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Abstract

This thesis introduces an approximation method for evaluating the performance of
closed loop manufacturing systems with unreliable machines and finite buffers. The
method involves transforming an arbitrary loop into one without thresholds and then
evaluating the transformed loop using a new set of decomposition equations. It is
more accurate than existing methods and is effective for a wider range of cases.
The convergence reliability, and speed of the method are also discussed. In addition,
observations are made on the behavior of closed loop systems under various conditions.
Finally, the method is used in a case study to determine the in-process inventory
required to meet a specified production rate for a system operating according to a
CONWIP control policy.
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Executive Summary

A closed-loop production system or [oop is a system in which a constant amount of
material flows through a set of work stations and storage buffers alternately in a fixed
sequence, and when the material leaves the last buffer, it reenters the first machine.
Figure 0-1 represents a K-machine loop. This type of system occurs frequently in
manufacturing. Processes that utilize pallets or fixtures can be viewed as loops since
the number of pallets/fixtures that are in the system remains constant. Similarly,
control policies such as CONWIP and Kanban create conceptual loops by imposing
a limit on the number of parts that can be in the system an any given time.
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Figure 0-1: Tllustration of a closed-loop production system

Performance measures such as average production rate and the distribution of in-
process inventory cannot be expressed in closed form. Simulation provides accurate
results for these quantities, but it can be time consuming. Some analytical methods
have been developed, but they can only be used in a limited class of cases. The
purpose of this thesis is to present a more versatile analytical method for evaluating
these performance measures of closed-loop production systems.

We describe our model of a manufacturing system and review the existing tech-
niques for evaluating open production lines. We then explain why the characteristics
of loops make these techniques inadequate and propose a solution method designed
specifically for closed-loop systems.

The accuracy, speed, and convergence reliability of the method are discussed in
detail. In addition, several observations are made on the behavior of closed-loop
systems.

We conclude with a case study involving the production of a network connection
device. The company operates the production facility according to a CONWIP control
policy. They anticipate an increase in demand that will require additional capacity
in the factory and are considering the option of additional overtime or purchasing
additional machinery. We use the loop evaluation method to determine the in-process



inventory required to meet the specified demand rate for each of the two options.
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Chapter 1

Introduction

A closed-loop production system or loop is a system in which a constant amount of
material flows through a set of work stations and storage buffers alternately in a fixed
sequence, and when the material leaves the last buffer, it reenters the first machine.
Figure 1-1 represents a K-machine loop. This type of system occurs frequently in
manufacturing. Processes that utilize pallets or fixtures can be viewed as loops since
the number of pallets/fixtures that are in the system remains constant. Similarly,
control policies such as CONWIP and Kanban create conceptual loops by imposing
a limit on the number of parts that can be in the system an any given time.

In a typical loop, raw parts entering the system are placed onto pallets at a
loading station. The pallet-part assembly then visits the fixed sequence of machines
and buffers. After receiving all of the operations, the finished part is removed from
the pallet at an unloading station and exits the system. The empty pallet returns to
the loading station.
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Figure 1-1: Tllustration of a closed-loop production system
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1.1 Problem Statement

Performance measures such as average production rate and the distribution of in-
process inventory cannot be expressed in closed form. Simulation provides accurate
results for these quantities, but it can be time consuming. Some analytical methods
have been developed, but they can only be used in a limited class of cases. (See
Section 1.2.) The purpose of this thesis is to present a more versatile analytical
method for evaluating these performance measures of closed-loop production systems.
Specifically, we are concerned with closed-loop systems where the number of parts in
the system is larger than the number of machines and the size of the largest buffer
and less than the total buffer capacity minus the the number of machines and the
size of the largest buffer.

1.2 Literature Review

Compared to open transfer lines, relatively little work has been done on closed-loop
production systems with finite buffers and unreliable machines. Onvural and Perros
[OP90] demonstrated that the production rate of a closed-loop system is a function
of the number of parts in the system. In addition, they showed that the throughput
versus population curve is symmetric when blocking occurs before service and pro-
cessing time is exponential. To avoid the complication that finite buffers create in
closed-loop systems, Akyildiz [Aky88] approximated production rate by reducing the
population and evaluating the same system with infinite buffers. Bouhchouch, Frein,
and Dallery [BFD92] used a closed-loop queuing network with finite capacities to
model a closed-loop system with finite buffers. For a more detailed listing of previous
work dealing with closed-loop systems, see [Mag00].

The first analytical method for evaluating the performance of closed-loop systems
with finite buffers and unreliable machines was proposed by Frein-Commault-Dallery
in 1994 [FCDY4|. This method is an extension of the decomposition method developed
by [Ger87a]. It is important to note that this method does not account for the
correlation between number of parts in each buffer and the probability of blocking
and starvation. As a result, the method is only accurate for large loops.

[Mag00] presents a new decomposition method which does account for the correla-
tion between population and the probability of blocking and starvation. However, the
model is more complex and is not practical for loops with more than three machines.

1.3 Overview

Chapter 2 gives a detailed description of the closed-loop systems and introduces
our transformation method and Chapter 3 discusses the loop decomposition. The
algorithms for implementing the transformation and decomposition are discussed in

16



Chapter 4. In Chapter 5 we comment on the performance of the method. Chapter 6
conveys some of the observations we made on the behavior of loops. In Chapter 7 we
describe a real-world application of the loop evaluation method. Chapter 8 concludes
the paper and offers some possible areas for future research.
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Chapter 2

Closed-Loop Production Systems

We first describe our model of a manufacturing system. Next, we review the existing
techniques for evaluating open production lines and explain why the characteristics
of loops make these techniques inadequate. Finally, we propose a transformation and
decomposition method designed specifically for closed-loop systems.

2.1 Basic Model

Throughout this analysis, we extend the deterministic processing time model pre-
sented in [Ger94] to closed-loop systems. More specifically, we use the version of the
model presented by [TM98], which allows machines to fail in more than one mode.
This feature is critical to our method and is discussed in Section 2.6. Processing
times for all machines are assumed to be deterministic and identical. In addition, all
operational (i.e. not failed) machines start their operations at the same time. For
simplicity, we scale the processing time to one time unit. Parts in the machines are
ignored, as is travel time between machines. Machine failure and repair times are
geometrically distributed.

M; refers to Machine i. B; is its downstream buffer and has capacity N;. A
machine is blocked if its downstream buffer is full and starved if its upstream buffer
is empty. When M; is working (operational and neither blocked nor starved) it has
a probability p;; of failing in mode j in one time unit. If M; is down in mode j, it
is repaired in a given time unit with probability r;;. By convention, machine failures
and repairs take place at the beginnings of time units and changes in buffer levels
occur at the ends of time units.

2.2 Transfer Line Decomposition Techniques

Although it is possible to obtain an exact analytical solution for a two-machine line,
the problem becomes intractable for longer lines. However, accurate decomposition

19



methods have been developed for evaluating long transfer lines [Ger94]. These meth-
ods decompose a K-machine transfer line into K — 1 two-machine lines or building
blocks. In each building block L(), the buffer B(i) corresponds to B; in the origi-
nal transfer line. The upstream machine M"(i) represents the collective behavior of
the line upstream of B; and the downstream machine M?(i) represents the behavior
downstream.

To an observer sitting in B(i), M*"(i) appears to be down when M; is either down
or starved by some upstream machine. M¥(i) is said to have real failure modes
corresponding to those of M; and wvirtual failure modes corresponding to each of the
upstream machines [TM98]. Likewise, M%(i) has real failure modes corresponding
to those of M;,, and wirtual failure modes corresponding to each of the downstream
machines.

In order to estimate the system performance, we must find values of the virtual
failure probabilities, pj (i) and pf ;(i), the parameters of M*(i) and M%(i). The
probability pj ;(i) is the observer’s estimate of the probability of machine M*" (i) failing
in mode (k, 7). Although the observer does not know this, mode (k, j) corresponds to
mode j of machine Mj. If M, is upstream of M;, this is a virtual mode. If £ = ¢ this
is a real mode. (Similarly for M?(i).) The concept of range of starvation eliminates
the ambiguity of “upstream” and “downstream” in a loop®.

The goal of the decomposition method is to find the parameters of M*(i) and
M4(i) such that the flow of parts through B(i) mimics that through B;. Accomplish-
ing this for all building blocks gives approximate values for average throughput and
buffer levels in the original transfer line.

2.3 Special Characteristics of Closed-Loop Systems

In a transfer line, blocking and starvation can propagate throughout the entire sys-
tem. If the first machine fails, it is possible for all of the downstream machines to
become starved. Similarly, if the last machine fails, all upstream machines can become
blocked.

This is not the case in loops. Whether or not a machine can be starved or blocked
by the failure of another machine depends on the number of parts in the system and
the total buffer space between the two machines. For ease of notation, we define all
subscripts to be modulo K. In particular, we define the set of integers (i, j) as:

o Git1,9) ifi<j
(”)_{ (ii+ 1, K, 1, ..., §) ifi> ] (2.1)

We define N? to be the total number of parts in the system and ¥(v,w) as the
total buffer capacity between M, and M,, in the direction of flow [MMGTO00]. More

ISee Section 2.6.
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formally,

SUIN, ifv#w
U, w) = { 2 oz (2.2)

Note that if v # w, the total buffer space is given by

NPl = (v, w) + ¥ (w, v) (2.3)

If N < ¥(v,w), then the failure of M, can never cause M, to become blocked
because there are not enough parts in the system to fill all buffers between M, and
M,, simultaneously. Conversely, if N? > U (v, w), M,, cannot starve M,,.

2.4 Thresholds

The issue of blocking and starvation is more complicated still. In some cases, whether
or not a machine can ever be starved or blocked by the failure of a specific other
machine depends on the number of parts in an adjacent buffer. This is the concept
of thresholds introduced in [MMGT00].

Consider the case where 7 parts are traveling through a three-machine loop with
buffers of size 5 (see Figure 2-1). If M, fails, parts begin to build up in B; and
eventually M; becomes blocked. However, we know that M; cannot be blocked if the
number of parts in its upstream buffer, B3, remains greater than 2. This would mean
that the number of parts in its downstream buffer must be less than 5 since there are
only 7 parts in the system. Conversely, we know that if the number of parts in Bs
remains less than 2 then the number of parts in By must be greater than zero and
M3 cannot become starved.? Therefore, we say that B has a threshold of 2.

In general, we define the threshold /(i) to be the maximum level of B; such that
all buffers between M;,; and M} can become full at the same time. Alternately, we
can think of [;(7) as the maximum level of B; such that the failure of M, can cause
M;., to become blocked. It is calculated as:

Lo(i) = NP — W(i + 1, k) (2.4)

Note that [(7) can assume values ranging from less than zero to greater than N;
depending on the population and buffer sizes. Values less than zero indicate that the
failure of M} cannot cause M; 1 to become blocked, regardless of the number of parts
in B;. Conversely, values greater than NV; indicate that M;,, can become blocked by
M, independently of the level of B;. Special cases arise when [ (i) is equal to zero or
N; which are discussed in Section 2.6.

2Maggio shows that blocking thresholds and starving thresholds are the same in [MMGTO00]. In
this paper, we determine the thresholds from the perspective of blocking.
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(20 )—~ 1 (o)

Figure 2-1: Example of a Loop with Thresholds

I
~

[MMGTO00] is limited to cases in which 0 < [;(i) < N;. Maggio introduces a
new, more detailed, building block and a new set of decomposition equations. This
approach is very accurate and has been implemented for three-machine loops with
certain restrictions on population and buffer sizes. However, Maggio’s building block
can only take one threshold into account. To extend the method to larger loops, the
building block would have to become very complex in order to deal with multiple
thresholds. Because the propagation of starvation and blocking is limited, the virtual
failure probabilities, pj ;(i) and pf ;(i) may be zero. Whether they are zero or not
depends on the level of the buffer B(i), ie, whether it is above or below a threshold.

Assume that machine M;,.; can be blocked by machine M. This means that
M*(i) has a virtual failure of type pf;(i) (where j indicates one of the failure modes
of machine My, j =1,..., F;). Because of the population constraint, if buffer B; has
too many parts, the remaining parts cannot fill all the buffers between M;,, and Mj.
Therefore, if the level of the buffer is greater than a threshold, indicated by I¢(i),
then a failure on A} cannot cause blocking on machine M, so pﬁj(i) is equal to
0. Generalizing, machine M}, could produce blocking on machine M;,; and therefore
it could affect M?(i) only if the level of buffer B(i) is lower than or equal to the
threshold indicated by I¢(i).

A similar argument holds for the starvation of M;. Suppose that machine M;
can be starved by machine M,. This means that M"(i) has a virtual failure prob-
ability p¥;(7) (where j indicates one of the failure modes of the real machine M.,
j=1,...,F,). If buffer B; has too few parts, the remaining parts are too many to
be contained in all the buffers space between M;,; and M,. Therefore M; cannot be
starved due to a failure of machine M,, since the buffers between M, and M; cannot
all be empty. More precisely buffer B;_; cannot be empty due to machine M, being
failed for a time long enough to make all the buffers between M, and M; empty.
This observation leads us to say that p;(i) = 0 if the number of parts in B(7) is less
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than a specific threshold indicated by (¥(7). This symbol represents the threshold for
the upstream machine M*(i) related to a failure of machine M,. Machine M, could
produce starvation at machine M; (and therefore it could affect M*"(i)) only if the
level of buffer B(i) is greater than or equal to [%(i).

The threshold [¢(i) represents the largest number of parts in buffer B; that allows
all the buffers between M;,; and M}, to be full at the same time. In that case all the
buffers between M), and M; would be empty. Similarly, threshold [} (i) represents the
smallest number of parts that allows all the buffers between M, and M; to be empty.
Therefore, since machine M; cannot be blocked by M; and M; cannot be starved by
M; 1 (due to the assumption on the number of parts we made), the two thresholds
represent the same number of parts and therefore the same condition: buffers between
M, and My, full and buffers between M, and M; empty. Thus we can simplify the
notation:

HORXHORIAQ (25)
Let n(t) indicate the number of parts in buffer B(i) at time ¢. Then,
e if n(t) < lx(i) then M“(i) cannot be down in virtual mode due to a failure j of
machine Mj,. Therefore: pj;(i) = 0.

In other words, if too few parts are in B(i), the total capacity of the buffers
between M;,, and M} is not enough to contain all the remaining parts. In this
case M; cannot be starved by Mj,.

e if n(t) > (i), the probability pj;(i) is an unknown constant failure probability
that has to be determined.

e if n(t) > I;(i) then M¢4(i) cannot be down in virtual mode due to a failure j of
machine M. Therefore: pf,(i) =0
In other words if too many parts are in B(7), then all the buffers between M;
and My cannot be filled. Therefore in this case M;,; cannot be blocked by M.

o if n(t) < I,(i), the probability p{;(i) is an unknown constant failure probability
that has to be determined.

The value of the threshold does not depend on the failure type but only on the buffer
capacities between machines M;,; and M} and on the number of parts in the system,
ie. NP

2.5 Loop Transformation

It is possible to eliminate the complications in the two-machine building blocks due
to thresholds by using a transformation procedure. The transformation allows us to
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evaluate much larger loops for a wider range of population levels and buffer sizes than
is possible using the method presented in [MMGTO00].

Consider a two-machine line with unreliable machines and a buffer of size 10. Into
the buffer, we insert an infinitely fast (i.e. with an operation time equal to zero) and
perfectly reliable machine. The result is a three-machine line with two buffers having
a combined buffer capacity of 10. The performance of the new line is identical to the
original.

In reality, infinitely fast machines do not exist. Our model is based on an operation
time of one, not zero. However, this concept provides the motivation behind our
transformation method. Instead of dealing with the thresholds directly, we transform
the loop into one without thresholds that behaves in almost the same way. The
resulting loop is relatively easy to analyze.

Consider again the three-machine loop with buffers of size 5 and population 7.
Into each of the three buffers, we insert a perfectly reliable machine so that the buffer
of size 5 is replaced by an upstream buffer of size 3 and a downstream buffer of size
2 (see Figure 2-2)). The performance of this new six-machine loop is approximately
the same as the original three-machine loop, but we have eliminated all thresholds
between zero and NN;.

Figure 2-2: Illustration of a transformed loop

We can extend this approach to any K-machine loop. For each threshold 0 <
(i) < N;, we insert a perfectly reliable machine M. into buffer B; such that
U(k* k) = NP. B; is now represented as a buffer of size N; — [;(i) followed by Mj-
followed by a buffer of size [;(i). Since each unreliable machine can cause at most
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one threshold between zero and Nj, the transformed loop will consist of at most 2K
machines. Although the loop is larger, we can now use the same building block that
is used in Tolio’s transfer line decomposition. More importantly, the transformation
allows us to analyze a much wider range of buffer sizes and population levels.

2.5.1 Special Cases

When the population of the loop is less than the size of one or more of the buffers, it
is not necessary to insert a reliable machine for all 0 < l(i) < N;. If N; > NP there
will be a threshold /;;1(7) = N?. Since we know the level of B; can never exceed N?,
the threshold has a different meaning than in other cases. Instead of adding a reliable
machine, we truncate the capacity of B; so that N; = NP,

Due to symmetry, the same argument applies when N — N?_ or the number of
holes, is less than one or more of the buffer capacities.

Buffers of Size One It is possible that the original loop may contain a buffer of
size one. Depending on the population of the loop and the size of the buffers, the
transformation may also create a buffer of size one. According to our model of the
two-machine building block, the line is starved when the buffer is empty and blocked
when the buffer is full. Since a buffer of size one must always be empty or full by
definition, our model gives artificially low values for average throughput in this case.
To alleviate this effect, we replace all buffers of size one with buffers of size two.
While this approach is somewhat arbitrary, it results in a better approximation of
average throughput and has only a negligible impact on average buffer levels.

2.6 Fixed Population Considerations

Once the loop is transformed to eliminate all thresholds between zero and N;, we
must account for the limited propagation of blocking and starvation due to a fixed
population level. To do this, we define the range of starvation and range of blocking,
indexed on the buffer number. The range of starvation of B; is the set { M), Mq)11,
ey M;}, where M) is the machine farthest upstream which can cause B; to become
empty if it is failed for a long period of time. Similarly, the range of blocking of B;
is the set { M1, Mijo, ..., My}, where My, is the machine farthest downstream
which can cause B; to become full. We calculate M,;) and My as follows:3

Ms(z) == minj Mi-l—j s.t. \II(Z, 1+ ]) > NP (26)

3Note that the inequalities are strict. We use this convention to deal with the situation of
simultaneous blocking and starvation, which is discussed in Section 2.6.1.
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Mb(z) = man Mi+j+1 s.t. \IJ(Z + 1, Z +] + 1) < Np (27)

The loop population is incorporated into the model by including in the building
blocks only those virtual failure modes related to machines within the range of block-
ing and range of starvation. M"(i) has virtual failure modes corresponding only to
the failure modes of M;(;) through M; ;. Likewise, M%(i) has virtual failure modes
corresponding to M; 5 through M.

2.6.1 Simultaneous Blocking and Starvation

If U(v,w) = NP then machine M, can become simultaneously blocked and starved
when M, is down for a long period of time. This is the case where the threshold
ly(v—1) =0 and l,(v) = N,. In transformed loops, this situation can occur at each
reliable machine M- when M, fails since the buffer sum between the two machines
U(k* k) = NP by construction.

The two-machine building block developed in [TG96] does not account for the
states where both machines are down and the buffer level is either zero or N. Rather
than modifying the building block, we associate the zero buffer level case with an
upstream failure and the N buffer level case with a downstream failure.

To help justify this convention, we define the state of the building block L(i) to
be (n(t), ay(t), ag(t)), the buffer level, the state of M*, and the state of M? at time
t. M" can be up in state 1, down in real mode A;;, or down in virtual mode ;.
Similarly, M? can be up in state 1, down in real mode \;;, j, or down in virtual mode
)‘kj-

There are two cases of simultaneous blocking and starvation that we must consider,
(N, Akj, Akj) and (0, Agj, Agj). The first state corresponds to the case where Af; is
both blocked and starved and the second to the case where M;,; is both blocked and
starved.

We first consider the state (N, Aj, Ai;). Here, both M* and M? are down in
a virtual mode due to the failure of M. However, even if M" is repaired, it still
cannot perform an operation because it is blocked by AM¢. Our model assumes that
as soon as M, is repaired, M* and M? both become operational. Therefore, under
the assumptions of our model, the state (IV, \ij, Ar;) behaves exactly the same as the
state (IV, 1, \;;) and we label \;; as a downstream failure mode.

We use similar reasoning to account for the state (0, Ax;, Aj). Here, whether or
not M? is up has no effect on the production rate or buffer level since it is starved by
M*™. In this case, we label \;; as an upstream failure mode.
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Chapter 3

Loop Decomposition

In order to decompose closed-loop systems, we must first establish a building block
and then find a way to relate these building blocks to one another. This section
discusses the required parameters and the equations that we use to find them. Since
it is always possible to transform a loop into one in which thresholds are not needed,
we restrict our attention to loops without thresholds.

3.1 The Building Block Parameters

As in the Tolio transfer line decomposition, we evaluate the loop by breaking it up
into a series of two-machine building blocks. Each building block L(i) is associated
with the buffer B; in the original loop. The upstream machine M*(i) has real failure
modes corresponding to those of M; and virtual failure modes corresponding to those
of machines Mj(;) through M;_;. Similarly, M?(i) has real failure modes corresponding
to those of M;,; and virtual failure modes corresponding to those of machines M;
through Mj;.

As shown in [MMGTO0], the failure and repair probabilities for the real failure
modes are equal to the probabilities of the corresponding modes of the machines in
the loop. Therefore, we have

pi; (i) = pij (3.1)
rig(i) = rij (3.2)
p?—l—l,j(i) = Pit+1,) (3.3)
7"?+1 ](2) = Tit1,j (3.4)

In addition, we know that the probability of repair when a machine is down in
virtual failure mode )j; is equal to the probability that machine Mj, is repaired when
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it is down in failure mode j. This gives us
’I“;:](Z) = Tkj (35)

d .
rkj(z) = Tk (3.6)
To evaluate the performance measure of the loop, we must find the virtual fail-
ure probabilities py;(i) and p{;(i) for each L(i). This is the objective solving the
decomposition equations.

3.2 Decomposition Equations

The decomposition equations are nearly identical to the transfer line decomposition
equations presented in [TM98]. In fact, we need only modify the indices to account
for the range of blocking and starvation and the fact that loops contain as many
buffers as machines.

We define Pj%(i) as the probability that B(i) is empty due to M"(i) being down
in virtual failure mode \;. Likewise, Py’(i) is the probability that B(i) is full due
to M?(i) being down in virtual failure mode \g;. Finally, we define E (i) to be the
average throughput of building block L(7). Using this notation, we write the decom-
position equations. Recall from Section 2.6 that s(i) is the number of the machine
furthest upstream which falls within the range of starvation of buffer B;. Similarly,
b(i) is the number of the machine furthest downstream which falls within the range
of blocking of B;. Then,

Fori=1to K', k=s(i) toi—1, Vj:

u o PEi—1)
pkj(l) = IC]ETWJ‘ (3.7)
Fori=1to K'k=i+2tob(i—1),VYj:

Pl(i+1
sz(i) = %ﬁcj (3.8)
We know the values of r; from the parameters of the machines in the transformed
loop. By solving the building block transition equations presented in [TM98] for each
L(i), we can find the values of P(i), P.(i), and E(i), which are functions of pj; (i)
and pf;(i). The decomposition equations (3.7) and (3.8) represent a system of 2K’
independent equations in 2K’ unknowns.
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Chapter 4

Implementing the Loop
Transformation and Decomposition

This section provides a step-by-step procedure for evaluating a loop. First, we trans-
form an arbitrary loop into one without thresholds. Next, we introduce a set of
decomposition equations and an algorithm which is a slight modification of that of
[TM98] for solving them.

4.1 The Transformation Algorithm
(a) For all N; > NP, set N; = NP. For all N; > Nl — NP get N; = Ntotal — NP

(In this case we add N; — N — NP to the resulting average buffer level in
order to recover the true average buffer level for B;).

(b) Insert a perfectly reliable machine M;, for every unreliable machine M; such
that W(ix,7) = N? (unless a machine M; such that WU(j,7) = N? already exists).
The new loop consists of K’ machines separated by K’ buffers. Note that the
size of the buffers may be different from the original buffers, but the total buffer
space in the transformed loop is equal to that of the original.

(¢) Re-number the machines and buffers from 1 to K.

(d) For all N; =1, set N; = 2 (see Section 2.5.1).

4.2 The Decomposition Algorithm

(a) Calculate the range of starvation and range of blocking for each L(i) using (2.6)
and (2.7) to determine all valid failure modes A}; and Af,.
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(b)

(c)

()

(e)
(f)

Initialize p;(i), ri5(i), piy (i), i1 ;(0), rh;(i), and r{;(i) for all valid failure
modes using equations (3.1), (3.2), (3.3), (3.4), (3.5), and (3.6). Set pj; (i) = pi;
and pﬁj(i) = Dkj-

For i =1 to K"
~ Calculate E(i) and Pgi(i).
— Update pj;(i + 1) using (3.7).

For i = K' to 1:
— Calculate E(i) and Pp.(i).
— Update pf;(i — 1) using (3.8).

Repeat (¢) and (d) until the parameters converge to an acceptable tolerance.

Record performance measures.

— Use max; E(i) as an estimate of the overall average throughput E. The
maximum has proven to be the most robust estimator of average throughput.
In addition, it allows us to avoid complications that result from buffers of size
one. This is discussed further in section 2.5.1

— Calculate the average buffer level 7(i) as the sum of all average buffer levels
between unreliable machine ¢ and unreliable machine ¢ + 1.
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Chapter 5

Performance of the Method

5.1 Cases Studied

The algorithm was tested extensively on three-, six-, and ten-machine loops with ma-
chine parameters and buffer sizes generated randomly using Microsoft Excel. Repair
probabilities for each machine in the loop were drawn from a uniform distribution be-
tween 0.05 and 0.2 and were specified to be of the same order of magnitude. Failure
probabilities were randomly generated from a uniform distribution such that the iso-
lated efficiency r/(r 4+ p) of each machine in the loop was between 75 and 99 percent.
Buffer sizes were drawn from a uniform distribution between 1/5r and 5/r. For five
loops of each size, the decomposition and simulation were performed for all possible
population levels. Additional cases were studied where the population was randomly
generated from a uniform distribution between the size of the largest buffer N™**
and Nl _ Nmaz the total buffer capacity minus the size of the largest buffer. For
a partial listing of the loops studied, see Appendices A, B, and C. Here, we examine
the accuracy, convergence reliability, and speed of the method.

5.2 Accuracy

In this section, we compare the analytical results to those obtained through simula-
tion. The measures of interest are average throughput and average buffer levels.

5.2.1 Population Range

One of the assumptions of our decomposition approximation is that travel time for
parts is negligible. However, when the number of parts in the system is less than the
number of machines, travel time can not be ignored. Consider a three-machine loop
with buffers of size 5 and perfectly reliable machines. If there is only one part in the
system, the maximum throughput is 1/3 since the operation time at each machine is
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one. In this situation, ignoring travel time has a significant impact on the throughput.
Due to symmetry, this same argument applies when the number of holes (i.e. the total
buffer capacity minus the number of parts) is less than the number of machines.

In testing the method for accuracy, we chose to focus on loops with populations
where N™% < NP < Ntotel . Nmaz  While in many cases the algorithm performs
well outside this range, this provides a conservative estimate of the capability of the
algorithm. Additionally, this range seems acceptable for dealing with real-world cases.

5.2.2 Three-machine Loops

The method was observed to be accurate in evaluating three-machine loops. In all
cases where the population was within the specified range, the relative throughput
error is less than 1% (see Figure5-1).!

Buffer level error was calculated as

2(ﬁ(Z‘)decomposition — ﬁ(i)simulation) |
N;

The mean for buffer level error for the 48 three-machine cases is 2.9%, but the
error reaches as high as 9.58% (see Figure 5-2).

For three-machine loops, the method is still accurate outside the specified popula-
tion range. As long as the number of parts (or holes) is greater than 2, the throughput
error is generally less than 2%. Figure 5-3 shows the throughput error in this range
for a typical three-machine loop.

Error = | (5.1)

5.2.3 Six-machine Loops

For six-machine loops, the mean throughput error increased to 1.1% with a maximum
of 2.7% for the 287 cases tested. The mean buffer level error is 5.04%. Although the
maximum error is 21.0%, 87.3% of the cases have buffer level errors of less than 10.0%.
Figures 5-4, 5-5, and 5-6 give a graphical representation of the results.

5.2.4 Ten-machine Loops

In the ten-machine loops studied, the errors are slightly larger. For the 454 cases
tested, the mean throughput error is 1.43% and the maximum is 4.04% (see Figure
5-7). Average buffer level errors range from 0.0% to 43.8% with a mean of 6.27%.
80.2% of the mean buffer errors are less than 10.0%.

'In all of the error graphs, cases are sorted in order of ascending error.
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5.2.5 The Batman Effect

The accuracy of the algorithm seems to deteriorate slightly when the population
of the loop is nearly equal to the total capacity of one or more buffers. We call this
phenomenon the batman effect. To explain, we consider a three-machine loop in which
all the machines and buffers are identical. For this case, we set r = 0.1, p = 0.01, and
N = 10. Figure 5-9 shows the throughput versus population curve for this loop.

0. 815 T T T

Deéonpositién
0.81 i

0.805 .
0.8 .
0.795 .

0.79 | 4

Thr oughput

0.785 4

0.78 | 4

0.775 4

O. 77 | | | | |
0 5 10 15 20 25 30

Popul ati on

Figure 5-9: Illustration of the batman effect for a three-machine loop

The throughput peaks at N? = 10 and N? = 20. We do not completely understand
the cause of the batman effect. However, we hypothesize that it results from the small
buffers created by the transformation in those regions and the fact that we convert
all buffers of size one into buffers of size two (see Section 2.5.1).

The throughput versus population curves of larger symmetrical loops exhibit a
similar behavior. Figure 5-10 gives the curve of a six-machine loop with r = 0.1,
p = 0.01, and N = 10. Non-symmetrical loops also show signs of discontinuity, but
the relationship is more complex.
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Figure 5-10: Illustration of the batman effect for a six-machine loop

5.3 Convergence Reliability

In nearly all cases studied, the decomposition algorithm converged. The criterion
used for convergence was that difference in the value of all p,(ij)s and p4(ij)s between
successive iterations be less than the specified tolerance of 1076, The few cases where
the algorithm did not converge were ten-machine loops that exceeded the maximum
number of iterations before satisfying the convergence criterion. Even though the
algorithm did not converge to the tolerance, the errors in throughput and buffer
levels are still very small.

As in Maggio’s approach, our decomposition algorithm does not exactly satisfy
conservation of flow? even though Tolio’s equations imply that it should hold. How-
ever, the differences between the throughputs of the building blocks are generally very
small.

2See item (f) in Section 4.2
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5.4 Speed

The speed of the algorithm was tested by finding the computation time for five ran-
domly generated loops of size three, six, and ten (See Section 5.1). Cases were run on
a 650 MHz Pentium IIT PC with 128 MB of RAM. The mean run times were 0.61, 8.6,
and 53.33 seconds for three-, six-, and ten-machine loops, respectively. Figure 5-11
shows the results. From the graph, we see that computation time increases rapidly
as the number of machines in the loop increases.
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Figure 5-11: Computation time versus loop size

In addition, one case of an 18-machine loop was tested. This was the largest loop
evaluated. Each of the machines had » = 0.1 and p = 0.01. All of the buffers were
size 10. The case was run with 100 parts in the system and required 334 seconds of
computation time.
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Chapter 6

Observations on Loop Behavior

In this section we discuss some of the loop phenomenon we observed while developing
and testing the method.

6.1 Flatness

The most interesting observation we have made using the algorithm has to do with
the relationship between the loop parameters, population, and throughput. Specifi-
cally, we observed a characteristic we call flatness, which refers to the shape of the
throughput versus population curves of closed-loop systems.

6.1.1 Transfer Line Flatness

This special type of flatness occurs in loops where the capacity of the largest buffer is
greater than the sum of the capacities of the other buffers. For all population levels
NP such that Ntetel — Nmer - NP < N™aT the throughput is constant.

50 10

Oaulin®

5

Figure 6-1: Example of loop with transfer line flatness
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Figure 6-2: Analytical throughput as a function of population

To illustrate the concept of transfer line flatness, we consider a three-machine loop
with buffers of size 10, 5, and 50 (see Figure 6-1). When there are 16 parts in the
system, it is possible for buffers B; and B, to be both full and empty. However, Bs
can never become full or empty. This means that machine M; can never be starved
and M3 can never be blocked. If we ignore Bs, the system has the same production
rate and average buffer levels as a transfer line consisting of M, By, M,, By, and
Ms. This behavior remains the same for populations up to 50 because in each of
these cases M is never starved and Mj is never blocked. In this population range,
the average throughput and average buffer levels of B; and B; remain the same (see
Figures 6-2 and 6-3). The only difference is the average buffer level of B3. Note that
the throughput versus population and average buffer level versus population curves
do not appear totally smooth. This is due to the approximation involved in the
analytical method (see section 5.2.5).
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Figure 6-3: Analytical average buffer level as a function of population

6.1.2 Near Flatness and Non-Flatness

We also observed a type of flatness we call near flatness. It occurs in loops that do
not meet the requirements for transfer line flatness, but have population ranges where
the throughput is nearly constant.

In the cases we studied, symmetrical loops, in which the machines are identical
and the buffer capacities are the same, did not seem to exhibit near flatness. Loops
which were very asymmetrical did exhibit near flatness. The degree of flatness seemed
to increase with the degree of asymmetry in the loop.

Specifically, the standard deviation in the buffer capacities oy, ffers sSeems to give
a good indication of how flat the throughput versus population curve will be for a
given loop. We calculate o, fers for a K-machine loop as follows:

K Y Ni — (X Vi)?
= =

(6.1)

Obuffers

47



Figures 6-4, 6-5, and 6-6 illustrate how the degree of flatness increases as opyf fers
increases from 8.73 to 20.961.
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Figure 6-4: Loop 6.4 (opyffers = 7.97)

6.2 Changes in Loop Parameters

In this section, we explore how changes in machine parameters and buffer sizes effect
average throughput and buffer levels. The basic loop used for these tests is a sym-
metrical three-machine loop with » = 0.1, p = 0.01 and N = 10. For all of the tests,
the loop population is held constant at NP = 15.

IThe parameters for these loops can be found in Appendix B
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Figure 6-5: Loop 6.1 (0pyffers = 11.80)

49

180



Thr oughput

20 40 60 80 100 120
Popul ati on

Figure 6-6: Loop 6.2 (0pyffers = 19.12)

20



6.2.1 Machine Parameters

For this series of tests, we focus on changes in the repair probability of one or more
machines in the loop.

First, we examine the effect of varying r; between 0.0 and 1.0. Figures 6-7 and
6-8 give average throughput F and average buffer levels 7i(7) as a function of r;.

Thr oughput

O | | | | | | | | |
0 0.1 0.2 0.3 0.4 05 0.6 07 08 0.9 1

Repair Probability (rl)

Figure 6-7: Average Throughput as a Function of

We see that as r; approaches 0.0, throughput goes to 0.0. In addition, we see
that (1) approaches 0.0, 7(2) approaches 5.0, and 7(3) approaches 10.0. This result
is consistent with intuition. When machine M fails, parts begin to build up buffer
Bs until it reaches its capacity of ten. This causes M3 to become blocked and parts
begin to build up in By until all of the five remaining parts are in By. Since r; = 0.0,
the system can never leave this state and throughput is zero.

As 7y increases, M; spends less time down. M, is starved less frequently and M3
is blocked less frequently. This translates into an increase in throughput and 7(1)
and a decrease in 7(3).
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When r; = 0.1, the loop is symmetrical and all of the average buffer levels are
equal to 5.0 since the 15 parts are distributed evenly between the three buffers.

As ri approaches 1.0, the probability that M, will be starved approaches 0.0,
as does the probability that M; will be blocked. By performing what is essentially
the inverse of our loop transformation, we can view the system as a two-machine
loop where M[“" represents My, B represents By, MJ“" represents Ms, and By*"
represents Bs, My, B;. Since N{* = 10, NJ*¥ = 20, and N? = 15, the system
acts essentially like a two-machine transfer line made up of the original M,, By, and
M;. When we compare the throughput of the loop with that of the line, we find
that they are nearly identical. As r; approaches 1.0, the average throughput of the
loop approaches 0.8535. The average throughput of the corresponding two-machine
transfer line is 0.8561.

Next, we study the effect of varying all of the rs together between 0.0 and 1.0.
Since the loop is symmetrical in all cases here, the average buffer levels remain un-
changed (i.e. 7(i) = 5.0). However, it is interesting to look at average throughput
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as a function of both r and the isolated efficiency e = rer of the machines. Figures

6-9 and 6-10 illustrate the relationship. We observe that throughput is equal to 0.0
when r = 0 and approaches 1.0 asymptotically as r increases to 1.0. In addition, we

see that throughput increases hyper-linearly as a function of isolated efficiency.
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Figure 6-9: Average Throughput as a Function of r

6.2.2 Buffer Size

Here, we consider the effect that changing the buffer sizes has on average throughput.
To do this, we use our standard symmetrical three-machine loop but set N? = 28.
Figure 6-11 shows how throughput changes as we vary the buffer size N between 10
and 35. The discontinuities in the curve are a result of the batman effect discussed
in Section 5.2.5.

When N = 10, the probability of blocking P is very high, causing throughput to
be relatively low. At this point, the probability of starvation P* is zero because the
number of holes is less than N. As N increases to 14, P decreases but P*! remains
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Figure 6-10: Average Throughput as a Function of e

zero, resulting in an increase in throughput. For N > 13, P*' is no longer zero. In the
range 13 < N < 28, the decrease in P" is greater than the increase in P*! so there is
a net increase in throughput. However, for N > 28, P = 0.0, P*! is constant, and
throughput is constant. All of the parts can fit in any of the buffers so no machine
can ever become blocked. Furthermore, increasing the buffer size beyond NP does
not increase the probability that one of the buffers can become empty.
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Chapter 7

Applying the Method

Here we describe an actual case study. For purposes of confidentiality, the name of
the company, the details of the production process, and quantities such as operation
time and production rates, are not discussed in this thesis.

7.1 Background

A Japanese electronics company produces a network connection device which is used
to improve the quality of signals transmitted over long distances. The company is
expecting an increase in demand. They are considering different ways of increasing
the capacity of the factory and are interested in the effect that each of these options
would have on their required in-process inventory level.

7.1.1 The Network Device

The components of the network connection device are a photo detector, amplifier,
laser diode, and a protective case. Its purpose is to receive a signal from a fiber-optic
cable, filter out noise, amplify the signal, and then transmit the signal to a fiber-optic
output.

7.1.2 Production Process

Production of the network device consists of three separate phases: 1) assembly, 2)
packing, and 3) aging and final testing. In the assembly phase, the photo detector,
amplifier, and laser diode are bonded to a motherboard and placed in the protective
case. The case is sealed in the packing phase and injected with nitrogen gas. The
device is then baked and aged in order to cure the bonding compounds. Finally, the
device is subjected to a series of electrical and climate tests. The production system
is made up of 53 sequential stations.
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7.2 Problem Statement

7.2.1 Objective

The company must increase the capacity of the factory in order to meet demand.
To do so, they are considering two options. The first is to increase the number of
overtime hours for the slower stations to the maximum level. The second option is to
purchase one additional machine for the slowest station.

Currently, the factory is operated according to a CONWIP (constant work in
process) control policy. In this type of policy, the total amount of inventory in the
system is fixed, but there is no limit on the amount of inventory in any given buffer.
The goal of the study was to provide the company with information about the WIP
levels required in order to meet demand for each of the two options.

7.2.2 Limiting the Scope

We needed to consider two main issues in modeling the system: the size of the system
and the characteristics of the individual machines. Due to limitations in the current
computer implementation of our method, we are only able to deal with systems of
about 10 machines.

The deterministic processing time model is intended to deal with single-part flow
and machines with identical deterministic processing times. Unfortunately, produc-
tion system for the network device is not quite so simple. Several of the operations
are performed on various sized lots or batches rather than on a single part. Some
of the processes are performed by multiple machines operating in parallel. In addi-
tion, operations require different amounts of time. Aging, for example, requires much
longer than a simple visual inspection. To model the entire system, we would need
to be able to consider the following factors:

a) stations with different processing rates

(
(b) stations with multiple machines operating in parallel
(

(d

)
)
c¢) stations with longer work days
) stations that process lots/batches
)

(e

Because of these factors, we decided to limit our study to the assembly phase of
the production process. The assembly phase consists of 20 stations, each with only
one machine. Additionally, there are no batch operations and no scrap at any of the
stations.

scrapping

28



7.3 'Transforming the Data

In order to use the current version of the loop transformation and decomposition
method, it was necessary to make several approximations. This section outlines the
procedures we used to convert the data into a usable form.

7.3.1 Original Data

From the original data set, we had the the following information for each of the work
stations in the assembly phase:

e number of machines at the station
e processing time 1T’

e lot size

e scrap rate

e mean time to failure (MTTF)

e mean time to repair (MTTR)

e number of working hours per day

At this point, it is natural to model the system using the continuous processing
time model described in [Ger94] in which machines have a failure rate p, a repair rate
r, and a processing rate p. After converting processing time, MTTF, and MTTR
into common time units, we calculated the initial parameters py, o, and puo for the
stations as follows:

1
Po=NTTF (v1)
1
1
po = (7.3)

7.3.2 Parallel Machines

When considering the option of buying an additional machine, we needed a way to
model machines operating in parallel. Here, we assume that the parameters of the
new machine are identical to those of the original machine. It seems reasonable that
a station with two machines operating in parallel should produce twice as much as a
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single machine. Furthermore, failures of the two-machine station occur less frequently
than failures of an individual machine. In general terms, we calculated the parameters
for a station with Y machines operating in parallel using the following equations:

p= ? (7-4)
r =Ty (7.5)
=Yg (7.6)

7.3.3 Overtime

For the stations that use overtime, we needed to adjust all three parameters. If a
normal station works Hy hours per day and a station with overtime works H; hours
per day, we defined the overtime factor H as:

= % (7.7)
We then calculated the parameters of the station with overtime as follows:
p = Hpy (7.8)
r = Hry (7.9)
p=Hpp (7.10)

7.4 Reducing the System

Due to limitations in our computer implementation of the method, it was impossible
to model the system of all 20 stations with buffers between each station. Therefore,
we attempted to model the system as one with fewer machines and buffers having
approximately the same performance characteristics. To do this, we placed buffers
before bottleneck machines and modeled the behavior of all machines between con-
secutive buffers using a single machine.

7.4.1 Identifying the Bottlenecks

To locate the bottlenecks in the assembly phase, we compared the isolated production
rates of the machines. The isolated production rate p is calculated as:
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T
T+p

p=p (7.11)

If all buffers are infinite, the production rate of a line is equal to that of the
machine with the smallest p. Therefore, machines with relatively small values of p
are bottlenecks in the system. We identified three machines with p very close to the
desired production rate: My, M3, and Mg. These were the same machines that the
company had already identified as bottlenecks.

7.4.2 Zero-buffer Approximation

In our model, we placed buffers in front of each of the three bottleneck machines M7,
M3, and M;g. To model the collective performance of machines between consecutive
buffers, we used a variation of the zero buffer equations presented in [Ger94].

In a line with no buffers, no machine can operate at a rate greater than the
processing rate of the slowest machine. Since we assume operation dependent failures,
the effective failure rates of all machines must be scaled by the processing rate of the
slowest machine. Therefore, we performed the following conversion for each machine
MZ’I

Hmin
p; = pi(—) (7.12)

223

Using the values of p), we calculated the production rate of the zero buffer line

Pzero buffer 28

1

Pzero buffer = Hmin 11y, % (7.13)

This gave us the processing rate p of our new machine. The next step was to find
values for r and p. We calculated r for the new machine as a weighted average of the
r;’s in the zero buffer line using the following formula:

_ - Di
r=2.(r p) (7.14)

Solving (7.11) for p gave us

f=p
)
P

Using this approach, we reduced the assembly phase with a CONWIP control

policy to a closed loop system made up of four machines and four buffers (see Figure
7-1).

M models the behavior of the real machines M; through Ms. M) corresponds

to My through My, M represents M3 through M7, and M models Mg to My.

p=r( (7.15)

61



M1-
M6

M7-
M12

M13- M18-

M17 M20
(oa)
N

Figure 7-1: Tllustration of reduced system

Buffers B through Bj are the actual parts buffers located directly upstream of the
bottleneck machines. We can think of buffer B} as a finished goods buffer. If we did
not include B}, the failure of machine M| could prevent finished parts from exiting the
system. Since this does not make sense in a real manufacturing system, we included
B in the model.

Tables I and II show the parameters of the reduced system for the max over-
time and additional machinery options. The minimum isolated production rates are
indicated in bold.

Table I: Parameters of reduced loop (max overtime)

H Machine ‘ r P 7 p H
1-6 0.100793651 | 0.002234259 | 0.810810811 | 0.793227599
7-11 0.074530612 | 0.004023891 | 0.220971867 | 0.209652763
13-17 | 0.070373984 | 0.003939683 | 0.429850746 | 0.407062535
18-20 | 0.061402062 | 0.003397915 | 0.352653061 | 0.334161001

Table II: Parameters of reduced loop (additional machine)

H Machine ‘ r D W p H
1-6 0.100793651 | 0.002234259 | 0.810810811 | 0.793227599
7-11 0.082868217 | 0.002668667 | 0.398976982 | 0.386529289
13-17 | 0.069109195 | 0.003828684 | 0.388059701 | 0.367689519
18-20 | 0.059074074 | 0.003238425 | 0.318367347 | 0.301821571
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7.4.3 Processing Times

Because the method had not yet been implemented for the continuous processing
time model, we needed to model the system using machines with equal processing
times. To do this, we used a methodology developed by [Ger87b]. Gershwin shows
that the performance of a machine with parameters p, r, and p can be accurately
approximated by two machines, M; and My, with parameters p;, r1, p2, 2 and zero

buffer (see Figure 7-2).

Three-Parameter Machine

M
original

r

p
u

M1

M2

ri
pl

Two Two-Parameter Machines

r2

p2

Figure 7-2: Representation of a three-parameter machine as two two-parameter ma-

chines

The first machine is used to represent the processing rate and the second ma-
chine models the failure behavior. The parameters are calculated so as to satisfy the

following equations:

™
=W
T+ D1
To =T
b
P2 = —
I

T1,P1 > T2, P2
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[Ger87b] gives the following procedure for converting a line consisting of machines
with different processing rates to one with identical processing rates:

(a) Divide all r’s, p’s, and p’s by the value of the largest pu. This scales the time
unit so that the largest u is equal to 1.

(b) Replace each machine with u less than 1 by two machines whose parameters
satisfy (7.16), (7.17), (7.18), (7.19).

Since our loop model cannot deal with buffers of size zero or 1, we inserted a buffer
of size 2 between M; and M, in each case. While this adds some slight approximation,
we felt that it was reasonable because the real buffers in the line are larger.

Performing this transformation on the reduced loop shown in Figure 7-1 gave us
our final model of the system. It consisted of seven machines and seven buffers (see
Figure 7-3).

(> ©

(87)
M1 B7 M7
N

Figure 7-3: Illustration of final model

7.5 Solution Methodology

To study the effect of CONWIP size on production rate, we set all three of the real
buffers equal the population size, which we varied from 7 to 74'. Figures 7-4 and 7-5
show the results for each of the two options.

In theory, the production rate of the loop should converge to the production rate
of the slowest machine as the population is increased to infinity. The results from our
model agree with this property. For the overtime option, the smallest p is 0.21045.

!This was the largest population that the computer program could handle.
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Figure 7-4: Production Rate as a Function of CONWIP Limit (Max Overtime)

According to the model, the maximum production rate is 0.20939. This is an error
of 0.50%. The result for the additional machine option is similar. In this case, the
smallest p is 0.30321 and the model gives the limit on production rate as 0.29912.
Here, the error is 1.35% but it should be noted that production rate had not yet
converged when the population was 74.

7.6 Conclusions

7.6.1 Case Conclusions

According to our model, each of the options can achieve the required production
rate of 0.2 parts per time unit. If the company decides to use overtime hours to
meet demand, they will need to maintain a WIP of 8. However, if they purchase an
additional machine, demand can be met with essentially zero WIP.
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Figure 7-5: Production Rate as a Function of CONWIP Limit (Buy Additional Ma-
chine)

7.6.2 Needed Research

Additional research is needed to enable the method to better handle real world sys-
tems. The first step is to implement the loop transformation and decomposition for
the the continuous material model. This would eliminate the need for the trans-
formation described in Section 7.4.3. The models also need to be extended to deal
with a wider variety of real-world issues such as batch operations and scrap rates.
In conducting this case study, we considered possible methods for dealing with these
problems. However, there were difficulties with implementation.

Lots and Batches In attempting to model machines that process lots, we looked
at the behavior of parts exiting the machine. An observer positioned just downstream
of the machine sees parts exiting the machine in bursts. The machine seems to be idle
for a relatively long period of time and then rapidly processes the number of parts in

66



one lot. This behavior is similar to that of a machine with a very large processing rate
and relatively small repair rate. In cases where operations are performed on a batch
of W parts, we though about transforming the parameters by solving the following
equations:

Eow (7.20)
b
r To
=W 7.21
MT +p MTO + Do ( )
[ = max fi; (7.22)

Scrap Rates Scrap has the effect of reducing the amount of usable parts produced.
One though we had on dealing with the scrap rate S was to reduced the processing
rate using the following equation:

p=(1=5)m (7.23)
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Chapter 8

Conclusions and Future Work

The purpose of this research was to build on Maggio’s work [Mag00], [MMGTO00] to

find a more practical general approach to evaluating closed-loop systems. Our trans-

formation algorithm significantly reduces the complexity of large loops by eliminating

multiple thresholds. The transformation and decomposition technique described in

this paper provide extremely accurate approximations of average production rate.
There are several opportunities for future research:

(a)

First is the issue of conservation of flow. Conservation of flow is not satisfied
exactly in the examples we studied. Maggio [Mag00] observed the same phe-
nomenon. Further refinement of the model and the algorithm might correct
this.

Another area where improvement is needed is in dealing with very small and
very large populations. The method is not applicable when the number of parts
(or holes) in the system is less than the number of machines or the size of the
smallest buffer.

The error in the average buffer level is high compared to the error in average
production rate. This is typical with decomposition methods. The economic
importance of average buffer level is motivation for improving the accuracy,
particularly when the method is used to predict CONWIP performance.

In addition, there are several extensions to the method which would prove useful:

(a)

(b)

The approach described here could be extended to multiple loop systems. This is
of particular interest for evaluating the performance of systems operated under
token-based control policies.

The method could also be modified to deal with closed-loop systems in which
multiple part types share a common set of resources. In this type of system,
different part types compete for resources and therefore the production of one
part interferes with the production of another.
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(c) Another possibility is the combination of the first two items. The method can
be extended to evaluate multiple loop with multiple part types.

Finally, we see from the case study that there is a need to extend our models to
better deal with the complex issues found in real-world manufacturing systems. We
need to find ways of dealing with phenomenon such as scrap, batch operations, and
setups.
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Appendix A

Three-Machine Loop Parameters

Table I: Loop 3.1

H Machine ‘ r ‘ P ‘ N H
1 0.079034 | 0.015666 | 14
2 0.154824 | 0.008093 | 15
3 0.104084 | 0.028991 | 17
Table II: Loop 3.2
H Machine ‘ r ‘ P ‘ N H
1 0.109964 | 0.013478 | 16
2 0.066043 | 0.006876 | 47
3 0.075848 | 0.003851 | 42
Table III: Loop 3.3
H Machine ‘ r ‘ P ‘ N H
1 0.073385 | 0.000800 | 22
2 0.051737 | 0.014319 | 91
3 0.185704 | 0.042009 | 7
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Table IV: Loop 3.4

H Machine ‘ r ‘ P ‘ N H
1 0.108038 | 0.033304 | 10
2 0.118678 | 0.033130 | 34
3 0.134489 | 0.043302 | 37
Table V: Loop 3.5
H Machine ‘ r ‘ P ‘ N H
1 0.115294 | 0.012335 | 13
2 0.154188 | 0.013918 | 27
3 0.128420 | 0.003913 | 26
Table VI: Loop 3.6
H Machine ‘ r ‘ P ‘ N H
1 0.094680 | 0.014881 | 32
2 0.153075 | 0.015084 | 31
3 0.086905 | 0.007076 | 31
Table VII: Loop 3.7
H Machine ‘ r ‘ P ‘ N H
1 0.145946 | 0.040302 | 6
2 0.154042 | 0.046828 | 8
3 0.187383 | 0.035154 | 6
Table VIII: Loop 3.8
H Machine ‘ r ‘ P ‘ N H
1 0.145969 | 0.045026 | 24
2 0.190776 | 0.030020 | 10
3 0.180072 | 0.034301 | 15
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Table IX: Loop 3.9

H Machine ‘ r ‘ P ‘ N H
1 0.068014 | 0.019957 | 50
2 0.096967 | 0.004181 | 18
3 0.143706 | 0.008655 | 18

Table X: Loop 3.10

H Machine ‘ r P ‘ N H
1 0.116440 | 0.006851 | 13
2 0.153762 | 0.012806 | 30
3 0.163042 | 0.023943 | 16

Table XI: Loop 3.11

H Machine ‘ r P ‘ N H
1 0.132362 | 0.038206 | 30
2 0.177131 | 0.008438 | 27
3 0.099809 | 0.010842 | 20

Table XII: Loop 3.12

H Machine ‘ r ‘ P ‘ N H
1 0.175235 | 0.003359 | 23
2 0.155171 | 0.002007 | 6
3 0.139068 | 0.015532 | 30

Table XIII: Loop 3.13

H Machine ‘ r ‘ P ‘ N H
1 0.143831 | 0.002634 | 25
2 0.101839 | 0.007666 | 16
3 0.068283 | 0.010469 | 22
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Table XIV: Loop 3.14

H Machine ‘ r ‘ P ‘ N H
1 0.135596 | 0.017421 | 19
2 0.117353 | 0.014449 | 5
3 0.175223 | 0.058233 | 29

Table XV: Loop 3.15

H Machine ‘ r ‘ P ‘ N H
1 0.192298 | 0.016537 | 26
2 0.056324 | 0.002992 | 25
3 0.131941 | 0.016659 | 10
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Appendix B

Six-Machine Loop Parameters

Table I: Loop 6.1

H Machine ‘ r ‘ P ‘ N H
1 0.144976 | 0.005013 | 23
0.122173 | 0.031507 | 26
0.070337 | 0.002061 | 53
0.071841 | 0.009081 | 18
0.173843 | 0.006039 | 19
0.135477 | 0.002155 | 27

O T | W | DN

Table II: Loop 6.2

H Machine ‘ r ‘ P ‘ N H
1 0.051575 | 0.001270 | 38
0.154330 | 0.002909 | 3
0.185522 | 0.017783 | 10
0.165467 | 0.021359 | 9
0.113468 | 0.032113 | 31
0.084132 | 0.022852 | 57

O T | W | DN

75



Table III: Loop 6.3

H Machine ‘

r

p

| V]

1

0.099044

0.003600

18

0.168118

0.020465

25

0.092734

0.009901

11

0.153563

0.037536

29

0.099500

0.022009

10

O O | W DN

0.113892

0.005789

21

Table IV: Loop 6.4

H Machine ‘

r

P

1

0.156161

0.038948

32

0.118474

0.038527

22

0.180505

0.008335

24

0.172510

0.046598

12

0.115746

0.035078

37

O | W DN

0.120613

0.028265

22

Table V: Loop 6.5

H Machine ‘

r

P

N

1

0.139099

0.009286

31

0.074966

0.002458

58

0.108032

0.032984

36

0.105859

0.027211

27

0.050272

0.008933

O T | W | DN

0.123161

0.015312

16

Table VI: Loop 6.6

H Machine ‘

r

P

1

0.054364

0.002379

86

0.151093

0.013050

0.167559

0.004043

0.187911

0.012212

20

0.081529

0.011213

33

| Y | W DN

0.197713

0.014628

14
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Table VII: Loop 6.7

H Machine ‘

r

p__|N]

1

0.174954

0.014931

12

0.094903

0.014742

11

0.079639

0.006415

49

0.156236

0.013279

28

0.146070

0.042562

11

O O | W DN

0.174957

0.031042

17

Table VIII: Loop 6.8

H Machine ‘

r

P

N

1

0.119150

0.019578

31

0.127030

0.031903

26

0.096766

0.028858

0.156114

0.048272

28

0.101547

0.007119

13

O | W DN

0.139220

0.038150

29

Table IX: Loop 6.9

H Machine ‘

r

p |N

1

0.154592

0.011436

0.177782

0.026871

0.051092

0.010684

74

0.051365

0.012852

60

0.113699

0.021514

36

O T | W | DN

0.148604

0.039191

Table X: Loop 6.10

H Machine ‘

r

P

1

0.052433

0.004137

54

0.054848

0.002557

61

0.189452

0.054197

18

0.174411

0.022313

24

0.141156

0.038437

21

| Y | W DN

0.122348

0.013056

7



Table XI: Loop 6.11

H Machine ‘

r

p

| V]

1

0.196819

0.014055

26

0.108697

0.011077

17

0.171942

0.004530

7

0.160102

0.024514

31

0.149351

0.048518

5

O O | W DN

0.195518

0.047342

21

Table XII: Loop 6.12

H Machine ‘

r

P |

N

1

0.124244

0.036404

11

0.101522

0.023950

28

0.076480

0.022765

63

0.156819

0.025186

0.098818

0.004277

28

O | W DN

0.141932

0.039537

13

Table XIII: Loop 6.13

H Machine ‘

r

P

N

1

0.090278

0.018959

21

0.107836

0.020524

45

0.118208

0.003318

0.113052

0.022836

21

0.085216

0.021297

S7

O T | W | DN

0.149578

0.006272

33

Table XIV: Loop 6.14

H Machine ‘

r

P |

1

0.066974

0.012704

46

0.125536

0.018545

34

0.198950

0.028777

14

0.142355

0.008065

0.056312

0.014029

44

| Y | W DN

0.178580

0.044827

24
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Table XV: Loop 6.15

H Machine ‘

r

p

| V]

1

0.167547

0.027823

14

0.152081

0.012831

29

0.125324

0.021906

40

0.181046

0.007981

8

0.149910

0.024550

25

O CY | W DN

0.160957

0.052798

31
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Appendix C

Table I: Loop 10.1

Ten-machine Loop Parameters

H Machine ‘ r ‘ P ‘ N H
1 0.183191 | 0.00323241 | 19
2 0.0596206 | 0.0153859 | 13
3 0.190935 | 0.0393347 | 20
4 0.108374 | 0.0286632 | 10
5 0.181383 | 0.0168536 | 11
6 0.157299 | 0.0438734 | 17
7 0.119705 | 0.0153203 | 6
8 0.189016 0.024867 | 4
9 0.187734 | 0.0445411 | 6
10 0.150502 | 0.0474253 | 17
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Table II: Loop 10.2

H Machine ‘ r ‘ P ‘ N H
1 0.0934505 | 0.0286787 | 7
2 0.0923861 | 0.0145521 | 23
3 0.164453 | 0.0229854 | 26
4 0.0915718 | 0.00915303 | 7
5 0.0810424 | 0.0159579 | 43
6 0.150806 | 0.0125936 | 13
7 0.0524406 | 0.00865559 | 6
8 0.191048 | 0.0221118 | 5
9 0.141525 | 0.0448559 | 26
10 0.189569 | 0.0132722 | 9

Table III: Loop 10.3

H Machine ‘ r ‘ P ‘ N H
1 0.096151 | 0.0165369 | 47
2 0.172758 | 0.0418478 | 19
3 0.124073 | 0.00953056 | 4
4 0.190301 | 0.0106644 | 8
5 0.154966 | 0.0333771 | 24
6 0.171514 | 0.00588372 | 7
7 0.108986 | 0.0358047 | 12
8 0.0713838 | 0.00673011 | 23
9 0.183247 | 0.036767 | 12
10 0.158687 | 0.0286408 | 12
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Table IV: Loop 10.4

H Machine ‘ r P ‘ N H
1 0.0668503 | 0.00716098 | 37
2 0.0829729 | 0.0162864 | 7
3 0.186004 | 0.00457479 | 24
4 0.135212 0.023754 | 15
5 0.170287 | 0.0166307 | 24
6 0.145281 | 0.0214392 | 23
7 0.140052 | 0.0113248 | 10
8 0.187683 | 0.0122668 | 22
9 0.170644 | 0.0307481 | 7
10 0.0885645 | 0.0118796 | 12

Table V: Loop 10.5

H Machine ‘ r P N H
1 0.147844 0.017156 | 15
2 0.198878 0.015339 | 20
3 0.112477 | 0.00525383 | 37
4 0.0675318 | 0.016859 | 10
5 0.0584904 | 0.0115953 | 14
6 0.168995 | 0.0403546 | 8
7 0.185909 | 0.0478418 | 19
8 0.174411 | 0.0150609 | 25
9 0.13578 | 0.00370909 | 20
10 0.18496 0.0101551 | 15
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Table VI: Loop 10.6

H Machine ‘ r ‘ P ‘ N H
1 0.0509647 | 0.00763798 | 41
2 0.187989 | 0.0401954 | 23
3 0.102561 | 0.0191265 | 30
4 0.188803 | 0.0557934 | 5
5 0.147749 | 0.0278022 | 8
6 0.0811585 | 0.00332041 | 19
7 0.0857089 | 0.0253284 | 14
8 0.166954 | 0.0330174 | 20
9 0.0591614 | 0.0175425 | 8
10 0.19732 0.0526415 | 21

Table VII: Loop 10.7

H Machine ‘ r ‘ P ‘ N H
1 0.136021 | 0.0132521 | 13
2 0.0677516 | 0.00158414 | 38
3 0.166637 | 0.0185526 | 27
4 0.136585 | 0.0134482 | 10
5 0.0849185 | 0.0043656 | 29
6 0.174155 | 0.0243614 | 4
7 0.109489 0.029863 | 11
8 0.128166 0.010146 | 40
9 0.0918017 | 0.0168728 | 9
10 0.0913906 | 0.027571 | 14
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Table VIII: Loop 10.8

H Machine ‘ r ‘ P ‘ N H
1 0.135556 | 0.040307 | 34
2 0.180555 0.05108 4
3 0.0745758 | 0.00559296 | 22
4 0.12501 0.027444 | 18
5 0.134653 | 0.0256811 | 29
6 0.147213 | 0.0449349 | 6
7 0.0845431 | 0.0258679 | 53
8 0.198731 | 0.0559985 | 6
9 0.168475 | 0.0512436 | 7
10 0.136649 | 0.0308736 | 18

Table IX: Loop 10.9

H Machine ‘ r ‘ P ‘ N H
1 0.170459 | 0.0290001 | 5
2 0.0917568 | 0.00309716 | 13
3 0.0943664 | 0.00914266 | 5
4 0.130203 | 0.0133686 | 18
5 0.0938124 | 0.0187011 | 42
6 0.114833 | 0.0356584 | 6
7 0.0740705 | 0.017065 | 16
8 0.149879 | 0.0181412 | 22
9 0.0965006 | 0.00204711 | 41
10 0.143681 0.03267 | 31
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Table X: Loop 10.10

H Machine ‘

r

D

| V]

1

0.0712139

0.0106448

15

0.0509503

0.00834283

46

0.121815

0.0124318

11

0.0886558

0.00904048

11

0.0912276

0.00608365

31

0.186618

0.00912488

3

0.084455

0.00851612

9

0.0970067

0.0223825

48

OO0 | O O =] W DN

0.141548

0.0248338

9

—_
)

0.0647839

0.00454106

16

Table XI: Loop 10.11

H Machine ‘

r

D

1

0.0772395

0.00901581

46

0.0759825

0.0101245

28

0.17106

0.0265557

14

0.195079

0.0349879

0.186056

0.00390329

0.191817

0.00998447

13

0.172097

0.00778906

11

0.110406

0.00271777

12

OO0 || O | W| DN

0.0815184

0.0133652

23

—_
)

0.130644

0.028638

12
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Table XII: Loop 10.12

H Machine ‘ r P ‘ N H
1 0.143847 | 0.0190965 | 26
2 0.19883 | 0.00856757 | 17
3 0.0770671 | 0.00236775 | 28
4 0.123923 | 0.00638938 | 11
5 0.129643 | 0.0264424 | 30
6 0.0787548 | 0.0137422 | 58
7 0.151352 | 0.0288481 | 6
8 0.132754 | 0.0249265 | 17
9 0.0969942 | 0.0219435 | 7
10 0.165298 | 0.0291156 | 7

Table XIII: Loop 10.13

H Machine ‘ r P N H
1 0.118125 | 0.0377436 | 28
2 0.149115 | 0.00443894 | 22
3 0.097255 | 0.0032413 | 11
4 0.0671956 | 0.00161092 | 9
5) 0.0979067 | 0.0197175 | 44
6 0.134621 | 0.00733583 | 25
7 0.107397 | 0.00231324 | 13
8 0.144363 0.016121 | 19
9 0.0655627 | 0.00336603 | 16
10 0.062403 0.01211 26
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Table XIV: Loop 10.14

H Machine ‘ r P ‘ N H
1 0.17529 0.0261186 | 13
2 0.0637467 | 0.00389113 | 24
3 0.0575583 | 0.00831246 | 12
4 0.192179 | 0.0320509 | 6
5 0.0529493 | 0.00578869 | 33
6 0.083012 | 0.0141553 | 39
7 0.199729 | 0.0509779 | 14
8 0.178454 | 0.0118492 | 16
9 0.100352 | 0.0239082 | 49
10 0.108679 | 0.0059908 | 8

Table XV: Loop 10.15

H Machine ‘ r P N H
1 0.0666081 | 0.00293728 | 48
2 0.178503 | 0.0501667 | 23
3 0.178165 | 0.0112919 | 19
4 0.195553 | 0.00617274 | 4
5 0.103127 | 0.0193468 | 31
6 0.160034 | 0.0438026 | 17
7 0.178563 | 0.0243703 | 21
8 0.0726214 | 0.00506734 | 25
9 0.0567353 | 0.00409832 | 21
10 0.0668132 | 0.00762629 | 6
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