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ABSTRACT

The response of the otoli'th-ocular counterrolling (OCR) system to
horizontal lateral linear step and sinusoidal accelerations has been
measured. A linear acceleration cart capable of providing step and
sinusoidal acceleration profiles of up to 0.3 g, 0.02 to 1.0 Hz was
designed and built. Photographic data recording analysis procedures
were developed that did not require fixation of the head with a rigid
bite board yet yielded measurement repeatability on the order of 0-30
minutes of arc.

The results indicate that the OCR response to sinusoidal hori-
zontal linear accelerations is similar to the response obtained by
constant velocity rotation (roll) around the line of sight (producing
a sinusoidal modulation of the direction of the gravitoinertial force).
A Bode plot of the data is in good agreement with other investigations.
The step response of the system, however, appears to be slightly
underdamped which is predicted by a dynamic model of the otolith-
perception system.
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CHAPTER 1

INTRODUCTION

1.1 Objectives and Scientific Justification

The objective of these experiments is to investigate the res-

ponse of the otolith-ocular counterrolling (OCR) system to purely

linear horizontal accelerations. A linear acceleration cart was

built to provide step and sinusoidal acceleration profiles. The

transient OCR response to step acceleration was measured as well as

the frequency response to sinusoidal inputs. Although several types

of rotary eye movements and stimuli for these movements exist, this

thesis will use the term ocular counterrolling (OCR) to indicate

torsional movements (either slow phase or saccadic) induced by

changes of the gravitoinertial vector with respect to the subject's

head (see Figure 1.1). This system is believed to be primarily

reflexive; however, the possibility exists that changes in percep-

tion of orientation (gravitoinertial force with respect to head

position) could influence the OCR movements. Briefly, OCR has

been shown to be dependent primarily upon otolith organ (seismic

linear accelerometer) function and only slightly dependent upon

semicircular canal (angular accelerometer) function.*

Most previous OCR experiments have used steady state lateral

*
See Chapter 2
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head erect

head filted
Figure 1.1 This sketch shows the definition of ocular counterrolling (0)

due to a change in the gravitoinertial force (GIF) with res-
pect to the subject's head.
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head/body tilt as the stimulus and measured OCR magnitude as the

response. A few studies have utilized sinusoidally varying gravito-

inertial force (GIF) inputs generated by a constant angular velocity

around the line of sight (roll axis). These studies recorded OCR

magnitude as a function of stimulus frequency and attempted to des-

cribe the OCR system in terms of a linear second-order system. Most

studies have recorded data only after the transients had disappeared

(approximately 60 seconds). Any transient data that have been re-

corded using roll axis motion included semicircular canal inputs

by nature of the angular acceleration involved in the start-up of

roll velocity. The second characteristic of these studies is that

the magnitude of the GIF has always been 1.0 'g'. Since the axis

of rotation has been very near the otolith organs, any centripetal

accelerations were neglected.

The equipment and experiments described in this thesis were

designed to record original ground-based OCR data using purely

linear horizontal acceleration stimuli (step and sinusoid). The

specifications and performance criteria of the equipment for these

experiments exceeded those for the Space Sled scheduled to fly in

the NASA/ESA Spacelab-1. Because of the short track. length of the

equipment (about 15 feet), the recording of OCR data was limited to

less than 10 seconds per run for step acceleration stimuli in the

0.05 to 0.3 g range. Sinusoidal stimuli could be produced from 0.01

to 1.0 Hz and from 0.01 to 0.2 g. In these experiments, sinusoidal

stimulation from 0.2 Hz to 1.0 Hz at 0.2 g was used.
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Since virtually no data is available in the literature on the

resp.onse of OCR (both transient and sinusoidal) to purely linear

horizontal accelerations, it was decided to pursue a program to

collect ground-based data that could be compared with spaceflight

data and to propose a model relating transient step accelerations

to OCR in 1 'g'.

1.2 Hypothesis

The hypothesis of this thesis is that the OCR reflex is essen-

tially linear over a range of inputs normally found in a 1 'g' en-

vironment, and that the transient response to step lateral linear

acceleration is consistent with previous studies that recorded

steady state static and sinusoidal OCR. Because the stimuli of

this investigation (lateral horizontal acceleration) modulate the

"shear force" on the utricular macula, yet maintain the 1 g com-

pressive force (unlike the stimuli in normal lateral tilt), the

data recorded during these experiments will yield a new set of

data points.

1.3 Related Spacelab I Experiments

In addition to the inherent scientific interest in studying

the otolith-OCR system in 1 g, an experiment has been proposed to

study the otolithic system including OCR during space flight. This

experiment, known .as 1NS102 "Vestibular Experiments in Spacelab I",
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actually consists of seven "functional objectives" (FOs) or subexperi-

ments. All the FOs are designed to be performed pre-flight and post-

flight, and at least twice during the flight to record any changes in

vestibular function that occur over a seven day period of weightlessness.

The objective is to compare pre- and post-flight data with ground-based

data and also to compare in-flight data between the beginning and end

of the mission. The experiments on-board are divided into two groups:

three are Space Sled (hereafter called sled) experiments and three are

non-sled experiments. The sled FOs (1, 2a, 2b, 6a) will use lateral

(left-right, also known as y-axis) acceleration profiles. F01 inves-

tigates the detection of step linear acceleration as well as the ability

of the subject to track perceived velocity during suprathreshold sinus-

oidal stimuli. F02a investigates lateral eye movements in response to

the same stimuli used in FOl. F02b investigates the OCR response to

these same stimuli and is the functional objective most closely related

to this thesis.

1.5 Review of Conclusions

The results of this thesis show that the OCR response (transient

and sinusoidal) to linear accelerations is consistent with previous

sinusoidal response studies and that it is linear over a range of hori-

zontal accelerations up to at least 0.3 g. The transient response of

the system can be modelled with a second order linear system first pro-

posed by Young and Meiry (1968). The sinusoidal transfer function derived

from the data of this thesis agrees with a model proposed by Hannen et al

(1966) with the exception of a somewhat larger time delay in the system.
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1.6 Organization of the Thesis

Chapter 2 reviews previous ocular counterrolling studies and

attempts to relate these studies to several models that have been

developed to describe not only the OCR system, but also the otolith

end-organ and otolith perception systems. Some background on eye

movements induced by stimulation of the otoliths and related vesti-

bular areas of the brainstem is also provided.

Chapter 3 describes the methods employed in this thesis in-

cluding a description of the experimental equipment which was built,

the data recording and analysis techniques which were finally chosen

and the protocol of the experiments.

Chapter 4 presents the results including corrections necessary

due to small head movements. Static, step and sinusoidal results

are presented. Not all the data is presented here, some reduced

data and representative plots are included. Appendix D is a complete

set of all the data recorded.

Chapter 5 is a discussion of the results with emphasis placed on

the agreement of the data of this work with other investigations and

the first of several models discussed in Chpater 2. In addition, there

it a discussion of the possible effects of perception upon OCR with no

defWitite conclusion yet.
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Chapter 6 attempts to reiterate the main conclusions of the

thesis and provide suggestions for future work.

Appendix A is a detailed design study of the equipment that was

built including the rationale for various decisions and a set of

working engineering drawings.

Appendix B explores the depths of the computer program and hard-

ware interfaces which control the sled. Due to the continuing evolu-

tion of the equipment however, the information in this appendix

reflects the state of the software and hardware at the time these

experiments were conducted.

Appendix C describes how to use the data analysis equipment.

Appendix D is a collection of all the data recorded during these

experiments. The first section is static OCR induced by head tilt,

the second section is step acceleration data and the third section

is sinusoidal data.
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CHAPTER 2

OTOLITH-OCR SYSTEM

2.1 Introduction

A comprehensive review of all aspects of the otolith organ is beyond

the scope of this work. This chapter will present previous ocular counter-

rolling and related studies including several models relating accelera-

tions to otolith dependent phenomena (linear acceleration perception,

otolith organ afferent nerve output, ocular counterrolling). For review

of the otolith organ and vestibulo-ocular relations, one should see

Goldberg and Fernandez (1975), Jongkees (1967) and Cohen (1971).

2.2 Otolith Organs

The otolith organs have been shown to be primarily sensitive to

linear accelerations. The work of Fernandez and Goldberg (1976a, b, c)

has shown (most recently) that shear force directed parallel to the

surface of the macula is a necessary and sufficient stimulus for saccular

and utricular afferents in the anesthetized squirrel monkey.

2.3 Ocular Counterrolling

Ocular counterrolling (OCR) is defined as the counterrotation of

the eyes induced by a lateral head tilt, or, equivalently, by rotation
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or the gravitoinertial vector in the frontal plane. The existence of OCR

has been debated for at least one hundred_ years, but newer, more sophis-

ticated measuring techniques have unequivocally measured this phenomenon.

The apparent effective stimulus for OCR is the direction and magnitude of

the gravitoi.nertial vector in the frontal plane with respect to the long-

itudinal axis of the head (z axis). Many studies have been conducted to

determine the sense organ(s) responsible for this transduction. It appears

that the major responsible end-organ is the otolith (although somato-

receptors cannot be completely ruled out). The semicircular canals appear

to have some dynamic affect on OCR (at least the neural pathways are pre-

sent), but the long-term static or DC component rules out the semicircular

canal as the prime end-organ. The studies that showed only a small resi-

dual OCR in labyrinthine defective subjects are most convincing in their

implication of the otolith organs. This section will extensively discuss

the OCR phenomenon.

Many techniques have been devised to measure OCR. Most of these tech-

niques make use of artificial landmarks on the eye. Experiments have made

use of a pellicle from a hard-boiled egg placed on the cornea with inscribed

indentification markers, sutures in the conjunctiva, tatoo marks on the

cornea, contact lens sewn into the sclera, contact lens affixed to the

cornea by suction, iris landmarks, blood vessels and retinal after-images.

As is readily apparent some of these techniques are unsuitable for human

use. Others leave doubt as to their accuracy; for example, the conjunctiva

is firmly attached to the sclera at the limbus, but tends to be tenuously

attached near the periphery. Retinal after-images are easy to use, but
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only have an accuracy of about one degree.

The first definitive study on human OCR was done by Miller (1962).

He perfected a repeatable (average standard deviation of 5.3 minutes of

arc) photographic technique using all available iris landmarks to measure

OCR. He investigated static OCR throughout 360 degrees of body roll. In

addition, he carefully controlled the subject's fixation to avoid errors

due to voluntary eye movements. His results indicated that OCR follows

the gravitoinertial vector, but tends to reach peak values at about 60 to

70 degrees of tilt -- the static gain of the system in this range is about

0.1. Miller's findings indicate that the maximum value of OCR is about

6 or 7 degrees. This particular study used only one subject, but subse-

quent studies have confirmed his major finding.

In agreement with other investigations (Fender, 1955; Robinson, 1963),

Miller found that there are many variations in OCR. There appears to be

some small rotary jitter that is about 8 to 10 minutes of arc. Miller

recorded variations in OCR of up to one degree at a given tilt position

over a period of several minutes. In addition, the magnitude of OCR

varied among individuals and also between test sessions for one individual,

although the qualitative shape of the curve remained the same.

Miller found no difference between clockwise (CW) and counter-

clockwise (CCW) tilt (i.e., the system is memoryless), but did find

that there was usually a directional preponderance (i.e., a larger

maximum value of OCR for right ear down head tilt, see Figure 2.1).
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Fore and aft tilt did not induce OCR, but tilt in oblique planes resulted

in OCR with reduced gain.

Diamond et al (1979) measured OCR in a manner similar to Miller.

They fixed subjects in a seat that could be rotated around the horizontal

axis of the line of sight. They rotated seven subjects very slowly

(30/second) and took binocular pictures every 100. They used a slight

variation of Miller's method of measuring OCR by aligning projections of

eye pictures. Their results indicate tWo asymmetries. First, right

ear down appeared to produce slightly more OCR than left ear down and

second, the downward eye (i.e., the right eye for right ear down tilt)

showed more OCR than the other eye. In addition, they found a statis-

tically significant inverse correlation between subjects' age and

peak-to-peak OCR (sum of 90* right and left head tilt) with values

in the range of 80 to 350 peak-to-peak. (See Figure 2.2).

In order to fully explore the role of the otoliths in OCR, many

other investigations have been done. Cohen et al (1970) showed in the

monkey (1) that neck receptors play no role in OCR and (2) that OCR was

not influenced by cervical dorsal root section. Miller and Graybiel

(1965), Hannen et al (1966), and Smiles et al (1975) have shown that

OCR is almost absent in labyrinthine defective humans. Several studies

have shown a relationship between OCR in humans and the magnitude of

the gravitoinertial force acting on the otoliths. Figure 2.3 shows the

data obtained by Woellner and Graybiel (1959) and their attempt to

connect the points. Their experiment protocol consisted of seating

a human subject upright in a centrifuge facing either in or opposite
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to the direction of rotation. In that manner, as the centrifuge rotated

a shear force was produced on the utricular maculae- as well as a com-

pressive/tractive force on the saccular maculae. They also tilted the

subjects with no centrifugation. Thus they were able to create two

situations-wherethe direction of the gravitoinertial force (GIF) could

remain the same but two different shear forces could be applied to the

utricles. They were able to use 4 different values of "tilt-angle".

They then plotted the ocular counterrolling against lateral shear force.

They claim that the OCR is a linearly related function to shear force

over a limited range. The 450 inclined line was drawn by them to

indicate the non-linearity at high 'g'-levels. It appears that all

the data points obtained during centrifugation lie above (i.e., greater

counterrolling for a given "tilt-angle") the points obtained from

pure tilt. This observation would indicate that not only shear

force but total magnitude of the GIF is an important stimulus for OCR.

The use of sutures on the conjunctiva as landmarks could have induced

some error into their values (slippage of the conjunctiva with respect

to the sclera could have occurred). In fact, the values of OCR that

they report appear in the low range, about a maximum of 4.2' at 66* of

tilt. In a more recent study, Miller and Graybiel (1971) performed

additional experiments used the same protocol as the Woellner and

Graybiel study but used Miller's photographic techniques. During these

experiments, they observed OCR values of about 6 - 7' for 630 of body

tilt. Figure 2.4 shows Miller and Graybiel's data. They used a

centrifuge to change the direction of the gravitoinertial force and

measured OCR. By appropriately manipulating the centrifugal force
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they were able to establish various directions of the GIF with respect

to vertical. They then compared the change in ocular counterrolling

(OCR(centrifuge) - OCR(tilt chair) at a given angle 0 with the change

in shear force (tan 0 - sin 8 ) at that angle. They were able to vary

0 from about 300 to 63*. They claim that the results show a linear

relationship of AOCR to Ashear force. It is also possible to plot

AOCR against AGIF which takes into account not only the shear force

but the additional compressive force on the utricle (which is shear

force on the saccule). This plot also gives a straight line. The

point that should be considered is that under these two hypergravic

experiments, the change in shear force is directly coupled to a change

in magnitude of the GIF. They also demonstrated no appreciable

AOCR in labyrinthine defective (LD) subjects.

In a related experiment, Miller and Graybiel (1965) investigated

OCR under hypogravic conditions. They used a tilt chair mounted on

a C-131 aircraft. By flying certain trajectories, the airplane is

able (for short periods of time) to obtain relatively constant acceler-

ation levels varying from 0 g up to hyper g (greater than 1 g). For this

set of experiments, varying g levels (less than 1.0) were flown and the

tilt chair was tilted to either 25* or 500 with respect to the veritical.

In this manner many different shear force magnitudes could be produced.

Miller and Graybiel plotted their data (Figure 2.5) on a semi-log scale,

plotting normalized OCR (with respect to 50' of tilt in a 1 g environment)

against the log 10 of the acceleration level of the airplane. Their

results indicate an assymptotic trend at low acceleration levels
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consistent with a Fechnarian Law.

Miller and Graybiel (1968) also investigated the effects of drugs

on OCR. They found that drugs such as scopolamine and dexadrine (used

for motion sickness) did not affect OCR. Of the drugs tested, only

alcohol had an affect; it acted to reduce the magnitude of OCR. Alcohol

reduces' all nystagmus levels - and the ability to inhibit it with vision.

During eight hours of steady tilt, Miller and Graybiel (1972) saw

essentially no change in OCR. As in other investigations, there were

inter- and intra-subject variations in the magnitude of OCR exhibited

throughout the test. LD subjects exhibited low magnitude OCR (less

than 100 minutes of arc). Therefore, it appears that for an eight

hour period at least, there is no or minimal adaptation taking place

throughout the otolith-OCR system.

Several studies have been undertaken to investigate the dynamic

properties of OCR. In the monkey, Chassen et al (1967) applied constant

angular velocity roll around the visual axis (in the frontal plane) to

stimulate OCR. This stimulus provides a sinusoidal change in the gravito-

inertial vector, but rio apparent semicircular canal stimulation after the

initial start-up transient. Around the same axis, they also used sinu-

soidal pendular motions and band-limited Gaussian noise position changes

(both of which included angular accelerations). Chassen et al had no

control over the monkey's fixation and voluntary eye movements apparently

made static OCR unrecordable. Their OCR recording technique was to sew

a contact lens into the sclera and use a flexible coupling attached to a

potentiometer to continuously record OCR. They report that during thei!r
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constant angular velocity roll tests, the peak-to-peak amplitude of OCR

decreased as the constant angular velocity increased. The response ap-

peared to become more sinusoidal at high frequencies. Their pendular

motion tests indicated that the OCR amplitude increased as stimulus fre-

quency increased; they attribute this increase to the influence of angular

acceleration on the semicircular canals.

They also found that the monkeys could "suppress" the OCR response

(i.e., there were periods of stimulation during which no OCR was present).

They thought the monkey was using the predictability of the sinusoidal

stimulus in order to turn down the "gain". They introduced band-limited

Gaussian, white noise position inputs to attempt to eliminate this suppres-

sion, because of the stimulus unpredictability. However, the OCR response

was at times still "suppressed" indicating that the monkey can somehow

lower the gain of the OCR system even to unpredictable stimuli.

They attempted to characterize the OCR system as a linear system, but

when they analyzed the response to a Gaussian input, they found the output

(OCR) was not Gaussian. They point out that the angular acceleration has a

radial acceleration component that is not Gaussian, since it depends on

the square of the angular velocity. Therefore, they could not draw any

conclusion as to the linearity of the system.

Baarsma and Collewijn (1975) measured eye movements in the rabbit

induced by linear accelerations. They used a search coil implanted in a

contact lens, a system which is relatively non-intrusive. They used both

sinusoidal and step acceleration stimuli in the ranges 0.068 and 1.22 Hz

and amplitudes 0.02 .to 0.11 g. Their equipment was crude, a cart with a

falling weight for step accelerations and two springs for the sinusoidal
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accelerations. It must be realized that the rabbits eyes are located on

the side of the head and that they have no fovea, so that any comparisons

or extrapolations between this data and human/primate data are tenuous at

best. They found the gain of the system (eye rotation/rotation of specific

force vector) was low, "about 0.1 for 0.3 Hz and smaller than 0.01 for

frequencies above 1.0 Hz". They also determined that step accelerations

resulted in an overdamped type response with the gain approaching 0.65

after 5 seconds. Figure 2.6 shows the Bode plot which they fit with a

slightly underdamped second-order system.

Because the work of Hannen et al (1966) was in the human, fixation

and alertness of subjects was more easily controlled. Hannen used

equipment and stimulus techniques similar to Miller, Diamond and Chassen.

The subject was strapped into a chair -which could be rotated around the

lineof sight at constant angular velocity. The rotation axis was closely

aligned to the position of the otolith organs. Their data analysis

was based on Miller's (1962) technique of matching pictures of the

complete iris. Their results indicated that peak-to-peak OCR was

fairly constant up to 0.25 Hz, but attenuated as frequency increased

above 0.25 Hz. They saw an increasing lag at higher frequencies and

occasional rotary nystagmus. The LD subjects showed very little OCR,

about 10 minutes of arc. They note a directional preponderance in both

normal and LD subjects which they attribute to a lack of eyeball

position sense. During one experimental series, they took pictures of

both eyes and noted some differences and asymmetry but were not able to



Phase-tag (deg)
0 0

8 0.
t

6-0"

I--

9-*-~

0

I I i a ~ a ii a I

9-

CA~

-4--.

-. 4

Figure 2.6 This figure shows the Bode plot of torsional eye movements in the rabbit. Note the large phase
lag of almost 1800 at 1.0 Hz. This Bode plot can be fitted with a second order system with
natural frequency of 2.2 rad/sec and damping constant 2.0, although the large variation of data
makes the accuracy of such model parameters questionable. From Baarsma and Collewijn (1975).

I I

Gain
0

3'

0

9
.86

I I I

9



I I

C:

0

4-

W0
M

I0'

23*

-. j |secH

I I I

34.

I23*

6*

12

'7.0

Time --

Record of the head and eye (below) movement in the dark. The head has been tilted
towards the left shoulder and brought back to the normal position. The vertical lines mark
the times of taking the photographs. The figures given at some places of the curves show that
under such conditions the eye changes its orientation in space smoothly following the head

(torsion drift). Residual torsion is accumulated gradually up to 110.

(from Petrov and Zenkin (1973)).

c.~3

91I I

Figure 2,7



35

make as definitive a statement as Diamond et al (1979). They also

used Fourier analysis to derive a model of the otolith-OCR system.

This model will be discussed later.

Petrov and Zenkin (1973) studied dynamic human OCR in response

to pendular motion (similar to the pendular motion stimulus that

Chassen et al used). Petrov and Zenkin used an apparatus affixed

to the eyeball by a suction cup which rotated with the eyeball and

which projected light onto a slit photokymograph as it moved. They

measured rotefy eye movements during uncontrolled head tilt (the

subject slowly but voluntarily tilted his head from side to side)

with room lights on and off. Their results show slow velocity

rotational motion interspersed with roll saccades (0.5 - 8.0* in

amplitude, 100 - 200*/sec in velocity). Their results also show

a "residual torsion" which is equivalent to OCR. However, the values

of OCR that they recorded are in the range of 12 - 15' for 450 of head

tilt. They note that "these figures are outside the limits known from

the literature". However, their values are obtained in the dynamic

state and as such will include a semicircular canal input since the

roll rates were on the order of 5 - 10*/second.

For the experiments that were conducted in the dark, Petrov and

Petrov and Zenkin, p. 2467. To put these figures into perspective,
Chassen et al (1967) indicate that, in the monkey, pendular motion pro-
duces up to 14* peak-to-peak OCR for tilts of +60 - 800 or about one-half
the OCR values recorded by Petrov and Zenkin. Melvill Jones (1958), how-
ever, reports OCR of up to 20* in humans during rapid rolling movements
in airplanes. Diamond et al (1979) also recorded OCR of up to 25-30*
peak-to-peak.
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Zenkin found very few saccades and mostly slow rotary eye movements

(Figure 2.7). It appears from the limited datalinthe paper that the OCR

increases in the dark. Analysis of Petrov and Zenkin's data indicates

that the velocity gain (slow phase rotary eye movement velocity/head

velocity) of-the system is larger in the light (about 0.8) than in the

dark (about 0.5). These results appear to be consistent with other exp-

eriments performed in the yaw axis (however the velocity gain here in the

light is almost 1.0 with the gain decreasing in the dark).

In their discussion, Petrov and Zenkin attribute slow eye movements

and torsional saccades to a system for maintaining visual constancy

during tilt. They feel that the "residual torsion" or OCR might just be

an "artifact".

Under the dynamic conditions of the previously discussed protocols

it appears that two effects may be contributing to OCR. One is the input

from the semicircular canals which is known to produce OCR movements. The

second effect could be a dynamic otolith response which would initially

overshoot the final value obtained during a steady state tilt. In fact,

the results of Petrov and Zenkin (dynamic head tilts), Melvill Jones

(rolls in an airplane), Diamond et al and Baarsma and Collewijn tend to

cooroborate the existence of these effects. Because most studies have

allowed the transients to die out, this behavior of the OCR system

under transient conditions has not been well documented.

Section 2.5 will discuss models of the OCR system and will go into

more detail about the relationship of utricular and saccular (shear force
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versus total magnitude of GIF acting on the otoliths) influence on OCR.

2.4 Comparison of Unilateral LD Studies and Gross Electrical Stimulation

The data from unilateral LD studies (Benjamins and Nienhuis, 1927;

Owada and Shizu, 1960; Jonkees, 1966) is consistent with electrical

stimulation studies (Suzuki et al, 1969; Westheimer and Blair, 1975). The

LD studies have shown that OCR only occurs when the intact side is on the

top (contralateral tilt). The electrical stimulation studies have

shown that stimulation of the left utricle or left side of the brain-

stem elicits OCR that compensates for rightward head tilt (Contra-

lateral tilt).

The next section discusses several models of the otolithic sytem

and attempts to relate previous experimental data on the OCR system

to the various models.

2.5 Models of the Otoliths

De Vries (1950) did some early measurements on the otoliths. He

stimulated fish otoliths with step and sinusoidal linear acceleration

stimuli (actually used a centrifuge) and measured the deflection of the oto-

conia using x-rays. The otolith was assumed to function as a standard second

order mass-spring-dashpot system with the following equation of motion:

m'x + b + kx = F (2!.1)
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where me is the effective mass, b, is the viscous damping, K is the

elastic -spring constant, and F is the input force. From static measurements

of otoconial displacement under 1 and -1 g acceleration and an estimate

of me based on the density and volume, the spring constant, K, was found

to have a value in the range of 1300 dyne/cm. De Vries estimated the

damping, b, by measuring the otoconia displacement at various sinusoidal

input frequencies, then choosing two values of b, one corresponding to just

critical damping, the other to one half of this friction value. He then

calculated the predicted displacement using these values of damping.

Finally, he compared the predicted to the observed displacements and

concluded that the best fit was obtained by assuming a value of b needed

to give just critical damping (c = 1). He argued that this value seemed

reasonable because it gave the fastest rise time with no overshoot. He

concluded that a value of b = 15 + 3 dynes-sec/cm was reasonable. Two

factors determine the value of the mass that should be used in the calcu-

lations. The first factor is bouyancy, i.e. the otoconial membrane lies

within an endolymph fluid filled chamber. The density of the otoconia

imbedded in the membrane is about 2.9 while the endolymph fluid has a

density of about 1.02 (Jongkees, 1967). The second factor is a virtual

mass effect which is the additional mass of endolymph accelerated when

the otoconial membrane moves. To attempt to calculate natural frequencies

and/or parameters of the system one must distinguish between the effects

of these two masses. If one uses aconstant acceleration, say gravity

and measures the final displacement of the otoconial membrane, as De Vries

did; then to determine the spring constant using the final value theorem,

one uses only the bouyancy effects or effective mass me = (Po - pe)V
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where:

- 0 = average density of otoconia plus otoconial membrane

P = density of endolymph

V = volume of otoconia and otoconial membrane

In this case, using estimates of V, p 0, Pe and measuring the steady state

displacement, one can calculate a value of K, which is what De Vries did.

To calculate natural frequency, however, one must Use as a mass value

the actual mass of the otoconia and otoconial membrane. For a represen-

tative calculation, a displacement of 100 pm (average for De Vries fish)

yields a natural frequency of about 50 Hz. Vilstrup and Vilstrup (1952)

x-rayed the otoliths of sharks and estimated a displacement of 15 to 30

pm for a 1 g stimulus. This displacement indicates a natural frequency

in the range of 100 Hz. Hudspeth and Corey (1977). looked at single unit

afferent firing in the bullfrog. By gently removing the otoconial mem-

brane (if in fact this can be done gently), they were able to mechanically

stimulate individual kinocilia (hairs protruding from the sensory cells).

Their data show a saturation of firing rate at about 2-3 pm of displace-

ment. This displacement figure, assuming it was valid for 1 g accelera-

tion (which is probably too low) would yield a natural frequency in the

range of 300 Hz or higher. As can be seen, the range of values for the

natural frequency of the ot6lith organ is large and still not completely

understood.

Using electrophysiological data from the barbiturate anesthetized

squirrel monkey, Fernandez and Goldberg (1976c) derived a transfer
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function of the otolith organ relating afferent firing rate to input acI

celeration. Their model for the end organ includes a velocity sensitive,

fractional exponent element, adaptation element, and first order lag

element associated with the mechanics of the otolith. Different dynamic

responses from individual neurons can be accounted for by changes in the

adaptation (subscript A) and velocity-sensitive elements (subscript V).

The transfer function of the model (relating shear force to firing rate)

is

H(s) = A + kATAs 1 + kv(Tvs) kV (2.2)
l+ T As 1 + TVs

By assuming an overdamped system, and disregarding the shortest time con-

stant, Fernandez and Goldberg model the otolith dynamics with a fir.t

order lag. TV is set equal to 40 seconds, but they state that large

changes in TV can be cancelled out by small changes in k .

The parameters of the model were obtained by fitting the model to

the Bode plots. Sinusoidal acceleration stimuli were superimposed on

steady state excitatory and inhibitory accelerations. For units res-

ponding to excitatory stimuli, the following average (n = 16 regular

units, 14 irregular) parameters were obtained:

Regular Irregular

k = 0.188 kV = 0.440

kA = 1.12 kV = 1.90
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Regular Irregular

A = 69 sec TN = 101 sec

T = 16 msec Tm = 9 msec

The regular units were characterized by little adaptation over time,

relatively constant gains over a frequency range of 0.006 Hz to 2.0 Hz

and phase lead/lag around 00. The irregular units however were classed

as tonic (i.e., adapting over time) and showed up to a 20-fold gain

increase as the frequency of stimulation increased, and uniformly

larger phase leads (around 30 - 40*) than the regular units.

Another interesting result of the work of Fernandez and Goldberg

(1976b) is a static force-firing rate plot. Figure 2.8 shows the

relationship between force and afferent neuron discharge rate for

various regular units. One notices a distinct sigmoid shape that is

very similar to Hudspeth and Corey's (1977) sigmoidal curve relating

cilia deflection to receptor potential.

The final model of the otolith end-organ to be discussed is a

variation of the De Vries' model. Benson and Barnes (1970) postulated

a mechanical model of the otolith that incorporated both shear and

compressive forces. The model is shown in Figure 2.9.1.

The model works as follows. During pure compressive force

stimuli, there is no cilia bending and no receptor potential.

However, when a shear force shifts the otoconial membrane with

respect to the hair cells, a compressive force can then generate an
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additional moment about the base of the cilia. This model is somewhat

simplistic and in fact the data of Fernandez and Goldberg (1976b) which

showed no modulation of utricular afferent firing rate (at a given shear

force) when the compressive acceleration was changed from +1 g to -l g)

tend to refute this interpretation of the model. However, sufficient

evidence exists (as initally discussed in the section on hypergravic

OCR studies), so that the effects of the magnitude of GIF on OCR and

perception of down etc, must be investigated. The role of the

magnitude of GIF in stimulating these sensory systems will be discussed

fully later but it is sufficient to say for now that the Benson and

Barnes model produces some convincing predictions concerning OCR in

a 1 g field.

2.6 Models of the Otolith-OCR System

2.6.1 Static Models

Many investigators have investigated OCR as a function of normal

lateral head tilt. Close inspection of the data shows that the

maximum OCR occurs at about 60 to 700 of head tilt in all reports.

Miller's (1962) data was carefully measured and appears typical of

all the reports; it will, therefore, be used as the typical OCR

versus head tilt curve. Miller's protocol consisted of restraining

a subject in a tilt chair and photographing one eye at various

lateral tilt angles from 00 to 3600. He examined clockwise and

counterclockwise rotation and found no significant difference. However,

he did note that the right eye showed more OCR during right ear down



45

head tilt than during left ear down tilt and also more OCR than the

left eye for right ear down tilt. To avoid transient effects or semi-

circular canal interactions, he waited for 60 seconds after the tilt

chair had stopped prior to taking the data. Miller postulated a model

that related 'OCR to a cosine square law. He argued that the saccules,

as well as the utricles, contribute to OCR, but that the saccules only

have an influence when the tilt angle is between about 44* and about

1340. His model is:

+ = URcos2 (84 - a) -

+ SARcos 2(134 - a)

+ SPRcos2(158 - a)

ULcos 2 (276 - a)

- SALcos 2 (226 - )

- SPLcos 2 (202 - a)

a

R 'u' 's

URL' SPRL,

= head tilt angle

= total OCR

= OCR due to utricle and saccule

SARL = maximum contribution of right and left utricles
and right and left sacculus posterior and anterior
(gains which are subject dependent)

Fluur and Mellstrom (1970a + b) electrically stimulated the utricles and

saccules of cats, some of which were decerebrated and some under light

anesthesia. They noted eye movements by visual inspection. Stimulation

of both macculae produced varying eye movements depending on the area

simulated; stimulation of the utricle in the decerebrated cat usually

resulted in eye movements that could be related to specific muscles

(a

where

(2.3)
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of the eye. In fact, stimulation of most areas of the utricle produced

rotary eye movements consistent with those obtained during the OCR studies.

Rotary eye movements that would be compensatory for left ear down tilt

were obtained from stimulationof the left saccular macula. In decerebrated

cats the effect was only observable on one eye with superior macula

stimulation yielding rotary movements of the right eye while inferior

macula stimulation caused rotation of the left eye but in the same

direction. In spinalized, lightly anesthesized cats the rotary

motion was coordinated.

2.6.2 Dynamic Models

Several investigators have reported dynamic OCR results in

primates and humans. Chassen et al (1967), Smiles et al (1975) and

Junker et al (1971) have reported primate results, while Hannen

et al (1966) Petrov and Zenkin (1973), Goloyan, Zenkinand Petrov

(1976) have reported results in humans. The primate studies

confirm the otolith organs as the primary transducer for the OCR

system. They also indicate a system that has either a slight re-

duction (Chassen's data) or no change (Junker's data) in amplitude

ratio over a frequency range of about 0.1 to 0.9 Hz. The phase

angle decreases steadily with increasing frequency; this decrease

is explained by a time lag in the system of about 200 msec (See Figure

2,10 for Junker's data).

Hannen et al (1966) were able to derive an approximate transfer

function relating lateral head tilt to OCR in the human. They also



47

-3C

35-

-40

-45- 7I

~ii~
II

0

I
7'

L4T

'1 ~ U
444j
1 viii

4

ill
Lii 1]

4i~

1111
44 4

(i'
4, I.

1.4.

c 4j
t TVEfiiJa1 i...Fdi ~1UN H:1~ 1>Li~~

- -

-60-

60

P
H
A
S
E

N

E
G -
R
E

IA ~~L' ILL
*-1

''~4t44'~
t-t~ --m

:1.; IAIIA-i *1~-r

111
i~

4

~1'~
1-~

Ii

it
hi

it

44.14

1
I..

~t 1-t :~111I r ii

4 0 - l .i .... ........

ti -

20 - . - - -

I - - -.L t+- - -l.

40 - -- - --H

20- -

4I . 1 a T
-. 4-

0

0- 1. ~

41 . . . . -.. .. ....

j
4

1.

IITJ
I,
ji..
41:
I 44 44. 4

~Th
ft

'lit .414

l~LL.214' bLI ~4-L4-l .b4---4-4-~-4--4-4-4-4-4--,-~I I I I' t-1~t--t~ fri-I-I -tVtl

.1

114

It,
'I,

II..

ill., [V

Lti

II
.7'

-

17 4,

1

4
.4.4

t~ftf
I

itt ~1~ 4M1
TT lit1ttfr I 17,tr.i1---rr

~1iIi
I.

1,r
-4Ti~ *1~

11 11
0.05 0.06 0.08 0.1 0.2 OA 0.6 0.8 1.0

FREQUENCY IN HZ

Ftgure 2,10 Bode plot of ocular counterrolling in the monkey, At very
low frequencies, there is some phase lead, at higher frequencies, the phase
data appear similar to Kellogg's. The amplitude ratio, however, is almost
flat to 1.0 Hz. From Junker et al (1971),

G
A

N

N

D
B

S

-140

-160 -

-

-

-

;Iii

_

* =



48

x SUBJECT
e SUBJECT

'A'
'G' I

.

0

I

I

w
w

0

0.

02

a.0

2.0

cL
5 0
wa

6-

40-

201-

0

0
N
U

S

N

-40

-60
I I I W I I

10 0 IOCCW 20
RPM

2OW 10 0
RPM

a

N

IOCCW 20

20CW 10 0
RPM

x SUBJECT

o SUBJECT

S

U

180

1201

LUJ
Lii

V)

601

C

60

-120

IOCCW 20

; 9

0

U

p

U

V

U

S

20CW 10 0
RPM

Figure 2.11 FFT data from Hannen et al
lower harmonics.

(1966) showing gain and phase of

S

a

U

~, .~

a

)CW

I

3.01

I'
0

2.0[-

1.0i

0

-1.0

-2.0

00-%

(D9

LLi

0.

.0

U
U U
U

I p p p

IOCCW 20

i

'

0

U -20F-



49

showed a large reduction in static and dynamic OCR in labyrinthine defec-

tive subjects. Their transfer function has the form:

R(s) = ke-as/ ( s + ) (2.4)

where a varies from 0 to 400 msec, k = 0.02 and 6 = 3.14. In contrast to

the data of Junker et al (1971) (Figure 2.10) which indicates a phase lag

caused only by a time delay, Hannen's data (Figure 2.11) and model indi-

cate a first order lag and a time delay. The species involved are dif-

ferent, of course, and the data from different primate studies appears to

be somewhat conflicting. Petrov and Zenkin have also investigated human

dynamic OCR induced by lateral head tilt. While they did not formulate a

mathematical model, they did attempt to formulate a psychophysical model

for the justification and cause of OCR. Their data, the only human tran-

sient OCR data, are complicated by the effects of angular acceleration

acting on the semicircular canals.

2.7 Psychophysical Experiments Related to Otolith Function

All of the experiments discussed so far have recorded objective data

(either eye movements or neural firing rates). This section of the thesis

is devoted to several psychophysical experiments that recorded subjective

sensation of movement or body position.

Young and Meiry (1968) used psychophysical linear acceleration

detection experiments to formulate a model of the entire system relating

specific force to perceived tilt or linear velocity.
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The linear model is described below:

LATERAL + 0.) PERCEIVED
SPECIFIC (s.+ 7OS +1.5) LINEAR
FORCE VELOCITY

The response of th' linear model to a step acceleration is slightly under-

damped (see Figure 2.12). The predictions of the model, which is based

primarily on perception of linear accelerations, are in agreement with the

OCR frequency response data of Hannen et al (196G) and Kellogg (1967)

(these are two different papers that used the same data; see Figure 2.13).

The.response of Young and Meiry's model to a step -acceleration is very

similar to Baarsma and Collewijn's (1975) data on OCR response to step

accelerations in the rabbit.

Corriea, Hixson and Niven (1965) investigated human perception of

the vertical when subjects were placed on a centrifuge in various orien-

tations. The experimenters were able to manipulate the shear and com-

pressive force components acting on the otolith. Schbne (1964) proposed

a linear relationship between the shear force on the otoliths due to

tilt in the saggital plane (sin a ) and the perception of the horizontal.*

*Sch5ne also included data on the perception of the vertical with tilt
in the frontal plane (that is, roll).
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Correia, Hixson and Niven showed that Sch3ne's relationship did not hold

under a wider range of conditions. They formulated a more accurate model

by using the tangent of the angle (instead of the sine) and the magnitude

of the specific force. This model shows a linear relationship between

perceived horizontal and/or vertical, and a combination of shear and com-

pressive forces. In the case of otolith stimulation to the frontal plane,

the planes relevant to OCR experiments, they conclude that (1) when the

specific force is aligned with the z-axis of the head, no change in per-

ception of vertical occurs with changes in magnitude of the force. This

situation produces primarily compressive force acting on the utricles and

primarily shear force on the saccules; and (2) when the specific force

vector is not aligned with the z-axis, a utricular shear force model alone

would not predict the observed results. In fact, they held the utricular

shear force constant, manipulated the compressive force, and noted changes

in the perceived direction of the vertical. Finally, they reviewed sev-

eral ocular counterrolling experiments (Miller, 1962; Woellner and Gray-

biel, 1959; and Colenbrander, 1963) and concluded that for the most part,

OCR was not a linear function of shear force for values of shear force

exceeding about 0.5 g. After they fit the tangent model to a majority

of the data, they include a disclaimer to the effect that "it is not

denied that the displacement of the otolith membrane from its null position

may be linearly related to Asinq, the shear directed component of the

static linear acceleration stimulus". Benson and Barnes (1970) postu-

lated that, in fact, for both shear and compressive forces, the trans-

duction site was in the otolith.
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Correia, Hixson and Niven never address the question of what

happens to the model as the angle approaches 90* - at that point tan

approaches infinity. Benson and Barnes' model eliminates this problem

by assuming that the compression acts in addition to the shear force

(and so does not use a ratio of the forces).

Bischof (1974) critically reviewed many psychophysical studies

of orientation and revised von Holst's (1950) concept of an optic-

vestibular weight ratio.* This ratio describes the relative dominance

of the visual system versus the vestibular system in the determination

of body orientation with respect to gravity. Figure 2.14 shows the

correlation of this optic-vestibular weight ratio with objectively

determined OCR as a function of body tilt. They also observed a

maximum of both curves at about 600 of roll. These data were

recorded from only three subjects and while they cannot be taken as

general results, they offer more evidence for the good correlation

between perceptual studies and objective measurement of OCR studies.

Finke and Held (1'978) investigated the relationship between steady

state OCR and perception of roll vection. They used an afterimage

technique to measure OCR and a rotating visual field to induce roll

vection with the subject's head immobilized by a bite board. Their

results indicate that steady state OCR is reduced when the subject

has a sensation that the visual world is stationary and that the subject

*
Bischof and Sheerer (1971) used the mean oscillation of the position

of a line set to the vertical while a subject was observing a constantly
rotating visual field. They took this measurement at various body tilts.
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Figure 2.14 Mean range of oscillation of luminous beam setting (p,
solid line) and ocular counterroll (p, dashed line) plotted
against body tilt (a). Notice the good correlation of the
perceptual results versus the OCR results. Data from three
subjects from Bischof (1974).
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is moving. With the subject in an upright position, the complete

sensation is called paradoxical vection because even though the visual

system signals constant rotation, the otoliths contradict this

sensation and the final result is a combination of constant rotation

and at the same time a steady state tilt. This data indicates that

perception of tilt does not increase but rather decreases

OCR since the maximum tilt experienced by the subjects is during the

states when the OCR is reduced. This study is complicated by the

results of another, less formal study done by the author while

wearing a helmet specially designed to induce OCR movements with a

video monitor visible to one eye and an IR imaging device recording

the movements of the other eye. In this situation, the amount of

rotary nystagmus was clearly influenced by the subject's perception

of self motion and orientation. During periods of compelling roll

vection, the amount and magnitude of rotary saccades increased markedly.

It was not possible to measure steady state OCR during this study just

as it was not possible to measure rotary saccades during the Finke

and Held study. Only a comprehensive investigation can settle the

question of the influence of self motion upon OCR.
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CHAPTER 3

METHODS

3.1 Equipment

The equipment built to conduct this study comprises a ground

version of the Space Sled. The various parts consist of the drive

mechanism, guide rails, seat, head fixation device, and data recording

apparatus. In addition, substantial software had to be developed to

control the sled and acquire data. The basic description of the sled

including its design, capabilities and performance will be discussed

in this section. For a detailed discussion of design philosophy,

rationale for equipment selection, and actual design parameters in-

cluding engineering drawings, the reader is referred to Appendix A.

The software description is contained in Appendix B.

The sled (Figure 3.1 and 3.2) consists of a cart and seat con-

structed from aluminum angle stock, supported by four ball-bushings

which ride on two round guide rails anchored to the top of a two foot

high cement block structure. The seat is independent of the cart

and can be positioned to allow x-axis (fore and aft), z-axis (head

or feet first) or y-axis (lateral, left-right) accelerations. The

y axis position can be accomplished with the subject on his back, or

as in this study, upright.
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Figure 3.1 This Figure shows the sled equipment designed and
built for this thesis.



Figure 3.2 Sketch of sled without seat
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Figure 3.3 Sketch of sled seat showing camera mount and head holder.



61

Figure 3.4 This figure shows a close-up of the camera
head holder and bite stick with Fiducials
attached.



62

The drive system is a commercially available DC permanent magnet

motor. and silicon controlled rectifier (SCR) controller. The motor

drives the cart through a direct drive, cable and winch drum system.

The control of the motor is accomplished through software; a PDP-

11/34 computer acquires the position and velocity of the cart and selects

various control logic algorithms.

The performance specifications prescribe step accelerations of up to

0.3 g and periodic (sinusoidal and square-wave) acceleration profiles of

0.02 to 1.0 Hz and up to 0.3 g amplitude. In addition, the capability

now exists to produce pseudo-random (sum of sines) acceleration profiles.

The motor uses a tachometer feedback for accuracy and stability. The

input to the controller is a velocity command, so the software control

was initially designed to provide a velocity output command. In this

way, a ramp velocity command would generate a step acceleration and sinu-

soidal velocity commands would generate sinusoidal acceleration profiles

(except that they are phase advanced 90 degrees). After the system was

built, Bode plot analysis showed that, indeed, over a 0.03 to 1.0 Hz range,

the amplitude ratio was flat to within 1.5 dB. The phase data showed a

maximum of 180 of phase lag at 1.0 Hz. Further testing has indicated that

the system reaches a resonance peak near 5.0 Hz.

The sled software control operates as follows. If a ramp velo-

city is desired, the sled is positioned to the closest end of the
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track. When the interrupt is hit, the sled velocity increases

rampwise until a point is reached along the track at which the sled

must decelerate at 0.35 g in order to avoid running over the normal

track limits. This decision point is determined in real time by the

computer by monitoring the position and velocity.

The subject is fixed in the seat (Figure 3.3) with a four point

aircraft type lap belt and shoulder harness and an additional chest

strap to reduce left-right movement. In addition, stiff foam blocks

are wedged between the subject's shoulder and the seat frame to fur-

ther reduce torso motion. The head is supported with a foam rubber

appliance which completely encases the head up to the frontal plane

of the face (Figure 3.4). The -head support is adjustable vertically

and has an aluminum plate on each side which hold the earphones and

provide additional lateral support when they are pushed tightly

against the foam. The subject also has a microphone to insure com-

munication to and from the seat.

3.2 Data Recording

There are several techniques available for measuring OCR;

Chapter 2 describes several of them and the pros and cons of each.

After a review of the techniques, it appeared that Miller (1962)

has developed the most repeatable and accurate non-invasive photo-

graphic technique. For routine laboratory or spaceflight conditions,

contact lenses, although providing an excellent means of measuring
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OCR, are, at this time, unacceptable. Miller's technique aligns two

photographs - the control and the frame to be measured, then measures

the rotation of the film strip. This technique requires that the

head be held immobile with respect to the camera and also requires

a topical drug such as pilocarpine to constrict the pupil to provide

a constant iris diameter. Both of these constraints cannot be met

by the space sled system; therefore, a new technique was developed to

allow precision analysis of the OCR data.

Rather than attempt to hold the head rigidly fixed with respect

to the camera, it was decided to employ fiducial marks near the eye

that were attached to a bitestick held in the subject's mouth. In

this manner, a head reference was available in each frame. The ana-

lysis consisted of measuring the coordinates of the fiducial marks

and the coordinates of selected iris landmarks on each frame. The

angle between lines., drawn through the fiducial and eye landmarks,

was then calculated - this angle in the control frame (upright,

no horizontal linear acceleration) is then subtracted from the angles

in the frames recorded during stimulation to produce the OCR angle.

The measurement of vernier protractors or microscope stages is

very time consuming and error prone. A film analysis machine (Hermes

Senior) was discovered in the Laboratory for Nuclear Science. This

machine projects a 35 mm film strip on a ground glass cover screen

that has a cursor in the field of view. The stage holding the film

can be moved with a joystick to place various landmarks on the film
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under the cursor. The coordinates of this point can then be read

by a minicomputer and recorded in digitized format. The resolution

of the machine is one micron on the film plane and the repeatability

is about 2 microns.

3.2.1 Selection of Camera, Lens and Film

The ideal OCR measurement device would be a non-invasive, con-

tinuous device with a real time readout. Unfortunately, such a

device is not yet known to exist. 35 mm photography was chosen as

the best method currently available. When one tries to photograph

close-up objects or get a large image size on the film, two problems

immediately arise. The first problem is the very shallow depth of

field. In other words, focussing is critical. The second problem

is to get enough light on the subject. To achieve a 1:1 reproduction

ratio (the image size on the film is the actual object size), the

film plane and object must be equidistant from either side of the

lens. This distance is equal to the focal length of the lens. The

increased light path inside the camera (necessitated by the use of

an extension tube or bellows to get the 1:1 reproduction ratio) cuts

down on the intensity of the light at the film surface. The solution

to the light problem is to use a stronger light source and to "open"

the lens aperture, that is, a small f-stop number such as f/4.0 or

f/5.6. This procedure of opening the lens aperture unfortunately

reduces the depth of field. Therefore, a trade-off between depth of

field and available light must be made.
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The camera and lens selected was the Nikon F2 photomic with a

105 mm micro-Nikkor lens and extension tube. This combination allows

a 1:1 reproduction ratio and keeps the front of the lens about 15 to

17 cm from the subject. The flash chosen was the Vivatar 283 Thyristor

controlled flash. At distances close to the subject, the full flash

intensity is not needed and the thyristor circuit enables a reduction

in light thus allowing a fast (about 3 Hz) firing rate.

This combination appeared to be very good; however,..when the

space sled dimensions became available, it was obvious that the com-

bination-would not fit in the available space. Another search of

lenses was done and the 55 mm micro-Nikkor lens with extension tube

was purchased. This combination places the front of the camera about

5 cm from the subject. At this distance, it is difficult if not im-

possible to use a rectangular flash like the 283 without producing

lens shadows on the eye. A focussed flash was tried, but the problem

of alignment was severe. The final solution was a ring flash mounted

on the camera lens. The flash that was purchased, a Honeywell Prox-

0-Lite, was very intense, but had a recycle time of about 16 seconds.

The power supply was reworked by the Laboratory for Space Experiments

to produce a 3 Hz firing rate with an acceptable intensity.

Many films were evaluated. The majority of past analysis tech-

niques used slide film projected to a 40-fold enlargement. The fol-

lowing slide films were evaluated: Kodachrome 25, Kodachrome 64,

Ektachrome 64, 160, 200, 400, Ektachrome IR, and photomicrography
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film. In addition, color negative film, Kodacolor 400, monochromatic

(black and white), visible light and IR sensitive films were evaluated.

The negative films were deemed too difficult to analyze and the use

of a reversal process to make positive images was deemed impractical.

The black and white film did not yield enough information about the

iris, which is usually multicolored. The black and wnite IR film was

very difficult to focus properly, and very slow (equivalent ASA of

about 64). Of the color slide films, the photomicrography and other

low speed (25 and 64) films were too slow. An f-stop of f/4.5 was

needed to obtain much color detail and at that f-stop, the depth of

field was so narrow that usually the iris was not completely in focus

and the fiduciary marks were very blurred. Ektachrome IR film was

very promising as the film is very sensitive to brown iris pigments.

However, with the required use of a Wratten #12 filter, the effective

speed was too low even when "pushed" one extra stop during development.

The film finally decided upon was Ektachrome 200. However, to get

the required depth of field f-stop of f/8.0, it is necessary to "push"

the film one stop which effectively doubles the ASA rating. Just prior

to the start of experiments, an Ektachrome 400 film was released by

Kodak, but unfortunately was only available in 36 frame cassettes and

not in the 100 foot rolls that are needed for the 250 frame cassettes.

This film, pushed to 800 ASA, might be a good choice for the future,

as it will allow an f-stop of f/11.0, thereby increasing the depth of

field.
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3.3 General Protocol

The detailed procedure involved in running a subject is as fol:

lows. The subject was first examined by an otoneurologist for any

obvious labyrinth/auditory/neurological disorder. The subject was then

informed about the experiment and asked to sign an informed consent

statement. Two biteboards (a full-mouth biteboard and a one-sided

bite stick) were made using Kerr Dental impression sticks. The sticks

soften at 1320F when placed in a jar of hot water. The compound is

formed to the biteboard, which is then positioned in the mouth with

the fiduciary marks close to the right eye. The subject is instructed

to bite into the compound enough to leave a good impression, but not

hard enough to touch the underlying metal. After the impression is

taken, small adjustments are made to the fiducial marks to place them

under the eye, close to but not touching the skin, and roughly in the

plane of the iris.

Three different stimuli were used to generate OCR: (1) static

head tilt, (2) lateral step acceleration, and (3) lateral sinusoidal

acceleration. Assuming that the static OCR was recorded first (the

order of the three events were varied, see Section 3.3.1 Experimental

Design), the following procedure was followed. The static measure-

ments were taken at seven different positions: Head upright, ±10*,

± 200, and ± 300 of head tilt. To do this, the camera baseplate

was modified to hold the full mouth biteboard rigidly. The subject

was restrained loosely in the cart seat with an eyepatch over the
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left eye and the camera plate was positioned to the desired tilt angle

using a wedge. The subject bit on the biteboard and two pictures

were taken after a period of stabilization (30 seconds to one minute

to allow the semicircular canal effects to die down). This procedure

was repeated for all seven positions.

The subject was then strapped into the cart with the lap belt,

chest strap and head strap. The eye patch was replaced over the non-

measured (left) eye and the bite stick inserted into the subject's

mouth. The camera mount was positioned and the camera focused on

the iris. A communication check was made and the cover placed around

the cart. A small light in the camera mount maintained some liqht

adaptation (so that the camera flash was not too uncomfortable).

Prior to acceleration tests, an audio masking signal (approximately

white noise) was sent to the headset. The subject was then exposed

to step acceleration stimuli of 0.1, 0.2, and 0.3 g magnitudes. The

deceleration was constant at 0.35 g. The camera took two pictures

before the run and fired at the rate of 3.3 frames per second

during the acceleration, deceleration and for four seconds after the

cart stopped. After each run, a marker was photographed to facilitate

later data analysis.

For the periodic stimuli, three frequencies (0.2, 0.4 and 1.0 Hz)

were used with an acceleration magnitude of 0.2 Hz. Five cycles of

0.2 Hz and 0.4 Hz and ten cycles of 1.0 Hz stimulus were used. Two

control pictures were taken, then the stimulus was applied for two
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cycles without picture taking to allow any transients to die out.

Pictures were then taken for the rest of the run and for two stimulus

periods after the cart was stopped. The camera firing rate for the

0.2 Hz sinusoids was reduced to 2.2 frames per second because of the

low stimulus frequency.

In addition to the normal procedure, one subject was exposed to

80 seconds of 0.2 Hz, 0.2 g stimulus, so that the stationarity of the

system could be observed. A second subject was exposed to three ramps

of 0.15 g acceleration to check for habituation, and three sinusoidal

runs at 0.3 Hz and 0.1, 0.2 and 0.3 g to investigate amplitude non-

linearities of the system.

3.3.1 Experimental Design

The sequence of the experimental runs was varied to reduce any possible

order effects. No effects were anticipated between step acceleration

profiles and sinusoidal profiles, so the sequence of step profiles

before sinusoidal profiles was preserved throughout the experiments.

The static OCR tests were performed before the dynamic runs for half

the subjects and after the runs for the other half. Within each cate-

gory, static, step and sinusoid, the presentation of the stimuli were

varied in an incomplete Latin-square design. No OCR study known to the

author has shown any conclusive order effects, so the above procedures

were merely a precaution and not an attempt to quantify any order

effects.
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3.4 Data Collection

A total of nine subjects were used to obtain OCR data. Seven

subjects were exposed to the complete protocol, one subject was used

for the stationarity check (stimulated for 80 seconds continuously at

0.3 g, 1.0 Hz), and the last subject (14) was used for a linearity

and habituation test (stimulated with three identical 0.15 g step

acceleration profiles and three (0.1, 0.2, 0.3 g) 0.3 Hz sinusoidal

acceleration profiles. The data (photographic film) for one subject

was not analyzable because the iris was completely out of focus.

The data file abbreviations used in the computer and also on

the graphs describe the type of stimulus, subject number and acceler-

ation (for sinusoids).

Ramp Sine

Code Acceleration level Code Frequency

0 0.05 1 1.0 Hz

1 0.1 2 0.2 Hz

2 0.2 4 0.4 Hz

3 0.3

For example, RAMP 72 would indicate a ramp velcocity stimulus on

subject 7 with a 0.2 g acceleration. SIN 121 would indicate a 1.0 Hz

(0.2g for all sines except subject 14) sinusoid on subject 12.

All subjects were asked to report any unusual sensations during

the tests. Specifically, two effects were of interest. First,.is a
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lateral acceleration judged subjectively as tilt or lateral motion, and

second, does the sensation of motion persist after the motion is stopped.

The answers were negative from all but one subject, who stated that during

the sinusoidal oscillations, it felt as though the cart were tilting to a

small extent as well as translating. In another series of experiments,

several subjects reported a sensation of linear acceleration with an

"outward tilt" at either end of the track.

3.5 Analysis Method

Figure 3.5 shows a functional diagram of the data analysis. The

developed but unmounted, uncut rolls of film were taken to the Laboratory

for Nuclear Science (contact Marianne von Randow, 3-6068), fourth floor

of 575 Tech Square. The machine used is a Hermes Senior, machine #9.

The film is spliced into a leader roll and a take up roll. The machines

are designed to take 100-200 foot rolls of film and, unless proper leader

roll size is used, the torque motors used to advance the film will tear.

it. The left hand reel should be almost fully loaded with a leader film

(large reel). The right hand reel should also be a large one, but almost

empty. The film to be analyzed should be placed upside down, emulsion

side up, on the fi.lm stage. This means that the film advances from left

reel to right reel which is opposite from the signs on the machine. In

other words, the bulk of the film will be on the left hand reel prior to

starting the analysis. It might be necessary to rewind the film first

because different photoprocessing companies wind it differently. Once

the film is installed in view #2, the middle of the three film holders,

the machine is set up according to Appendix C. The machine readout is in
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Figure 3.6 An eye
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microns on the film plane. Because the numbers can be and Usually are

larger than 32,767 (the largest integer accepted by FORTRAN IV), it

was necessary to modify the zero procedure so that the readings lie in

the range 0 to 65,534 to prevent any ambiguousness in the number being

processed by the PDP-ll computer. The technique was to use a new zero

location which is 10 inches to the right of the normal zero location

of the machine and 10 inches above the top of the film. By placing

the cursor at this point for zero (this doesn't have to be extremely

accurate), and using the left most portion of the stage for film

analysis, the x coordinates should be between 5,000 and 50,000. The

current procedure is to place the cursor with the left edge of the

horizontal cross-hair aligned with the right edge of the previously

analyzed frame with the vertical cross-hair (see Figure 3.7). To

avoid slack in the film (which might cause it to tear during motor

start), it is a good idea to leave the film in the move film position.

A control experiment was done to assure that the motors have no drift

that would cause errors in the data recorded from a frame. No move-

ment of the film was detected with the motors left on for 1 1/2 hours.

Since the time needed to analyze one frame is on the order of one

minute, no errors should occur. The current data analysis programs

take the data points in the following order: (1) left fiducial; (2)

right fiducial; (3-10) four repetitions of two eye landmarks, with

the left landmark first in each repetition.
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<- Direction of Film Travel

Figure 3.7 Alignment of the film for analysis



75

The procedure is to log into the PDP-8I monitoring system following

the instructions in Appendix C, using the scanner number that is assigned

by Marianna. To avoid excess charges be sure to log off when done or

when changing film. Three options for data recovery are available: mag-

netic tape, paper tape and hard copy teletype print out. The magnetic

tape is transformed into punched cards, but the procedure takes a while.

The paper tape/teletype data is available in real time. To record data

points, follow the instructions in Appendix C.

Once the data is recorded, it is transferred to and stored on RK05

discs. The format of the data is indicated in Appendix C. in the gene-

ral operating procedures of the machine. If the data is received on

punched cards, the information available besides the data points includes

the frame number, measurement number and event number. The frame number

is self explanatory. The measurement number is used as the subject iden-

tification and the event number corresponds to the type of stimulus used.

The event numbers are limited to integers between 0 and 7. The event

number and the stimuli they represent for this thesis are listed below.

Event Number Stimulus profile

0 0.05 g ramp
1 0.1 g ramp
2 0.2 g ramp
3 0.3 g ramp
4 0.2 Hz - 0.2 g sine
5 0.4 Hz - 0.2 g sine
6 1.0 Hz - 0.2 g sine
7 Static head tilt
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The hard copy printout can be entered onto the disc through the program

DATAIN. This program allows a variable number of frames of data and is

currently set up to record 6 data points (12 x, y coordinates) per frame.

The data is-analyzed with program FILM. If the punched cards are used

and transferred to an RK05 disc, the information is read in as ASCII

characters (*.RAW). A program to convert this data to floating format

(*.OCR) was written and is called CNVRT. The data is then analyzed by

the family of programs called FILM, FILM25, FILM20 and FILM10. FILM25 was

used to analyze the early sets of data which consisted of 5 repetitions

of 5 points per frame. The five points were the lower right corner of the

camera frame, the left, then right fiducial marks, and then the left and

right iris landmarks. The data recorded in this format is RAMP73.RAW,

STAT71.RAW and SINE72.RAW. The data of SINE74.RAW and SINE71.RAW was

generated in the 20 point format (using FILM20 for analysis). This format

consisted of the left, right fiducials, then left, right and extra iris

landmark. The amount of data generated and the time needed to analyze

the film was overwhelming, so the repeatibility of the fiducial measure-

iments was determined by taking nine repetitions of fiducial marks that

were out of focus on one slide. The resulting standard deviation was

0.08* which is well below the expected deviation of landmark measurements.

Therefore, the fiducials were only measured once in each frame and four

repetitions of the two iris landmarks brought the total number of points

to 10 per frame. The majority of the data is in this format and was ana-

lyzed using the FILM10 computer program.
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Because the film frames are positioned in a set manner, it is pos-

sible to calculate the translation of the head with respect to the camera

by comparing the coordinates of the fiducial marks of the measurement

frame with the coordinates of the fiducials in the control (no stimula-

tion) frames. The rotation of the head with respect to the camera can

be calculated by comparing the angle (arc tan (slope)) of the line deter-

mined by the fiducials in the measurement frame to the control frame.

Similarly, the ocular counterrolling can be determined from the angle

between the eye landmark points and the fiducial points with 0' OCR

being the angle measured in the control frames.

There are two output files from the FILMlO program. The first file

(*.ANG) contains the head translation and rotation data, four individual

eye angles (angle of eye landmarks with respect to fiducials), average

eye angle and standard deviation. The second output file (*.PLT) is

used for the plotter and contains only the frame number, averaged eye

angles, and standard deviation.

The program BYPLOT is used to take *.PLT data and plot the average

OCR data obtained by subtracting the average of the two control frame eye

angles from all subsequent data. This program also needs to know the

number of frames in the data file (for axis scaling) which can be ob-

tained from the CNVRT program by dividing the number of lines converted

by two.
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The sinusoidal data was analyzed by an FFT program in SPARTA. This

program dakes a data file consisting solely of OCR values. The program

PLTOFT takes the *.PLT file and returns a TEMP2.DAT file which has only

OCR angles. One must be careful because some data frames were not ana-

lyzable due to momentary flash failure, eye blink or momentary shifts of

gaze fixation. The FFT program will not recognize this anomaly. After

taking the FFT of the OCR data, the phase and magnitude plots were ob-

tained using SPARTA. FFTanalysis of the acceleration data during the

dynamic sled testing showed an essentially flat frequency response (less

than 1.5 dB change in amplitude ratio from 0.1 to 1.0 Hz). The camera

was started at a predetermined point in the acceleration profile for

every run. For these reasons, FFTs of the acceleration data were not

performed. The amplitude ratio of the Bode plot was determined by first

scaling the OCR up by a factor of 1,000 before taking the FFT. The

Fourier Gain (of the fundamental. frequency) was then compared to a ref-

erence OCR value. This reference value was computed by using 1000 x the

average value of OCR for each subject at the appropriate static tilt

angle. For example, ± 0.2 gof lateral acceleration rotates the GIF about

2 x arctan(O.2) = 22.60. So for most of the sinusoidal runs, the static

OCR at 20' left and right tilt were averaged. For subject 14 who was

stimulated at 0.1, 0.2, and 0.3 g, the reference values were taken from

the 10, 20, and 30* average static OCR values.

The nonlinearities were investigated by analyzing amplitude depen-

dence of the sinusoidal response function (at one frequency) and the

step response. Also for the sinusoidal data, the low harmonics of the
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fundamental frequency were computed in terms of the percent of the

fundamental frequency.
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CHAPTER 4

RESULTS

4.1 Data Precision

To interpret and evaluate the significance of the OCR results it

is necessary to have some feeling for the general resolution of the

results.

The standard deviation of the mean of four repetitions of the

measurements of each frame was used as a measure of the resolution

of the data. Most investigators have published data with a resolution

of about 1*. Miller (1962) achieved a resolution of between 5 and 15

minutes of arc (mean standard deviation, 9.2 minutes of arc). Diamond

et al (1979) published practical accuracies of 15 to 30 minutes of arc.

Both of these studies employed biteboards to fix subject's heads and

used superposition and alignment of two photographic frames. The mean

value of the standard deviation of the measurements done in this study

was 12 minutes of arc wi/th a range of 1 to 30 minutes of arc. Occa-

sionally, a data point mean would have an excessive standard deviation.

In these few cases (3), examination of the raw data indicated one "wild"

point. This point was discarded and only three repetitions were used

to calculate these means.

The fiducial marks were very easy to detect. After a trial experi-

ment using very out of focus marks, the standard deviation of niine
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measurements was about 5 minutes of arc. This is a worst case and

consequently only one measurement/frame of each fiducial mark was

made.

4.2 Analysis of Head Motion

The data analysis yielded not only OCR values, but also head

translation and rotation with respect to the camera mount. Average

values of head translation were in the range of 0 - 5 mm with the

maximum head translation being about 1.2 mm for the lateral (y-axis)

and about 0.8 mm for the vertical (z-axis). Average head rotations

were on the order of 0.50 with a maximum of up to 1.0' during peak

jerk periods.

A double analytical differentiation was done on the head rotation

data to approximate the roll angular acceleratiion of the head. The

process is noisy at best, so the results must be interpreted with

caution. At times, the roll acceleration was above semicircular canal

threshold, occasionally reaching values of up to 15 to 20*/s2. It

must be remembered, however, that the maximum roll was less than 10,

so that the duration of the acceleration was very short and occurred

during the deceleration phase of the step stimulus.

Analysis of the data showed that the rotation was produced by

torso movement with the top of the head acting as a pivot, instead

of by pure inertial forces acting on the head. Thus, it might be

possible that the'OCR observed (usually 2 to 4*) during the step
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acceleration profiles might be due solely or in part to semicircular

canal stimulation by the slight head rotation. That this is not the

case is shown by the following argument. As the subject is accelerated

from left.to right, the inertial force on the otolith will approximate

a left ear down tilt. However, the actual head rotation (of about 10) is

right ear down, because of the effective pivot at the top of the head,

so that the net effect of semicircular canal induced compensatory OCR

is to subtract from the OCR produced by the otoliths in response to

the change in gravitoinertial force.

Melvill Jones (personal communication) observed almost fully

compensatory OCR for small, high frequency (greater than 0.25 Hz)

oscillations around the vertical. Petrov and Zenkin (1973) also

observed compensatory OCR during smooth head tilts of about ±40*

both with and without visual cues. In the dark, with only a dim

light to fixate, the OCR movements were smooth with a position gain

(eye roll/head roll) of about 0.5 (see Figure 2.7). In the light, the

gain was larger and roll saccades were present.

Results similar to these have been reported for humans under-

going yaw rotation. In the light, the gain (slow phase eye velocity/

head velocity) is about unity. In the dark, the gain drops to about

0.6.

The above discussion was presented in an attempt to justify a

correction factor for slight head rotation. From Petrov and Zenkin's

data, it appears that a correction of one half of the head rotation
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(added algebraically) is reasonable. This correction has been added

to all the OCR data. The subject's head rotation was determined by

using the rotation of fiducial marks attached to the bite board with

respect to the camera.

STATIC OCR GAINS

SUBJECT

0

3

6

7

8

12

14

AGE

24

34

27

42
left ear down
right ear down

left ear down
right ear down

GAIN

0.13

0.14

0.17

0.28
0.01

0.26

0.20

0.17
0.08

35

30

?9

Table 4.1. This table lists the static OCR gains of the seven subjects

and their ages. The gains were calculated by eye roll/head roll at 30*

of tilt (left and right). Two subjects (7 and 14) showed large asym-

metries. For these cases, two gain figures are listed.
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4.3 OCR Data

The entire collection of graphs of OCR data is available in Appen-

dix D. Selected samples are reproduced in Chapters 4 and 5.

4.3.1 Static OCR

Figures D.1 to D.7 are the plots of static OCR versus left and

right head tilt. Table 4.1 lists the static OCR gains (eye roll/head

roll) which were calculated by taking the slope of the best fit lines

through the data of figures D.1 to D.7. The data of subjects 7 and 14

show a large asymmetry. In both cases, the OCR recorded during right

ear down is substantially less than that recorded during left ear down.

In fact, there appears to be a saturation at about 200 of tilt. One

other intersting aspect of these data is that in both cases, the amount

of OCR elicited by a left ear down tilt of 300 is much greater than

would be expected of a system with a gain of about 0.1. Subject 7

reached 80 of OCR for 300 of left ear down tilt. Two apparently normal

subjects (8 and 12) recorded up to 70 of OCR for 30* of tilt. The other

subjects' OCR values were lower, reaching about 4-50 or OCR for 300 of

head tilt.

The static OCR data of subject 3 indicated some anomaly during

right ear down tilt. For 100 and 200 of right ear down tilt, virtually

no OCR or OCR in the inappropriate direction was recorded. However, at

30' of tilt, the OCR appeared to be "normal", i.e. about the same ampli-

tude as that observed during 300 left ear down.
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The results of the otoneurology examination indicated some loss

of left ear auditory function in subject 7. Caloric testing on both

subjects 3 and 7 indicated reduced nystagmus during left ear stimula-

tion. The results of the examination on subject 14 showed nothing ab-

normal. However, caloric testing was not done on this subject.

The asymmetries in the data of subjects 7 and 14 will be important

in analyzing the dynamic data and will be discussed in more detail in

Chapter 5.

Diamond et al (1979) have indicated a greater amount of OCR

during right ear down tilt, although they discuss earler papers that

sometimes contradict this statement. The data of this study, while

testing OCR for a maximum of 30* of tilt, show generally symmetric or

possibly greater OCR (in the right eye) induced by left ear down. In

fact, only one of seven subjects (subject 0) showed a greater OCR due

to right ear down tilt.

4.3.2 Step Acceleration Response

Figures D.8 to D.34 are the plots of OCR (corrected for semi-

circular canal effects due to head rotation) versus time induced by

step accelerations of various amplitudes. Figures 4.1 and 4.2 show

typical responses to acceleration profiles. These figures also show

the OCR data before correction (0) to indicate the generally small

effect of head roll. The mean of four measurements on one film frame is
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plotted as an (0) for raw data and an (x) for corrected data.

Because the standard deviations were low (12 minutes of arc

average), they are not shown. The data in Appendix D indicates only

the mean values of corrected OCR. The convention used in

this thesis is that positive OCR is compensatory OCR produced by left ear

down tilt.

The predictions of the Young-Meiry dynamic otolith model for the

appropriate acceleration profile is :overlaid on the OCR data. This pre-

diction was scaled to fit one subject's OCR response and that scale

factor was used in all plots.

Several observations can be made concerning the OCR induced by step

accelerations. During subject O's runs, there appeared to be an initial

lag of OCR, followed by a rapid build-up; however, the decline of OCR

after the subject stopped appears to follow the model predictions. One

interesting anomaly was noted; during the 0.1 g run, the OCR started

out in the wrong direction, but soon reversed direction. and appeared to

react normally to the deceleration phase. The return of the OCR to the

initial baseline looked quite good in this subject's data.

Subject 3 showed some very puzzling results. The OCR data from the

0.05 and 0.2 g runs look very similar and reasonable, but apparently are

in the wrong direction. The two other runs show correct OCR direction,
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but very poor fits with the model predictions. During the 0.3 g run, the

camera moved, so that interpretation of the data is impossible.

Subject 6 showed about the best correlation between the data and the

model, with -one exception: the OCR produced by the 0.3 g acceleration

was approximately twice as large as that predicted by the model.

Subject 7 showed a large reduction in OCR induced by right ear down

as compared to left ear down tilt. The results of the step accelerations

are somewhat difficult to interpret. For 0.05 g acceleration (initially

right ear down), one sees about 1* of peak OCR, but no large change during

deceleration, which would be as expected. With a 0.1 g left ear down

stimulus, there is only slight OCR, but with a 0.35 g right ear down

deceleration, there is no return to baseline (consistent with static OCR

data). The most puzzling observation is that the 0.2 g stimulus (initial-

ly right ear down) produces a "normal" OCR response. One possible explan-

ation is that there is residual left otolith function (corroborated by

a reduced but non-zero gain during right ear down tilt). Both accelera-

tions producing initial left ear down stimuli (0.1 and 0.3 g) show the

effect of diminished left otolith function, because the OCR data doesn't

show the characteri:stic return to baseline. There is no indication how

long this elevated OCR lasts; if it were to continue for 30 seconds (time

between runs), this might help explain the 0.2 g data. Since the runs

alternate in direction and the 0.2 g run followed the 0.1 g run, it might

be that the decrease in OCR seen at the begining of the 0.2 g run was due

primarily to a return to baseline effect with the subsequent deceleration

producing the appropriate response.
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Subject 8's OCR data show a fast rise during acceleration with a

slower then predicted return to baseline after deceleration. However,

the peak amplitudes correlated well with the predicted amplitudes.

Subject 12's OCR data also show reasonable correlation with the

model. However, there is a predominant negative DC bias at the end of

several runs in different directions. The static OCR indicates a

slight asymmetry favoring positive OCR (left ear down tilt), so the

observation is difficult to explain.

Subject 14 was used to examine any habituation or time dependent

non-linearities. Three runs were made, all at 0.15 g, with one minute

waiting periods between runs. No statistically significant difference

was seen between the peak to peak amplitudes of the three runs. This

shows that no habituation is apparent.

4.3.3 Sinusoidal OCR Response

The sinusoidal data is presented in two forms. All the data is

shown in Figures D.35 to D.55. In these plots, the raw data (corrected

for semicircular canal effects induced by head roll) is presented., The id-

ealized sinusoidal input acceleration (phase shifted approximately) was over-

laid on the data. No amplitude scaling was done. Selected plots are shown

in Figures 4.3 to 4.5. These plots show both the raw and corrected OCR data

and again indicate the small effects of head movement. In a few cases (SINE

141, 142, 143, 02, 82), there was a noticeable DC drift associated with the

sinusoidal OCR response. In these cases, the average drift was clearly



91 CD

CD

x0

>00(
C\J

XO

X0XO

x
CDH0O

xO ~\

>0
>0 L

0H
It "U)

.ox
ox

Ox H

x

(O]O) J3O

Figure 4.3 Sinusoidal response at 0.2 Hz

0.



92

x

I~
'-1

(90 630

Sinusoidal Response at 0.4 Hz

>0
Xo

X0)X

x00
X0

X)

0

xo
xO

00.

XO.

X O

X
>>O

n

(I0

C'

w
%-j

H

RM

w
z
H
(I)

CM m
t.

I
00IN

Figure. 4.4



93

x

x.x CD
X)

ox
-x

x
0

LUJ

LUj

Fiue45 Snsidlrs s t0. HH

>0
x

CXX

>00

x0 U)
* >0

Figure 4.5 Sinusoidal response at 0.3 Hz

4



94

seen with the help of the overlay. In the case of subject

14, the bias is positive which is supported by the static OCR data indi-

cating higher gain for positive OCR than for negative OCR. The data of

subject 0 (0.2 Hz) show a negative OCR offset, but a positive slope of

this offset; the data of subject 8 (0.2 Hz) shows a slight positive bias,

neither of which are indicated in the static gains. Subject 7's data is

somewhat puzzling again because there is a slight negative bias (for the

0.4 and 1.0 Hz stimulation) not in agreement with a reduced static gain

for negative OCR. Subject 3 showed very erratic sinusoidal OCR which is

difficult to explain, but this erratic behavior was also seen in the

step acceleration data as well as the static data. The rest of the data

looked very good. However, all the data at 1.0 Hz was somewhat more difficult

to analyze subjectively because of the low (3 Hz) sampling .rate and relative-

ly high frequency. The stimulus overlay provided much help in recognizing

the sinusoidal nature of the data in all subjects except SIN121.

4.3.3.1 Bode Plot, Linearity and Stationarity Data

Figure 4.6 shows the Bode plot obtained from the sinusoidal data. The

circles with vertical bars (+ one S.D.) correspond to the data obtained in

this study., The vertical bars indicate the range of data.

from Kellogg (1967) (both gain and phase). The solid line indicates the

predictions of the Hannen model (which was based on the Kellogg data).

For the phase portion, two lines are drawn, one corresponds to zero time

delay (top line) and the second corresponds to 400 msec of time delay.



lines indicate the data of this thesis (mean + S.D.). The vertical lines
with no circles or end caps indicate the range of data from Kellogg. The
dashed lines are the results of the Young-Meiry model and the solid lines
are the results of the Hannen model. The upper line of the two phase lag
predictions was computed with zero time delay; the lower line incorporates
a 400 msec time delay.
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The dashed lines tae the predictions of the Young-Meiry model. As dis-

cussed earlier, it is impossible to formulate a model based on three data

points, but the degree of correlation between the model aid the data can

be shown.

Table 4.2 lists the second and third harmonic components of the

FFT gain values in terms of percent of the fundamental frequency.

Table 4.2 Non-linearities in OCR sinusoidal response, indicated by
the relative contribution of the second and third harmonics
in percent of the fundamental harmonic

0.2 Hz 0.4 Hz

SUBJECT SECOND THIRD SECOND THIRD

0 32 46 15 32

3 8 31 3 19

6 45 18 66 45

7 12 5 29 16

8 19 13 25 48

12 9 7 22 6

Table 4.3 shows the non-linearity properties of the sinusoidal

OCR response as a function of amplitude for one subject. The acceler-

ation profiles were 0.1, 0.2 and 0.3 g, all at 0.3 Hz.
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Table 4.3 Non-linearity properties of the sinusoidal OCR response

ACCEL. AR (dB) PHASE (0) HARMONICS (% OF FUNDAMENTAL)
SECOND THIRD

0.1 g 15.35 -106.72 25 21

0.2 g 10.96 - 92.66 12 17

0.3 g 13.33 - 92.83 6 9

The final check of non-linearity was done by recording 80 seconds

of sinusoidal data at 0.2 g, 0.2 Hz and then comparing the FFT's of the

first 14 seconds and the last 14 seconds. The phases of the two records

are identical and the gain change amounted to -0.23 dB from beginning

to end.
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CHAPTER 5

DISCUSSION

5.1 Step Response

The OCR response to a step input of acceleration was analyzed in

several ways. First, an overlay of the Young-Meiry dynamic otolith

model (solid line in -step acceleration plots) was made with no attempt

to "tune" the model. These predictions, in most cases, follow the form

of the OCR data, but there were only a few graphs where the fit could

be called good. To attempt to fit models to the observed data, a sim-

pler model developed by Hannen et al (1966) incorporating a first order

lag and pure time delay was used. The largest step change in acceler-

ation occurred during the transition from acceleration to deceleration.

This section of the OCR data most approximated an exponential and so

was used to get the individual time constants of each subject at each

acceleration level. There were several cases where the OCR response

did not come close to approximating an exponential function. In these

cases, no analysis was done.

Hannen's model is

G(s) = ke-as/ ( s + (5.1)

with a, the time delay, ranging from 0 to 400 msec, and 6 = 3.14.

Table 5.1 shows the values of l/T for all analyzable data with the

mean and 95% confidence limits for each subject and the value obtained
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TABLE 5.1

The reciprocals of the mean (of each subject) experimentally determined
time constants are listed with 95% confidence limits. Also included is
the mean of the means and its 95% confidence limit.

Subject l/T 95% confidence

0 4.68 ± 2.78 sec~

3 5.54 ± 7.01

6 1.76 ± 0.14

8 4.22 ± 2.89

12 0.49 ±,0.72

14 1.68 (only value obtained)

Grand mean 3.25 ± 2.66
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by averaging the averages. The value of the overall average is 3.25

which is surprisingly close to Hannen's value of 3.14, although the

confidence limits are wide. From the data, it is obvious that there

is an inherent variability among subjects as well as variability within

each subject.

The step response data had several other features of interest. The

peak to peak OCR that was observed in the data was well fit by a scaled

version of the Young-Meiry model. At times, the experimental data dif-

fered from the predictions, but, over a range of subjects and amplitudes,

the peak values of the OCR data due to the differing step acceleration

levels were linearly related to the acceleration level.

A linear regression program was used to relate the maximum ampli-

tude of OCR during acceleration to the stimulus amplitude. The average

maximum values of OCR (over the subjects that showed no anomalies in

OCR) at each acceleration level was related to the predicted OCR by

predicted OCR = 0.56 (actual OCR) = 0.22 (5.2)

with a regression coefficient of 0.93. The predicted OCR (from the

Young and Meiry model) was used instead of g level because of the tran-

sient nature of the investigation. In other words, the predicted value

of OCR due to 0.2 g step acceleration was 1.2*, while the predicted

value of OCR due to 0.3 g step acceleration was 1.3*. These values

differ only slightly (although there is a 50 percent change in stimulus
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level) because the time duration of the 0.2 g stimulus was substantially

longer than the 0.3 g stimulus. Therefore, the OCR response had more

time to develop for the 0.2g run. This observation has practical im-

portance for the Space Sled experiments because the sled can only gen-

erate 0.2 g maximum. The predicted OCR at this acceleration, however,

is only 10 percent lower than that predicted at 0.3 g. One must also

remember that the Young-Meiry model was scaled for one subject and that

scale factor was then used for all other subjects. If one were to re-

scale the model for each subject, the results would be even better.

The model of Young and Meiry predicts an overshoot of both

perceived acceleration with a long time constant of

about 5 seconds (Figure 2.12). Thisresult appears compatible with

the data of this thesis and also observations by Diamond et al (1979),

in the sense that there appears to be an initially increased OCR res-

ponse due to a step acceleration input. The data of this thesis cannot

fully confirm the notion of an overshoot, but the problem lies in tracklength

and amount of stimulus time, not in data contradictions. For the 0.05 g

stimulus (lowest amplitude and longest duration), the duration was

about 3.5 seconds, which is just on the edge of detectinq the

overshoot. In fact, observation of the 0.05 g data indicates a slight

overshoot, but due to the low amplitude it is difficult to make any

strong statements. Diamond et al (1979) reported that the OCR in res-

ponse to a step change in tilt appeared to reach a peak before declining

to a steady state value, but gave no figures. All other OCR investi-

gators have usually waited 30 seconds to one minute before recording
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OCR after a step change in head tilt to allow semicircular canal

effects to die out.

The return of OCR to the before-stimulus levels appeared to be

erratic. Some subjects indicated an overshoot (subject 12), others

showed an undershoot (subject 8). Sometimes the data from a subject

(for example, subject 12 (0.05, 0.2, 0.3 g)) showed a DC bias (in the

same direction) after stimuli of different polarity, indicating a

possible directional preponderance although no substantiating evidence

was available from the static OCR data. Subject 0 showed initial anti-

compensatory OCR during one run (0.05 g), but then showed a large jump

to the appropriate direction. Subject 3's data indicated several

anomalies (irregular OCR, inappropriate direction), which is also

indicated in the static OCR curves. For this subject, there is the

possibility of a stiction effect during right head tilt, i.e. the OCR

produced by 100 and 200 of head tilt was minimal, but 30* of tilt

produced a normal OCR response (symmetric to left head tilt at 30*).

Both the step and sinusoidal OCR data of subject 3 is erratic. Subject

7 showed a marked asymmetry in static OCR and an erratic step response.

One possible explanation for the dynamic behavior (especially the appar-

ently correct response during 0.2 g step stimulus) is a slow return to

baseline. In this case, if the control baseline for the 0.2 g run were

elevated, the effect of the initial acceleration would be to return it

to about zero. Then, during deceleration (equivalent to left head tilt),

a 'normal' response would be obtained. In general, however, subject 7's

data did not show the large OCR changes during accelerations equivalent
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to right ear down tilt. The data from Subject 8 indicated a faster

than predicted rise in OCR during acceleration, but a slower than

predicted decline to zero at the end of the stimulus. If indeed OCR

is partly influenced by perception of orientation, a relatively long

lasting acceleration could be interpreted as a change of tilt whereas

a very short deceleration could be interpreted as a jolt around a

tilted position (models from Ormsby (1974) also predict this effect).

If this were the situation, then one could predict a slower than average

return to zero, but the quicker than average rise time is hard to

reconcile.

The data of Diamond et al (1979) indicate two types of directional

preponderance. First, right ear down tilt seems to produce larger OCR

values (either eye) than the comparable amount of left ear down tilt.

In addition, the downward eye appears to indicate slightly more OCR

than the upward eye for a given tilt condition (left or right). Miller

(1962) and Hannen (1966) both noticed some asymmetry between eyes and

the :direction of tilt, but did not quantify it. The data of this thesis

was taken solely on the right eye. For this case, one would expect to

see a directional preponderance for right ear down tilt (both above-

mentioned effects would be cumulative). It is difficult to make a

conclusive statement from the present study. However, one subject (14)

was tested three times at 0.15 g step acceleration . After analysis

of the static OCR response, a reduced gain was seen in this

subject for right ear down tilt. For this reason it is impossible

to draw any conclusions from this data on the subject of directional
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preponderance. In contrast, the majority of the sinusoidal OCR.

runs indicate some negative offset (equivalent to a predominant

right ear down OCR) which would tend to support Diamond's data.

5.2 Sinusoidal Response

The sinusoidal data was analyzed through an FFT routine which

produced Fourier coefficients and phases of the fundamental and higher

frequencies. The reference values used to determine the gains were

obtained from the mean of the appropriate left and right head tilt

static OCR. All runs, except those for subject 14, were made at 0.2 g,

so that the peak to peak amplitude of the OCR should correspond closely

to the OCR recorded at 200 of head tilt. For subject 14, 0.1, 0.2,

and 0.3 g runs were made, all at 0.3 Hz; these peak to peak OCR values

should correspond approximately to static OCR values recorded at 10,

20 and 300 Of head tilt. The OCR values that were entered into the

FFT program had to be integers, so a scale factor of 1000 was used.

The static OCR values (in degrees) were also multiplied by 1000, so

that they could be compared with the Fourier coefficients. In this

manner, if the peak to peak amplitude of dynamic OCR was the same as

the static OCR corresponding to the appropriate tilt angle, the

amplitude ratio (AR) should be 0 db. The gains and phases were used

to produce the Bode plot shown in Figure 4.6. This figure shows the

data of this thesis indicated by a circle (mean) and vertical bar

(+ one S.D.). The data of Hannen et al (1966) is also plotted as a vertical

bar (indicating the range of their data). In addition, the Hannen
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model prediction is shown asone solid line for gain and two solid

lines for the phase prediction - the upper line indicates 0 time delay

and the lower line indicates a time delay of 400 msec. The Young and

Meiry model is also shown using dashed lines to denote the values pro-

duced by this model. Inspection of the Bode plot indicates that the

amplitude ratio for many of the subjects is greater than zero, espe-

cially at the lower frequencies (0.2 and 0.4 Hz). This indicates

that there might be some additional dynamic otolith component to OCR.

As discussed in Chapter 2, several investigators (Diamond et al, 1979;

Baarsma and Collewijn, 1975) have reported a possible overshoot of OCR

during a step change in linear acceleration.

The expected variability among subjects is evident in both gain

and phase. The amplitude ratios do not appear to drop off at higher

frequencies as fast as the models. This observation was also noted

by Young and Meiry (1968) when they compared their model with the

dynamic OCR data recorded by Kellogg (1967). In fact, Kellogg's data

appears to show a 3-6 db rolloff between 0.05 and 0.5. The Hannen

model (based on Kellogg's data) predicts about 21 dB rolloff over 0.2

to 1.0 Hz. The Benson and Barnes model (1970) discussed in section 5.5,

predicts about 13 dB rolloff between 0.2 and 1.0 Hz . The data of this.study show

rolloffs of from 9 to 18 dB over this frequency range which tends to

support the models. Also, the data of this study generally show

greater phase lag than the Kellogg data when compared at the same

frequency. Several authors have reported some gravity dependent

effects on the semicircular canals. If this phenomenon were indeed
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present, it could well explain the smaller phase lag and slower rolloff

of the Kellogg data, since a constant horizontal rotation about the

line of sight was used by Kellogg to generate a sinusoidal input to the

otoliths. The phase data show substantially more phase lag at 1.0 Hz

than would be predicted by the Young-Meiry model. The Hannen model,

however, with bounds on the time delay of 0 and 400 msec, brackets this data.

As discussed earlier, the results of Diamond et al (1979) showed

a directional preponderance for right ear down tilt. The results of

the Fourier analysis of this thesis show farily large (6-48%) contri-

butions of the third harmonic which would be evidence for a directional

preponderance. In addition, the data of Hannen et al (1966) also showed

a large (about 20%) contribution of the second and third harmonics to

the total dynamic OCR data. The presence of a second harmonic would

tend to make the OCR peak more rapidly than a pure sinusoid which is

certainly evidenced in the static OCR data (peaks usually occur between

60-75' of head tilt).

5.3 Amplitude Linearity and Stationarity

The investigation of amplitude linearity showed that for at least

one subject, the amplitude ratio of the OCR system varied only 4.5 dB

during a range of 0.1 to 0.3 g with the peak AR occurring at 0.1 g,

but no obvious trend. The results of the step response also showed

a linear relationship between actual and predicted OCR as a function

of acceleration level.
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The stationarity of the OCR data was investigated by examining

the amplitude ratio and phase of the signal at the beginning and end

of an 80 second record length. The amplitude ratio changed by -0.23

dB and there was no change in phase. From this result, it can be con-

cluded that there is very little change between the beginning and the

end of a record.

5.4 Influence of Perception on OCR

Until recently, most eye movements were thought to be reflexive

in nature. Current results indicate that a subject's eye movements

can be correlated with sensation of self motion. The results of Petrov

and Zenkin (1973) (indicating reduced OCR velocity gain and greater

OCR magnitude in the dark) tend to support the notion that perception

also plays a part in OCR movements. The results of yet unpublished

experiments with the author as subject have demonstrated that (1) the

OCR system is "plastic" and (2) that OCR can depend on a subject's

perception of motion. In the first case, after four hours of wearing

dove prism glasses which reverse left-right, and also produce, for

example, a 90' right visual roll for 450 of right head roll, the OCR

gain had actually changed sign (although the magnitude of the final

gain was small). In the second case, the subject was viewing a

rotating disc designed to induce roll vection. OCR was being observed

simultaneously. During periods of roll vection, both with the subject

seated upright and prone on the floor, large OCR nystagmus was detect-

able, but during periods of "drop out" (which can be controlled to an
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extent by the subject), no OCR nystagmus was detected. These experiment are

preliminary, but do lend support to the notion that perception can

influence eye movements. On the other hand, the data of Finke and Held

(1978) suggest that the static component of OCR is reduced when the subject

experiences a state of self rotation. The problems of OCR nystagmus and

the difficulty in recording high frequency OCR movements have kept this

subject from being fully explored experimentally.

5.5 Influence of Magnitude of Gravitoinertial Force on OCR

Several varied experimental results indicate that the utricles

and saccules are an integral unit. Miller (1962) has proposed a

model to relate static OCR to head tilt which incorporates both the

utricles and saccules. Corriea et al (1965) have examined much data

on perception of body orientation and OCR along with their own data,

and have shown that shear force alone on the utricle is not sufficient

to predict the experimental results. They showed that modulation of

the "compressive" z-axis force without changing the y-axis component

can indeed alter a subject's perceived vertical when that subject is

tilted. They claim, however, that when the subject is upright,

changes in the z axis component of force do not alter the perception

of vertical. Since the utricles and saccules are to a first approxi-

mation roughly perpendicular, shear force on the utricles is compres-

sive (or tractive) force on the saccules and vice versa. It is there-

fore difficult to separate these two components when attempting to

relate these forces to OCR. The hypergravic data of several
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investigations (Woellner and Graybiel, 1959; Miller and Graybiel, 1971)

indicate that the OCR can be linearly related not only to shear force

on the utricle but also to total magnitude of applied force. An early

attempt to incorporate "compressive" as well as shear forces into a

model was made by Benson and Barnes (1973).

This model is discussed in Chapter 2, but for a reminder, they

postulated that compressive forces on the utricle could be a stimulus

when coupled with a shear force. They formulated a mathematical model

and went on to show that the model predictions of otoconial displace-

ment correlated reasonably well with observed eye movements for several

different experimental protocols. They did not address OCR movements

in their paper. After calculating the predicted otoconial displacement

from their model for a head tilt of 90', a striking similarity was

found to the static OCR curves (Figure 5.1). Both model and data

reach peak values at tilt angles between 60-75* and not 900 as would

be predicted by a purely utricular shear force model. Using the

physical values assumed by Barnes and Benson, it is possible to calcu-

late a predicted Bode plot. As discussed earlier, their model predicts

about 13 dB of rolloff between 0.2 and 1.0 Hz, while the phase lag goes

from 630 to 840 over the same frequency range. This AR change is very

close to that observed experimentally although the predicted phase lag

increase is much less than that seen experimentally. These predictions,

however, depend heavily on some assumptions one makes about the physical

parameters of the system. This point will be discussed shortly.
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Further analysis of the Barnes and Benson model shows that the pre-

dictions for hypergravic and hypogravic (Miller and Graybiel, 1965)

stimuli diverge substantially from the experimental data. In these

cases, the model predicts a steeper slope of otoconial deflection ver-

sus applied force than is shown in the experimental curves of OCR versus

applied force. The response curves of first order otolithic afferents

of several investigators have shown a saturation effect at high levels

of force (Fernandez and Goldberg, 1976c) and at large cilia displace-

ments (Hudspeth and Corey, 1977) (see Figure 2.8).

The model of Benson and Barnes has many problems associated with

it, the first and foremost being the experimental evidence of Fernandez

and Goldberg (1976b). They show that for single unit recording in the

barbiturate anesthetized squirrel monkey, changes in the compressive

force at a given shear force do not modulate the firing of first order

afferents. Second, several assumptions by Benson and Barnes about the

values of physical parameters (mass of otoconia, length of cilia, ex-

pected displacement of the otoconial membrane under a 1 g force field)

of the otolith organs and derived quantities (natural frequency and

damping coefficient) must be treated with caution. For instance, they

argue that their predicted damping coefficient of 200 (highly over-

damped) is high but not unreasonable. They do not say why it is not

unreasonable when in fact deVries argued albeit teleologically that

the system should be ;just critically damped to give the fastes rise

tiem with no overshoot. The Young-Meiry model, however, argues for a
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lead term which could produce some overshoot even though the mechanical

portion might be critically or overdamped.
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

The main conclusion is that transient linear accelerations pro-

duce OCR similar to that produced by sinusoidal or static head tilt.

However, preliminary evidence suggests that the transient OCR response

includes a lead term similar to that proposed in Young and Meiry's

dynamic model of the otoliths. This lead produces an initial overshoot

of OCR before it reaches steady state. Only the 0.05 g step acceleration

profile provided enough stimulus time duration to see the effect. The

amplitude of the OCR response however is small at this stimulus level

and it is difficult to make a strong statement about the dynamics at

this time. Additional evidence for this conclusion is supported by

the sinusoidal response data which shows amplitude ratio values (relating

sinusoidally stimulated OCR to static OCR for an equivalent change in

direction of the gravitoinertial force (GIF) of up to about 12 dB. This

result indicates that some enhancement of dynamic OCR is taking place.

At least one other investigator (Diamond et al, 1979) has also observed

this transient effect although they have not described or quantified it

and semicircular canal effects may be a factor in their study.

The step response of OCR was measured and quantified in terms of a

first order exponential because of the short stimulus times. The results

indicate a large spread between individuals but the grand mean of the

individual averages of values of l/T (3.25) is very close to the value of
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that Hannen et al (1966) calculated. His model is H(s) = ke-as/ (s + 1/3.14)

Two models have been proposed for the dynamic otolith-OCR system.

Hannen's (1966) model was based on OCR while the Young-Meiry (1968) model was

based on subjective perception of acceleration.. Hannen's model is a first

order exponential with a pure time delay. The Young'Meiry model is a

second order otolith dynamics system cascaded with a lead term. Both

models fit the OCR data (Bode plot phase values) of Hannen. The experimental

data of this thesis shows greater phase lag than the Young-Meiry model at

the 3 frequencies (0.2 Hz, 0.4 Hz, and 1.0 Hz) tested. The data of

Hannen was recorded while the subject was undergoing steady state roll

(thus producing a sinusoidal modulation of the direction of the GIF) which

could have included some tonic semicircular canal input. The semicircular

canal response, if present, could have acted to reduce the phase lag.

Hannen's model incorporated a time delay of between 0 and 400 msec

(depending on the subject). The range of phase lags measured during

this thesis were consistent with this rangeof time delays.

The amplitude ratios calculated from the data of this thesis show

rolloffs of from 9 to 18 dB over a frequency range of 0.2 Hz to 1.0 Hz.

The Young-Meiry model predicts about 12 dB rolloff and the Hannen model

about 21 dB rolloff-over the same frequency range. The data so far

imply that the Young-Meiry model more aptly fits both the OCR system

as well as the perception of motion system.

Although the presence of higher order harmonics (obtained by FFT

analysis of the sinusoidal response) implies system nonlinearities ,
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.the data suggest that there is amplitude linearity over a range of at

least 0.1 to 0.3 g of lateral acceleration. One subject was sinusoidally

stimulated at 0.1 to 0.3 g; to determine amplitude linearity. Analysis

was done of all subject's step resronses (over 0.1 to 0.3 g range) and the

fit of the OCR magnitude to the magnitude predicted by an appropriately

scaled Young-Meiry model was established by linear regression (regression

coefficient = 0.931). Finally, one subject was sinusoidally stimulated for

80 seconds to investigate stationarity. No change in phase and only a -0.23

dB change in amplitude was noted from the first 14 seconds to the last 14 seconds

of the record.

6.1 Suggestions for Future Work

The major suggestion for future investigations into the OCR system

is to develop a non-invasive, real-time OCR measuring system with a

resolution of about 30 minutes of arc. The sampling rate of 3 Hz

used during this study was a major drawback for the precision analysis

of the OCR step response. The preliminary finding of enhanced transient

response should be further investigated. Hopefully, a real time OCR

recording device will help in this study but a major change in equipment

will be needed to provide the track length necessary to obtain 5 or more

seconds of higher (0.3 to 0.5 g) acceleration so that this effect can

be better studied.

The effects of perception upon OCR are still not very clear. Con-

flicting evidence now exists. Some studies (in other axes) indicate

that perception of motion can influence eye.movements. The only study

done so far in OCR indicates that the magnitude of OCR reduced when the
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subject perceives self roll vection. This coupling of OCR and roll

vection should be more closely investigated. The use of a high resolution,

high sampling rate OCR recording devide will be essential due to the

presence of roll nystagmus while undergoing roll vection stimulation.
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APPENDIX A

Sled Design, Construction and Performance

A-1 Specifications

The seled specifications were taken from the ESA Space Sled speci-

fications wherever possible so that the sled would be a good simulation

for the space sled. The "Space Sled System Specification Appendix I"

dated October 1977 (ESA, 1977) was used as the guiding document. Briefly,

this document sets the sled specifications as follows:

(1) Weight = cart: 100 lb; subject: 200 lb

(2) Vibration: During measurement phases, the superimposed

vibration level will be below the following

limit curve

Frequency

0.5

1.0

2.0

3.0

5.0

10.0

15.0

30.0

In addition, the settling time

less than 10%.

(Hz) Level (g)

9.3 x 10~4

2.6 x 10-3

7.4 x 10-3

1.4 x 10-2

2.9 x 10-2

8.3 x 10- 2

1.5 x 10-1

4.3 x 10-1

will be less than 250 msec and overshoot
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(3) Motion Profiles

(a) step acceleration - up to 0.2 g

(b) sinusoidal acceleration - 0.02 to 1.0 Hz up to 0.2 g

amplitude

The MIT sled is also capable of producing pseudo-random (sum of

sines) stimulus

(4) Track length - The space sled track is about 15 feet long.

The MIT track is 21 feet long, so that lower frequencies and

higher accelerations may be produced.

A-2 Experimental Justifcation for Specifications

The specifications for the space sled were based both on scientific

rationale and physical constraints imposed by the Spacelab module.

The normally accepted step acceleration threshold is about 0.005

'g' for the horizontal linear acceleration. For this reason, low fre-

quency vibrations are restricted to less than about 5 x 10- 3g

Threshold detection experiments have shown that there is a latency

time in the detection of acceleration. This latency is a function of

the magnitude of the step acceleration, with longer latencies occurring

with lower magnitudes until threshold is reached. Melvill Jones and

Young (1978) quantified this "detection curve" for vertical acceleration

profiles and related it to previous horizontal acceleration studies

(Meiry, 1965). The data were fitted with the equation
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T = B/A + T (for A > 0.005 g)

where T = mean measured response latency (sec)

A = step acceleration magnitude (g)

T min = reaction time independent of A = 0.37 sec

B = slope of the regression line when plotting T against

1/A = 0.022 g-sec = 0.71 ft/sec

(from Melvill Jones and Young, 1978).

Table A.1 shows the time, velocity, and distance traversed prior

to detection. This table uses the parameters associated with Meiry's

(1965) data; the only change is that the reaction time is increased to

0.76 sec. It is obvious that only short distances are required to

successfully detect the acceleration steps.

Table A.1

Ag T(sec) V(ft/sec) S(ft)

0.005 5.16 0.83 2.14

0.01 2.96 0.95 1.41

0.02 1.86 1.49 1.11

0.03 1.49 1.44 1.07

0.04 1.31 1.69 1.10

0.05 1.20 1.93 1.15

0.10 0.98 3.15 1.54

This table shows the time, velocity and distance travelled prior to
detection of various step acceleration magnitudes. (Based on Melvill
Jones and Young, 1978.)
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A-3 -Design Justification

A-3.1 Motor

Several designs were considered. Schulte and Vreeland (1964)

designed and built an acceleration cart used in Meiry's (1965)

thesis work. They did a detailed design study of various options such

as hydraulic or electrical power, and cable, linear actuator, or lead

screw drive. This design evaluation was again done, in more detail, by

ESA and ERNO in the report Space Sled Design (ESA, 1978). Before the

equipment for this thesis was constructed, several designs were

evaluated including designs of various carts used for driving cameras

on model boards to provide high quality video displays for flight simu-

lators. The final space sled design uses an electric motor to drive

the sled by a cable and winch drum. A hydraulic piston actuator was

seriously considered for use in the MIT sled design, but finally dis-

carded because of physical constraints (a large volume of fluid would

have been necessary) and the desire to faithfully simulate the space

sled; it was decided to use an electric motor and cable/winch drum on

the MIT sled. After much discussion andadvice from designers of the

above-mentioned model boards, a 3.5 HP DC permanent magnet servo motor

and SCR controller (bandwidth 0-30 Hz) manufactured by Inland Motors

(Radford, VA) were selected.

To avoid the backlash and power dissipation inherent in most gear

reducers, a direct drive system was chosen. After selecting a winch drum
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diameter of 8 inches, the torque-speed curves required to achieve a 0.3

g acceleration for a track length of 15 feet were defined. All design

criteria were based on a 1.5 safety factor. The Inland Motors TTB-5302-C

motor has the low speed (645 rpm maximum) and high torque (35 ft-lb con-

tinous) thalt satisfy the design specifications. The choice of control-

lers was somewhat limited; most transistor switching controllers are

low power, low voltages devices incapable of utilizing the motor's cap-

abilities. Motor generator sets are expensive and would require some

custom-built electronics. The Inland Company sells silicon controlled

rectifier (SCR) and pulse width modulated (PWM) controllers that are

compensated for the individual motors. The PWM system, according to the

factory, would only result in a larger bandwidth (up to about 50 Hz).

Therefore, an SCR controller was chosen. After the entire system had

been installed, it was obvious that the motor had a large vibration at

0 rpm. The cause was found to be the cycling of the SCRs at 180 Hz

(three phase power supply). Unfortunately, this vibration is quite

noticeable and audible. Fortunately, the fundamental vibration frequency

(although- not waveform) is independent of motor speed, so that these

vibrations do not provide motion cues during the threshold determination

experiments. A possible solution might be to use the motor generator

set that once was used for the NE-2 trainer, although the power lines

would be long and some additional electronics would be necessary.

A.3.2 Guide Rails

Several methods of guiding and suspending the cart were investigated.
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Most carts use rubber wheels with ball bearings and vibration isolation

mountings along with some sort of guide rail. To achieve very low vibration

levels, it is necessary to have very smooth tracks upon which the wheels

slide. Probably the best solution is the use of an air bearing type sus-

pension which is practically frictionless. This solution poses problems

of noise and air supply to the cart. In addition, some sort of guide

system is necessary. As a compromise, ball bushings riding on high

precision ground rails were chosen. The guide rails were manufactured

by Thomson Ball Bushing Company (Manhasset, NY). These rails are supported

continuously and accommodate ball-bushing pillow blocks. These ball

bushings have very low friction and, though noisy, have essentially no

low frequency vibrations. These bushings can handle speeds up to 15 feet/sec

and acceleration loads up to 0.3 g, as verified by the factory. The rails

are specially machined and hardened and ares-traightto within 0.0005

inch/foot of rail. They are overdesigned with resepct to the weight

supported on the bushings. A 1-inch diameter rail was chosen on the advice

of the factory.

Proper construction of the track was crucial to ensure rail straight-

ness. The foundation consisted of two parallel walls, 2 feet high and

64 inches apart with poured concrete mounting pads on either end to

accommodate the motor and dummy pulley (see the engineering drawings at

the end of this Appendix). A masonry contractor was hired to lay the

foundation. The top course of blocks had anchor bolts cemented into the

cells at about 16 inch intervals. These anchor bolts were positioned

using a template and the template was then used to mark the holes on
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the 1/2" x 6" steel bar stock. The steel bars were bolted into position

on top of the blocks and the master guide rail (nearest the outside wall)

was positioned using a theodolite to ensure straightness. The mounting

holes for the rails were then spotted, drilled and tapped in the steel

bar. The rail was finally optically aligned in both the horizontal and

vertical planes (shimmed where necessary) to within 68 arc seconds of

straightness over the entire length. After the master rail was aligned,

the second rail was aligned by running the cart up and down the track,

and mounted. Even after careful alignment, it was found that the cart

would tend to bind at various positions along the track. This problem

occurred because four pillow blocks were used to support the cart instead

of three. The problem was anticipated, but it was decided that the

added support and symmetry of four pillow blocks was desirable. The

solution to the problem was to let the second rail "float". It is

loosely held by bolts, but free to conform to the master rail. After

the entire system was installed, a final check of alignment was made

by using an auto-collimator and a first-surface optically flat mirror

attached to the accelerometer block. This check revealed a total

deviation from straightness of 5.5 arc-minutes as measured very near

the subject's head position.

After plotting the deviation as a function of track length an

approximately sinusoidal shape was obtained. Using an equation from

Schulte and Vreeland (1964), the maximum accelerations due to the

deviation were calculated for several stimulus acceleration levels. The

equation is:
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a =V 2 , 2y
max max

where a = the maximum acceleration due to the "bump"max

Vmax = maximum cart velocity at the "bump"

W spatial frequency of the bump in units of

rad/in, for example

Y maximum amplitude of the "bump"

For the worst case, Y - 0.38 inches and w = 0.06 rad/in. These values

were obtained from the plots of rail straightness.

Assuming a step acceleration of 0.01 'g' starting at the end near

the "bump", an out-of-plane acceleration of 6.0 x 10~'g is produced, which

is an order of magnitude below threshold. For 0.05 'g', the out-of-plane

acceleration is calculated to be 5.32 x 102g which is suprathreshold;

however, at that point, the velocity is 2.54 ft/sec and t - 1.58 sec.

These values are substantially above threshold (see previous section),

so detection should be made prior to reaching the bump.

A-3.3 Cart

The cart was designed to provide flexibility in subject orienta-

tion, and to be light-weight and rigid. Substantial work in the

design and construction of the cart was done by Johan Garbus under the

auspicies of a design course at MIT. The final design consisted of

a rigid cart attached to the rails and a movable chair that could be



125

repositioned inside the cart to provide x or y axis stimulation with

the subject seated upright and y or z stimulation when the subject is

positioned on his/her back (see engineering drawings). The cart was

required to have a natural frequency above 20 Hz to avoid any resonance

peaks due to the input stimuli. In addition, the cable mass structure

and cable were required to have natural frequencies above 20 Hz to

avoid any low-frequency vibration problems. With a 300 lb cart, 18

foot cable length and 3/16" steel cable, the natural frequency of

the cable with the cart at one end of the track is about 25 Hz with

a 625 lb preload in the cable.

To minimize out-of-plane torques, it was decided to align as

closely as possible the center of gravity of the cart and cable

attachment point with the plane of the guide rails. The diameter of the

winch drum that was selected (8") dictated part of the design of the

chair and unavoidably raised the center of gravity of the cart slightly

out of the drive plane. The chair frame and cart were constructed

of 3" x 3" aluminum angles for ease of construction and rigidity Al-

though a detailed load and vibration analysis was not done, basic

structural and safety calculations showed that the lowest natural frequency

of any member was about 22 Hz and that the chair was capable of sustaining

at least three times the crash loads imposed by a 3.0 g deceleration.

After construction, the presence of 180 Hz vibration due to the

zero-speed bias current in the motor was felt not only through the

cable but also through the cement blocks and steel rails. Therefore, Lord
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(BH-80) vibration dampers were installed between the cart and chair frame.

The characteristics of these isolation devices approximate a second order

system, slightly underdamped with a natural frequency of about 10 Hz

depending on the load. These dampers subjectively appeared to reduce

the vibration level in the chair frame with respect to the cart,

although some vibration is still present.

The chair frame not only holds the subject but also provides support

for the camera mount, blackout shroud and electronics. The camera mount

has quick-release latches and hinges that allow it to be swung open or

be removed if the nature of the experiment does not require photographs.

The camera mount has two positions for the plate used to secure the

camera. The forward (closest to the subject) position is used in con-

junction with a 55 mm Micro-Nikkor lens and extension tube mounted on

the Nikkon camera. This position allows a maximum reproduction ratio

of 1:1.5. The other position is used with the 105 Micro-Nikkor lens

and extension tube attached to the camera. This combination allows a

1:1 maximum reproduction ratio and keeps the camera and lens farther away

from the subject. Also attached to the camera mount is the power unit

for the ring shaped strobe flash. This power unit has been specially

reworked by the Laboratory for Space Experiments to allow flash firing

rates of three frames per second. The 110 volt plug of the power unit

is plugged into an extension cord on the chair frame behind the seat.

The seat is a commercially available (PV Performance Centers, Malden,

MA) automobile racing seat picked for its strength, comfort, support and
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lightness. The subject is held in the seat with an aircraft lap safety

belt, a chest strap and head restraint. Styrofoam pads are wedged

between the subject's shoulders and chair frame to reduce torso movement.

The head restraint is a contoured foam rubber appliance with a wide

velcro strapr that passes around the forehead. Under large accelerations,

the maximum movement of the head and chest is about equal (1 to 2 cm);

therefore, no potentially dangerous shearing forces are applied to

the neck during emergency decelerations. One current problem

with the head restraint is that the foam rubber behaves like a

linear spring with increasing force generated by increasing head

displacement, but no "breakout" force. The ideal concept is to have

the head rigidly immobilized during normal operating accelerations,

but to allow the head to move in concert with the chest during an

emergency stop. One possible solution to this problem is a rubber

bladder filled with small plastic particles. When the air in the bladder

is evaculated, the bladder conforms to the head, but is very rigid.

This bladder could be supported on a surface that has a high breakout

force and could be supported on either side with foam rubber to

provide a restraining force if the head is displaced.

A-4 Safety Interlocks

Because of the large torque capability of the motor and distinct

physical limits on the track length (thus cart travel), an elaborate

and multiply redundant safety system was necessary. The motor and
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controller have several built-in safety features that protect the

motor from overheating, drawing too much current, and from momentary

power surges. The controller has a regenerative braking feature that

allows the back EMF of the motor to be used for braking if the primary

power fails. Also, a fail-safe disc brake option was ordered on the motor

so that if prime power was lost, the brake (normally held open by 110

V AC power) would engage, thus providing positive braking. In addition

to these interlocks, it was deemed necessary to have panic switches for

both the observer and subject as well as limit switches on the track.

The block diagram of this interlock system is shown in Figure A.l.

RGSO

(Remote
gate shut
off)
must be
shorted
to allow
motor
operation

115 V AC
OBSERVER CURRENT THERMOSTAT

STOP OVERLOAD

START
SWITCH LIMIT

SWITCH

BRAKE -

SWITCH

OHMITE
DOSX-7T SUBJECT PANIC
DPST Relay STOP

Figure A.l Schematic of mechanical safety interlock circuit. All

elements are normally closed except for brake and start switch. Brake

is held disengaged by 115 V AC in a fail-safe mode.
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The system operates in the following manner. All switches are

normally closed and wired in series. The start switch is a momentary

ON type. If all safety switches are closed, pushing the start button

energizes the brake and relay. The relay is wired to be self-latching

until one of the safety switches is open. A momentary opening of any

safety switch will disconnect power to the motor and activate the brake

until the start button is pushed again. If the cart reaches the limit

switches, a computer program failure is the most likely cause. In this

case, it is possible for the cart to be travelling at a high velocity

and the disc brake alone would not be sufficient to stop it in the

allocated 16 inches. For this reason, additional energy absorbers were

placed at the ends of the track. At the present time, shock cords

(essentially springs) are bolted to the steel bar stock on top of the

concrete blocks and catch the cart if exceeds the normal track limits.

For the future, hydraulic bumpers have been procured, but have not yet

been installed. These bumpers will be purely energy absorbing and will

not produce the recoil against the brake that is associated with the

shock cords (energy storing devices). The shock cords that are used

are 1/2 and 3/4 inch in diameter and are rated by the force produced

for a given percent extension over original length. For example, a 14

inch length of 1/2" diameter cord that is stretched to 28 inches (100%

elongation) will produce about 250 lbs of force. To stop a 300 lb cart

moving at 17 feet per second (the maximum velocity with a full scale

computer output) in a distance of 14 inches requires a 3 g deceleration

or 900 lbs of force.. It can be seen that four shock cords each
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fourteen inches long will provide more than enough force. At one end

of the track four 3/4 inch diameter cords are used, but are slightly

longer than the 1/2 inch cords, so that approximately the same

deceleration is obtained at either end.

A-5 Performance Data

Preliminary analysis of the cart and chair frame was done by

mounting two linear accelerometers, one at the cable attachment point

on the cart and the other at a position near the subject's head and

analysing the data via Fourier transforms. At this point, the motor

and controller had not yet arrived so a falling weight was used

to provide a "step" acceleration. Due to friction, the acceleration

was not constant, but the end result of a transmission Bode plot

could be obtained. The Bode plot was obtained by dividing the Fourier

coefficient (at various frequencies) of the head mounted accelerometer

by the coefficient of the cable attachment point mounted accelerometer.

The frequency range of interest was 0.1 Hz to 50 Hz or about 2.5 decades.

A peak in the amplitude ratio at about 22 Hz indicated the approximate

value of the cart/chair frame natural frequency. Due to the limited

availability of the accelerometer, a Bode plot using sine wave inputs

was not obtained, but the preliminary results appeared satisfactory.

Due to the complexity and non-linearity of the SCR phase controller

and motor combinations, very little modelling of this system has been

done. Extensive consultation with the manufacturer (Inland) indicated

that the motor-controller loop was very tight and would most certainly



131

meet the needs of this project, but other than the stated figures of

120 dB forward loop gain and a bandwidth of 0 to 30 Hz, no quantitative

data were available. The continuous torque of the motor is 35 ft-lb

which yields a force (through a 1/3 foot radius winch drum) of 105 lbs

at the cable. This force is enough to provide a 0.3 g acceleration to

a 300 lb cart, but the peak torque charactersitics of the motor are

somewhat nebulous.

Because the otoliths respond to linear acceleration, it is only

natural to study the system by controlling the input acceleration. It

was first decided to place a precise servo accelerometer in the feedback

loop to measure and regulate the acceleration. The controller however

is a closed loop velocity servo. After much discussion, it was decided

to first control the cart through an open loop velocity command (ramp

to approximate a step acceleration input; and sine wave to approximate

sine wave acceleration (with 900 of phase lead)). The accelerometer in

this situation would only be used for measurement. If the system appeared

sloppy, a portion of the accelerometer signal could be fed into the

velocity input to improve the performance. However, since the controller

itself comes with a lead filter in the tachometer feedback loop, the use

of acceleration feedback was not anticipated. In fact, the system is

very smooth and responsive with no noticeable backlash when going

through zero velocity and closely approximates the desired acceleration

input over the required bandwidth.

One perplexing interaction of electronic equipment on the sled
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was noted. The Sundstrand Q-flex 1000 servo accelerometer operates

well ex.cept when the camera and flash are operating, at which time

spurious spikes are noted in the accelerometer output. Some sleuthing

showed that the trouble was not with the vibrations associated with

the motor drive, shutter and mirror movement, but rather with an

electrical interaction between the high voltage flash tube and the

accelerometer. The "noise" in the accelerometer would make feedback

of the signal to the controller very difficult. Two solutions could

be proposed. One is to make a matched filter receiver that has an

impulse response which is the inverse of the noise, if one wanted to

use acceleration feedback. If one merely wanted the data for analysis,

the Fourier transform of the acceleration could be used to regain the

amplitude of the fundamental input sine frequency or the DC component

of the step acceleration record. If less accurate methods would

suffice, visual inspection of the data could be done.

A-6 Sled Bode Plot Analysis

The Bode plot analysis of the sled was derived from the sine wave

velocity command whose frequency was specified and whose amplitude was

a function of frequency and track length. Assuming a position function

of the form x = A sin wt, then x = Awcos wt and Rx = -Aufsin wt. There-

fore, if one knows frequency and track length (2 x A) the maximum

acceleration is determined. The sled has a specified frequency range

of 0.02 Hz to 1.0 Hz. Figure A.2 shows the Bode plot (Amplitude

ratio (dB) and phase lead (deg)) as a function of frequency from
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0.03 Hz to 1.0 Hz. At frequencies below 0.2 Hz, the acceleration was

set as high as the track length would permit, above 0.2 Hz, the

acceleration level was 0.2 g. Because the input is a velocity command

and the output an acceleration, the phase lead should ideally be 90*.

The input velocity command (ft/sec) was converted to a desired

acceleration command:

Acceldesired = V x w/32.17 (g units)

Therefore, the amplitude ratio (AR) in decibels should ideally be 0.

Figure A.2 shows that the phase lead approaches 900 at low frequency

and drops to about 72* at the maximum frequency. Conversely, the

AR increases slightly over the frequency range indicating a resonance

somewhere above 1 Hz. The Bode plot of the loaded cart (subject

weight 185 lb) indicates a slightly lower resonance frequency which

is to be expected. Subjective impressions while viewing the subject

at 1.0 Hz stimulation indicated that this frequency was near the

resonant frequency of the human body which is supported by the

Bode plot data. The values of the AR were about 1.0 over the range

rather than zero as would be expected. This difference is only

slight and is probably due to a slight misadjustment of transducer

gains through the system.

Other Performance Criteria

The Space Sled was specified to have a rise time of 250 msec.
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Examination of strip chart printouts (see Figure A.3) of the sled

with a ramp velocity input show that indeed the rise time of the sled

is about 160 to 180 msec. It appears as though the sled with a

quasi-open loop control system will meet the specifications.
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APPENDIX B

COMPUTER PROGRAM (SLDRUN)

The input to the motor controller is a velocity command. To

generate the appropriate commands and monitor the operation of the

cart, a computer program was written for the laboratory minicomputer

(PDP 11/34). A flow chart of the program is shown in Figure B.l. This

appendix will detail the computer interfaces (input and output quantities

and scale factors), software capabilities, logic, and normal operating

procedures. A complete printout of the program is also listed in Figure

B.4.

The capacity of the computer includes 32 K words of memory, two

RK05 disc drives and an LPS-ll Lab Peripheral System, including 16

multiplexed channels of 12-bit A/D and D/A. The A/D inputs have a

differential pre-amplifier in the front end. The input voltage range of

this system is -1 volt (0 bits) to +1 volt (4096 bits). The output

D/A channels have a range of -10 volts (0 bits) to + 10 volts (4096 bits).

A complete listing of all connections to the patch board, analog

and digital computers is given in Figure B-2.

B.l Inputs, Outputs and Scale Factors

The inputs to the program are the sled position (SLPOS), sled

velocity (SLVEL) and sled acceleration (SLACEL). The sled position is

provided by a 10-turn precision wirewound 100 K potentiometer mounted
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Figure B.I SLDRUN Flowchart
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on the motor shaft. This potentiometer is excited by f 15 volts pro-

vided by the motor controller. The sled velocity is provided by the

self-generating tachometer attached to the motor shaft. The cart

acceleration signal is provided by a Sundstrand Q-flex servo accelero-

meter mounted on the sled. The polarity of the signals is such that

positive position and velocity is toward the motor end of the track.

Zero volts indicate the center of the track and zero velocity.

B.1.1 Sled Position

The sled position signal is fed from the potentiometer through

trunk line D8 (coaxial cable) to the GPS 291T hybrid analog computer.

The signal is buffered by an operational amplifier (gain of 1), then

attenuated through P1 to provide a full range signal to A/D. The normal

travel of the cart is ± 7.5 feet with emergency stop travel of an addi-

tional ± 2.5 feet. Therefore, 7.5 feet from the center is set at

0.75 volts output. The signal then goes through the trunk line to CH8

of the A/D on the patch board and also to channel 1 of the strip chart

recorder.

Once in the computer, the bit count is transformed back into

problem units (feet in this case) by the equation

SLPOS = (INPUT (BITS) - 2048)/KPOS

where

KPOS = 204.8
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B.l.2 Sled Velocity

The sled velocity is provided by the tachometer on the motor, which

has a scale factor of 18.9 volts/1000 rpm. The tachometer signal is

buffered at the controller by an operational amplifier with a gain of

1.0. This signal is then fed through trunk D14 to the analog computer

where it is further buffered (A16) and corrected for DC offset (0.07 volts)

due to the buffer amp at the controller via potentiometer 3. The signal

is attenuated through potentiometer 4, and sent to channel 9 of the A/D

and channel 2 of the strip chart recorder. The input (bits) to the com-

puter is transformed back into problem units (ft/sec) by the equation

SLVEL = (INPUT(BITS) - 2048)/KVEL

where KVEL = 110.09.

The value of KVEL was calculated through knowledge of the tachometer

sensitivity and the measured distance that the cart travels for one

revolution of the motor. The tach generates 9.45 volts/500 rpm and

each revolution is 2.109 feet. The signal is then attenuated through

potentiometer 4 so that the input to the digital computer falls

between 0.945 volts.

B.1.3 Sled Acceleration

The sled acceleration is measured by a Sundstrand Q-flex linear
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servo accelerometer. This accelerometer has a range of ± 15 g, a

sensitivity of 0.333 volts/g and a resolution of 1 pg. The ± 15

volt excitation is provided by a bench mounted power supply (three

phase 208 V AC input) in Room 37-127. This power supply also sup-

plies powe'r to the camera motor drive, pre-amps and low pass filter

mounted on the cart. The output of the accelerometer is passed

through a third order low pass filter with a break frequency of

25 Hz. This filtered signal is then pre-amplified on the sled and

fed to the analog computer through the trunk line (Dll) and patch

board. The gain of the pre-amplifier is set so that a 1 g acceler-

ation will produce the maximum (10 volt) input to the buffer ampli-

fier in the analog computer. This signal is then attenuated to

10 percent of the original signal by potentiometer 23. In this

manner, an emergency acceleration of 2 to 3 g will saturate the

buffer amplifier (at 10 volts), rather than exceed the range of

the A/D converters (± I volt). The sled acceleration is stored in

the digital computer and on channel 4 of the strip chart recorder.

B.l.4 Other Program Inputs

The final input to the program is the interrupt signal that causes

the program to initialize, run, or stop the cart. This interrupt can

be generated either in the computer room or in 37-127. A switch at-

tached to the analog control board provides 6 volts to activate elec-

tronic switch #18 which, in turn, sends 1 volt to the digital computer A/D
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channel 8 on the patch board. The pushbutton switch located in 37-127,

when depressed, connects 1 volt from potentiometer 15 directly to channel

8 of the A/D.

B.1.5 Velocity Command to.the Sled

The primary output of the computer program is the motor velocity

command. The speed scale factor on the motor controller is set so that

+ 10 volts (maximum output of the D/A converter) produces 500 rpm. The

output velocity (VELCMD) is commanded by an equation

OUTPUT (in bits) = VELCMD*KVOUT + 2048

where

KVOUT = 2048 bits/17.5 ft/sec = 116.496 bits/ft/sec

B.1.6 Other Program Outputs

The program also controls the camera motor drive and the strip

chart recorder. The camera is triggered at 350 msec intervals during

a run with two pictures taken before the beginning of each run to serve

as control frames. The output to the camera is a 5 volt trigger signal

from D/A channel 14 on the patch board through the analog to trunk line

D13. This signal closes a dip relay mounted on the sled, which triggers

the camera. This same signal (except amplified to 10 volts) is used to

drive the strip chart event marker #1, so that camera firing and accel-

eration can be correlated. This camera signal is also filed on channel
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4 of the data in the computer. The speed of the chart recorder is

controlled by the digital computer. Channel 3 (patch board) of the

D/A is used to close electronic switch #28 which supplies - 10 volts

to a buffer amplifier in turn driving the speed relay in the strip

chart recorlder.

B.2 Software Capabilities and Program Logic

The program SLDRUN is designed to be as flexible as possible yet

easy to operate. The flow chart is presented in Figure B-1. The pro-

gram starts by asking for the type of input, either a ramp velocity

(step acceleration), sine velocity (cosine acceleration) or pseudo-

random velocity. Once the profile is selected, the desired amplitude

and frequency (if a sine input) are selected. The present version has

a maximum acceleration capability of 0.3 g. If a sine input is desired,

the program asks for the independent variable (frequency or amplitude).

Because the maximum track length is± 7.5 feet, there are situations

(low frequency) where the maximum acceleration is constrained by track

length to less then 0.3 g. Conversely, if the acceleration level is

high, the minimum frequency is track length limited. Therefore, the

program asks for the independent variable and then responds with the

minimum and maximum values of the dependent parameter. At present,

the pseudorandom profile is not available; the subroutinesito generate

the velocity commands are available in the program LNKRUN, but need to

be scaled to the sled track length and maximum acceleration. The next

step of the program is to set the start position (STPOS) of the sled.
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This start position for the ramp velocity input is at either end of the

track. For the sinusoidal input, it is at a distance from the center

of the track corresponding to the maximum displacement of the cart. To

account for non-ideal behavior (i.e. slight asymmetries in the sinusoidal

position profile), and the lack of continuous position feedback utili-

zation, the-actual starting point, if greater than 6.5 feet from the

center, is moved one half the distance from the computed starting point

to the end of the track.

The program next asks for a data filename, if the run is not a

demonstration. At this point, the clock is started by the subroutine

KWSET and the input data of interrupt status, sled position, velocity

and acceleration are read by the A/D converter through a subroutine

ATOD6. The six channels of A/D are numbered differently in the sub-

routine than in the patch board designation. Channel 8 on the patch

board is channel 1 of the ATOD6 subroutine.

The program converts the digital inputs to problem units and

computes the distance between SLPOS and STPOS to be used during the

initialization process. If the sled is not running, the program looks

for an interrupt signal (greater than 0.75 volts) on channel 8 of the

A/D. The state is set to IWAIT and the program loops to statement 10

until the interrupt is hit. To keep a constant loop cycle time, a

subroutine called KWAIT is used. This routine holds up the program

until the desired loop time (TMSEC) is over. If the actual time needed

The subroutines KWSET, KWWAIT, ATOD6, DTOA6, and FILER are described
in detail in the MVL document LNKRUN: PDPll/34 System for Control of
the Link trainer, February, 1978.
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to execute the steps in the loop exceeds the predetermined loop time,

the program stops by setting the velocity of the sled to zero and prints

out "STOP'SYNCH ERROR'". When any interrupt is triggered, the program

stops the clock, restarts it and waits 500 msec for the switch contacts

to stop bouncing and then restarts the clock. The state is changed from

IWAIT to INITL and the sled is moved to the STPOS nearest the current

SLPOS. The velocity is initially computed by a sine function with the

appropriate sign determined by the SLPOS on the trackandthe relationship

of SLPOS to STROS. For example, if the cart is at the end of the track

and is outside the STPOS (would occur after a ramp profile, if a high

frequency, high g sine wave was selected), ISGN would equal -1 and

ICOEFF would equal -1, so that the velocity would be positive. When

the velocity is greater than the remaining distance which should happen

about half way between the initial cart position and the start position,

the velocit.y command becomes proportional to the distance remaining to

the start position. When the sled position is within 0.25 feet of the

desired position, the VELCMD is set to zero.

The sled is now ready to run. A second interrupt signal from the

same line starts the selected velocity profile. NOTE: The sled run can

be started any time during the initialization phase; no interlock is

provided. When the second interrupt is detected, the state is changed

to IRUN. The chart recorder is speeded up and one picture is taken. An

inner loop counts 250 msec and then the first velocity command and second

picture command are sent on the D/A lines. From this point on, pictures
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are taken every 300 msec, with VLCMD being updated every TMSEC (currently

set at 30 msec) by an increasing loop count (ICOUNT). The run can be

stopped in three ways. (1) The interrupt is hit for a third time,

(2) the safety interlock detects a condition of too great .a velocity

and too litie track remaining, or (3) the time (TRUN) expires for the

sinusoidal profiles. The time currently is set at 3 cycles of motion or

10 seconds, whichever is longer.

A safety interlock is built into the software to compare the current

sled velocity with the remaining distance to go, knowing the deceleration.

When a position is reached such that the programmed deceleration (DECEL)

will use all the remaining track to stop the cart, a step deceleration

is commanded (decreasing ramp velocity). This interlock, however, is

not active, until the cart attains a certain velocity and is past the

center of the track. For this reason, the acceleration cannot be greater

than the deceleration. This safety interlock is used routinely to stop

the cart during ramp velocity profiles and is also active during the

sinusoidal profiles. In case a DC offset is present or the sled run

starts prior to reaching the start position, the interlock will monitor

the parameters and stop the cart prior to reaching the end of the track.

Because the computer is controlling a real-world device. there are

certain dead bands and "slop" in the program. For instance, the velocity

command during a stop is set to zero whenever the actual velocity is less

than 0.41 fps. This is required because of the sampled data characteristics

of the program. Also the cart should never go beyond the end of the track,
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if it did, the safety interlock comparison would attempt to take the

square root of a negative number and the program would stop, leaving

an unknown(probably non-zero) velocity command which could cause the

cart to overrun into the limit switches.

B.2.2 Communications Capability

The communications network is set up to provide two-way communication

between the subject, the observer and the computer controller. A stereo

amplifier, FM tuner and preamplifier are used. The two observers can

always talk to each other and hear the subject. The subject can either

hear the observers or a masking tone during experimental runs. The masking

tone can be generated either by the FM tuner or a function generator. The

switch to select the source for the subject's head set is located on the

patch board in the computer room. Figure B.3 shows the current wiring of

the communications system.

B.3 Normal Operating Procedures

The following section details the normal operating procedures to run

the cart.

1. Remove wooden rail covers in 37-127.

2. Turn on power supply on workbench. The 208 VAC 3 phase supply

must be plugged into the receptacle conduit running around the lab and

the toggle switch on the small aluminum box must be turned on.

3. Turn on power to sled. Push toggle switch located on controller

board down. Push start button located on the wall next to the power switch.

4. Run SLDRUN on PDP1l/34.
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5. Install SLD patch board and SLD analog patch board.

6. Turn on chart recorder, analog computer (compute mode) and

PDP8 digital computer.

7. Selrect 0.05 V/div for channel 1 of recorder, normally 0.5 V/div

for channel 2 and 3, and 20 pV/div with X1000 switch for channel 4, and

chart speed (50 mm/sec for ramp, variable depending on the frequency of

sinusoid).

8. Check proper operation and sensitivity of chart recorder,

especially channel 4 by plugging ± 10 volts through potentiometer 2 into

T4 on analog.

9. Set potentiometers according to Table B.1

10. Zero the outputs of A16 + A54 using potentiometer 3 and P19.

11. Remove camera and flash from locked cabinet, take to 37-127

and load film.

12. With SLDRUN operating, push toggle switch on controller up,

motor should hum with very little rotation. Use the long screwdriver

and adjust P2 on the rate loop PC board for zero sled velocity. P2 is

on the board closest to the large transformer and is the second potentio-

meter in towards the winch drum. Turning the potentiometer counter-

clockwise makes the sled go toward the dummy pulley and vice versa.

13. Install camera on mount, plug flash into flash power supply

and turn on (should see a neon glow from inside the flash. Plug camera

power cord into camera.

14. Make a bite stick for the subject and inform him/her about the

tests, show the subject a demonstration with the chair empty.
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15. Seat subject in chair, adjust footrest, fasten lap belt,

shoulder strap and head strap after adjusting head rest. Place required

amount of foam padding between subject's shoulder and chair frame. In-

struct subject on fixation (eye patch on other eye), keeping eye wide

open, use of panic switch and communication procedures. Close and lock

camera mount, focus camera, and put shroud in place.

16. Conduct communication check with subject and computer room.

If okay, enter desired run parameters. Switch subject to audio masking

when ready to run using the small box and switch attached to the patch

board.

17. Conduct runs, change film as necessary and check focus and

cart velocity drift during the runs.

18. Reverse steps 1 through 13 to shut down experiment.
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Figure B.2 Connections to Trunk Lines, Patch Board, Analog and Digital

Computers

POSITION

D8 - T8 -. P1 Tl4 CH4 A/D

>0 CHl chart recorder

VELOCITY
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D14-T29 A16 P4 T25C
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Figure B.2 (continued)
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Figure B.3
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Table B.1 Analog Potentiometer Settings

P1 0.949

P2 0.2

P3 0.07*

P4 1.00

P15 0.98

P17 0.98

P19 0.109**

P23 1.04

*or as needed to zero output of A16 when SLVEL = 0

**or as needed to zero output of A54 when SLACCL = 0
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B.4 Computer Printouts

FROGRAM SLDRUN
DIMENSION NULL (256),INPUT(6) ,IDATA(4),IZEROS(6)
COMMON PFLAG
EOUIVALENCE CINPUT (1) , INTRPT )
COMMON FTYPE , APOLE RMSDT
REAL MINVALMAXVALvKVO.iT
INTEGER: FLAG OUTPUT (6) FTYPE yFLAG
INTEGER F'SGN VSGN TMSECy TRUN RESET , SCOUNT
REAL KPOS KVELIKACCLICAMNCOUJNT , MCOUNT

93 CALL DTOA6 (IZEROS)
DO 980 I=1-6

980 OUTPUT (I)=ZERO
STPOS=0
WRITE (7v94)

94 FORMAT (2Xs,'SELECT INPUTY RAMP=-1 ,SINE=0,RANDO()M=+i: '$)
READ (5,97) IMODE

97 FORMAT (12)
ICAMCY=350
INTLCK:=0
IF (IMODE) 12, 13Y 14

C
C RAMP INPUT
C ~
12 WRITE (7,98).
98 FORMAT (2X, 'ENTER RAMP SLOPE NOT MORE THAN 0.5G: '$)

READ (5,99) STAMP ! READ RAMP SLOPE
99 FORMAT (F5.3)

IF (STAMP .GT. GIN) GOTO 105
STAMP=STAMF:*32. 17 ICONVERT TO FT/SEC/SEC
STPOS=TLEN-0.3
SIFREQ=0.25 !SETS TRUN TO 15 SECS.
GOTO 110

C
C SINE INPUT
C
13 WRITE (7,117)
117 FORMAT (2X,'IS FRED OR AMP THE INDEP VAR (F OR A)?: '$)

READ (5,115) INVAR INDEP VARIABLE
115 FORMAT (Al)

IF (INVAR .EO. IFREQ) GOTO 112
116 WRITE (7,10l)
101 FORMAT (2X, 'ENTER SINE AMP : '$)

READ (5,102) SIAMP
102 FORMAT (F5.3)

IF (SIAMP .GT. GIN) GOTO 105
FMIN=((SIAMP*32.17/(TLEN-1.))**0.5)/6.28319 !MIN, MAX (HZ)
FMAX=1 .0
WRITE (7,17) FMINFMAX

17 FORMAT C 2X'LLWLE FRE RANGE IS ' 1 X , F5. 3, 'HZ MIN,
1 F5. 3 'HZ iIAX )

112
103

WRITE (7,103)
FORMAT (2X, 'ENTER FREQ (HZ)#'$)
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READ (5,-1.04) SIFREQ
104 FORMAT (F5.3)

W=6.23 I 9* IREQ
IF (SIFI:RE:fQ .GT. 1.0) GOTO 107
IF (INVAR .EQ. IFREQ) GOTO 18
IF (SIFREQ .LT. FMIN) GOTO 109

23 A=SIAMP*32.17/(W**2.0) !AMPLITUDE IN FEET
IF (SIFREQ .LT. .25) ICAMCY=500
IF (A .GT. 6.5) GOTO 24
STPOS=A
GOTO 110

24 STPOS=A+(TLEN-A)/2.
GOTO 110

16 GMAX=((TLEN-1.5)*WJ*2.0) /32.17
IF (GMAX .LE. GIN) GOTO 19
GMAX=GIN

19 WRITE (7,21) GMAX
21 FORMAT (2XY'MAX AMPLITUDE (G)=' 1X7F5.3,1X,' "ENTER AMPLITUDE

1 (G)= '$)
READ (5,22)SIAMP

22 FORMAT (F5.3)
IF (SIAMP .GT. GMAX) GOTO 19
GOTO 23

C
C PARAMETERS OUT OF LIMITS
C
105 WRITE (7,106) GIN
106 FORMAT (2X,'AMPLITUDE MUST BE NOT MORE THAN'sF5.3, 'G')

IF (IMODE) 12r 116 14
107 WRITE (7,108)
108 FORMAT (2XY 'FREQUENCY MUST BE NOT MORE THAN 1.0 HZ')

GOTO 112
109 WRITE (7,111) FMIN
111 FORMAT (2X,'FREQUENCY MUST BE GREATER THAN',1XF5.3,1X,'HZ')

GOTO 112
C
C RANDOM INPUT
C
14 STOP 'NO RANDOM SUBROUTINE'
110 CONTINUE

WRITE (7,95)
95 FORMAT (2X,'IS THIS A DEMO(Y OR N)? '$)

READ (5,96) IDEMO
96 FORMAT (Al)

PFLAG=1 !FIRST PASS
5 PFLAG=2 ! SECOND PFAS

IF (IDE MO .E. IYES) GUT0 6
WRITE (7,100)

100 FORMAT (2X 'ENTER DIA^TA FILE NAME: '$)
DEF INE FILL 1 ( 0,v '256, U rNR C
CALL ASSIGN (1,-)
WRITE (1'1) NULL
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ICHAN=ILUN(1)
CALL FILER (ICHAN, IDATA)

6 CONTINUE
ID=0
ISET=0
IPASS=1
ICYCL=0
IFLAG=0
ICOUNT=0
IFRA ME0 -

I PAUSE =5 00 /T MSE C
TSEC=TMSEC*0.001 !SETS RUN TIME TO 10 SEC
TRUN=5/SI FREl !OR 5 CYCLES WICHEVER
IF (TRUN .LT. 10) TRUJN=10 !GREATER
NSTEP=(1/TSEC ) *TRUN
NCOUNT=1. / ( SIFREQ*T SE C)
MCOUNT=2.*NCOJNT
RFLAG=0
EVENT=0
TEMP=*ZERO
RESET=ICAMCY/TMSEC-1
VELCMD=0
CAMCMD=0
ITEST=0
PFLAG=3
SFLAG=0
ISIGN=1
ISTATE=IWAIT
CALL KWSET(0,0) !START WAITING
WRITE (7,114)

114 FORMAT (2X,'HIT INTRPT TO INITIAL. ,2ND INTRPT STARTS SLED')
25 CALL KWSET (TMSECV"411) !START CLOCK
C**** ****** ************************************* *****************
C
10 CONTINUE !TOP OF LOOP

IF (KWWAIT() *NE. 0) GOTO 845
CALL ATOD6 (INPUT)
SLPOS= ( INPUT (4) -ZERO) /KPOS
SLVEL= (INPUT (5) -ZERO) /KVEL
SLACCL= (INPUT(6) -ZERO) /KACCL
PSGN=1
IF (SLPOS .LT. 0) FSGN=-1

301 VSGN=1
IF (SLVEL .LT. 0) VSGN=-1
IF (ABS (SLVEL) .LT. 0.2) GOTO 306

302 IF (ISTATE .NE. IRJN) 1301G 306
IF (PSGN . NE . VSN ) G0T 306
IF (TLEN--AS(SLPOS) . LT. 0.00000.1.) OT 700
IF ( A DS ( L EI... ) - -2 1 ( rL..N-A ( S1 LP") ) 

I 32.1 7*I:'ECEL ) **0. * * .GT. -2.) INTTLCK= 1
306 IF (INTRPT . .E. 3747) GOTO 15 ! CHECK FOR INTERRUPT

CALL KWSE T (0 0)
CALL TTYOUT ('INTE:kRRUPT HIT')
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CALL KWSET (TMSEC,"411)
DO 20 I=1y IfAtSE

20 CALL KWWAIT()
CALL KWSET (0,0)
CALL KWSET (TMSECp411)
IF (INTLCK .NE. 0) SFLAG:=2
IF (ISTATE) 7,38YO

8 INTLCK=1.
GOTO 38

7 ISTATE=INITL
GOTO 10

15 IF (ISTATE) 10Y29,38
29 D=ABS (Al'S (SLPOS) -STF0G)

IF (IPASS GT. 1) GflTO 33
SGN=PSGN

!IF INTRPT HIT 4 TIMES
!STOP CAMERA AND SLED

!USES SIN VEL FOR 1/8 CYCLE
L TO DB=D !THEN PROPORTIONA

COEFF=1.
IF (ABS(SLPOS) .GT. STPOS) COEFF=-1.

33 IF (RFLAG .EQ. 1) GOTO 34
VELCMD= ( E/2 . +. 05) *C EFF*sGN*5IN ( TSEC*IPASS)
IF (ABS(SLVEL) .GT. D) RFLAG=1

- IF (RFLAG .EQ. 0) orO 35
34 VELCMD=(I+.05)*SGN*COEFF
35 IPASS=IPASS+:L

IF (ADS(D) .LT. .05) VELCMD=0.
OUTPUT (2)=VELCMD*KVOUT+ZERO
CALL DTOA6 (OUTPUT)
GOTO 10

38 ISTATE=IRUN
SPEED=6.
IF (IFRAME .GT. 1) GOTO 41

39 IF (ICYCL .NE. 0) GOTO 200
CAMCMD=5.
OUTPUT (1)=CAMCMD*KCAM+ZERO
OUTPUT (3)=CAMCMD*2*KCAM+ZERO
OUTPUT (4)=SPEED*KCAM+ZERO
CALL DTOA6(OUTPUT)
GOTO 201

200 IF (ICYCL .NE. 1) GOTO 201
CAMCMID=0.
OUTPUT (1) =CAMCMD*KCAM+ZERO
OUTPUT (3) =CAMCMD*2 K CAM+ZERO
CALL DLTOA6(OUTF:UT)

201 ICYCL=ICYCL+1
IF (ICYCL .LT. RESET) GOTO 10
IFRAME .=:IFrAME + I

41

TCYCL=0
GOTO 10
I COUNT=:::: IC UN+

!SPEED UP C.R.
!WAIT AND TAKE TWO PICTURES
!AT 350MSEC THEN

!TAKE PIC AT ICYCL=0

IF (IMODiE .E. -i) ioTO 42
IF (ICOUNT *LT. MCOUNT) GOT0 375

42 IF (I(CYCL .NE:. 0) G(01 300 , (UN ;STARTEI: TcAKE ' PICTURE
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CAMCMD=5
ICYCL=ICYCL+1
GOTO 375
IF (ICYCL .NE. 1) GOTO 360
ICYCL=ICYCL+ 1
CAMCMD=0
GOTO 370 !WAIT ICAMCY
ICYCL=ICYCL+1
IF (ICYCL .LT. RESET) GOTO 375
ICYCL=0 -
CONTINUE
IF (ICOUNT .GT. 2) GOTO 376
IS I GN=- 1* PSGN
IF ( INTLCK . 1 NE. 0) GOTO 700
IF (SFLAG .NE. 0) GOTO 800
IF (IMODE) 400, 500 600

VELCMD=ISIGN*STAMP*ICOUNT*TSEC
GOTO 800

300

360
370

375

376

C
C
400

C
C-
500

C
C
600
C
C
700

705

707
C

AND START SLED

MSEC AND TAKE ANOTHER PIC

!AFTER ICAMCY MSEC RESET TO 0

!SAFETY LOGIC TRIPPED

!SELECT OUTPUT

!RAMP VEL. CMD

!SINE VEL. CMD

STOP'NO RANDOM SUEROUTINE'

IF (IFLAG *NE, 0) GOTO 705 !SAFETY INTERLOCK SET
INTLCK=1
ISTOP=ICOUNT
VEL=VELCMD
IFLAG=1
IF (ABS(VELCMD) .GT. .41) GOTO 707
VELCMD=0.
GOTO 800
VELCMD=VEL- (VSGN*32 . 17*DECEL* (ICOUNT- ISTOP) *TSEC)

C
800 PFLAG=4

IF (IDEMO .EQ. IYES) GOTO 45
801 IDATA (1) =SLPOS*K

IDATA (2)==SLVEL*K
IDATA (3)=SLACCL*K
I DA T A ( 4 ) =C A MC( MD ** K
CALL F I LER (I C1--lN 'I DAIATA

45 OU'TPUJT ( )=C::: CM ( ci * CA Vi + ZER
0 UT PUT ( ) ELC !'' 1v (')1,T ER1
OUTPUT ()CMM3*C~ZR
CALL DTOA6 (OUTPUT)
IF (IN'TLCK . 1) GOTO 47

!OUTPUT VELCMD AND FILE DATA

VELCMD=A*W*ISIGN*SIN(W*TSEC*ICOUNT)
GOTO 800
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IF (IMODE .En. -1) GOTO 10
IF (ICOUNT .LT. NSTEP) GOTO 10

47 IF (ABS(SLVEL) *GT. .41) GOTO 10
IF (SFLAG .EQ. 2) GOTO 76
VELCMD=0.
IF (SFLAG .EQ. 1) GOTO 46
SCOUNT=ICOUNT

!END OF LOOP

SFLAG:=1
46 IF (ICOUNT .GT. (SCOUJNT+NCOUNT)) GOTO 76

GOTO 10
845 CALL DTOA6 (IZEROS) !STOP FOR SYNCH ERROR

STOP 'SYNCH ERROR IN PROGRAM'
76 CONTINUE:

CALL KWSET (OYO) !STOP CLOCK
CALL DTOA6(IZEROS) !ZERO D-A LINES
PFLAG=5
IF (IDEMO .EQ. IYES) GOTO 909
IDATA (1)=SLFOS*Kl
IDATA (2)=SLVEL*K
IDATA (3)=SLACCL*K

909
910

911

1
1
1
1
1
1
I
1

IDATA ()CMM**
CALL FILER (ICHAN,IDATA)
CALL CLOSE(1)
WRITE (7,910)
FORMAT (2X, 'WANT ANOTHER RUN (Y OR N)?: '$)
READ (5,911) IREQ
FORMAT (Al)
IF (IREQ .EQ. IYES) GOTO 93
DATA NULL/256*0/7
IZEROS ZERO/6*2048 ,2048./
IWAITINITL, IRUN/-1,0, 1/,
TLEN ,DIECEL, KPOS,KVEL, KCLCL/7.5,0.35,204.8,110.09,2048./
IYESINOIFRE(.bIAMP*/'Y' ,'N','F','A'/,
FTYPEAPOLERMSDT/2,3.14,15./,
MAXVALMINVALTM1SEC /32767.,-32767.,30/,
KVOUTKCAMK/116.496,204.8,1000/,
GIN/0.3/
END
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APPENDIX C

LNS DIGITIZER OPERATION

C.i Vacuum System

Before turning on the machine, turn on the vacuum pump that is used

to hold down the film. The controls are in the room across the hall from

room 428. Switch on VAC 3, using the controls on the wall to the left of

the door. The needle on the gauge labelled "Scanning Room" should drop

from zero to somewhere between 20 and 30.

C.2 Power Controls and Loading Film - Hermes Senior

The power switch is in the upper right hand corner. Turn it on. To

load the film, put all three operate switches down, i.e. 1, 2, and 3.

Inside the door of the cabinet are three switches for the film drive

motors for the three views. Put those down. Load your film. Then turn

on only the drive motors and the operate switch for the view(s) you are

using. Other controls:

Lamps: on

Reticle: Start by turning this knob clockwise and holding it there

for a few seconds while the reticle motor speeds up.

Move-Measure: Move for moving film; Measure for measuring.
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Keys and Data: The use of keys and data will be explained in the

measuring procedure.

C.3 ZEROING THE MACHINE COORDINATES

The binary registers for the x and y coordinates are not zeroed

when the machine power comes on. They occasionally can pick up erroneous

readings during machine use due to power surges, etc. Therefore, they

should be zeroed after the power is turned on and about every fifteen

minutes during use. Note that the zeroing should not be done during the

measurement of an event (a series of measurements terminated by the E key).

The following procedure is the normal zeroing procedure. The procedure

noted in Section 3.5 should be followed for OCR recording.

(1) Set the view switch to view 2. Move the film until the white

spot in the dark frame above the center of the frame is centered on

the reticle. While holding.the CTL key down, press the 0 key. To

check that the coordinates are correctly zeroed, now or at any later

time, center the white spot on the reticle, push the FL key, press 1

and then 7 to set indicator to 1700, then press either data key. You

should hear a beep. If no beep and/or the red error light comes on,

press FL, 5,6 and the data key. This will remove the red error light.

Then repeat above. If still no beep and/or a red light, call Ragnhild.

If you press FL , 1 and 7 when the spot on view 2 is not centered on

the reticle, you should get the red light, unless you have zeroed

the registers at the place where the film is currently positioned.



170

Setting FRAME Number

Press the FC key. The current frame number will be displayed. To

type in a new frame number, key in the four desired digits. The digit

entered by the stroke of a key will appear to the left of the dot on the

indicator. For output on the typewriter, frame numbers are not printed.

C.4 LOGGING IN

In the PDP8 room, there are two teletypewriters. On the one being

used for log-in, log-out, turn the line-off-local switch to line. Type

LG and carriage return (CR). The teletypewriter will type:

TBL,ROLL,EXP,OP,SN,MN,SCNR,G/S. You should respond with the fol-

lowing information, separated by commas except after the G/S which is

to be followed by a CR.

TBL - your machine number. Hermes Senior is number 9, for example.

The table numbers are posted on the frame of each machine.

ROLL - Obtain a roll number from Marianne and use it regularly,

since your data will be taken off the data tape, if used, by

that number. Data with other roll numbers will have to be

taken off in separate computer runs. Logging with the wrong

table number may cause all your data to be lost.

EXP - You may assign any two digit (decimal) number to your experi-

ment that you wish.

OP - 0 - means that your data will be put on the magnetic tape to

be subsequently converted to card format data for you on
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cards or tape.

1 - means that your data will be punched on paper tape. If

you want this option, be sure to turn the other teletype

to LINE, make sure that there is paper in the paper punch

and push the "on" button on the punch.

2 - means that your data will be typed on the typewriter in

the following format:

FLAG x in microns y in microns

OCTAL (DECIMAL) OCTAL (DECIMAL)

xxxx xxxxxx (xxxxxx) xxxxxx (xxxxxx)

The meaning of the flag will be described under measuring.

SN - Scan number; use any decimal digit

MN - Measurement number; use any decimal digit.

SCNR - Your assigned scanner number. Please get a number from

Marianne and use only that number.

G/S - G means go, S means stop.

1. After G or S type CR.

2. After G, one of two messages will be typed.

TYPE FIRST FRAME NUMBER

or START AT FRAME NUMBER NNNNNN

If you receive the first message, type any six digit

number you wish and CR. For the second message, no

response is needed.

3. After S a message will be typed.
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TYPE LAST FRAME NUMBER

Type any six digit frame number you wish and then CR.

C.5 MEASURING

A. The first point

You can measure any number of points up to 88 in a series called

an event. For the first point, press FL, then 7 so the indicator reads

7000. Then set the reticle on the point and press the data key.

B. Subsequent points

On subsequent points, you may set the indicator to any one of the

following values as a marker. On the printed output, the flag will have

a value that is uniquely, but mystifyingly, related to the value to which

you set the indicator. The allowed indicator values are indicated below

with the corresponding flag values.

INDICATOR

7000
0000
1000
2000
3000
5000
6000
1200
1300
1011
1111
1211
1311
1411
1511

FLAG

0000 (must be used on first point of
0000
0000
0010
0100
0200
0210
0400
1000
0000
0001
0002
0003
0004
0005

event)
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If you use other values you may cause an error, or worse, erase the

previous data in your event. DO NOT USE 7000 after the first point.

Using the 7000 indicator causes all previous points to be rejected.

C. Ending a.series of measurements (an event)

When you have finished a series, or measured in 88 points, press the

E key.

NOTE: If you are taking your output on punched paper tape, you must

warn the other users before you push E, since their machines

will not respond until the tape has been completely punched.

This will advance the event number by one and start putting your output

on the chosen device. You cannot start measurements again until the data

are all written out. If you do, you will get a red error light. To

remove the red error light, press FL, 5 and 6 and then data. You should

get a beep, the red light will go out and you can try again, repeating

your new first point. If your output is on paper tape or the typewriter,

it will take a long time. You can listen to the machine typing to hear

when it is finished. If you are not sure how many points you have measured,

you can go to the log-in typewriter, switch it to LINE and type 1AAAA CR

where AAAA is given below.

Table # AAAA

6 3023
7 3623
8 4423
9 5223
10 6023

The typewriter will respond with an octal number equal to the number of

points you have measured since last pushing E.
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C.6 LOGGING OUT

Same as logging in except type S (stop) instead of G. If you are

working alone, turn off the PDP8 following the instruction manual at the

computer. If other people are working, leave your machine on. It will

be turned off at the end of the shift. If no one else is using a hand-

measuring machine, turn off the vacuum system.

C.7 DATA FORMATS

A. Typed: this format is described in section 2.

B. Paper tape punch:

The format is the following. The six bits per row of tape are, in

pairs, the most significant six bits (0-5) and the least significant six

bits (6-11) of each word of the record. The record format (12 bit) is as

follows.

WORD #

1 number of words to follow in record
2 record type (irrelevant)
3 roll number
4 scanner number (yours)
5 frame number, most significant bits
6 frame number, least significant bits
7 event number in bits 5-7
8 table number
9 scan number (2-6), measurement number (7-11)
10 scanner number (yours)
11 spare
12 spare
13 2048 + view number
14 point code, P. (1-3), generation code, G (4-6)

1 if key pushed, T. (7), ionization code, I. (9-11)
15 most significant bits of x (0-5), most significant bits of y

(6-11)
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WORD #

16 least significant bits of x
17 least significant bits of y

Words 14-17 are the first x-y point. Successive x-y points are formatted

in 4-word blocks like 14-17, for a total of 88 points.

The relationship between the keys pushed on measuring a point and

the bits that end up in word 14 are a bit confusing but the following

keys are legal and produce simple results.

KEY

0000
1000
2000
3000
5000
6000
1200
1300
1011
1111
1211
1311
1411
1511

P

0
0
0
0
0
0
1
2
0
0
0
0
0
0

I

0
0
0
0
0
0
0
0
0
1
2
3
4
5

OCTAL

0000
0020
0060
0020
0220
0260
0420
1020
0000
0001
0002
0003
0004
0005

C. Magnetic tape output

Under this mode, data are written on the magnetic tape of the PDP8

and are extracted on the LNS IBM 360/65 in the following format on cards,

or magnetic tape (FORTRAN format notation).

FRAME NUMBER, table number, view number, 5 measured points

(c,y), card index, measurement number, event number

14, 12, 3x, Il, 1016, "0", I, 6x, 211
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This format is repeated for each set of five points. The card

number is 0 for a card if more data are coming in a series, 1 if the

card is the last one of a series.
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APPENDIX D

Data

A complete set of OCR versus time plots for static OCR data is

presented first, followed by the ramp data and finally the sinusoidal

data. During the data collection, the ramp velocity data was taken

before the sinusoids on each subject. The run number indicates the

order within ramps or sines in which the stimuli were presented. For

example, subject 7 received the static OCR stimuli first, then the

ramp velocity profiles 0.05, 0.1, 0.2, 0.3 g then followed by 0.2 Hz,

0.4 Hz, and 1.0 Hz sinusoids all at 0.2 g. The labeling of plots

consists of first the type of stimulus, static, ramp, or sine, second

the subject number and third the acceleration level (for ramps) or

frequency (for sines). All sinusoids were performed at 0.2 g except

for subject 14 who underwent stimuli of 0.3 Hz, 0.1, and 0.2 and

0.3 g.

Ramp Code Sine Code

0 0.05 g 1 1.0 Hz

1 0.1 g 2 0.2 Hz

2 0.2 g 4 0.4 Hz

3 0.3 g

In this manner STATO8 is the static OCR data for subject 8, ramp 72

is the ramp data for subject 7 at 0.2 g and sin 121 is sinusoidal data

for subject 12 at 0.2 g, 1.0 Hz.
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Figure D.3 Static OCR of subject 6. Two symbols indicate two
different pictures taken 5-10 seconds apart.
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0

0

0

0 20 /\1 0

0

0 10 20 30

left ear down

Figure D.4 Static OCR of subject 7. Two symbols indicate two different
pictures taken about 5-10 seconds apart.

30

-4

-6

-8

4 0 - - - - ---- T

I
I II I

-2 t-



182

OCR (0)

A

0

20 10 10 20
left ear down

30

A
0

0

Figure D.5 Static OCR of subject 8. Two symbols indicate two different
pictures taken about 5-10 seconds apart.

7

6

5

4

3

2

0

-1

-2

--3

-4

-5

-6

-7

30
II I II I



183

OCR (0)
0

0

0

7

6

5

4

3

2

1

0

-1

-2

-3

-4

-5

-6

-7

20
left ear down

Figure D.6 Static OCR of subject 12. Two symbols indicate two different
pictures taken 5 to 10 seconds apart.

I I I
30 20

0

^0 1010

0

30

0

0

I



184
5 r-

4 f~-~

A
3 h-

0

30

-2 H- 0

20 10

0

0

0
10 20 30

Left ear down

0

-3 --

-4

Figure D.7 Static OCR of subject 14. Two symbols indicate two different
pictures taken about 5 to 10 seconds apart.

A

2

*1

OCR( 0 )

0

-1

I I I II I



(

(
(X

x
A A

X

x

2

x x

3 4

TIME CSEC)

x x x

I

0

-I

LO

-2

x

x

C-'

0

~0

0

-3

-4-
0 1 5 7

I I I

I I i I

RAMPOO



I

x
xx

xx

xx

x x

2 3 4 5 6

TIMECSECD

2

I
I.,
.4

0

co

-1

0

-2
I

-31
0 1 7

RAMP03

I I I

I I i

I I



x -x

xxx
x

x
x

2 3 4 5

TIMECSEC)

1

0

-1

co

-2.

-3
C0

0

-4
0 I 6 7

I I

I I - I i i i

x

RAMP02



e

x

2 3

TIMECSEC)

1

:4K

0

0000
-1

Kx

- x

xx
x x

A

r,)
LD

ur
0

-2

-3
0 I 4 5 6 7

I I I j- I

I I I I I

RAMPO1



I I I3

2

I
x

I-

x

A

xF x
x

xx

x

I I II II

2 3 4 5 6
RAMS0 TIMECSEC)

x

)

C

LU
0 -I

-2
0

7

I I

0

A

I

0
RAMP30



2

10

0

X X

x
>t-

2 3

TIMECSEC)

X

0
C.)

-1

CD
Lli

0

-2

-3
0 I 4 5 6 7

I I I

l , - I i

I I I i I

RAMP31



3

2

0 2 3

RAMP32 *TIME(SEC)



2

1

x4

0 x

-1v
CD

-2

-3
0 12 31 4 5 6 7.

RAMP33 TJMECSEC)



x
3-

x x

2

0x -
x

CX X

o -2X

~ 0

-
0 1 2 3 4 5 6

RAMP63 TIMECSEC)



X

x X
X X X

xX
X X

X

X

2 3

X

4

X

5

TIMECSEC)

2

1

-1

x

x X

C0

0

-2

I

0 1 6 7

I I i I I I

I I I

RAMPG0



-, x

x
X

x X
x

X

2 3

TIMECSEC)

3

2

0LO

X

co

C

cyi
C

-1

-21
0 1 4 5 6 7

RAMP62

I I I

I I

xX

X . x x

0

I I



I I I
I I I I

x

xxx

x
x x

xx
xx

~-xxxx
xx

I .

4.-- - -<5 6 7

RAP61 TIMECSEC)

I

0

cli

Ci
0

-1

-2
0 .,I 2

0

RAMP61



x
x~

x

xx x

1'
I

2

RAMP70

3

TIMECSEC)

2

1

.0

0~1

1
x

X
CJ
w

0\-j

Oy

-2

-3
0 1 4 5 6 7

II I II I

I I



2

1

0>

-1

2 3 4

TIMECSEC)

x

X
x x

XxX
X

/-N

C)

0

-3

-4

-5-
0

I I

1 5 7

II I i

I

RAMP71



-2

u1

.0. 34

RAMP7 TIMCSEX



3

2

1

2 3 4 5 6 7

TIMECSEC)

i x

xxxx
xX

-x

CD'

r-%

0C

-1

0 1

I I I

xK

I I- 2

RAMP73



2 ~.

0X

C\J

-2

LUx XXxx

0 12 3 4 5 7

RAMPe3 TTMECSEC)



I I

x

xx

x
x

x x xx

x x
x

x

I I

. 2 3 4 5

RAPS0 TIMECSECD

3

2

1

C,
C~J

0
x x

C

0

-1

-2
0 1 6 7

I

I

RAmpeo



2

xx

CD

MX X
x X.

0 12 3. 4 6 7
RAmpe2 TIMECSEC)



3 I.

0'
oo

X

XX-

X X X

XX.XXX
X X

X

X X

2

RAMP8i

3

TIME(SEC)

2H
I

1

c\1

6

r-'N

L.D

0

0

X

X

X
X

-2
1

th

1 4' 5 6 7

3 I I I I I i

I I I I



I I2

1

0

2 3 4 5 6 7

TIMECSEC)

0- 0
x o x -

(~O X O
CJ

-1

r-%

CD

cli

Q

-2

-3

0 1
I

I I I i I

I I I I

RAMP122



0x

n -

.6

6

2.

6
0

3 4

0
x

5

9

6

TIMECSEC)

2

IH-

0:

6
ko%

r-\

LU

0

0

6
-1

-2

-3-
0 ' I 7

I I I I I

i

I I I I I

RAMP120



I I I -2

1

0

I

x

x

2

x

3 4

TIMECSEC)

x

r.
C0 -1

ci

u
0

0

-2

-3-
0

I

5 B 7

I I

r

x
x-

x

I

RAMP 121



2

co

CD'

00

-21
0' 123 4 5 6 7

RAMP123 TTMECSEC)



2 3 4

TIMECSEC)

2

I

0
N

N
4'

-1
0iCDJ

xx
XX

XX

C-N

CD

0

0'

-2

-3
0 1 5 6 7

I

I I I I I

3

I I

RAMP141



I I

x

x

x
x x x

I I

2 3 4 5 6 7

TIMECSEC)

.12

1

0

C
c\j

-1

r-\

L-3

0

-2

-3
0 I

RAMP142

--i

11

-- I



2

1

N

1

2 3 4 5

TIMECSEC

x

x
C\J 1

CD

LU

0

-2

0 I 6 -7

I I . I I I

I I I I I I

RAMP143



-~~'~~~1~~~~~ I I I I I

x

-x

x x x

xx
x xx

4 6 8 10 12 14 16

TIMECSEC)

2

1

0

C~j

-1
C-N

CD)

L0J

tr
u
0

-2

-3
0 2 18

I I I I

I I I

I I I I

SINE02



x 
X

x x xX

X X

I I

4 6

TIMECSEC

2

1

C*\j

-1

f-
CD

0

-2

-3
0 B

I. I Ii .

SINE01



v

4

TIMECSEC)

1

0

-1

C~J -2

x

CD

tr

0

x

'

2

-3

-4
0 68 8 10

I I i

xx
xx X x

xxx x x

xxx

I I I I

SINE04



I I2

0)

4 6 8 10 12

TIMECSEC)

X X
X xx

xX
xX

- X

xX

LO)

CN\J

LDC

C-)

0

-1

-2

-31

0 2 14 16 18

SINE32

I I I I i i i

I II I I I I



3

2X

>x x
C\j

0

-ILu

0'

-2
0 .2 4 10

SINE34 TIMECSEC)



3

2

4 6

TIMECSEC)

CJ 0
)

f0w.

(2

0

-1

-2'
2 8 10

- . *

X X__ __ __ X

SINE31



2

0
x

X
xx

X X X X
X x

xx
xx

2

SINE64 TIMECSEC)

.4,

X

C

-I x
f-'N

CD
LUJ

0

-2

-3
0

I I

4.

.I

B 8

I I I

I



.1

x

xx
xx

x

4 S

TIMECSEC)

2

I

)

0

c.)

CD

C

0

-1

-2

-3
0. 2

(3

108
I

i I -

I

SINE61



1.

I .

I,

3

2

1

X

x x

x x x xx x

x x .x x x
x x

x

x x

4 6 8 10

. TIMECSEC)

x

x

C
(\J
C~J 0

x
x

LU

0

-2
0 A 2 12, 14 16 18

I I I

I I I I I i

16 .

-1 ) -

I I I I

SINE62



x

2 x

x x
x

x X x

CII

-2

0 x

-2
0' 2 -4 6 8 10 12 14 16 18

SINE72 TIMECSEC)



X *

4 6 8

TIMECSEC)

2

1

CJ
c~J
c%.J

-I

X X

LU

00

-2

0 2 10
I I

i i I I

I - I

SINE74



I *

I.

x

xw

x.

'I .,.. I

4

SIE7 TIMECSEC):

0

mv

w-,

-3
C-)
u

-4
I

x. x x x

6 83 10

I

SINE71



3

.2

I

4

TIMECSECY

xx X

)

)

0

x

x
X

XX X X 
.

xx
~o

I-'

C
wCy

u-
0

-1

/1K

-2 1I

0 2 B 9 10

I I I I

I I

SINEe4



2

x

4

TIMECSEC.

X

0 X x XX

LO
CMi
CMi

CD

LUCO
cr
0

-1

-2

-3
0 ,, 2 6 ' 8 10

I I i

x

yxxy
x

x
xx

x

x

. II I

SINE81



x
x

v

x
x

X

X

X

I -

4 6 8 10

TIMECSEC)

a

2

C\j

0

X

x

X x

tLx

X X

xx

xx X x

C

u
0

-1

-2 'I

0 2 1 2 - 14 16 18

I I I I I i i

II I I I I I

SINEe2



I ii

x

x

x

B6 8

TIMECSEC

2

1

oo
x

xX

x

X X

C~~j

x xX

x

x

-1

xx
xx

0-wD

0

-3

X XXX
x

XX

x

20 4 10

-1

SINE121



6

4

x
xo0
.0

6

6

x0
0

x0

6

8 10

TIMECSECM

2

1

/

0
0X0x

0
x

(

(

00
C\J -1

-\

CD
o j -2.-6 (

x0

I-3'
0 2 12 14 16 18

I I I

i I I I I I I i

I I . I

SINE122



x0
6

x x

66

06x

x
Ox

I I I I

4 6 0

TIMECSEC)

U

2

1

0

C311
C,*j

-1

x06

x
0

r-\

0

0

-2

0 2 10

)K

SINE124



.1

jI

-, . xx
:x..

x <..

x
- - x

.1

2 4 6

SUB 14,0.IG,0.3HZ

3

I

I.

C 2)

C

Cl.j 0. -x

LU

0

-1

-2
0 8 10

I

I

I

TIMECSECM



I.3

2

-1
x.

xx

xx

x xxX . -. . . ; . x

-2
2 4.

SUB 14,0.2G,0.3HZ

I'.

Cj

*1

0

-,N
CD

C

0

-1 -. x x

8' 10
I

. I I .

I

TIME.CSEC)



2

CI)

-11

SUB 14,0.3G,0.SHZ- TIMECSEO)



233

REFERENCES

ADRIAN, E.D., "Discharges from vestibular receptors in the cat", J. Physiol.
101:389-407, 1943.

BAARSMA, E.A. and COLLEWIJN, H., "Eye movements due to linear accelerations
in the rabbit", J. Physiol. 245:227-247, 1975.

BENJAMINS, C.E. and NIENHUIS, J.H. "Die Raddrehungskurve beim Menschen"
Arch Ohr-Nas-u Kehlk Heilk, 116:241-245, 1927.

BENSON, A.J. and BARNES, G.R., "Responses to rotating linear acceleration
vectors considered in relation to a model of the otolith organs", in:
Fifth Symposium on the Role of the Vestibular Organs in Space Exploration
Washington, DC, National Aeronautics and Space Administration, SP-314,
p. 221-236, 1973.

BISCHOF, N., "Optic-vestibular orientation to the vertical", in Vestibular
System Part 2: Psychophysics, Applied Aspects and General Inter-
pretations, ed. Kornhuber, H.H., Springer-Verlag, 1974, pp. 155-190.

BISCHOF , N. , and SCHEERER, E. , "System Analyse der optisch-vestibul ren
Interaction bei der Wahrnehmung der Vertikalen", Psychol. Forsch.,
34:99-181, 1970.

BRACCHI, R., GUALTIEROTTI, T., MORABITO, A., and ROCCA, F., "Multiday
recordings from the primary neurons of the statoreceptors of the
frog labyrinth of the bullfrog", Acta Otolaryngologica Suppl. 334, 1975.

BREUER, J., "Uber die Funktion der Otolithem-aparates", Pflugers Arch ges
Physiol. 48:195-306, 1891.

CHASEN, M.H., GUTHRIE, J.W., REPLOGLE, C.R., and JUNKER, A.M., Investigation
of the Primate Vestibular System Function Through Analysis of the
Vestibulo-ocular Reflex Response to Various Input Stimuli, AMRL-TR-71-4,
1967.

CLARK, B., "The oculogravic illusion as a test of otolith function", in:
The Third Symposium on the Role of the Vestibular Organs in Space
Exploration, NASA, SP-152, 1967, pp. 331-339.

COHEN, B., "Vestibulo-ocular relations" in: The Control of Eye Movements
Eds: Bach-Y-Rita, P., Collins, C.C. and Hyde, J.E., Academic Press
New York and London, 1971.

COHEN, B., KREJCOVA, H. and HIGHSTEIN, S., "Ocular counterrolling induced
by static head tilt in the monkey", Fed. Proc. 454, 1970.

COLENBRANDER, A., "Eye and Otoliths", Aeromed. Acta, Soesterberg, 9:45-91,
1963-4.



234

CORREIA, M.H., HIXSON, W.C., and NIVEN, J.I., "Otolith shear and the
visual perception of force direction: Discrepancies and a
proposed resolution" Naval Aerospace Medical Institute, NAMI-951, 1965.

CORVERA, J., HALLPIKE, C.S., and SCHUSTER, E.H.J., "A new method for the
anatomical reconstruction of the human macular planes", Acta Otolaryn-
gologica 49:4-16, 1958.

DE VRIES, H.L., "The mechanics of the labyrinth otoliths", Acta Otolaryn-
gologica 38:262-273, 1950.

DEKLEYN, A and MAGNUS, R, "Uber die Unabhangigkeit der Labyrinthreflex vom
kleinhern und uber die Lage der Zentren fur die Labyrinthreflexe in
hirnstamm", Pflugers Arch ges Physiol. 178:124-178, 1920.

DIAMOND, J.G., MARKHAM, C.H., SIMPSON, N.E., and CURTHOYS, I.S., "Binocular
counterrolling in humans during dynamic rotation", Acta Otolaryngol.
in press 1979.

FENDER, D.J., "Torsional motions of the eyeball", Brit. J. Ophthal. 39:65,
1955.

FERNANDEZ, C. and GOLDBERG, J.M., "Physiologyof peripheral neurons innervating
otolith organs of the squirrel monkey. I. Response to static tilts
and long duration centrifugal force", J. Neurophysiology 39:970-984,
1976a.

FERNANDEZ, C. and GOLDBERG, J.M., "Physiology of peripheral neurons innervating
otolith organ in the squirrel monkey. II. Directional selectivity and
force response relations" J. Neurophysiology 39:985-995, 1976b.

FERNANDEZ, C. and Goldberg, J.M., "Peripheral neurons innervating otolith
organs in the squirrel monkey. III. Response dynamics" J. Neurophysiol.
39:996-1008, 1976c.

FINKE, R.A. and HELD, R., "State reversals of optically induced tilt and
torsional eye movements", Perception and Psychophysics 23:337-340, 1978.

FLOCK, A. and WERSALL, J., "A study of the orientation of the sensory hairs of
the receptor cells in the lateral line organs of fish, with special
reference to the function of the receptors", J. Cell Biol. 15:19, 1962.

FLUUR, E. and MELLSTROM, A., "Utricular stimulation and oculomotor reactions"
Laryngoscope 80:1701-1712, 1970a.

FLUUR, E. and MELLSTROM, A., "Saccular stimulation and oculomotor reactions"
Laryngoscope 80:1713-1721, 1970b..



235

FUJITA, Y., ROSENBERG, J. and SEGUNDO, J.P., "Activity of cells in the
lateral vestibular nucleus as a function of head position", J. Physiol.
196:1-18, 1968.

GALOYAN, U.R., ZENKIN, G.M., and PETROV, A.P., "Investigation of the
torsional movements of the human eyes - II. Slow phase of torsion",
Biofizika 21:6, 1081-1086, 1976.

Gernandt, B.E., "Otolithic influences and extraocular and intraocular
muscles" in: Fifth Symposium on the Role of the Vestibular Organs in
Space Exploration, NASA SP-314, 195-201, 1973.

GOLDBERG, J.M. and FERNANDEZ, C., "Vestibular mechanisms", Ann. Rev. Physiol.
37:129-162, 1975.

GRAYBIEL, A., MILLER, E.F., II. and HOMICK, J.L., "Experiment M-131 - Human
vestibular function", in: The Proceedings of the Skylab Life Sciences
Symposium, Volume I, NASA TMX-58154, p. 169-212, 1974.

GUNDRY, A.J., "Thresholds of perception for periodic linear motion", ASEM
49:679-686, 1978.

HANNEN, R.A., KABRISKY, M., REPLOGLE, C.R., HARTZLER, V.L., and ROCCAFORTE,
P.A., "Experimental determination of a portion of the human vestibular
response through measurement of eyeball counterroll", IEEE Transactions
on Biomedical Engineering BME-13:65-70, 1966.

HIEBERT, T.G. and FERNANDEZ, D., "Deitersian response to tilt" Acta Otolaryn-
gologica 60:180-190, 1965.

HOLST, E. von, "Die Arbeitsweise des Statolithen apparates bei Fischen",
Z. vergl. Physiol. 32:60-120, 1950.

HUDSPETH, A.J. and COREY, DP,, "Sensitivity, polarity and conductance
changes in the response of vertebrate hair cells to controlled
mechanical stimulus", Proc. Natl. Acad. Sci., 74:2407-2411, 1977.

JONGKEES, L.B.W., "On the otoliths: Their function and the way to test them"
in: Third Symposium on the Role of the Vestibular Organs in Space
Exploration, NASA SP-152, 1967, p. 307-330.

JONGKEES, L.B.W., "The parallel swing test", in: The Vestibular System and
its Diseases, R.J. Wolfson, Ed., University of Pennsylvania Press,
218-228, 1966.

JUNKER, A.M., REPLOGLE, C.R., SMILES, K.A., BROWN, R.D., and WHEELER, R.,
"Analysis of the vestibulo-ocular counteroll reflex in primates" AMRL-
TR-71-59, Aerospace Medical Research Laboratory, Wright-Patterson
AFB, Ohio, 1971.



236

LINDERMAN, H.H., "Studies on the morphology of the sensory regions of the
vestibular apparatus", Ergnb. Anat. Entw. Gesch. 42:1-113, 1969.

LOPEZ-ANTUNE, Z.L., Atlas of Human Anatomy, W.R. Saunders Co., Philadelphia
1971, pp. 334-335.

MACADAR, 0., WOLFE, G.E., O'LEARY, D.P.,, and SEGUNDO, J.P., "Response of
the elasmobranch utricle to maintained spatial orientation, transistions
and jitter", Exp. Brain Res. 22:1-13, 1975.

MALCOLM, R. and MELVILL JONES, G., "Erroneous perception of vertical motion
by humans seated in the upright position", Acta Otolaryngolica, 77:
274-283, 1974.

MATSUOKA, I., FUKUDA, N., TAKAORI, S., and MORIMOTO, M., "Responses of
single neurons of the vestibular nuclei to lateral tilt and caloric
stimulation in the intact and hemilabyrinthectomized cat", Acta
Otolaryngologica 72:182-190, 1971.

MEIRY, J.L., The Vestibular System and Human Dynamic Orientation, Sc.D.
Thesis Department of Aeronautics and Astronautics, Massachusetts
Institute of Technology, 1965.

MELVILL JONES, G., "Vestibular interference with vision in flight", Proc.
Roy. Soc. Med. 52:185-186, 1958.

MELVILL JONES, G. and YOUNG, L.R. "Subjective detection of vertical
acceleration: A vertical dependent response?" Acta Otolaryngologica
85:1, 1978.

MILLER, E.F., II., "Counterrolling of the human eyes produced by tilt with
response to gravity", Acta Otolaryngologica 54:479-501, 1962.

MILLER, E.F., II. and GRAYBIEL, A., "Otolith function as measured by
ocular counterrolling", in: The Role of the Vestibular Organs in
Space Exploration, NASA SP-77, 1965.

MILLER, E.F., II. and GRAYBIEL, A., "Effects of drugs on ocular counter-
rolling" NAMI-1046, 1968.

MILLER, E.F., II. and GRAYBIEL, A., "Effects of gravitoinertial force on
ocular counterrolling", J. Applied Phys. 31:697-700, 1971.

MILLER, E.F., II. and GRAYBIEL. A., "Ocular counterrolling measured during
eight hours of sustained body tilt", NASA T-81633, 1972.

ORMSBY, C.C. Model of Human Dynamic Orientation, Ph.D. Thesis, Department
of Aeronautics and Astronautics, Massachusetts Institute of Technology,
1974.



237

OWADA, K. and SHIZU, S., "The eye movement as a saccular function", Acta
Otolaryngologica 52:63-71, 1960.

PETERSON, B.W., "Effect of tilting on neurons in the vestibular nuclei of
the cat", Barin Res. 6:606-9, 1967.

PETROV, A.P. and ZENKIN, G.M., "Torsional eye movements and constancy of the
visual field", Vision Res. 13:2465-77, 1973.

QUIX, F.H., "The function of the vestibular organ and the clinical examination
of the otolithic apparatus", J. Laryngol. Otol. 40:425-443, 493-511,
1925.

ROBINSON, D.A., "A method of measuring eye movement using a scleral search
coil in a magnetic field", IEEE Transactions BME-10:1370145, 1963.

SCHONE, H., "On the role of gravity in human spatial orientation" Aerospace
Med. 35:764-772, 1964.

SCHOR, R.H., "Responses of cat vestibular neurons to sinusoidal roll tilt"
Exp. Brain Res. 20:347-362, 1974.

SCHULTE, R.J. and VREELAND, R.E., The Design and Construction of An Acceler-
ation Cart, M.S. Thesis, Massachusetts Institute of Technology, 1964.

SHIMAZU, H. and SMITH, C.M., "Cerebellar and labyrinthine influences on
single vestibular neurons identified by natural stimuli", J.
Neurophysiol. 34:493-508, 1971.

SMILES, K.A., HITE, D., HYAMS, V.J., and JUNKER, A.M., "Effects of labyrinth-
ectomy of the dynamic vestibulo -ocular counterroll reflex in the
Rhesus monkey", ASEM, 46:1017-1022, 1975.

SPOENDLIN, H., "Ultrastructure of the vestibular sense organ", in: The
Vestibular System and Its Diseases, R.J. Wolfson, Ed., University
of Pennsylvania Press, 1966, 39-68.

STEIN, B.M. and CARPENTER, M.B., "Central projections of portions of the
vestibular ganglia innervating specific parts of the labyrinth in
the Rhesus monkey", Am. J. Anat. 12:281-318, 1967.

SUZUKI, J.I., TOKUMASU, L., and GOTO, K. "Eye movements from single
utricular nerve stimulation in the cat", Acta Otolaryngologica 68:
350-362, 1969.

TOKUMASU, K., GOTO, L., and COHEN, B., "Eye movements from vestibular nuclei
stimulation in monkeys", Annals Oto-Rhino-Laryngology 78:1105-1118,
1969.

TRUEX, R.C. and CARPENTER, M.B. Human Neuroanatomy, Sixth Edition, William
and Wilkins Company, Baltimore, MD, 1969.



238

VIDAL, J., JEANNEROD, M., LIFSCHITZ, W., LEVITAN, H., ROVENBERG, J., and
SEGUNDO, J.P., "Static and dynamic properties of gravity-sensitive
receptors in the cat vestibular system", Kybernetik 9:205-215, 1971.

VILSTRUP, G and VILSTRUP, T., "Does the utricular otolitic membrane move
on postural changes of the head?" Ann. Otol. 61:189-197, 1952.

WESTHEIMER, G and BLAIR, S.M., "The ocular tilt reaction - a brainstem
oculomotor routine", Invest. Ophthalmol. 14:833-839, 1975.

WOELLNER, R.C. and GRAYBIEL, A., "Counterrolling of the eyes and its
dependence on the magnitude of gravitational or inertial force acting
laterally on the body", J. Appl. Physiol. 14:632-634, 1959.

YOUNG, L.R. and MEIRY, J.L., "A revised dynamic otolith model", Aerospace
Med. 39:606-608, 1968.



BIOGRAPHICAL SKETCH

Byron K. Lichtenberg received his Bachelor of Science degree (cum

laude) from Brown University in 1969. He entered the U.S. Air Force and

was a fighter pilot for four years. During this time, he had a tour in

southeast Asia; he was awarded 11 air medals and 2 Distinguished Flying

Crosses. Upon his return to civilian life, he entered M.I.T. in 1973

and was awarded the Master of Science degree in 1975 for his work in

the neural control of prostheses. He joined the Man-Vehicle Laboratory

in the Department of Aeronautics and Astronautics in 1976. When the

Man Vehicle Laboratory was awarded a contract to develop a series of

space experiments in the vestibular research and space sickness areas,

he was nominated and finally chosen as one of two U.S. Payload Specialist

Astronauts. He currently is training for Spacelab 1, the first scientific

flight of the Space Shuttle.


