
Monte Carlo Methods for Parallel Processing of
Diffusion Equations

Cyrus Vafadari

SUBMITTED TO THE DEPARTMENT OF NUCLEAR SCIENCE AND ENGINEERING

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF BACHELOR OF SCIENCE IN NUCLEAR SCIENCE AND ENGINEERING AT

THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2013

2013 Cyrus Vafadari. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute

publicly paper and electronic copies of this thesis document in whole or in part.

Z /.

Signature of author:

Cyrus Vafadari

Department of Nuclear Science and Engineering

17 May 2013

Certified by

Benoit Forget

Associate Professor of Nuclear Science and Engineering

Thesis Supervisor

Accepted by---------- --------------------

Dennis Whyte

Professor of Nuclear Science and Engineering

Chairman, NSE Committee for Undergraduate Students

1

OF TECHNOLOGY

JUL 16 2013

LIBRARIES

Mu Libraries
Document Services

Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
Ph: 617.253.2800
Email: docs@mit.edu
http://Ilibraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.

Some pages in the original document contain text that
runs off the edge of the page.

Monte Carlo Methods for Parallel Processing of Diffusion Equations

Cyrus Vafadari

Submitted to the Department of Nuclear Science and Engineering

on 17 May 2013 in Partial Fulfillment of the Requirements for the

Degree of Bachelor of Science in Nuclear Science and Engineering

Abstract

A Monte Carlo algorithm for solving simple linear systems using a random walk is

demonstrated and analyzed. The described algorithm solves for each element in the

solution vector independently. Furthermore, it is demonstrated that this algorithm is

easily parallelized. To reduce error, each processor can compute data for an independent

element of the solution, or part of the data for a given element for the solution, allowing

for larger samples to decrease stochastic error. In addition to parallelization, it is also

shown that a probabilistic chain termination can decrease the runtime of the algorithm

while maintaining accuracy. Thirdly, a tighter lower bound for the required number of

chains given a desired error is determined.

Thesis Supervisor: Benoit Forget

Title: Associate Professor of Nuclear Science and Engineering

2

Contents

1 Introduction 4

2 Background 4

2.1 Theoretical Foundation [4] . 4

2.2 Monte Carlo Algorithm 141 . 6

3 Analysis of Linear Solvers 7

3.1 Distribution of Chain Values . 7

3.2 Truncation Error . 8

3.3 Stochastic Error . 10

4 Parallel Processes 11

5 Conclusion and Future Work 12

3

1 Introduction

The analysis of nuclear reactors has led to the development of sophisticated computational

methods for estimating neutron flux in a reactor. The neutron flux in a reactor is determined

by the either the neutron diffusion equation or the transport equation, systems of partial

differential equations. Linear approximations of these equation is easily obtained with finite

difference methods. The resulting matrix equation is typically solved deterministically, often

with an iterative solver such as Krylov 16]. Such solvers can be found in existing software

such as MATLAB or optimized specifically for a particular type of matrix. As spatial and

temporal resolution on the equation increases, computational software is faced with the

challenge of solving increasingly large matrix equations. Current deterministic methods of

solving high resolution multigroup three-dimensional transport equations quickly overwhelm

a single processor.

Various advances in software and hardware have allowed computations to be performed

in parallel, dividing computation among multiple processors. Such large-scale computing,

known as exascale computing, is limited by a number of challenges. Among the outstand-

ing challenges in exascale computing for nuclear reactor analysis is the efficient division of

tasks among processors. Algorithms optimal for serial processing can face bottlenecks in

computing and perform suboptimally in large, parallel computer systems. Current diffusion

equation solvers use a variant of successive over-relaxation algorithms. These methods are

fast deterministic methods well-suited for large, sparse matrices[il.
Monte Carlo methods can easily address division of labor since each chain (i.e. random

walk) is independent of the next. It can be used to solve large matrix equations (including the

diffusion and transport equations) can be solved to a good approximation[4, 7]. To date, such

a method has not been used to solve diffusion equations. Iterative Monte Carlo methods

have many advantages in solving large, sparse systems 121. One advantage is the ease of

parallelization of a Monte Carlo solver since it eliminates bottlenecks. The application of

Monte Carlo linear solvers to diffusion equations will demonstrate its feasibility in potential

applications in solving very large equations.

2 Background

2.1 Theoretical Foundation [4]

A stochastic linear solver can be used to solve a linear system Ax = b with unknown vector

x for square, invertible matrix A. This can be rewritten as

4

X = (I- DA)x + Db

where D is a diagonal matrix

where -y E (0, 1] is the relaxation parameter of the Jacobi overrelaxation iterative method.

We can further let f = Db and L = I - DA,

x =L+f (1)

One method to find the vector x is to construct a random variable X[v] whose expectation

value is equal to x.

This is done with a discrete Markov chain. A discrete Markov chain is defined as a

sequence of random variables X 1, X 2, X3 with the Markov property: given the present state,
future and past states are independent. Thus, a random walk with independent transitions

between states through different elements of a matrix is a discrete Markov chain.

Consider the Markov chain

S = SO -* si -.

with transitional probabilities pij from state si to state sj. It can be shown that the

random variable X[v], defined as

00

X [v] = VSo E Wqfsq (2)
Pso i=0

where

Wi = so1ss--s-
Psos1Ps1s2 --- Psi-Psi

has expectation value EV(X) = x.

Proof :

EV(X) = EV soWf, =P soss1s2 ---Ps s sPSq1S1
Pso i=0 s=1 x 0 PSo1PS1 S2--PSi-1Ps

5

m

= VS 0
S02=l

* . SOS1,S182 .Sq.9-2Sq-1 Y -Sq1SqfSq

S1=1 39__1=1 S=1

m

= s ~* ~(Lqf)s0

Therefore EV(X) = x.

2.2 Monte Carlo Algorithm [4]

A Monte Carlo algorithm can be -designed to calculate the expected value given in equation
2.

1. Generate L

L(i , j) = 1-gamma for diagonal

L(i , j) = -gamma*A(i , j)/A(i , i)
2. Generate

entries

otherwise

f

f (i) = b(i)/A(i Ii)
3. Generate RowSumL

RowSumL(i) = sum of absolute values of elements of row of L
4. Generate Probability matrix P

5. for each element of the solution vector x(i)
to nchains

u 0, w = 0

u = u + w*f(i)

Select randomly a column j
w w * sign(L(i , j))

u u + w*f(i)

if |wl < w_cutoff

x(i) = x(i) + u

break

i =j

x(i) = x(i) / nchains

from row i probability

* RowSumL (i)

6

for each chain

P(i , j)

P(i , j) = | L(i , j)|I/RowSumL(i)

3 Analysis of Linear Solvers

Linear solvers of simple matrix equations with Monte Carlo methods give non-deterministic

approximations for solutions. The non-deterministic behavior demands an understanding of

the sources of error, both stochastic and truncation, and how this error affects the distribution

of results and convergence to the true value. Error in the Monte Carlo algorithm can arise

from two distinct sources: stochastic error and truncation error. Stochastic error refers to

the error associated with the randomness of the Markov chains, resulting in uncertainty in

estimates. Truncation error refers to the truncation of the Markov chain (i.e. the summatoin

of equation 2 cannot be infinite), generally resulting in biased approximations.

3.1 Distribution of Chain Values

The estimate for the value of a matrix element is equal to the mean of the chain values

recorded at the end of the truncation of each Markov chain. The chain values are distributed

non-normally in general. The shape of the distribution, however, is the result of a sample

from a constant, characteristic shape for a given matrix equation Ax = b. The distributions

of calculated chain values for simulations with 50, 500, and 5000 chains are shown in Figure

1.

7

50 Chains

'80

40

2

60-

0 -5 -

Chain Value

2500 - --5000 Chains

200 --

1500 --

1000 - -

500 - -

Chai Vau

808

tically has superior accuracy on average and much better algorithmic efficiency.
The method of probabilistic termination, also known as "Russian roulette," randomly

selects some chains to continue after they have reached the truncation crieterion while others
are truncated. More specifically, when the weight of a chain falls below the cutoff weight,
it will be truncated with probability p = "Of, assigned a new weight w = Wave, and

Wave

continued. An implementation of probabilistic termination is used to tabulate the tradeoff

between accuracy and run-time in Table 1. The control value always truncates after w falls

below weutoff.

. Wcutoff .

Wave

Control 0.0244 0.0280 0.0222 0.0223 0.0191
0.8 0.0321 0.0252 0.0169 0.0259 0.0236
0.4 0.0204 0.0264 0.0162 0.0258 0.0236
0.2 0.0287 0.0298 0.0151 0.0256 0.0236
0.1 0.0213 0.0190 0.0142 0.0251 0.0237

Wcutoff

Wave

Control 214 305 392 484 565
0.8 224 305 387 478 555
0.4 222 302 394 479 555
0.2 225 303 396 480 558
0.1 226 304 391 468 559

Table 1: L2 -Norm
(50,000 chains)

of residual (top) and runtime (bottom) using probabilistic truncation

The simulations in Table 1 confirm the prediction that probabilistic termination of
Markov chains can decrease the error of a simulation if the parameters Wave and Wcutoff

are chosen carefully. The probability p = w""f must not be so small that the chain is neverWave

recovered from termination. It is clear that in the case of setting weutoff = 10', the error
in the estimated solution was as accurate as the estimation with Weutoff = 10-6, with a frac-

tion of the runtime. Further optimization must be explored, as optimal choice for Wave and

Weutoff depend on many factors, including total number of chains. In a trial with 500,000
chains is shown in Table 2.

9

le-2 1e-3 le-4 1e-5 1e-6

le-2 le-3 1e-4 le-5 le-6

Wcutoff

Control 0.0132 0.0070 0.0055 0.0089 0.0095
0.8 0.0093 0.0054 0.0113 0.0044 0.0080
0.4 0.0067 0.0053 0.0113 0.0044 0.0080
0.2 0.0062 0.0058 0.0111 0.0045 0.0080
0.1 0.0064 0.0052 0.0105 0.0046 0.0080

Wcutof f
le-3 le-4 le-5 le-6le-2

Control 2233 3106 3875 4667 5610
0.8 2154 2987 3833 4716 5444
0.4 2167 2988 4431 4674 5448
0.2 2188 2994 3916 4697 5473
0.1 2222 3000 5516 4689 5447

Table 2: L2-Norm of residual (top)
(500,000 chains)

and runtime (bottom) using probabilistic truncation

3.3 Stochastic Error

As the total number of chains increases, the stochastic error of the estimate will decrease.

Though the distribution of chain values is non-normal, the means of random samples from

the aggregate data is guaranteed to be normally distributed by the Central Limit Theorem.

While we expect the stochastic error to depend only on the total number of chains analyzed,
separating the computation into independent batches allows for predictive statistics. Table 3

confirms that the total number of chains affects accuracy of the estimate, where each sample

is run computationally as an independent batch, with a specified number of chains per batch.

Chains

Batches 100

50 100 j 200 1000

50 0.0452 0.0325 j 0.0247 0.0095
0.0326 0.0197 0.0164 0.0050

200 0.0196 0.0174 0.0081 0.0044
1000 0.0105 0.0055 0.0047 0.0037

Table 3: L 2-Norm of residual with wcutoff = 0.001, Wave 0.8

To be confident to a given level of confidence that the true mean is within a cut-off E of

the calculated mean, the total number of chains must be at least n > (-(6745))2 according

to Dimov [31. Using Dimov's method, Table 4 shows the lower bound for the number of

chains for a given norm, as well as the observed number of chains required to obtain the

given norm.

10

Wave

Wave

le-2 1e-3 1e-4 1e-6le-5

Norm 0.0452 0.0325 0.0247 0.0095 0.0050 0.0044
Actual Chains 2500 5000 10,000 50,000 100,000 200,000

Predicted Number of Chains 7.32e6 1.02e7 1.34e7 3.48e7 6.62e7 7.52e7

Table 4: Dimov estimate for number of chains required for a minimum L2-Norm

This estimate is quite conservative. A tighter upperbound can be determined by calcu-
lating the standard deviation of the chain values on the fly. The n = (t * i)2, where t* is
the critical value for the desired confidence of a Student distribution and a is the standard
deviation of a distribution like those in Figure 1. The runtime of the algorithm increases as
the square of the desired margin of error is reduced.

Norm 0.0452 0.0325 0.0247 0.00947 0.0050 0.0044
Actual Chains 2500 5000 10,000 50,000 100,000 200,000

Predicted Chains for given norm 4680 9060 15,680 106,743 382,648 494,122

Table 5: Improved estimate for umber of chains required for a minimum L2-Norm at a 99%
confidence

4 Parallel Processes

The stochastic process can be parallelized by simply assigning each node to do any given
number of chains for any given element of the solution vector. Using the Message Passing
Interface (MPI) standard for inter-process and inter-memory communication 15], each node
was assigned an even fraction of chains to compute. Assigning each node to calculate some
chains for each element of the solution vector assures that each processor does nearly even
amounts of work. where assigning different processors to different elements of the solution
matrix may cause uneven computational workload. The source code, in Appendix D, simply
aggregates the data caluclated from each node and takes a simple mean to find the aggregate
estimate. The use of multiple processors significantly decreases the runtime of the Monte-
Carlo solver without compromising accuracy. A strong-scaling study was run, and results
are shown in Figure 2.

11

3.51x 10

-o
0
0)
U'

0)

3

2.5

2

1.5

0.5

01
2 3

Number of Processors
6 7 8

Figure 2: Runtime for Parallelized Code

The speed-up plot in Figure 3 demonstrates that some parallelization overhead is ob-
served, most probably because of the root node's calculation of the initial matrices. Further
scaling requires significantly larger matrices to fully demonstrate the parallelization of the
Monte Carlo solver.

0.
75

L41

2 3 4 5 6

Number of Processors
8

Figure 3: Speed-up for Parallelized Code

5 Conclusion and Future Work

The parallelization of Monte Carlo methods to quickly approximate solutions to linear sys-
tems of equations is demonstrated. It is shown that error can be reduced for a given runtime
by properly selecting parameters to probabilistically terminate Markov chains. The opti-
mization for parameters chosen for probabilistic termination of chains are dependent on the
number of total chains. Further analysis is necessary to find a more quantitative relationship
between number of chains and the parameters for probabilistic termination.

12

I I I I I I

Statistical Monte Carlo algorithms present further opportunities in parallel computing

research and optimization. Parallel computing architectures are subject to computation

errors in a single node. The stochastic nature of the Monte Carlo solver may allow for error

detection by handling outlier data. While deterministic solvers would otherwise propogate

such an error, Monte Carlo solvers have the potential to be robust to such computational

errors.

13

References

[1] Jalili Behabadi Mohammad Hasan Abadi Peyvand Ali, Pazirandeh. Finite difference
method for solving neutron diffusion equation in hexagonal geometry. In Nuclear Energy
for New Europe, 2009.

121 J. H. Curtiss. Monte carlo methods for the iteration of linear operators. J. Math Phys,
32(4):209-232, 1954.

131 Ivan T. Dimov. Monte Carlo methods for applied scientists. World Scientific Publishing
Company, Incorporated, 2008.

[4] T.T. Dimov, T. T. Dimov, and T.V. Gurov. A new iterative monte carlo approach for
inverse matrix problem. Journal of Computational and Applied Mathematics, 92:15-35,
1998.

151 William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel Pro-
gramming with the Message-Passing Interface. MIT Press, Cambridge, MA, 1994.

161 H. Knibbe, C. W. Oosterlee, and Cornelis Vuik. Gpu implementation of a helmholtz
krylov solver preconditioned by a shifted laplace multigrid method. J. Computational
Applied Mathematics. 236(3):281-293, 2011.

[7] Ashok Srinivasan and Vikram Aggarwal. Improved monte carlo linear solvers through
non-diagonal splitting. In Proceedings of the 2003 international conference on Computa-
tional science and its applications: PartIl, ICCSA'03, pages 168-177, Berlin, Heidelberg,
2003. Springer-Verlag.

14

Appendix A: Diffusion Equation

A general, two-group diffusion equation is written as follows:

-V -D 2 (i)V# 2 (7T) + Ea2 (7)# 2 (7) = Es12 (i)# 1 + ss(T)

We assume macroscopic cross section to be constant. Furthermore, we assume that there

are no neutron sources. Then, a diffusion equation in one dimension becomes:

-) + [Eal + Es12]#1(C) =vEf1#1(;7) + vEf22()

-D2(,#02(_') + Ya2#2(i) = Es12#1(>)

15

Appendix B: Selected Matrix Equation for Simulation Test-

ing

The matrix equation Ax = b was solved. The numerical values of A and b were chosen by
solving a 1-dimensional diffusion equation with 10 spatial discretizations, 2 groups, fission

cross sections (.0025, .08125), removal cross sections (0.0318, 0.114), y of 2.4, and down-

scattering cross section (0.022).

A = (1,1) 2.0318 (2,1) -1.0000 (11,1) -0.0220 (1,2) -1.0000 (2,2) 2.0318 (3,2) -1.0000 (12,2)

-0.0220 (2,3) -1.0000 (3,3) 2.0318 (4,3) -1.0000 (13,3) -0.0220 (3,4) -1.0000 (4,4) 2.0318 (5,4)

-1.0000 (14,4) -0.0220 (4,5) -1.0000 (5,5) 2.0318 (6,5) -1.0000 (15,5) -0.0220 (5,6) -1.0000

(6,6) 2.0318 (7,6) -1.0000 (16,6) -0.0220 (6,7) -1.0000 (7,7) 2.0318 (8,7) -1.0000 (17,7) -
0.0220 (7,8) -1.0000 (8,8) 2.0318 (9,8) -1.0000 (18,8) -0.0220 (8,9) -1.0000 (9,9) 2.0318 (10,9)

-1.0000 (19,9) -0.0220 (9,10) -1.0000 (10,10) 2.0318 (11,10) -1.0000 (20,10) -0.0220 (10,11)

-1.0000 (11,11) 2.1140 (12,11) -1.0000 (11,12) -1.0000 (12,12) 2.1140 (13,12) -1.0000 (12,13)

-1.0000 (13,13) 2.1140 (14,13) -1.0000 (13,14) -1.0000 (14,14) 2.1140 (15,14) -1.0000 (14,15)

-1.0000 (15,15) 2.1140 (16,15) -1.0000 (15,16) -1.0000 (16,16) 2.1140 (17,16) -1.0000 (16,17)

-1.0000 (17,17) 2.1140 (18,17) -1.0000
-1.0000 (19,19) 2.1140 (20,19) -1.0000

(17,18) -1.0000 (18,18) 2.1140 (19,18) -1.0000 (18,19)
(19,20) -1.0000 (20,20) 2.1140

b = 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0 0 0 0 0 0 0

000

0

2

4

6

8

10

12

14

16

18

20

0 5 10

nz = 68

15 20

Figure 4: Elements of Sparse Matrix A

16

Appendix C: Sample Code for Monte Carlo Solver in Mat-

lab

on: "A new iterative Monte Carlo approach for inverse matrix" by

function [result
%% Sanitize

sparseBatchStochasticSolver (A,

Inputs

% Make sure A is square

dims = size (A);

if (dims(1) ~= dims(2))st

error ('Matrix

end

n = dims (1);

% Make sure b has

if (n ~= size (b))

is not square.

the

Please use square matrices

same dimension as A

error('A and b do not have compatible

end

% Make sure cutoff

if (wcutoff > 1 |

error ('Invalid
end

% Make sure relaxation

if (relaxation >

for weight is valid

wcutoff < 0)

value for wcutoff ')

factor is valid

relaxation <=0)

error ('relaxation var has

end

% Check if diagonals

bad value ');

dominate

for i=1:n

diagIndex = sum(abs(A),2)-2*diag(abs(A));

if (diagIndex(i) > 0)
error ('Not diagonally dominant ');

end

end

%% Pre-Processing

x = zeros (n, nbatches); % Solution

stdev = zeros (n, nbatches);

17

% Based I

nchains , nbatches , w

only. ');

dimensions . ');

vector

stdevBatch = zeros(n,1);

L = sparse (n,n);

for i=l:n

for j=1:n

if (i j)
L(i ,j) = 1 - relaxation;

else

L(i ,j) -relaxation*A(i ,j)/A(i ,i);

end

end

end

f = zeros (n,1);

for i=1:n

f(i) = relaxation*b(i)/A(i,i);

end

rowSumL = zeros(n,1);

for i=1:n

for j=1:n

rowSumL(i

end

i f (rowSumL(i)

disp (['Isum

rowSumL

end

end

P = sparse(n,n);

C = sparse(n,n);

for i=1:n

for j

= rowSumL(i) + abs(L(i

> 10)

is pretty high

1:n

if L(i ,j) 0

continue

end

P(i ,j) = abs(L(i ,j))/rowSumL(i);
if (j==1)

18

, j));

'1);

C(i ,j) = P(i ,);
else

C(i,j) = P(i ,j)
end

end

end

%% Computation

for i=1:n

for batch=1:nbatches

M2 = 0;

+ C(i ,j -1);

% If we already knew the solution earlier somehow, don't bothe:
if (x(i ,batch)

continue

end

for m=1:nchains

u 0;

w 1;

point=i ;

u = u + w*f(point);

while (1 = 1)

prn = rand (1);

for k=1:n

if (prn <= C(point ,k))

nextpoint = k;

break

end

end

w = w * sign (L(point , nextpoint))

u = u + w*f(nextpoint);

if (abs(w) < wcutoff)

* rowSumL(point);

% Online statistics for mean and stdev
if (rand(1) < (wcutoff/wave))

w = wave;

19

0)

continue;

end

delta = u - x(i ,batch);

x(i ,batch) x(i ,batch) + delta/m;

M2 = M2 + delta*(u-x(i ,batch));

break

end

point = nextpoint;

end

stdev (i , batch)

end

end

result (i)

= sqrt (M2/ (nchains -1));

= mean(x(i ,:))
end

end

20

Appendix D: Sample Code for Parallelized Monte Carlo

Solver using MPI in C

#include "mpi.h"

#include <stdio .h>

#include <string .h>

#include <stdlib .h>

#include <math.h>

#include <cs.h>

#include <stddef .h>

double getEntry(cs

// Gets entry from

*A, int nnz, int

matrix A at location

row, int col)

given by row,
int i ; for (i=O; i<nnz; i++)

{
if (A->i il = row && A->p[i]

{
return A->xil;

}
}

return 0;

}

double getEntry2(long long *p, double *x, int nnz, long row, long col)
// Gets entry from matrix A

{
int

at location given by row, col

c;

for (c=0;

{
if (i[c]

{

c<nnz; c++)

=row && pIc I col)

return x~c];

}

}
return 0;

21

{

col

col.)

}
void mcSolve(double *Px,
int nnz,

long *Pi, long *Pp,
int

double *Lx, long *Li, long

int nbatches ,
double wcutoff , double

{
double x~n];

int i , batch , m;

long c, point , nextpoint;

double cumSoFar, u, w, prn;

for (i=0; i<n; i++)

{

wave, double relaxation)

for (batch=O;

{

batch < nbatches; batch++)

for (m=0; m < nchains ; m++)

{
u 0;

w = 1;

point = i

u = u + w*flpoint];

while (1==1)

{
prn = ((double) rand ()/ (double)RANDMAX);
cumSoFar = 0;

c = 0;

// Assign nextpoint

while (prn > cumSoFar)

{
= cumSoFar + getEntry2(Pi,

nextpoint = c;

c++;

}
w = w * rowSumL[point]
u = u + w*fInextpoint];

if (fabs(w)

{

Pp, Px, nnz, p

* fabs(getEntry2(Li,Lp,Lx,nnz,

< wcutoff)

22

int nchains ,

*L

cumSoFar

if (drand48()

{
w = wave;

continue;

}
x[i] x[i]

break;

}

< (wave/wcutoff))

+ U;

point = nextpoint;

}
}

}
xli] x[i]/(nchains*nbatches);

printf("%.20f\n", x[i]);

}

}

int main(int

{

arge, char **argv)

double relaxation = 1.

double wcutoff = le-3;

int nchains 50;

int nbatches= 1000;
double wave 0.1;

int ierr ,

0;

nprocs, rank;

int root = 0;

ierr = MPIInit(&argc , &argv);

ierr = MPIComm rank(MPICOMM_WORLD,
ierr = MPIComm size(MPICOMM_WORLD,

&rank);//

&nprocs);

Get id of each processoi

// Get total number of
srand (rank *500000);

int nnz = 68, n

cs *L;

L = cs_spalloc

double f In];

cs *P;

(n,

Seed the pseudorandom number generator

20;

n, nnz, 1, 1);

23

P = cs _ spalloc (n,n,nnz,1,1);

double rowSumL[n];

long Li[nnz];

long Lptnnz];

double Lxlnnz];

long Pilnnz];

long Ppinnz];

double Pxlnnz];

if (rank = root)

{
es *A;

A = cs-spalloc (n, n, nnz, 1, 1);

A = readMatrixFromFile (A);

double bin];

b = readVectorFromFile(b);

double *avals

long *cols = A->p;

long *rows = A->i ;

/7 Initialize std dev vector

double std [n];

Initialize batch std dev vector

double stdbatch[n];

// Generate L

int c;

for (c=0; c<nnz; c++)

{
if (avals[ci

{

0)

printf("Somehow a

continue;

}

zero entry got in to the A matrix when I

if (cols [c] = rows[c])

{
if (relaxation

{

// if it 's a diagonal

1.0)

24

1~ //

A->x;

continue;

}

{
cs_ entry(L,

}

rows[c] , cols [cI, 1-relaxation);

{
int rowNum = rows[cl;
double diag;

cs_entry(L, rowNum,

}

Generate rowSumL (an

cols I I -relaxation*avalsIc]/getEntry

array that holds the value of the sum

for (c=0; c<nnz; c++)

{
rowSumL{L->i [c]

I
for (c=0;

{

c<nnz; c++)

rowSumL[L->i [c]

I

Generate

rowSumL [L->i I c]]+ fabs (L->x [c]);

f

for (c=0;

{

c<n; c++)

f [c] = 0.0;

I
for (c=0;

{

c<n; c++)

f[c] relaxation*bIc] getEntry(A,nnz,

I

Generate P

25

else

}
else

I

0.0;

of t]

c, c);

for (c=O; c<nnz; c++)

{
if (L->x[c] 0)

{
continue;

}
csentry(P, L->i [c]

}

for (c=0; c<nnz; c++)

{
Lii

Lp[

Lx

Pi[

Pp[

Px[

}

c]=L->i

c]=L->p

c]=L->x

c]=P->i

c]=P->p

c]=P->x

L->p[c] , fabs(L->x[c])/rowSumL[L->i Icli);

[c;
[ci;
[c];
[ci;
[c];
[c];

}

MPIBarrier (MPI_COMMWORID);

- MPIBcast(f, n, MPIDOUBLE, root , MPI_COMMWORLD);

MPI _ Bcast (rowSumL , n , MPIDOUBLE, r oot , MPICMM WORLD);
MPI_ Bcast (Li , nnz , MPILONG, root , MPI_COMMWORLD);
MPIBcast(Lp, nnz, MPILONG, root, MPICOMM_WORLD);
MPI_Bcast(Lx, nnz, MPIDOUBLE, root , MPI_COMMWORID);

= MPI_Bcast(Pi

MPI_Bcast(Pp,

= MPIBcast (Px,

nnz,

nnz,

nnz,

MPILONG, root , MPICOMMWORLD);

MPILONG, root, MPI_COMMWORID);
MPIDOUBLE, root , MPI COMMWORLD);

ierr = MPI _Barrier (MPICOMM__WORID);

int mod = nbatches % nprocs;

nbatches - nbatches/nprocs;

if (rank root)

26

ier r

e r r

ie r r

ie r r

ie r r

ierr

ierr

ierr

ie r r

I
nbatches = nbatches + mod;

}

mcSolve(Px, Pi, Pp, Lx,
wcutoff, wave,

Li, Lp, f,

relaxation

rowSumL, nnz, n, nchains, nbatches,

ier r

ierr

= MPI_Barrier (MMCOMM_WORID);

= MPI-Finalize ();

}
Uses CSparse library from:

Direct Methods for Sparse Linear Systems, T. A. Davis, SIAM, Philadelphia, Sept. 2006.
Part of the SIAM Book Series on the Fundamentals of Algorithms.

27

