AN OUTLINE OF A METHOD FOR PROGRAMME EVALUATION ${ }^{\text {s }}$

S. Chakravarty

Section Io General Discussion of the Method

The purpose of the present note is to outline a method of programme evaluation. Various recent discussions on the soccalled "investment criteria had also the same purpose in view But the discussion has been essentially aingleaproject oriented, with the implicit assumption that a programme could be regarded as a linear sum of various individual projects. Thus an optimal programme is assumed to be determined, once the priorities of the individual projects art optimally ascertained, each independently of the rest.

This, at its best, however, is an insufficient method which, in the absence of decomposability of the programme, could be seriously misleading, excepting in those cases here projects are few and represents a not too significant addition to the existing capital stock. But it is not an equiva lent or a substitute for a programme approach.

The method presented here has the following characteristics:
a) It deals with a whole constellation of interrelated projects, rather than a marginal project with a marginal project it ia admissible to use a partial equilibrium approach involving the costobenefit ratio or any such criterion, although it may be social cost and
 suggestion of the problems and his stimulating consents。I an also very mich grateful to the parcicipente at the MoI.I。India Seminar; in particular, to
 that persist are all mine
social benefit which are involved rather than private cost and private benefit. But the interesting point to note is that any method to determine "social" as distinguished from private benefit must transcend the possibilities of partial aquilibrium approach. thus rendering the usual discussion an inexact one, or siraply replacing one set of unknows by another. An interorelated group of projects necessurily demands a more general approach, which emphasizes interosectoral dependence, etc。 In certain cases, the use of "shadow prices" to caiculate costebenefit ratios may obviate the necessity for a fulloscale programme approach if the ahadow prices can be approzimated in relatively simple ways. For a further discussion of shadow prices, see the paper entitied "The Use of Shadow Prices in Frograme Evaluation,"MoIoT。India Project (mineographed).
b) Secondy, the method is dynamic, inasmuch as tio development of the economy over several pericds of time is an essential part of it, wille most of the programe ovaluation techniques yield results for a single period of time.
c) frirdly, the method uses an explicit characterization of the projects involving the ensenble of technical data, doen the gestation $^{\text {on }}$ lagis, the depreciation rates, the intersectoral capitalooutput rationg the degress of interisectoral dependence in current production, etc, This is an extension of the ordinary methods where all the ielevant information is generally subsumed under one or two headings, $i_{0} \theta_{0}$ the capital-income ratio or the capitalolabor ratio.
d）The balance of payments problen may be taken account of by introducing a sidemcondition that the excess of iotal import requirements over total exports should not surpass a certain preassigned magnitude．If the sidecondition is effective，it necessarily implies a nonszero shadow rate of exchange。

While these are the main characteristics of the method，let us state explicitiy the possibilities with regard to the choice of the basic criterion。 Several altematives present themselves：
a）If the savings coefficient is already known，our criterion may be stated as one of maximaing the sum of incomes over the specified time horizon．In this case，no separate proyision for terminal equipment is neoded，because whatever maximizes total income also maximiges total investment，since one bears a welladefined relation to the othery the same holds a fortiori for total consumption over the whole period．
b）If the savings rate is an unkown of the problam，then the criterion may be stated as naximizing the sum of consumption over the miole period，subject to a provision for terminal equipment．In this cases our unkown are not nereiy the distribution of total investment，but also the overcall rate of investmeat in the economy in each time period．

The choice of criterion（a）has the adyantage that the planning problas is then decomposed into two consacutive problems：（a）the determination of the overall savings rate；（b）the determination of the composition of invertmant。 The choice of the savings rate already refiecta tie decirions regarding the futurs．It should ba uaderstood that the situation（a）holda
oven though the savings coefficient is not fixed but varies in a predictable manner over time．If it varies with the level of income，then we have a non－linear system which is still a well－determined one。 In wat follows we shall assume criterion（a）on considerations of simplicity。

The procedure for deternining this maximum consists in using an arbitrary parameter that indicates how net total investment is distributed between two sectors，simich，for examplets sake，we call the＂programe sector＂and the rest of the economy This bisector classification is a simplifying device and by no means an essential part of it．As a mattor of fact，these two sectors here represent any two sectors that together make up the whols econoxy．In a more disaggregated approach it will be necessary to have ${ }^{\text {n }} \mathrm{n}^{\prime}$ sectors where $\mathrm{n}>2$ 。 Aithough the computational difficulties are increased，the method outlined here is equally applicable to the more general situation．In the two eector cases there is only one independerit allocation cosfficient，${ }^{\prime} \lambda$ ，which indicates how net total investment is to be distributed between two sectors，wile in the ${ }^{\circ} \mathrm{a}^{1} \mathrm{~m}$ sector case we have（ $n=1$ ）such as ${ }^{\circ} \lambda_{i 8} \%$ In the two sector case，the single＂λ＂is to be so determined as to satiafy our basic criterions while in the ${ }^{9} n^{n}$ esector case，the criterion requires the determination of 8 a optinal configuration of（ $n-1$ ）$\lambda^{\circ} s_{0}$

The following algebraic model gives an enswer to the above probiem of maximatation on a first lovel of approximation This model will be extended in Section III to take into account the following questionss
a）The direct（nonmariset）technological externalities which make output or incroment of output in any particular sector depondent not mexely on the capital or increaent of capital invested in these respective sectors but also on capital javested in other asctors．
b) The changes in the flow coefficients ($a_{i j}$), wich ars the Leontiaf coefficients for crossodeliveries, norinaliy associated With an expanding size of the industry. The simpleat way of introducing this factor is wo make the inputooutput relationship "Inear" rather than "proportional" as is normalily done。 Thus, if $X_{i j}=a_{i j} X_{j}+\tilde{K}_{i j,}$ where $K_{i j}$ is a constant, than $\frac{X_{i j}}{X_{j}}$ rises with incraasing X_{f} it $K_{i j}<O_{j}$ it falls with increasing X_{j} if $K_{i j}>Q_{0}$ The latter situation corresponds to the phenomenon of increasing returnso Introducing this two-paramuter pioduction function renders the Leontiel system nonhomogeneous, but it can still be handied in an easy way. Fox more compiceted sj.tuations, we way introduce cost functions in each input which are either lineas or proportional in facous. If proportionality in facets Is asisumed a realistic, then there must exist eextain nodal pointe of output at which the coefinciente change discontinuouslyo Thus the Farlability of coelficients is introduced in a way that does not presuppose abandoning completely the traditionel. apparatus of inputcoutput analysiso
c) Dopreciation rates may also ke asmuned to be vaniable over timeo Thue we may assume relativeiy lower rates for the initial years and entarged ones for later yearso Secondly, ve neod not adhere to the nethod of etraightiline depreciation wick in a growing economy understates the amount of net invostible resources. Thus the usual Donar sype of question may be taken cere of by changing tino depreciation procedure。 Tha mozo iritractabla point regarding depreciation that arises in the context of quality change does
not appear here because we normally abstract from technical progress in this contexto

Section II。 An Algebraic Model

（1）$I(t) \propto S(t) \propto D(t)$
Where $I(t)$ is investment at time ${ }^{8} t{ }^{0}$
$S(t)$ is gross savinge at time ${ }^{0} t^{?}$
and $\mathrm{D}(t)$ is deprectation of capital stock at＂t＂。

In those cases where thsre is a planned balance of payments deficit， that may also be introduced on the right hand side as an additive factor： For simplicity we ignore it for the time beinge

We use the following notations

$$
\begin{aligned}
& V_{k}(t)=\text { Gross output of } k^{\text {th }} \text { industry at time }{ }^{9} t^{\circ} \text { 。 } \\
& b_{k} \quad-\quad \text { Output (gross) ceapital ratio of the } k^{\text {th }} \text { indugtry (direct } \\
& \text { capital coofficient) 。 } \\
& K_{k}(t)=\text { Capital stock of the } k^{\text {th }} \text { induetry。 } \\
& \begin{array}{l}
d_{i}(t)=\text { The rate of depreciation of a unit of capital atock } \\
\text { in the } k \text { th inaustigy }
\end{array} \\
& 8 \text { - The savings coefficient for the whole econovy. We may } \\
& \text { if we } 30 \text { prefier, assume this coefficient to be variable } \\
& \text { Trom sector to sector. Fuxther, if se are not interested } \\
& \text { in explicit solutions, we may assume savjngs coefficients } \\
& \text { to be variables This means that the savings ratio diminisheg } \\
& \text { uith increase in incorne, For purposes of nunerical extram } \\
& \text { polations this does not sazee any additional difficulties. }
\end{aligned}
$$

Equation（1）may then be writton as：

$$
\begin{aligned}
& I(t)=\left[8 I(t)=\overline{d_{1} K_{1}(t)+d_{2} K_{2}(t)}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow\left[8 \Sigma b_{i} h_{i}(b)-\varepsilon \Sigma a_{i j} b_{j} K_{j}(b)=\bar{a}_{2}(b)+a_{2}{ }_{2}(b)\right.
\end{aligned}
$$

Now $\lambda_{1} I(t)$ is the fraction of net investment that goes to Sector I while $\lambda_{2} I(t)$ is the fraction that goes to Sector II, with the natural restrico tion that $\lambda_{1}+\lambda_{2}=10$

Thus $\left.\lambda_{1} I(t)=\lambda_{1} \sqrt{s} \sum b_{1} K_{i}(t)-\sum \sum a_{i j} b_{2} K_{j}(t)-d_{j} K_{j}(t)+d_{2} K_{2}(t)\right]$
and $\lambda_{2} I(t)=\left(1-\lambda_{1}\right)$ [000same as aboveoog]

In the presence of gestation lags, there are several ways of indicating evolution of productive capacity over time。 We may take the following two cases:

$$
\begin{aligned}
& \text { a) } \quad K_{1}\left(t+l_{1}\right)=K_{1}\left(t+\rho_{1}=1\right)=\lambda_{1} I(t) \\
& K_{2}\left(t+l_{2}\right)=K_{2}\left(t+\rho_{2}=1\right)=\lambda_{2} I(t)
\end{aligned}
$$

when l_{1} and l_{2} are the lags of the two sectors.
b) A mors explicit approach to the problem may be to considere the following case which distinguishes between investment in execution and invertment that is finished; (which meane, the net rate of increase in capital stock $\mathrm{i}_{0} \theta_{0}$ addition to capital stockocattrition of capital) ${ }^{1}$

$$
\begin{aligned}
I(t) & =\frac{I}{l_{I}} \int_{t}^{t+\rho} I_{1}(t)^{d t} \quad \begin{array}{l}
\text { where It }(t) \text { is investment that } \\
\text { is Inished. }
\end{array} \\
& =\frac{I}{\rho I} \int_{0}^{l} K_{1}(t)^{d t}=\frac{1}{\rho_{1}}\left[\frac{K}{I}\left(t-\rho_{1}\right)-K_{1}(i)\right]
\end{aligned}
$$

This, $_{\text {s }}$ however, is not a पery aatisfactory method of dealing with problems of depreciation in the context of gestation lags. But for the purpose of the present paper, the simplicity of this presuntation $i 3$ an advantage which is well worth ratainingo The problem of depreciation will be considarod sepsrately in another paper.

Now we have the following system of equations：

$$
\begin{aligned}
& K_{2}\left(t_{1}+\rho_{1}\right)-K_{1}(t)=-l_{1} \lambda_{2} / s\left\{\sum b_{1} K_{i}(t)-\sum \sum a_{i j} b_{j} K_{j}(t)\right\}-\overline{\left.d_{1} K_{1}(t)+d_{2} K_{2}(t)\right]} \\
& K_{2}\left(t_{2}+\rho_{2}\right)=K_{2}(t)=l_{2} \lambda_{1}\left[s b_{i} K_{1}(t)=\sum \sum a_{i j} b_{j} K_{j}(t)-\overline{\left.d_{1} K_{1}(t)+d_{2} K_{2}(t)\right]}\right.
\end{aligned}
$$

This is a system of linear difference equations of order＂ρ^{0} where ρ max $\left(P_{1}, \rho_{2}\right)$ ．The number of initial conditions needed to start，the system is at most（2x－P）。

In certain singuils cases，the system may be＂collapssd＂to yield a single difference oquation in aggregate capital stock，the order remaining the same as in the＂noncollapsed＂state。

Once the $K_{i}(t)^{\prime} s$ ara known as solutions of the system of difference equations as outlined aboves，the timepath of ${ }^{7}{ }^{9}$ and hence the integral of ＂${ }^{\prime}$＂over the planning horizon is known too．Thus the criturion（e）will then imply ${ }^{0}$ max y^{0} where $y=\int_{0}^{n} Y(t)$ dit．Thus the decision variables $\lambda^{1} s$ will have to be chosen in such a wey as to reach the above maxinum．

The criterion（b）will imply：max $C=\int_{0}^{n} C(t)^{d t}$ subject to $K_{n}+1^{\text {s }}$ $K_{n}+I_{0}$ In this case the decision variables are not morely the $\lambda_{i s}$ bute include the savings coefficient as well．This naturally is a more complicated problam．The converse to this problen has bean considered by ir．Little wo assumes the Pollowing criterion：max $\mathbb{K}_{\mathrm{n}}+1$ subject to a $\mathrm{C}(\mathrm{t})$ a $\overline{\mathrm{C}}(\mathrm{t})$ ，a prescribod function of thase．${ }^{2}$

Assuming continuous derivatives，etc ，the mazimum in（a）is attained wheres

$$
\frac{d \bar{y}}{d \lambda}=0, \quad \frac{d^{2} \overline{\bar{y}} 2}{d \lambda 1}<0
$$

${ }^{2} I_{0} M_{M} D_{0}$ Lititle，＂Reflections on the Plenning Experience in India，＂India Project，MoIoT。（mimeographed）。

In practice, the above formalism has hardly much importance, for firstly it is quite malikely that the functions involved will have the necessary continuity properties and secondly, the explicit solution of the difference equations may be quite a job in itself. Thus the technique of "numerical extrapolation" will have to be employed to trace the develope ment over time. This tochnique is further considered in an appendix.

The method of numerical extrapolation has the additional advantage that the coefficionts need not be assumed to be constant over time. While it is still possible to handle in a somewhat general way a system of linear difference equations with variable coefficients over times the practical difficulties may be great and the purist may also insiat at the same time on convargence proofs, etc. No such problem ariaes if we adopt what has been called the technique of "numerical extrapolation." Thus the techrique suggested above may take into account such delayed effects as are rormally associated with investmonts in social overhead capital. etc.

The demand considerations relating to final consumer goods are not gone into in detail in the model presented above。 But they may also be intreduced as additional constraints in a multisectoral mociel. In that case, the set of decision variables winl be "noscl ${ }^{\circ}$ where ${ }^{6} \mathrm{r}^{8}$ is the number of additional equations introduced to take care of certain requirements on the composition of consuaption. Thus, let us assume a sitvation where minimum amounts of consumption of certain cormodities have been speciried by the planner, Then, number of decision variables will have to assume a set of values such thati technology would enable these recuired amounts of consumption output to be produced. This limits the range of variability of
the set of $\lambda^{8} 8$ ，but there would be a certain amount of frsedom so long as the number of restrictions ${ }^{9} \Omega^{8}$ is less than（ $n-1$ ）fnistead of yining the elimination procedure，we may use a more symmetric proicedure such as ． the technique of Lagrange multipliers which maximizes a target function involving λ is subject to the various a priori restrictions，${ }^{3}$

Section III

We now introduce the changes in our model announced towards the end． of Section I。

It should be noted that the introduction of technological intaractions requires the use of a new matriz of coefficiente，which is different from the Leontif matrices so far used．The two Leontief matrices are the matrix of flow coofficients（ $a_{i j}$ ）and the matrix of investment cogricients（ $b_{i j}$ ）。 The leontiol matrix（ $a_{i j}$ ）is quite explicit in our gystem of calculations but the second Leontief matrix as hidden behind the ${ }^{9} b_{k}{ }^{7} s^{n}$ 。 0 course $1 / b_{k}{ }^{9}$ are nothing but the column sums of Leontief＇s second matris：Thuss

$$
\frac{1}{b_{k}}=1^{c_{4, k}}
$$

where $C_{i k}{ }^{0}$ e are the intersectoral capitalooutput ratios．

The discussion in this paper ie oxcluedvely dovoted to closed aconouy．In an open econony，where sarget setting involvos questions of inarort substitutions meke complicated problems may arise。 For this，see the author ${ }^{i} \mathrm{~s}$＂Tre logic o？Investmeat Plannings，＂Chs V VII（Norin Holland Fublishing Company，Amsterdam，1959），

Now only $g_{i i} \frac{1}{b_{i}}$ while the other coefficients $g_{i j}$, ifj are the nonmarket influence exercised by the $i^{\text {th }}$ industry over $j^{\text {th }}$ industry. These influences must necessar:2y be nonmarket influences. To the extent they are taken care of by the market mechanism through the prices and quantities of investment goods and intermediate goods output, they have no place here. The reason for that is the use of two other matrices, (a) and (b) , ubich relate to observable market transactions. Leontitef ${ }^{\text {s }}$ use of constant coefficients for these matrices, however, precludes any emergence of pecuaiary external economies, because relative prices remain constant. Thus Leontief can only take account of quantity effects, and not of price effects. Pecuniary external economies are, however, consiclered in our system because (a) we do not assume the technological coefficients to remain unchanged, they change in facat3, and (bi) because we have more than one primary factor. It is easy to see that either of these factors is sufficient to introduce pecuniary external economies into the picture. It should, however, be noted that for the system as a whole it is misleading to call such price induced effects "extermalon 4

The rows of the ${ }^{g}{ }^{0}$ metrix indicate the influence exested by one eector over all the other sactors, while the colums indicate the influences received by one sactor from all the other sectors. In ordinary discussion the matrix ${ }^{8} g^{8}$ is a diagonal matrix so that all the other elements are necessarily zero. The Literature on extermal economies, however, indicates the iuportance of

4
Although the pecuniary external economiea are internal to the syster as a whole and merely reflect the laws of general interdependence of the economy, aince the private investor is not, in a position to estimate these changes accuratoly, the investnent equilibrium of the econony is affected, On this point, see T. Scitoraky, "Tw Concapts of Extemal Economies, Jopo
sasuming that some offediegonal elements are not necessarily zero．This does not mean that we have any fooloproof method of estimating these coefficients．In the first place it is necessary to consider whether these coofficienta are＂identifiables＂in the sense the term is used in econometric literature。 what kind of a priori restrictions on the＇structure ${ }^{8}$ of the system are necessary in order to render them identifiable？This is all the more important if we have technical progress，becauses then s $_{9}$ the distinction between technological arternal economies and the overmall effect of technical progress is a somewhat blurred one in practice，But，conceptually the literature on economic developaent has ofter maintained，and rightly，that certain industries act nore frequentiy as transmitters of growth via the effect that they have on the productivity of labour，thus providing an instance of technological externality。 Although labour is not formally in our equation，its infliance is taken account of through the shape of the oquations or the values of the coefficients．The offediagonal elements crucial to the present argunent are those referring to the ${ }^{8} g^{8}$ matrix。 The presence or absence of offediagonal elements in the other matrices （ a and b ）are indicative of triangularity in the processea of production and capital formation．${ }^{5}$ It，is generally held that there are certain sectore of the economy which ace isportant from the point of view of radiating influence on all the other sectors，and they are normally classified as belonging to the＂infrastinctureo＂

Having discussed the general nature of this new matrix，we now rework our set of difference gquations for this modified case。 he assume $n=$ ？for

The triangularity in the（a）matrix is significant also from a computational point of view．This is so because only the matrix（Toa）is needed for inversion．
the sake of exposition. Thus the equations are now as follows:

$$
\begin{aligned}
& K_{1}\left(t+\rho_{1}\right)=K_{1}(t)-\rho_{1} \lambda_{1} \sqrt{8}\left\{\frac{g_{11} K_{1}(t)+g_{21} K_{2}^{\prime \prime}(t)+g_{12} K_{1}(t)}{}+\overline{g_{22} K_{2}(t)}\right. \\
& \left.=\left(a_{12} \nabla_{2}(t)+a_{21} \nabla_{1}(t)\right\}-\overline{d_{1} K_{1}(t)+d_{2} K_{2}(t)}\right] \\
& * p_{1} \lambda_{1} / \beta\left\{\left(g_{11}+g_{12}\right) K_{1}(t)+\left(g_{21}+g_{22}\right) K_{2}(t)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { + } \left.\left.\overline{a_{21} g_{2 I} K_{2}(t)}\right\}-\overline{d_{1} K_{1}(t)+d_{2} I_{2}(t)}\right] \\
& K_{1}\left(t+l_{1}\right) \lambda_{1} h_{1} / s\left\{\left(\overline{g_{11}+g_{12}}\right)=s\left(\overline{a_{12} g_{12}+a_{21} g_{11}}\right)-d_{1}\right\} X_{1}(t) \\
& \left.+\left\{s\left(\overline{g_{21}+g_{22}}\right)=s\left(\overline{a_{12} g_{22}+g_{21} g_{21}}\right)=d_{2}\right\} r_{2}(t)\right]+K_{1}(t) \\
& K_{2}\left(t+l_{2}\right)=\lambda_{2} l_{2}\left[\circ \circ \text { same as above } \circ \circ \rho+X_{2}(t)\right.
\end{aligned}
$$

Thus we have a system of two difference equations, the order being l max $\left(l_{1}, P_{2}\right)$, as in the previous case once again, we may tiv to solve the case expicicitiy or attempt the method of numerical extrapolation as mentioned earlier.

While the method proposed above formally takes into account the technological externalities so far as the evolution of output and productive capacity are concerned, there are very difficult problems of estimation involved: as remarked previously, the "g" coefficients are not easily determined ${ }^{6}$

[^0]We now turn to the second of the major extensions which were announced on page 5. This relates to the way in which the variability in time of the coolficients of the two Leontief matrices may be incorporated in our model. One way of introducing such variability is to assume these cosfificients to be autonomous functions of time. In other words, the sole reason why the coefficients change is technical progresso Thus differences between coefficients at two different points of time are indicative of "structural changes" due to innovations, etc. This, however, is a cheap way of generalization unless we can foresee the nature and extent of such tachnical progress, which is bound to be quite difficult to predict. To the extent technical progress is correctiy foreseen, we may incorporate them into our model without difficulty. While technical progress is not easily foresean, the variability introduced into the picture via the increasing outpucs of different induatries over time can be more easily projected. These changes reflect the economies of acale widich become important when the industry has reached a cortain size as well as the Allyn Toung type of external economies due to greater size of the market, A crosse section study of the production fuactions of comparable industries in different countries at different stages of growih may indicate how the relovant coefficients change when the size of output increases. A study of this nature has already been undextalsen by Cheneryo ${ }^{7}$ Such a study is quite indispensable from the operational point of views if variability of coefficients is to be introduced into planning questions. At inis stage, the transition in our anslysis should be carefully paced. Thus, our first extension consists only in introducing linearity。 At the asxt stage, wo
${ }^{7}$ Chenery, $H_{c} B_{0,}$ Patterns of Industrial Growth, (Papar presentod at the Washington Meeting of tha Econonetric Society, December 1959).
postulate facetwise proportionality or linearity，as the case may beo
We can thow how the introduction of linearity already enables some extension of our traditional results。 Assume two sectors，manufacturing and social overhead capital。 Social overhead capital enjoys increasing returns to scale so that inputsoutput ratio falls as output expands．Thens we haves

$$
\begin{aligned}
& X_{1}=a_{11} X_{1}+a_{12} X_{2}-\stackrel{\rightharpoonup}{a}_{12}+F_{1} \\
& X_{2}=a_{21} X_{1}+a_{22} I_{2}-\bar{a}_{22}+F_{2}
\end{aligned}
$$

Then，$\{X\}[A]\{X\} \&\{F \in \mathbb{a}\}$ where $\{X\}$ is the columavector of gross output levels。［A］is a matrix of marginal inputcoutput coefficients。 $\{F \in \boldsymbol{F}\}$ stands for adjusted final demand．

$$
\text { Then, }\{X\}=[I-A]^{-1}\{P=\mathbb{a}\}
$$

This differs from the traditional estimates of $\{x\}$ for any given amounts of $\{\mathbb{F}\}$ by a factor $[I=A]^{-1}\{\stackrel{\rightharpoonup}{a}\}$ which way be sizeable depending on $\{\vec{a}\}$

We may also introcuce some inequalities such as for values $X<\bar{X}, X_{i j}$ ． $a_{i j} X_{j}$ ，but for values $>\mathrm{X}, \mathrm{X}_{i j} \cdot a_{i j} X_{j}$ ．This is what we mean by proportion ality in facets．Even hare，we had best postulate proportionality in facets （stages）rather than continuous variability。 This implies tast at any point of time there is a proportional relationship between each input and output， although the coefficient of proportionality need not be the same as on any earliex occasion．Such piecoulse variation of the coaificients is not guite easy to handle explicitly．Since the prices axe changing between the various nodal points，the procedure of numerical extrapolation in this case must distinguish explicitly batween yalue variables and volume variables．This raisers
the familiar problems of index number construction which under such concepts as real income and investment is somewhat ambiguous．

If，however，we are interested only in numerical extrapolation ${ }_{9}$ not in an explicit solution，all that we need to do is to work on a set of fixed coefficients for one welledefined facet．Beyond that，a different set of coefficients will be neaded，and the procedure may be repeated． This sounds slightly artificial becaues in reality the facets are not that precisely marked，but the advantage in the handling of the problem is very great on this assumption．

Another way of handing this problem of piecewise linearity may be to assume that substitutability operates only on the margin，that is to say，we may assume that the increnent of capital stock may be used in various ratios with complimentary factors，wile once a choice has been made，we have a certain unique ratio in wich tha factors must be employed．Thus we have layers of capital stock and corresponding layers of technique and the relative importance of a given type of technique decreases in proportion as the importance of the correspording layer of capital stock becomes less jmportant。 This comes about in two ways：
a）The capital stock of a spocial type depreciates．
b）It is not replaced by an old type but one appropriate to the changed conditions of the system。
This second approach is very interesting from the theoretical point of view，and it say be shown to be quite consistent with the first point of views although computational probleas suggested by its approach are not quite bimple。 tro thinge nust be noted about the method of piecewise linearity：
a) At each point of time, we must ascertain whether the conditions relating to the consistency of the various coefficiente are satisfied. In case these cosfficients turn out to be inconsistent, 1.e. the HawkinsoSimons conditions of the system are not satisfied, this is presumably because the system determining the coefficients has more equations than unknows. This overedetermination arises because changes in the coefficient in one industry may well entail certain changes in other sets of coefficients, which may not be imendiately apparent. Thus by postulating constancy somewhere we are desling with a structure implicitly over-determined. The reason why such overodetermination will not arise in this approach is that we allow for induced changes in the coefficients in a piecewise manner via the price sfiects.
b) Secondly, if the coefficients are changing as output increasess relative prices will, of course, be changingo This raises, of course, all the familiar index number difficulties in determining real income over time. Since index number problems are theoreticelly "insolubleg" we may have to ascertain limits within wich such discrepancies will lis and then proceed as we would have done otherwise. A practical resolution of this difficulty may be indicated along the lines of successive iteration. This means that we plan for the subperiod for which prices are raore or less constent, having aufficient regard for the terminal capital equipmento Then, repeat the procedure for the next subperiod, having regard for the terminal equipment at the end of this period. In this way, we can avoid some of the difficulties in practice This is, of course, analogous to the procedure on which chain indexes are constructed.

The last point relates to the way deprecistion should be calculated. With straightline depreciation, "depreciation" (amortization) exceeds "replacement" in a growing econony, but in the context of numerical extrapolation, there is no reason thy we should use straightline depreciac tion. Wa may calculate "depreciation" in such a way that the difference between depreciation and replacement does not exist. Where we are concerned nure with "real" conditions rather than with financial practices, such a procedure should not evoke much criticiem.

Appendix

The Technique of Numerical Exirapolation

The technique of numerical extrapolation may be illustrated in the following way：
a）Specify the initial conditions For simplicity，we assume both the lags to be the same，iono $l_{1}=l_{2}$ 30 Then the number of arbitrasy initial conditions equals 6．These are $K_{1}(0), K_{1}(1) K_{1}(2)$ ，and $K_{2}(0), K_{2}(1), K_{2}(2)$ 。
b）The data of the aystem are：$\left[a_{i j}\right],\{b\},\{d\}, s[g]$
c）The unknown of the problem ares $K_{1}(3), \mathbb{X}_{1}(4), X_{1}(5)$ ，and $K_{2}(3), K_{2}(4), X_{2}(5)$ 。They may be determined from our set of equations。 Thus $K(3), X(4), K(5)$ ，are determined。 In the second round，the data are the unknown of the first afaga，the constants may or may not remain unchanged，and the whole procedure will bs repeated．Thus all the successive pointe in time will ba reached，and the tine path of all the variables bill be ascertained in a steprise fashion。

In the above example，lags have been assumed to be the same in both the sectorg．The pore general situation，involving different gestation lags，may also be conaidered without introducing any difficultise．

[^0]: GI this connection, it is interesting to note that the parametrization device generally connected with the dual of a programing becomes very complicated in the presence of externalities. The problems hes been discussed against the background of statistical considerations. Nothing has been done in the literature in this dynamic setting o For a discussion of the static question, sear. Mo

