
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2013-031 December 29, 2013

Synthesis of Randomized
Accuracy-Aware Map-Fold Programs
Sasa Misailovic and Martin Rinard

Synthesis of Randomized Accuracy-Aware Map-Fold
Programs

Sasa Misailovic and Martin Rinard
MIT CSAIL

{misailo,rinard}@mit.edu

Abstract. We present Syndy, a technique for automatically synthesizing ran-
domized map/fold computations that trade accuracy for performance. Given a
specification of a fully accurate computation, Syndy automatically synthesizes
approximate implementations of map and fold tasks, explores the approximate
computation space that these approximations induce, and derives an accuracy ver-
sus performance tradeoff curve that characterizes the explored space. Each point
on the curve corresponds to an approximate randomized program configuration
that realizes the probabilistic error and time bounds associated with that point.

1 Introduction
Many computations exhibit inherent tradeoffs between the accuracy of the results they
produce and the time required to produce these results. Examples include audio and
video processing applications, numerical computations, machine learning, and search
applications. A key aspect in tuning these applications is finding alternative implemen-
tations of the program’s subcomputations and configurations of these subcomputations
that yield a profitable tradeoff between accuracy and performance.

Researchers have previously proposed several language-based techniques for navi-
gating the tradeoff space and identifying or synthesizing alternative versions of subcom-
putations that help deliver desired tradeoffs. Many of these approaches are empirical in
nature – to find profitable tradeoffs they execute programs on a set of representative
training inputs and use this information to make decisions when faced with (previ-
ously unseen) production inputs [16,17,2,14,3,12,19]. In contrast to these dynamic ap-
proaches, static techniques [13,8,21,6] allow a user to specify the properties of program
inputs (e.g., specific ranges or probability distributions of inputs) and computations
(e.g., continuity), which can be used to guide the optimization of the program. Out
of these static approaches, only the analysis presented in [21] is used to reason about
accuracy versus performance tradeoffs.

Syndy. This paper presents Syndy, a technique for accuracy-aware optimization of ap-
proximate map-fold computations. Syndy takes as input a program that implements a
fully accurate map-fold computation, a set of intervals of the inputs of this computation,
and a set of alternative implementations of program’s subcomputations. Syndy produces
as output a transformed, randomized, approximate program that can execute at a num-
ber of points in the program’s underlying accuracy versus performance tradeoff space.
This tradeoff space is induced by the transformations (specifically, subcomputation sub-
stitution and sampling of fold operands) that Syndy implements.

Syndy uses an optimization algorithm presented previously in [21] to explore the
tradeoff space and construct an optimal tradeoff curve of the approximate program.
This optimization algorithm defines and solves mathematical optimization problems to
construct a tradeoff curve that contains optimal tradeoffs between accuracy and per-
formance for map-fold computations expressed in an abstract model of computation
based on graphs. Each point on the tradeoff curve contains a set of randomized program
configurations that deliver the specified accuracy/performance tradeoff.

Contributions. This paper presents a programming language for map-fold computa-
tions and an optimization algorithm that operates on programs written in this language.
Specifically, in comparison with previous research [21], this paper makes the following
contributions:

– Language. It presents a language for expressing map-fold computations and de-
fines the semantics of this language ([21], in contrast, worked with an abstract
model of computation based on graphs).

– Synthesis of Alternate Computations. It presents program transformations that
induce the underlying accuracy versus performance tradeoff space ([21], in con-
trast, worked directly on the graphs from the abstract model of computation).

– Mapping. It presents a mapping from the Syndy programming language to the
abstract model of computation from [21]. This mapping enables the use of the op-
timization framework to find optimal tradeoffs for map-fold programs.

– Implementation and Evaluation. It presents experimental results from an imple-
mentation of the optimization algorithm ([21], in contrast, presented a theoretical
algorithm with no implementation).

2 Example
Figure 1 presents an example map-fold program. The program takes as input features
of images (such as edges of objects in the image and the foreground/background data)
and a set of models that represent the position of persons in the image. The program
analyzes the models and computes the maximum likelihood, which corresponds to the
model with minimum error from the image data. This computation is derived from a
part of the Bodytrack motion tracking application [5] that computes the location of
persons in a sequence of images from security cameras.

Functions. Syndy allows specifying two kinds of functions – primitive and compos-
ite. Primitive functions are defined in an external programming language and can use
arbitrary complex language constructs. Syndy treats the primitive functions as black
box computation. Composite functions are defined as expressions in Syndy’s language.
Composite functions call and operate on the results of the primitive functions. Both
primitive and composite functions produce numerical results.

The functions ImageEdge and ImageInside are primitive. These functions take two
input parameters, image (image pixel information) and model (the model of the per-
son’s location), and produce numerical values as the outputs. The function ImageEdge

function ImageEdge(image, model);
function ImageInside(image, model);
function Exp(val);
function Max(val1, val2);

function Likelihood(image, model) :=
Exp(-1*((ImageEdge(image, model)

+ ImageInside(image, model)))

program (images, models) :=
fold(0, Max,

map (Likelihood,
zip(images, models)))

Fig. 1: Example Program
o

SpecF(ImageEdge) := (
{ (IEdge, 0,Te0), (IEdge1, Ee1,Te1),
(IEdge2, Ee2,Te2), (IEdge3, Ee3,Te3)
}, (NA,NA))

SpecF(ImageInside) := (
{ (IInside, 0,Ti0), (IInside1, Ei1,Ti1),
(IInside2, Ei2,Ti2), (IInside3, Ei3,Ti3)
}, (NA,NA))

SpecF(Exp) := ({ (Exp, 0,Texp) }, 1)
SpecF(Max) := ({ (Max, 0,Tmax) }, (1,1))

SpecI(images) := (400)
SpecI(models) := (400)

Fig. 2: Function And Input Specifications

compares the prediction of the person’s location from the model with the sharpness of
image object edges. The function ImageInside compares the model prediction with the
foreground/background surfaces from the image. The result of each function is the error
between the image data and the model, which is a value between 0 and 1.

The function Likelihood is composite – it computes the arithmetic expression that
calls three primitive functions, Exp (exponentiation), ImageEdge, and ImageInside.

Program Inputs. The program takes as input the list containing pointers to the raw
image (image) and the list of models (models). Both lists contain structurally complex
data structures. These data structures can only be processed by primitive functions; the
map-fold computation operates on numerical data and only passes the complex data
structures to primitive functions.

Main Computation. The computation uses the helper zip operator to combine the two
input lists and construct a list of pairs of the images and models. This list is passed as
input of the map operator. The map operator applies the function Likelihood for each
element of the input list. Since each element of the input list is a pair of values, the
map operator unpacks the pair elements and passes them as arguments of the function
Likelihood. The map operator uses a lazy evaluation strategy: its output list contains
the expression terms that evaluate to the likelihood for each input parameters. When the
result of the map operator is required, these expressions are evaluated to produce the
numerical values.

The fold operator computes the maximum value of the likelihoods of all models in
the input list using the built-in Max function. Since the input list of the fold operator con-
tains the expressions that compute likelihoods, these expressions are evaluated before
executing the Max operation. Max then performs comparisons on numerical values. The
result of the fold operator is a numerical value that is the maximum likelihood. This is
also the result of the program.

2.1 Approximating Computations
This computation has several opportunities for trading accuracy for additional perfor-
mance. First, the functions ImageEdge and ImageInside in the ideally accurate imple-
mentation compare all pixels of the input image with the corresponding model location.
Approximate implementations of these functions can sample only a subset of pixels
when computing the image/model difference. Second, the maximization fold operator

may skip some of its inputs, effectively looking for the maximum likelihood of only
a subset of models (typically without incurring a major accuracy penalty). When the
fold operator skips likelihoods computed from some of the models, then the previous
map operator’s computation for these models can also be skipped; this computation
skipping may provide significant additional performance benefits. Syndy uses specifi-
cations of primitive functions and inputs to generate alternative implementations of the
computation and exploit these approximation opportunities.

Accuracy/Performance Specifications. The developer provides specifications of ac-
curacy and performance of alternative function implementations. Figure 2 presents the
specification of the example functions (SpecF). The specification consists of two parts.
The first part is a set of alternative function implementation specifications. Each spec-
ification contains the name of function, the expected absolute error incurred by the
execution of this implementation, and the expected execution time.

The function ImageEdge has four implementations: the original implementation (de-
noted as IEdge) does not incur any error, and it executes in time Te0. The other three
implementations are approximate; each of these approximate implementations performs
a regular sampling of the image pixels. The error that the approximate implementa-
tions incur is greater than 0, but their execution time is smaller. Both error and time
specifications are numerical constants – for instance, they may have the following
values: (IEdge, 0.000, 0.174), (IEdge1, 0.004, 0.097), (IEdge2, 0.012, 0.059)
and (IEdge3, 0.016, 0.051). The specification for ImageInside is similar. The func-
tions Exp and Max have only a single, fully accurate implementation.

The second part of the accuracy/performance specification of the function is the
sensitivity of the function’s result to the changes in each of its numerical input pa-
rameters.1 Consider the function Max. Its sensitivity vector has two elements (since the
function has two parameters). Both sensitivity coefficients are 1, which indicates that
the function Max does not amplify the error of its arguments. Therefore, the noise of
the output of the maximum operation is proportional to the noise introduced in each of
the function’s arguments. The developer has specified that the sensitivity of the func-
tion Exp is 1. For this the developer uses the additional information that the functions
ImageEdge and ImageInside produce a result between 0 and 1. Finally, the functions
ImageEdge and ImageInside take as input complex data structures. Since the sensitivity
is defined only for numerical parameters, the developer uses the keyword NA to denote
that the sensitivity information is not applicable for these parameters

Input Property Specification. The function SpecI specifies the properties of the inputs
of the computation, such as the size of the input lists and the intervals of the input values
(if applicable). The example specification specifies that the lists images and models have
400 elements each. For lists of numerical data, a user can also specify the intervals of
the inputs; however since the input lists in the example contain complex data structures,
this part of the specification is not applicable.

1 Specifically, the sensitivity coefficients are Lipschitz constants of a function. For instance, for
a function with one argument, S is a Lipschitz constant if ∀x . | f (x + δx) − f (x)| ≤ S · |δx|.
The definition of sensitivity can also be restricted for x that belongs to a closed subinterval of
numbers.

Map/Fold
Program

Alternate Function
Specifications

Translation to
Accuracy-aware model

Optimal Configuration
Search

Execution
Configuration Selection

Approximate
 Program Synthesis

Configurable
approximate
program

Program
Model

Tradeoff
Curve

Fig. 3: Synthesis Framework Overview Fig. 4: Bodytrack Tradeoffs

2.2 Automating Transformations

Figure 3 presents an overview of the framework that synthesizes configurable approx-
imate implementations of map-fold computations and searches for configurations of
these computations that deliver optimal tradeoffs between performance and accuracy of
these computations. The framework takes as input the original map-fold computation
and the function and input specifications. The framework consists of 1) the program
synthesis component, which constructs an approximate configurable program from the
original one, and 2) the optimal configuration search component, which computes con-
figurations that deliver optimal tradeoffs between accuracy and performance.

Approximate Program Synthesis. We define the semantics of the Syndy’s language of
map-fold computations that allows for effectively using the probabilistic choice expres-
sion to implement the choice between multiple function implementations and sampling
of inputs of fold operations. The probabilistic choice expression, e1 q⊕ e2, is controlled
by the configuration variable q: the expression e1 is executed with probability q and
the expression e2 is executed with probability 1 − q. The value of q is specified at the
beginning of the program execution.

Syndy synthesizes an approximate configurable implementation of the function by
replacing the function calls in the original program with the call to the synthesized
function that contains the probabilistic choice between the original and all alternative
implementations of the function (declared in the function specification). For example,
the configurable implementation of the function Likelihood is

ImageEdge’(image, model) := IEdge(image, model) qe1⊕ IEdge1(image, model) qe2⊕
IEdge2(image, model) qe3⊕ IEdge3(image, model)

ImageInside’(image, model) := ImageInside(image, model) qi1⊕ IInside1(image, model) qi2⊕
ImageInside2(image, model) qi3⊕ IInside3(image, model)

Likelihood’(image, model) := Exp(-1*(ImageEdge’(image, model) + ImageInside’(image, model))).

This alternative computation randomly calls the original or approximate implemen-
tations of the functions ImageEdge and ImageInside. Probabilistic choice operations

execute from left to right. The variables qe1, qe2, qe3 and qi1, qi2, qi3 control the execu-
tion of the function Likelihood’. Syndy changes the map operator to call the function
Likelihood’ instead of the original function Likelihood.

The sampling of the maximization node is performed similarly. The function Max(a, b),
which computes the maximum between the temporary aggregation variable a (which
contains the maximum value seen so far) and the new input b, is replaced with

Max(a,b) := Max(a,b) qm ⊕ a.

This alternative implementation therefore skips the calculation of the subcomputation
that computes the input b with probability 1 − qm. Therefore, the final approximate
configurable program becomes:

program (images, models) :=
fold(0, Max’, map(Likelihood’, zip(images, models)))

2.3 Optimal Configuration Synthesis
The variables qe1, qe2, qe3, qi1, qi2, qi3, and qm represent the configuration of the synthe-
sized approximate program. This program can execute at many points in the tradeoff

space by selecting the values of the configuration variables. To synthesize the con-
figurations of the approximate map-fold program, Syndy 1) translates the map-fold
computation into an equivalent graph model from the accuracy-aware model of compu-
tation and 2) runs the optimization algorithm on this graph model to obtain the program
configurations.

Accuracy-aware Model of Computation. The accuracy-aware model of computation
presented in [21] is a tree of computation and reduction nodes. A computation node
represents the computation that executes independently on m inputs in parallel. The
number of inputs m represents multiplicity of the node. The computation performed on
each input is represented as a dataflow directed acyclic graph, where each node repre-
sents a computation (called function nodes), and each edge between nodes represents
a data flow between the function nodes. A reduction node represents aggregate opera-
tions on m inputs. The aggregate operations that the model supports include summation,
averaging, minimization and maximization.

Translation to Accuracy-aware Model. Syndy translates the map-fold program to
a tree of computation and reduction nodes. The functions with alternative implemen-
tations in map-fold programs are translated to function nodes. The map operators are
translated to computation nodes. The fold operators with appropriate function (sum,
avg, min, or max) are translated to the corresponding reduction node. The translation
component also represents each alternate synthesized computation as a transformation
within the accuracy-aware model. We discuss this translation in Section 5.

Optimal Configuration Search Algorithm. The configuration optimization algorithm
uses the graph model to search the tradeoff space induced by the program configura-
tions. The optimization algorithm produces an optimal accuracy/performance tradeoff
curve [21]. Each point on the tradeoff curve contains 1) the upper bound on the expected
absolute error, 2) the upper bound on the execution time, and 3) the configuration of the

transformed program that delivers the specified tradeoff. Figure 4 presents the optimal
tradeoff curve between the error and the execution time that Syndy produces for the ex-
ample computation. The execution time is normalized to the time of the original (fully
accurate) implementation of the computation. We discuss the implementation and the
initial evaluation of the configuration optimization algorithm in Section 6.

2.4 Program Configuration Selection
At the start of the execution of the synthesized randomized program, the runtime system
selects the program’s configuration based on the user-provided error tolerance bound
∆. The runtime reads from the tradeoff curve the configuration that guarantees that
the execution error is smaller than ∆. For instance, if the user selects tolerance bound
∆ = 0.2, the runtime will select the configuration from the point (1) in Figure 4. This
configuration executes in time at most 55% of the execution time of the original (non-
approximate) program. The runtime system replaces each configuration parameter q
with the corresponding numerical value from the obtained configuration vector. Then
such program is guaranteed to produce the result that is within the user-specified bound.

3 Language
Figure 5 presents the syntax of the language of map/fold computations. A program is a
set of function declarations and definitions (D) and a program expression that consists
of map and fold operators. A developer can declare primitive functions, which are
external black box computations, or define composite functions.

Data Types. The program operates on the following inputs:
– Numerical Values. The numeric set represents rational numbers. The range of num-

bers that this type represents is not bounded.
– Opaque Values. The inputs of the program may also contain elements of complex

data types. These data types are opaque to the Syndy’s computation. Opaque values
can only be passed as arguments of primitive functions.

– Lists. An input list contains numeric or opaque values. Each input list has a (known)
finite size.

Functions. The language supports two kinds of functions:
– Primitive functions. These are atomic black box computations (from the perspective

of Syndy’s language). These functions can be implemented in an external program-
ming language. Primitive functions can take numerical or complex data structures
as input, but they produce only numerical values as outputs. A primitive function is
declared by specifying its name and the list of parameters.

– Composite functions. Composite functions are defined in Syndy ’s language. The
function declaration includes the function name and the list of formal parameters.
The body of these functions is an expression that produces a numerical value.

Both primitive and composite functions return numerical values. We note that only
primitive functions can operate on vales of opaque type. We omit the presentation of
a type analysis that ensures that the primitive functions accept the parameters of the
proper type (i.e., numerical or opaque) and that the arithmetic operations operate on
numerical data.

n ∈ Numeric
o ∈ Opaque
x ∈ Vars
a ∈ ListVars
p ∈ [0, 1]

D ∈ Decl → f (x1, . . . , xn) := e |
f (x1, . . . , xn);

L ∈ LExp → a | [t1, . . . , tk] | map(f ,L) |
[t〈x〉 : x in 1 : n] | zip(L1, L2)

t → ē | (ē, t)

e ∈ Exp → x | e1 op e2 |
e1 p⊕ e2 |
let x = e1 in e2 |
f (e1, . . . , ek) | ē

ē → v | fold(n, f ,L)
v → n | o

P ∈ Prog → D∗ program(a∗) := [ē | L]

Fig. 5: Syndy’s Target Language Syntax

Probabilistic Choice Operation. The language supports the probabilistic choice oper-
ation p⊕ , which computes the result of the expression e1 with probability p; it computes
the result of the expression e2 with probability 1 − p. The choice is controlled by the
numerical constant p ∈ [0, 1].

Arithmetic Operations. The language supports the standard arithmetic operations,
including addition, subtraction, and multiplication.

Tuples. The language defines tuples as an auxiliary data structure that allows the devel-
oper to use functions with multiple arguments within the map operator. It also defines
the auxiliary zip operator, which produces a list of pairs from two lists of the same size.
We define an additional syntax construct (ē1, ē2, . . . , ēn) to succinctly represent the tuple
(ē1, (ē2, . . . , ēn)) and zipn(L1, L2, . . . , Ln) to represent zip(L1, zip(L2, . . . , Ln)).

Map Operators. A map operator takes as input a function f and a list of inputs. It
applies the function f independently on each element of the input list L to produce the
list of outputs. An input list of a map operator is either a program input or an enumerated
list of the results of the previous subcomputations, [t1, . . . , tn].
We define a parameterized enumerated list, an additional language construct [t〈x〉 :
x in 1 : n], to succinctly represent the enumerated list [t[1/x], . . . , t[n/x]], in which all
free occurrences of the variable x in all elements of t are substituted by a constant from
1 to n, respectively.

Fold Operator. A fold operator takes as input 1) a starting numerical value n, 1) a
function f , which takes as input a temporary value of the accumulator and a single
element from the list and produces the results of aggregation, and 3) a list of numerical
inputs. In each step, the function f reads a single input from the list and computes the
intermediate aggregate value. The output of the fold operator is a single numerical value
that aggregates the contributions of all elements of the input list.

Well-Formed Program. The root expression of a well-formed program is a map or a
fold operator. All tuples within an enumerated list in a well-formed program have the
same number of elements and all lists referenced by a zip operator have the same length.

3.1 Language Semantics
We first note several points that have influenced the design of the language:

– Probabilistic Randomized Execution. The language supports a probabilistic choice
operator, which (with specified probability) executes one of its argument expres-
sions. We use this operator as a foundation for expressing randomized transforma-
tions, such as implementation substitution and sampling, within the language.

– Lazy Evaluation of Map Operators. To support sampling of fold operators, the se-
mantics of the language delays the execution of the computation of the map op-
erators until these results are needed. Therefore, if some of the results of the map
operator are not used by the subsequent computation, then these results are not
computed.

– Isolation of External Computation. To support a broader set of computations, the
language enables calling an arbitrary complex computation (written in an external
programming language) that operates on individual pieces of data. However, the
only effect of the external computation is the result that it returns; the external
computation does not have visible side effects.

Preliminaries. The semantics of the language models an abstract machine with a mem-
ory that contains the inputs of the program. The memory is read-only. To represent
the state of the computation, we define the set of generalized expressions GExp =

Exp ∪ LExp. The canonical expressions GVal that the abstract machine produces are
numerical and opaque values, and tuples and lists of values and functions applied to
closed expression terms.

Figure 6 presents the transition rules of the operational semantics. These rules rep-
resent the program execution with a probabilistic, non-deterministic transition system.
The big-step evaluation transition is a ternary relation · ·

=⇒ · ⊆ GExp × [0, 1] × GVal.
The probabilistic big-step evaluation relation E

p
=⇒ v states that the expression E ∈

GExp evaluates in one or multiple steps to the final canonical expression v ∈ GVal with
probability p. A numerical or opaque value always evaluates to itself with probability 1.

We define a substitution operation e1[e2/x] in a standard way – it produces a new
expression obtained by syntactically replacing all free occurrences of the variable x
within the expression e1 with another expression e2. Multiple substitution operations
are applied from left to right.

Probabilistic Choice Operation. The rule for probabilistic choice evaluates to the
expression e1 with probability p or the expression e2 with probability 1 − p. The rule
specifies that only one of the expressions e1 or e2 will be computed.

Arithmetic Operations. The rules the arithmetical expressions are standard: the prob-
ability that an arithmetic expression will produce a result n1 op n2 is equal to the product
of probabilities that the expressions e1 and e2 evaluate to the numerical values n1 and
n2, respectively.

Primitive Function Calls. The transition rule for a primitive function call E-FUN-EXT
first evaluates all function’s parameter expressions in a call-by-value fashion. Then, the
opaque values and the computed numerical values are passed to the primitive functions.
The result of a primitive function n f is the only observable effect of the function’s
execution. This execution does not have to be deterministic; therefore it may produce a
specific result n f with probability p f . For simplicity, we assume that primitive function
calls terminate for all inputs, i.e.,

∑
p f = 1.

E-PR-1
e1

p1
=⇒ n1

e1 p⊕ e2
p·p1
=⇒ n1

E-PR-2
e2

p2
=⇒ n2

e1 p⊕ e2
(1−p)·p2
=⇒ n2

E-AOP
e1

p1
=⇒ n1 e2

p2
=⇒ n2

e1 op e2
p1 ·p2
=⇒ n1 op n2

E-LET
e1

p1
=⇒ v1 e2[v1/x]

p2
=⇒ n2

let x = e1 in e2
p1 ·p2
=⇒ n2

E-FUN-EXT
IsPrimitive(f) e1

p1
=⇒ v1 . . . ek

pk
=⇒ vk

f (v1, . . . , vk) = n f with probability p f

f (e1, . . . , ek)
p1 ·...·pk ·p f

=⇒ n f

E-FUN
x = Args(f) e f = Body(f)

e f [e1/x1] . . . [ek/xk]
p

=⇒ n f

f (e1, . . . , ek)
p

=⇒ n f

E-MAP
map(f ,L′)

1
=⇒ L′′

map(f , (e1, . . . , ek) :: L′)
1

=⇒ f (e1, . . . , ek) :: L′′

E-MAP-B

map(f , [])
1

=⇒ []

E-FOLD

f (n, e1)
p′

=⇒ n′ fold(n′, f ,L′)
p′′

=⇒ n′′

fold(n, f , e1 :: L′)
p′ ·p′′
=⇒ n′′

E-FOLD-B

fold(n, f , [])
1

=⇒ n

E-PROG-E
ē

pe
=⇒ ne

program(a1, . . . , al) := ē
pe

=⇒ ne

E-PROG-L
L

pL
=⇒ [e1, . . . , ek] e1

p1
=⇒ n1 . . . ek

pk
=⇒ nk

program(a1, . . . , al) := L
pL ·p1 ·...·pk

=⇒ [n1, . . . , nk]

Fig. 6: Dynamic Semantics Transition Rules

Composite Function Calls. The transition rule for a composite function call E-FUN
uses the call-by-name evaluation strategy. The arguments of the function are computed
only when needed during the execution of the function’s body. Therefore, if some func-
tion’s arguments are not required, for example due to the execution of the probabilistic
choice within the function’s body, then the expression that computes the argument’s
value is never executed.

Let Expression. The let expression allows specifying an intermediate variable name x
to represent the result of some other expression. The expression e1 can 1) be an opaque
value or 2) evaluate (eagerly) to a numerical expression. The resulting value is then
substituted in the expression e2.

Map Operator. The rule E-MAP states that in a single step the map operator applies a
composite function f to the first element from the list L. The first element can be a single
expression or a tuple of expressions. The rule treats each expression as an argument
of the function f . The evaluation of the function f is deferred until it is required by
the subsequent computation. The operator :: is used to concatenate the expressions to
produce the output list.

Fold Operator. The rule E-FOLD first obtains the previously computed value n and
the first element from the list of inputs L1 and applies the function f . The execution
of the function f produces the result n′ with probability p. The computed value n′ is
passed as the initial value of the next step of the fold operator, which executes on the
remainder of the input list and produces a final numerical result.

Program-Level Semantics. The top-level expression of the body of the program can
be a fold or a map operator. The rule E-PROG-E specifies that the result of the program
is equal to the numerical value that the fold operator produces. The rule E-PROG-L
specifies that the result of the map operator (which is a list of closed expression terms)
evaluates to a list of numerical values; this list is returned by the program expression.

3.2 Expression Expectation

To define the probability distribution of the results produced by the map-fold computa-
tion, we first define the set of final values and probabilities to which a closed expression
term evaluates, K(e) = {(n, p) : e

p
=⇒ n}. The induced probability mass function is

then PK(e)(n) = p. This distribution is discrete under the condition that the sets of the
opaque values are countable. Note that the set Numeric is by definition countable. We
will assume this condition in the remainder of the paper.

Definition 1 (Expectation). Let K(e) = {(n, p) : e
p

=⇒ n} be the set of values that
the closed expression term e evaluates to. The expected value of the expression e is
E[e] =

∑
(n,p)∈K(e)

p · n.

The expected value of a numerical expression is the weighted sum of all the values that
the expression can evaluate to.

Definition 2 (Conditional Expectation). Let e1
p1

=⇒ n1 and e2
p2

=⇒ n2, and let g(e1, e2)
be some function of the closed expressions e1 and e2. Then, the conditional expectation
of g under the condition that e2 evaluated to n2 (expressed as e2

·
=⇒ n2) is equal to

E[g(e1, e2) | e2
·

=⇒ n2] =
∑

(n1,p1)∈K(e1)
p1 · g(n1, n2).

The expected value of g(e1, e2) conditioned on the observation that e2 evaluated to n2 is
equal to the expectation of g(e1, n2).

Lemma 1 (Total Expectation). Let g be an auxiliary function and e1 and e2 two closed
expressions. Then, E[g(e1, e2)] = E[E[g(e1, n2) | e2

·
=⇒ n2]]

3.3 Specification of Alternative Primitive Functions

The specification of a primitive function f is a tuple (f ,A,S). It contains the unique
name of the function, f , the set of alternative implementations of the function, A, and
the vector of sensitivities of the function’s outputs to the perturbation of each input of
the function, S.

Each alternative implementation of the function is a less accurate (but potentially
faster) version of the computation performed by the original implementation f . An
alternative implementation is specified by a tuple (f ′, E f ′ ,T f ′). Its first element is the
name of the alternative implementation, the second is the upper bound on the expected
absolute error E f , and the third is the expected execution time of the function, T f . As a
special case, the specification of the original (fully accurate function) is (f0, 0,T f 0).

The expected error and sensitivities of the function can be defined in terms of the
dynamic semantics of the program. We will first focus on the functions that operate
only on numerical inputs.

Expected Error Specification. Let f be the original and f ′ the alternative implemen-
tation of a primitive function. Furthermore, let x1 ∈ I f ,1, . . . , xk ∈ I f ,k be the inputs of
the function f , bounded on the intervals I f ,1, . . . , I f ,k. Then,

E f ′ := E[| f (n1, . . . , nk) − f ′(n1, . . . , nk)|], (1)

which is valid for all n1 ∈ I f ,1, . . . , nk ∈ I f ,k. The expectation is taken over the inherent
randomness of the underlying computation; the expected error is not a function of the
inputs of the function. Note that the intervals of the inputs are part of the input spec-
ification. The intervals of the intermediate inputs/outputs are computed by an external
interval analysis.

Sensitivity Specification. While the expected error represents the error that emerges
in the computation, the sensitivity quantifies and bounds the error originating from the
computation that preceded the current function. Let S i be the sensitivity index of the
function’s i-th input. For all inputs n1, . . . , nk and n̂1, . . . , n̂k that lie in the intervals
I f ,1, . . . , I f ,k, the sensitivity indices are the minimum bound on the absolute difference
| f (n1, . . . , nk) − f (n̂1, . . . , n̂k)| ≤ ∑k

i=1 Si|ni − n̂i|,.
If we replace the numerical values with expressions that compute them, then (using

Lemma 1) the expression for the expected propagated error becomes

E[| f (e1, . . . , ek) − f (ê1, . . . , êk)|] ≤
k∑

i=1

SiE[|ei − êi|]. (2)

This bound is valid for all inputs within the specified input intervals.
Finally, the bound on the total expected error (from both locally induced and prop-

agated error) is

E[| f (e1, . . . , ek) − f ′(ê1, . . . , êk)|] ≤ E f ′ +

k∑
i=1

SiE[|ei − êi|]. (3)

Opaque Typed Parameters. If some of the arguments of the function f are opaque
values, then the previous expectation expressions are required to be valid for all opaque
value arguments in Opaque. The sensitivity of opaque value arguments is not defined.
A developer can write a special value NA to denote unknown sensitivities of opaque
arguments.

3.4 Performance Model
The computation’s performance model approximates the total execution time of the
computation by defining the base expected execution times for expressions and func-
tion calls. The execution time function Time(e) returns the expected execution time of
the expression e. The expectation in this case is over the uncertainty caused by the
variability of the underlying concrete hardware platform.

This model operates under the assumption that the majority of the program’s exe-
cution time is spent in the primitive functions. Therefore the execution time of simple
operations is negligible. The execution time of a binary expression is Time(e1 op e2) as
Time(e1)+Time(e2). The execution time of a probabilistic expression is Time(e1 p⊕ e2) =

p · Time(e1) + (1 − p) · Time(e2) + τ⊕, where τ⊕ is the (non-negligible) time required to
produce one random sample.

The execution time of each primitive function is defined by its specification. This
execution time does not depend on the arguments of the function. The execution time
of a composite function call is equal to the execution time of its body (with replaced
expressions for arguments).

The map operator does not directly evaluate the result of its function felem on the
input list; it merely produces an output list, which is evaluated by the surrounding fold
expression or by the program expression. If its result expression is computed by the
top level program expression, then the program expression’s execution time is equal
to m · Time(felem). If the result of the map computation is computed by the surrounding
fold expression whose function is f f old, then the execution time of this fold expression is
m · (Time(felem)+Time(f f old)). If the fold expression does not use the result of a previous
map operator, then its execution time is m · Time(f f old).

4 Approximate Computation Synthesis
The Syndy’s synthesis algorithm identifies several expression patterns in the original
program and transforms them to produce a configurable approximate version of the
program. The synthesized program exposes the set of configuration parameters that
control the performance and accuracy of the computation.

Program Configuration. Each configuration parameter is a symbolic variable, which
represents a probability of one probabilistic choice operator. We denote the configura-
tion parameter as q. The configuration parameters take a value between 0 and 1. The
program’s configuration vector c = (q1, . . . , qk) fully describes the available program
approximation opportunities in a program Pc. In this section we present a set of rules
that transform the original program P to produce the approximate program Pc.

Parameterized Probabilistic Choice. We make a single extension of the language
syntax to support the specification of the configurable approximate programs. We allow
parameterized probabilistic operators, q⊕ , which are controlled by the configuration
variable q. This extends the previous definition that allowed only numerical constants.

However, this syntactic extension does not affect the semantics of the probabilistic
choice operator. Instead, the programs with parameterized probabilistic choice opera-
tors replace the configuration variables with concrete execution probabilities at the be-
ginning of the execution. Specifically, let a vector of numerical values c = (n1, . . . , nk)

1. Transformation of primitive function calls

Original: f (e1, . . . , ek) inside an expression e
Synthesis: f ′q(x1, . . . , xk) := f (x1, . . . , xk) q0 ⊕ f1(x1, . . . , xk) q1 ⊕ . . . qm−1 ⊕ fm(x1, . . . , xk)

where fi are alternative available implementations provided in SpecF(f)
Transformation: e[f ′q(e1, . . . , ek) / f (e1, . . . , ek)]

2. Transformation of map operators

Original: map(f ,L) where f (x1, . . . , xk) := e
Synthesis: f ′q(x1, . . . , xk) := e′q

where e′q = TransformPrimitiveFunctionCalls(e,SpecF)
Transformation: map(f ′q ,L)

3. Transformation of sum fold operators

Original: fold(0, plus,L) where plus(a, b) := a + b
Synthesis: rectq(x) := 1

q · x
plus′q(a, b) := a + (rectq(b) q⊕ 0)

Transformation: fold(0, plus′q,L)

4. Transformation of maximum fold operators

Original: fold(−∞,max,L) where max(a, b) := max(a, b)
Synthesis: max′q(a, b) := max(a, b) q⊕ a

Transformation: fold(nmin,max′q,L)

Fig. 7: Transformations of the Program

represent an actual configuration of the program Pc. The execution of the approximate
program Pc(c) starts by substituting each configuration parameter with corresponding
probability, i.e., Pc[n1/q1] . . . [nk/qk]. We discuss the synthesis of actual configuration
parameters that provide profitable tradeoffs between performance and the accuracy of
the transformed program in Section 5.

4.1 Computation Error
A computation error function specifies the expected difference between the results of the
original and transformed program or a subprogram. We define several error functions
for numerical expressions, lists of numerical expressions, and results of individual fold
operators.

The error of an alternative expression ê is an expected absolute difference, Err(e, ê) :=
E[|e − ê|]. The error of the alternative result of fold operators (except for maximiza-
tion/minimization) is defined the same way. The error function of two numerical lists L
and L̂ (which are typically the results of map operators) with multiplicity m is defined
as the maximum absolute error of its elements, Err(L, L̂) := maxi(E[|Li − L̂i|]).

4.2 Computation Transformations
Figure 7 presents the synthesis and transformation rules for primitive functions, map
operators, and summation and maximization fold operators. The algorithm constructs

new functions using specified synthesis rules and replaces the original expressions with
the alternatives in the program body. The transformation of averaging and minimization
operators are analogous to the summation and maximization cases.

In this section we present and discuss the expressions that characterize the error and
performance of the synthesized operations. These expressions are a key prerequisite for
the synthesis of profitable configurations. Specifically, we relate the derived expressions
to the error and performance expressions used by the optimization framework from [21].

Primitive Function Call Transformation. Each primitive function call is replaced
with call to a synthesized composite function f ′ that contains a probabilistic choice
operator between all alternative implementations specified in the set of the function’s
specification, A. We consider the case when the function f has the original (most accu-
rate) implementation f0 and m alternative (less accurate) implementations f1, . . . , fm.

The set of symbolic variables qi (0 ≤ i ≤ m) comprise the configuration of the
call site. The variable q0 is the probability of executing f0. Let (Ei,Ti) be the error
and time specifications for each alternative implementation fi. Then, one can derive the
expressions for the expected absolute error and execution time of this computations that
follow from the definition of the expression error (using the fact thatE[|e1−e2 p⊕ e3|] =

pE[|e1 − e2|] + (1 − p)E[|e1 − e3|] and Eq. 1), and the expected execution time from
the performance model from Section 3.4 (τ⊕ is the time required to take one random
sample):

Eg = q0 · 0 + q′1E1 + q′2E2 + . . . + q′mEm (4)
Tg = q′0T0 + q′1T1 + . . . + q′mTm + mτ⊕ (5)

In the previous expressions we used the helper variables q′i . Each q′i is equal to the
probabilities of executing the alternative implementation fi. We relate q′i and the con-
figuration variables qi as follows: q′0 = q0, each q′i = qi

∏i−1
j=1(1−q j) for i ∈ {1, . . . ,m−1},

and q′m = 1 −∑m−1
j=0 q j.

Map Operator Transformation. The synthesis algorithm replaces the composite func-
tion f in a map operator with the synthesized function f ′, in which all calls to the primi-
tive functions are replaced by appropriate probabilistic choices between their alternative
implementations (as described previously). The configuration vector of the function f
is a concatenation of the configuration vectors of all function calls that appear within
the body of the function f .

We focus on specifying the total error of a single function call and the propagation
of error induced by the previous computation. Let f and f ′ be the original and the
alternate implementations. Then, from Eq. 3 total error induced by the computation is
bounded by E[| f (e1, . . . , ek) − f̂ (ê1, . . . , êk)|] ≤ E f ′ +

∑k
i=1 S f ,iE[|ei − êi|].

The error expressions of each function call within a map operator’s function f are
the basis for computing the error that emerges and propagates through the body of
f . Given these error expressions, one can use the approach presented in [21][Section
5.1] to compute the total error of the body of the function f . Specifically, the error
propagation algorithm will multiply the error expression of each function call with the
appropriate sensitivity indices of the functions that use the result of the call.

Sum Fold Transformation. The function plus that performs folding is replaced by an
alternative that randomly computes the value of the input with probability q or simply
returns a previous temporary result with probability 1 − q. To offset for the bias intro-
duced by skipping some of the inputs, the sum fold operator performs extrapolation, by
multiplying the sampled sum with 1/q. The expected execution time is proportional to
the q fraction of the original node’s execution time. Let L = [e1, . . . , em]. Then,

Esum = E[|e1 + . . . + em − 1
q ((e1 q⊕ 0) + . . . + (em q⊕ 0))|] (6)

Tsum = q ·
m∑

i=1

Time(ei) + mτ⊕ (7)

When transforming the summation fold operator, the analysis checks if all inputs
have the same error and time specifications, i.e., all subtrees of the computation are
structurally isomorphic (the computation subtrees differ only in the numerical constants
and the input variable names). A sufficient condition is if the computation that precedes
the fold operator has only parameterized enumerated lists (or no enumerated lists).

If the inputs have the same error and time specifications, then one can derive an
error expression equivalent to the one in [21], whose length does not depend on the size
of the input list. Therefore, the analysis can immediately use the solver from [21]. This
includes the computation of the expected execution time: if the expected execution time
of an input is τe, then Tsum = q ·m · τe + mτ⊕. If the inputs have different error and time
specifications, the analysis unfolds the computation of the fold operator. We discuss this
part of the analysis in Section 5.

Maximization Fold Transformation. The function max that performs folding is re-
placed by an alternative implementation that randomly selects and computes the value
of the input with probability q or returns a previous neutral temporary result. The stat-
ically computed initial value cmin is the minimum value that the elements in L can
evaluate to.

The definition of error for the maximization operator differs from the expected ab-
solute error. Instead, we define the error for the maximization operator as a percentile
error. The percentile error is 0 if the result of the approximate fold computation is one
of the top few ordered elements; otherwise the penalty is proportional to the case when
the approximate fold operator returns the (worst) minimum element of the input list.
Percentile error is appropriate in a scenario which does not require strictly returning the
maximum element, and instead returning one of the top α = bκ · mc elements incurs no
penalty (for a small constant κ that specifies the fraction of top ordered elements that do
not incur error).

The error function Emin = Err(L, ê) takes as input the list of the inputs of the original
fold operator L = [e1, . . . , em] and the fold operator ê = foldq(0,max′q,L). The analysis
of the maximization fold operator requires (like the analysis of summation) that the
expressions e1 to em be structurally isomorphic, to bound the propagated error with an
expression whose length does not depend on the size of the input list.

We define the error function as follows. Let each ei evaluate to ni and we define the
auxiliary set T (n̂) = {ni : ni > n̂} to contain the input list elements that are greater
than the result n̂ returned by the approximate fold operator. Note that n̂ is always equal

to one of n1, . . . , nm. Furthermore, let B be the maximum absolute distance between the
two inputs ni and n j. Then the error function for a particular n̂ is

E(n̂) =

{
0, if |T (n̂)| ≤ α
B, otherwise (8)

If the number of the elements of the map operator that are smaller than n̂ (the value that
the fold operator produces) is at most κ ·m, then the computation does not incur penalty
and the error is 0. Otherwise, the error is the maximum absolute difference between any
of the results of the map operator and the result of the fold operator. This difference can
be bounded by the difference between the largest and the smallest elements from the
input list.

The expected error is then Emin = E[E(n̂)]. The probability that the approximate
maximization operator returns a specific value n̂ is a function of the probability q. One
can derive that the expected error is proportional to the probability that the value n̂ is
not among the maximum α elements, c ·

(
m−α
q·m

)
/
(

m
q·m

)
, where c is a known constant. The

expected time of the maximization fold operator becomes, like for the sum operator,
Tmax = q · m · τe + mτ⊕.

5 Optimal Configuration Synthesis
Once it generates the approximate randomized computation with exposed configuration
parameters, Syndy translates the map fold program (with the transformation locations)
to the accuracy-aware model of computation and uses the optimization algorithm pre-
sented in [21] to search for tradeoffs. In this section we outline the translation procedure.

5.1 Program Translation to Accuracy-aware Model

Primitive Function Call Translation. Each primitive function is translated to a func-
tion node. The specification of the sensitivity of a function node and the specification
of alternative implementations is the same as the specification described in this paper.

Arithmetic Operation Translation. Arithmetic operations are also represented using
function nodes. The addition and subtraction operations map into a function node with a
single implementation and sensitivity indices S 1 = S 2 = 1. The sensitivity of the multi-
plication operation, however, depends on the intervals of the input parameters. Overall,
the sensitivity S 1 is equal to the maximum absolute value of the other expression e2.
Syndy uses a standard interval analysis to compute this maximum value. Therefore,
each multiplication operation will be translated to a new function node, each with a
unique sensitivity specification, but none of these implementations incur accuracy loss.

Probabilistic Choice Translation. A probabilistic choice operator e1 p ⊕ e2 with a
constant probability p is translated to a function node whose sensitivity is equal to the
maximum of the sensitivities of its arguments and it induces the expected error equal to
2p(1 − p)E[|e1 − e2|] for deterministic e1 and e2. Its execution time is equal to τ⊕. In
n addition, the execution times of the previous computation e1 and e2 are multiplied by
p and 1 − p, respectively.

Composite Function Call Translation. A dataflow graph of each composite function
f (x1, . . . , xk) := e f has the form of a direct acyclic graph (since the computation does
not support loops or recursion). The composite function body e f is translated to a di-
rected acyclic graph that represents the data flow in the function expression. Each node
represents a result of a called primitive function or a basic operation. Each edge repre-
sents the data flow from the node that produces a value to a node that uses this value.
The translation algorithm inlines all called composite functions and thus operates on an
extended dataflow graph.

Map Operator Translation. We consider the two cases for translating map operators:
– Program root or followed by a fold operator. A map operator is translated to a

computation node. The algorithms constructs the dataflow graph for the function
called by the map operator. If the function is primitive, the dataflow graph consists
of only a single node. The dataflow graph of composite functions is computed as
we described previously. The multiplicity of the map operator is equal to the size
of its input list.

– Sequence of map operators. If the output of one map operator is passed as an in-
put to another map operator, then such a sequence is first transformed to a single
map operator whose function encompasses the functions of the original map op-
erators. The new map operator is translated to an equivalent computation node as
outlined above. For instance, the subprogram map(f1,map(f2, L)) is transformed
to map(f ′, L) where the new composite function f ′(x) := f1(f2(x)). The new map
operator is then translated to an equivalent computation node.

The computation node’s inputs are connected to nodes that produce these inputs or the
program’s inputs. The computation node’s output is connected to nodes that use the
results of this computation node. The multiplicity of the node is derived from the map
operator’s input list specification.

Fold Operator Translation. The translation first identifies if the fold operator belongs
to the class of analyzable functions (i.e., summation or maximization) and the input
list contains isomorphic elements. If both conditions are true, then the fold operator is
translated to the reduction node. Otherwise, it is translated to the computation node:

– Translation to Reduction Node. The translation constructs a special reduction node
for the fold operator, based on the recognized function. This reduction node is con-
nected with an edge to the previous computation node that represents map operator
that computes the input list of the fold operator. The multiplicity of the node, m, is
obtained from the program’s input specification.

– Translation to Computation Node. The fold operator with the function f is unfolded
m times. If the function f is recognized, it is replaced with the transformed version
from Figure 7. The input of each of the fold operator’s function calls is connected
with an edges to 1) the previous call to the function f and 2) to the function node
that represents the computation producing one of the inputs. The translation con-
structs the computation node containing these function nodes. The multiplicity of
this computation node is 1.

The fold operator’s output is connected to the nodes representing the computation that
use the fold operator’s results.

5.2 Transformation Properties

We first compare the error expressions derived for the transformed expressions in Sec-
tion 4 and the error expressions for the nodes in the model of computation from [21].

Theorem 1. The error of the Syndy’s expressions is bounded by expression c · Emodel

where Emodel is the error expression defined for the appropriate node in the accuracy-
aware model of computation and c is a known constant.

To prove this theorem, we continue the derivation of the error expressions for the
operators and match the derived terms with the errors of the nodes in the computational
model presented in [21]. This result allows us to use this optimization framework to
search for the optimal tradeoffs and provide guarantees that the error of the transformed
program is bounded by the error specified on the tradeoff curve.

For each set of applied transformations, there exists a configuration of the program
that produces the same result as the original (fully accurate) implementation of the
computation:

Theorem 2. Let P be the original deterministic program and Pc an approximate pro-
gram synthesized using transformations from Figure 7. If q0 = 1 for all primitive func-
tion configurations and q = 1 for all fold configurations, then E[|P − Pc|] = 0.

The proof follows by induction on the expressions in the transformed program.
Specifically, for each expression one can find that setting the configuration to execute
the original implementation yields no error.

5.3 Optimal Parameter Search

The parameter search algorithm takes the model graph produced by the translation al-
gorithm and the specification of the alternative computations. The search algorithm
uses constrained mathematical optimization to find the configuration of the transformed
model that executes in a minimum amount of time while satisfying a specific error
bound [21]. The algorithm is guaranteed to find a (1 + ε)-approximation of the globally
minimal execution time for a given error bound. The user-settable accuracy parameter
ε determines how close the computed optimum time/error is to the global optimum.

The parameter search algorithm produces a tradeoff curve between the expected
absolute error and the expected execution time. Each point on the tradeoff curve con-
tains the actual configuration of the approximate program. This tradeoff curve can be
used to instantiate (as described in Section 4) the transformed program Pc(c) with the
actual configuration c. Specifically, if a user specifies the program error bound ∆, the
configuration c is associated with the point on the tradeoff curve that corresponds to the
bound ∆. The search algorithm guarantees that the expected absolute error of the ap-
proximate program is smaller than ∆ (i.e., E[|P − Pc(c)|] ≤ ∆) for the configuration c.

Implementation. We implemented a prototype of Syndy’s synthesis framework, in-
cluding the algorithm for finding optimal configurations. The implementation consists
of 2000 lines of C++ code and 1300 lines of OCaml code. The optimization algorithm
uses the lp solve [1] linear programming library.

Program Functions Map/Fold Configurations Time (s)
btrack 8 1/1 142 1.58
bscholes 6 2/1 5259 1.73
integral 6 1/1 352 0.36
mlikelihood 10 3/3 999 18.93

Fig. 8: Result Summary

6 Evaluation

We perform the initial evaluation on four map-fold computations: 1) btrack is the ex-
ample from Section 2, 2) bscholes computes Black-Scholes formula for a list of stock
options, 3) integral computes a numerical computation given as the example in [21],
and 4) mlikelihood is a maximum likelihood computation that aggregates the results
of summation computation that sums two parts of the feature vector. The optimization
constant is ε = 0.01, instructing the algorithm to produce a tradeoff that is within 1% of
the optimal tradeoff. We performed the evaluation on 2.2 GHz Intel Xeon E5520 with
16 GB of main memory.

Table 8 present the results of Syndy’s evaluation. It presents the number of alterna-
tive function implementations (equal to the size of the configuration vector for a map
operator) and the number of map and fold operators. For each benchmark we present
the number of configurations of the computation selected by optimization algorithm
and the execution time of the algorithm.

All benchmark analyses completed in within 20 s. We note that the execution time
does not depend on the size of the input lists, but only on the number of alternative
functions and the number of map and fold operators. The majority of the analysis ex-
ecution time is spent in the finding the optimum solution for the fold operators. This
search procedure computes intermediate solutions for a large number of sections of the
tradeoff curve. On the other hand, the optimization of the map computation is performed
by solving constructed linear programs whose size is from several to several hundreds
of variables. Therefore, the mlikelihood benchmark, which has 3 fold operations, con-
sumes more time for analysis than the benchmarks with only a single fold operator.

7 Related Work
Quantitative Program Synthesis. Researchers have recently explored techniques for
the automatic generation of optimized programs that operate with variable accuracy
using numerical optimization techniques, primarily for reactive control systems.

Smooth interpretation [10,9] uses a gradient descent based method to synthesize
control parameters of imperative computer programs. The analysis returns a set of pa-
rameters that minimize the difference between the expected and computed control val-
ues for controllers. Our paper, in contrast, presents a technique that, given a specifica-
tion of input intervals, produces a set of configurations that explicitly trade accuracy
and performance and provides guarantees on the induced error using constrained opti-
mization techniques.

Quasy [7] explores tradeoffs between quantitative properties of the system such as
the execution time, energy, or accuracy of control systems. Quasy uses linear temporal
logic to reason about the constraints and represents the underlying state as a Markov
chain. Von Essen and Jobstmann [20] present a quantitative model checking framework
for expressing general tradeoffs between objectives specified in temporal logic by rep-
resenting problems as Markov Decision Processes. Our paper presents an algorithm
for map-fold computations, for which it produces a whole set of profitable tradeoffs
between accuracy and performance.

Accuracy Analysis of Program Transformations. Researchers have presented sev-
eral papers on static analysis of program transformations that affect accuracy of results.
Misailovic et al. [13] present assume-guarantee probabilistic analyses for several loop
patterns amenable to loop perforation. The values that the computations operate on are
represented as random variables. Chaudhuri et al. [8] present an analysis of additional
pattern for loops amenable to loop perforation and use the analysis of Lipschitz continu-
ity of functions to provide probabilistic bounds for perforatable loops. In the differential
privacy context, Pierce and Reed [15] present a type system that ensures that a noise
added to preserve privacy does not significantly affect the result of reduction operations.
Barthe et al. [4] present a relational probabilistic framework to reason about arbitrary
differential privacy mechanisms. Researchers have also recently explored techniques
based on symbolic execution to check the probability of satisfaction of program’s as-
sertions [11,18].

These techniques treat some of the values that the computations operates on as
random quantities and quantify the effects of these random quantities on the accuracy
of the result computations produce. However, the main focus of these techniques is the
analysis of error and they do not search for optimal tradeoffs between the introduced
error and performance of the applications.

8 Conclusion
The field of program optimization has focused, almost exclusively since the incep-
tion of the field, on transformations that do not change the result that the computation
produces. The recent emergence of approximate program transformation and synthe-
sis algorithms promises to dramatically increase the scope and relevance of program
optimization techniques in a world increasingly dominated by computations that can
profitably trade off accuracy in return for increased performance. Syndy provides an
opportunity to exploit such profitable tradeoffs by automatically transforming a set of
computations, while proving optimal probabilistic guarantees for the accuracy of the
computation for a whole computation.

References
1. lp solve linear programming library. http://lpsolve.sourceforge.net/.
2. J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and S. Amarasinghe.

Petabricks: a language and compiler for algorithmic choice. PLDI, 2009.
3. W. Baek and T. M. Chilimbi. Green: a framework for supporting energy-conscious program-

ming using controlled approximation. PLDI, 2010.

4. G. Barthe, B. Köpf, F. Olmedo, and S. Zanella Béguelin. Probabilistic reasoning for differ-
ential privacy. POPL, 2012.

5. C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite: Characterization
and architectural implications. In PACT ’08.

6. M. Carbin, D. Kim, S. Misailovic, and M. Rinard. Proving acceptability properties of relaxed
nondeterministic approximate programs. PLDI, 2012.

7. K. Chatterjee, T. Henzinger, B. Jobstmann, and R. Singh. Quasy: Quantitative synthesis tool.
In TACAS, 2011.

8. S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. Navidpour. Proving Programs Robust.
FSE, 2011.

9. S. Chaudhuri and A. Solar-Lezama. Smoothing a program soundly and robustly. In CAV’11.
10. S. Chaudhuri and A. Solar-Lezama. Smooth interpretation. In PLDI, 2010.
11. A. Filieri, C. S. Păsăreanu, and W. Visser. Reliability analysis in symbolic pathfinder. ICSE,

2013.
12. H. Hoffman, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and M. Rinard. Dynamic

knobs for responsive power-aware computing. ASPLOS, 2011.
13. S. Misailovic, D. Roy, and M. Rinard. Probabilistically Accurate Program Transformations.

SAS, 2011.
14. S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. Quality of service profiling.

ICSE, 2010.
15. J. Reed and B. C. Pierce. Distance makes the types grow stronger: a calculus for differential

privacy. In ICFP, 2010.
16. M. Rinard. Probabilistic accuracy bounds for fault-tolerant computations that discard tasks.

ICS, 2006.
17. M. Rinard. Using early phase termination to eliminate load imbalances at barrier synchro-

nization points. OOPSLA, 2007.
18. S. Sankaranarayanan, A. Chakarov, and S. Gulwani. Static analysis for probabilistic pro-

grams: inferring whole program properties from finitely many paths. In PLDI, 2013.
19. S. Sidiroglou, S. Misailovic, H. Hoffmann, and M. Rinard. Managing Performance vs. Ac-

curacy Trade-offs With Loop Perforation. FSE ’11.
20. C. Von Essen and B. Jobstmann. Synthesizing efficient controllers. In VMCAI, 2012.
21. Z. Zhu, S. Misailovic, J. Kelner, and M. Rinard. Randomized accuracy-aware program trans-

formations for efficient approximate computations. POPL, 2012.

