
Product Development Strategies
in Evolutionary Acquisition

by

Bobak Ferdowsi

B. S. Aeronautics and Astronautics
University of Washington, 2001

Submitted to the Department of Aeronautics and Astronautics
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Aeronautics and Astronautics

at the
Massachusetts Institute of Technology

September 2003

„2003 Massachusetts Institute of Technology
All rights reserved

Signature of
Author………………………………………………………………………………………

Department of Aeronautics and Astronautics
August 22, 2003

Certified
by……………………………………………………………………………………………

Eric Rebentisch
Research Associate, Center for Technology, Policy, and Industrial Development

Thesis Supervisor

Certified
by……………………………………………………………………………………………

Debbie Nightingale
Professor of the Practice, Department of Aeronautics and Astronautics

Aeronautics and Astronautics Reader

Accepted
by……………………………………………………………………………………….…...

Edward M. Greitzer
H.N. Slater Professor of Aeronautics and Astronautics

Chair, Committee on Graduate Students



2



3

Product Development Strategies in Evolutionary Acquisition
by

Bobak Ferdowsi

Submitted to the Department of Aeronautics and Astronautics Engineering
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Aeronautics and Astronautics

ABSTRACT:

Programs are consistently faced with the decision on how to best deliver
capabilities to the user.  This challenge is magnified by the number of uncertainties and
risks the program can expect throughout the product development process—that is the
means by which the program gets from perceived need to deliverable solution.  The Air
Force, as a result of increasing development times for new products, has decided to
implement an Evolutionary Acquisition strategy, meaning the development process
focuses on delivering incremental capabilities through short increments or spirals.

The question, however, is whether this strategy makes sense across the broad
spectrum of Air Force programs.  More importantly, how can the Air Force, and
aerospace programs in general, decide what product development strategy applies to each
program?  An extensive literature review yielded a number of relevant questions
regarding product development.  The hypothesis of this research is that this selection
should be based on attributes of the product, the program goals, the uncertainties, and
stakeholder involvement.

A number of case studies were performed specifically targeting programs
identified as evolutionary.  Analysis of these case studies showed that there was a
disparity among these programs as to what was meant by Evolutionary Acquisition.
These programs were shown to have a mix of strategies, but primarily followed a pattern
of creating upgrades to a baseline or platform.

From the case studies a number of key recommendations were made for program
managers and policy makers implementing Evolutionary Acquisition, as well as a
notional illustration of product development selection.  Specifically, the research found
that programs with high user requirements uncertainty tended towards more iteration,
while programs with significant technical and performance goals had less iteration and
greater planning.  In programs where rapid delivery was the goal and uncertainties were
relatively low, incremental strategies were found to be most applicable.
Recommendations included implementing open architecture systems through owning
system interfaces, managing stakeholder expectations through system representations and
internal change agents, and providing stable funding and contingency funds for rapid
change implementation.  Additional recommendations were made on implementing
testing and logistics in highly iterative programs.

Thesis Supervisor: Eric Rebentisch
Title: Research Associate, Center for Technology, Policy, and Industrial Development



4



5

BIOGRAPHICAL NOTE:

Bobak Ferdowsi was born on November 7, 1979, in Philadelphia, Pennsylvania.
With his loving parents, he quickly moved to the San Francisco Bay Area where he
would stay until the age of 11.  In 1991, he moved to Tokyo, Japan, attending the
American School In Japan until graduating in 1997, with the exception of a one-year term
in Oakland, California at the College Preparatory School.  Bobak returned to the United
States in the fall of 1997 to enroll in the University of Washington in Seattle.

During his college experience, Bobak toyed with a number of majors before
settling on aerospace engineering, a childhood dream of his.  At the same time, he
worked in the Department of Physics, performing research under Nobel Laureate Dr.
Hans Dehmelt and Dr. Warren Nagourney.  His professors in the Department of
Aeronautics and Astronautics, especially Professor Kuen Lin, would influence his next
decision.

Bobak enrolled in the Massachusetts Institute of Technology in the fall of 2001,
and joined the Lean Aerospace Initiative.  It was here that he learned about a great deal
more than the traditional aspects of engineering.  The result is a thesis on the Air Force’s
acquisition strategies, and more importantly, a young man with a vastly greater
knowledge of the world of aerospace engineering and an interest in shaping the future of
this industry.

Though no one knows for certain what the future holds for Bobak, his aspirations
are to pursue a challenging career in aerospace engineering, and eventually, following in
the footsteps of his father and of the many who have helped him over the years—become
a teacher.



6



7

ACKNOWLEDGEMENTS:

If I have grown over the last two years it is because I spent so much time with all
of these people who enriched my life.

My advisor, Dr. Eric Rebentisch, for his relentless pursuit of research excellence
when I was lazy, but importantly for the great conversations we had that were not related
to research.  I have learned about more than product development strategies in my time
here.  Thank you to the Lean Aerospace Initiative: I spent a lot of time with many of the
LAI members in our LEAP project, on many Wednesday nights, and a handful of (too)
early breakfasts.  These include Kirk Bozdogan, Hugh McManus, Earll Murman, Debbie
Nightingale, Tom Shields, and Al Haggerty who took me on my first case study.  A
special thanks to the woman who brought me here and helped shape my research, the late
Dr. Joyce Warmkessel.

To my many friends at LAI (and some at SSPARC): Jason Derleth, Lt.Col Chris
Forseth, Marc Haddad, Sandra Kassin-Deardorff, Chris Roberts, Adam Ross, Nirav Shah,
Dave Stagney, Myles Walton, and Annalisa Weigel.  Thanks to Cory Hallam and his
soon-to-be wife Sara, for reminding me that there’s life outside of MIT.  Erisa Hines, my
occasional workout partner, and the little sister I never had.  Thanks to Alexis Stanke,
who guided me through the LAI process, for being a good friend and taking me out when
I needed it.  To Heidi Davidz and Mike Cluff, my close friends, and the first of many
married couples in the last two years, for always being there.  Of course a big thank you
to Deneen Silviano and Major Ron Jobo, for being the cutest couple, and watching out
for me, both in my research and in my life.  A special thanks to my surrogate family in
Boston, Tim Spaulding and his wife Dori, for taking me in on  the holidays, and being
great friends.

I would like to thank my family for supporting me in all my endeavors, especially
my mother and father, who, despite all our arguments, are the best a boy could hope for.

Thank you to Allison, my girlfriend, for taking such wonderful care of me, and
doing whatever she can to cheer me up when I was down.

A special thanks to my good friends here and away, especially David Vener and
Wesley Gifford, for putting up with me as a roommate and a friend, going out with me
almost every weekend, and keeping my life interesting.  Thank you to Parsi Parsinejad,
for being my friend since middle school and always making my laugh.

Thanks to all of the participants in my research, for being honest and teaching me
a career’s worth of lessons in such a short time.  Also thanks to the folks at the
Acquisition Center for Excellence for giving me an idea for research and helping me out.
I would especially like to thank Lt.Col Robert Dare, who made sure I could get in touch
with people in the Air Force and providing me with helpful insight on my research.
Thanks to Don Blake, the victim of my first case study, for giving me good advice.

There are so many people in these last couple of years that I would like to thank
for their help and support, and many more who I am probably forgetting.  Thank you all.



8



9

TA B LE  OF  C O N TE N TS

1 INTRODUCTION 15

2 PRODUCTS AND PROGRAM SCOPE 24

2.1 Product scope 30
Project scope 30
Key development goals 34
Product architecture 35
Summary of products and program scope 38

3 PRODUCT DEVELOPMENT PROCESSES AND THE ROLE OF
ITERATION 40

3.1 Uncertainty 40

3.2 Process steps 41

3.3 Key program tasks 43

3.4 Waterfall Processes 47
Waterfall variants 50

3.5 Evolutionary processes 56

3.6 Incremental processes 58

3.7 Spiral development 63

3.8 Process summary 72

3.9 Product development summary and key variables 75

4 DATA GATHERING AND RESEARCH METHODOLOGY 78

4.1 Approach 78

4.2 Data Gathering 79
Surveys 79
Case studies 80

4.3 Research realities 81

5 CASE STUDIES IN EVOLUTIONARY ACQUISITION 83

5.1 F-16 Case Study 83
Program Background: 83
Acquisition Strategy: 84
Key Enablers: 86



10

Summary: 88

5.2 Research case studies 89

5.3 Evolutionary Case Study 1 – Program A 90
Program Background: 90
Acquisition Strategy: 90
Programmatic Uncertainties: 91
Key Enablers: 92
Program Challenges: 93
Summary: 94

5.4 Evolutionary Case Study 2 – Program B 96
Program Background: 96
Acquisition Strategy: 96
Programmatic Uncertainties: 97
Key Enablers: 98
Program Challenges: 98
Summary: 100

5.5 Evolutionary Case Study 3 – Program C 102
Program Background: 102
Acquisition Strategy: 102
Programmatic Uncertainties: 103
Key Enablers: 104
Program Challenges: 106
Summary: 108

5.6 Evolutionary Case Study 4 – Program D 109
Program Background: 109
Acquisition Strategy: 109
Programmatic Uncertainties: 110
Key Enablers: 111
Program Challenges: 112
Summary: 113

5.7 Evolutionary Case Study 5 – Program E 114
Program Background: 114
Acquisition Strategy: 114
Programmatic Uncertainties: 115
Key Enablers: 115
Program Challenges: 116
Summary: 117

5.8 Evolutionary Case Study 6 – Program F 119
Program Background: 119
Acquisition Strategy: 119
Programmatic Uncertainties: 120
Key Enablers: 120
Program Issues: 122
Summary: 122

5.9 Summary of Case Studies 124



11

6 CASE STUDY RESULTS 125

6.1 Case study summaries 125

6.2 Acquiring new products 127
Actual processes – theoretical processes 131

6.3 Uncertainties in the product development environment 134
Operational requirements 135
Technology obsolescence 136
Budget 138
Operational environments 138
Summary of uncertainties in the product development environment 140

6.4 Product technologies 140

6.5 Program resources 144

6.6 Summary of program practices 149
Stakeholder involvement 149
Managing stakeholder expectations 150
Planning for test 151
Platform development 151
Minimizing interdependencies 152
Requirement prioritization 153
Experiencing capabilities 154
Results summary 154

7 CONCLUSIONS AND RECOMMENDATIONS 156

7.1 Selecting a product development process 156

7.2 Applicability of Evolutionary Acquisition 159

7.3 Implementing Evolutionary Acquisition 162
Program implementation 162
Policy recommendations 168

7.4 The future of Evolutionary Acquisition research 174

APPENDIX A - SURVEYS 179

APPENDIX B – CASE STUDY QUESTIONNAIRE 192

BIBLIOGRAPHY 194



12



13

TA B LE  OF  F I GU R E S

FIGURE 1: AVERAGE CYCLE TIMES   18
FIGURE 2: BROWN AND EISENHARDT MODEL OF PRODUCT DEVELOPMENT   28
FIGURE 3: HENDERSON AND CLARK INNOVATION FRAMEWORK   31
FIGURE 4: ULRICH AND EPPINGER MODEL OF FAMILY DEVELOPMENT   32
FIGURE 5: MODULAR VS. INTEGRATED SYSTEM   37
FIGURE 6: VEE MODEL   42
FIGURE 7: WATERFALL PROCESS   48
FIGURE 8: PARALLEL WATERFALL PROCESS   51
FIGURE 9: OVERLAPPING WATERFALL PROCESS   53
FIGURE 10: DESIGN TO SCHEDULE / BUDGET   54
FIGURE 11: EVOLUTIONARY PROTOTYPING AND DELIVERY   57
FIGURE 12: INCREMENTAL DELIVERY   60
FIGURE 13: BLOCK METHODOLOGY   62
FIGURE 14: BOEHM SPIRAL MODEL   65
FIGURE 15: NOTIONAL DEFENSE ACQUISITION SPIRAL PROCESS   70
FIGURE 16: PROCESS COMPARISON   74
FIGURE 17: F-16 A/B ACQUISITION STRATEGY   85
FIGURE 18: PROGRAM A ACQUISITION STRATEGY   90
FIGURE 19: PROGRAM B ACQUISITION STRATEGY   96
FIGURE 20: PROGRAM C ACQUISITION STRATEGY 103
FIGURE 21: PROGRAM D ACQUISITION STRATEGY 109
FIGURE 22: PROGRAM E ACQUISITION STRATEGY 114
FIGURE 23: PROGRAM F ACQUISITION STRATEGY 118
FIGURE 24: NOTIONAL VIEW OF PROCESS INFLUENCES 128
FIGURE 25: PROGRAM SIZE VS. LEVEL OF ITERATION 130
FIGURE 26: NOTIONAL DIAGRAM OF PROGRAM FLEXIBILITY AND ITERATION 132
FIGURE 27: DESIGN TO BUDGET/SCHEDULE IN AN INCREMENTAL DEVELOPMENT 133
FIGURE 28: IMPLEMENTING CHANGE IN PROGRAMS 139
FIGURE 29: PROGRAM INTERDEPENDENCIES VS. EASE OF SYSTEM CHANGE 141

LI S T  OF TA B LE S

TABLE 1: COMPARISON OF CASE STUDY PROGRAMS 129
TABLE 2: UNCERTAINTIES BY PROGRAM 134
TABLE 3: PROGRAM RESOURCES 145
TABLE 4: NOTIONAL DIAGRAM OF PROCESSES AND UNCERTAINTIES 159



14



15

1 Introduction
Product development is inherently a risk-driven process.  Companies take risks in

developing new products, or alternatively in not developing new products.  This is no

different in the aerospace community, in both commercial and military products.

Environments are highly competitive and dynamic—commercial products vie for market

space, while military products compete for superiority.  Both groups are faced with the

challenge of strategically developing new products and technologies, or in some cases,

understanding when not to develop them.

Due to the nature of aerospace products—their complexity, size, and necessary

quality—the decision to engage in new projects is often costly.  Many times, especially in

the commercial world, new products are often ‘betting the company’.  This is evidenced

by the new Boeing project, sleighed to be the 7E7 Dreamliner, and the Airbus A380, the

latter estimated to be a 10 billion dollar undertaking.  In the military however, poor

development decisions can mean wasted taxpayer money, and more importantly, lost

lives.

Many challenges stand in the way of successful product development.  The risks involved

are significant, and uncertainty is greater in the earlier stages of the project.  At the same

time however, significant product and process decisions must be made at this time that

will affect the product outcome.  In addition to this, numerous interfaces, both within the

developing organization, and externally to its various stakeholders, are crucial to the

process.  Furthermore, there is a great deal of complexity within these external



16

organizations.  As a result, the uncertainty associated with new products has driven many

different approaches to dealing with these risks.

The uncertainties involved in military programs are of special concern, and though they

are not necessarily more complex than commercial systems, subtle differences do exist.

For example, the U.S. Military is tasked with maintaining superiority over potential

threats, which is analogous to, but not the same as, a company’s desire to stay ahead of its

competitors.  This has typically been achieved through the acquisition of state-of-the-art

weapons systems, but this is no longer as easy as it once was.  With the end of the Cold

War, defense budgets have slowly declined, while the costs of maintaining cutting-edge

technologies have increased.  The Cold War also implied a clear sense of enemy, and the

type of threat to be encountered.  Though the war taxed resources, it was significantly

easier to predict what technologies were needed to maintain an edge over the enemy.

The challenges faced by the aerospace community came to a head with the events of

September 11, 2001.  That is not to say that the difficulties in product development did

not exist before this time—only that this event publicized product development shortfalls

and demonstrated a clear need for improved product development methodologies in the

aerospace industry.  In particular it demonstrated the dynamic nature of the world today.

The commercial world was faced with the fact that fewer people wanted to fly, and the

development decisions of major players Boeing and Airbus were called into question.

Airline bankruptcies showed that the traditional business models used to justify new

products had to be reevaluated.  At the same time, like no other event since World War II,



17

the United States was confronted by the fact that is no longer facing a stable and

predictable enemy like the USSR, but rather a new threat, against which traditional

strategies and approaches may not be as effective.

Beyond the dynamic world we live in and the evolution of threats, there are many other

challenges facing military product development.

One of the significant issues is the increasing cost of military products.  Norm Augustine

noted in the late 1980s, that without intervention, by 2054 the military budget would

afford one aircraft.  Significant work has been done to reduce costs through ‘Lean’

initiatives, a waste-reduction methodology practiced in the Japanese automobile industry

for some time.  Nevertheless, the majority of these changes have taken place in

manufacturing, with changes in supplier networks and product development only recently

beginning to emerge.  At the same time, the engineering community has become

critically aware that design choices determine an estimated 70 to 80 percent of the

product cost.  The result has been a strong push, like that in the military, to make better

design decisions.

A significant part of these decisions involve user feedback.  Often times users’ first

experiences with the aircraft are after the delivery of the product, when changes are not

economically feasible.  This is magnified by the long cycle times and significant

expenditures, so that users are getting products suited to their predicted needs of 10 or

more years ago, as shown in Figure 1, and unable to update these products.



18

Furthermore, in the current process, changes to the needs often result in schedule slip and

budget increases. The military, in particular, faces a significant challenge.  In the last

several years, there has been a strong push for a new acquisition process to address some

of the problems associated with traditional development processes.  This essentially

means changing the way new products are developed for the military customer.  The

process is the way in which these products are brought to the customer.  For the most

part, a development process involves a number of key steps, including formulation of

customer needs, a product strategy defining the general way in which those needs can be

satisfied, a system design, including detailed designs of all the product components, and

testing and evaluation before the product is delivered.

Explicitly, the military is interested in providing the warfighter with capability sooner, as

typical development cycle times for aircraft, for example, are on the order of 10 to 12

Air ForceAir Force

NavyNavy

0

20

40

60

80

100

120

140

19
69

19
71

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

P
ro

g
ra

m
 S

ta
rt

 t
o

 IO
C

No of Months

ArmyArmy

Source: DSB Briefing, Dan Czelusniak, 12 June 1998

Average Cycle Times 
(By SAR Reporting Years)

Figure 1: Average Cycle Times



19

years (Fine 1998), and for more complex products, such as the F-22, 25 years will have

elapsed between concept development and operational capability.  In a recent talk Dr.

Marvin Sambur, Assistant Secretary of the Air Force for Acquisition, noted, “when it

takes so long, it just can’t be state-of-the-art” (Paone 2002).  Furthermore, as September

11 demonstrated, threats can change significantly in such a timeframe.  In addition to

this, as a result of the long development times for new products, “large steps in

performance are required to justify the need for a new system vs. incremental upgrade,”

which in turn allows for requirement and specification creep (Wirthlin 2000).

The proposed solution to all this is the new strategy implemented in Air Force

acquisition, which emphasizes Evolutionary Acquisition, with a preferred spiral

development process.  Simply stated, the desire is to deliver partial capability products, or

increments, in shorter time, to allow for user feedback and changing needs through

greater flexibility.  The goal is cycle times of 2 to 4 years, about a quarter of what they

are currently.  In the spiral process, capability is built up through multiple iterations while

allowing for flexibility in design (discussed further in Chapters 2 & 3).

But is that realistic?  Does the spiral process adequately address all development

projects?  Can significantly complex tasks be reduced to such short time scales?  Other

issues arise, such as the nature of the product, the types of risk likely to be encountered in

the development, and so forth.



20

Hypothesis
The product development process selection is highly complex, and it is likely that no one

process will address all the issues associated with product development.  In fact, various

development strategies address various risks, and the process selected should reflect the

risks associated with that program.  Furthermore, products themselves introduce various

uncertainties, and the strategy should tackle those uncertainties as well.  Additionally, the

user preferences will drive the process selection as well, due to both the schedule and

flexibility of the various processes.  In total, the basic presumption for this work is that

product development is a marriage between the various aspects of development

associated with new products—including stakeholder value, product choices, and

development uncertainties.  It’s hypothesized that a successful marriage between the

process and uncertainty will generate greater stakeholder satisfaction.

Key Questions
This thesis investigates a number of questions about product development processes.

These can be summarized as:

1. What knowledge is necessary to adequately select a product development

strategy?

2. When does Evolutionary Acquisition make sense?

3. How can the acquisition community best implement these various processes,

particularly Evolutionary Acquisition?

Deliverables
There are several tasks that this thesis sets out to accomplish and deliver to provide useful

knowledge and ability to project management:



21

1. A framework to evaluate risks, processes, and products, based on the findings

of this research as well as historical literature and prior research.

2. A clear understanding of the current state of product development in the

military, including the process portfolio and possible lessons learned from

product development programs.

3. A tool, based on the findings of the research, to provide project managers

with greater insight on the product strategies and processes applicable to that

project.

Focus
This thesis will specifically focus on the military acquisition process, and how to

effectively address the needs of this community through various product development

processes.  At the same time, the work will draw extensively from commercial practices

and strategies, both in and outside of the aerospace industry.

Summary
The global aerospace community, including the military, faces a great challenge in

product development—a push to reduce costs and development times while improving

performance and satisfying customer needs.  These issues are fundamental to the

continued success of the military and commercial aerospace communities.  Though the

majority of the work done in this thesis will address military issues, both the commercial

and military communities experience similar development challenges, and lessons

learned and tools can be extracted to commercial programs as well.



22

Specifically, this research will investigate the synergies between the user needs, product,

and process, to show that more effective product development can be achieved through

the proper alignment of uncertainties and process.  The goal of the work is to provide the

acquisition community with an understanding of the current state of affairs, as well as a

tool to allow for improved process selection.

The thesis is broken up into three major sections.  The first section is a review of the

literature studied, followed by a brief look at the research methodology.  The second

major section is a series of case studies in Evolutionary Acquisition.  The final section is

an analysis of these case studies concluded by recommendations for program managers

and policymakers.

The first section, including Chapters 2 and 3, focuses on the background research in this

thesis.  Chapter 2 provides an introduction to product development, and looks at aspects

of the product and project scope to identify attributes of the system being developed and

the strategic goals of the project.  Chapter 3 goes into depth about the uncertainties that

are typically encountered in a product development process.  The bulk of Chapter 3 looks

at the variety of theoretical product development strategies, identifying attributes that

make them unique and understanding what types of uncertainty each of the processes

address.  This is concluded by a series of key research questions that emerged from the

literature review.



23

The second section begins with a brief overview in Chapter 4 of the research

methodology, specifically focusing on the research design and choices made in the course

of exploration.  Chapter 5 is an in depth look at each of the case studies, reviewing the

program background, acquisition strategy, program uncertainties, key enablers in

acquisition, and challenges towards implementing evolutionary strategies.

The final section, beginning with Chapter 6, provides a summary of the case studies and

delves into an analysis of the acquisition strategies, followed by a number of interesting

relationships between product choices and processes, uncertainties and key approaches to

dealing with these, finished by a look at resources in Evolutionary Acquisition.  Chapter

7 provides key recommendations for selecting process strategies.  After this,

recommendations are specifically focused on implementing Evolutionary Acquisition,

broken into suggestions for program managers and for policymakers, before concluding

with areas for future research.



24

2 Products and Program Scope
The vast literature focused on product development is both a blessing and a curse.  The

result of such extensive literature means that there are both a multitude of development

strategies and some disagreement as to the definition of these strategies.  The distinction

of strategies is of utmost importance, as each strategy addresses different uncertainties

associated with the product development process.  Furthermore, product development has

become crucial to success in the marketplace, as companies rely on new products to

capture and maintain market share and to revitalize the firm’s intellectual capital.  This is

particularly true in the aerospace industry, where the risk of failure is significant, and

companies are often jockeying for multi-million dollar contracts.  This chapter will

specifically look at two major regions of product development; 1) the attributes of

products developed in the aerospace context and 2) the underlying goals of a product

development process and the context of a product in a portfolio of systems.

What does it take then to be successful in market?  The majority of literature focuses on

“innovation” as the key to success.  Innovation itself is a challenging topic and has

multiple meanings.  Webster’s Dictionary (1996) defines innovation as:

1. The act of innovating; introduction of something new, in customs, rites, etc.

2. A change effected by innovating; a change in customs; something new, and

contrary to established customs, manners, or rites.

Both of these are highly relevant to industry—companies must both introduce new

products and change the way they both develop these products and arrange their

organizations.  The challenge of product development lies in understanding what a



25

successful product is before designing and developing such a product.  In a sense,

companies must identify the target before going after it.  Ulrich and Eppinger (2000)

isolate five factors by which to judge product success:

1. Product quality – whether the user needs are satisfied, and the product is

reliable.

2. Product cost – the cost of the product, both to setup manufacturing and to

produce.

3. Development time – the time required for the project team to develop the

product, and whether the team is agile enough to respond to changes.

4. Development cost – the expenditure required to develop the product.

5. Development capability – the usefulness of the product development process in

terms of generating abilities for future product development.

Of particular interest, as one of the key questions in this thesis, is the means by which the

process used in product development affects the outcome of the product.  Much of the

literature available realizes the benefits of reduced time and resources in bringing a

product to market through the proper selection of development process (Eisenhardt &

Tabrizi 1995).  This is of significant importance to the aerospace industry where

resources are at a premium, and specifically to the military complex, which, as stated

before, faces the problem of both increasing acquisition costs and average cycle time

increases on the order of 100 percent in the last thirty years.  In addition, the benefits of

short cycle times is necessary in the military in order to deal with a dynamic threat

environment.  Accordingly, this strategic focus on product development has spurned

several new initiatives, specifically Evolutionary Acquisition and spiral development,



26

which seek to provide the warfighter with tangible, useful product in a short amount of

time, and allow for feedback and evaluation in the ongoing development process.

Product development strategies break down into a number of different attributes, each

important in the strategy and selection of process. Accordingly it is necessary to explore

the multitude of categories in which product development applies, and to scope the

problem to a feasible task.

Essentially, it is possible to break the development literature into three macro categories,

though there is a high degree of correlation and integration amongst them.  These three

include organizational innovation, product innovation, and process innovation.  Due to

the nature of the recent focus of the military acquisition community, specifically in

Evolutionary Acquisition, the bulk of this research focuses on product and process

innovation, and specifically on synergies that exist within the two.  At the same time, the

author realizes the essential need for organizational change, and that the selective use of

resources within the organization affects the outcome of product development.

Although this thesis investigates the product-process synergies, the organizational

implications are essential to the picture.  This is not a one-way street—the organization

affects the process and product, but at the same time, the process and product influence

the organization.  In particular, new product creation is an essential part of the company’s

ability to adapt and evolve (Dougherty 1992).  This is of importance to the military,

where the mission threat is dynamic and evolving.



27

One potentially useful representation of the product development process comes from an

extensive literature review by Brown and Eisenhardt (1995).  This review focused on the

more traditional organizational literature, but several aspects are essential to the realms of

product and process innovation.  Figure 2 shows the Brown and Eisenhardt illustrated

model of product development.  Of note are the bold lines and capital letters, which

indicate verified and robust relationships.  The remaining points are put forth as relevant,

but not necessarily primary factors in product success.



28

Figure 2: Brown and Eisenhardt (1995) model of product development



29

In particular, the figure highlights several factors that appear to have the greatest

relevance to product development, including:

• External communication

• Organization of work

• Customer involvement

• Product concept fitness

All of these are extremely relevant to the product development picture that this research

paints.  As will be discussed further in this chapter, these are key facets of the processes

that are available to developers today.  The process performance brought up in this model

is also crucial to this work, particularly the time it takes to develop products.

In the Brown and Eisenhardt review, another key issue is brought up—that of

organization of work.  In their review and in subsequent work, research has shown that

various processes have differing effects on development time.  In particular, a highly

iterative process that went through frequent reviews had a greater benefit in the computer

industry than did a traditional product development process that had been compressed to

reduce cycle time (Eisenhardt & Tabrizi 1995).  Nevertheless, even this research had its

drawbacks, specifically looking at iteration in the design process, and not necessarily

throughout the development cycle.  External communication is essential as well, and

involves interaction between the developer and the other stakeholders, including the

customer.  Before looking at the processes available, it is important to understand the

nature of the products involved.



30

2.1 Product scope
The aerospace industry is an extremely complex myriad of corporations, involving a

large number of firms from material suppliers to software developers to systems

integrators.  The multitude of products in the industry is equally diverse.  Like the

corporations themselves, aerospace products include raw materials, software,

manufacturing tools, electronics and avionics, satellite systems, airplanes, ground

stations, and much more. While products are essentially items “sold by an enterprise to its

customers” (Ulrich & Eppinger 2000), families of products are typically identified as

groups of products that have common technology and are linked to similar markets

(Meyer, Tertzakian & Utterback 1997).  In addition to the obvious products themselves,

there are a slew of related supporting products necessary for operation and sustainment of

the aerospace world.  Accordingly, it is unreasonable to categorize development projects

by these families.  Instead, it is imperative to look at metrics that quantify aspects of the

product.  Furthermore, due to the nature of the research in this thesis, it is possible to

further pare this variety of products to slightly more complex products requiring some

level of integration of modules or subsystems.

Project scope
While some products represent new categories and significant changes, others are

incremental improvements on and derivatives of existing products.  The difference

between these is a large driver on the development process.  Depending on where the

product fits into the company’s portfolio, and whether it is a derivative or platform, the

program will pursue different strategies.  The resources and time spent on each of the



31

various strategies will differ.  To make proper decisions on resources and development

processes, a program manager must be aware of the nature of the product.

Systems have a certain relationship both internally, in terms of how the components

relate, and externally, in terms of their use.  The terminology for such relationships is

useful and relevant to the body of this work.  Throughout the remainder of this work, the

relationships between various subsystems within a system are referred to as the

architecture of the systems.  The core concepts of the system refer to the understanding of

the underlying technology or subsystems.  One useful method of understanding these

relationships is through a framework developed by Henderson and Clark (1990) for

identifying innovation types.  Figure 3 depicts this framework.

Henderson and Clark establish two pairs of extremes.  The first pair is radical and

incremental innovations.  Radical innovation, they argue, “establishes a new dominant

design,” while incremental innovation “refines and extends an established design.”  The

radical innovation changes the fundamental architecture and core concepts.  The other

Radical
Innovation

Architectural
Innovation

Modular
Innovation

Incremental
Innovation

Reinforced Overturned

Unchanged

Changed

Core Concepts

L
in

k
a
g

e
s 

b
e
tw

e
e
n

 C
o

re
C

o
n

ce
p

ts
 a

n
d

 C
o

m
p

o
n

e
n

ts

Figure 3: Henderson and Clark (1990) innovation framework



32

pair is modular and architectural innovations.  The former indicates a change in the core

concept, but not the architecture of the product, while the latter keeps the core the same

while changing architecture.

Work by Fine (1998) describes the product development as being divided up into

architectural choices, such as going to a modular or integral structure, and detailed design

choices, such as performance specifications.  These decisions appear to be highly relevant

in implementing various development strategies.  Additionally, Ulrich and Eppinger

(2000) describe four major development types: new product platforms, derivatives of

existing product platforms, incremental improvements to existing products, and

fundamentally new products.  Figure 4 shows a typical portfolio development strategy.

In essence, this consists of the development of platforms and their increments, followed

by derivative platforms and their

increments, until the decision is made to

develop a “clean-sheet” design.

In other words, each of these

development types is a different level

investment.  New product platforms tend

to be a significant amount of work, as

these serve as the basis for later models

and derivatives.  Platform examples

might include commercial aircraft such

Development of Platform
Initial Product
     Incremental 1
     Incremental 2

Derivative of Platform
Initial Product
     Incremental 1
     Incremental 2
     . . .

New Platform
Initial Product
     Incremental 1
     Incremental 2
     . . .

Cost Reduction
New Features

New Market Applications

Figure 4: Ulrich and Eppinger (2000)
model of family development



33

as the Boeing 777, or military aircraft such as the F-16.  In these cases, the original

design, or platform has served as the base of the family of aircraft.  This family of aircraft

is typically a mix of derivatives and incremental improvements resulting in new models.

Using the example of the F-16, the numerous block upgrades represent incremental

improvements in capability over the original aircraft.  Derivatives of the F-16 include the

Japanese FS-X / F-2 fighter.  The last category represents a unique departure from the

other three.  Fundamentally new products represent a similar category as that of radical

innovation stated above.  Essentially, these products are a significant departure from the

current group of products, in the way that jet engines are a radical departure from piston-

driven engines.

In a similar classification scheme, Cusumano and Nobeoka (1998) describe four types of

development projects:

• New design

• Concurrent technology transfer

• Sequential technology transfer

• Design modification

The new design category incorporates the platform strategy from above, while design

modification addresses the derivative and incremental categories.  The interesting

additions are the concurrent and sequential technology transfer categories.  Concurrent

technology transfer refers to a transfer of information between two simultaneous or

ongoing projects.  This is exemplified by common cockpit design in various Airbus

aircraft developed in proximity to each other.   Alternatively, sequential technology



34

transfer looks at information passed on from prior projects into new projects, such as the

establishment of standards or designs.  Though numerous examples of this exist, some of

the more notable examples are in aircraft avionics, where designs from prior aircraft are

often used.

As a multitude of project types exist, the choice is not simple.  To develop platforms is

significantly more challenging, and platforms can often take two to ten times more

funding and time than a derivative project (Ulrich & Eppinger, 2000).  However, it

occasionally becomes necessary to undertake fundamentally new products from a

company perspective, for the sake of fostering an adaptive environment within the firm,

and to reinvigorate the company portfolio (Ulrich & Eppinger, 2000).  Recent examples

are Boeing and Airbus with the Sonic Cruiser and the A380, respectively.  These levels

of development significance are a very important aspect of the development process, and

it is hypothesized that the type of project will have a significant effect on the appropriate

strategy selection.

Key development goals
In addition to these measures of product scope generally applicable across industries,

there are a few development goals and tasks that have greater meaning in the military

context.  There are several decisions made early in the development process about what

the strategic development goals of the program will be.  To some degree this includes the

decisions above, as to whether the product will represent a new development or a

derivative of existing products, but furthermore, the decisions must be made as to

whether the current development will be upgradeable in the future.  In other words,



35

designers can choose to make the design of the product such that modifications and

improvement activities would be easier to perform.

In addition to these decisions, recent work by Tondreult (2003) has demonstrated that

programs often select among two categories of product development, the first based on

growing performance, the second based on reducing cost.  In terms of performance, this

can mean two basic things.  The first is a performance improvement or capability change,

meaning an adaptation of a current product to new needs.  The second is a design change

to allow the product to comply with new regulations or changes in the technical operating

environment.  At the same time, developers can choose to focus on reducing acquisition

and operating costs, through iteration.

Sources of inception
While many of these decisions are crucial to the development of new products, the source

of demand for the new product is also critical to the development path.  While the

majority of these needs originate with the end user, especially in the defense community

as a result of direct operational experience, other sources include Department of Defense

analyses of needs, experience in wargames or exercises, and possibly new technologies or

novel concepts.

Product architecture
While the scope and scale of the project represents one of the significant decisions in the

development process, another more specific decision is made about the product itself.

Developers often have the choice of electing to develop products with varying degrees of



36

modularity or integrality.  The decision is important as it affects several key aspects of

the product’s life—it’s cost, performance, and lifetime.

At the same time, the decisions made in the early stages of development will significantly

affect the ability for design changes and more importantly, design innovation.  In Von

Hippel’s (1988) work, he found that among similar products developed by different

companies there was a noticeable variance in the likelihood of user-derived

innovations—i.e. innovations that the user develops on their own.  Further investigation

showed that the cause of this was the ease of experimentation with the product.  In the

case that Von Hippel looked at, the products with greater innovation were more flexible,

and the system could be altered more easily without the use of expensive or special parts.

Often this ability to change systems without critically hindering the system as a whole is

referred to as modularity.  Modularity exhibits two characteristics:

• Modules are responsible for “one or a few functional elements in their entirety”

• The connections between modules are clearly defined (Ulrich & Eppinger 2000)

The most commonly referenced example of modularity today is the personal computer

(Baldwin & Clark 2000), where standardized interfaces allow for changing much of the

system from the processor core to peripheral hardware.  In the aerospace world, the F-16

has been referred to as an open, modular architecture (though not necessarily by the

standards of other industries).  The F-16 uses an avionics rack that, with some software

changes, allows for different avionics modules to be put in.  Conversely, some

architectures are highly integrated, such as the F-22 avionics suite, which unites



37

information from various sources to present a single display to the pilot (Kirtley 2002).

Ulrich and Eppinger (2000) describe such an integrated architecture as having some of

the following aspects:

• Functional elements are distributed across multiple modules

• Single modules are responsible for multiple functionalities

• Interactions between modules are not well defined.

An example difference of the two architectures in avionics is shown below, in Figure 5.

Each potentially has its own advantage.  Integrated architectures, like those evidenced in

the F-22 Avionics suite, have the ability to provide the user with greater ease of use, and

sometimes reduce the cost of procurement.  Examples of these include much of the world

of electronics, where multiple chips, each performing individual tasks, have slowly been

integrated into several or sometimes one chip.  On the other hand, the ability to quickly

upgrade these, or to incorporate changes, including new technologies or changing user

preferences, is significantly diminished.  Modular architectures, such as the F-16

Avionics, address this by allowing for “swapping” of parts, so that sections can be

upgraded or changed, but this can create penalties in cost and weight.  There are several

reasons for altering products, such as (Ulrich & Eppinger 2000):

Radar

Processor

Comm

Processor

Nav

Processor

Radar Comm Nav

Processor

Modular system         Integrated system

Figure 5: Modular vs. Integrated system (adapted from Kirtley 2002)



38

• Upgrades – the ability to change due to technological improvements or evolving

user needs

• Add-ons – the ability to allow third-parties to add functionality

• Adaptation – the ability to change products based on environments and external

changes

• Wear – the ability to replace individual components due to degradation

• Consumption – the ability to replace consumed materials, such as the toner

cartridge in laser printers

• Flexibility in use – the ability to change products to accomplish different tasks,

for example to allow for different munitions based on mission needs

• Reuse – the ability to reuse the product with only slight changes to necessary

components

Fundamentally, however, the use of a modular architecture facilitates adaptability and

agility.  This can be critical as shown in the next chapter, since some development

strategies emphasize flexibility and multiple design iterations.

Summary of products and program scope
There are a couple of key takeaways from this chapter.  The first of these looks at the

level of change in the product development from previous systems—that is to say how

the product relates to previous products (if they exist) providing similar capabilities.  This

resulted in a model of family development, formed by platforms, derivatives, and

increments, the first representing the highest level of development work, and the last

typically representing the easier modifications to existing systems. The second major

finding in the chapter was the product architecture, which indicated that systems varied in



39

modularity, but that modularity had significant advantages in product flexibility.  This

ties in to the next chapter, as the types of development (i.e. new or platform vs.

incremental) as well as the modularity significantly impact the development strategy.



40

3 Product development processes and the role of
iteration

The variety of product development processes is a natural evolution from a number of

uncertainties in the lifecycle of products.  Due to the dynamic nature of the market and

the inherent challenges in the design and development of new products, various

development strategies attempt to mitigate the uncertainties in development.  This chapter

specifically looks at two parts of the development process.  The first of these is the type

of uncertainties or risks a program can encounter during development.  The second, and

much more significant part of this chapter, looks at the wide range of product

development processes available to program managers, categorizing them by several key

attributes and the types of uncertainty they address.

3.1 Uncertainty
The uncertainties facing various product developments play a crucial role in determining

what development process is appropriate.  Historically, strategies have arisen as a direct

result of trying to cope with development uncertainties.  There are typically four types of

risks and uncertainties facing new products today (Unger 2003).

• Budget - whether a successful product can be developed given the resources

available, as well as whether development can successfully continue given

changes in allocation of these resources

• Customer - whether the product adequately addresses the customer needs,

particularly given that those needs are apt to change

• Schedule - whether the product can be developed and delivered in the time

available, or in a useful timeframe



41

• Technical - whether the product can be built to satisfy certain requirements and

performance demands.

Though these do not represent the whole of the risks in product development, they do

represent a broad spectrum of the significant challenges facing firms.  These uncertainties

provide a good framework for which to understand the various processes available.

3.2 Process steps
Though there are many processes by which to mitigate the aforementioned risks, each of

them contains some similar subset of tasks and steps essential to any product

development project.  While processes vary significantly in terms of the arrangement of

tasks, the tasks themselves are fundamentally the same in each of the processes.  They

include:

0. Planning - establish a project mission statement, including targets in market and

firm-level goals

1. Concept development - perform needs analysis, explore alternative concepts,

and prepare specifications

2. System-level design - define architecture and subsystems

3. Detail design - full detail specifications for all parts, including manufacturing

and assembly plans

4. Testing and refinement - typically consists of two major sets of tests, the first is

of an ‘alpha’ prototype, which determines whether the product works and

satisfies key performance parameters, while the second, ‘beta’, prototype

establishes manufacturability, and is often tested in a real-world environment



42

5. Delivery - full-scale manufacturing of the product, accompanied by the launch

or delivery of the product (Ulrich & Eppinger 2000).

These steps are the building blocks of any development process and form the basis for

discussion of the various processes.  A visual representation of this is often shown in the

Vee model, a popular visualization method for project managers.  Despite the different

naming of the steps that place it in a software context, the process is essentially the same.

Note that in Figure 6, essentially the same set of steps is required, but there is more detail

on the testing and validation portion of the development process.  This has been a

significant part of the thrust of the Air Force’s improvement program, as testing proves to

be a significant challenge from both a schedule perspective as well as the role which

testing should play.  The testing steps include verifying “design-to” specs and performing

system verification, which run along the lines of the Air Force’s Developmental Test and

Understand user requirements,
develop system concept and
validation plan

Develop system specs
and verification plan

Expand system specs
into “design-to” specs

Fab, assemble and code

Perform verification
of “design-to” specs

Integrate system, perform
system verification

Demonstrate and validate
system to user

Decompose & Define
Int

eg
rat

e &
 V

ali
da

te

Figure 6: Vee model (Forsberg, Mooz & Cotterman 1996)



43

Evaluation, while demonstrating and validating the system is akin to Operational Test

and Evaluation (for more on this, see the testing section below).

3.3 Key program tasks
In addition to the general tasks performed in any development, there are a number of key

activities that must be performed.  These typically are done as part of the general task

categories, but are crucial to the development process and deserve additional discussion.

In particular, these tasks are identified as being crucial to spiral development and other

highly iterative processes.

Stakeholder identification
One of the most important parts of any product development task is identifying the key

stakeholders.  This is often done through a lifecycle analysis, where communities that

play a role in the product’s lifecycle are identified.  These do not make up the entire

stakeholder community, as stakeholders are often tiered, with major stakeholders often

having their own groups of stakeholders.  Though stakeholder significance varies, within

a typical military development program, these stakeholders consist of the end user,

logistics, the acquisition customer, the contractor, and testers.  Through a dialogue

between representatives from each community, a roadmap for product development is

arrived at.

Modeling and simulation
Modeling and simulation represent a critical aspect of the development process.  They are

often used in hardware development processes as a preliminary means of understanding

the product’s performance.  In particular, models and simulation can provide a surrogate

for physical production, the latter often being very costly, and much more difficult to



44

change.  At the same time, these can be very valuable system representations for

soliciting feedback from the various stakeholders, including the user and customer (Dare

2003).  Through this feedback process, the program has the option to evolve and / or

verify requirements.  Due to the relative ease of change, models and simulations can be

modified to incorporate new technologies, as well as new requirements for future

systems.  This is particularly valuable for programs intending to have many increments.

The Department of Defense (DSMC 2001) defines a model as “a representation of an

actual or conceptual system” usually based on mathematical algorithms, while a

simulation is essentially the use of these models to determine usability of these products.

Prototyping
Prototypes represent a more evolved system, and are traditionally at a level of definition

higher than models and simulations.  They are often “an original or model on which a

later system / item is formed or based” (DSMC 2001).  The term applies to both software

and hardware systems, though software systems have slightly different nomenclature, for

example alpha and beta versions and so forth.  Prototypes can represent either a part of or

a whole system.  In the case of hardware, prototypes usually refer to physical

representations of the product.  In the case of aircraft, for example, this might include

prototypes of the cockpit, and later full-scale functional prototypes.  The end purpose of

prototypes, like simulations and models, is to provide an opportunity for feedback from

the stakeholders and to modify and validate requirements.  As prototypes become more

complex, their flexibility is often reduced, so it becomes imperative to feedback-critical

programs to deliver prototypes early.  The role of prototyping varies greatly among the

various product development processes, ranging from a means of requirement solicitation



45

in spiral development, to a means of final verification and validation in traditional

waterfall processes.

Testing
Testing is a fundamental part of the development process, and crucial to aerospace

programs, where error is intolerable.  The Department of Defense defines three types of

testing, two of which are relevant to this research.  The first of these is developmental

testing, defined as

1. Any testing used to assist in the development and maturation of products,

product elements, or manufacturing or support processes

2. Any engineering-type test used to verify status of technical progress, verify that

design risks are minimized, substantiate achievement of contract technical

performance, and certify readiness for initial operational testing (Defense

Systems Management College 2001)

Essentially, this is the technical certification testing, ensuring that the product performs

reliably and safely, and two the requirements determined by the developer and

acquisition community.  The second level of testing is operational testing, described as:

1. The field test, under realistic conditions, of any item (or key component) of

weapons, equipment, or munitions for the purpose of determining the

effectiveness and suitability of the weapons, equipment, or munitions for use

in combat by typical military users; and the evaluation of the results of such

tests (Defense Systems Management College 2001)

This testing serves to identify the usability of the developed product.  Both types of

testing are developed in the Test and Evaluation Master Plan (TEMP).  The TEMP



46

defines the structure and goals of the test program.  Recently, the defense acquisition

community has been pushing for an integrated or combined testing and evaluation,

involving both developmental and operational testing.  This will hopefully reduce some

of the redundancy and reduce acquisition time.

Technology insertion
Though the reader is likely very familiar with the definition of technology, the context of

these technologies is hypothesized to play a significant role in the development strategy.

This focuses on two aspects, the first being the maturity of the technology, and the

second being the rate of change of technology.  Technology maturity has long been

known to reduce cycle time, as programs can quickly move to insert this technology

without significant changes later in the development.  In other words, the more mature a

technology, the less likely it is to change, and the easier it is to incorporate into a

development process.  Though there are a number of categorization schemes for

identifying the maturity of products, most notably the Technology Readiness Levels

(TRL) determined by the Department of Defense, they are somewhat cumbersome.  More

simply, off-the-shelf (sometimes referred to as Commercial-Off-The-Shelf, or COTS)

technologies are regarded as relatively mature.  In addition to this, companies, and

especially the military, often have previously developed technologies, usually called

Non-Developmental Items (NDI), also seen as mature.  Beyond the level of maturity,

companies must consider the evolution of technology in their design decisions.

Technologies often evolve much more rapidly than the products in which they are a part,

leading to a various outcomes.  In selecting product architecture, the ability to incorporate

new technology or exchange older parts for newer ones becomes essential, allowing the



47

program to be flexible and adaptive.  The inability to do so can not only mean a shorter

lifespan for the product, but also that maintenance of the product can become a problem

as a problem of diminishing manufacturing sources arises.  As a result, the product

development process must negotiate a path between mature components and components

that can evolve in order to provide the best lifecycle value.

Summary of program tasks
In every product development process, these activities must be successfully negotiated.

At the same time, each task has different priorities in each of the strategies.  More

importantly, each of these tasks holds different weight depending on the development

process.  To review, these consist of the following: planning, concept development,

system-level design, detail design, testing and refinement, and delivery.

Using these steps and the uncertainties from above, it is possible to evaluate the portfolio

of product development strategies.  These will be broadly defined in their families, and

further attention will be paid to the detailed understanding of individual processes.

Finally, an overview of the Evolutionary Acquisition policy and current military

development processes will be provided.  Various arrangements of these product steps

yield approximately seven strategies in four major categories.  These include waterfall

processes, evolutionary processes, incremental processes, and spiral development.  Each

of these will be illustrated in more detail in the sections below.

3.4 Waterfall Processes
The waterfall process is easily the most recognizable process available in the project

manager’s toolbox.  It has long been the standard in the industry, undoubtedly due to its



48

intuitiveness and straightforwardness.  It is, very simply, the sequential and linear

organization of the aforementioned product development steps.  Figure 7 shows the

waterfall process.

In the waterfall process, steps are intended to be executed only once, and accordingly,

there is an accompanying set of stage-gates.  These stage-gates are essentially milestones

or reviews, serving to verify that the stage has been successfully concluded, and work can

move to the next stage.  The result is a process that has a high level of iteration within

individual stages (e.g. the system design stage may be repeated several times), but not

across stages.  In the waterfall, it is presumed that once the product has passed a certain

phase, there is no need to return to that phase.  When changes are required in earlier

work, it comes in the form of undesirable rework.  The result is a single product that

should provide a best match to the up-front requirements or determined market need.

Product
Planning

Concept
Planning

System
Design

Detailed
Design

System
Testing

Product
Delivery

Stage-gates

Iteration
occurs
in each
phase

Figure 7: Waterfall process (adapted from Unger 2003)



49

The Apollo program is one such program that used a waterfall process.  This was

particularly valuable to the program as it was faced with a technical challenge but the

design goal was clear.  The waterfall process handles technical risk very well, as each

stage serves to ensure that the technical aspects of the program have passed inspection

and are complete.

There are some notable advantages to a waterfall process—primarily the structure it

provides to the project.  Requirements and specifications are frozen early on, which can

be advantageous as it reduces the likelihood of changes further along in the process,

when they typically cost more.  Additionally, because of the rigid nature of the process,

budgets, schedules and resources can be somewhat more predictable.  In fact, the effort

up-front in planning can reduce development time by eliminating unnecessary steps and

improving coordination and communication (Eisenhardt & Tabrizi 1995).  Tools such as

Design Structure Matrix (DSM) are commonly used in optimizing these processes.

Additionally, it is accepted that in cases where the requirements are well defined, it is

risky not to use the waterfall process (Boehm 2000, Highsmith 2000).

At the same time, the waterfall is unresponsive to dynamic environments, such as budget

cuts, new technology insertion, and changing user needs.  In fact, the cost of change is

estimated to go up an order of magnitude with each stage (Owens & Cooper 2001).

Additionally, the method often lends itself to an ‘over-the-wall’ approach, where parties

responsible for each stage pass the work over to the next group with little interaction.



50

This can cause delays and cost increases, as well as the potential for poor quality

products.  Waterfall processes do not provide interim capabilities, and requirements are

not flexible in the process.  While the process is initially driven by user requirements,

there is no real opportunity for user feedback except the occasional milestone review, but

changes at these stages typically require rework.  In addition to this there is no intentional

iteration across stages, as stages are intended to be frozen once executed.

Waterfall variants
While the waterfall represents the traditional process of choice, some of the weaknesses

of the process have driven project managers to develop variations on the strategy.

Parallel waterfalls
Due to the nature of the waterfall it is impossible to proceed to a subsequent stage

without completing the prior stage first.  This can cause problems if and when stages are

held up.  Particularly, many aspects of the system and detailed design can encounter

technical challenges.  Accordingly, the parallel waterfall model mitigates the risks of

overall delays by breaking the design task up and executing these parts simultaneously, as

shown in Figure 8.



51

The figure shows one example of a parallel waterfall, where the detailed design paths

take different routes.  The parallel waterfall starts like a normal waterfall, but allows for a

variety of designs to be considered within the context of the system design.  In such a

program, a set of early design parameters is necessary to facilitate individual work on the

separate detailed design sections.  Typically these sections will consist of subsystems that

are farmed out to subcontractors or other divisions.  Furthermore, the parallel waterfall

system can be used to develop a portfolio of design options, such that if one strategy fails

there remain alternatives.

A common aerospace example of a development that would use a parallel strategy is the

co-development of an airframe and engine.  In other words, to build a new aircraft with

given performance, the program sets the requirements and allows for simultaneous

development of the airframe and engine so as to reduce overall development time.  Again

each of the developments is like a waterfall in itself, so the process is still primarily

Product
Planning

Concept
Planning

System
Design

System
Testing

Product
Delivery

Detailed
A

Detailed
B

Testing
A

Testing
B

Figure 8: Parallel waterfall process



52

technical risk oriented, but parallel processes allow for some mitigation of schedule risks

to the overall program due to one subsystem.

The parallel waterfall essentially has two key benefits over the traditional

waterfall—first, it allows for work to be completed in parallel, so that delays in one path

do not impact the final schedule as significantly, and secondly, to provide a portfolio of

options in cases where customer needs are uncertain.  At the same time, there is a

significant requirement that the strategy places on the design.  The design must be such

that it can successfully be subdivided without coupling between the various divisions.  If

the system is highly coupled, then a change discovered in one path could potentially

require rework in all paths.  In this regard, there must be a very clear set of interface

requirements, and the system must exhibit some level of modularity.  Though the parallel

waterfall process mimics the traditional process, it does allow some flexibility in that it

can incorporate multiple simultaneous designs.

Compressed or overlapping waterfalls
Another variant of the waterfall is the ‘compressed’ or ‘overlapping’ waterfall.  While the

traditional waterfall lends itself to an ‘over-the-wall’ approach, the overlapping waterfall

attempts to mitigate this problem by creating an overlap, whereby functional teams

interact for some period before the subsequent team takes over, as demonstrated in Figure

9.



53

Note that the stage-gates in the overlapping waterfall are not at rigid as in the traditional

process.  An additional advantage to this process is that it allows some parts of each

phase to be done in parallel, compressing the development time.  With overlapping stages

cross-functional teams are more likely to occur, which is generally considered to be

beneficial to innovation.  Furthermore, involving teams earlier in the process and

alongside the prior team decreases the likelihood of rework later as well as reducing the

wait time between steps.  This also increases the project orientation of the program, rather

than the function orientation, which is likely to benefit the enterprise (Unger 2003;

Cusumano & Nobeoka 1998).

This development strategy is very close to the pure waterfall, and it is likely that

programs suffering from challenges in cross-functional communication might tend

towards such a process.  At the same time, the lack of clearly defined reviews or stage-

gates can be a drawback of the overlapping process.  Additionally, though it offers some

Figure 9: Overlapping waterfall process



54

shortening of cycle time in comparison to traditional processes, the mere compression of

phases has not been shown to have dramatic schedule benefits (Eisenhardt and Tabrizi

1995).  Like the waterfall process, there is little or no real flexibility or iteration in this

process, and accordingly no opportunities for interim capabilities or user feedback.

Design to schedule / budget
One of the largest drawbacks of the waterfall and its siblings is the lengthy schedules and

corresponding costs.  These are especially apparent when programs face schedule slips

and cost overruns.  In the design to schedule or budget strategy, the program is

aggressively fixed to a target schedule or cost, at which point the program will stop that

work and move to the next stage.  Figure 10 shows this graphically.

Highest Priority, design & test

Product
Planning

Concept
Planning

System
Design

Detailed
Design

Product
Delivery

Medium Priority, design & test

Lowest Priority, design & test

Time or
Money

Runs Out

Figure 10: Design to schedule / budget (adapted from Unger 2003)



55

Note that in Figure 10, the first phases are the same as the waterfall, but the detailed

design are prioritized and subsequently developed in that order.  At some point a

schedule or budget target is reached, and the program moves to the following phase,

which is the final delivery phase (Unger 2003).

The significant advantage to this process is the clear cost and time targets, which

effectively prevent overruns encountered in traditional waterfall processes from

occurring.  The Air Force has begun to use this methodology in a Cost-As-an-

Independent Variable (CAIV) or more recently a Schedule-As-an-Independent-Variable

(SAIV) strategy.  These effectively set performance parameters based on what is

considered feasible given a cost or timeframe.  There are significant advantages to this,

and graphics chip maker Nvidia used such a strategy to capture a large market share by

rolling out new products every six months (Turner 2002).  At the same time the process

requires careful management—improperly prioritized tasks can lead to a poor product.

Additionally due to the level of iteration within the design phase, and the uncertainty of

what tasks will be completed, interdependent tasks are undesirable and require special

planning to work, as incomplete tasks cannot prevent product functionality.

Most any development process uses a schedule and budget target, but rather than execute

on a larger set of requirements and complete only those possible given those targets,

typical programs select requirements up-front based on what is considered possible given

the budget and schedule.   As the process resembles a waterfall, it has no inherent

flexibility or useful increments.  Alternatively however, such a process can be used as



56

part of an evolutionary strategy, with individual iterations using a design to schedule or

budget process.

Summary of waterfall processes
The waterfall process is a very powerful tool in the program manager’s portfolio in

dealing with specific risks.  It works particularly well when the program requirements are

well defined and static.  While the traditional waterfall handles technical risks best, its

variants also attempt to mitigate other uncertainties, such as schedule and budget.

3.5 Evolutionary processes
A significant drawback to the waterfall and its variants discussed so far is their inability

to incorporate feedback late in the process, which is of special concern in cases where

requirements are uncertain to begin with.  Evolutionary processes, which should not be

confused with Evolutionary Acquisition (despite some similarities), attempt to address

some of these issues.  In particular, they attempt to reduce the likelihood of quality and

user issues through the development of functional products that can be used and tested,

i.e. prototypes or deliverables, as shown in Figure 11.

This process goes by two names, evolutionary prototyping and evolutionary delivery.

Both processes essentially go through a waterfall-like development until a functional

prototype is developed.



57

The use of evolutionary development can be very beneficial to the development process

in that it gives stakeholders a tangible item to be worked with.  It is also useful for

applications where the user has some idea of what the end product should be, but not a

complete vision—the oft cited “I’ll know it when I see it” mentality.  It can also be

valuable in understanding real-world applications of theoretical models.  Fundamentally,

the system focuses on prototypes and continues to develop and iterate these until the

stakeholders are satisfied.

Software programs often use this strategy to quickly deliver a tangible system to the

customer and iterate rapidly.  The program must have a general direction and some set of

requirements to use this strategy, or it runs the risk of wasted effort.  Typically these

processes are used to finalize unknown requirements, not to generate them.  In other

Figure 11: Evolutionary prototyping and delivery (adapted from Forsberg, Mooz
& Cotterman 1996)



58

words, some part of the design is already known, and the program iterates on the

remainder.

It requires, like many of the waterfall variants, several program abilities to be a successful

process.  First of all, the program must have the ability to rapidly prototype (at a

reasonable cost).  Secondly, the program must use an architecture such that design

changes can be rapidly performed.  While the process does deliver more useful products

to the end user, it can potentially lengthen schedule and increase costs due to the time and

money necessary for prototyping.  Additionally, the process can also introduce some of

the stability of a waterfall process through prototyping, preventing significant or

excessive changes in the core design, and allowing only modifications.  Evolutionary

processes differ in this way from waterfall programs, as there is an opportunity for user

feedback.  Though it is possible to provide the user with interim capabilities, this is often

not the case, as prototypes or near-final deliverables are usually few in number.

3.6 Incremental processes
In response to the longer cycle times typical to waterfall processes, especially those due

to technical uncertainties, an alternative process is an incremental delivery process.

Forsberg, Mooz, and Cotterman (1996) propose two types of incremental developments.

The first of these is an incremental development with a single delivery, while the second

is delivers multiple increments.  The latter is part of the Air Force’s Evolutionary

Acquisition strategy, and will be discussed in further detail later on.



59

Incremental development with a single delivery works well when a single delivery is

desired, but requirements are well known (Forsberg, Mooz & Cotterman 1996).  Once

again, this benefits from some level of modularity, as the system must be able to function

as a single whole despite being delivered in increments.  The authors site the example of

the Space Shuttle, where main engines were awarded in 1970, the orbiter in 1972,

integration in 1980, and first flight in 1981.  For the purposes of this research, this is not a

focal point of development processes.

Incremental development with incremental deliveries, however, has been a strategic focus

of the Air Force for some time, and despite a several names for this, this has been the

preferred strategy for large acquisition programs.  The process delivers increasing

capability over several (or more) stages (Forsberg, Mooz & Cotterman 1996).  Figure 12

depicts an incremental delivery using the Vee model.

As is shown in Figure 12, the plan for incremental deliveries is determined up front.  In

other words, the plans for the later deliveries are primarily determined in the early

requirements process.



60

The incremental process offers a significant advantage over waterfall processes in

offering earlier delivery, as advanced technologies can be placed in later deliveries, so

that there is not a wait time for technology maturation.  In addition, the process offers

some ability for learning between increments, but again due to the up-front development

work, significant changes are more challenging.

Incremental processes typically are used on a number of programs where particular

development aspects of the product are not expected to complete at the same time.

Nevertheless, a basic capability can be delivered if the program does not wait for the

additional sections to be completed.  The Predator program had several planned

improvements during the course of its development, though the main aircraft was

Delivery
1

Delivery
2 Final Delivery

Code, Fab,
Assembly

Planning

Figure 12: Incremental delivery (adapted from Forsberg, Mooz &
Cotterman 1996)



61

delivered well before these later systems.  A more simplistic example is train tracks.  A

new rail development might plan for a length of thirty miles, but deliver these in ten mile

increments—useful, but not the full capability of the system (Forsberg, Mooz &

Cotterman 1996).  Nevertheless, the first ten miles serves as the basis for the additional

increments.  Programs might do this for financial reasons as well.  If funding for

development of a given subsystem does not initially exist, a program might choose to

field what it can and deliver additional capabilities as possible.  Incremental processes

begin like waterfall processes, as planning takes place typically for multiple increments

up front.  Nevertheless, as increments are fielded, there is an opportunity to make

changes to increments underway or as yet not begun.  Accordingly, the user has an

opportunity to influence the final outcome of the product.  Additionally, due to the nature

of the process, there are usable interim products and capabilities.

Military processes
The military uses two additional, but similar processes, focusing on incremental

deliveries.  The first of these is Pre-Planned Product Improvement (P3I), and the second

is a Block upgrade program.

P3I attempts to accommodate for change by allowing for some flexibility in the design

for future upgrades and changes.  In particular, it is used to allow for technology

improvements over current capabilities, or in cases where initial budget and schedule do

not allow for certain capabilities.  The added flexibility allows for evolving needs, and

possible extension of the product operational life.  It is also benefits the user by speeding

up delivery, as the program does not wait for technology maturation (DAU 2000).  At the



62

same time, it requires better long-term planning, and can increase up-front costs.  These

programs are typically defined upfront with staged execution.

Block upgrades are also incremental deliveries, and can often incorporate the P3I

capabilities in an upgrade.  Block upgrades are not completely planned for up front, and

can be planned for either at the outset of a program, during a current development, or

occasionally after development work is done (though this is rare).  However, the block

upgrade typically occurs after delivery of the previous block, and incorporates user

feedback and dynamic needs.  Figure 13 shows one representation of the Block upgrade

methodology.

Note that the figure shows the milestones used by the Department of Defense, but

essentially the development process occurs similarly, with a full waterfall to deliver the

first block, and subsequent developments usually appearing as truncated waterfalls, often

Requirements Analysis
-General for the System
-Specific for the Core

Concept of Operations

Preliminary
System

Architecture
Planning

Define - Develop - Operationally Test Core

Define - Develop - Operationally Test Block A

Refine and
Update Requirements

Requirements Analysis
-User Feedback

-Tech Opportunity
-Evolving Threat

Flexible/Incremental ORD, TEMP, etcContinue…

Figure 13: Block methodology (adapted from Defense Acquisition
University 2000)



63

starting in the detailed design or system design phases.  The Block upgrade typically

relies on full capability in the first delivery with Block upgrades improving this capability

over time.  Essentially this has been the primary strategy in the Air Force for

incorporating new capabilities.

3.7 Spiral development
Spiral development has become a strategic focus of the Air Force acquisition strategy in

the last several years.  In fact, while evolutionary acquisition is the desired methodology

for acquisition, spiral development is the preferred process (Wolfowitz 2002).  At the

same time, spiral development, in part because of its origins, has been a challenge to

apply to Air Force systems.

The origins of the spiral
The spiral process as it is perceived today appears to have come about in the 1970’s as a

direct result of the new era of heavy software involvement in technical products.  In

particular, as products depended more heavily on software for functionality, the

challenges facing software development became more apparent and more significant.

Software quickly became an entity in its own right, and further challenges arose,

especially as people were uncertain as to what they wanted.  Detailed up-front

requirements and specifications were not as valuable in this type of uncertainty, and a

focus on tangible prototypes to solicit user feedback was very effective.  Furthermore,

software became and continues to this day to be the first resort for adapting to late

requirement changes.  As a result, the need for a flexible development process was

imperative.  More recently, with Evolutionary Acquisition and spiral development, the

Air Force is pushing to take spiral development out of the software world and apply it to



64

hardware as well.  This provides additional difficulties in both implementation and

understanding.  The remainder of this section will attempt to clearly explain the process

and the various interpretations, and provide a clear understanding of what spiral

development means for systems acquisition.

Spiral development and iteration
Like the processes before it, spiral development is a risk-mitigation process, but at the

same time, it is distinct from these processes as well.  According to Boehm (2000), the

strategic goal of the process is “to guide multi-stakeholder concurrent engineering of

software intensive systems.”  This goal of stakeholder involvement is one aspect of spiral

development that is important, but certainly not unique.  What is makes the spiral process

special are its two main features:

One is a cyclic approach for incrementally growing a system’s degree of

definition and implementation while decreasing its degree of risk.  The

other is a set of anchor point milestones for ensuring stakeholder

commitment to feasible and mutually satisfactory system solutions (Boehm

2000).

The cyclic approach Boehm refers to is simply an iterative process across the whole of

the product development process (sans delivery).  In other words, the program should

begin with concept development and continue through to some level of design (it could

be system or detailed depending on the project).  This is followed by developing a system

representation, often a prototype, using this as a means of soliciting feedback from the

user and other stakeholders (testers, logistics, etc.).



65

The Boehm spiral is shown in Figure 14, and consists of a spiral and four quadrants with

four overarching steps, involving determining and evaluating risks and constraints,

developing (and verifying) the next iteration of the product, and planning for future

phases.

As shown in Figure 14, the process is somewhat complex, and difficult to understand.

Fundamentally, spiral development asks two questions:

1. What should the project do next?

2. How long should the project continue doing it? (Boehm 2000b)

Figure 14: Boehm spiral model (from Boehm 2000)



66

The traditional spiral also is broken up into sub-steps.  The first is determining objectives

and constraints, where the developer should identify the entire life-cycle stakeholders,

establish initial system boundaries and external interfaces also identifying situations in

which there might be negative outcomes for the stakeholders.  Secondly, the developer

must identify and evaluate alternatives, gathering essential requirements and options from

the stakeholders, and evaluating them against the potential positive and negative

outcomes.  At this stage, before development, the risks must be identified, planned for,

and managed.  Next, the program proceeds to development, with the understanding of

what areas of the product and life cycle need to remain flexible.  Finally, completing the

spiral involves further elaboration on each of these steps, planning for the next spiral.

Boehm also identifies three key milestones: Life Cycle Objectives (LCO), Life Cycle

Architecture (LCA), and Initial Operational Capability (IOC). The first of these is to

ensure that one of the alternatives makes sense from an enterprise perspective (i.e. is

feasible and addresses the needs).  The second, LCA, is to determine the single option to

pursue, and finally, the IOC is the first operational product.  At each of these milestones,

the project team must review six critical issues: operational concept description,

prototyping results, requirements description, architecture description, life cycle plan, and

feasibility rationale.

Another significant issue is the collaboration of multiple stakeholders in the development

strategy.  The involvement of stakeholders early in the process is crucial to the

development path.  In essence, early input by the various communities, including the end



67

user, acquisition community, engineering, manufacturing, testing, logistics, and so on,

will allow the program to ensure that key development decisions do not cause problems

subsequently in the development process.  This is very much the same lesson learned in

the aerospace industry about design for manufacturability, and creating Integrated

Product Teams (IPTs).  Moreover, spiral development is a strategy to specifically involve

the user or customer in the development process as part of the decision maker throughout

the program.  Furthermore, spiral development provides an organization the opportunity

to keep the customer in the loop, and allow them to keep the program progress in line

with the user needs.  Succinctly put, the spiral is

An iterative process…[it] provides the opportunity for interaction between

the user, tester, and developer.  In this process, the requirements are

refined through experimentation and risk management, there is continuous

feedback, and the user is provided the best possible capability. (Wolfowitz

2002)

Spiral Implementation
The complexity of spiral development also implies several key aspects about its

implementation.  In particular, spiral development requires a number of key elements to

be pursued in both the development process and the product.

From a product perspective, the first release must be scalable enough to adequately

address the user needs over the product lifecycle (Roberts 2003), such as performance,

safety, and so on.  To some degree this implies modularity, or at very least the ability to

improve or grow product performance until some end state is reached.  Though this might



68

be possible given an integrated architecture, the challenge in making design changes

would prove to be very difficult, and time and resource intensive.  At the same time, the

product must be able to evolve to replace existing legacy systems.  This requires careful

selection of product architecture to both succeed current systems and to evolve to future

capabilities.

From a process perspective, developers must keep in mind several things while

performing spirals and iterations.  First and foremost, the initial release must be at a state

where it is meaningful to the stakeholders, i.e. that the stakeholders can provide valuable

feedback for successive iterations.  Secondly, it must satisfy the expectations of key

system stakeholders.  This in itself means two things.  For the developer, it means

understanding the other stakeholders’ needs in such a way that the first release or

prototype is along the lines of what they need.  For the other stakeholders, it is the

realization that the first release or prototype is the first in a series and does not represent

the final state.  At the same time, the operational user organizations must be flexible

enough to “adapt to the pace of system evolution” (Boehm 2000b).  All of this involves a

significant level of stakeholder involvement, and the ability of the developer to rapidly

interact with the other key stakeholders to make decisions.

Spiral development processes have the potential to offer shorter times between program

inception and initial operational capabilities, but not necessarily.  This requires the use of

mature technologies--otherwise, the program is essentially maturing new technologies,

and this takes time.  At the same time, the iterative and experimental nature of spiral



69

development offers opportunity to involve newly ready technologies and quickly insert

these, if an appropriate architecture is chosen.  Both the spiral and incremental

development strategies offer much shorter cycle times in delivering capabilities.  The key

difference is the flexibility in requirements, and heavy evaluation of interim products by

the key stakeholders in spiral development.  One common misconception of spiral

development is that it reduces cost and schedule to final capability.  This is not

necessarily the case.  The planning of other strategies often focuses on cost and schedule

and accordingly reduces cost and schedule.  Certainly the spiral is not the quickest means

of getting from point A to point B, when compared to traditional waterfall processes, but

it ensures that upon arriving at a final (or next) capability, it satisfies the stakeholder

needs.  This is essentially the strength of the process according to its

proponents—making sure the product satisfies user needs.

Process resources
At the same time, because of the inherent flexibility of spiral development, there are

greater burdens placed on management.  Spiral processes are often very management

intensive, requiring particular attention to resource allocations within a dynamic program

(Highsmith 2000).  Within a given spiral, assessment of resources will often be more

accurate, due to the shorter cycle times.  One of the larger problems experienced with

hardware spiral acquisitions is in logistics.  Because of the rapid nature of spirals, the

potential for multiple versions exist, causing logistical issues with maintenance and

deployment.  In addition to this it is essential that programs are fully funded (DAU 2000),

meaning that funding should be stable and accordingly, budgeting staff should be heavily

involved in the program.  Nevertheless, little research has been done on the ability to



70

successfully implement spiral development in the face of budgeting challenges.

Theoretically, one would anticipate that the flexibility of the spiral process would allow

for flexibility despite budget cuts, on the other hand, the ability of spiral development to

generate new system representations is essential, and the program’s ability to retarget to a

new goal is not necessarily cost effective. Accordingly, it is a subject matter for further

research.  Furthermore, requirements management is a significant concern especially as

requirements are not completely defined in the spiral process.  There is no doubt that

resource management will be different for various processes, and especially spiral

development.

Spiral interpretations
As a result of the complexities of spiral development, there have been a number of

interpretations of what spirals should entail.  The most obvious of these is the

Evolutionary Acquisition with spiral development strategy put forth by the Defense

acquisition community.  This focuses on delivering useful capability on each spiral and

providing for use and evaluation between cycles, shown notionally in Figure 15.

Use & Learn

Start

Prototyping

Delivery

Concept Development /
Analysis of AlternativesSystem Design

Integration & Testing

Moving  Target

Figure 15: Notional Defense acquisition spiral process



71

The figure indicates several aspects of the spiral process.  Unlike the Boehm model,

spirals become smaller with each iteration.  This is to emphasize the target-like nature of

the spiral.  In other words, each spiral brings the product closer to an end target, or final

operational capability.  Specifically, the Department of Defense (2003) defines spiral

development as:

Desired capability is identified, but end-state requirements are not known

at Program Initiation.  Requirements for future increments dependent

upon technology maturation and user feedback from initial increments.

Fundamentally, this reiterates several of the key aspects of the Boehm spiral, but rather

than placing an emphasis on system representations, the Defense strategy mandates

capabilities, or useful increments.

An alternative representation of this model is a three dimensional spiral, with time on the

vertical axis (coming out of the page in Figure 15), and allowing for various decisions to

be made at each spiral, such as the decision to continue with the program, if a suitable

capability is achieved or if the program is not achieving acceptable performance.  If the

choice to continue is made, there is a second choice of producing the results of the spiral,

or as the case may be just modeling or prototyping the performance in that spiral.  This

alternative allows for some alleviation of the logistics issues associated with the current

military interpretation of spiral development.

Summary of spiral development
Though there are a number of interpretations of spiral development, there are common

aspects to each of these, providing a useful framework for understanding the process.



72

First and foremost, the spiral process is a highly iterative process, using some deliverable

to solicit greater interaction between various stakeholders and reducing risk, while at the

same time, the increasing product certainty, including requirements.  At the same time,

there is an underlying assumption that the product is scalable, and can be grown to satisfy

stakeholder needs.  This implies a level of modularity and technology maturity, such that

the focus of the development process is on delivering useful capabilities to the acquisition

community.  At the same time, spiral development requires significant commitments

from these stakeholders, necessitating heavy involvement by all major decision makers

and players in the product lifecycle.  Fundamentally, the spiral process is focused on

mitigating various sources of risk through cautious iteration, rather than heavy up-front

planning.  Essentially, this means that the process is oriented towards maximum

flexibility in requirements and slowly stabilizes these requirements until the end goal is

reached.  It can do this by supplying useful interim capabilities.  The basic nature of the

spiral is also intended to create a maximum level of iteration across the whole of product

development steps, so as to delay the program from limiting product options.

3.8 Process summary
Despite the variety of processes, there are a number of attributes unique to each process

that differentiates the processes in a functional way.  This provides a strong framework

and context for understand the processes, and categorizing them accordingly.

The most obvious of these differentiators is iteration.  The waterfall processes tend to

have the least iteration, with the exception of the evolutionary processes, which have

iteration in the late phases.  On the other hand, spiral development is an iteration-centric



73

development process.  Incremental development processes have an inherent level of

iteration, as successive deliveries require a review of many of the design decisions.  The

scope of the iteration tends to be less than spiral development, but more than the waterfall

and variants.

Another differentiator is the requirements process.  The only process with highly flexible

requirements, or for that matter, minimal initial requirements, is the spiral process.

Incremental processes delay some requirements for future increments, and waterfall

processes typically have the most up-front requirements, and typically seek to minimize

requirements changes.  At the same time, the level of feedback from prior increments or

deliveries into new requirements differentiates these processes.

In addition, the level of cost and schedule’s affects on the performance requirements

differentiates programs into the level of design to schedule and budget use.  Among

waterfall variants, there are a number of differentiators as well.  One of these is the

rigidity of the stage-gates or milestones.  The number of activities in parallel also

indicates the direction of the process.

Figure 16 notionally indicates some of these differences and shows where each of the

aforementioned processes stand on some of these attributes.  Specifically Figure 16

identifies the processes and the attributes that significantly define them.



74

These attributes were addressed throughout the chapter, but the figure provides a valuable

reference to quickly identify the basic elements of processes.  This proves to be very

valuable in categorizing real-world processes, which often use variants of these processes

or are cobbled together out of multiple aspects of each of these strategies.  Furthermore,

the attributes provide a functional definition of the processes that is more accessible to

those unfamiliar with the specific theoretical processes.

Though these processes address a number of risks and uncertainties, it is important to

understand that in practice there are a number of interpretations of these, and that many

actual processes are comprised of different aspects of each of these processes.

Accordingly, understanding these processes, but more importantly their attributes,

provides a better understanding of the product development strategies available to

managers today.

SomeNoYesNoNoNoNoFlexibility of Requirements

NoNoNoNoNoYesNoMultiple Parallel Designs

YesNoYesNoNoNoNoPlanned Iteration Between
Phases

YesYesYesNoNoNoNoUser Feedback Significantly
Impacts Final Delivery

YesNoYesNoNoNoNoUseful Interim Capabilities

Increm
ental

D
eli v ery

E vo l . D
el iv ery /

P rot o ty pi n g

Sp i ral

D
es i gn  to

Sch ed . / Co s t

O
v erl a pp i ng

W
at er fal l

Para ll el
W

at er fal l

W
a ter fa ll

Figure 16: Process comparison



75

3.9 Product development summary and key variables
The literature review helps to expand the questions established in the introduction.  As a

reminder, these are:

1. What knowledge is necessary to adequately select a product development

strategy?

2. When does Evolutionary Acquisition make sense?  When is the spiral process

applicable?  When do other strategies have greater value?

3. How can the acquisition community best implement these various processes,

particularly Evolutionary Acquisition?

In order to select a product development strategy that best suits the program, the process

must address the various aspects of the development.  Specifically, these involve aspects

of the product, development environment, and stakeholders.  Accordingly, the hypothesis

for this research is that the variations in these aspects will match best with different

development strategies.  In addition to this, process analysis must be performed.

The most crucial part of this analysis is an understanding of the product development

strategy.  This is fundamental to how the product is developed and determines the course

the program takes.  Processes vary in a number of ways, including iteration, flexibility,

deliveries, and process drivers.  Key questions include:

• What is the level of iteration in the program?

• Are multiple incremental capabilities provided?

• How do requirements evolve in the program?

• What was the influence of cost and schedule on the program?



76

The product itself is a key part of how the development process is selected, as well as

executed.  Though products are numerous, it is possible to categorize products as well as

identify them by key attributes such as architecture.  Furthermore, the product intent and

strategy are crucial to the development lifecycle.  The underlying technologies of the

product are factors in the ease of development as well.

• What type of aerospace product is being developed?

• Is the product a new development or a derivative of existing products?

• Does the product use a modular or open architecture?

• What portion of the product’s functionality is implemented through software?

• What is the extent of new development work required?

• How does the rate of change of the underlying technologies compare to the

product?

The program practices were also identified as crucial to product development.  These

include the use of system representations, stakeholder identification and involvement, and

testing practices.  Key questions include:

• What is the level of involvement of key stakeholders in developing the acquisition

strategy and system requirements?

• To what extent were system representations used, and how did their use influence

the development process?

• What was the level of combined developmental and operational testing?

Another important aspect of the hypothesis is the way in which uncertainties affect the

outcome of the product development process.  In the case of the Air Force these include:

• What has been and is expected to be the uncertainty in funding?



77

• What is the certainty in operational requirements?

• How likely are goals for performance-critical technical advances to be achieved?

• What is the likelihood of technology obsolescence?

• What is the likelihood of changes in the operational environment?

• How easy is the system to adapt to changes?

Specifically in addressing issues around spiral development there are a number of issues

brought up in the literature review that are crucial to implementation.  These include

resource allocation and user funding commitment.  In particular the following questions

were discussed:

• In what areas did the program require additional resources?  In what areas did it

require less?

• Was the user committed to funding a spiral development process?

These questions provided the basis for the research strategy of survey and cast studies

discussed in further detail in the next chapter.



78

4 Data gathering and research methodology

The previous sections have addressed some of the issues relevant to product development

and acquisition strategies, but in order to assess the current state of these processes, and

to highlight the context of the strategies, it is imperative to gather the necessary data in a

satisfactory manner.  This includes the approach of the research, what methods were used

to gather data, what was done to ensure the validity of data, and finally how the data were

analyzed.

4.1 Approach
Chapter 3 concluded with a list of questions that have not been satisfactorily answered in

research to-date.  To answer these questions, and make a substantiated recommendation

for implementing Evolutionary Acquisition, data was to be gathered in two strategic

ways.  The first of these was a two-part survey, intended for system program directors

(i.e. those who managed a portfolio of programs), and program managers (those

managing a single program).  The second method was a series of case studies directly

examining those programs with Evolutionary Acquisition and/or spiral development

strategies.

The categories looked at were established in the literature review in Chapter 2 and 3,

along with feedback from program managers with experience in Evolutionary

Acquisition.  These include:

• Product architecture

• Product strategy

• Technology

• Product development process

• Uncertainty

• Stakeholder involvement



79

4.2 Data Gathering
The nature of the key questions raised above lends itself particularly well to a survey approach.

Specifically, the research asks what and where questions, which are commonly associated with

surveys.  This confirms much of the precedence established by prior research in product

development.  In the attempt to evaluate where military adoption and practice of Evolutionary

Acquisition stands, it is important to ‘cast a wide net’, so to speak, and take a snapshot of the

system today.  Accordingly, a wide survey of practice would both help the acquisition

community by providing them with helpful insight into what they are doing.  Secondly, the

surveys provide the raw data needed to correlate practice with product, risk, user, and customer.

However, in terms of a developing a better understanding of Evolutionary Acquisition and spiral

development, it is valuable to capture the experiences of program managers who have

implemented these processes.

Surveys
In order to deliver a tool for project managers to effectively pick the ‘best’ product development

strategy, it should be based on the knowledge they have available, as well as a means of

evaluating that knowledge.

What information then is necessary? Two prime categories are the data known to the project

manager in the front-end of the development, and the data that are necessary to correlate that

knowledge to the processes, in addition to the program outcomes, to determine the success of the

programs.  When broken down further, these comprise the four subjects mentioned

above—product, process, risk, and user needs.  Of these, risk is perhaps the most encompassing

category, as there are product-specific risks and user-specific risks in addition to the traditional



80

risks identified before.  Within the program director’s realm, it was important to address the

associated management topics.  Accordingly, two surveys were identified—the longer survey to

look at specific programs and product acquisitions, and a short survey at the program director

level to look at portfolios of acquisition programs.  The surveys, which expound upon the key

questions and constructs found at the end of the literature review, can be found in Appendix A.

Case studies
The questions in the case studies were culled from questions in the surveys, and were designed to

be broader and require more in-depth responses than the survey questions.  These questions are

in Appendix B.  Specifically, the goal was to better understand what some of the key enablers

and challenges in implementing spiral development were.  The questions were culled from the

survey questions and key constructs identified through background research.  They were

specifically intended to address more of the practices and challenges of program managers, as

well as the uncertainty in the development process.

All data was gathered through programs acknowledged by various program directors and the

Acquisition Centers for Excellence, both at the Pentagon and at the bases, as programs that had

experience with a spiral or evolutionary development strategy.  At the same time, these programs

were identified as successfully implementing Evolutionary Acquisition, and do not necessarily

represent the experience of all programs implementing these strategies.  Attempts were made to

gather as wide a variety of programs as possible, and to keep burdens on the programs minimal.

The result was an interview process involving both a program manager and chief engineer in

most cases, to discuss programmatic and technical issues, respectively.  Interviews averaged

ninety minutes, not including follow up questions later.  At the same time, the majority of



81

interviews were performed in person at the program offices.  Participants were voluntary and

were informed of that all answers were optional, and that no program names or participants

would be identified.  Details of this can be found in Appendix C, the consent form for studies.

4.3 Research realities
As stated above, the initial intent of the research was to survey a wide variety of aerospace

development programs, each with its own development strategy—the population for study

comprised all USAF acquisition programs.  Though the survey was completed, due to unforeseen

circumstances, it was not possible to gather the data necessary for an analysis of the state of

acquisition in the Air Force.  The survey process did feed directly into the case studies, as pre-

testing of the survey with program managers with spiral experience helped to expand the

author’s understanding if real world spiral development.  Furthermore, the survey also helped to

clearly establish the metrics and framework for the research.  The result was that the case studies,

which had initially intended to be used as supplements to the survey research, became the sole

source of data.  This was a return to the early stages of this research project, when the author had

been tasked with evaluating and understanding spiral development rather than evaluating product

development strategies as a whole.  This followed the goals of the Pentagon’s Acquisition Center

for Excellence (ACE), which was determined to better support the new Evolutionary

Acquisition.

The survey results will eventually be released as a paper through the Lean Aerospace Initiative at

the Massachusetts Institute of Technology.



82

Despite the inability to use the surveys as a direct part of this research, the development of the

surveys was beneficial in itself to an understanding of product development strategies.

Furthermore, a better understanding of Evolutionary Acquisition and spiral development was still

possible through these studies.



83

5  Case studies in Evolutionary Acquisition
The case studies performed as part of this research exhibited a number of unique characteristics,

but at the same time, there were a number of similarities that provide a valuable set of lessons for

programs attempting Evolutionary Acquisition in the future, as well as for policy makers.

To place these various programs in context however, it is valuable to look at an example case

study on a historically successful evolutionary program, the F-16.  In particular, the example

should provide the reader with a better understanding of development practices, timelines, and

historic illustrations of evolution.  There are a total of 7 case studies including the one historical

case study on the F-16.  This chapter provides an in-depth look at each of these studies, focusing

on the program’s acquisition strategy, the various uncertainties encountered or expected in

product development, key enablers for program success, and major challenges encountered by

the program.  These last two sections provide a valuable set of lessons learned for each of the

programs, while the acquisition strategy places the development process in the context of the

literature review and the theoretical processes.

5.1 F-16 Case Study1

Program Background:
The F-16 is arguably the most successful Air Force program in the last 30 years.  Over 4000

aircraft have been delivered to date, and backlog extends well into 2009.  With over 9 million

flight hours and a 71-to-0 air-to-air combat record, the aircraft is a performance success story as

well.  The story of how the F-16 was developed, and later how it has adapted, is extremely

relevant to the current Air Force strategy of Evolutionary Acquisition.
                                                  
1 Case study adapted from paper by Capzzoli, P. et.al. (2002) The author of this thesis also co-authored the original
case study.



84

To begin, the F-16 emerged from the Lightweight Fighter Program, which was a direct attempt

by U.S. Forces to counter growing numbers of Soviet fighter wings in Eastern Europe.

Essentially, the goal of the program was a lightweight, and therefore low cost, fighter that could

be fielded en masse against the Cold War enemies, and would compliment the existing Air

Superiority Fighter, the F-15.  It was a new strategy of warfare, and the Lightweight Fighter

aircraft were essentially the first of their kind, and were not intended to replace an existing

system.

Following a Request For Proposal (RFP) in early 1972, contracts for prototypes were awarded to

the YF-16 and YF-17 (Northrop).  First flight was in 1974, and by 1975, the YF-16 had been

declared the winner of the LWF program.  1976 marked the rollout of the first Full Scale

Development (FSD) aircraft, followed in 1979 by the F-16’s entering service.  Subsequently, the

aircraft has gone from the early A/B models to C/D models, and numerous Block Upgrades have

been performed (the program is currently in Block 60 development, with Blocks coming in

intervals of 10 after Block 30, and in intervals of 5 from Block 1 through 25).

Acquisition Strategy:



85

The first FSD models (Block 0) had enlarged aerodynamic surfaces to cope with the additional

loads expected as the plane transitioned into a multirole aircraft, as well as a operationally useful

radar.  Versions A and B (single and two seater models, respectively) continued with Blocks 1, 5,

and 10, which were primarily improvements in reliability.  Block 15, the most numerous

production block, strengthened the structure, once again increased aerodynamic surface, and

added capability for new munitions, essentially increasing the multirole capability of the aircraft.

Note the timeline of the strategies shown in Figure 17.  From block inception to completion

typically took on the order of 5 years, and new blocks were ordered well before previous blocks

were complete.  The Pacer Loft program brought the earlier Blocks up to Block 15 standards.

Block 25 represented the first of the version C/D aircraft, with significant avionics and cockpit

upgrades, including a vastly improved radar system, AMRAAM capability, cockpit

multifunction displays, and it was the first F-16 series to feature night and precision ground

attack capability.  Blocks 30/32 (same basic aircraft with a choice of Pratt & Whitney or General

 Initial F-16 Program (Prototype/Block 1)

RFP First Flight Enters Service

FY72   FY74               FY78  FY79   FY80   FY81   FY82   FY83   FY84   FY85

 Block 5

 Block 10

 Block 15

  Order                       Delivery

Order        Delivery

Order   First Deliver              Final Delivery

 Pacer Loft

Figure 17: F-16 A/B Acquisition Strategy



86

Electric engines) had a larger inlet for the new GE engines, and further munitions capability.

Block 40/42 was a improvement intended for night/precision and all-weather attack missions.

Once again the structures were upgraded, and capability to use Low-Altitude Navigation and

Targeting Infrared for Night (LANTIRN) systems was added.  A newer radar and heads-up

display were added along with a terrain following mode and capabilities for additional bombs.

Blocks 50/52 took over the Suppression of Enemy Air Defense (SEAD) role and added full

autonomous anti-radar capability through the use of external pods.  Furthermore, the system

incorporated a new modular mission computer.  The most recent Block 60 aircraft still in

development are intended for the United Arab Emirates only, and will feature new engines, new

radar, and will internalize many of the features the F-16 was previously only capable of with

external pods.

Most interesting is the fact that the initial program took the bulk of the work, while upgrade

programs typically took only a couple years of development (and additional time for delivery).

Nevertheless, looking at Figure 17, it is evident that development on new blocks was not only

going on before previous blocks had been completed, but also even before previous development

had completed.  In this way, however, the program was able to continuously improve the

product’s performance, made easier by the fact that the platform already existed.  Essentially,

there were numerous F-16 upgrade programs running at the same time.

Key Enablers:
To implement the low cost and high performance goals of the competition, General Dynamics

(now Lockheed Martin) determined that advanced technologies would only be used where they

were warranted—i.e. where there was a high expected return.  At the same time, throughout the



87

competition, the developers were aware that markets in addition to the Air Force, such as NATO

allies and others, would be keenly interested in acquiring a low-cost fighter with varying

capabilities. The result was a key decision to use a modular architecture from all

aspects—airframe, avionics, engines, and so forth—so that the aircraft could be upgraded in the

future.  The program was given no real requirements, with the exception of two goals—low cost

and high agility.  Specifically, there were several key maneuverability targets, but beyond this,

programs were left to their own.

During the development, the program used several practices that are still excellent by today’s

standard.  In response to the proposal, all programs were to bring aerodynamic models to the

initial competition for prototype contracts.  Following selection, the YF-16 program itself did a

number of things that are still recognized as good practices.  On their development teams, they

included Air Force members—two pilots, and several people from maintenance, reliability, and

manufacturing—but as a direct result of the program manager, the program office was limited to

10 members, tasked with understanding the program, but not interfering.  The YF-16 was one of

the first programs to use a cross-functional or Integrated Product Team (IPT).  In addition to this

the organization was arranged to be a matrix organization, emphasizing both program and

functional management.

In retrospect, the initial program was heavily constrained by cost and time, and it is clear that the

program had to prioritize the design goals.  This led to the philosophy of including only those

technologies that had the greatest payoff, while leaving room for later improvements.

Furthermore, despite using weight as the metric for cost estimation, the program made the cost



88

information available to all engineers, and trade-offs were based on this.  In addition to this, the

Chief Engineer was adamant about quickly and thoroughly completing the preliminary design to

minimize the risks of major changes down the road.  At the same time, the program used

prototypes, particularly in the human-machine interface area (the cockpit), to evolve this

interface for development.  When the first prototypes were complete, the program used these to

evaluate the Air Force’s needs, and a number of changes were made from the prototype aircraft

to the production models.  The testing itself, due to the lack of requirements, was effectively a

test to determine the operational capabilities of the aircraft itself.

The F-16 has gone through a number of performance upgrades over the course of its lifetime,

and will continue to evolve until it is replaced by the F-35.  Though the initial program

succeeded as a result of its good program management as well as technical capability,

subsequently the program has succeeded because of its ability to adapt to new roles and

capabilities with relative ease, while keeping costs down.  This is primarily because of the

decision to have a very modular product, from the airframe manufacturing design, that allows for

changes to individual sections, to the use of modular avionics, both through the ability to

upgrade internal systems as well as add functionality through the use of external pods.  This

allowed for ease of changes to the system, which in turn allowed the system to keep up with

changing times.

Summary:
In essence, this program exemplifies what the Air Force wants from its programs today.  Like the

situation during the LWF program, the Air Force is faced with ever increasing costs of procuring

new technology as well as product development cycle times that have expanded to over 10 years



89

between concept and delivery.  With Evolutionary Acquisition, and spiral development, they are

trying to do what the F-16 did—quickly deliver what they can, and evolve the capability over

time.  This follows the military variation of incremental development, incorporating some

flexibility in blocks, but also establishing the platform for future upgrades early on.  At the same

time, because of the number of simultaneous F-16 programs, the warfighter was able to quickly

get new capabilities.

5.2 Research case studies
The following case studies of current systems looked at four essential areas: technical aspects of

the product, program resources, the perceived variation of the development environment, and the

acquisition strategy.  While each program differed in all of these areas, there were many shared

experiences across programs and a number of unique but valuable practices in each case.

The cases have been disguised to protect the programs and people involved, but the essential

information required to better understand Evolutionary Acquisition is still there.



90

5.3 Evolutionary Case Study 1 – Program A
Program Background:
Program A started in May of 2002, with the development of the first increment of useful

capability, followed by a second increment begun in March 2003.  There are a total of eight

increments planned, and the program is expected to continue past 2010.  The program primarily

focuses on database reengineering, and is software dominated, with hardware serving a

supporting role.  In addition, the program is replacing a legacy system incrementally, while

improving on the system performance.  At the time of this writing, the first increment had been

delivered to the user, while the second increment was in development.

Acquisition Strategy:
The program follows a strategy of incremental deliveries comprised of smaller spirals, shown in

Figure 18.

Spiral 2

Increment 1

Increment 2

Increment 8

2002

Spiral 1 Spiral 3

~6 month spirals,
defined by contractor

Useful deliverables at
mid-increment and end

of increment

Increments overlap

- Approximately 3-5 spirals
per increment

Figure 18: Program A acquisition strategy



91

Increments occur on a twelve to eighteen month schedule, and spirals grow the capability until

the increment threshold is met.  Spirals are less than six months long, and a typical increment

consists of three to five spirals.  Increments also overlap, and are defined by the Technical

Requirements Document (TRD).  Each increment typically yields two deliverables, one midway

through the increment and one at the end.  Spirals are not defined by the program office, but

rather by the contractor, and typically consist of demonstrators for evaluation by the program, to

be used for evaluation.

Programmatic Uncertainties:
The program did not encounter any significant uncertainties so to speak, though it did have

trouble in the first increment (to be discussed in more detail), but these were not particularly

related to uncertainty.  This program prioritized the key design tasks and requirements for each

increment, so that there was little difficulty in achieving the established operational

requirements.  Changes to these requirements were made through a Configuration Control Board,

which reviewed both the pertinence of the changes as well as the involvedness of changes, to

determine whether requirements changes were necessary in that particular increment, with the

potential to move changes to future increments.  As a result of the two-fold requirements

process, the program experienced little unplanned operational requirements changes, and

expected the same in the future.  The program did not encounter any significant technical

advances through the first increment, and due to planning for technology refreshes in later

increments, was not concerned about technology obsolescence.  In particular, the product

consists of servers and software, where many standards exist, and allow for flexibility well into

the future.  Budgeting, which is traditionally a significant concern for program managers, did not

appear to be a significant challenge in this program.  Specifically, the program manager cited the



92

requirements prioritization as the key to this.  Not only was the prioritization used to understand

what was possible given funding in a specific increment, but also provided flexibility down the

road if and when budget challenges were encountered.

Key Enablers:
Program A had a number of enablers that allowed the program to proceed with a smooth spiral

development.  While some of these were planned in the program, several of the enablers

emerged naturally.

First and foremost, the program’s users had experience with spiral development on prior

programs.  This undoubtedly led to a much better understanding on the user’s end of what was

realistic in the increment goals and what was expected on the part of the user.  In terms of the

testing, the program was able to use the actual facilities that would be using the product, which

eliminated the need for external test facilities and associated work.  In addition to the fact that the

program was a primarily software solution where demonstrators are somewhat easier to develop,

the hardware used, such as servers, were relatively mature.  Furthermore, the system is organized

around several distinct tasks, including data gathering, access, analysis, and prediction, such that

there were few interdependent tasks.  The chief engineer of the project noted that the functions

had very clean and clear interfaces.  This facilitates the use of a modular architecture, and

accordingly, simplifies changes to the system.  From a programmatic standpoint, the program

manager noted that cost estimation in this program was much easier as the planners were able to

use historical data to estimate the costs.



93

While the program had some innate enablers, several key decisions on the part of the program

office and key stakeholders were made that further allowed for a successful development project.

The first of these decisions was on the part of the key stakeholders, primarily the user, to be

heavily involved in the requirements development process.  In part due to this, and also as a

result of prior experience with spiral development, the user and developer could agree on

realistic increment goals.  Furthermore, capabilities and requirements were “racked and stacked,”

allowing for a clearer understanding of what requirements were going into individual increments.

From a programmatic standpoint, specifications are flexible as well, and can be changed even

after a review.  At the same time, the program has been flexible in incorporating program and

product lessons learned from the use and evaluation of increment 1 into increments 2 and 3,

though more so into the latter.  In the product decisions, the program elected to use an estimated

fifty percent non-developmental (primarily Commercial-off-the-shelf) hardware, though more

could have been used were it not for the requirements on legacy systems.  By doing this, the

program has ensured that the system evolves at a similar rate to available technologies.

Program Challenges:
Though Program A has been a successful program, “a model of spiral development” according to

one ex-program manager, they did encounter a few challenges, some of which are generally

applicable to spiral development programs in the Air Force, and some of which are more unique

to the program itself.

The largest problem the program encountered was in the first increment.  The issue appears to

have been with the developer’s inability to deliver the desired capability.  Specifically, the

program manager cited several key issues, including failure to quickly deliver capability and



94

technical and managerial challenges within the developer.  In addition to this, the program felt

that the pace and requirements for the first increment exceeded the contractor’s capability.  As a

result, the program fired the contractor.  Subsequently, the program office re-scoped the first

increment and hired a new contractor, moving those tasks that were eliminated from the first

increment to the second.  In addition to these challenges, the manager noted that there is a

significant burden placed on the program management in both working on the current increment

as well as having to plan for the next increment.  This is in part due to the fact that increments

overlap each other.  Finally, the chief engineer noted that from a design perspective, there were

some challenges with the use of a legacy system, which limited the number of design options.

Essentially, the program was driven to a smaller set of options due to some interface

requirements with somewhat obsolete technology.

Summary:
Program A exhibits several characteristics that make it a valuable example of spiral

development.  The first of these is the spiral within incremental delivery.  In it, each increment is

delivered with feedback occurring within the increment though the use of demonstrators.  In

addition, the program was able to take advantage of its natural division of functions to use a

modular design.  Program A also had good buy-in from its users due to the fact that they had

prior experience with spiral development and also were able to prioritize design tasks

successfully. This allowed for very reasonable goals within the increments, and a clear

understanding of what the outcome of each spiral and increment would be.  At the same time, the

program encountered some difficulty as the first contractor was unable to deliver at the expected

pace.  Within the program, there are challenges with management resources, having to both

manage the current increment and plan for future increments.



95

Program A’s acquisition strategy was a hybrid of several of the theoretical processes.  First of all,

it used a combination of incremental and spiral delivery.  Though increments were loosely

defined, the program grew capability in these increments through spirals.  Furthermore,

increments were not completely defined up front, but were open to reasonable requirements

changes.  This program looks very much like a block upgrade strategy where blocks are spirally

developed in themselves.



96

5.4 Evolutionary Case Study 2 – Program B
Program Background:
Program B began in October 1998, and fielded its first of five increments in March 2002.  It is a

software program, essentially providing a dramatic improvement and new capabilities over the

existing system, and is built from scratch, using about 50 percent commercially available

software.  The software was initially intended for use by a small group of users, but this number

swelled to over a thousand during the initial development phase.  A complex system with over

one million lines of code, the software uses databases and provides significant planning

capabilities.  It is run on an existing secure network, and is integrated with existing software

systems in use by the Air Force.

Acquisition Strategy:
This program uses two-fold release process of major increments delivered every couple years,

with smaller spirals, or emerging releases fielded on the order of every six months.  Figure 19

shows the process graphically.  The program currently calls for increments to be delivered again

Spiral 2

Increment 1

Increment 2a

Increment 5

FY99                  FY02  FY03   FY04                             FY09

Spiral 1 Spiral 3

-Whole groups of capabilities
  or functionalities
-Represent new ‘versions’
  of software

-Individual functionalities
-Patches or upgrades to
  existing fielded software

Increment 2b

Figure 19: Program B acquisition strategy



97

in FY04 and FY08.  Essentially, increments contain whole groups of capabilities or functionality,

while spirals may contain one or more of the individual capabilities.  From a traditional software

standpoint, the increments are new releases of the software, similar to a new version, while the

spirals are patches or upgrades to the fielded software.  At the same time the spiral patches are

fielded.  Increment 2 and 3 are underway, while only minimal scopes for Increments 4 and 5 are

known.

Programmatic Uncertainties:
Program B established several guidelines to reduce its risk.  The first of these was a clear

understanding that requirements changes within an increment would not be accepted without the

additional funding to make it feasible.  The program has had good success with this policy on the

first increment, but some difficulty on successive increments, as the functionalities provided in

the second increment are more integral to the system capability, and these requirements cannot

be sacrificed as easily.  While it has reduced the creep in operational requirements, it has not

reduced budget cuts and associated capability cuts.  From a technological perspective,

obsolescence is expected to be a problem by the end of the program in large part because of self-

inflicted choices, particularly the programming language.  In addition to this, new advances in

technology pushed the program to adopt web enablement and portals as well as new user tools.

One of the bigger challenges in this program was the change in operational environment.  In the

time between program initiation and delivery of the first spiral, a new user group was established

that had not been anticipated, and loads on the software were significantly higher, requiring some

changes and support by the program.



98

Key Enablers:
Program B has had a great deal of success in involving the user and other key stakeholders

throughout the program.  As in many programs, each spiral or increment must receive user

approval through user representatives on two-tier IPTs, called user advisory groups.  These

groups submit recommendations to the contractor on a daily basis, with the stipulation that these

cannot be baseline changes to the program.  In addition to this, the results from the first

increment fed directly into the following increment.  In fact, Program B is the only program in

these studies to not immediately overlap increments.  In particular, the user realized a greater

need for the program’s services, leading to some new capability requirements in increment 2b.

In addition to this, the program has had good involvement with testers, and has procured

dedicated test suites, reducing some of the challenges typically associated with the multiple tests

required in spiral development.

From a programmatic perspective, Program B has elected to use Cost-As-an-Independent-

Variable (CAIV) as a means of determining what capabilities and requirements will be in future

increments.  What’s more, the program has been successfully able to move non-mission critical

issues into successive spirals and increments.

Program Challenges:
Despite heavy involvement from stakeholders, Program B has had a number of challenges with

managing expectations, primarily in terms of funding.  Primarily, the funding line does not

support spiral development.  This manifests itself in several ways.  First of all, the funding fails

to address the fact that the deliverables likely will have some problems, so typically money is

routed from future increments to repair and support the latest increment.  In addition to this,

though the program has set aside time between the spirals, for generating experience and



99

providing support, the funding does not recognize that this period has associated costs.

Furthermore, the budget did not support performance testing.  Additionally, the program’s cost

estimate was likely to increase as increments were defined in more detail, such as the case of

increment 2, which will cost about three times more than was initially authorized by the budget

authority.  In general, the program manager noted that the issue was primarily with moving

increment plans from the macro to the micro level.  The manager also noted that the user did not

clearly understand that changes were costly, and that baseline requirement changes in future

increments could not be performed without funding.  Beyond budgeting issues, resources were

not available to work on future increments because current challenges took priority. Moreover,

there were a number of other stakeholder issues.  Though the Air Force gave tutorials to both the

developer and the users, initially the user did not understand the difference between spiral and

traditional programs, with regard to the differences in deliverables.  This also created a challenge

in coming to a common definition of what was to be in each increment and spiral.  Accordingly,

neither the contractor nor the user understood the complexity of implementing the solution—not

only replacing the existing system, but providing significant new capabilities, and hence a

significant change in the business rules.  In fact, the program’s Concept of Operations (ConOps)

is out of date, and the program is applying policy not yet approved by regulations (though these

are in the midst of changing).

The program also had many design constraints.  In addition to the nearly two thousand-fold

increase in usage over the program’s initial anticipations, the requirement on interoperability and

use of key technologies made this program a key candidate for spiral development, but also

created a number of challenges.  Though new technology requirements such as the use of web-



100

enablement and portals was significant, the larger challenge has been in coexisting with military-

specific systems, many of which are going through similar upgrades and version cycles.  This

places the additional burden of maintaining interoperability on top of delivering new capability.

This is magnified by the fact that the program software is highly coupled with these external

systems.  In fact, all of increment 2a is essentially devoted to interoperability upgrades.

Accordingly, the program is very sensitive to external changes, and internal changes can

adversely affect outside programs.  Nevertheless, the program is helped by the fact that it is

modular within itself.

Despite the dedicated test facility, there were a number of testing issues that the program

manager brought up, specifically dealing with spiral development.  The most obvious of these is

the requirement on testing for each spiral, resulting in the hiring of two additional staff members

for testing.  While many of the tests are similar, being the same type of test and having similar

duration and depth, due to the coupled nature of the external systems, integrated testing is often a

scheduling challenge.  Another issue with the frequency of releases is that performance tended to

be a stronger driver than schedule, which conflicted with the desire to field new capabilities

quickly.  This was further hindered by regulations that created a significant barrier to releasing

new versions, so the program was often forced to use patches, creating a number of maintenance

and logistics issues.

Summary:
Perhaps as a result of the challenges in implementing spiral development, Program B serves as a

very valuable guide for acquisition. From a testing perspective, though the use of a dedicated

facility was helpful, it was clear that spiral development generated a number of other issues in



101

testing, particularly due to the frequency of releases.  In addition, the interoperability with

external interfaces proved to be a challenge to the program, requiring significant resources.  One

of the unique points of Program B is that it intentionally set aside a period between increments,

though this was not supported financially.  In fact, a great many of the challenges encountered by

this program had to do with managing expectations and coming to a clear understanding of what

was required of each stakeholder.  From the program’s perspective this had primarily to do with

requirements versus funding, but this in itself was due to the inability of the stakeholders to

understand the impact of funding cuts on system performance, in addition to the program’s

inability to properly estimate costs up front.  Perhaps the most useful lesson from this program is

to clearly establish the expectations from all stakeholders and as the program manager, to

manage these expectations.

Program B also was the program that seemed closest to a spiral program, as there was a period

between increments for learning.  At the same time, it used a mixed spirals and increments

approach like Program A, indicating a block upgrade strategy with miniature spirals.  Program B

seems to have less of the design-to-schedule or budget strategy of Program A, particularly as the

program manager stated that the performance goals for the spirals and increments was more

important than the schedule.



102

5.5 Evolutionary Case Study 3 – Program C
Program Background:
Program C is a two-part program involving what are essentially two systems, designated as

System C-1 and C-2 here.  The overall program involves a mix of hardware and software, but

hardware is primarily off the shelf, standard equipment, while the software is the main focus of

the program.  System C-1 delivers a ground-based platform for improved surveillance, and uses

existing infrastructure, while C-2 will be a portable version of this.   While there are two

systems, C-2 is an offshoot of C-1 and will use much of the software developed for C-1.  C-1

began in April 2003, and C-2 will begin in early 2004.  The program is expected to continue

through 2009.  The primary focus of this study will be on System C-1, as the program has

reached the development phase.

Acquisition Strategy:
There is an individual acquisition strategy for each system, though they are not unique, and there

is a significant relationship between the two strategies.  Both systems use spirals to deliver

capability, as shown in Figure 20.  In the case of C-2, the spirals are called blocks to prevent

confusion between the two systems.  The key here is the common software that will come out of

C-1’s spiral 2 and feed directly into the first ‘block’ of C-2.  In addition to this, spiral 1 will

deliver two development systems to sites in June 2004, and three production systems in late

2004.  In the case of system C-2, the first block will focus on developing a hub for the

subsequent block.  As shown in Figure 20, system C-2 will have multiple deliveries throughout

the second ‘block’.



103

Programmatic Uncertainties:
While many of the programs examined in this research indicated that budget cuts were always an

issue, Program C was very confident in it’s funding.  In response to concerns about operational

requirements, the program responded in much the same way that other programs have, by

prioritizing requirements, and executing those requirements that were deemed most necessary

first.  Due to the pre-existing infrastructure of C-1, there was little worry that there would be

operational environment changes, but for C-2, this was not the case.  Particularly, there have

been a number of discussions on the use of system C-2 in places it was not originally intended

for, which would require further development.  The program manager for both systems realized

that technological obsolescence would be an issue, and planned for technology refreshes every

three years.  The issue here, he noted, was that this created not so much of a development

problem as a logistics problem, as typically spares are kept on hand for longer than this period,

and there is little need for the number of spares to currently be acquired if the technology is

being refreshed.

Spiral 1

‘Block’ 1
Multiple incremental deliveries

Spiral 2
Spiral 3

Spiral 4+

Common Software Delivery

Software & Hardware
Software

Software & Tech. Refresh

2003      2005

C-1

C-2

Figure 20: Program C acquisition strategy



104

Key Enablers:
Due to the complex nature of Program C, there are a number of very interesting findings that

provide insight into the Evolutionary Acquisition strategies employed in the Air Force.

Program C had initially been a traditional program that was converted to a spiral development.

In particular, the events of September 11, 2001 provided a mandate to the program, along with

thirty million dollars and the order to “get what you can.”  Their acquisition strategy now

specifically calls for evolving capability.  From a program perspective, as a result of the

instructions given to them, they were a design-to-cost program.  To begin the spiral

development, the program worked with the users to determine 464 requirements and prioritize

these into top priority and lower priority tasks, with the understanding that the first spiral would

be the most important.  Specifically, the program managers noted that the first spiral must

provide adequate capability, sustain legacy and new equipment, and must satisfy the user so that

they would both accept the product and continue with the spiral process.  In addition to this, the

program had a strict policy of not adding requirements to the spiral.  The result was of the 464

requirements, 404 were delivered in the first spiral, of which 288 were top priority.  The

managers noted that executing to schedule and performance was a less of a challenge than

executing to cost.  Specifically, they noted that while the traditional system of acquisition was

dominated by addressing cost and performance, the focus has shifted towards schedule.

From a technical perspective, there was little development on the part of the program.  Like

several of the other spiral programs, the key issues seem to be mostly in integration.  This is a

result of an estimated eighty to ninety percent use of Commercial-Off-the-Shelf or non-

developmental technologies.  At the subsystem level, no single subsystem was more than forty



105

percent new development.  The program manager also noted that there were not a lot of

interoperability and standards issues beyond basic issues, likely due to the fact that system C-1

has a very set infrastructure.  The product is relatively modular, but certainly not ‘plug-and-

play’.  This could change however, as there are several Air Force initiatives underway that would

change the operational environment and require the use of specific technologies.

Program C also has significant use of testing, and a very close relationship to testing.  A notable

achievement was the reduction of interoperability testing from one year to six months.  They

have had more frequent interaction for testing and coordination with their own test squad, and

testing is always running, in their own test shop.  They also buy their own test assets and use

them full time.  Specifically the program established an experimental center where they can

perform new Concepts of Operations (CONOPS).  Additionally, the program has the

infrastructure to test and experiment with new technology.  This was largely a part of the

prototyping process, using a virtual reality simulator and developing a prototype that was an

approximately eighty percent solution.  The key, as one manager pointed out, was focusing on

the prototypes as capabilities and not solutions. Otherwise, the program runs the risk that the user

will ask for the specific system in the prototype rather than a system that provides that level of

capability. This was a very valuable process in incorporating user experience, as well as getting

political buy-in.  Furthermore, the program was able to better understand many of the human-

machine interfaces through this process, feeding directly into the development process.

One of the most important things the program has done is to manage expectations for the various

stakeholders.  Specifically, the program manager noted, the expectations were very different for



106

traditional stakeholders compared to political stakeholders, i.e. the real warfighter versus the

Pentagon.  Part of this was solved up-front, by involving the various communities and especially

the user community in the requirements process, but another aspect of this was the use of

‘agents’ so to speak.  Essentially, the program sought out operations people who supported spiral

and embraced them.  These people would then take the message to the rest of the community,

effectively being ‘agents’ of spiral.  The inability to manage these expectations would result in

lost funding and resources, warned one manager.

Program Challenges:
If Program C’s use of good practices was a result of necessity in such a complex program, then

many of the challenges they had were for the same reason.  Despite many efforts to manage the

challenges in product development, the program managers indicated several areas that required

further work.

The majority of the challenges stemmed directly from the concurrency of the program.  People

were often being shared between spirals, and the team responsible for one spiral was pulled to

plan the next spiral as well.  The difficulty here was in keeping up the level of continuity;

specifically, individual spirals would lose expertise as people moved to subsequent spirals.  This

would show up in the test phase, where it becomes difficult to make some of the changes deemed

necessary in testing.  Furthermore, the program spent a lot of time working on contracts, and as

one manager stated, they need a contracts officer who is more flexible.  The program used a firm

fixed price contract on items that it knew were necessary, and time and materials money on

unknowns.  One notable drawback is that firm fixed price contracts are less flexible than cost

plus contracts.  An additional burden on the program was the lack of a prime contractor.  This



107

meant that the program office had to serve as the integrator for the system, causing additional

strains on the office.

Another issue with the concurrency is the failure to immediately incorporate lessons learned

from one spiral into the next.  The program is always off by one spiral, so learning goes from the

first spiral into the third, except in the case of defects or pieces that are easily changed.  This

again was an issue in testing, where by the time one spiral would test, the requirements for the

subsequent spiral were already set.  Specifically, testing seems to always be an issue of resource.

In Program C, this had to do with a couple of things.  First of all, despite the test resources

available, the size of the testing staff appeared to be inadequate.  Secondly, the amount of

retesting is an issue.  This is a twofold problem, brought about by the fact that spirals must be

tested again, but also because without a clear continuity of testing staff, new testers must be

brought up to speed on the testing program and experience so far.  A program manager suggested

performing regression tests on the changes made in the future.

From a technical perspective, the program is dealing with significant quantities of hardware and

software, creating a logistics problem, particularly with retrofitting systems as new spirals are

completed.  One of the important points that one staff member noted was that the use of COTS

and open architecture systems was more difficult than anticipated by the Air Force.  The use of

COTS, he said, would save money upfront, but cost more in maintenance and sustainment.  This

is due to the rapid technology cycle times and corresponding obsolescence of older systems,

especially in operating systems, where the software is not always backward compatible.  In this

system, the logistics trail is more difficult as the use of COTS means that the program must have



108

multiple baselines.  As a result of the short lifespan of COTS in this system, it is essentially a

new program every time the COTS products are changed.  Furthermore, while the Air Force

pushes for open architectures, the challenge becomes data transfer, and procuring data rights to

send information between software programs.  Accordingly, it is often easier to stick with one

contractor rather than procure multiple components from various vendors.

Summary:
Program C is faced with a challenge due to its complexity in developing two systems but

provides a number of valuable lessons for less complicated programs as well.  Certainly this

study has brought up the fact that COTS should be heavily considered before implementation.

Also, one of the most valuable lessons from this was the ability to manage stakeholder

expectations through the use of change agents.  Furthermore, the program noted some resource

strains as it was forced to deal with system integration as well as testing challenges.

A look at the acquisition strategy of Program C, and specifically C-1 indicates a strong

incremental process, particularly since the goals for the future increments are somewhat well

defined.  At the same time, there is still some flexibility in these increments.   The initial spiral

was essentially a design to budget strategy with the mandate to accomplish what was possible

given the funding.



109

5.6 Evolutionary Case Study 4 – Program D
Program Background:
Program D began in October 2002, and is intended to last eight years.  At this point, the program

has used approximately five percent of its billion dollar budget.  It is a time-critical upgrade

program necessitated by a change in the operational environment.  At the same time, the program

manager stated that the development aspect of the program was less significant than the

manufacturing throughput challenges the program foresees.  It is an aircraft subsystem, and is

accordingly primarily hardware with a minimum of software support.

Acquisition Strategy:
The acquisition strategy employed by the program is essentially a mix of concurrent and

incremental work.  Unlike many of the other programs, there are no spirals within the

increments.  Figure 21 graphically shows this strategy.  Note that the increments are overlapping

and that test occurs at each increment’s end.  Each increment is fielded immediately after test.  In

addition there is the possibility for additional increments or spirals in the future.  The strategy is

essentially to go into Low Rate Initial Production (LRIP) for the first increment and prove the

technology.  Due to the immediacy of the program and the operational need for the system, the

goal of the system is not necessarily to provide improved capability over the current system, but

Increment 1

Increment 2

Increment 3

Test

Test

Test

Possible future increments

2002             2008

Figure 21: Program D acquisition strategy



110

rather to replace the current system with a usable one in a specified period of time.  The second

increment will deliver nearly 90 percent of current capability, while the final increment will

bring the new system up to the performance standards of the current system.

The increments are very well defined and serve primarily to deliver technologies as they become

ready.  There is some feedback from flight-testing into the subsequent increments (i.e. testing of

increment 1 will feed into increment 2), but primarily to address performance issues and any

problems.  In addition to the hardware deliveries, there are three software deliveries.  At the end

of the three increments planned, there is potential to enter into further development and

capability upgrades.

Programmatic Uncertainties:
As Program D is specifically a program to address a change in the operational environment of

the system being replace, it is somewhat ironic that the program does not expect any real changes

in its operational environment.  At the same time, it has several other uncertainties.  From the

perspective of technological obsolescence, there are a couple of concerns.  First of all, the

program delivery volume is very small, and the program is not procuring quantities on a level

that would justify the manufacturer’s continued production of the technology were it to be

replaced.  Secondly, the program manager noted that the number of Military Standard (MILSTD)

parts have been reduced, creating a greater dependence on Commercial-Off-The-Shelf (COTS)

parts and further intensifying concerns on obsolescence.  In addition to this, the system must be

nuclear certified, meaning it can operate in an environment with nuclear weapons, a process

typically eased by the use of MILSTD parts.  More uniquely, the program did not have other

concerns, such as requirements changes, as the system of which the program is a part is not



111

changing, and the program goal is set clearly to replace the existing subsystem within a known

timeframe.  Furthermore, because of the immediacy of the requirements, it is unlikely that the

program will face any budget issues.

Key Enablers:
The program’s mandate to quickly develop and field the required technology helped immensely

to determine and execute the development strategy.  To begin with, the user was involved at a

very early stage, and chose from the options in the trade study, essentially between modifying

the existing system and developing a new system.  The decision to develop a new system was

based in part because of an impending Mid-Life Upgrade (MLU) scheduled for the old system,

which would have been in addition to the cost of modifying the system.  Logistics and testing

were also brought in early as the program realized the challenges implied in this task, and in

particular in the rapid and frequent testing.

From a resource perspective, the program manager felt that overall resource needs were fewer

because of the concurrency of the program.  In particular the short program time meant that

contractors were not needed for as long, and that there would be no need for a standing army.

Testing resources were significant however because of the number of test periods, although

results from the prior tests could be used towards the final tests.  Another key in the program was

to hold the engineers to the increment goals and not exceed them, though possible.  This is again

attributable to the schedule pressure.

The program did not have significant budgeting issues as initial funding was inadequate.  Money

eventually came from improving efficiency elsewhere in the system and overall costs were lower



112

because of the existing overhead for the system and program of which this development was a

part.   Technology was also very mature, and the program elected to use derivatives of existing

technology as possible.  This was further enhanced by a flexible design, in which the front end

can easily be changed.  As the program manager noted however, development was not the real

challenge in this program as much as manufacturing and logistics.  In fact, less than a quarter of

the budget is slated for development, as most of the technology is non-developmental.  The

system is also not highly dependent on software, and much of the functionality in this comes

from look-up tables that can easily be changed.

Despite the somewhat fixed nature of the program in the hardware side, the mechanism for

feedback and requirements changes exists between the tests and fielded LRIP systems and future

increments.  Furthermore, many of these changes can be done via software upgrades.

Program Challenges:
There were a number of issues Program D encountered in large part due to its concurrent,

incremental, and rapid nature.

One of the larger challenges was with external stakeholders, who often had difficulty

understanding the concurrency of the project, particularly that the increments have operational

utility.  Additionally, stakeholders did not clearly understand the budgeting needs of such a

program, and were hesitant to fund it.

Though the program uses limited modeling and hardware prototyping, this is not used for the

purpose of user feedback but rather reliability and maintenance.  Again, this is in large part due



113

to the goal of matching current performance of the program and the short time frame in which

this must be done.  The biggest challenge of the program has been in testing.  Despite the fact

that the Program D was aware that testing would be an issue and brought in testers early, it has

still been difficult.  First of all, the program is limited to one test asset, which severely reduces

the number of tests that can be performed in a given period.  Secondly, due to the fact that the

larger system of which this upgrade is a part is an ACAT I program, the testing requires a Test

and Evaluation Master Plan (TEMP).  At the same time, the Operational Requirements

Document (ORD) was old and high-level, which would have been a challenge to derive new

requirements from.  As a result the program developed all new requirements.  Moreover, the

program office worked with Developmental and Operational Test and Evaluation (DOT&E) to

develop and acquisition and test strategy that worked for both parties.   Though DOT&E

understands the immediacy of the program, and have agreed to the LRIP part of the program,

they have not agreed beyond that, with DOT&E requesting more authority in later testing.

Summary:
Program D was once again helped significantly by its mandate and rapid schedule time.  Again

however, the issue of COTS use was brought up.  The biggest challenge in this program appears

to be testing.  Despite seemingly good involvement of the testing community, the challenge for a

rapid program with frequent testing here is the ability to use test assets and facilities.

The strategy here is a clear incremental process driven by schedule.  There is a high level of

concurrency, and increments are well planned for.  This is particularly crucial in this program as

the requirements are very well established, and the primary goal of the program is not to develop,

but rather make producible the solution.



114

5.7 Evolutionary Case Study 5 – Program E
Program Background:
Program E is a series of primarily hardware upgrades to an aircraft, with some software

development.  It started with an existing platform with the Engineering & Manufacturing

Development (EMD) phase in February 2001.  Approvals for Spiral 1 and 2 in March 2002, and

more recently Spirals 3 and 4 in December 2002, followed this phase.  In this period, the system

has had two real operational experiences.  As a relative program size, the spiral 2 is on the order

of 300 million dollars.  More recently the system was operationally deployed.

Acquisition Strategy:
The program is using concurrent spirals to achieve capability in a short timeline.  Typically

spirals last on the order of several years, but do not yield fieldable results in themselves.

Fielding is done through annual lots, where mature technology from each of the spirals is

brought into the production lot, as seen in Figure 22.

Spiral 1

Spiral 2

Spiral 3

Spiral 4

Spiral 5

Spiral 6+

2001 2009

Lot 1    Lot 2     Lot 3     Lot 4    Lot 5       Lot 6     Lot 7      Lot 8

Figure 22: Program E acquisition strategy



115

The figure depicts both the spirals and the lots.  The lots are intended to be homogeneous, and

older systems will be brought up to current lot standards where possible.  Accordingly, the

program uses annual contracts to add more capabilities.  While the platform is stable, plans are in

progress to increase payload by 50 percent.  Additional work in Spiral 2 is to make the system

more readily producible.  Future spirals will add a slew of capability improvements.

Programmatic Uncertainties:
Like many other programs, Program E was no exception to budgetary concerns, especially the

ripple effects such cuts cause throughout the program.  In part due to their annual contracting

process, there is a significant likelihood that user priorities can shift in the course of the year, and

drive the system in a different direction.  Technology obsolescence was less of a concern, though

hardware refreshes were expected every five years.

Key Enablers:
As Program E began it was provided with a significant chunk of the work upfront—both a

platform and supporting infrastructure.  It is also a priority customer to the Air Force Research

Labs (AFRL).  As a result, the primary purpose of the program is to use the platform to provide

more capability to the warfighter.  The user is very involved in the program, in large part because

of the recent conflicts the system has been used in, but also because of the unique way in which

this program transitioned to EMD.  The user has a very clear understanding of incremental

deliveries and the lots they are receiving.  Like many of the spiral programs, Program E also

elected to prioritize requirements, but also to have a clear requirements feedback loop through

working groups.



116

Further feedback from experience in action as well as from testing and user experience is also

incorporated into the production line, but not into current spirals.  The changes can be made

through subsequent spirals and in later lots.  This creates a challenge for the production program

however.  One manager noted that there were plans for systems to be upgraded in spiral 2 and

again in 5.  The program has also recently had operational experience that will help shape future

development work and spirals, which is not necessarily often the case for projects still in

development.

Technically, the system is relatively modular within the confines of the program.  In other words,

because the system platform had already been established, upgrading the systems is done

primarily through payload.  Within the payload, the system is very modular and flexible, and

incorporates a open architecture and standard interfaces.  The technologies involved are also

relatively mature and low risk.

The program has had some success in testing, with AFOTEC signing off on the Test and

Evaluation Master Plan (TEMP) for Developmental Testing.  The program managers also

expressed that there were no problems with Operational Testing.

Program Challenges:
Program E expressed many of the same sentiments that other spiral programs have, again many

of them a result of the concurrency aspect of acquisition.   The engineering challenges with

concurrent development were among these, particularly dealing with engineering multiple

subsystems at the same time, and then integrating these into the lots.  Another issue was the

common logistics and financial issue.  The managers all noted that more work was necessary in



117

this area, particularly in training.  As a direct result of both the concurrency and the annual

contracting process the program employs, the program encountered contracting problems, and

needed additional resources in the contracting office.  This is compounded by the fact that the

program style is contract intensive, and more importantly that spirals are essentially considered

large EMD contract changes.  Another source of concern was the scope of the spirals.  Many of

those involved on the program felt that technical goals for each spiral were too large, causing

schedule and cost issues.  Financial issues also play a role in the program, as like many

programs, operational requirements and technical changes are not possible unless more funding

arrives.  Of particular note is the inability to set aside money for technology refreshes or

replacing subsystems that suffer from Diminishing Manufacturing Sources (DMS), as this money

is quickly cut for other programs.

Like many of the programs, testing appears to be a major hurdle in the program.  Most notably,

the program is limited to one test asset, which is a great concern because of the potential loss of

assets in testing.  This problem will become more significant as the number of development

spirals increases, despite attempts to test multiple spirals simultaneously.  Particularly, testing the

system with multiple software configurations will be a challenge—more so because software is

being released approximately every two weeks.

Summary:
Program E’s biggest challenges come from its concurrency, which puts a significant strain on

program resources.  At the same time, it gets significant benefits from being a preferred program,

such as having fewer development uncertainties, as well as ease of development because the

platform is established.  The acquisition strategy for this program was unique among the case



118

studies, as it was a mixture of spirals and lots.  The overlapping spirals indicates that the system

is very much along the lines of the block upgrade methodology of the Air Force, and very similar

to the F-16 acquisition program.  Nevertheless, the use of annual lots means that the spirals are

not the blocks, as much as the lots are.  Essentially, one could argue that this is a variant of the

concurrent technology transfer strategy put forth by Cusumano and Nobeoka in Chapter 2, where

technologies from multiple spirals are transferred to annual lots.



119

5.8 Evolutionary Case Study 6 – Program F
Program Background:
Program F began in May 2003 as a derivative of an existing platform and is expected to last five

years.  The system on which this program is based was previously developed and demonstrated.

An aircraft system, it is hardware-dominated, based on established, mature technologies.  The

program also is cost constrained from both a development and unit procurement standpoint.  The

program is in the mid-range of development cost compared to other programs in this thesis.

Acquisition Strategy:
As the program is just beginning at the time of this research, the intended strategy is to develop a

baseline or platform, and have a delayed, but concurrent, first spiral, as shown in Figure 23.  The

first spiral should add new capabilities to the platform.  As a result, the current strategy calls for

the system to be upgradeable and allow for new capabilities to be added easily.  Both the

baseline program and the first spiral are funding constrained, so the program will attempt to

conclude the development of these at the same time, and provide for synergy during testing.

Testing
Program Baseline

Spiral 1 (Intended)

2003   2005 2008

Provides basic capability

Provides new capability through additional systems

Figure 23: Program F acquisition strategy



120

Programmatic Uncertainties:
Like the majority of programs interviewed for this research, the program’s concerns over risks

and uncertainties tend towards the same areas.  In Program F, the technology is mature and

primarily off the shelf, but the burden of technical obsolescence is on the contractor and not the

program office.  In addition to this the program is seeking out emerging systems to incorporate

into the development, to reduce the effects of possible challenges that cannot be foreseen.

Furthermore, the program hopes to address such problems with software versions rather than

hardware upgrades.  In addressing operational environment changes, the program has considered

many of the more likely scenarios and embraced these.  Though the system is required to work

with two other systems, the program has larger goals.  This has the benefit not only of making

the system more useful, but also creating larger demand for the system, which is beneficial from

a cost perspective for both the program and contractor.  The program is not particularly

concerned about budgetary issues, as it is very constrained to begin with, but also enjoys

favorable status with the Air Force Chief of Staff.

Key Enablers:
Though the contract for the program was awarded in May, work on the program began months

before this, with meetings and teleconference between the program office, the user and the Air

Force acquisition agency.  These weekly meetings have continued into the program, adding the

contractor after contract award.  In addition to this, a large meeting with all the stakeholders,

including the Air Force Operational Test and Evaluation Center (AFOTEC), Aircraft System

Program Offices (SPO), and the traditional communities was performed.  Working with the SPO,

Air Combat Command (ACC) developed an Initial Capabilities Document (ICD) and is drafting

a Capabilities Development Document (CDD) to be in place by preliminary design review.  At

the beginning of the program, the program office elected to perform an investigation and



121

solicitation from various potential contractors to find what solutions for the program needs were

available and also to determine where the “knee” on the performance-cost curve was.  This was

done through simulation and modeling, where the contractors provided feedback based on the

findings.  The intent was to use these models for evaluating requirements for the program.  One

of the major advantages of having a concurrent first spiral concluding near the same time as the

program baseline is essentially the ability to provide a single version of the system to the users to

mitigate many of the traditional logistics challenges.  The program also experienced a unique

situation as a result of its constrained funding; it was forced to extend the schedule to

accommodate the funding profile.  As a result, there is not the typical challenge of scheduling as

is seen in many of the other Air Force spiral development programs.

Technically, the program uses primarily off the shelf components, estimated to be about 80

percent of the system.  Developmental work is primarily on the order of modifying or creating

derivatives of existing systems, and the program is intentionally using low-risk technology.  This

is driven primarily by costs, from both a developmental and unit cost perspective.  The system

payload and system itself are both relatively modular, and should provide for easy upgrades in

the future.

The program’s test strategy has been very true to the preferred strategy of the Air Force, and the

program foresees no issues with test asset and range availability.  Historically, the manager

noted, programs have tested large numbers of systems, but they are trying to move towards

testing fewer systems more effectively, so planning for the right number of test assets has been

important to the program.  They have also planned for joint developmental and operational



122

testing, and the program manager thought that there would only be one individual operational

test to determine suitability in the end.  The biggest issue the program expected in testing was

that costs for the range and aircraft testbeds were fluctuating and there were no clear financial

figures for these.

Program Issues:
Budgeting was once again an issue in Program F, in two significant ways.  First of all, as stated

earlier, the program wanted to have a shorter schedule, by nearly 20 percent, but was unable to

procure funding for such a program.  In addition to this, the program has been unable to create

funding wedges for the future spiral, since such wedges would immediately be taken away from

the program as excess money.  The resource issue was also an anticipated problem waiting to

happen, particularly as the first spiral begins.   In Program F, the weak points appear to be

budgeting, cost-estimating, and user requirements planning.  In fact, the program manager noted

that requirements, for the spiral and in general, were likely to be a big challenge.  Specifically,

the manager stated that the program had to stay on top of the requirements, and prevent “what-

iffing” as well as the traditional requirements creep.  Due to the concurrent nature of the

program, and existing plan for only one spiral, it is unlikely that there will be any feedback from

the baseline program into the first spiral.  The only feedback that is possible will be with

improved models of the baseline program to be used in soliciting feedback for the spiral.  On this

issue, the program manager noted that this would be the burden of the contractor, as the Air

Force program offices no longer have the capability to perform complex modeling and

simulation.

Summary:



123

Although Program F has just begun, it has planned for its introduction into spiral development by

involving the testing community early and planning test assets well in advance.  Nevertheless,

the program has a common resource issue, and once again is faced with the inability to create

funding wedges or reserves for future use.  Perhaps the most interesting aspect of this program is

the fact that to develop the platform, the strategy resembles a traditional development strategy,

and spirals are used to improve the capability.  The program planning appears to resemble the F-

16 strategy, essentially developing a baseline and following this up with improved capabilities

through successive spirals.



124

5.9 Summary of Case Studies
Each case study provides a unique experience with Evolutionary Acquisition and spiral

development, but looking at them together also provides some valuable insights into new

acquisition strategies.  Chapter 6 provides an analysis of these programs to determine key

findings in Evolutionary Acquisition.



125

6 Case study results

6.1 Case study summaries
Each of the programs involved in this research uniquely identified their own processes and

practices in implementing Evolutionary Acquisition.  Though the programs represent a variety of

product types and strategies, there are a number of common elements in each story that are

valuable to other Evolutionary Acquisition programs.  Following a brief review of each of the

studies, these five topics will be reviewed:

• Acquisition strategy

• Perceived variation in the development environment

• Product architectures

• Program resources

• Summary of program practices

Program A, a primarily software system, embarked on a common strategy of overlapping

increments, with each increment providing increased capability and functionality through a

delivery mid-increment and at the end of the increment.  Within each of these increments there

are a number of spirals that grow the increment capability.  The program also actively prioritized

requirements and involved a user base that had prior experience with spiral development.  The

program has delivered one increment and is now working on the second.

Program B is unique among the programs for not having overlapping increments.  Again a

software program, it combined increments with internal spirals, though each spiral yielded a

fieldable capability, in this case a software patch.  The program rigorously prevented



126

requirements creep into its future increments without associated funding for such changes.  At

the same time, the program and product have successfully dealt with a major operational

environment shift.  Budgetary issues from a failure to agree on capabilities and funding have

plagued the program.  Nevertheless, the program is continuing into the second increment.

Program C is a slightly more complex system development, involving two systems (C-1 and C-

2), and each has its own acquisition strategy, though they are intertwined.  Essentially, work on

C-1 has begun already, and related developments will feed into C-2.  The C-1 program uses an

overlapped increment strategy, with increment 1 focusing on both hardware and software, while

increment 2 is wholly software.  Again the program has emphasized prioritizing requirements,

but more importantly, they have strategically worked to manage stakeholder expectations.

Program D is an upgrade program for a hardware system that involves a very well defined set of

future increments, and potential spirals after the increments are complete.  The program is

essential, meaning that it is required for operations, so it has a significant mandate for rapid

acquisition and fielding.  This mandate also implies fewer challenges for the program, as the

stakeholders understand the program necessity and are willing to put in effort as required.

Fundamentally, the program is spending little on development, and much more on logistics and

testing.  It is a very concurrent program, and this has been the biggest challenge for them.

Program E is primarily hardware development for an existing platform.   Several of the spirals

are currently under way, with each spiral focusing on a particular capability.  Running

orthogonally to these spirals are production lots, which cull all the technologies ready from each



127

of the spirals into annual production lots.  Though the program is a preferred program and enjoys

popular status, it suffers from resource challenges associated with such a large endeavor.  The

biggest advantage in this program, though it has been somewhat difficult, has been the ability to

put the system in real action, leading to a better understanding of not only performance, but also

operational utility.

Program F is a new hardware platform development starting with a program baseline

development and mid-baseline planning to begin a first spiral to add capabilities to the platform.

This program also has a favorable status and hence has fewer concerns with some of the

traditional budget woes.  Interestingly, the program was forced to extend the contract out beyond

what the contractor had said was required in order to address the budget profile.  The program

did very extensive work before contract award, spending significant effort in involving

stakeholders as well as looking at various options to satisfy the user needs.  The program is

currently working on the baseline program and planning for the first spiral.

6.2 Acquiring new products



128

Though the case studies showed several strategies for developing new capabilities, there were

many similarities.  The acquisition strategies are not necessarily the same as development

strategies, and this research is far more focused on supporting Air Force acquisitions, with the

understanding that these processes are interactive.  Figure 24 shows a notional idea of the

interactions that lead to acquisition strategy.  The policy, product, and acquisition strategy are all

within the control of the government for the most part, while development strategy is typically

determined by the contractor, but clearly influenced by these other factors.

In the case studies, there were a number of acquisition strategies, but several common themes

running throughout.  The most evident of these is the concurrency of the projects.  Looking at the

programs shown in Table 1, several have an extremely high level of concurrency.

Government Policy

Acquisition Strategy

Development Strategy

Product

Figure 24: Notional view of process influences



129

Table 1: Comparison of Case Study Programs

Program Name
Program
Size

Level of
Hardware

Level of
Concurrency

Number of planned
Spirals/Increments

A Small Very Low Low 20+
B Small Very Low Very Low 15
C Medium Low Medium 4/8
D Large High High 3
E Large High High 6
F Medium High High 1

More importantly, there is a noticeable trend that larger programs and/or programs with more

hardware have higher levels of concurrency.  A closer look at these programs reveals that they

are very similar to the incremental process described in Chapter 3.  This process involves a

significant portion of the design being planned for up front, while deliveries of the product come

in increments.  In other words, these programs had determined the essential content of each of

these increments in advance, although this was less true for increments well into the future.

A crucial aspect of the ability to iterate, to evolve, and to experiment with new capabilities is the

ease with which changes can be performed.  That is to say that the difficulty of creating

derivatives and incremental families of products is a function of the ability to and ease of change.

In hardware programs, where the cost of experimenting is typically higher and requires more

work, it is less likely that programs have the budget and schedule freedom to experiment.

Furthermore, the potential cost risk due to failure is higher as well.  Conversely, in software

programs, or in low-cost programs, where the cost of iteration and experimentation is low, there

seems to be less concurrency and up-front planning.



130

Of note is the number of total iterations among programs.  Counting the spirals as iterations in

Programs A and B, it is evident from Figure 25 that the lower-cost, easier-to-change programs

show a significantly higher level of iteration when compared to the higher-cost, hardware-

intensive programs.  One director interviewed noted that a significant problem with hardware

programs was the challenge in quickly acquiring new hardware due to lead times from

contractors and manufacturers.

Larger programs also typically did not have spirals within the increments, as did the smaller, less

hardware-based programs.  In fact, the primarily software programs had clear spirals within the

increments, and made efforts to field these spirals.  These programs did so by requesting such

deliveries from their contractors.  Only Program E was fielding technology from spirals that

were yet unfinished, though this was done primarily through the use of production lots.  While

Comparison of Program Size and Iteration

0

5

10

15

20

25

Program Size

N
o

. 
o

f 
P

la
n

n
e
d

 I
te

ra
ti

o
n

s

larger
program size

Figure 25: Program size vs. level of iteration



131

some programs used the opportunity of fielding to incorporate new feedback and experience into

subsequent spirals or increments, there was no clear consensus about this.  One of the software

programs, despite having little concurrency, refused to accept changes in plans for future

increments without the associated cost of changes.  Indeed, several programs cited this as a

significant challenge.  Despite the ability to incorporate new feedback, funds were not always

available to do so.  In addition, as many programs were concurrent, few were able to

immediately incorporate feedback into the subsequent increment or spiral but many were able to

place changes in future increments.  At the same time, all programs were adamant about fixing

mission critical changes immediately after fielding.

Actual processes – theoretical processes
Though program strategies varied somewhat, it is important to realize that none of the programs

fell cleanly into one of the theoretical processes described in Chapter 3.  Though each of the

programs was compared to the theoretical strategies in the previous chapter, looking at them

together shows several commonalities and aspects of existing strategies.

First of all, none of the programs is performing a spiral development in the pure sense of the

work by Boehm, Highsmith, and others.  Spiral, in the traditional sense, applies to growing

performance while reducing risk, but not necessarily doing so by providing deliverable

capabilities at each spiral.  In fact, the formal spiral model describes a process by which

increasingly defined prototypes are delivered to the user until a fieldable, final capability is

reached.  The goal in this strategy is not to reduce development cycle time, but rather to address

uncertainties—particularly user uncertainties—through iteration and flexibility. At the same time

however, one could argue that the Air Force strategies leave some flexibility in future spirals, but

as a result of the planning process, programs must commit to follow-on spirals before the



132

previous one is complete.  Notionally one might compare the processes on a scale of flexibility

versus iteration, notionally shown in Figure 26.  This figure shows a general relationship

between the program flexibility and the cost of changes as compared to the level of iteration

expected. Software programs tend to be easy and inexpensive to change, while hardware

programs are typically more complex and more expensive to change.  Historical examples of

pure spiral development are inevitably software or commercial computing hardware. The result

is that Air Force programs represent a hybrid between spiral development and incremental

development. The exception is Program D, where the program has essentially committed to three

increments up front that are immediately necessary and also well defined. In fact, this wholly

makes sense for this program, as there are no user uncertainties, and unnecessarily expanding the

process to a spiral makes little sense.

Figure 26: Notional diagram of program flexibility and iteration

Increasing cost of changes

High       Program Flexibility            Low

Level of
Iteration

Spiral

Waterfall



133

Interestingly, almost all programs are using a Design-to-Schedule or Design-to-Budget strategy

within each of the increments.  As programs are typically cost and schedule constrained, this is

very logical.  In the case of the programs examined here, these tended to be more Design-to-

Budget oriented.  Figure 27 describes such a process.  Note that in this process, the requirements

that cannot be completed in each increment are moved to later increments.  Also note that each

increment only focuses on what is possible to implement in that period—i.e. what is mature and

ready.

While the programs all fall into the category of Evolutionary Acquisition, there is obviously

some discrepancy between programs as to what that means, and how best to incorporate the new

strategies into the traditional acquisition environment.  For example, Program B has notable

Highest Priority Requirements

System
Design

Detailed
Design 1

Medium Priority Requirements

Lowest Priority Requirements

Currently possible
to implement

Highest Priority Requirements

Medium Priority Requirements

Lowest Priority Requirements

Detailed
Design 2

Newly possible
to implementDeliver Increment 1

Deliver Increment 2
Reach budget or
schedule limit

Continued…

Figure 27: Design to budget/schedule in an incremental development



134

iteration and an opportunity for immediate feedback as increments are not overlapped, while

Program F currently has no way of implementing recommendations based on experience.

6.3 Uncertainties in the product development environment
It is expected in the course of an acquisition that things will invariably change.  These changes

can come in a number of ways—they can be changes in the funding profile, changes in the user

requirements or needs, external advances in new technologies, obsolescence of technologies used

in the program, even changes in they way the product is anticipated to be used.  As a result,

throughout the product development process, program mangers are expected to manage these

uncertainties and the associated risks.  As stated earlier, it was hypothesized that strategies would

vary based on the types of uncertainties the program expected.

Within the programs interviewed however, there is no clear correlation between these concerns

and acquisition strategy.  Table 2 shows the programs and their manager’s concerns.

Table 2: Uncertainties by program

Program
Name

Uncertainties

A Operational Requirements, Budget

B
Operational Requirements, Technology Obsolescence,
Budget, Operational Environment

C
Operational Requirements, Technology Obsolescence,
Operational Environment

D Operational Requirements, Technology Obsolescence

E
Operational Requirements, Technology Obsolescence,
Budget, Operational Environment

F Budget, Operational Environment
Each of the programs dealt with these uncertainties in several ways.  Of interest is the fact that

almost all the programs had operational requirements and environment concerns, and the



135

majority had concerns on technological obsolescence, in large part due to the fact that they were

evolutionary programs.

Operational requirements
As operational requirements uncertainty was a large concern of programs, it is interesting to look

at this and understand both its reasons and solutions. Requirements creep is always a concern in

programs, and its effect seems to grow with the length of programs.  This is likely the result of a

natural course of events: 1) User’s needs and desires change with time and 2) User’s needs and

desires change as a result of knowledge learned through the course of the program, either

through models, prototypes, or fielded capabilities.  The effect is more pronounced with

Evolutionary Acquisition, as there are discrete intervals for inputting new requirements before

spirals or increments begin.  Nevertheless, due to the concurrency of many of these programs,

the increments and spirals are relatively well planned for in advance, and there is little desire on

the part of the program or contractor to change requirements.  This is particularly key when users

request changes without the additional funding or possible alternative areas to be cut.  The

challenge in these programs is between engineering desires to establish requirements and

program desires to remain adaptive.  Prior research by Dare (2003) indicates that one way to deal

with the uncertainty in the acquisition environment is the ability to adapt a system while is being

designed.  Specifically, Dare cites the type of collaboration between stakeholders as the primary

determinate of system adaptability.  His work shows that programs with a high level of

collaboration are more likely to be adaptive.

As a result, programs have developed a couple of key strategies for dealing with this.  The first

of these is to heavily involve users in the early planning stages to minimize requirements



136

changes due to misunderstandings or poor analysis of user needs.  The second of these is to

prioritize the requirements with the user, so that the most immediate and important requirements

are satisfied as early as possible, and lesser requirements are left to future spirals or increments.

Both of these strategies tend towards fixing requirements, but this seems to contradict spiral

development’s goal of maximum flexibility.  In fact the two can coexist, but the key is to hold

only those requirements that are certain, and keep flexibility in the less certain requirements.  In

other words, a mix of freezing known, static requirements and iterating on unknown

requirements is a valid strategy for acquisition.  Nevertheless, this provides a challenge in itself,

as users tend to over-prioritize many requirements, which is in turn a result of their expectations

in Evolutionary Acquisition programs.  That is to say that users often do not understand the

principles of Evolutionary Acquisition, to provide incremental capability over time, or they are

hesitant to believe that the program will fulfill their end needs, often because they anticipate

program development or funding cancellation before completion.  The response from a couple of

the program managers has been to try to further educate the user and to manage expectations.

The alternate approach has been to firmly deny requirement changes unless they are

accompanied by additional funding.

Technology obsolescence
Technical advances and technology obsolescence has proved to be a significant part of any

development task, particularly in the aerospace industry, where typical cycle times are on the

order of 10 years.  Surprisingly, this was a concern in software programs as well.  The

fundamental problem in this case is that technologies underlying the performance of the product

being developed often evolve more quickly than the product does.  As a result, one of several

things can happen:



137

1) The program can continue to use obsolete technology, and attempt to create a significant

accumulation of the parts necessary through the product lifetime

2) The program redesigns the product to incorporate new technologies

3) The program suffers from a challenge of Diminishing Manufacturing Sources (DMS),

such that there will be a need for a mid-life upgrade in the product lifetime.

Nonetheless, any of these is undesirable, as all require additional work and/or money.   Programs

studied here attempted to deal with this in mostly the same way.

The general approach to this, particularly for programs that require hardware has been to plan for

technology refreshes throughout the product development lifecycle.  That is to say that they have

planned for upgrading the technology in future spirals.   The primary methodology of doing this

has been through the use of Commercial-Off-The-Shelf (COTS) products, which often reduce

development costs, and to follow commercial interface standards.  This is possible in some cases,

but in others, due to operational environments and government policies, this is not feasible.

Furthermore, COTS products also result in a number of challenges in themselves.  In fact, COTS

products themselves tend to obsolesce more rapidly than traditional Military Standard (MILSTD)

parts.  On the other hand, COTS products have the reputation of being easier to upgrade, though

this is not borne out by the experiences of some program managers.  In particular, these program

managers note that in software, using COTS is a huge risk, as new software is not always

backwards compatible, and it is not always possible to use software from different vendors.

Logistically speaking, the seemingly short technology refresh cycles pose a challenge to

logisticians, as they must prepare to upgrade all the existing systems or deal with multiple

configurations of the same system.



138

Budget
Programs A, B, and E both had some concerns over budgeting cuts in the program future, but

clearly this is beyond the control of these programs.  At the same time, Program B’s manager

noted that there was a clear inability on the part of the user to understand the cost-capability

tradeoff.  In particular, the issue was that the user did not have the engineering savvy to

understand which capabilities could be traded and which were technically necessary to the

product.  This can be attributed in part to the inability of the program to adequately manage user

expectations.  That is not to say that some programs had no budgetary concerns.  All of the

program managers involved had concerns with budget cuts, in large part due to historical

experience or precedence.  Program A noted that it dealt with this challenge through the use of

its prioritized requirements, which provides flexibility to deal with the cuts by understanding

which requirements are more flexible.  In essence, as program managers are no longer able to

keep budget reserves to deal with unforeseen circumstances, they use requirements instead,

sacrificing those less important requirements if funding is cut or if development changes are

necessary.

The larger problem in Programs E and F budgeting had more to do with the ability to hold their

budget under their control.  In particular, these programs were unable to establish their own

management reserve or funding wedge for future needs, such as dealing with unforeseen

technological advances or testing issues, and so forth.  In particular, managers noted that other

programs would appropriate any ‘excess’ or unused money.

Operational environments
Operational environment changes were experienced or expected by several of the programs

throughout the product development lifecycle.  The ability to control this is not possible to the



139

programs, but strategies varied among programs as to how to deal with this.  Program B

experienced a significant change as a new group of users arose during the development process

requiring some additional development work.  As the program was software based, this appeared

not to be a significant challenge.  Program D arose as a direct result of an operational

environment, but does not expect additional changes in the product lifetime.  In programs C, E,

and F, all of which have significant hardware, there are several opportunities for taking the

product into a different operational environment.  Program E is aware of such possibilities, but in

their case this is likely to be handled by the contractor.  Program C is aware of the potential for

these changes and in discussions with the potential new users.  Program F, as it is early in

development has planned to incorporate new users into its product capabilities.  In many cases

the shift to a new operational environment is the result of user realization that the program has

potential to be used in a different way.  This is very beneficial from a user point of view.  If

programs are made aware of this in advance, this is not so detrimental as changes early on are

typically less costly.  However, new operational changes late in development could potentially

Flexibility              Schedule
Focus                    Focus

Flexibility              Schedule
Focus                    Focus

Implement new
requirements

Move new requirements
to next increment

Deliver

Figure 28: Implementing change in programs



140

be handled more easily as new increments focused on creating successive variants of the nearly

completed system, as demonstrated in Figure 28.  In this way knowledge can be shared from the

old program to the new program without significantly impacting the older development.

Summary of uncertainties in the product development environment
All of the programs experienced some level of uncertainty in their development process, but

there was no obvious single uncertainty that dominated all the programs.  At the same time,

programs that experienced certain uncertainties, such as changes in operational requirements,

dealt with these in much the same way.  Significant operational requirement changes were either

ignored unless adequate funding was made available, or alternatively the stakeholders were

brought in to development teams to better manage expectations.  Programs that used prototyping

and/or modeling were also able to use these to provide the user with a better understanding of the

system as well as gain valuable experiential insight from the user.  In programs facing

technology obsolescence, the pervasive strategy has been to plan for technology refreshes in the

future spirals.  While all programs were concerned about budgeting cuts (with the notable

exception of those that were already very constrained), the larger problem was the program’s

inability to carve out funding wedges for its own unanticipated needs.  Lastly, while most

operational environment changes are not controllable, programs dealt with this by engaging

potential new operators early on.

6.4 Product technologies
In chapter 2, there was a significant discussion on system modularity and the use of open

architectures.  While theoretically, this is very valuable, implementing this in programs with real

products is not always easily done.  The Air Force does encourage the use of open architecture,

modular systems, but this is a challenge that many programs face.  Many times, these choices are



141

out of the control of the program office, and are often based on performance needs such as in the

case of the F-22.

Looking at the various programs, there are three aspects of the system architecture that are

valuable to further investigate.  As stated earlier, those programs where it was easy to experiment

and develop new capabilities gravitated toward more iteration.  Figure 29 provides a different

perspective, looking at three key factors in the design of the product.

The figure shows distinctly that the level of modularity in the system is far less crucial than the

level of interdependencies in terms of ease of changes.  That is not to say that modularity has no

effect, but external interdependencies dominate the ability of the program to make changes.  This

implies that programs must focus on the level of interdependency more than on the system

architecture in order to evolve.  At the same time this indicates that in a tumultuous environment,

Figure 29: Program interdependencies vs. ease of system change

Comparison of Interdepencies and Ease of 
Changes

External Interdependencies

E
a
se

 o
f 

C
h

a
n

g
e
s

Medium
Medium/High
HighEasier to 

make 
changes

Level of 
Modularity



142

evolving systems at the rate of the environment will be a challenge.  The fundamental goal of the

program must then be to match this external evolution and the evolution of the system.

The level of modularity is a valuable indicator of the way the system interacts

internally—whether components internal to the system can be changed with ease.  The level of

interoperability is an indicator of how the product interacts with other systems, and whether the

product must be designed around existing infrastructure and systems.  The ease of changes is an

overall metric of the program’s ability to change without negative consequence either in terms of

sacrificing program performance or reducing the ability to operate with external systems.

It is interesting to note that the software programs once again had a high level of internal

modularity, while hardware programs had some flexibility, but there tended to be greater

interdependency in the subsystems.  This is somewhat expected, as software tends to rely on

libraries or modules to execute code, the key being that the data passed between modules must

remain the same.  Conversely, with hardware systems, there tend to be centralized systems

handing multiple tasks, in addition to a greater potential for interference of one system with

another.  In Program E, the modularity tended to be within the payload, but not necessarily in the

other systems.  Program D’s modularity within the main development task was good, as their

subsystem broke up into somewhat clean functions.  The same was true for Program A, as the

capabilities separated nicely into individual functions that could be addressed by individual

modules.



143

A bigger driver of the ability to change the baseline program was the level of interoperability.

Only one program did not have significant requirements on interoperability, Program A, as this

program was essentially replacing the old system, and the functions were clearly understood, so

that the data being passed along from the system to other systems was well defined.  Programs

with hardware, such as D, E, and F tended towards greater interoperability, as they often had to

interact with infrastructure and systems that are themselves never completely constant.  Program

B is the notable exception to the primarily software systems, as the program had to operate with

a larger software system, and this system itself was in a constant state of flux.  As a result,

ensuring interoperability with this system required Program B to both adapt to the external

system as well as to make sure that its actions did not detrimentally affect the system.

As a result, the final indicator of ease of change is a mixture of both the level of external

interdependencies and the level of modularity and the program manager’s perceived idea of how

easily the product can be changed.  Programs A and C, were relatively easy to change, but

Program B, for the reasons stated above was driven heavily by external circumstance.  Programs

D and E were forced to some interoperability, but because the rate of change of these external

systems being relatively slow compared to the development cycle, this was not a major

hindrance.  This was particularly the case for Program D, where the subsystem being developed

was to be used with an established system.  Program F has the virtue of being very easy to

change, but this was primarily because the system is as yet not strongly defined.  In the end

however, it is required to be interoperable with several relatively established systems.



144

As a result of the system of systems approach in modern engineering, and particularly because

the Air Force has a large base infrastructure, it is somewhat expected that interoperability will

always be a concern with hardware systems.  With software systems, this will vary much more

with the type of system involved, with Program B being the notable exception because it

operates in a network.  In fact, one source early in the research pointed out that networked

software systems, particularly secure networks, would require significant work to change and

verify as these information systems are considered critical to defense.  One staff member in

Program C pointed out that another issue with both internal and external modularity had to do

with the way data was passed between systems, and that it would be virtually impossible to have

a true open architecture system until the Air Force would purchase data rights to the systems they

procured, allowing them to pass information between systems.  In this regard, these systems are

analogous to computing today, where passing information between proprietary systems such as

Microsoft Office and other productivity suites is difficult, but systems with open or free data

rights, such as HTML code, can be passed between a number of programs and systems.  Once

again, the level of external interdependencies is not always easy to change from the program

perspective.  Nevertheless, the biggest problems evidenced were when the external systems were

evolving faster than the system itself.  One way to mitigate this is to match the program cycle

time to the external cycle time, by appropriately selecting content for each iteration.  Content

selection was in fact a significant issue noted by many programs, with the notable exception of

Program D, which had planned the increments to match its well-known environment evolution.

6.5 Program resources
One of the major challenges of spiral development according to its many proponents is the level

of management required to successfully execute a spiral program.  In casual discussions before



145

embarking on the case studies, a couple of people with spiral program experience noted that the

program resources were a fundamental challenge.  As a result, programs were asked about where

they had inadequate resources to handle the additional requirements, if any, of spiral

development.

Programs suffered from a variety of challenges, as shown in Table 3.

Table 3: Program resources

Resources Necessary
Program Name More resources Fewer resources
A Planning, User

B
Cost estimation, Planning,
Testing

C
Contracting, Logistics, Planning
Testing, User

D Logistics, Testing, User Contractor

E
Contracting, Engineering,
Logistics, Planning, Testing

F User
Most programs indicated that spiral development required more resources and buy-in from

various stakeholders.  It was more interesting however, that these resources were very similar for

most of the programs.

Contracting proved an issue for both Programs C and E, but especially the latter.  In the case of

Program C, the program spent a lot of time working on contracts, and as one manager stated,

they needed a contracts officer who was more flexible.  This is likely due to the issues with the

inherent flexibility of spiral systems, but traditional contracting needs have not kept up to this

change.  Program E had a similar problem exacerbated by the annual contracting process they



146

used for lots.  In addition to this, because each spiral was considered a large EMD contract

change, this created an additional burden on the program.

Cost estimation was a problem with Program B, as it experienced a challenge going from

approved spending based on initially estimated costs to a newly estimated cost as the start of a

spiral began.  In other words, the program had difficulty accurately estimating costs early on and

was able to provide a better estimate only as more details became available.  Unfortunately, this

new cost estimate was higher than they had been approved for, causing some issues.  Conversely,

Program A’s manager stated that as a result of their experience in the first spiral, they were much

more able to provide accurate estimates for the second spiral.

Engineering proved to be a challenge for Program E as they were faced with the daunting task of

integrating across multiple spirals.  Other programs also briefly mentioned that it was difficult to

have engineering work on prior spirals once a new spiral had begun, as they had been shifted.

This was typically during the phase that the prior spiral was completing testing, and some

engineering changes were necessary.  This challenge comes as a result of the concurrent

development process, where corrections to prior spirals must be made at the same time that new

spirals are being developed.

A number of programs experienced difficulties with logistics, particularly those with some level

of hardware involved.  Program C’s problem was somewhat unique in that their use of COTS

contributed to logistics problems, especially in computer hardware, where users would often

change some components without approval.  For Program D, the problem is going through a



147

series of increments, where some systems are upgraded in a given increment, and others are

brought up to the same capability in later increments.  Program E however, encountered a larger

logistics problem as a result of its lot development strategy, which led to multiple fielded

configurations.  Furthermore, the challenge also was in training users to operate the system.

Certainly as multiple configurations of systems are released, if no efforts are made to bring older

systems up to new standards, then it is likely that operations and sustainment costs will increase.

This is a potential challenge in evolutionary programs.

Planning was an oft-cited challenge for many of the programs.  This was particularly noticeable

in programs with a high level of concurrency between ongoing development and planning for

subsequent increments or spirals.  The noticeable exception to this was Program D.  In their case,

they elected to plan for all the increments up front, and deal only with development, testing, and

delivery in each of the increments.  That is to say that the contents of each increment were

determined at the program outset.  Program F has not yet encountered such a challenge, but the

program manager did expect that there might be some resource limitations as they began the first

spiral.

Though many programs were acutely aware of government policies on testing, and involved the

Air Force testing institutions in their planning and development, this did not cure the problem of

testing asset availability.  Test assets were often the biggest challenge in hardware programs, but

regardless of the program type, the ability to rapidly test systems was missing from most

programs.  Programs often had many of their own test facilities, and several programs admitted

to hiring additional testing staff.  The challenge was particularly the result of the number of test



148

cycles a program had to go through.  Because of the number of deliverables and current

regulation, programs had to test at each increment, for the most part as if each increment

represented a new product.  Program manager B noted that a lot of the testing was repetitive, and

another program manager suggested that a regressive testing of only systems that have changed

might be more effective.  As programs iterate, there are more opportunities for testing, and it is

likely that given the current practice of testing every fielded capability as if it is new will

increase testing costs compared to traditionally developed systems.

The majority of programs spoke highly of their involvement of the user community in the

development and decision making process, but at the same time, these programs also demanded

quite a bit from their users.  In particular, because of the programs’ decision to deliver

increments rather than a single, final product, the requirements process leading to increment

definitions is more intensive.  A number of programs opted to prioritize requirements and

execute top requirements early on.  In addition to this, programs cited managing user

expectations as very valuable, and user involvement with other stakeholders was noted as one

way of doing this.

Though the majority of programs noted resource shortfalls—which is to be expected as these are

more obvious, and few programs have an abundance of resources—Program D stated that they

had less resource requirements on their contractor’s part, as a direct result of the concurrency of

the project.  The reason for this, the program manager stated, was because with planning the

program early on there was no period of decreased activity for the contractor, and therefore no

need for a “standing army.”



149

Programs on the whole seemed to have significant resource burdens, most of which were

attributable to the concurrency of the projects.  At the same time, the incremental nature of the

process seemed to also add some resource challenges, particularly in managing user expectations

and understanding user needs.

6.6 Summary of program practices
There were a number of valuable practices in the case studies, but several that helped to deal

especially with the challenges in an Evolutionary Acquisition environment.  It is useful to

understand what practices help deal with both the uncertainties in the product development

environment as well as with Evolutionary Acquisition.

Stakeholder involvement
One of the most powerful practices that the programs have implemented is properly involving

key stakeholders early on in the development process.  This typically includes the user, test, and

logistics, particularly in evolutionary systems, where these areas typically provide the most

challenges.  That is to say that in highly iterative programs, the challenges encountered once in a

traditional waterfall process are encountered repeatedly.  Accordingly, planning for these

significant challenges with the stakeholders becomes all the more important.

Programs successfully did this in two ways.  The first was very simply to use prototypes or

interim systems to engage the stakeholders and more importantly to gather feedback on how to

continue the program to best suit the user needs.  This was done by demonstrating capability, and

not necessarily the actual solution.  The second strategy programs employed was to involve

stakeholders in the requirements prioritization process.  This allows the program to gain a better



150

understanding of the user needs as well as provide valuable information in selecting a

development plan.

Managing stakeholder expectations
The programs that have arguably been the most successful have also done a very good job of

managing their various stakeholders’ expectations.  In particular, the most important group has

been the user.  Specifically, programs must be able to set realistic expectations for each

increment, both from a technical perspective as well as satisfying the user needs.  As one

program manager stated, the first increment might be the most crucial, as it must provide

adequate capability, sustain legacy and new equipment, and most importantly satisfy the user so

that they will accept the product and continue with an Evolutionary Acquisition strategy.  This is

in part a result of historical experience with waterfall programs delivering full capabilities as the

first or only increment, as well as user fears that programs will be cancelled before the user gets

all the capabilities the user wants.  This is a challenge for some programs, as providing a better

capability than the previous system on the first increment is especially challenging, and the user

must be made aware that the first increment is one of many to provide significantly better

performance to the user in the end.

One successful way of doing this was the use of change agents in the user community—people

who had a good understanding of evolutionary programs, and explained it to others within the

community—an inside job, so to speak.  Furthermore, keeping the user up-to-date with the

program and keeping them engaged, often through the use of system representations or

demonstrators, prevented any major misunderstandings.



151

Planning for test
Testing has always been a challenge within the acquisition community, but these difficulties are

magnified by the iterative nature of Evolutionary Acquisition.  Testing must occur more

frequently in incremental programs, and as a result, more resources must be applied to this

process in addition to more efficiently using resources by bringing in the test community.

Programs typically dealt with this typically by establishing dedicated testing facilities and assets,

which seemed to ease many of their woes.  A few programs even challenged the testing process

itself and were able to see testing schedule reductions of nearly 50 percent.  Programs outside of

these case studies have often struggled with testing schedules as well, but have had good success

in improving this process through Lean and a number of other strategies.  A significant issue

with current acquisition is that the established regulations and protocols do not necessarily

address highly iterative programs going through frequent testing.  While one program manager

suggested regression testing, this matter of how to reduce test times is very much a policy

concern.

Platform development
While few of the software programs indicated that they were performing platform development,

or were using existing platforms, in two of the more successful cases the programs were using

established infrastructure, which could be called a platform so to speak.  Essentially, the inputs

and outputs of these systems were already well defined, simplifying the development task.  All

of the hardware programs had or will have a platform for continued Evolutionary Acquisition.

Program D was a subsystem that essentially was a derivative of an existing system, while

Program E has an existing platform and is working primarily on payloads. This is particularly



152

important to realize, as evolution can occur on a much more rapid timescale once the platform is

established, as shown in the F-16 example.

This poses a difficult challenge for Evolutionary Acquisition programs—development of

platforms that meet or exceed the previous generation of systems typically does not offer the

reduced cycle times that the Air Force is seeking. One solution to this in the future is to primarily

focus on systems that can be evolved or spiraled for long periods of time.  This works well in

systems where there are few disruptive technologies or major shifts in operational requirements

and environments.  Platform development is essentially necessary only when the evolution of

existing systems cannot provide a new, necessary capability.

Minimizing interdependencies
As shown earlier, in both Chapter 2 and in this chapter, modularity can be very valuable in

allowing for program flexibility, in both addressing development challenges as well as

incorporating new capabilities.  Beyond this, it is imperative to try to minimize

interdependencies with external systems where possible.  Through doing so, programs can

evolve at their natural frequency.  This is made more important by programs like Program E,

where spirals are focused on specific capabilities, and these must be integrated together.

While it is easy to say that modularity is essential to rapidly evolving systems, implementing this

is not as clear.  It is interesting to note that evolvable programs such as the F-16 arose at a time

of military standards and not necessarily off-the-shelf technologies.  What is truly essential for

the Air Force (in some cases) is the ability to rapidly insert new capabilities into existing

systems.  Controlling the interfaces and establishing standards best serve this purpose.  In other



153

words, as one program manager pointed out, despite the use of commercial technologies, the

bigger problem was in data rights—meaning that the program could not transfer data back and

forth between various systems without the data rights.  In other words, in the software arena, data

transfer, i.e. inputs and outputs, are the essential interfaces between modules and subsystems.  As

many commercial programs use proprietary data formats, different modules of software are not

necessarily compatible, and as this interface is not controlled by the Air Force, it becomes a

challenge to integrate new modules or capabilities.  Using established standards for interfaces

would allow the Air Force to quickly integrate new systems.  Furthermore, it is essential to note

that when interdependencies do exist that the systems involved must evolve at a similar rate, or

else significant work is necessary to keep up with the faster moving system.  This was a

significant challenge for Program B.

Requirement prioritization
If managing user expectation is a fundamental part of Evolutionary Acquisition, then

understanding the user needs is as well.  As programs are often cost and schedule constrained, it

becomes crucial to understand what is possible in a given increment.  In much the same way that

the Design-to-Budget or Design-to-Schedule strategies from Chapter 2 work, programs can

successfully use this to understand what works in a single increment.  Doing so means

prioritizing the development tasks, which in turn means understanding what is most immediately

important to the user.  Furthermore, prioritization allows for flexibility in budgeting, as programs

can continue to execute development tasks until the new budget limits are reached.

Using a Design-to-Budget strategy within a given increment is a logical way of dealing with

many of the funding uncertainties in the current climate.  At the same time it provides valuable



154

insight into user needs.  If programs are truly to execute pure spiral development, it is necessary

then to keep only those requirements that are absolutely certain and adapt the rest through the

development process.

Experiencing capabilities
In flexible programs such as those using evolutionary processes, it becomes increasingly

important to solicit feedback from the user in terms of operational experience and capabilities.

There are two ways to do this—actual experience in the field, and prototyping or modeling.

While little is a substitute for field experience, prototyping and modeling in early stages can

provide the user with an idea of what can be expected in the field.  The result is that the user can

in turn supply better feedback to the acquisition community, and influence the development

course the program takes.

In Robert Dare’s work on stakeholder collaboration, he found that the use of system

representations provided not only a means of engaging the user, but also a way to provide the

user with experience so the user could in turn provide better feedback to the developer and

program.  This is a necessary part of Evolutionary Acquisition, as users must be given the

opportunity to provide feedback based on use and evaluation to shape future development.

Results summary
Though the information was not available to answer several of the questions brought up in the

literature review, a number of key findings were made that will provide for a better

understanding of Evolutionary Acquisition and implementation.  In addition to placing the

various development strategies into the context of the product development processes established

in Chapter 2, a number of interesting findings about the ability of programs to iterate were



155

established.  Furthermore an overview of the uncertainties these programs encountered in the

development process uncovered a number of key strategies for dealing with the uncertainty.

This was followed by a length discussion of resource challenges in implementing Evolutionary

Acquisition.  Finally, the chapter concluded with a highlight of the best practices established by

the various case studies.



156

7 Conclusions and recommendations
Though Chapter 6 discussed a number of findings of this research, it did not answer some of the

hypotheses and questions put forth at the outset of this work.  While a number of these questions

cannot be answered as a result of the failure to capture the meta-data necessary for analysis,

several of the key questions regarding Evolutionary Acquisition and implementation can be

answered.  Again the author would like to note that the more significant results of the related

research should be released in a paper sometime after this thesis publication.

In the introduction, three key questions were put forth based on the needs of program managers

in both the Air Force and in other product development projects.  These were:

1. What knowledge is necessary to adequately select a product development strategy?

2. When does Evolutionary Acquisition make sense?

3. How can the acquisition community best implement these various processes, particularly

Evolutionary Acquisition?

This chapter will address each of these questions in turn, and conclude with a section on further

research opportunities and a brief summary of the research conducted.

7.1 Selecting a product development process
Selecting a product development process is not necessarily an easy choice.  While on the one

hand there are a number of strategies available to program managers, there are a number of

factors that must be considered in choosing a process—a daunting task in itself, let alone the

actual development.  Chapter 3 outlined a number of these strategies based on historical

literature and studies.  While this research was not able to span the breadth of these processes,

the literature review indicates a number of key findings relating process to product.



157

The first product attribute that should be considered is the technical risk.  In performance-centric

products, particularly in the Air Force where performance means a generation of improvement

over existing systems, the largest risk is typically technical.  Technical risks, however, do not

coexist easily with flexible, adaptive systems.  The typical response to dealing with these risks is

the traditional systems engineering approach of managing technical risk.  This involves a series

of development milestones and rigid reviews to ensure that the product passes each stage with no

identifiable problems.  This is along the lines of the waterfall process, and some of its variants.

While a none of the programs studied in this research had significant technical risks—most were

using mature, developed technologies—it is important to note that these programs accordingly

followed a much more incremental or spiral approach to development.  In fact, the one program

with the most significant amount of development or technical maturation required, Program F,

also had a long first increment that resembles a waterfall process.

The second attribute that is essential is the user uncertainty.  This will vary from program to

program, but will essentially depend on the user’s ability to state up front requirements and the

likelihood that these requirements will not change significantly with time.  More specifically, the

user requirements should not change in the time it takes to develop and field the new product.  In

cases where the user’s initial requirements are uncertain, the spiral process addresses this through

the use of system representations to solicit feedback on the requirements (Dare 2003).  In the

cases where it is likely that the user’s requirements are dynamic, but not drastically enough to

warrant a new development, the use of evolutionary development to evolve the final

requirements areas is logical as well.  Program B also serves as the case with perhaps the most



158

uncertainty, as it was implementing new business rules and provided new capabilities.  This

program also had a very high level of iteration and the most spiral-like approach of the programs

researched. Additionally, Program B, in which the first increment was a significant leap forward

over previous capabilities, also had a long increment, on the order of five years.  This is an

interesting find, as many expect spiral development to shorten the development time.  In fact,

spiral development does not necessarily do this, but ensures that in the given time the user is

provided with a system that best suits their needs.

A third concern is timeliness.  If the user requires a technology immediately, a long, drawn-out

process does not make sense.  At the same time, if the products targeted environment or user

requirements are changing, then the product is most useful if it delivered before these changes

take place.  Essentially, it is crucial to match the speed of the program with the rate of change of

the factors that product is to address.  Using an incremental strategy tends to provide the most

frequent updates to an end user, while a waterfall process or the Boehm Spiral does not

necessarily imply rapid deliveries.  Accordingly, the program must choose a process is

appropriate to the needs of the user and the operational environment.  For the majority of

programs studied, both technical and user requirements were relatively certain.  In these

programs, the goal was to provide the user with capability as quickly as possible.  The result was

an incremental strategy much more along the lines of block upgrades than anything else.

Program D exemplifies this, as it had very clear requirements and used a derivative of existing

technology.  This was matched by an incremental strategy that was primarily defined up front

and users were given new systems as quickly as the program could provide them.



159

Table 4 summarizes the conclusions of this research about the use of various development

strategies.

Table 4: Notional diagram of processes and uncertainties

Requirements uncertainty

High Low

High Waterfall
Technical

uncertainty Low Spiral Incremental

This research found that in cases of high technical uncertainty and low requirements uncertainty,

there was a tendency towards a more traditional approach.  In programs with high requirements

uncertainty and low technical uncertainty, a more iterative process such as spiral development

was found to be more appropriate.  Lastly, in those programs where the uncertainties are

minimal, and the goal of the program is to rapidly provide the user new capabilities, an

incremental process using a block upgrade strategy seems to work best.  This should not be

surprising, as this had historically been the goal of the block upgrade methodology identified in

Chapter 3, and evidenced in the F-16 program.  In the F-16 case study, it was shown that the

block upgrade process provided the program with capabilities very quickly, allowing it to

address various user needs.  In fact, one could argue that historically, the block upgrade process

emerged as a strategy to handle evolving needs.

7.2 Applicability of Evolutionary Acquisition
Though Evolutionary Acquisition has become the mandated acquisition strategy in the Air Force,

this does not mean that it always makes sense.  As discussed above, in high-risk technical

environments, an evolutionary process does not necessarily provide capability to the user in the



160

shortest time.  In many cases evolution is not possible on a rapid timescale without an existing

platform—particularly a platform with evolvability through system modularity.  Platforms,

especially in airframes and satellites and large, complex systems typically have greater risks and

take longer to develop.  In many cases, a longer process such as a spiral development or waterfall

best serves platform development.  As a result, Evolutionary Acquisition does not always apply.

In the case of the F-16, for example, it took approximately nine years from the request for

proposal to initial operational capability.  Subsequent blocks, however, took only about five

years, a reduction in cycle time of nearly fifty percent.  Research by Beckert (2000) indicated

that derivatives of existing platforms take approximately a third the time of the platform

development.  Historically, as the level of cutting-edge technology has risen, there has been a

distinct rise in the development time (as shown in Figure 1).  In Programs B and F, the first

increment took or is expected to take nearly five years.  Likewise, the platform development for

Program E took much longer than the spirals the program is currently working on.

With Evolutionary Acquisition, the goals are two-fold: 1) deliver capability to the user quickly,

and 2) afford the best possible system to the user.  For the most part, the case studies interviewed

were doing exactly this.  They were focused on rapidly delivering new systems and developing

future increments based on these.  Some programs used demonstrators and prototypes in this

process as well.  Program D, which had very fixed requirements and schedule pressure,

implemented a concurrent, incremental development to rapidly address the user needs.  In

programs that provided new capabilities that were not like prior systems, such as Program B, the

process was much more iterative, but the first increment took some time, and successive

increments cost more than anticipated.



161

In Chapter 3 a variety of product development processes were identified.  Of note were the

incremental and spiral development processes, on which Evolutionary Acquisition is based.  The

premises for the two were radically different—incremental delivery is focused on delivering

capabilities over multiple stages, while the Boehm model of spiral development focuses on

delivering a single capability through user feedback based on a series of evolving system

representations.  The Air Force’s plan for Evolutionary Acquisition is somewhere in between the

two, an incremental strategy in which future deliveries are based on feedback from current

systems.

For Evolutionary Acquisition—the strategic and controlled evolution of systems to quickly adapt

to changing needs—to work effectively, there must be a number of innate attributes to the system

and environment.

• The operational environment must not be one in which there is a significant level of

major operational requirement or environmental shifts, or in which there are significant

disruptive technologies.  This is typically not in the control of the program, but programs

must be aware of this in selecting a development strategy.  That is to say that programs

should be aware that in abruptly shifting system environments it is difficult to adapt

existing systems to new needs.  Program B, for example, has had a number of challenges

due to the fact that the operational environment is in a state of flux, and the program has

had to cope with these changes.  That is to say that a radical shift in the operational

environment or the need for new capability might best be served with a new platform.

Program B is one example of this, where it represented a significant new capability.  The



162

F-16 development itself is one example.  A fundamental shift in war strategies led to a

need for a low cost fighter—a system that could not have been evolved from an existing

aircraft.

• In a dynamic environment, the system must be able to evolve at a rate on part with the

environment.  This is particularly true in systems of systems or products that have a great

deal of interdependencies.  The same can be said of user needs—where these are subject

to change, it is important that the system be able to keep up with this.  The F-16 case

study is one example of this, as is Program D.  Specifically, Program D was able to adapt

to changes in the operational environment through its incremental delivery process in a

timely manner.  The F-16 is a stronger example, as various block upgrades, specifically

night and all-weather upgrades, have transformed the role of the F-16 from lightweight

daytime fighter to strategic bomber.

7.3 Implementing Evolutionary Acquisition
Assuming the program has decided to use Evolutionary Acquisition, there are a number of

activities the office should perform to efficiently execute the strategy.  Moreover, if the Air

Force sees Evolutionary Acquisition as it’s prime strategy for acquiring new capabilities, then

Air Force must also implement changes to better address the challenges of this group of

processes.

Program implementation
Program management is difficult regardless of the process.  In an evolving system, this

management challenge is even greater.  The research identified a number of key challenges and

corresponding practices that program managers used to mitigate these challenges.  The

recommendations in this section specifically look at how program managers can manage



163

evolutionary programs in the current environment.  That is to say that several of these

recommendations would be best addressed not by program managers, but rather by policy

changes in the supporting organization.

Operational requirements
• Recommendation: Programs either need funding flexibility to address new requirements

or a user community that understands the role of requirements in Evolutionary

Acquisition—i.e. that requirements can be fed into future increments.

• Findings: While operational requirements will inevitably change throughout the

development process, program managers used two strategies to reduce changes.  These

were 1) prioritizing requirements with the user and 2) allowing requirements changes

only when additional funding is provided.  This seemingly runs contrary to the goals of

Evolutionary Acquisition—providing the user with a system that best addresses their

latest needs.  In other words, program managers tend to want to freeze requirements early

on so as to better plan the process and execute to a predictable schedule.  Accordingly, it

seems more logical to provide a management reserve or slush fund for addressing

requirements changes that provide the user with significant capability.  The majority of

program managers were primarily budget constrained in making changes, leading to the

tendency to freeze requirements.  This was specifically cited by Program B and implied

in a number of programs.  Another option is to better educate stakeholders—especially

the user—as to what to expect in evolutionary programs (further detailed under the bullet

“managing stakeholder expectations”).



164

Technology obsolescence
• Recommendation: In order to evolve in general, and more specifically to avoid

technology obsolescence, programs must control the interfaces between subsystems and

modules.  Additionally, programs should use standardized off-the-shelf components only

after serious consideration and a lifecycle analysis.

• Findings: Typically this problem was addressed with the use of off-the-shelf

technologies, but as the program managers in B and D noted, this provided a bigger

challenge in the long run as commercial products obsolesced more quickly.  In fact, both

indicated that previous military standard systems were much less susceptible to

obsolescence.  Furthermore, the process is aggravated by the inability to control the

interfaces of these systems.  This is actually the key point, and interface definition is the

key to open architecture systems.

Budgeting
• Recommendation: Multiple sources of uncertainty create greater management challenges.

If the goal of Evolutionary Acquisition is to afford users the best possible system in a

given time, program managers must be able to execute programs to plan—this means a

static, predictable funding profile.

• Findings: program managers often faced budget cuts and were unable to keep reserves,

so the result was that they used the requirements as reserves and cut requirements

accordingly.  The fundamental challenge in a dynamic program is that the funding is not

predictable.  This is a necessity for Evolutionary Acquisition.

Open architectures
• Recommendation: To rapidly integrate new capabilities, programs must own the

interfaces and data rights between modules and subsystems.  Specifically, this means two



165

things: 1) develop their own standards based on commercial standards or otherwise, as

was the case with military standards historically, and 2) purchase data rights from

commercial companies so that the Air Force owns and operates the data transfer between

systems, which is crucial for integration.

• Findings: It is imperative for evolving systems to be able to rapidly integrate new

capabilities and features.  In the case of the F-16, this was done through the use of open

architectures.  The key here is that programs own data rights in the case they use

commercial products, and otherwise control the interfaces.

Minimize interdependencies:
• Recommendation: Programs that must evolve their compatibility with external systems

must either evolve at the rate that the operational environment does, or alternatively

decouple themselves from the operational environment.  This can be done in a couple of

ways.  The first is to implement an open architecture-like strategy in a system of systems,

such that systems are interoperable through some type of controlled interface, and

therefore individual systems are free to some extent to evolve separately.  The second

strategy is to match the evolution of systems to their operational environment by defining

these changes in advance and allowing programs to implement a new standard by a given

date.  This is very much the case for Program D for example.

• Findings: As Figure 29 showed, the challenge to making changes in programs tended not

to be the system itself so much as the interdependencies it had with external systems.  As

a result, it becomes important to reduce these.  Where that is not possible, the goal should

be to match the cycle time of development—i.e. the iteration or increment time—to the

rate of evolution of the external system.



166

Resource planning:
• Recommendation: In executing an evolutionary strategy, programs must expect that

resource demands will be higher.  Programs should either plan for additional resources or

use a development strategy that better suits available resources, i.e. a less iterative

strategy.  In other words, programs must either hire additional staff members to deal with

contracting and planning, which are within the realm of the program office.  In areas such

as logistics and users, programs must make an effort to further involve these groups

through collocation or alternatively provide greater incentive for participation.  In the

area of testing, while beneficial to bring in the test community early for planning the

development strategy, as was the case with Program D, it is also valuable to invest in a

testing infrastructure for the program, and procure what test assets and facilities are

possible and necessary.  It would also be very valuable to programs to use process

improvement tools and methodologies such as lean to maximize the efficiency of given

resources.

• Findings: Many of the programs experienced or anticipated a number of staffing resource

issues.  Specifically, these were in contracting, logistics, planning, testing, and user

involvement.  These were typically resources to deal with the acquisition system that has

not necessarily changed alongside the process.  Particularly, the program can be expected

to have shortfalls in planning resources as increments run concurrently.  Additionally,

contracting, logistics, and testing were large challenges, as these occur more frequently in

an evolving system.  Naturally, another big need is to have greater user involvement.  The

fundamental challenge is that the communities outside of the program offices have not

changed their practices to facilitate Evolutionary Acquisition.



167

Mature technologies:
• Recommendation: To evolve new capabilities rapidly, programs must not spend time in

maturing new technologies.  This task must be done external to the program, and only

readied technologies should be brought in for integration.  This appears to be

contradictory to the reduced dependence on commercially available systems.  The focus

in using commercial systems (rather than military developed systems) must be in

addressing the interface issues rather than the capability of the commercial system.  That

is to say that programs must focus most on integration rather than deriving or further

developing commercial systems.  Another option is to use military designed systems, as

the case was for the F-117 and F-18, both of which used a derivative of the F-16’s fly-by-

wire system.

• Findings: The use of mature technologies is fundamental to Evolutionary Acquisition.

As the goal of this strategy is to rapidly integrate new capabilities and provide them to the

user, the program should not be burdened with the job of developing and maturing

technologies.  This was not a problem in these programs, as for the most part they used

mature technologies.  Nevertheless, some programs cited this as a fundamental part of

evolutionary strategies.

Managing stakeholder expectations:
• Recommendation: In order to maximize program flexibility and manage stakeholder

expectations, organizations must involve the user either by using system representations

or educating the user through the use of internal agents.  This essentially is providing the

program with a better path for communication with the user.  System representations

provide valuable information to the user in a tangible, experiential way, giving the user a

way of comparing the development to their expectations.  The use of agents within the



168

user community is a means for the program to feed information into a handful of

disseminators, who essentially serve as a translator from the program to the users.  At the

same time, these figures can also educate the users from within, where they are more

likely to change.

• Findings: Several program managers’ biggest challenges had to do with the user’s ability

to understand the acquisition strategy and its implications for the user.  Users would then

request that many requirements be addressed in the first increment, leading to a waterfall-

like program, or would be dissatisfied with the incremental process, and not buy in to

Evolutionary Acquisition.  Program A, which had a user with spiral experience, did not

have issues with a failure to understand the role of increments.  Program managers

addressed this in two ways.  The first of these was the use models, prototypes, and

demonstrators, to provide the users with an idea of the system capabilities and an

opportunity to gather feedback and evolve requirements.  The second strategy was to

develop agents within the user community that understand the process and were

embraced by the program office as disseminators of information.

Policy recommendations
Though programs can do a lot to help the likelihood of success in Evolutionary Acquisition, a

number of things extend beyond the control of the program office.  Specifically, the challenge is

that while the acquisition community has pushed for Evolutionary Acquisition, government

policy and other groups within the defense community have not necessarily embraced it.  The

fundamental challenge is that these groups are not all on the same page.



169

Testing
• Recommendation: The testing process must be updated to apply to evolving systems.

Full scale testing for each increment or deliverable is not necessarily practical in systems

with a high level of iteration.  At the same time, it is imperative that these systems

perform safely and suitably.  Full scale testing should be performed for the platform, as

this will serve as the basis for future evolution.  Beyond this, it is not necessary to retest

all systems for each increment.  The manager for Program B noted that the tests were

repetitive, as did one of the managers for Program C.  Accordingly, there are two things

that are necessary in the testing community to address iterative developments.  The first

of these is to ‘lean’ out the process, using lean methodology to perform testing more

efficiently and more quickly.  This will reduce both the testing resources necessary as

well as the test time.  The second part is to specifically address changes in the system

rather than retest the system.  This applies well to modular systems, as essentially only

those subsystems upgraded or added should require full testing.  This suggestion of

regressive testing was put forth by one of the managers in Program B.

• Findings: Testing is more frequent in evolutionary programs, and accordingly the

traditional system of testing is not practical for a highly iterative system.  Though

involving the test community is one way of improving this, it is also necessary to foster a

test environment that matches the rapid cycles of Evolutionary Acquisition.

Logistics
• Recommendation: Logistics will undoubtedly be a challenge in programs delivering

multiple capabilities over time.  One need look no further than Program E for an example

of the challenges in developing a number of blocks or lots.  The F-16 program did this in

a couple of ways.  First of all, many of the systems were designed for maintainability and



170

modularity.  This allows for ease of maintenance and logistics.  It also allows for

simplifying the upgrade process, which is the second, and perhaps more important

strategy, of having a series of retrofit programs to bring previous generations up to new

standards where possible. This will be done in Program E as well.  This must be planned

for during platform development, and hence it is important to involve the logistics

community in the development process.  Retrofitting does not make sense every

generation, due to excessive costs as well as the fact that this takes out valuable inventory

from active use.  A more likely scenario is the midlife upgrade strategy that is currently

practiced throughout the military.  Furthermore, logistics must play a role in planning for

and addressing the reality of support in an evolutionary system.  As more than one

program manager said, logisticians were involved in teams, but were dragged along,

kicking and screaming.  Another challenge arises if the program is highly

experimental—that is to say that it is not producing significant volume.  This is the case

of a number of ACTD programs that provide a useful capability though only a handful of

systems are available.  This also provides an opportunity for use and evaluation in a real-

world environment.  One potential way to handle this is to establish a reserve fund for

such systems, such as suggested in the budgeting section below.

• Findings: Logistics is a further challenge for these incremental systems.  Again,

logisticians must be brought into the development process, but there is a fundamental

challenge in releasing multiple increments and supporting them.  The best way to

minimize this challenge may be to bring prior system up to the latest standards, as was

the case with the F-16 program.



171

Budgeting
• Recommendations: Funding continues to be a challenge in Evolutionary Acquisition.

This is primarily because incremental programs are likely targets of funding cuts, given

that systems already exist, and requirements can be pushed into future increments.

Nevertheless, work within the Air Force as well as this research indicates that a stable

funding profile is very beneficial to Evolutionary Acquisition.  Program C, which was

given fixed funds to deliver a new capability is one such example.  Program B, suffering

from a number of financial challenges is struggling with future increments.  There are a

number of solutions to this.  The first of these, suggested by many including Spaulding

(2003), is to establish a funding wedge or slush fund for evolutionary programs.  This

money can be given to programs to address cycle time issues as well as unforeseen

circumstances in evolving systems.  This also addresses programs’ inability to accept

new requirements.  If changes to requirements are deemed sufficiently valuable,

additional funding could be provided to address these changes.  This fund could be

owned by a number of sources, depending on the level of implementation.  In order to

completely back evolutionary programs this could be a line item in the Air Force budget,

or alternatively funding could be managed at the system director level to be allocated to

various programs within the director’s portfolio.  The advantage of having an Air Force

line item budget is that the Air Force could also back ‘pure’ spiral development, funding

programs like Program B during a phase between one increment and the next, as

illustrated in further detail by Spaulding’s work.  This would not only maintain the

program office, but allow for greater use and evaluation feedback for future increments.

Harking back to a much more traditional system, program managers could be allowed to

keep a reserve.  Though this has fallen out of favor in recent years, a budget reserve



172

would allow programs to deal with unforeseen circumstances.  Regardless, it is evident

that for highly iterative and evolutionary programs—especially if the user is to be

provided the most suitable capabilities—a change in the funding system is imperative.

• Findings: Budgeting proved to be a fundamental challenge to many programs in several

ways.  First of all, due to the uncertainty and flexibility of incremental programs, funding

must be stable, and programs management must be allowed to keep a reserve for

unforeseen situations.

Education
• Recommendation: A crucial part of the development process in Evolutionary Acquisition

is the strategic goal of delivering incremental capability improvements that afford the

user with the best possible capability.  This requires that the user both be highly involved

in the process and that they understand that each delivery is not the final solution.

Programs used two means to educate and inform their users—system representations and

change agents, as stated above.  Nevertheless, if Evolutionary Acquisition is to be

successfully implemented across the Air Force, the burden of education is better placed

on the Air Force.  There are several possibilities for improving user involvement and

awareness.  The first of these is an educational program, like training, for users.  Though

this can teach some of the lessons necessary in Evolutionary Acquisition, it does not

necessarily better involve the user.  Providing the user incentive to participate does this

more effectively.  One such strategy is the use of system representations, which are more

‘on the level’ of the user.  Moreover, collocating a small user group with the program (or

the program office with the user) would provide ease of access and facilitate

communication between these two key players.  The most effective strategy is likely a



173

combination of the three—brief training for users to provide an overview of the strengths

and weaknesses of evolutionary processes, and the use of system representations along

with collocation to improve collaboration among the two major stakeholders.

• Findings: Stakeholder education is key in evolutionary programs.  A number of programs

noted that users did not fully understand the implications of an evolutionary process.

This included a failure to comprehend the level of user involvement required, the

resources required, and what deliverables the user would receive.  More fortunate

programs, such as Program A, had users that were familiar with spiral development, who

understood the user role and were aware of the tradeoffs with such programs.

Military standards
• Recommendation: Return to military standards.  Though this is no longer a popular

strategy, and may be somewhat controversial, the strategic use of military standards

historically has helped the Air Force to control and own the interfaces between

subsystems in a system.  In the future of systems of systems, such a strategy will help to

maintain interfaces across multiple systems.  This deals directly with the challenges of

off-the-shelf technologies, where control is outside the hands of the Air Force.

Furthermore, this helps to address many of the logistics and upgrade issues as programs

evolve.  Controlling these interfaces will not only allow programs to evolve rapidly, but

also to reduce the friction caused by disparate rates of evolution across multiple

subsystems and systems.  Though initial development costs may rise, the support and

maintenance costs should drop, and the need for technology refreshes to address

diminishing manufacturing sources should be reduced.  The fundamental

recommendation of this research is not that military standards should replace the use of



174

commercially available systems, but that the policy should incorporate a lifecycle

analysis of costs in an evolutionary system to determine when commercial systems are

appropriate.  In cases where these are selected, the Air Force must ensure that they

procure data and interface rights, so as to maintain the open architecture standards.

• Findings: Programs C and D both noted that the use of off-the-shelf components did not

necessarily help the program for different reasons.  In Program C, this was because the

use of these systems required frequent technology refreshes which not only meant

increased costs, but increased development work by the program.  In Program D, the

systems that were available did not necessarily suit the operational environment of the

program.  Additionally, Program A, also using off-the-shelf components was also

planning for a number of hardware refreshes as well.  That is not to say that the use of

these components is bad, but rather that an analysis of lifecycle costs could indicate

whether the use of these systems actually saved money in the system lifetime.

7.4 The future of Evolutionary Acquisition research
Though this research highlighted a number of findings and made key recommendations for

implementing Evolutionary Acquisition strategies, it did not satisfactorily answer the question of

when various development strategies make sense.  Some of this will be answered in a

forthcoming paper from the Lean Aerospace Initiative, but much of it a potential source for

future research.  In the literature review in Chapter 2, the work by Brown and Eisenhardt

indicated that there were a number of organizational issues to consider beyond the product and

uncertainties.  The recommendations in this last section themselves indicate a number of areas

for future research.  In particular, the macro issues of testing, logistics, and budgeting are beyond

the scope of this research, but nevertheless crucial to the product development process.



175

• The role of testing in Evolutionary Acquisition.  This involves two things—the first a

study of how to best implement recurring testing for these systems, and the second to

better understand how to lean out testing in general.  In doing this there are a several of

key points that might be addressed.  One proposal by a program manager was to perform

regressive testing.  While doing this could significantly reduce testing times,

implementing this might be very difficult, especially as system functions are rarely

completely decoupled.  Research in how to ensure that the safety and mission-critical

aspects of the system are adequately addressed in a regressive testing strategy would be

very valuable.  From a slightly more systems engineering perspective, design for

manufacturing has been a huge success, but design for testing is unheard of.

Nevertheless, as testing is necessary, it makes sense to address these issues in the design

and development of new products.  A third potential research topic is a comparison of test

groups within the program to testers as external stakeholders—programs had good

success with owning their own test assets and facilities, but the test community itself still

acts as an outside force on the system, as was the case in Program D, where the test

community wanted greater control of testing after the LRIP.

• The ability to develop system representations.  Though system representations are

valuable to the program, this is not always easily done.  In many cases the cost of these

representations is prohibitive—particularly if the program intends to prototype frequently

as in a spiral development strategy.  Much more needs to be learned about where to

strategically develop representations, such as in the human-machine interfaces,

performance models, and so forth to provide the most valuable feedback from the user at

the lowest possible cost to the program.



176

• A value comparison of development strategies to various stakeholders.  This research

only begins to uncover some of the various value propositions among the different

product development processes.  In particular, this research fundamentally looked only at

the user side value proposition, but did not necessarily look at how each of these

strategies affects other stakeholders.

• Organizational and cultural challenges in Evolutionary Acquisition.  In the early stages of

this research, the author looked at organizational roles in different development

strategies, but realized that this broadened scope of the research too much.  Nevertheless,

it is likely that fundamentally different strategies would best suit different organizational

structures, or that conversely to implement certain strategies organizations could be

arranged differently.  In particular, this implies that if the Air Force is to implement

Evolutionary Acquisition, it may be better served by addressing cultural and

organizational transformation as well.

• From a technical perspective, more research is necessary on the role of modularity and

open architectures in evolving systems.  The result of this research indicated a low

correlation between ease of changes and modularity.  This should also include the use of

non-developmental and commercially available systems.

• The budgeting process is an essential part of this picture, and though there are some clear

recommendations on how to address evolutionary acquisition, the potential for greater

understanding of this system is necessary.  In particular, this research should look at the

level of funding allocation, and when additional funding to implement new capabilities or

address requirements changes is necessary or valuable.



177

In concluding, the work presented makes a number of recommendations based on the findings of

the case studies. Nevertheless, there are a number of research questions that are highly applicable

to programs intending to implement Evolutionary Acquisition that are left unanswered by this

work.  In short, while this research provides guidance to program managers and policy makers

on product development strategies and the role of evolving systems, it represents only the

beginning of research in this area.



178



179

Appendix A - Surveys

Program Management Survey
This survey is part of continuing work by the Lean Aerospace Initiative at MIT, in support of the
aerospace community and the Air Force.  In particular this research is investigating evolutionary
acquisition strategies and product development processes, such as waterfall, incremental, and
spiral development, and how they apply to various programs.

Please answer the following questions as they apply specifically to your individual program or
project.  If your program is part of a larger program office, DO NOT answer the questions as
they might apply to that larger organization, but rather your specific project and task.  In addition
to those questions, the survey refers to questions on the product or system.  This system refers
specifically to the system being developed by your program—whether it is a subsystem, module,
or software, or even a system in a system-of-systems, please consider the specific system that is
being developed in your program.  In addition please consider only the current program phase
and contract.

Please be candid and honest in your responses.  We understand that you may have concerns
about confidentiality.  Several measures will be taken to ensure that your responses will remain
confidential.  All analysis of the survey data will be presented in the form of aggregated
statistics.  No individuals or individual programs will be identified in the analysis or reporting of
the responses.  You may decline to answer any questions, and are not obligated to continue
participation.  We understand that the success of any research depends upon the quality of the
information on which it is based, and we take seriously our responsibility to ensure that any
information you entrust to us will be protected with the same care that you would use yourself.

The survey has been designed into several sections identifying several key categorical attributes
and processes.  It has been designed to take approximately 40 minutes.



180

PROGRAM BACKGROUND

1.Program title/project: _________________________

2.Office symbol: _________________________

3.Program length to date (in months): _____ mo.

4.Estimated acquisition program baseline budget: __________

5.Are you using an evolutionary acquisition strategy, where system capabilities are delivered
incrementally?

Yes       No

6.How far along in the program would you estimate you are: ____% complete

7.Please select the category below that best describes the type of system your program is
developing:

® Aircraft (airframe and mechanical systems)
® Aircraft (avionics and electronic systems)
® Aircraft (propulsion)
® Spacecraft or launch system
® Electronic system (non-aircraft)
® Missile or munitions
® Software-dominated system
® Other: ________________



181

SPIRAL CHAIN

1.Is the program using spiral development?
Yes       No (skip to next section)

2.How many total spirals are currently planned for in the acquisition strategy
(indicate number)? _____

3.What spiral are you currently in (indicate number)? _____

4.Estimate the resource needs in the following categories in your program versus
a non-spiral or traditional acquisition program of similar magnitude (circle the
value that best describes your program):

Less
No

Change More
Staffing (Administration) 1 2 3 4 5 6 7
Contract Oversight (PCO / Buyer) 1 2 3 4 5 6 7
Financial (Cost Estimate / Budget) 1 2 3 4 5 6 7
Planning (Program Management) 1 2 3 4 5 6 7
System testing 1 2 3 4 5 6 7
Coordination with other offices / agencies 1 2 3 4 5 6 7
Engineering 1 2 3 4 5 6 7
Logistics 1 2 3 4 5 6 7
User or Testers in collocated in program
office

1 2 3 4 5 6 7

5.To what extent has the user committed to up-front funding necessary for
capability demonstration?

User has not been
committed/prefers traditional

funding profile

1 2 3 4 5 6 7 User has been highly
committed/agreed to up-front
funding profile

PROCESS IDENTIFICATION

This image depicts the major activities in a traditional product development process.  In a
traditional waterfall process for example, development activities are sequentially executed, and
passing a “stage-gate” or milestone allows the program to continue to the next activity.
Additionally, these activities are not intentionally revisited once the phase is deemed complete
in a stage-gate review.

Product
Planning

Concept
Planning

System
Design

Detailed
Design

System
Testing

Product
Delivery



182

CHECK THE BOX BELOW THE OPTION THAT BEST DESCRIBES YOUR PROGRAM

Please consider this image and text when answering the following two questions:
Program milestones serve as stage-gates to
finalize one development activity (design, etc.)
and proceed to the next activity with little to no
interaction between activities

Program milestones overlap or are
intended to loosely evaluate the
program progress and there is a high
degree of interaction between activities

Major development activities (as shown
above) are intended to be executed only
once in the program

Major development activities (as shown
above) are intentionally revisited or repeated
multiple times in the program

Capabilities are provided through:
A single well-
defined system or
deliverable

Skip next question

Multiple incremental systems
established by initial
requirements document

Multiple incremental systems,
based on use and evaluation of
prior deliveries

Evaluate the mechanism for requirements changes between successive deliveries (circle
the value that best describes your program):
Requirements evolved from
strategy identified early in
program

1 2 3 4 5 6 7 Requirements evolved by
feedback from user use and

evaluation

Initial delivered capability is:
the full operational capability (FOC)
established by requirements document

the full operational capability (FOC)
established through requirements changes
during prototype evaluation

the first in a series of deliveries with
requirements primarily defined up front
for successive capabilities

the first in a series of deliveries with
requirements for successive capabilities
emerging from use and evaluation

How strongly are performance requirements affected by schedule or budget constraints
(circle the value that best describes your program)?
Cost / schedule are the primary

requirements drivers
1 2 3 4 5 6 7 Cost / schedule are not major

requirements drivers



183

Has the acquisition strategy used to develop the system changed dramatically during the
project (i.e. shift from traditional to spiral development, etc.)?

Yes       No
If yes, please explain:



184

PRACTICES

1.Evaluate the level of impact of the following groups in developing system requirements
(circle the value that best describes your program):
Not involved
beyond
initial
requirements

Occasionally
involved in design

reviews, etc.

Heavily
involved on

product team,
etc.

End user 1 2 3 4 5 6 7
Wargames /

Experimentation
1 2 3 4 5 6 7

Modeling &
Simulation

1 2 3 4 5 6 7

Testers 1 2 3 4 5 6 7

2.Evaluate the level of warfighter experience with your system (circle the value that best
describes your program):

No experience with system
/ experience with highly
dissimilar systems

Experience with
somewhat similar

system

Experience with very
similar system or different

version of system
1 2 3 4 5 6 7

3.Is / was an analysis of upgrades through the system’s lifetime performed?
Yes       No

4.Are simulations and modeling employed in the development process?
Yes       No

5.Are these models and simulations used to engage the user in evolving and
verifying requirements?

Yes       No

6.Are models and simulations intended to be updated and evolved for redesign or
successive designs?

Yes       No

7.Does the program have the ability to rapidly produce prototypes or perform builds at
the system level?

Yes       No

8.Are prototypes used to engage the user in evolving the final deliverable?



185

Yes       No

9.If the product is part of a larger product (i.e. a subsystem in a system, or a part
of a system of systems), how often is the integrated system tested (select one)?

1. Never
2. Once (at program completion)
3. At major milestones
4. In regularly scheduled events
5. Other: _________________________

10.Evaluate the flexibility of changes to the design of the system through prototype
delivery and evaluation (circle the value that best describes your program):
Design changes difficult
to evolve

Some design changes
possible

Design changes easily
integrated

1 2 3 4 5 6 7

11.What percent of activities in the test plan (TEMP) are satisfied through combined
developmental and operational testing and evaluation? ______%

PRODUCT INTENT

1.Is the product being developed as an improvement / derivative of an existing product?
Yes       No

2.Does the acquisition strategy imply or intend that the product’s performance or
capability is to improve or change with time?

Yes       No

3.Evaluate the impact of external constraints (i.e. interoperability, requirements on use of
specific technologies, etc.) on the key design decisions (circle the value that best
describes your program):

External constraints did not
significantly impact key
design decisions

External constraints
impacted some key

design decisions

External constraints
dominated key design

decisions
1 2 3 4 5 6 7

TECHNOLOGY



186

1.Level of technology advances required in components critical to meeting program
technical objectives (circle the value that best describes your program):
All non-developmental
items (COTS, etc.)

Some development
required

All new development

required

1 2 3 4 5 6 7

2.Indicate the percent of recurring non-developmental, sometimes referred to as “fly-
away”, costs (in the case of software, total developmental costs) attributable to purchase
of off-the-shelf (OTS/COTS) or non-developmental (NDI) technologies: _____%

3.Evaluate the rate of changes of the technologies underlying this system’s primary
functional performance (circle the value that best describes your program):
Technologies evolve
more slowly than
product

Technologies and
product evolve at similar

rate

Technologies evolve
more rapidly than

product
1 2 3 4 5 6 7

ARCHITECTURE

1.Evaluate the level of interface definitions in subsystems or modules that had to be
developed specifically for your project:   ___%

2.Evaluate the ease of changes in subsystems or modules (circle the value that best
describes your program):

Subsystems or modules are tightly
integrated into the system, and
significant modeling or testing must
occur for changes or new systems

Subsystems or modules are highly
modular, with minimal modeling and
testing necessary for changes or new

systems
1 2 3 4 5 6 7

3.Indicate the total percent of all requirement changes that involved changes in software
requirements: ____ %

4.Evaluate the level of key functionality implemented through software (circle the value
that best describes your program):

Functionality requires no
software implementation

1 2 3 4 5 6 7 Functionality relies fully on
software implementation

UNCERTAINTY



187

1.Evaluate the following in terms of the uncertainties experienced to date in the product
development process (circle the value that best describes your program):

Unlikely Likely
Actual funding matched requested funding 1 2 3 4 5 6 7

Operational requirements remained constant 1 2 3 4 5 6 7
Technical advances necessary for program success
were achieved

1 2 3 4 5 6 7

Parts or technology obsolescence 1 2 3 4 5 6 7
Operational environment remained the same 1 2 3 4 5 6 7

2.Evaluate the following in terms of the uncertainties throughout the product
development process (circle the value that best describes your program):

Unlikely Likely
Actual funding matches requested funding in the

future

1 2 3 4 5 6 7

Operational requirements remain constant 1 2 3 4 5 6 7
Likelihood that technical advances necessary for
program success are achieved

1 2 3 4 5 6 7

Likelihood of parts or technology obsolescence 1 2 3 4 5 6 7
Operational environment remains the same 1 2 3 4 5 6 7

3.Evaluate the adaptability of your SYSTEM ARCHITECTURE to external changes such as the
threat, funding, or user requirements changes (circle the value that best describes your
program):

System architecture easy to
adapt

1 2 3 4 5 6 7 System architecture difficult to
adapt

4.Evaluate the sensitivity of overall system performance to the inability of a key
subsystem to achieve intended performance (circle the value that best applies):

Not sensitive 1 2 3 4 5 6 7 Highly
sensitive

5.Please estimate your program’s cost change to date if it exists.  Calculate this as the
percentage change in actual expenditures compared with initially planned expenditures
for this point in your program’s progress, using actual-year dollars.  Treat increases
beyond original plan as positive cost change.

Total program cost change __________ (+/– % to-date)
Indicate baseline year _______



188

6.Please estimate your program’s schedule variation if one exists.  Calculate this as the
difference between your current schedule and the initial program (treat increases beyond
original plan as positive schedule variation).

Total program schedule variation to date __________ (+/– months to-date)

7.To what extent has (is) technology maturation required additional development within
your project?
Significant development has
been required to mature
technology

1 2 3 4 5 6 7 Insignificant or no development
has been required to mature
technology

8.Where have you had the greatest challenges in executing evolutionary acquisition
strategies?
________________________________________________________________________

________________________________________________________________________

________________________________________________________________________



189

System Program Director Survey
This survey is part of continuing work by the Lean Aerospace Initiative at MIT, in
support of the aerospace community and the Air Force.  In particular this research is
investigating lifecycle processes and various product development processes, such as
waterfall and spiral development, as they apply to various programs.  The survey
attempts to identify key overarching issues in acquisition strategies at the program office
level.

Please answer the following questions as they apply to the group of programs within your
program office.

Please be candid and honest in your responses.  We understand that you may have
concerns about confidentiality.  Several measures will be taken to ensure that your
responses will remain confidential.  All analysis of the survey data will be presented in
the form of aggregated statistics.  No individuals or individual programs will be identified
in the analysis or reporting of the responses. You may decline to answer any questions,
and are not obligated to continue participation.  We understand that the success of any
research depends upon the quality of the information on which it is based, and we take
seriously our responsibility to ensure that any information you entrust to us will be
protected with the same care that you would use yourself.

The survey has been designed into several sections identifying several key categorical
attributes and processes.  It has been designed to take approximately 10 minutes.



190

1.Office symbol: _________________________

2.Does the acquisition strategy specifically define that the system’s capability is to evolve
with time?

Yes       No Does not apply

3.Indicate the percentage of major subsystems or projects (including software) by cost
using the following development strategies (total should equal 100%):
Spiral Development:
Desired capability is
identified, but end-state
requirements are not known
at program initiation.
Requirements for future
increments depend upon
technology maturation and
user feedback from initial
increments

Number of projects ____

____% of total acquisition
cost for projects

Incremental Development:
End-state requirement is
known, and requirement
will be met over time in
several increments

Number of projects ____

____% of total acquisition
cost for projects

Traditional Development:
A single delivery in which
the final capability is
delivered based on up-
front requirements

Number of projects ____

____% of total acquisition
cost for projects

4.Evaluate the resource needs of spiral projects in your program versus the traditional
projects in your group of acquisition programs of similar magnitude (circle the value that
best describes your program):

Less
No

Change More
Staffing (Administration) 1 2 3 4 5 6 7
Contract Oversight (PCO / Buyer) 1 2 3 4 5 6 7
Financial (Cost Estimate / Budget) 1 2 3 4 5 6 7
Planning (Program Management) 1 2 3 4 5 6 7
Testing 1 2 3 4 5 6 7
Coordination with other offices / agencies 1 2 3 4 5 6 7
Engineering 1 2 3 4 5 6 7
Logistics 1 2 3 4 5 6 7
User or Testers collocated in Program Office 1 2 3 4 5 6 7

5.For each development strategy, indicate the number of programs that used modeling
and simulation and/or prototyping to engage the user for requirement verification and
evolution?
Spiral Development Incremental Development Traditional Development



191

6.In each of the following categories, what percent of programs’ test plans (TEMP)
were/are satisfied through combined developmental and operational testing and
evaluation?
Spiral Development Incremental Development Traditional Development

% % %

7.Evaluate the certainty of operational requirements in for your programs in your
program office within the following categories:

Requirements clear, no
changes from initial

requirements

Requirements unclear,
significant changes from
anticipated requirements

Spiral
Development

1 2 3 4 5 6 7

Incremental
Development

1 2 3 4 5 6 7

Traditional
Development

1 2 3 4 5 6 7

8.Evaluate the difficulty of executing programs to schedule for the following categories
of programs:

Easy Difficult
Spiral Development 1 2 3 4 5 6 7
Incremental Development 1 2 3 4 5 6 7
Traditional Development 1 2 3 4 5 6 7

8.Evaluate the difficulty of executing programs to cost/budget for the following
categories of programs:

Easy Difficult
Spiral Development 1 2 3 4 5 6 7
Incremental Development 1 2 3 4 5 6 7
Traditional Development 1 2 3 4 5 6 7

8.Evaluate the difficulty of executing programs to performance goals for the following
categories of programs:

Easy Difficult
Spiral Development 1 2 3 4 5 6 7
Incremental Development 1 2 3 4 5 6 7
Traditional Development 1 2 3 4 5 6 7

9.Where have you had the greatest challenges in executing evolutionary acquisition
strategies?



192

Appendix B – Case study questionnaire

1.Program title/project:

2.Program length to date:

3.Percent of program complete:

4.Estimated acquisition baseline budget:

5.Project/product type:

6.Draw a diagram of the acquisition strategy with deliveries (increments, spirals, etc.)

7. Where did you have greater or lesser resource needs versus traditional acquisition, and
what were the tradeoffs?

8.Where have you had the greatest challenges in executing evolutionary acquisition
strategies?

9.How much effort was spent on maturing technologies?

10.To what extent did the user agree and understand the differences in a spiral vs. a
traditional program, particularly in terms of funding?

11.What issues were there with planning and budgeting?

12.What issues were there with planning test assets and range availability?

13.How were key stakeholders involved in teams?

14.Difficulty of executing with a spiral development to cost, schedule, performance.

15. Evaluate the mechanism for requirements changes between successive
deliveries—how is feedback incorporated into future increments?

16.What percent of activities in the test plan (TEMP) are satisfied through combined
developmental and operational testing and evaluation? ______%

17.Evaluate the following in terms of the uncertainties throughout the product
development process:

• Operational requirements
• Technical advances
• Technology obsolescence
• Operational environment



193

• Budget

18.Is the product being developed as an improvement / derivative of an existing product?

19.Evaluate the impact of external constraints (i.e. interoperability, requirements on use
of specific technologies, etc.) on the key design decisions:

20.Evaluate the ease of changes in subsystems or modules

21.Evaluate the level of key functionality implemented through software:

ADDITIONAL QUESTIONS

1.Evaluate the use of system representations, such as sim & mod, or prototypes.  Were
they used to solicit feedback from key stakeholders?

2.If the product is part of a larger product (i.e. a subsystem in a system, or a part of a
system of systems), how often is the integrated system tested?

3.Does the acquisition strategy specifically define that the system’s capability is to evolve
with time?

4.Indicate the percent of recurring non-developmental, sometimes referred to as “fly-
away”, costs (in the case of software, total developmental costs) attributable to purchase
of off-the-shelf (OTS/COTS) or non-developmental (NDI) technologies: _____%

5.Evaluate the flexibility of changes to the design of the system through prototype
delivery and evaluation:

6.Evaluate the rate of changes of the technologies underlying this system’s primary
functional performance:

7.Evaluate the sensitivity of overall system performance to the inability of a key
subsystem to achieve intended performance:



194

Bibliography

Baldwin C. and Clark K. 2000. Design Rules: the power of modularity, volume 1.
Cambridge, MA. MIT Press.

Beckert, M. 2000. Organizational Characteristics for Successful Product Line
Engineering. Master’s Thesis. Massachusetts Institute of Technology.

Boehm, B. 2000. Spiral Development: Experience, Principles, and Refinements. Spiral
Development Workshop. Carnegie Mellon Software Engineering Institute

Boehm, B. Spiral Development: Experience, Principles, and Refinements. Presentation,
Spiral Experience Workshop, February 9, 2002. University of Southern California

Brown, S., and Eisenhardt, K. 1995. Product Development: Past Research, Present
Findings, and Future Directions. Academy of Management Review, Vol. 20, No. 2

Capozzolli, P., et. al.  2002. 16.885 Aircraft Systems Engineering Final Report.
Camrbidge, MA. Massachusetts Institute of Technology

Cusumano, M., and Nobeoka, K. 1998. Thinking Beyond Lean. New York, NY. The Free
Press

Dare, R. 2003. Stakeholder Collaboration in Air Force Acquisition: Adaptive Design
Using System Representations. Doctoral Thesis. Massachusetts Institute of Technology

Defense Acquisition University (DAU). 2000. Systems Engineering Fundamentals. Ft.
Belvoir, VA. Defense Acquisition University Press.

Defense Systems Management College (DSMC). 2001. Glossary: Defense Acquisition
Acronyms and Terms. Ft. Belvoir, VA. Defense Acquisition University Press.

Department of Defense (DoD). 2003. DoD Directive 5000.1 and DoD Instruction 5000.2.

Dougherty, D. 1992. Interpretive Barriers to Successful Product Innovation in Large
Firms. Organization Science, Vol. 3, Issue 2

Eisenhardt, K. and Tabrizi, B., 1995. Accelerating Adaptive Processes: Product
Innovation in the Global Computer Industry. Administrative Science Quarterly, Vol. 40

Fine, C. 1998. Clockspeed. Reading, MA. Perseus Books.

Forsberg, K., H. Mooz and H. Cotterman. 1996. Visualizing Project Management. New
York, NY. John Wiley &  Sons.



195

Henderson, R. and Clark, K. 1990. Architectural Innovation: The Reconfiguration of
Existing Product Technologies and the Failure of Established Firms. Administrative
Science Quarterly, Vol. 35, Issue 1

Highsmith, J. 2000. Adaptive Software Development: A Collaborative Approach To
Managing Complex Systems. New York. Dorset House Publishing

Kirtley, A. 2002. Fostering Innovation Across Supplier Networks. Master’s Thesis.
Massachusetts Institute of Technology

Meyer, M., P. Tertzakian & J. Utterback. 1997. Metrics for Managing Research and
Development in the Context of the Product Family. Management Science, Vol. 43, No. 1

Owens, J. and Cooper, R. 2001. The Importance of a Structured New Product
Development (NPD) Process: A Methodology. The Institution of Electrical Engineers.
Vol. 10

Paone, C. “Dr. Sambur addresses need for transformation” December 6, 2002. The
Hansconian

Roberts, C. 2003. Architecting Evolutionary Strategies Using Spiral Development for
Space Based Radar. Master’s Thesis. Massachusetts Institute of Technology

Spaulding, T. 2003. Budgeting for Evolutionary Acquisition and Spiral Development.
Master’s Thesis. John F. Kennedy School of Government, Harvard University

Tondreult, J. 2003. Improving the Management of System Development to Produce More
Affordable Military Avionics Systems. Master’s Thesis. Massachusetts Institute of
Technology

Turner, D. 2002. “Age of Nvidia” Salon.com, May 15. (URL:
http://archive.salon.com/tech/feature/2002/05/15/nvidia1/print.html)

Ulrich, K. and Eppinger, S., 2000. Product Design and Development, Second Edition.
Boston, MA. McGraw-Hill Higher Education.

Unger, D. 2003. Product Development Process Design: Improving Development
Response to Market, Technical, and Regulatory Risks. Doctoral Thesis. Massachusetts
Institute of Technology

Webster’s Revised Unabridged Dictionary. 1996.

Wirthlin, Joseph Robert. 2000. Best Practices In User Needs/Requirements Generation.
Master’s Thesis. Massachusetts Institute of Technology



196

Wolfwitz, P., Deputy Secretary of Defense. 2002. Memorandum, Defense Acquisition,
Office of the Deputy Secretary of Defense.

Von Hippel, E. 1988. The Sources of Innovation. New York, NY. Oxford University
Press.


