well-known properties of the Kazhdan-Lusztig polyno-

mials, which we collect as the following statement paralleling Corollary 3.2.11.

Corollary 3.2.15. Let y, w E W.

(a) Py,, = Py-iw-i = P(y),(w) for all S-preserving automorphisms T E Aut(W).

(b) Py, has constant coefficient 1 if y < w.

Remark. Since DesL(w) = DesR(w- 1), it follows that Py,, = Pu,, if s E DesR(w).
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3.2.4 Parity statements

Conjectures A', B' and C' are statements concerning whether the Laurent polynomials

P± = ! (Pyw ± P w) and hy;= 2 ,Y z a,yz

defined by equations (3.1.2), (3.1.3), and (3.1.4) for x E W and y, z, w E L, have nonneg-
ative integer coefficients. It is not clear a priori that these polynomials even have integer
coefficients, and we spend this last preliminary section clarifying this property.

Here we write f = g (mod 2) for two Laurent polynomials f, g E A if f - g has only even
integer coefficients; i.e., if f - g = 2h for some h E A. Lusztig proves the following result,
showing that P±*, E Z[q], as [70, Theorem 9.10].

Proposition 3.2.16 (Lusztig [70]). For all y, w E L. we have Py,w P=_ ,, (mod 2).

The next proposition shows likewise that h±y;2 E Z[v, v-1]. In the case that (W, S) is a
Weyl group and * is trivial, this property was mentioned without proof in [72, Section 5].

Proposition 3.2.17. For all x E W and y, z E L we have Ex,YIZ hx,,, (mod 2).

Proof. In what follows it is helpful to recall that we denote the bases of 1- using the lower
case symbols tw, cw and the bases of Hq2 using the upper case symbols Tw, Cw. Let w t = w*-'
for w E W and define h -* ht as the unique A-algebra anti-automorphism of R. such that
(tw) t = twt. Also write proj : 7- -+ Mq2 for the A-linear map with t,,, - aw for w E I* and
tw F-- 0 for w E W \I*.

We write m = m' (mod 2) for m, m' E Mq2 if m - m' = 2m" for some m" E Mq2. With
respect to this notation, Lusztig [70, 9.4(a)] proves that

proj (tXty(tx)t) = Txay (mod 2) for all x E W and y E 1. (3.2.7)

The current proposition derives from this fact in the following way. Let x E W and y E I* and
note that (c,) t = ct by Lemma 3.2.15. The anti-automorphism t consequently preserves
cXcYc~t, so we must have hx,y,z = h.,Yzt for all z E W and it follows that we can write

cxcycx = (a + a') + EzE ky'zcz for an element a E Rq. Since proj(a + a t ) = 0 (mod 2)
and since proj(cz) = A, (mod 2) for z E I* by Proposition 3.2.16, we deduce that

proj(cxcyct) = E ylzAz (mod 2). (3.2.8)
zE1.

On the other hand, by definition cxcvc:t = v-M2f(x)ef) Zx ,zEW PX',xp",2pzy ' .'fz(t,")

Since P, = Pzt,y for all z E W as y = yt , the anti-automorphism t acts on the latter sum
by exchanging the summands indexed by (x', x", z) and (x", x', z t ). It follows by dividing
the sum Ex'X",zEW into two parts, consisting of the summands fixed and unfixed by t, that
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we can write

cXc-Yczt = (b + bt ) + V 2(x)-f(y) Z (Px/,X) 2Pz,y - txltz(txl)K.
x'EW zEI*

for another element b E 'Hq. Since proj(b + bt) = 0 (mod 2) and (P,,x)2 _ P, (q2) (mod 2)
and Pz,yE Pz", (mod 2) for y, z E L, applying (3.2.7) to the preceding equation shows that

proj (cxcycxt) = CxAy (mod 2) for all x E W and y E 1. (3.2.9)

The proposition now follows immediately by combining (3.2.8) and (3.2.9). 5

3.3 Positivity results for universal Coxeter systems

In this section we let (W, S) be any universal Coxeter system and let * E Aut(W) be any
S-preserving involution of W. In this case W is the group generated by S subject only to
the relations s 2 = 1 for s E S. The elements of W consists of all words in S with distinct
adjacent letters, and products of elements are given by concatenation, subject to the rule
that one inductively removes all pairs of equal adjacent letters.

The involution * E Aut(W) corresponds to an arbitrary choice of a permutation with
order < 2 of the set S. The twisted involutions w E * = {X E W : -1= x* } each take one
of two possible forms:

" If f(w) is even then w = x*x- 1 for some x E W.

" If f(w) is odd then w = x*s- for some x E W and s E S with s = s*.

The following observation enumerates a few other special properties of universal Coxeter
systems which make them tractable test cases for general questions and conjectures. Recall
here the definition of s x w from (3.2.1).

Observation 3.3.1. Assume (W, S) is a universal Coxeter system.

(a) Each w E W has a unique reduced expression.

(b) Each w E L* has a unique reduced I-expression.

(c) If w E W \ {1} then IDesL(w)I = IDesR(W)I = 1.

(d) The map S x L* -+ L* given by (s, w) - s x w extends to a group action of W on I.

Notation. In light of part (d), it is well-defined to set xXw = s< (s2  (---X (sn XW)- ))
where x E W and w E I and si E S are such that x= s1 s2 -. sn.

Before proceeding, we note as a consequence of our observation that in the special case
that * has no fixed points in S, one can view the ordinary Kazhdan-Lusztig theory of a
universal Coxeter system as a special case of its twisted theory, in the following way.
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Observation 3.3.2. Suppose (W, S) is a universal Coxeter system and s 5 s* for all s E S.
Then the unique A-linear map 7

q2 -+ Mq2 with T. - a,-i for w E W defines an
isomorphism of left 1Hq2-modules which commutes with the bar operators of 7

1q2 and Mq2 ,
and consequently

P(YY-),(w*w-,) y,w (q2 ) and h, (y*Y-l); (z*z-l) = hx,y*;z*(v 2) for all w, x, y, z E W.

Proof. If s 4 s* for all s E S then every w E L* has even length and the map w* '-* w*w-1
defines a poset isomorphism (W, ) ~+ (L, 5). From this, the proof of the proposition is a
straightforward exercise using Theorem-Definitions 3.1.1, 3.1.2, and 3.1.3. L

3.3.1 Kazhdan-Lusztig polynomials

Dyer derived a formula for the Kazhdan-Lusztig polynomials of a universal Coxeter system
[35, Theorem 3.8] which shows their coefficients to be nonnegative. We review the key parts
of this result here. To begin, we note the following lemma which is a special case of [35,
Lemma 3.5].

Lemma 3.3.3 (Dyer [35]). Assume (W, S) is a universal Coxeter system. Suppose y, w E W
and r, s E S such that rsw < sw < w and sy > y. Then

PY,. = Py,m + qPsy,sw - 6 - qPy,,, where 6 = I{s} fln DesL(rsw)I.

In the sequel we adopt the following notation. Given y, z, w E W with y < z, define

def
P -,z;= PY'W - Pz,. (3.3.1)

We expand upon the previous lemma with the following statement.

Proposition 3.3.4. Assume (W, S) is universal. Let y, z E W with y < z and suppose

" k is a positive integer;

" r, s E S such that r f s and s DesL(y) and s V DesL(z);

" u E W such that {r, s} n DesL(u) = 0.

If a, w E W are defined by

w = srsrs.u and a =..srsrs
k+1 factors k factors

then Py,z;w = Py,z;sw + qkPay,az;aw.

Remark. Applying the identity Py,z;w = PY--1,z*-l;w*-l from Lemma 3.2.15 affords a right-
handed version of this proposition, which will be of use in Section 3.3.3 below.
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Proof. Note that y 5 z implies ay 5 az, since (as sy > y and sz > z) the unique reduced

expression for ay (respectively, az) is formed by concatenating ... srsrs to the unique reduced

expression for y (respectively, z). To prove the lemma, we proceed by induction on k. If

k = 1 then the lemma reduces to Lemma 3.3.3. If k > 1, then since Psy,sz;rsi = Py,z;rsw
by Lemma 3.2.15, Lemma 3.3.3 asserts that Py,z;w = Pyz;SW + q(Py,sz;sw - Psy,sz;rsw). By

induction we may assume that Psy,sz;st = Psy,sz;rsw + qk-lPay,az;aw; substituting this identity

into the preceding equation gives the desired recurrence. 11

From the last lemma we have an easy proof of Conjecture B (and so also of Conjecture

A) for universal Coxeter systems. This result can also be deduced from [35, Theorem 3.8].

Theorem 3.3.5 (Dyer [35]). If (W, S) is a universal Coxeter system, then the polynomial

Y'w- P,, has nonnegative integer coefficients for all y, z, w E W with y 5 z in the Bruhat

order. In particular, we have Py,w E N[q] for each y, w E W.

Proof. The proof is by induction on f(w). If f(w) < 1 then Py,z;w E {0, 11 C N[q] by Lemma

3.2.15. Assume f(w) > 2 so that there exists s E DesL(w). Let (y', z') be the unique

pair in the set {(y, z), (sy, z), (y, sz), (sy, sz)} which has s 0 DeSL(y') and s 0 DeSL(Z')- It
is straightforward to check that y' < z', and by Lemma 3.2.15 we have P,z;w = P,z';w.
Proposition 3.3.4 applied Py,z';w shows that that P,z;w E N[q] by induction, and it follows

that Py,w E N[q] since Pww = 1. U

3.3.2 Twisted Kazhdan-Lusztig polynomials

Here we initiate the proof of Conjecture B' for universal Coxeter systems, to be completed

in the next section. As above, (W, S) is a fixed Universal Coxeter system with a fixed

S-preserving involution *.
Recall the definition of the Laurent polynomial m"(y A+ w) E A from (3.2.4).

Lemma 3.3.6. Assume (W, S) is a universal Coxeter system. If y, w E I* and r, s E S such

that y < w and DesL(y) = {s} # {r} = DesL(w), then

mU (AW) 1 if y = rwr* or if (y, w) = (s, r)
0 otherwise.

Proof. First note that since W is a universal Coxeter group and y 0 {1, r} we have r x y =

ryr* and f(r K y) = f(y) + 2. In addition, from Corollary 3.2.10 we have POe = P,"y,w.
We claim that tt'(y, w) = 0. To prove this, note that if r x y = w then f(w) - f(y) is

even, and if r x y :9 w then y 4 w, so in either case it'(y, w) = 0. On other other hand,
if r K y < w then the degree of PY" = P as a polynomial in q is at most 2

which is strictly less than t(w)-(y)-1, so again p!(y, w) = 0.

It thus suffices to show that pou(y, w; s) = 1 if y = rwr* or if (y, w) = (s, r) and

poi(y, w; s) = 0 otherwise. To this end, observe that if we apply our first claim to the
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definition of /p0 (y, w; s), and also note that sw $ ws* since w V {1, s}, we obtain

Py, W; s) = va(y, w) + 6
8y,y* C, (sy, w).

If y = rwr* then PO, = Pw", = 1 so va(y, w) = 1. Alternatively, if y < w and y 0 rwr* then
it follows as above that Po = PO,, has degree strictly less than f(w)-(y)-2 so V,(y,w) = 0.

Hence
(1if y= rwr*

V'(y, e) = fY=rr (3.3.2)
0 otherwise.

In turn, we have sy = ys* if and only if y = s (note that y 5 1 by hypothesis), in which case

po(sy, w) = pa(1, w). If w = r then y7(1, w) = 1 and if w 0 r then either w = rr* (in which

case f(w) - f(1) is even) or r x 1 $ w (in which case P0w = P 1,,, has degree strictly less

than ()~f (-1) so po(1, w) = 0. Thus

=1 if (y, w) = (s, r)

0 otherwise.

Combining (3.3.2) and (3.3.3) gives the desired formula for P0, (y, w; s). 5

We now have the following analogue of Lemma 3.3.3.

Lemma 3.3.7. Assume (W, S) is a universal Coxeter system. Suppose y, w E I* and r, s E S
such that rs x w <s x w <w and sy> y. Then

P"= " p + 2
D , - .- q2 P",.. '- q( p - ".

where we define

11 if s E DesL(rs X W) and _ ify= and s=s* and w 5 srs

0 otherwise 0 otherwise.

Proof. Everything follows by combining Lemma 3.3.7 with Corollary 3.2.10. It is straight-

forward to check that the lemma holds if y / w, so assume y < w. Let 6" = 6,,,, and note

by hypothesis that sw = ws*. By Corollary 3.2.10 we therefore have

p", = P"w+ q2pa" ,,,+ 6 "q(P"7w - P Ky,"sw) - vte(w)-t(z)ma(z + s x w)P",.
zEL; sz<z

y<z<w

(3.3.4)
From theprecedinglemmaweknowthatm(z + s X w) = 1 if z = rs x w or (z, s x w) = (s, r),

and ma(z 8+ s x w) = 0 otherwise. The sum in (3.3.4) includes a summand indexed by

z = rs x w if and only if 6 = 1. On the other hand, if s x w = r then the sum includes a

summand indexed by z = s if and only if s = s*. Since P., = 1 if y E {1, s} and P.O, = 0
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otherwise, we conclude that

P =P +q + 6"q(P - P- 6 - 6'- q

where we define
11 ify=l and s=s* andw=srs

0 otherwise.

Note that if 6= 1 then PO, = PSO',rs, by Corollary 3.2.10. Thus to finish our proof, it
is enough to check that

6"(P"a, - P,",W) - 6"' = 6'(P" - P,

This is clear if y = 1 and s = s* and w 5 srs since then ' = 6" = 1 and '" =0. On
the other hand, if y = 1 and s = s* but w = srs then 6' = 0 and 6" = 6' = 1 and

PfxI -Pxy,xw = , = 1, which again gives equality. Finally, if y # 1 or s 5 s* then
6' = 6" = 6'" = 0 and our equation again holds.

3.3.3 Four technical propositions

To prove Conjectures A' and B' for the universal Coxeter system (W, S) we require an
analog of Proposition 3.3.4. The requisite statement splits into four somewhat more technical
propositions, which we prove here. The Coxeter system (W, S) is always assumed to be
universal in this section (and we stop stating this condition in our results).

Mirroring the notation Py,z;w from (3.3.1), given y, z, w E I. with y < z, we define

Paz- df -p".. (3.3.5 )

Also, given elements W1 , w2, ... ,Wk E W we write (w1 , W2, ... , Wk) for the subgroup they
generate. Finally, recall from Theorem-Definition 3.2.3 that we denote the rank function on
(L, <) by

p :IL -* N,

so that p(w) is the length of any reduced I-expression for w E I*.
At least one half of the following result is well-known, being equivalent to the fact that

the Kazhdan-Lusztig polynomials of dihedral Coxeter systems are all constant.

Proposition 3.3.8. Let y, z, w E I with y < z. If r, s E S such that w E (r, s), then

=1 ify<wandz gw
Y~z;W y,z;w 0 otherwise.

Proof. If suffices to show that PO,' = Py,, = 1 if y 5 w; however, this follows by a straightfor-
ward argument using induction on the length of w and Lemmas 3.3.3 and 3.3.7. In particular,
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the base cases for our induction are given by Corollary 3.2.10 and Lemma 3.2.15, which show
that Pim = 1 if y < w and p(w) < 1, and that Pzw = 1 if y < w and f(w) 1. 5

For the duration of this section we adopt the following specific setup: fix y, z E I. with
y < z and assume w E I. has the form

w =Ksrsrs_,u (3.3.6)
k+1 factors

where

" k is a positive integer;

" r, s E S such that r / s and s 0 DesL(y) and s V DeSL (z);

" u E I such that {r, s} I DesL(U) = 0.

In addition, define a E (r, s) C W as the element

a = _(3.3.7)
k factors

and let y', z', w' E I, denote the twisted involutions

y' = a K y and z' = a K z and w'= a x w. (3.3.8)

Observe that p(y') = p(a) + p(y) and p(z') = p(a) + p(z) and p(w') = p(u) + 1, and that
clearly y' < z' in the Bruhat order. In addition, w' is given by either s K u or r K u, depending
on the parity of k. We now have our second proposition.

Proposition 3.3.9. Suppose w V (r, s) and either y $ 1 or s / s*. Then

(a) Pylz-w = Pyz-s;s+ +q 2 kP p,;w'*

(b) Py,z;w = Py,z;sws* + q2 kpyf,z';w + 2q Pay,az;aws

Remark. The best way of making sense of this and the next two propositions is through
pictures. The recurrences in each proposition are conveniently illustrated as trees whose
nodes are labeled by the polynomials PZ-e or Py,z;w and whose edges are labeled by powers
of q; see Figures B-1, B-2, B-3, B-4, B-5, and B-6. In these diagrams, the branches at each
level indicate one application of Lemma 3.3.7 or Lemma 3.3.3; these lemmas add two or three
children to a given node while possibly also canceling a node two levels down the tree. This
cancelation accounts for the chains of k single-child nodes, which appear as dashed lines.

Proof. First consider Figure B-1. The proof of part (a) is very similar to that of Proposition
3.3.4, but using Lemma 3.3.3 in place of Lemma 3.3.7. The argument is entirely analogous
because, under our current hypotheses, whenever we apply Lemma 3.3.7 the second indicator
J' defined in that result is zero.
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Now consider Figure B-2. To prove part (b), we first apply the right-handed version of

Proposition 3.3.4 to Py,z; and then apply the left-handed version of Proposition 3.3.4 to the

result. In detail, the first application gives

Py,z;w Py,z;ws* + q Pya*,za*-;wa*

while the second gives P,z;ws* = P-Y,z;sws* + q Pay,az;aws and

Pya*-i,za*.-;wa*-4 = Pya -l,za*-l;swa*-l + qkPy/,'z;W/-

Since Pay,az;aws* = Pya--1,za*-1;swa*-1 by Lemma 3.2.15 combining the preceding equations

gives the desired recurrence. l

We proceed immediately to our next proposition.

Proposition 3.3.10. Suppose w (r, s) and y = 1 $ z and s = s* and r = r*. Then there

are elements uO, u1 , .. . , uk E 1 and z1 , z2, .. ., Zk E W with ui < uj+1 and ui < zi such that

(a) PO'z;w = +z;sva + q 2 k p,, + ZOi<k qi+k pc

(b) Py,z;w = Py,z;sws + q2 kPy,z;w, + EO<i<k qi+k (Puj,ui+i;wi + 2Pui+,,z+i,;w')

Proof. The twisted involutions uO, u 1 , .. . , Uk E L are defined as follows:

" If k - i is even then let ui = ... srsrs) x 1, where ( ... srsrs) has i factors.

" If k - i is odd then let ui = ... rsrsr) x 1, where ( ... rsrsr) has i factors.

Consider Figure B-3. To prove part (a), we note that Lemma 3.3.7 implies

PU = Pa z;sxw +- 6 'sxzsxw) ± qPjs 2P_
yzw 1,z~x iS,SX;K ,x~sw - ,~

where 6 = 0 if k = 1 and 6 = 1 otherwise. If 5 = 1 then Proposition 3.3.9 gives psz~8KW

Posxz;rsDxw + q2 (k)pz;; by substituting this into the previous equation we get in either

case
P =p P z;sx+ 2kp , + qPg (3.3.9)

- 1,zs~lJ -1z;W i,s;sxw-

If k = 1 then this equation coincides with the recurrence in part (a), and if k > 1 then by

induction (with the parameters (k, r, s7 y, z, W) replaced by (k - 1, s, r, 1, s, s x w)) we may

assume that

Plssw = Ps;,.x + q2(k-l)p_, + qi+k-1 p,

O<i<k-1

Since here Psrsxw = P1,1;rs,w = 0 as s E DesL(rs x w), substituting the previous equation

into (3.3.9) establishes part (a) for all k.

Before proving part (b) we must define the elements zi E W. For this, we first define an

intermediate sequence zi, i 2 ... ,ik+1 E W in the following way. Set ik+1 = az where a is

given by (3.3.7), and for i < k define i inductively by these cases:
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" If k - i is even then let i be the element with smaller length in the set { Z+1r*}.

" If k - i is odd then let Yj be the element with smaller length in the set {Z+', ?i+1S*}.

Note by construction that zir* > zF if k - i is even and is* > i if k - i is odd. Finally,
define z1 , z 2 , .. . , Zk E W as follows:

" If k - i is even then let zi = zi(rsrsr--- )* where (rsrsr -- ) has i - 1 factors.

" If k - i is odd then let zi = i(srsrs-- )* where (srsrs ... ) has i - 1 factors.

Note that by construction f(zi) = f(27) + i- 1. Note also that since we assume s = s*
and r = r*, the *'s in the preceding bullet points are superfluous; however, these will be
significant in the proof of the next proposition when we refer to the definition of Uk_1, Uk,
and Zk.

Consider Figure B-4. To prove part (b), we note from Proposition 3.3.4 that

Py,z;w = P,z;s, + qPa,az;aw = P,z;ws + qkPas,az;aw.

Here the second equality follows from properties in Lemma 3.2.15 (in particular, the fact
that PV,W = Py,, if ws < w). One checks similarly that applying (the left- and right-handed
versions of) Proposition 3.3.4 to the terms on the right gives

Py,z;w = P,z;,SW + qkPa,jk;aws + qPasr,zk;aws + q2 Py/,z1;W/. (3.3.10)

From here, it is a straightforward exercise to check the identities

k-1 k-1

Pa,ik;aw, = IqiPu,1,z,1;w, and Pasr,,k;aws = j;
i=O i=O

which on substitution afford the desired recurrence (since Puai,z;W, + Pi,z;wi = Pus_, ;w' +
2Pui,zi;w,). In particular, one obtains these identities by applying the right-handed version
Proposition 3.3.4 to the left hand sides, and then applying the proposition again to the
term in the result with coefficient one, repeating this process until the third index of every
polynomial is w'. 5

For this section's final proposition, it is convenient to let y", z", w" E W denote the
elements

y =a and z fazr* if r* E DeSR(Z) and W" = awsr*. (3.3.11)
az otherwise

We remark that in the notation of the proof of the previous proposition, the element z" = Zk.

Thus we also have Zk = z"(rsrsr ... )* where (rsrsr ... ) has k - 1 factors.
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Proposition 3.3.11. Suppose y = 1 # z and s = s* and r 0 r* (so that automatically

w 0 (r, s)). Then, with Uk1, Uk L L and Zk E W defined as in the proof of Proposition

3.3.10, we have

(a) Pyoz;w = Pyz;sws ± Y ±

2kp 2k-12q k PY,,z,;W/f if k >I1
(b) Py,z;w = Py,z;sws + q2kPy z,;w' +q 2 k- (PUk_1,;W' + 2Puk,zk;) + 0 if k = 1.

Proof. Consider Figure B-5. To prove part (a), we first note that the argument used to show

(3.3.9) in the previous proposition remains valid here and gives

PY0z;w = Pi"z;sxw + q Y,z,;W' + qP13s;sxw.

If k = 1 then (using the definitions in the proof of Proposition 3.3.10) we have uo = 1

and ul = s and so this equation coincides with the desired recurrence. If k > 1, then

since r , r*, we can apply Proposition 3.3.8 with the parameters (k, r, s, y, z, w) replaced by

(k - 1, s, r, 1, s, s x w) to obtain

P"lS;S = P"s;rSK + q2 (k-1)pUe ,

Here Uk-1 = ... rsrsr) x 1 where (... rsrsr) has k - 1 factors and Uk = ... srsrs) K 1
where (... srsrs) has k factors. Substituting this identity into our formula for Pazw then

establishes part (a) for all k.
To prove part (b), consider Figure B-6 and observe that it follows by successive applica-

tions of Propositions 3.3.4, exactly as in the proof of Proposition 3.3.10, that

Py,z;w = P,z;sws + qPa,z";aws + qk Pas,z";aws + q2 ky',z;&'-

Note that the third term on the right qkPa,,z";aw, differs from the analogous equation (3.3.10)
above; this is because now we have asr* / as since r $ r*.

Now, if k =1 then Uk1 = o = as =1 and Uk = 1 = a = sand Zk = Z1 = z"

and w' = aws, so the preceding formula for Py,z;w coincides with the desired recurrence

as Pukl,zk;w' + Puk,zk;w' = Puk-1,uk;W' + 2 Pu,,Zk;w'. Alternatively, if k > 1 then the right-
handed version of Proposition 3.3.4 with the parameters (k, r, s, y, z, w) replaced by (k -
1, s, r, a, z", aws) or (k -, s, r, as, z" aws) gives

Pa,z";aws = Pyi,zu;w+ k ,zi;± and Pas,z" ;aws = Pas,ziw" + qkl ,z ;u

Since w"s < w" as k > 1, we have Pas,z";w" = Pa,z";w" = PyI,z/I;wi, and so substituting these

two identities into our previous equation gives the desired recurrence in all cases. 5

Our first application of these results is the following theorem, which shows that the

perhaps most natural analogues of Conjectures A and B for twisted involutions (which are

false in general) do hold in the universal case.
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Theorem 3.3.12. If (W, S) is a universal Coxeter system and * E Aut(W) is any S-
preserving involution, then the difference P., - Po, has nonnegative integer coefficients
for all y, z, w E I* with y z in the Bruhat order. In particular, P, E N[q] for each
y,w E 14.

Proof. The proof is by induction on p(w), and is similar to that of Theorem 3.3.5. Fix
y, z, w E I. with y < z. If p(w) < 1 then the theorem follows from Proposition 3.3.8. Suppose
p(w) > 2, and that s E DesL(w). By Corollary 3.2.10 we may assume that s V DesL(y) and
s DeSL(z), in which case one checks that the triple (y, z, w) satisfies the hypotheses of one
of Propositions 3.3.8, 3.3.9, 3.3.10, or 3.3.11. These propositions then imply Pyz;w E N[q] by
induction. 5

Next, as the main result of this section we prove that Conjectures A' and B' hold for
universal Coxeter systems.

Theorem 3.3.13. If (W, S) is a universal Coxeter system and * E Aut(W) is any S-
preserving involution, then the polynomials Pf, - Ph, and P7 - Pzi have nonnegative
integer coefficients for all y, z, w E I* with y < w in the Bruhat order. In particular,
P+ E N[q] and Py~, E N[q] for each y, w E I*.

Proof. Recall that the coefficients of Py,z;w ± Poz;w are all even by Proposition 3.2.16. Since

Py,z;w and 1,z;w both have positive coefficients by Theorems 3.3.5 and 3.3.12, it suffices just
to show that Py,z;w - Pyz;w E N[q] for y, z, w E I* with y < z. One can prove this fact
by induction on p(w) using the same argument as in the proof of Theorem 3.3.12. The
same inductive argument works because the differences between parts (a) and (b) in each
of our propositions in this section involves only polynomials Py,z;w E N[q] and differences

Py,z;W - PYz;w -

3.3.4 Structure constants

In the rest of this paper, we redirect our focus to Conjecture C'. Continue to assume (W, S)
is a universal Coxeter system. This section describes an inductive method of computing the
Laurent polynomials (hx,y;z)xyzEw and (hi,y;z)xEwyzE, which we recall from (3.1.3) are

the structure constants in A = Z[v, v-1] satisfying

ccy= hx,y;zcz E 7q and CxA, = yAzE .Mq2.
zEW zE1L

We begin by recollecting some relevant results of Dyer [35] concerning hxy;z in the universal
case. The following appears as [35, Definition 3.11].

Definition 3.3.14. Assume (W, S) is a universal Coxeter system. Let w E W and n = i(w),
and suppose si E S such that w = sIs2 ... sn. For each integer j E Z, define c(w, j) E Hq

recursively according to the following cases:
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(a) If 2 < j < n - 1 (so that n > 3) and sy-1 = sj+1, then set

c(w, j) = c'+ c(w', j - 1), where w' = si .. - -ssj+ 1 .-. sn.

Here, we write '5 to indicate that the factor sj is omitted.

(b) Otherwise set c(w, j) = 0.

The following result of Dyer [35, Theorem 3.12] gives the decomposition of the product
cxcy in terms of the Kazhdan-Lusztig basis of H., and shows that the Laurent polynomials
(hx,y;z)x,y,zew have nonnegative coefficients, and are in fact polynomials in v + v- 1 with
nonnegative integer coefficients. (This latter property fails for other Coxeter systems.)

Theorem 3.3.15 (Dyer [35]). Assume (W, S) is universal. Let x, y E W and n = f(x).
Then

(v + v-1) (cxsy + c(xsy, n)) if DesR(x) = DesL(y) = {s} # 0
{ cxy + c(xy, n) + c(xy, n + 1) otherwise.

Remark. The preceding theorem differs from the corresponding statement in [35] as a result
of our notational conventions. In [35, Theorem 3.121, Dyer writes "C," to denote the element
of lq which in our notation is written

yEW

This element is just (-1)'(w) - t(cw), where t is the A-algebra automorphism of R. with
t (-q)'(w) - tw1, for w E W. (When checking this, it helps to recall Tj = c,.) This
observation transforms Dyer's results into what is stated here.

Moving on to the analogous decomposition of CxAY, we have this lemma. Recall from
Theorem 3.2.9 that if s E S then Cs = q- 1(Ts + 1) E J1q2.

Lemma 3.3.16. Assume (W, S) is a universal Coxeter system. Suppose s E S and w E I.

(a) If s e DesL(w) then CsAw = (q + q- 1) Aw.

(b) If s DesL(w) then

A8 ws. + Ars,. if DesL(w) = {r} and DesL(rwr*) = {s}

1 (v +v-1 )A, if w = I and s = s*

Aws. otherwise.

Proof. Part (a) is immediate from Theorem 3.2.9. If w = 1 then mo,(y + 1) = for all y E 1
with sy < y so by Theorem 3.2.9 we have C8A1 = (v + v-1)cAsi where c = , This

proves part (b) when w = 1.
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For the remaining cases, assume w 5 1 and DeSL(w) = {r} / {s}. Combining Theorem
3.2.9 and Lemma 3.3.6 gives CA. = A8,<i + Elx Ay, where X C L is the subset which
contains s if s = s* and w = r E S, and which contains rwr* if rwr* E L and DesL(rwr*) =
{ s}. Since rwr* always belongs to L* and since DeSL(rwr*) = {s} implies w 0 S, the set X
contains at most one element and our formula CA. = A,,, + EYEX A- reduces to the cases
in the lemma.

We now make this definition, after Definition 3.3.14.

Definition 3.3.17. Assume (W, S) is a universal Coxeter system. Let w E I* and n = p(w),
and suppose si E S such that w = Si X s 2 X< ... x sn x 1. For each integer j E Z, define
A(w, j) E Mq2 recursively according to the following cases:

(a) If 2 < j < n - 1 (so that n > 3) and sj-1 = sj+1, then set

A(w,j) = A& + A(w',j - 1), where w'= si K - -x j+l X ... K sn.

Here, we again write '5 to indicate that the factor sj is omitted.

(b) Ifj = n and n > 2 and {Sn-1, Sn} C L, then set

A(w,j) = A, + A(w', n - 1), where w' = si x ... K S-s1

(c) Otherwise set A(w, j) = 0.

Using this notation, the following analog of Theorem 3.3.15 now decomposes the product
CxAY in terms of the distinguished basis (Az)z, 1. Of Mq2. This result shows that the Laurent

polynomials (hay;z) EWzE have nonnegative coefficients, but in contrast to our previous

situation, hx,y;z does not typically have nonnegative coefficients when written as a polynomial
in v -1 .

Theorem 3.3.18. Assume (W, S) is universal. If x E W and y E L* and n = f(x), then

(v + v-1) (Ax<+ A(x x 1,n)) if x # 1 and y = 1 and DesR() CI

CA = (q + q- 1) (A2SKY + A(xs K y, n)) if DesR(X) = DesL(y) = {S} 0

A~xy + A(xx y, n) + A(x x y,n + 1) otherwise.

Proof. The proof is similar to that of [35, Theorem 3.12], and proceeds by induction on n. If
n E {0, 1} then the theorem reduces to Lemma 3.3.16 (checking this fact is a healthy exercise
which we leave to the reader), so we may assume f(x) > 2 and that

x = x'rs for some ' E W and r, s E S with f(x') = f(x) - 2.
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It follows from Theorem 3.3.15 (noting that the Z-linear map H. -+ Hq2 with v' * q' and
t i T, is a ring embedding with c, + C,) that

C= { - i = {} (3.3.12)
CXSCS otherwise.

It suffices to consider the following five cases, exactly one of which must occur:

(i) Suppose y = 1. Then A(x x y,n + 1) = 0 and so we wish to show that CxA 1 =

(v + v-1)c - (Avxi + A(v x 1, n)) where c = I{s} n L4.

(ii) Suppose s E DesL(y). We then wish to show that C2A, = (q+q- 1) (Axsxy + A(xs x y, n)) .
(iii) Suppose y E S and s V DeSL (y) and s = s*. Then A(x v y, n +1) = A~x1 + A(x X 1, n)

and so we wish to show CA, = A~xy + A(x x y, n) + Ax, 1 + A(x K 1, n).

(iv) Suppose p(y) = 1 and s V DesL(y) but either y ( S or s $ s*. Then A(x x y, n+ 1) = 0
and so we wish to show CxAY = A~xy + A(x x y, n).

(v) Suppose p(y) > 2 and s V DesL(y). We then want CxAY = Axy + A(x x y, n)+ A(x x
y, n + 1).

The proof of each case is similar, and involves substituting (3.3.12) for C. and then applying
Lemma 3.3.16 and induction. Case (v) is the most complicated, but its proof is nearly the
same as that of [35, Lemma 6.2]. We demonstrate (i) as an example and leave the rest to
the reader.

For case (i), suppose y = 1 and let c = i{s.L l; recall that DesR(X) = {s} by assumption.
If DesR(X') $ {s} then Cx = CxrCs by (3.3.12) and A(x x 1,n - 1) = 0, in which case by
Lemma 3.3.16 and then induction we get

CxA 1 = CxrCsA1

= (V + v- 1)c Cx'rAsKi

= (v + v)c- (A~x1 + A(x x 1, n - 1) +A(x x 1, n)),
=0

which is what we want to show. Alternatively, if DesR(X') = {s} then C. = Cx'rC, - Cx' by
(3.3.12) and A(x x 1, n - 1) = A'xD1 + A(x' K 1, n - 2), so by induction Ce A1 = (v + V-

1 )c .
A(x x 1, n - 1). In this case by Lemma 3.3.16 and then induction we have

CxA 1 = (CxirCs - Cx )A1

= (v + v 1 )c -C'rAsx1 - Cx A1

= (v + v 1 )c - (A~xi + A(x x 1, n)) + (v + v~ 1)c - A(x x 1, n - 1) - Cx A1

=0

which is again the desired formula.

152



Wrapping up, we have this corollary immediately from Theorems 3.3.15 and 3.3.18.

Corollary 3.3.19. If (W, S) is a universal Coxeter system then each of the families

(hx,y;z),yzEW and (hx,y;z)x,y,zEW and (ho,y;z)xEwy,zEI

consists of Laurent polynomials in A = Z[v, v-11 with nonnegative coefficients.

3.3.5 Proof of the positivity conjecture for universal structure
constants

As previously, (W, S) is a universal Coxeter system with a fixed S-preserving involution
* E Aut(W). We devote this final section to proving Conjecture C' for universal Coxeter

systems-i.e., that the Laurent polynomials h. ± hoy'z defined in Section
3.1.5 always have nonnegative coefficients.

To begin, it is useful to recall the following notation from the proof of Proposition 3.2.17.
Given w E W, let w = w*-1 and more generally let h t-* ht denote the A-linear map
iq --+ Hq with (t)t = tt for w E W. Observe that t is an anti-automorphism (of A-

algebras) and that (cW)t = cwt for all w E W by Lemma 3.2.15. We now state two technical
lemmas associated with Definitions 3.3.14 and 3.3.17.

Lemma 3.3.20. Assume (W, S) is a universal Coxeter system. Suppose u, t E W such that
f(u x t) = 2f(u) + f(t) and f(t) e {0, 1} and t = t*. Fix an integer n < f(u). Then there
exists a unique integer k > 0 and a unique sequence of elements

U = UO > U1 > ... > Uk

in W (descending with respect to the Bruhat order), such that c(ut, n) = Ei cat. This
sequence has the following additional properties:

(a) For each 0 < i < k we have f(ui x t) = 2f(ui) + f(t).

(b) c(utw, n) = DE ±C(UktW, n - k) for any w E W with f(utw) = f(u) +f (t) +f (w).

(c) A(u x t,n)= E= At+6- A(Ukx t,n -k) where 6= 0 ofewi(se )-1

Remark. Note that we may have k = 0 in this lemma; this indicates that c(ut, n) = 0. In
this case the sums Ek are considered to be zero, and we automatically have 6 = 0 in part
(c) since n < f(uo) + 1 by hypothesis.

Proof. We sketch the proof of this lemma, as everything derives from the definitions in
a straightforward way by induction on f(u). The existence of the sequence of elements
U = uO > u1 > - - - > uk follows from Definition 3.3.14 by inspection, as does property
(a). Property (b) holds because the first k + 1 terms in the expansion of c(utw, n), which
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one gets by applying Definition 3.3.14 successively, depend only on the first n + k factors

in the unique reduced expression for utw. Part (c) follows from the fact that the same

sequence of elements in S gives both the unique reduced expression for ut and the unique

reduced I-expression for u x t. Noting this and comparing Definitions 3.3.14 and 3.3.17

(while remembering n < f(u)), we deduce that A(u x t, n) = EZ_1 AuKt + A(uk x t, n - k),
and that A(uk x t, n - k) is zero unless n - k = p(uk x t). The latter condition is equivalent

to having both f(t) = 1 and n - k = t(Uk) + 1; however, if f(t) = 0 while n - k = f(Uk) + 1
then A(uk K t, n - k) is zero by definition. 0

In what follows, we let D : Mq2 -+ Hq denote the A-linear map with A,, c, for w E I.

Lemma 3.3.21. Assume (W, S) is a universal Coxeter system. Suppose x E W and s E SnIL

such that s ( DesR(x). If n = f(x), then

c(x x s,n + 1) = 4 (A(x x s,l± 1))n .

Proof. If x = 1 or if DesL(X) t L then the lemma holds since c(x x s, n+1) and A(x 0 s, n+1)

are both zero. Assume x # 1 so that x = x'r for some y E W and r E S n L, with f(x') =

f(x) -1. Then c(x x s, n+1) = cx,,+ c(x' x r, n) and A(' x s, n+1) = A, ,+ A(x' x r, n),
so the lemma follows by induction on n. 0

We may now state our final result, which establishes Conjecture C' in the universal case.

Theorem 3.3.22. If (W, S) is a universal Coxeter system and * E Aut(W) is any S-

preserving involution, then the Laurent polynomials h' defined by (3.1.4) have nonnegative

integer coefficients for all x E W and y, z E L.

Proof. Let R+ = N[v, v- 1]-span{c. : w E W} denote set of elements in tq whose coefficients

with respect to the Kazhdan-Lusztig basis (c.wEW have nonnegative coefficients. Note that

H+ is preserved by t since (c,)t = cat.
Let X E W and y E L*. By Theorems 3.3.15 and 3.3.18 we know that c 1,cycxt E Rf

and (D(CAy) E H+, and if we write c cycxt ± (CxAy) = zEwpZcz for some polynomials

p0 E Z[v, v1], then by definition h' -1zp for each z E L*. It is thus immediate that

every h,y;z has nonnegative coefficients, and to prove the theorem it is enough to show that

cxcyc.-i - dI(CxAy) E H . (3.3.13)

To this end, let n = f(x). If n = 0 then (3.3.13) automatically holds since the left hand side

is zero, so we may assume n > 1. There are three cases, which we consider in turn:

(a) Suppose y = 1. If s 5 s* then by Theorems 3.3.15 and 3.3.18 we have

cxcycxt = CXC2t = c~x1 + c(x x 1, n) + c(x x 1, n + 1)

while CxA, = Axl. Certainly c(x x 1, n) + c(x x 1, n + 1) E H+ so (3.3.13) holds.
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On the other hand if s = s* then we have

c cYcxt = cx = (v + V-1 ) - (cx,1 + c(x K 1, n))

while CxAY = (v + v-1) - (A~x1 + A(x K 1, n). Since s = s* we have (D (A(x x 1, n)) =

c(x x 1, n) by Lemma 3.3.21, so (3.3.13) again holds.

(b) Suppose y # 1 and DeSL(y) $ DeSR(x)- If y E S then c(xy, n + 1) = 0 and so we have

cxc~ycxt = (cxy + c(xy, n)) cxt

= cXY + c(xy, n)c.t + c(x x y, n + 1) + (an element of +)

while if f(y) > 2 then

cxcyct = (cxy + c(xy, n) + c(xy, n + 1)) cxt

ScxY + c(xy, n)cxt + c(xy, n + 1)cxt + (an element of R+) ,

since in either case x x y = xyxt. Consulting Theorem 3.3.18, we conclude that (3.3.13)
will hold if we can prove the following claims:

(bl) If f(y) > 1 then we have c(xy, n)cxt - 41 (A(x x y, n)) E Wq.

(b2) If f(y) > 2 then we have c(xy, n + 1)ct - (D (A(x x y, n + 1)) E Rf.

To prove (b), write y = ztzt where z, t E W such that f(t) <; 1 and t = t* and
f(ztzt) = 2f(z) + f(t). Now let u = xz and let u = uo > u1 > - > Uk be the
corresponding sequence of elements in W described in Lemma 3.3.20. Using part (b)
of Lemma 3.3.20 and the fact that t is an anti-automorphism, we then have

c(xy, n)ct = c(utzt, n)ct = cuitzt + C(UktZt, n - k) cxt

= c czt(u)t) t + C(Uktzt , n - k)cxt

kt

= c(utni)ft, n) +'(an element of R+)

Here, the last equality follows by applying Theorem 3.3.15 to the terms in the sum on
the second line. Since each c(ut(uj)t, n) = _ Cujt(ui)t + (an element of Rf) by parts
(a) and (b) of Lemma 3.3.20, after collecting terms in 'H we get

k

c(xy, n)cxt =Cui~t + C(Uk x< t, ni - k) ± (an element of '~
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By part (c) of Lemma 3.3.20, however, we have A(x x y, n) = Zk 1 A 1 <±+6-A(Uk x t, n-
k), where6 E {0,1} is zero unless n-k=f(Xk)+1. If 6 = 1 then A(uk xt,rn-k) = 0
unless t E S n 1, and so (b1) follows by Lemma 3.3.21.

One proves (b2) by replacing n with n +1 in the preceding argument. Our applications
of Lemma 3.3.20 remain valid after this substitution because we assume 0(y) > 2, which
implies 0(u) > 1 and in turn n + 1 < f(u).

(c) Suppose y :4 1 and DesR(X) = DeSL(y) = {s} for some s E S. Again use Theorems
3.3.15 and 3.3.18 to expand the products (cXcy)c., and C2A,. On comparing the
resulting terms (while again noting Lemma 3.3.21) one finds that to prove (3.3.13) it
is enough to show

(v +v 1 ) - c(xsy, n)c.t = (q + q-1 ) - (D (A(xs x y, n)) + (an element of Ha) . (3.3.14)

If y = s E L. then by Theorem 3.3.15 we have c(xsy, n) = cxy, + (an element of R-)
and in turn c(xsy, n)cxt = (v + v-1) -c(xs x y, n) + (an element of Hc). Thus (3.3.14)
holds in this case by Lemma 3.3.21.

If f(y) > 2 then the proof of (3.3.14) is similar to the arguments in part (b). A sketch
goes as follows. First write y = ztzt where z, t E W such that f(t) 5 1 < f(z) and
t* = t and i(ztzt) = 2f(z) + f(t). Let u = xsz and let u = uo > u1 > - > uk be the
corresponding sequence of elements in W. By now rewriting c(xsy, n) in terms of the
elements ui and expanding various products using the properties in Lemma 3.3.20, one
obtains

c(xsy, n)cyt = (v ± v-1 ) ct + c(Ukx t, n - k) + (an element of H+).

Comparing this to the formula for A(xs x y, n) in part (c) of Lemma 3.3.20 then shows
that (3.3.14) holds, as a consequence of Lemma 3.3.21.

3.4 Positivity results for finite Coxeter systems

In this section we consider Coxeter systems (W, S) which are finite. Here we prove Conjec-
tures A', B', and C' for Coxeters of rank < 5, either by elementary methods (in the dihedral
case) or by computer calculations (in ranks three, four, and five).

3.4.1 Reduction to the irreducible case

For the moment let (W, S) be any Coxeter system. Recall that if there exists a subset S' c S

such that every s' E S' commutes with every s" E S" l S \ S', then there is an isomorphism
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W a W' x W" where W' and W" are the subgroups respectively generated by S' and S". If
the only such sets S' c S are S are 0, then the Coxeter system (W, S) is irreducible. If S' is
nonempty and the Coxeter system (W', S') is irreducible then we say that it is an irreducible
factor of (W, S).

Lemma 3.4.1. Let (W, S) be a Coxeter system with an S-preserving involution * E Aut(W).
Let S' c S be a subset preserved by *, set S" = S \ S', and suppose every s' E S' commutes
with every s" E S". Write

W' = (S') and W" = (S")

for the subgroups generated by S' and S", and let I' = W' f I, and I' = W"n I".

(a) For each w E W there are unique elements in W' and W", which we denote w' and w"
respectively, such that w = w'w".

(b) Moreover, if w E W then w E I. if and only if w' E I' and w" E I"*.

(c) If y,w E W then y < w if and only if y'< w' and y" < w".

(d) P, = PYWPua" and hxy;z = hx,,y,;zh lx" ,y; for all w, x, y, z E W.

(e)P, = , and I= ho, ha",ii;zi for all x E W and w, y, z E I,.

Remark. In part (d), we may identify Pyi,, and Pyn,2W with Kazhdan-Lusztig polynomials
of the Coxeter systems (W', S') and (W", S"). In part (e), likewise, we may identify Pc, ,
and Pg, ,, with polynomials attached to (W', S', *) and (W", S", *). Similar identificiation
apply to the structure constants.

Proof. Parts (a) and (c) follows from basic group theory and properties of the Bruhat order

(see [16, Exercise 2.3]), and part (b) follows from (a) since w = w'w" = w"w'. Since in the
Hecke algebras 7 iq and H.2 we have tw = twtw" and Tw = Tw&Tw" for all w E W, parts (d)
and (e) follow from the uniqueness specified in Theorem-Definitions 3.1.1and 3.1.2. 0

The following proposition shows that to establish Conjectures A', B', C' for all Coxeter
systems, it suffices to verify Conjectures A, B, C, A', B', C' for all triples (W, S, *) with
(W, S) an irreducible Coxeter system. Table A.16 displays an irredundant list of such triples
with (W, S) finite.

Proposition 3.4.2. Suppose Conjectures A and A' (respectively, B and B', or C and C')
hold with respect to any choice of involution for every irreducible factor of a Coxeter system
(W, S) with finite rank. Then Conjectures A and A' (respectively, B and B', or C and C')
hold for (W, S) with respect to any choice of involution.
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Proof. We prove this result by induction on the rank of (W, S), which is assumed to be finite.

Let S' c S and S" = S \ S' be subsets satisfying the hypotheses in Lemma 3.4.1. Then,
writing W' = (S') and W" = (S"), we have in the notation of Lemma 3.4.1 that

P+= P ,P ,,+ P-1,P-,, and P- P+ P-±,,+ P ,P++,

for y,w E L, and that

P - p, = 1 (p,, + p± - )+(p , - P+,,)(P,,, ±
'J, LDW z W) PY

for y, z, w E L. with y z, and that

h+ =h+ + ,h+,,s,,+h-,, , h-,, ,-., and h-,; =h I,, h-,,,;, + h- 1 ,,h+,+,I,-,
X,~ X' z Y z XhY; hY and X,Yz 'Y;' X 'Y;z X ,Y ;z

for x E W and w, y, z E L. Suppose Conjecture A' (respectively B', C') holds for all

irreducible factors of (W, S). If S' and S"' are both proper subsets of S, then we may assume

by induction that Conjecture A' (respectively B', C') holds for (W', S', *) and (W", S", *), in

which case the same conjecture holds for (W, S, *) as a consequence of the first (respectively

second, third) identities above.

Suppose on the other hand that S' and S" cannot be chosen to both be proper subsets of

S. Then either (W, S) is irreducible, or there are disjoint subsets S', S" C S with S = S'U S"

such that {s* : s E S'} = S" and such that the Coxeter systems (W', S') and (W", S") are

both irreducible, where W' = (S') and W" = (S"). In the first case the proposition holds

by hypothesis. In this second case, W' =' W" and we may identify the triple (W, S, *) with

a Coxeter system with involution of the form in Proposition 3.2.12. From parts (c) and (d)
of that proposition it follows that Conjectures A', B'. and C' are respectively equivalent to:

(a) Py,w(q)2 ± Py,w(q 2) E N[q] for all y, w E W'.

(b) (Py,w(q) 2 - Pz,(q)2 ) ± (Py,w(q 2 ) - Pz,w(q 2 )) E N[q] for all y, z, w E W' with y < z.

(c) hx,y;z(V) 2  hxy;z(v 2 ) E N[v, v- 1 ] for all x, y, z E W'.

The proposition holds in this case because elementary properties of polynomials show that

statements (a), (b), and (c) are implied respectively by Conjectures A, B, and C. For example,
(b) follows from Conjecture B because if f, g E N[x] such that f - g E N[x] then

(f 2 _ 2) ± (f (X2 ) - g(X2)) (f g) 2  (f(X2) - g(x 2 )) + 2g(f - g) E N[x].

EN[x} EN[x]

Since Conjectures A, B, and C hold for all finite Coxeter systems (see [33]), we have this

corollary.
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Corollary 3.4.3. Suppose Conjecture A' (respectively, B', C') holds with respect to any

choice of involution for every irreducible factor of a finite Coxeter system (W, S). Then

Conjecture A' (respectively, B', C') holds for (W, S) with respect to any choice of involution.

3.4.2 Positivity results for dihedral groups

Suppose (W, S) is of type 12 (m) where m E {3, 4,5,...}. is finite. Throughout
we let S = {s, t}; then W is the group of order 2m, generated by S subject
relations s2 = t2 = (st)' = 1. Define for i = 1, 2,... the elements

and also

[s, i) =

i factors

(i, s] =

i factors

this section
only to the

and [t, i) =tstst

i factors

and (i, t]= ttst.
i factors

The distinct elements of W are then precisely

and [s,im) = [t,im)

or alternatively

and (M, s] = (Mit].

The elements just listed are all reduced expressions, and
simple description that y < w if and only if f(y) < f(w).

the Bruhat order on W has the
Using these facts and Corollary

3.2.15, the following well-known proposition is a straightforward exercise by induction.

Proposition 3.4.4. Suppose (W, S) is of dihedral type 12 (m), with m E {3, 4,. .. } finite.
Then P,, = 1 for all y, w E W with y < w.

Proof. The proposition certainly holds if w = 1 since P,, = 1 for all w E W. Fix w j 1
and y < w, and suppose PY/,, = 1 whenever we have y' < w' < w.

Choose S E DesL(w); since Pv,, = P.,, and sy < w if sy > y, we may assume s E DesL(y)
as well. In this case sy < sw, so by the second part of Corollary 3.2.14 we must show that

qP,,,. = E
zEW;sz<z

y<z<w

Vt(w)-(z) . [L(z, sW).

Observe that by hypothesis pu(z, sw) is 1 if f(z) = f(w) - 2 and is 0 otherwise. Thus it

suffices to show that y < sw if and only if there is a unique z E W such that y < z and
sz < z and f(z) = f(w) - 2. To this end, note that if y < sw then since sy < y we must

have sy < y < sw < w, in which case f(w) > 3 so the desired z is given uniquely by tsw.

On the other hand, y : sw only occurs if f(y) = f(w) - 1 = f(sw) in which case clearly no
such z exists, as f(z) is both equal to f(w) - 2 and bounded below by f(y). 0
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There exist exactly two S-preserving involution * of W: either * is the identity automor-
phism or * is the automorphism interchanging s and t. In the trivial case, L. consists of the
identity, the longest element, and all elements of W of odd length, namely

1, [s, 1), [S,7 3), [s,7 5), ... [t, 1), [t, 3), [t, 5), . .. and [SI m ) = [t, n).

In the nontrivial case I* consists of the longest element and all elements of even length, i.e.,

1, [s, 2), [s, 4), [s, 6), . .. [t, 2), [t, 4), [t, 6), . .. and [s, IM) = [t, M).

In the following three lemmas we assume (W, S) is of dihedral type 12 (M), with m E {3, 4, ... }
finite, and that * E Aut(W) is either S-preserving involution. We also write wo = [s, m) =

[t, m) for the longest element in W.

Lemma 3.4.5. Every w E W has a unique reduced expression except wo, which has exactly
two reduced expressions given by ststs ... and tstst ... (each with m factors).

Proof. Certainly wo has at least two reduced expressions and every other element has at
least one. As there are only 2m + 1 distinct (possibly empty) expressions of length at most
m involving s and t without equal adjacent letters, and since |Wj = 2m, we may replace "at
least" in the previous sentence by "exactly."

Lemma 3.4.6. Suppose r E S and w E L. such that rw = wr*.

(a) If m is odd and * is trivial then w E {1, r}.

(b) If m is odd and * is nontrivial then w E {wo, rwo}.

(c) If m is even and * is trivial and w E {wo, rwol.

(d) The case that m is even and * is nontrivial cannot occur.

Proof. Since rw = wr* if and only if rw' = w'r* where w' = r x w, we may assume rw > w.
If f(w) = 0 then sw = ws* if and only if s = s*. If 0 < f(w) < m - 1 then it follows from
the previous lemma that rw 5 wr*. It remains only to consider the case when f(w) = M - 1
(since when f(w) = m it cannot hold that rw > w). In this situation rw = wr* if and only
if wo = rw = r(rw)r* = rwor*. One checks that this holds precisely when M = f(wo) is odd
and * is nontrivial or m is even and * is trivial. 0

Lemma 3.4.7. Suppose y, w E L* then f(w) - e(y) = 1.

(a) If m is odd and * is trivial then y = 1 and w E S.

(b) If m is odd and * is nontrivial then y E {swo, two} and w = wo.

(c) If m is even and * is trivial then y E {swo, two} and w = wo, or y = 1 and w E S.

(d) The case that m is even and * is nontrivial cannot occur.
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Proof. The claims here following by inspecting the lists of elements in L, given before Lemma
3.4.5, noting that the elements [s, i) and [t, i) have length i when i < m. 5

We now have the twisted analog of Proposition 3.4.4, showing that P,, = Po, E {0, 1}
for all y, w E I. when (W, S) is a finite dihedral Coxeter system. Despite the simplicity of
this statement, we know of no simpler proof than the following rather complicated inductive
argument using Corollary 3.2.10.

Theorem 3.4.8. Suppose (W, S) is of dihedral type 12 (m), with m E {3, 4, ... } finite. Let
* E Aut(W) be either S-preserving involution. Then PU0' = 1 for all y, w E L. with y < w.y,w

Proof. Let y, w E I with such that y < w. If w = 1 then y < w implies y = w soP, = 1
as desired. If f(w) E {1, 2}, then w = r x 1 for some r E S, in which case y < w if and only
if y E {1, w}, whence PYO = PO',< = 1 by the first part of Corollary 3.2.10.

For the remainder of this proof we assume that f(w) > 3. We may assume that y < w
since Pw," = 1, and may take as an inductive hypothesis that P;,", = 1 when w' < w or
when w = w' and y' > y. Let r E DesL(w) and set w' = r x w. If r V DesL(y) then

PO" = PO,",w = 1 by our hypothesis, so assume r E DesL(y). This means in particular that
y = 1, and that r x y < w'.

Suppose y : w'. Then f(y) = f(w'), so the only element z E L* with y < z < w is z = y,
and the second part of Corollary 3.2.10 becomes

(q + 1)CP", = (q + I)d - V(w)-t(y)+c . m"(y A w')

where c = rw,,-* and d = Jry,yr.. To express mU (y r w') more simply, we note that since
f(y) = f(w'), we have

V"(y, w') = p"(y, x)p"(x, w') = 0 for all x E I ,

and also

6ry,yr*p(ry, w') = 6 ry,yr* and 6rw,wr*I-(y, rw') = Jrw,wr*-pU(Y, w).

Thus, by the definition (3.2.4), our previous equation becomes

(q + 1)cPO" = (q + 1)d - q(d - c - po(y, w)).

If c = 0 then this reduces to the formula PYO = (q + I)d - dq which is equal to 1 for all
d E {0, 1}. If c = 1 then f(y) = f(w') = f(w) - 1 so p(y, w) is the constant coefficient of
PYO and therefore equal to 1. In this case we must have d = 0 since (using Lemma 3.4.6)
the only element x E L* with rx = xr* and f(x) = f(w) - 1 is w' which by assumption is
distinct from y. Thus if c = 1 then d = 0 and our equation becomes (q + 1)P", = q + 1 so

P"W = 1 again as desired.
From now on we assume y < w' < w. Since r E DesL(y)\DesL(w'), we must actually have

y < w'. Further, since y = 1 and w' = wo, it follows from Lemma 3.4.7 that f(w') - f(y) > 2.
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Continuing, by the second part of Corollary 3.2.10 and our inductive hypothesis, we have

(q + 1)cPvo11 = q 2 + 1 - E ve(w)-(z)+CmO(z + w')
zEl; rz<z

y<z<w

where c = 6rw,wr*. (There are no d's here because (q + 1)" ± q(q - d) = q2 + 1 for all

d E {0, 1}.) We wish to replace the right hand side of this equation with a more elementary
expression. To this end, suppose z E I* such that rz < z and y < z < w. We make the
following observations:

(a) poi(z, w') = 0. This follows because, by hypothesis, p" (z, w') is 1 if f(w') - f(z) = 1
and is zero otherwise. We cannot have f(w') - f(z) = 1 by Lemma 3.4.7 since z # 1
and w' wo.

(b) By definition and inductive hypothesis, va(z, w') = I if f(w') - f(z) = 2
{0 otherwise.

(c) e5r,zr*ifo(rz, W') = 0. This follows as po(rz, w') = 0 unless f(w') - f(rz) = 1, which
by Lemma 3.4.7 occurs only if rz = 1 and w' E S (since w' 4 wo). By assumption,
however, we have f(w') f(y) + 2 > 3.

(d) 6rwiwir,, (z, rw') = c -po(z, w) by definition.

(e) poi(z, x)p"'(x, w') = 0 for all x E L* with r E DesL(x). This follows as the product can
only be nonzero if z < x < w', in which case by hypothesis the product is 1 if and only
if f(x) = t(z) + 1 = f(w') - 1 and is zero otherwise. If f(x) = f(z) + 1, however, then
x 5 1, so f(x) 5 f(w') - 1 as w' $ wo, by Lemma 3.4.7.

In consequence of (a), we deduce that mO(z A w') = 0 if f(w') - f(z) is odd, and in
consequence of (b)-(e), we deduce that if f(w') - 0(z) is even then

mo(z A w') = vU(z,w') -c (z,'w).

Thus, noting that f(w) + c = f(w') + 2, we have

(q+1)cP,", = q2 +1- (Vf(')-t(z)+2 . v(z, W')) + (z E '(&)-f(z)+2C - pf(z w) )

where both sums are over z E L with rz < z and y < z < w and f(w') - f(z) even. Recall

that f(w') - f(y) > 2 and that f(y) > 1. From this and the description of the elements of L*
given before Lemma 3.4.5, we note two additional observations:

* There exists exactly one element z E I* with y < z < w and rz < z and f(w') - f(z)

even and vzf(z, w') $ 0. This is the element z = r' < w' where r' E DesL(W') C S is the

generator distinct from r E S, for which f(w') - f(z) = 2 and vO(z, w') = 1 by claim

(b) above. It follows that the first parenthesized sum in (3.4.1) is equal to q2 .
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* If c = 1 then by Lemma 3.4.6 we must have w = wo, since f(w) > 3 and r E DesL(w).
In this case there exists exactly one element z E L, with y < z < w (note that we
exclude that case y = z) and rz < z and f(w') - f(z) even and pu0(z, w) 5 0. Namely,
this element z is given by the unique twisted involution of length m - 1 distinct from
W' = rw. This element has f(w') - f(z) = 0 and pi(z, w) = 1, by inductive hypothesis.
It follows that the second parenthesized sum in (3.4.1) is equal to

c - q + c - mhty)+1 . go (y, W)

The second term here corresponds to the summand indexed by z = y. Such a sum-
mand occurs if and only if f(w') - f(y) is even, but our expression accounts for this
circumstance because if f(w') - i(y) is odd and c $ 0 then nevertheless Ai(y, w) = 0,

as f(w) - f(y) would then not be odd.

Substituting these facts into (3.4.1) gives

(q + 1)cPy- = 1 + c - q + c O)-(y)+- w) (3.4.2)

If c = 0 then it follows immediately that P = 1. Suppose c = 1. If f(w) - f(y) is even
then p"(y, w) = 0 so the preceding equation becomes (q+l)P = q+1 and we get likewise

PYOf = 1. Assume therefore that f(w) - f(y) is odd. Define

/ = p'(y, w) and n = I(W)-f(y)-1-In 2

so that by definition POW= Mn ± /In-lqfl ±- ± + _t for some integers /1,. ,1n-1 In
this notation, our equation (3.4.2) becomes

(q + 1) (p-ngn + gpn-i n~1 + --.- +po) = I + q+q n+1pn

As the left hand side is equal to p1tf+l + Zi1(piM i_ 1 )q+ ±po, equating coefficients of q'
gives go = 1 and yo + p1 = 1 and pi + pi- 1 = 0 for i = 2, 3, .. ., n. The only solution to this
system of equations is to set yo = 1 and p1 = M2 = - -- .p = 0; hence even in this final
case we get PO"W = 1 as desired. 0

Summarizing the effect of Proposition 3.4.4 and Theorem 3.4.8 on our conjectures, we
have this corollary.

Corollary 3.4.9. Conjectures A' and B' hold for all Coxeter systems of rank two.

Proof. The results in this section, together with Proposition 3.3.8, show that Conjectures A'
and B' hold, for any choice of *, whenever (W, S) is of type 12 (m) with m E {3,4,.. . } U{oo}.
The only remaining Coxeter system of rank two if that of type 12(2) = A 1 x A 1 , and all
of our conjectures hold for this Coxeter system, by inspection and also as a consequence of
Proposition 3.4.2. 0
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We would like to be able to comment on Conjecture C' for Coxeter systems of rank two,
but at the time of writing we have not yet worked out sufficiently tractable formulas for

the Laurent polynomials (h ,y;z).and (ha,y;z)xEW;y,zEI* in the finite dihedral case

to do so. This is the subject of future work. We mention that Du Cloux [33] has derived

formulas for the Kahzdan-Lusztig structure constants (hxy;z)XYZEW for dihedral Coxeter

systems, showing at least that Conjecture C holds for all Coxeter systems of rank two.

3.4.3 Algorithms for the finite case

We now describe how to translate the formulas in Sections 3.2.2 and 3.2.3 into algorithms

for computing the various polynomials P,,,, Pyf,, hX,y;z, hX'Y;Z, ha, of interest. Of course
then the polynomials with which Conjectures A', B', and C' are concerned are given by

Pfz =± w P) and hL*y;z = (hxv;z ± hy;z)

for x E W and w, y, z E I.
Adapting the recurrence in Corollary 3.2.14 to give an algorithm for computing the

Kazhdan-Lusztig polynomials Py,w is straightforward, and we include the following pseudo-

code for completeness. A more efficient and involved algorithm for computing the Kazhdan-

Lusztig polynomials is described in du Cloux's paper [32].

Algorithm for computing the polynomials (PY,W)YWEW-

" Begin by initializing every Py,w := 0.

" Fix a total ordering -< of W x W such that (y, w) -< (y', w') implies y > y' and w < w'.
Iterate over pairs (y, w) E W x W in increasing order with respect to -.

" For each (y, w):

- If y i w then continue (i.e., proceed to next iteration).

- If y =w then set PY,. := 1.

- If y < w then choose s E DesL(w) and proceed as follows:

* If s V DesL(y) then set PY,, := PSY, .

* If s E DesL(y) then set

PY,. := PSY, 1, + qy,,w - S gmtz) -p(z, sw) - PY'Z,
zEW; Sz<z

where the constants pi(z, sw) are computed by applying the definition (3.2.6)
to the presently stored values of all polynomials.
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* At the termination of the preceding loop, the values of Py,, for y, w E W will be the
unique ones satisfying Theorem-Definition 3.1.1.

An algorithm for computing the polynomials P,'', likewise derives from Corollary 3.2.10,
the twisted analog of our recurrence for Py,.. Translating this result into an algorithm
involves a little subtlety, as some terms on the right hand side of our recurrence for P"W can
depend on terms on the left. There is actually only one such term: the summand indexed
by z = y when sw = ws* and f(w) - f(y) is odd. In this case, however, Corollary 3.2.10(b)
assumes the form

(q + 1)PY" = f + q(i(w)-f(y)+)/ 2 t (y W)

where f E Z[q] is determined by polynomials which we can assumed to be already known by
induction. Given, f is straightforward to extract P"W, as desired in the following pseudo-
code. Lusztig and Vogan describe a similar algorithm in [72, Section 4.5] in the case that
(W, S) is crystallographic and * = 1 (but their statements actually hold more generally by
results in [70].)

Algorithm for computing the polynomials (PYO) Y .wEj"

" Begin by initializing every POff := 0.

" Fix a total ordering -< of L, x L* such that (y, w) -< (y', w') implies y > y' and w < w'.
Iterate over pairs (y, w) E L* x 1 in increasing order with respect to -.

" For each (y, w):

- If y 4 w then continue (i.e., proceed to next iteration).

- If y = w then set PO, := 1.

- If y < w then choose s E DesL(w), set w' := s x w and c := 6s,,.. and d := JSY'Y8*,
and compute

f := (q+1)dP,"s, +q - P, - S () m( A w') + Pql
zE1*; Sz<z

ysz<w

(In particular, compute the constants m"(z "+ w') by applying the definition
(3.2.4) to the presently stored values of all polynomials.) Then proceed as follows:

* If s V DeSL(y) then set Pcw := P .

* If s E DesL(y) and either sw 4 wss* or f(w) - f(y) is even, then set

P"W := (q + 1)-cf.

* If s E DesL(y) and sw = ws* and f(w) - f(y) is odd, then set

PY"W := ao + alq + - - -+ anq n
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where n := 1(f(w) - f(y) - 1) and ao, a1, ... , a, are the integers such that

f =: ao + (ao + al)q + (ai + a2)q2 + + (a,-, + an)q".

* At the termination of the preceding loop, the values of PYO for y, w E L. will be the
unique ones satisfying Theorem-Definition 3.1.2.

Next, a simple algorithm (which Du Cloux outlines in [33, Section 2.2]) for computing the

structure constants (hxy;z)xZy,ZEW in the Kazhdan-Lusztig basis arises from the multiplication

formula Theorem 3.2.13. In particular, Theorem 3.2.13 gives precisely the values of the
polynomials hsy;z for s E S and y, z E W, and if x E W such that s E DesL(x), then we

have the formula
(3.4.3)cx = cS Csx - : p(z', sx)cx,.

x'EW
Sx'<x'<x

Substituting this for c in the product cxcy allows use to compute hx,y;z inductively in terms

of the polynomials hx',y;z for x' < x. This idea leaves us with the following simple procedure:

Algorithm for computing the structure constants (hxy;Z)XYZEW-

" Compute and store the values of p(y, w) for all y, w E W.

" Initialize hs,y;z for s E S and y, z E W according to Theorem 3.2.13, so that

V + V- 1

hs,y;z {I(zy)

0

if s E DesL(y) and y = z

if s ( DeSL(y) and z = sy

if s E DesL(z) \ DesL(y) and z < y

otherwise.

" Iterate over y E W in any order.

" For each y:

- Initialize hi,y;z := J,, for z E W.

- Iterate over x E W \ {1} in order of increasing length.

- For each x, choose s E DesL(x) and compute

hxy;z : - 3 hsx,y;z'hs,z';z - E p (x', sx)hx,y;z.
z'EW x'EW

sx' <x'<x

* At the termination of the preceding loop, the values of hx,y;z for x, y, z E W will be
the unique Laurent polynomials satisfying cxcy = EzEw hxy;zcz-
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Once the array (hx,y;z)XYZEW has been computed, one can compute the Laurent polyno-

mials hx,y;z via the identity

hxy;z = hx,y;zhzf,(x*)-1,z for x E W and y, z E I*.
z'EW

Implementing this simple formula presents its own challenges in cases when the array (hxy;z)x,YZEW
is very large, in particular when (W, S) is of type H 4 . One way to deal with this is to compute

and store the two-dimensional arrays (hxy;z)XzEW for each y E I; then one can compute all

hxy;z's by computing (without saving) the array (hz',(x*)-1;z)zzrEw for each x E W.

The formula (3.4.3) (with each c. replaced by C.) in conjunction with Theorem 3.2.9
gives likewise a simple algorithm for computing the structure constants h . In fact, the

following pseudocode is almost identical to the algorithm for computing hx,y;z.

Algorithm for computing the structure contants (hoxy;Z)XEW;YzEI.

" Compute and store the values of mc(y A w) for all y, w E I* and s E S.

" Initialize hoy for s E S and y, z E IL according to Theorem 3.2.9, so that

v 2 + v- 2  if s E DesL(y) and y = z

o + V-1 if s DesL(y) and z = sy

h := 1 if s 0 DesL(y) and z = sys*

ma(z A y) if s E DesL(z) \ DesL(y) and z < s < y

0 otherwise.

" Iterate over y E L* in any order.

" For each y:

- Initialize h',Y;z := Jy,z for z E 1.

- Iterate over x E W \ {1} in order of increasing length.

- For each x, choose s E DeSL(x) and compute

,y;z := Ii (x', sx)h,,
z'EI. x'Ew

sx'<x'<x

" At the termination of the preceding loop, the values of hoz for x E W and y, z E I

will be the unique Laurent polynomials satisfying CxAy = ZE1* hy; zAz.
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3.4.4 Computations and conclusions

Du Cloux implemented efficient algorithms for computing the Kazhdan-Lusztig polynomials

PY, and the structure constants h,,;z in his C++ program Coxeter [34]. Other implemen-
tations for calculating these quantities exist (e.g., in [41]), but at the time of writing Coxeter
appears still to be the only program capable of computing all of Kazhdan-Lusztig structure
constants in type H 4 in a reasonable amount of time (though, still on the order of days).

Du Cloux's final version of Coxeter includes instructions for ways in which to extend
the program. We have made use of this ability to implement the algorithms in the previous
section for computing the polynomials PU , h , h ,. for a finite Coxeter system with
involution [83]. Extensive comments are included in this C++ code [83] with the details of
the implementation. Using these extensions to Coxeter, we have computed the polynomials

(Pw)y,,, and (hY;z)xew;yze.

for all finite irreducible Coxeter systems (W, S) with involution in ranks three, four, and
five (see Table A.16). Of the cases considered, type H 4 is by far the most computationally
intensive, requiring for the calculation of the polynomials (hy;Z)XEW; yzEI around one week's

computing time (on a 2.26 GHz MacBook Pro) and around 100 GB of memory to store all
(highly uncompressed) output files. (Even in this type verifying Conjectures A' and B' only
takes a few minutes, however.) Tables A.17, A.18, A.19, A.20 show the least and greatest
nonzero coefficients of the polynomials thus computed.

The outcome of this computation is that Conjectures A', B', and C' hold whenever (W, S)
is an irreducible Coxeter system of rank three, four, or five. Combining this with Corollary
3.4.3 and Theorem 3.4.8. gives the following theorem.

Theorem 3.4.10. Let (W, S) be a finite Coxeter system with an S-preserving involution
* E Aut(W).

(a) Conjectures A' and B' hold if all irreducible factors of (W, S) have rank at most 5.

(b) Conjecture C' holds if all irreducible factors of (W, S) have rank 3, 4, or 5.

As one corollary to this result, we have this second theorem.

Theorem 3.4.11. Let (W, S) be any finite Coxeter system. If * E Aut(W) is an S-preserving
involution such that for each irreducible factor (W', S') of (W, S), it holds that s* 0 S' \ {s}
for all s E S', then Conjectures A' holds.

Proof. The condition in the theorem means that * acts on any irreducible factor of (W, S)
either as the identity or by interchanging it with another factor. Lusztig and Vogan prove
that Conjecture A' holds whenever (W, S) is a Weyl group and * is the identity automorphism

(see [72, §3.2 and §5.1]). As the only finite irreducible Coxeter systems which are not Weyl
groups have rank two, three, or four, the theorem follows in light of Proposition 3.2.12,
Lemma 3.4.1, and Theorem 3.4.10. L
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Restating the previous theorem in the case that * is trivial gives this final corollary.

Corollary 3.4.12. Conjecture A' holds whenever (W, S) is a finite Coxeter system and * is
the identity automorphism.

169



170



Appendix A

Tables

171



Table A.1: Automorphisms of exceptional complex reflection groups; see Section 1.7.1

Exceptional Group Gi Automorphism
G4, G5, G6, G8, G9, Gio, _1 ,_1)
G14, G16, G17, G18, G20, G21 ''

G7, Gil G1 9  (s, t, u) - (s, t-1', su-'s)
G12, G22, G24, G25  (s, t, U) -+ (U- 1 , t-, s 1 )
G13 (s, t, U) -+ (s, u, t)

G15 (s, t, u) -4 (s, t, tu-1 t)
G 23, G28, G30 , G35, G36 , G37 Identity automorphism
G26 (s, t, u) -+ (s-1, t-', u-1)
G27, G29, G34 No such r exists
G31 (s, t, U, v, w) -+ (u, t, s, w, v)
G32 (s, t, u, v) -+ (v-', u 1 , t-1, s 1 )
G33 (s, t, u, v, w) F- (v, u, t, s, w)

The automorphisms in the right column are specified in terms of their action on the gener-
ators for each exceptional group, in the notation of the corresponding presentation in [21].
Each automorphism T E Aut(G) satisfies the conditions of Theorem 1.2.1 in the sense that
72 = 1 and c,(?$) = 1 for all / E Irr(G).
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Table A.2: Irreducible multiplicities of Xw in type E6 ; see Section 2.4.1

Multiplicity Name in [30] Name in [63]
11,0 1p

1 0,1 6p
1 '20,2 2 0 p

1 064,4 64,
1 060,5 6 0 p
1 081,6 81P
1 #24,6 24P
1 #81,10 81'p
1 060,1 60',
1 024,12 24'

p

1 064,13 64'
1 020,20 20'p
1 #6,25 6'p
1 41,36 1'
2 #.30,3 30p
0 415,4 1 5 q

0 0,15,5

2 #30,15 30,
0 015,16 15'
0 015,17 15',
2 080,7 80S
0 06O,8 60s
1 090,8 90,
1 010,9 lOs
0 020,10 20S

17x

S 1
112
111 1

1 1
112
11
S 1
112
111 1
1 1
1 1

S2 1
(1, 2)
1

52 1

(1, 2)
1

53 1
(1, 2)
1
(1, 2,3)
1

Cr(X) u'
1 It
1 A
1 It
1 11
1 It
1 It

1 It
1 1
1 It
1 It
1 It
1 R
1 It
1 I

S2  It

S2  I

S2  sgn

S2  I

S2  I

S2  sgn
S3  I
S2  I

S3  EP
Z3 I
S3 sgn
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Table A.3: Irreducible multiplicities of Xw in type E7 (1 of 2); see Section 2.4.1

Multiplicity Name in [30} Name in 631F x Cr(x) o

1 'ki,o a1 1 1 I

1 7,1 27/

1 #27,2 2111 021,3 b

1 'P189,5 18%

1 0210,6 210a

1 0105,6 105b -1

1 '168,6 168a -

1 '0189,7 189' -1

1 378,9 37K1

1 #210,10 2 10b
105L

1 '105,12 1051

1 'P210,13 21_ b I

1 '378,14 378a

1 'P105,15 185C 1

1 0189,20 189ct 1L

1 0210,21 2105' 1

1 0105,21 15 I

1 '168,21 168

1 189,22 289b

1 021,36 2 1 1 1
1 027,37 7 1 It
1 07,46 1 1 It
1 'P1,63 a1-
1 '512,11 512' S2  1 2

512,1512 1 2 sgn
0 512,12 51a
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Table A.4: Irreducible multiplicities of xw in type E7 (2 of 2); see Section 2.4.1

Multiplicity Name in [30] Name in [631 ' x Cr(x) 0

4 6 21 S2  1
2 056,3 56a S2  (12 S2 1

0 035,4 
3 5 6 (1,2) S2

0 021,6 21a 1 S2  sgn

2 120,4 120a S2 1 S2

0 410,4 1O57 1 S2 sgn
S4105,5 15' a (1, 2) S2 i

0 015,7 4a 3
2 0405,8 405a 2 S2 1

0 0216,9 2169 (1,2) S2 1g

0 0189,10 189a S2  sgn

2 0420,10 420a S2 1 S2 1
20 336,11 S2 sgn

0 4336,11 846* (1, 2) 52 1
0 084,12 84a

2 0420,13 420'a S2 1 S2

0 4336,14 336a 1 S2 sgn

0 43,15 84' (1,2) S2 1

2 405,15 405' S2 1 2 1

0 4216,16 216a (1,2) S2 1

0 0189,17 189' 1 S2 sgn

S181 20' 52 1 S2 1
2 0120,25 105a 1 52 sgn
0 0105,26 15 a (1,2) S2 1
0 56 52 1 a2 1

0 035,31 351 (1,2) S2 1

0 321,33 21/ 1 2 sgn

2 40315,7 315' 53 1 53 1

0 0280,8 
28 0b (1,2) 32 1

1 070,9 70' (1,2,3) 3  E

1 4280,9 280' 1 S3 s n

0 035,13 35a 13 sgn

2 0315,16 315a 53 1 53 1

0 4280,1' 23 (1,2) S2 1
1 280,17 70a (1,2,3) Z3  1
1 070,18 280a 1 S3 E
1 0280,1835 13 sg
0 035,22 35a 13 sgn
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Table A.5: Irreducible multiplicities of xw in type E8 (1 of 3); see Section 2.4.1

Multiplicity Name in [30] Name in [63} F x Cr(x) o

1 01,o 11

1 08,1 8z

1 035,2 351

1 0560,5 560z

1 0567,6 5671

1 03240,9 3240z It

1 1525,12 5251 I

1 (4536,13 4536z It

12835,14 28351

1 (6075,14 60751

1 04200,15 42001

1 02100,20 21001 It

(14200,21 4200' 1

1 (2835,22 2835' 1 1 1

1 06075,22 6075' 1 1 1

1 04536,23 4536'1

1 (3240,31 3240'1

1 (525,36 525'1 I

1 567,46 567' It

1 0560,47 560§ 1 It

1 (35,74 35' 1

~~1 -108,91 1

011,120 1'
1 04096,11 4096z S2 1 S2

1 04096,12 4096x 1 S2 sgn

1 04096,26 4096' S2 1 S2 I

1 04096,27 4096, 1 82 sgn

2 0112,3 112z 82 1 S2 I

0 084,4 84x (1,2) S2 I

0 028,8 28x 1 S2 sgn

2 0210,4 210x 82 1 82 I

0 0160,7 160z 1 82 sgn

0 050,8 50x (1,2) 82 I

2 0700,6 700x S2 I 82 I

0 0400,7 400z (1,2) S2 I

0 0300,8 300x 1 S2 sgn
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Table A.6: Irreducible multiplicities of Xw in type E 8 (2 of 3); see Section 2.4.1

Multiplicity Name in [30) Name in [63] 1 x Cr(x) a

2 k2268,10 2268x S2 1 S 2  1

0 0972,12 972x (1,2) S2 1

0 01296,13 1296z 1 S2 sgn

2 02240,10 2240x S2 1 S2  1

0 01400,11 1400ZZ (1, 2) S2  1

0 0840,13 840z 1 S 2  sgn

2 04200,12 4200x S2  1 S2 1

0 43360,13 3360z 1 S2 sgn

0 0840,14 840x (1,2) S2  1

2 #2800,13 2800z S2 1 S2  1

0 #700,16 7002 (1, 2) S 2  1

0 02100,16 2100x I S2 sgn

2 056OO,15 5600z S2  1 2 1

0 #3200,16 3200x (1, 2) S 2  1

0 02400,17 2400z 1 S 2  sgn

2 #5600,21 5600z S 2  1 2 1

0 0 3 200,22 3200'Y (1,2) S2  1

0 02400,23 2400z 1 S 2  sgn

2 04200,24 4200'Y S2  1 S 2  1

0 0336o,25 3360z 1 S2  sgn

0 0840,26 840x (1,2) S2  1

2 02800,25 2800z S2  1 2  1

0 #700,28 70xx (1,2) S 2  1

0 02100,28 2100'Y 1 S 2  sgn

2 02240,28 2240'Y S2  1 S 2  1

0 01400,29 1400zz (1, 2) S2  1

0 0840,31 840z 1 S 2  sgn

2 02268,30 2268'x S 2  1 S 2  1

0 972,32 972' (1,2) S2  1

0 #1296,33 1296'z 1 S2  sgn

2 0700,42 700'Y S2  1 S 2  1

0 0400,43 400z (1,2) S 2  1

0 0300,44 300' 1 S2  sgn

2 0210,52 210'Y S2  1 S2  1

0 0160,55 160z 1 S 2  sgn

050,56 50' (1,2) S 2  1

2 5 112,c3 112' S2  1 S 2  1

#84,64 84' (1,2) S2  1

428,68 28' 1 S2  sgn
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Table A.7: Irreducible multiplicities of Xw in type E8 (3 of 3); see Section 2.4.1

Multiplicity Name in [30] Name in [63] ' x Cr(x) a-
2 01400,7 1400z S3  1 S3  1
0 01344,8 1344x (1,2) S2 1
1 0448,9 448z (1, 2,3) Z3 1
1 01008,9 1008Z 1 S3 EP
0 0,19 56z 1 S3 sgn

2 01400,8 1400x S3 1 S3 1

0 01050,10 1050x (1, 2) S 2  1
1 01575,10 1575x 1 S3 EF
1 0175,12 175x (1,2,3) Z3 1

0 0350,14 350x 1 S 3  sgn

2 01400,32 1400'Y S3 1 S 3  1
0 0 1050,34  1050'Y (1,2) S2 1
1 01575,34 1575' 1 S3 EP
1 0175,36 175' (1,2,3) Z3. 1
0 0350,38 350' 1 S3  sgn
2 01400,37 1400z S3  1 S3  1
0 0 1344 ,38  1344' (1,2) S2 l

1 0448,39 448' (1,2,3) Z3 It

1 01008,39 1008z 1 S3 EP
0 41)56,49 56' 1 S3  sgn

3 0 4480,16  4480Y S5  1 S5 t
0 17168,17 7168w (1,2) S 2 X S3  1
2 '3150,18 3150, (1,2,3) Z3 x S2 1
1 44200,18 4200, (1,2)(3,4) Dih8  1
2 04536,18 45361 S5

2 05670,18 5670 1 Ss
0 01344,19 1344w (1,2,3,4) Z4 1
0 02016,19 2016w (1, 2,3)(4, 5) Z3 X S2 1
0 05600,19 5600w (1, 2) S 2 X S3 L 9EP
0 02688,20 26881, (1, 2)(3, 4) Dih 8  E"
1 0 420,20  420, (1,2,3, 4, 5) Z5 1

0 01134,20 1134', (1, 2,3) Z3 X S2 1 0 sgn

1 01400,20 1400, 1 S5

0 11680,22 1680Y 1 S5

0 0168,24 168Y (1,2)(3,4) Dih 8
0 0448,25 448w (1,2) S 2 x S3 1 09 sgn

0 070,32 70 1 S5
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Table A.8: Irreducible multiplicities of Xw in type F4 ; see Section 2.4.1

in [30] in [631Multiplicity
1
1
1
1
1
1
1
1
2
0
0
2
0
0
3
0
1
2
1
1
0
0
0
0
0

Table A.9: Irreducible multiplicities of Xw in type G 2 ; see Section 2.4.1

Multiplicity Name in [30] Name in [63] F x Cr(x) a
1 01,o Unit 1 1 1 A

2 02,1 V S3 1 S3  I
0 02,2 V' (1,2) S2 1
1 01,3 E1 1 S3
1 01,3 E2 (1,2,3) 23
1 01,6 Sign 1 1 1 IL
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Name

41,0
49,2

08,3

'8,3

48,9

8',9
49,10

41,24
44,1
42,4

02,4

'4,13

02,16

02,16

012,4

016,5

016,6

(Y)6,6

49,6
49,6

44,7

'4,7

44,8
41,12

41.12

Name
11

91
83

81
82

84

94

14

42

23
21

45
22

24

12,
16,
61
62

93
92

44

43

41

13

12

F x
1 1
1 1
11
112
1 1
11
1 1
1 12

S2  12
1
(1, 2)

52 1
1
(1,2)(

S4 1

(1,2)
(1,2,3)
1 ,
1

(1, 2)(3,4)
(1, 2)
(1, 2, 3,4)
(1, 2)(3, 4)
1

(1, 2)(3, 4)

Cr(x)
1
1
1
1
1
1
1
1

S2

S2

S2

S2

S 2

S2

S4
S2 x S 2

Z4
54

Dih8
S2 x S2

24

Dih8
S4

Dih8

0-

It
It
It
It

It
It
It
It
sgn

sgn

IL
It

IL

It
It 09 sgn

It
E"

6'



Table A.10: Irreducible multiplicities of Xw in type H 3 ; see Section 2.4.1

Multiplicity Name from §2.4.1 Name in [62] Fourier transform M Index in M
1 01,0 1 1
1 01,15 1' 1

1 45,2 5 1
105, 5' 1
14,3 4 Ms2  (1, 1)

14,4 4' (1, sgn)
1 03,6 3'6 D5 (0, 1)

1 03,8 3'a (0,2)

13,1 3b D5 (0, 1)

13,3 3a (0,2)
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Table A.11: Irreducible multiplicities of Xw in type H4 ; see Section 2.4.1

Multiplicity Name from §2.4.1 Name in [4, 5, 44] Fourier transform M Index in M

1 #1,o Xi 1
1 '71,60 X2 1

1 '725,4 X27 1
1 '725,16 X28 1
1 '736,5 X31 1
1 '736,15 X32 1
1 04,1 X3 D5 (0,1)

1 4,7 X5 (0,2)
1 74,31 X4 D5 (0,1)

1 4,37 X6 (0,2)
1 09,2 Xii D5 (0,1)

1 0 9,6  X13 (0,2)
1 09,22 X12 D5 (0,1)

1 09,26 X14 (0,2)

1 016,3 X18 MS 2  (1,1)

1 #16,6 X20 (1, sgn)

1 016,18 X21 Ms2 (1, 1)

1 016,21 X19 (1, sgn)
2
0
0
0
0
0
0
0
2
0
0
2
2
2
2
0

024,6

06,12

06,20

08,12

08,13

010,12

016,13

016,11

718,10

024,11

024,7

024,12

030,10,12

030,10,14

040,8

048,9

X26

X7
X8

X9
Xio

Xis
X17

X16

X22

X23

X24

X25

X29

X30

X33

X34

(see §2.5.3)
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Table A.12: Irreducible multiplicities of Xw,, and Xw in type 12 (m); see Section 2.4.4

m odd

Character Xwi Xwr Xw
01,0 1 0 1
01,m 0 1 1

02,k (0<k< m) 0 1 1

m = 2 (mod 4)

Character Xw,1 XWwo XWr XWs Xw

01,0 1 0 0 0 1
#1,M 0 1 0 0 1
0 2 ,k (k odd) 0 0 1 1 2

0 2 ,k (k even) 0 0 0 0 0
Oki,m 1 2  0 0 0 1 1

1,m/2 0 0 1 0 1

M = 0 (mod 4)

Character Xw,1 XWwo Xw,r Xw,s Xw

01,0 1 0 0 0 1
O1,m 0 1 0 0 1
0 2 ,k (k odd) 0 0 1 1 2
0 2 ,k (k even) 0 0 0 0 0

'/ 0 0 0 0 0

010 0 0 0 0

182



Table A.13: Left cells and conjugacy classes of involutions in type H 3 ; see Section 2.6.1

Left cell Cell size Cell character 1 (abc)5 a ac
I (1 i < 4) 8 #4,3+04,4 0 0 1 1
Ji (1 < i < 5) 5 05,2 0 0 0 1
J1 (1 < i < 5) 5 05,5 0 0 1 0

Ki (1 i < 3) 6 03,1+03,3 0 0 2 0

Ki (1 i < 3) 6 03,6+03,8 0 0 0 2
L 1 01,0 1 0 0 0
L* 1 1 _1,15 0 1 0 0

The last four columns are labeled by involutions in W. The numbers in these columns are
the sizes of the intersections of the conjugacy class of the column label with the left cell
labeling a given row.
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Table A.14: Left cells and conjugacy classes of involutions in type H 4 ; see Section 2.6.2

Left cell Cell size Cell character 1 (abcd)1 5 a (abc)5 ac
Ai (1 i 8) 326 024,6 + 024,12 + 024,7 0 0 0 0 12

+024,11 + 08,12 + 08,13

+018,10 + 030,10,12 + 030,10,14

+040,8 + 2048,9

Ai (9 < i < 18) 392 024,6 + 024,12 + 024,7 0 0 0 0 14
+ 24,11 + 010,12 + 016 ,11

+16,13 + 018,10 ± 0 3 0 ,10,12

+ 30,10 ,14 + 2040,s + 248,9

Ai (19 < i < 24) 436 424,6 + 24,12 + 024,7 0 0 0 0 16
+024,11 + 06,12 + 06,20

+016,11 + 016,13 + 2q3%,10,12
+2030, 10,14 + 24 0,8 + 24,9

Bi (1 i < 36) 36 036,5 0 0 1 0 0
B (1 i < 36) 36 0 0 0 1 0
Ci (1 i < 25) 36 425,4 0 0 0 0 1
C (1 i < 25) 36 025,16 0 0 0 0 1
Di (1 < i < 16) 32 016,3 + 016,6 0 0 1 0 1
D! (1 i < 16) 32 016,18 + 016,21 0 0 0 1 1
Ej (1 i < 9) 18 09,2+09,6 0 0 0 0 2
E,* (1 < i < 9) 18 09,22 + 9,26 0 0 0 0 2
F (1 i < 4) 8 04,1+04,7 0 0 2 0 0
F* (1 < i < 4) 8 04,31 + 4,37 0 0 0 2 0
G, 1 01,0 1 0 0 0 0
G* 1 0 1 0 0 0

The last four columns are labeled by involutions in W. The numbers in these columns are
the sizes of the intersections of the conjugacy class of the column label with the left cell
labeling a given row.
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Table A.15: Left cells and conjugacy classes of involutions in type 12 (m); see Section 2.6.3

m odd

Left cell Cell size Cell character 1 r
X 1 #ii 1 0
X* 11,M 0 1
Y M -i Eo<k< 02,k 0 (m - 1)/2
Y* M - I IO<k<m 02,k 0 (m - 1)/2

M = 2 (mod 4)

Left cell Cell size Cell character 1 wo r s
X 1O, 1 0 0 0
X* 11,M 0 1 0 0
Y M -1 1 Zm/2+ EO<k<m 02,k 0 0 (m - 2)/4 (m + 2)/4
Y* M - 01,m/2 + EO<k< 02,k 0 0 (m+ 2)/4 (m-2)/4

rM = 0 (mod 4)

Left cell Cell size Cell character 1 wo r s
X 1 , 1 0 0 0
X* 11,M 0 1 0 0
Y M - ± ,m/2+ Eo<k<m 02,k 0 0 m/4 m/4
Y* M - 1,m/2 + Eo<k<m 02,k 0 0 m/4 m/4

The last four columns are labeled by involutions in W. The numbers in these columns are
the sizes of the intersections of the conjugacy class of the column label with the left cell
labeling a given row.
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Table A.16: Irreducible finite Coxeter systems with involution; see Section 3.4.1

Name Dynkin diagram for (W, S) Involution * E Aut(W)
An (n > 1) sl--2- ----Sn Identity
2 An (n > 2) Diagram si H- s+1-i

BCn (n > 3) S 1-4-S2- - -sn Identity

Dn (n > 4) siS Identity

S2

2 Dn (n > 4) Diagram
1 si a si (i > 3)

E6 S2 Identity

si-- 3 - 4 - 5 -- S 6

(S 1 4 S6

2E6 Diagram S3 S 5

si a si (i = 2, 4)

E7 S2 Identity

S1-S 3 -) 4 -S 5 -S 6 -S 7

E8  S2  Identity

s1- 3 -) 4 -S 5 -S 6 -S 7 -S8

F 4  S1--s2-4-3---s4 Identity

F4 Diagram si s-i

H 3  s 1 -5-S2--S 3  Identity

H 4  S1--2---S3-s4 Identity

I2(m) ( > 4) S1-2-32 Identity
2 12 (m) (m > 4) Diagram si s3-i

All Dynkin diagrams are labeled to coincide with the indexing
The types BC2, 2BC2, G2, 2 G2 are omitted since they coincide
m = 4,6.

conventions in Coxeter [34].
with types 1 2 (m), 2 12 (m) for
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Table A.17: Minimum nonzero coefficients in KL-type polynomials; see Section 3.4.4

Type Py,, (y, w E I) P,', P Pv-
A 3  1 1 1 (all polynomials are zero)

2 A3 1 -1 1 1
BC 3 l -1 1 1

H3 1 -1 1 1
A 4  1 1 1 (all polynomials are zero)

2 A4 1 -1 1 1
BC4 l -1 1 1

D4  1 -2 1 1
2 D4  1 -1 1 1

F4  1 -2 1 1
2 F 4  1 -1 1 1
H 4  1 -9 1 1
A5  1 1 1 1

2A 5 1 -1 1 1
BC 5 1 -3 1 1

D 5  1 -3 1 1
2D 5 1 -2 1 1

Table A.18: Maximum nonzero coefficients in KL-type polynomials; see Section 3.4.4

Type Py,w (y, w E I) Po, Pp.- P-w
A 3  1 1 1 (all polynomials are zero)

2A3  1 1 1 1
BC 3  1 1 1 1

H 3  3 1 2 1
A 4  2 2 2 (all polynomials are zero)

2A4  2 1 1 1
BC4  5 3 4 1

D4  4 3 3 2
2 D 4  10 8 7 2

F4  12 8 9 5
2 F4  12 2 6 6
H4  5,116 213 2,651 2,465
A5 4 4 4 1

2 A5 4 2 3 2
BC5  35 10 21 14

D5  17 8 11 6
2D5 17 4 10 7
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Table A.19: Minimum nonzero coefficients in KL-type structure constants; see Section 3.4.4

Type hx,y;z (x e W; y, z E I.) h',y;z h+,;z h-,;z
A3  1 1 1 1

2 A3  1 -3 1 1
BC 3  1 -8 1 1

H3  1 -49 1 1
A4  1 1 1 1

2 A4  1 -10 1 1
BC4  1 -156 1 1

D4  1 -85 1 1
2 D4  1 -30 1 1

F4  1 -2,007 1 1
2 F4  1 -86 1 1
H4  1 -60,353,800 1 1
A5  1 1 1 1

2 A 5  1 -162 1 1
BC5  1 -9,924 1 1

D 5  1 -3,319 1 1
2D 5 1 -1,538 1 1

Table A.20: Maximum nonzero coefficients in KL-type structure constants; see Section 3.4.4

Type hx,y;z (x E W; y, z E I.) h' h+ ;zz
A3  132 10 66 66

2 A3  132 7 66 66
BC3 905 28 451 454

H3  15,676 106 7,870 7,806
A4  3,748 61 1,892 1,856

2 A4 4,698 36 2,358 2,340
BC4  397,846 767 199,042 198,804

D4 42,384 246 21,226 21,225
2D4 42,384 116 21,225 21,159

F4  108,380,588 8,995 54,192,072 54,188,516
2 F4  108,380,588 2,600 54,191,594 54,188,994
H4  59,133,414,193,112,056 467,325,554 29,566,707,126,594,414 29,566,707,066,517,642
A 5 922,740 912 461,826 460,914

2A 5 922,740 506 461,404 461,336
BCs 1,319,190,596 42,248 659,608,306 659,582,290

D 5 89,307,651 11,123 44,652,166 44,655,485
2D5 89,307,651 4,748 44,655,112 44,652,539
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Appendix B

Figures
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Figure B-1: Labeled tree illustrating part (a) of Proposition 3.3.9.

y,z;w

y z;sws*

q2

S

y ,z ;wI

Figure B-2: Labeled tree illustrating part (b) of Proposition 3.3.9.

Py,z;w

Py,z;sw
q

/ / Py,z;sts*

Pya*-1,za*-1;swa*-1

*

q

Pay,az;aw

Pay,az;aws*

yv ,z;w'
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Figure B-3: Labeled tree illustrating part (a) of Proposition 3.3.10

Plcz,w

Pl"Z;SWB P ,S; 8x w

1 4 q
2

17

0 r r w q q

1

0 UO,U1;wl Pu1,u2;w/

Al -* 0 k

*" q2 2

.. tk-2,Uk.1;wf uk...,,Uk;w, yz ;U'
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Figure B-4: Labeled tree illustrating part (b) of Proposition 3.3.10

P,z;w

Pi,z;ws

q

/ /

Pa,zk ;aws

z;q

Pui,zi;w' Pu2,Z2;W'

P7z;s WS

q

Pas,az;aw

q

asr,Zk ;aws

q q1

q

.. Puk,Zk;wI

A-
S S

q q

P/I Py ,z ;w' uk..1,zk;w' Pul,Z2 ;W PUO,z 1 ;w/
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Figure B-5: Labeled tree illustrating part (a) of Proposition 3.3.11

14l

P1l"z;SWS

1O'l

0

P10z;w

P" 
2qssq

*"S q q2
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Figure B-6: Labeled tree illustrating part (b) of Proposition 3.3.11 (when k > 1)

Pi,z;w

P7z;SW

q

/ 0/

Piz;s

q

WS

q

Pas,az;aw
q 4

as,z";aws

q q

,5 ,S Py;/n~i

Py',z';w' uk-,zk;w'

a,z";aws

jy l U f

q
PLc,Zk ;W'
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