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Abstract

Thermal simulation of buildings is a requisite tool in the design of low-energy build-
ings, yet, definition of weather boundary conditions during simulation of urban build-
ings suffers from a lack of data that accounts for the UHI effect. To overcome barriers
preventing the use of more representative climate data in building thermal simu-
lations, this thesis evaluates two recently developed methods for generating urban
weather files from a rural station. The two methods examined are computationally
inexpensive. The first method is the urban weather generator (UWG) a model devel-
oped by Bueno et al. and the second is a temperature alteration algorithm developed
by Crawley 2008. Actual weather data is used to validate the modeled urban data.
Actual and modeled weather data is then used in simulation of a typical single-family
and small office building to quantify normalized energy use metrics of urban buildings.
Applying the UWG to appropriate rural weather data reduces the error associated
with energy prediction of an urban single-family building by nearly half (21% to 13%).
If the Crawley algorithm is applied to rural data, the resulting weather data will pro-
duce simulation results that are lower (- 8%) and upper limits (+ 11%) to the actual
urban energy simulation results. For applications that either require feedback with
the urban design or have extensive data on the urban morphology we recommend the
use of the UWG with a radius of 500 m. For applications that lack urban site data
and are order of magnitude estimations, the Crawley algorithm generally is able to
provide extremes of the predicted EUI.

Thesis Supervisor: Christoph Reinhart
Title: Associate Professor
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Chapter 1

Introduction

Thermal and daylight simulations of buildings have become common analysis tools

for the design of new construction and assessment of building retrofits. Analytic

building models developed for simulation have the ability to guide key decisions about

building form, orientation, structure, envelope and mechanical system. The various

combinations of these systems define the building's operational performance. Yet

despite advances in technical capability to simulate whole-building thermal loads,

there is a growing understanding that climate assumptions used during analysis and

design to predict performance may be inadequate (Oxizidis et al., 2007).

Current thermal simulation practice generally relies on either typical meteoro-

logical year (TMY) data for predicting a building's average performance or actual

meteorological year (AMY) data for calibrating building models to observed data.

However, there is cause for concern because these widely used TMY files, which serve

as the basis for building design and evaluation, originate from long-term weather data

stations outside of urban areas, typically at airports (Wilcox and Marion, 2008). Since

many building sites tend to be urban, using weather data from a rural site introduces

a bias in performance metrics due to the well-known urban heat island (UHI) effect

(Arnfield, 2003). To work around this bias, a modeler may collect weather data from

an urban station if one is available. However, if one is not available, or if the planned

urban site and context is not yet built, methods exist that facilitate the use of a rural

reference station instead.
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This chapter defines the thesis's purpose, then further describes the UHI effect and

its implications on whole-building simulation, which further establishes the purpose,

and concludes with a brief outline of the topics to follow.

1.1 Purpose

To facilitate the use of more representative weather files during whole-building sim-

ulation, this thesis evaluates two recently developed techniques for generating urban

weather files from a rural station. The two methods examined are computationally

inexpensive. The first method is the urban weather generator (UWG) a model devel-

oped at MIT by Bueno et al. (2012). The second is a temperature alteration scheme

developed by Crawley (2008).

To test these models, we use them to transform rural weather data from two sites

outside of Cambridge, MA, USA into urban weather files. Observed urban weather

data from central Cambridge are compared to the modeled data.

The main questions addressed are:

1. How much can differences between urban and rural weather data affect the en-

ergy use intensity (EUI) of a typical residential and small commercial building?

2. Can the UWG or Crawley methods reduce these discrepancies?

1.2 The Urban Heat Island Effect

Anthropogenic processes impact many aspects of society including human health,

global economics and access to natural services (Patz et al., 2005; Heal, 2008; Com-

mitee on Ecological Impacts of Climate Change, 2008).

A significant manifestation of these anthropogenic processes is climate change on

both global and regional scales. At the regional scale, cities and associated urban areas

have a documented effect on regional weather elements (Baklanov et al., 2005). In

particular, the central core of urban areas tends to have the greatest impact on weather
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elements (Oke, 1982). Analyzing the spatial temperature distribution throughout a

city in cross-section reveals behavior that can be described as a 'heat island' (Fig. 1-

1). This phenomenon, named the urban heat island (UHI) effect, is well documented

throughout the literature of atmospheric sciences and has been generally accepted as

fact since the mid-1970s (Oke, 1973; Lowry, 1977).

The impact of cities on the regional environment entered the realm of atmospheric

science with a series of books by Luke Howard in the 19th century, in which he

analyzed the climate of London (as cited in Landsberg 1981). Howard made the first

published observations that London's urban center is warmer than the surrounding

countryside. Yet the foundation for understanding the physical processes that govern

the UHI effect is found in the body of work extending from the late 1960s to early 1980s

(Oke, 1974; Landsberg, 1981; Oke, 1979). Establishing the energetic and physical

basis of the UHI allowed the work of the late 20th and early 21st centuries to focus on

novel methods of UHI quantification, mitigation techniques, and modeling of urban

influences on regional climate (Bechtel, 2011; Hsieh et al., 2007; Erell, 2008; Lun et al.,

2009).

A complete review of the UHI literature is beyond the scope of this thesis and

the reader is directed to the thorough work of Arnfield 2003. However, to place this

thesis into the proper context, necessary background on the UHI, its energetic basis

and implications to architecture will now be discussed.

1.2.1 Energetic Basis & Analysis Methods

The UHI literature is primarily concerned with two manifestations of the impacts of

urbanization on regional weather elements: air-temperature and surface-temperature

heat islands. Throughout this thesis, use of UHI refers exclusively to air-temperature

heat islands in cities as explained in the following sections.

21
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Figure 1-1: Spatial distribution of the air-temperature across a city in section (a) and
plan (b) view. The peak air-temperatulre occurs at the center of the 'island' as wind

traverses from the city edge at A to B. (Figure from Okc)

Surface-Temperature Heat Island

Due to the growth in available remote sensing technologies, there has been a recent

emergence of research interested in documenting surface level variation in temperature

throughout urban areas (Tomlinson et al, 2011). By analyzing pixel data generated

from overhead satellites, scientists have extensively mapped the temperatures of rural

and urban surfaces (Weng, 2009). In their work, the assumption is that urban air

temperatures are inherently linked to surface-temperatures, following similar diurnal

patterns of spatial variation. This assumption is not generally true and it has been

shown that in fact urban surface temperatures and air temperatures have distinctly

different time scales (Arnfield, 2003; Weng, 2009). Additional complexity is intro-

duced during the analysis of surface-temperature heat islands due to the method of

sensing.

Sensing occurs at two distinct reference points: low-altitude and high-altitude

(Arnfield, 2003; Weng, 2012). Low-altitude sensing is characterized by an ability to
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determine the local geometry including streets, roofs and walls, while high-altitude

sensing is generally unable to resolve urban surface details (Weng, 2012). Despite the

unique characteristics of the surface urban heat island, advantages of studying this

phenomenon are that data covering large areas is readily available and new processing

algorithms allow better distinction of surface properties (Tomlinson et al., 2011).

In modeling exterior longwave radiation incident on the building envelope, a com-

mon assumption in architectural thermal simulations is that the ground temperature

is equivalent to the air temperature (Hensen, 2011). However, it is unclear what

role observations of surface level heat islands may eventually play in architectural

thermal simulation. Obstacles to using this information are a lack of synchroniza-

tion with urban air-temperatures, the lack of a direct relationship between sensed

surface-temperatures and ground-slab interface temperatures, and implementing exte-

rior ground temperature data during simulations. As such the UHI, or air-temperature

differences between urban and rural surroundings, is the focus of this thesis.

UHI

Urban buildings require additional treatment during the design phase due to the UHI

effect, which is the increase in urban air-temperature versus a rural reference site. The

UHI has two distinct modes that influence urban site weather conditions: the urban

boundary layer (UBL) and urban canopy layer (UCL) (Oke, 1982). The UBL is a local

affect that extends above the mean building height of a city to a prescribed maximum

while the UCL is a microscale affect that defines the climate between buildings. A

fundamental unit of the urban area used to define a building's local microclimate is

the urban canyon (Oke, 2006b). This formulation has been offered to allow a more

physical study of the UHI. A common method to evaluate a microclimate is to assess

the energy balance of the urban canyon. Via urban canyon analysis, the spatial and

temporal scale of the UHI effect can be discretized into manageable processes for

advanced study (Masson, 2000).

Microclimates of urban areas vary within the UCL due to the myriad of energetic

processes. Each process, which may be modeled from one or a combination of tech-
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niques, is impacted by the geometric, surface, material, and anthropogenic attributes

of a city. For instance, city form affects variables such as wind direction and speed

around buildings, shading, urban albedo and surface sky view factors. The presence

of anthropogenic heat sources including heating, ventilation, and air-conditioning

(HVAC) equipment and vehicular traffic also affects microclimate variation. Addi-

tionally, each urban surface's intrinsic thermal, moisture and aerodynamic properties

influences local surface moisture content, evaporation rates, etc. Accounting for these

microclimate perturbations to determine the effect on local weather has traditionally

required modeling techniques separated from detailed architectural thermal simula-

tion. Therefore, despite research that has continually shown the impact of urban

microclimate effects on building energy use, there has been little practical impact on

thermal simulation at neither the individual building nor the urban scale (Taha et al.,

1988; Santamouris et al., 2001; Mihalakakou et al., 2002; Yang et al., 2012).

1.2.2 Implications for Building Energy Use

Providing the requisite indoor air quality (IAQ) and thermal comfort to occupants of

urban buildings while reducing the magnitude of building related emissions requires

integrated design solutions that better incorporate local climates. In 2010, U.S. com-

mercial and residential buildings consumed 41% of the nation's primary energy, of

which 80% was fossil fuels (Department of Energy, 2009). Recognizing the need to

reduce building energy consumption, the American Institute of Architects (AIA) and

the federal government issued the Architecture 2030 challenge and the Energy In-

dependence and Security Act (EISA) of 2007, respectively, each called for net-zero

energy use in newly constructed buildings by the year 2030 (AIA, 2012; DOE, 2012).

However, by 2030, nearly 60% of the earth's population will live in cities thus the

majority of new construction will most likely occur in urban areas (United Nations,

2011). It seems apparent that integration of local urban climates into the determi-

nation of a building's operational energy use is necessary to deal with the increased

demands for housing that such a population influx will generate.

In Chapter 2, the state of urban climatology applied to whole-building simulation
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will be reviewed. Then we will describe our methods of evaluation in Chapter 3

with the results and discussion in Chapter 4. Finally, we will draw conclusions on

the utility of these low-computation urban modeling techniques and propose future

work in Chapter 5. A demonstration that replicates the weather files analyzed in this

thesis is included as Appendix A. Complete descriptions of the building models used

for analysis are included in Appendix B.
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Chapter 2

Literature Review

Climate change and climate modeling are research subjects that have touched a di-

verse group of fields. Investigations into the UHI effect is a subset of this work and

has followed a trend of increasing diversity. Therefore numerous analytic frameworks

have been developed that allow researchers to explore problems important to their

field.

A review of communication throughout the urban climate literature by Oke high-

lights the differentiation that exists among those that research the UHI effect (Oke,

2006b). In this thesis, we frame the UHI effect as an issue to be handled in the early

stages of thermal simulation in architecture. Which defines the intended audience of

this work as users of architectural thermal simulation and associated applications (i.e.,

thermal simulation of individual HVAC components, analytic urban design, etc.).

This chapter reviews several of the currently available tools in assessing urban

climate from the simple to complex. We are most interested in tools that quantify

the impact of urbanization on weather elements and produce either new weather data

or building energy consumption data. The emergence of urban climate assessment

tools with such output is discussed and we conclude with the current research needs

of the intended audience.
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2.1 Simple Modeling Tools in Urban Climate

Assessment

2.1.1 Empirical Models

Early in the study of the UHI effect, research focused largely on empirical measure-

ments of weather elements in various urban locations. This information was notably

synthesized into empirical relationships between city population and UHI magnitude.

Oke analyzed the UHI effect on cloudless nights in ten Quebec settlements using a

car mounted temperature sensor. His work sought to develop a functional form of the

maximum UHI magnitude based solely on population. By eliminating consideration of

nights with high winds and cloud cover, Oke was able to simplify previous analysis by

Sundborg, Duckworth and Sandberg, and Chandler (Oke, 1973). Oke then sought out

data from numerous UHI quantification studies in both North America and Europe.

For North America he posited the equation:

ATu-r(max) = 2.96 * logP - 6.41 (2.1)

while for Europe the following was found to be a better fit:

ATu-r(max)= 2.01 * logP - 4.06 (2.2)

Where P is population and Tu-r(max) is the maximum dry-bulb temperature difference

between the urban and rural site. This regression suggests that for North America,

96% of UHI magnitude is predicted by population and for Europe this figure is 74%.

Such strong correlation to a single predictor has garnered attention for better research

into populations and population density. One such evaluation in Delhi was able to link

increased land surface temperature to elevated construction of impervious surfaces due

to rising population density (Mallick and Rahman, 2012).

However, it is clear that population cannot be the sole UHI indicator and often the

assumptions necessary to support analysis with these regression techniques is ignored
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(Lee, 2012). Beyond that, there is also the issue that quantifying a single value of the

maximum UHI does not directly improve one's ability to design urban buildings and

settlements.

Modern tools of thermal design often require weather variables at a minimum

of hourly frequency. Therefore, empirically based methods for altering weather files

have emerged to facilitate the incorporation of the UHI effect in thermal simulations.

In the United Kingdom, Kershaw et at. developed a sinusoidal representation of the

UHI effect based on a month's minimum temperature, average temperature, time of

daily minimum temperature and time of daily temperature maximum (Kershaw et al.,

2010). The wavefunction is constructed via:

ATave - Trnin 1 + cos(7r(ti - tax))+ in; tin ti <tmax (2.3)

and

ATave - Tmin 1 - cos(7(ti - tmax))+

2 j 24 + twax - tmin

where tj is the hour of the day and tmax and tmifl are the times of the maximum and

minimum UHI. This function is offered with the explanation that it should be added

to the hourly temperature data in either current weather files or those resulting from

a weather generator.

The hourly UHI work of Kershaw et al. is related to an earlier algorithm developed

by Chow and Levermore that produces hourly dry-bulb temperature values from

a daily Tave, Tmin, and Tmax (Chow and Levermore, 2007). Chow and Levermore

recognized the need to downscale daily temperature values into hourly values in the

form of Test Reference Years (TRYs)and Design Summer Years (DSY) for building

thermal simulation. This need arose because several active UK weather stations and

recently developed future climate change models provided only daily temperature

values. Their solution was to utilize a quarter-sine wave approximation algorithm

to generate the required hourly values. This work does not apply directly to UHI
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studies, but is a further example of using empirical observations and wavefunctions

to generate hourly dry-bulb temperature time series data. Kershaw et al. reference

this methodology, but conclude that this level of detail is greater than required for

architectural UHI investigations.

Crawley introduced a scheme to alter a city's diurnal dry-bulb temperature profile

based on analysis done by Oke defining the energetic basis of the UHI effect (Crawley,

2008; Oke, 1982). This scheme is an algorithm that alters the dry-bulb temperature

(DB) based on the time of day and then recalculates the relative humidity. There are

two inputs to this scheme: hourly DB data from a reference site and the city's loca-

tion. A defining characteristic of this scheme is the parameter ADB, which indicates

how much the rural temperature increases for a given solar time. If the sun is up,

the algorithm subtracts 0.1*ADB from the reference signal; if the sun is down the

algorithm adds ADB to the reference signal. Intermediate times just before sunset or

just after sunrise add a prescribed fraction of ADB to the reference signal. Crawley

applies two values of ADB to the reference weather data, with the goal of producing

an upper and lower limit of the UHI effect on a building's microclimate. A city's lo-

cation defines these two values of ADB. Cities in upper latitudes (>480) are assigned

1 and 3*C while remaining cities are assigned 1 and 5C.

Building operators and designers seek to better incorporate current climate trends

into the early stages of design. Doing so is an important aspect of high-performance

and resilient design, but as with many engineering approaches the solutions to this

complex issue tend to be empirically based. The building engineering community is

most concerned with an adequate representation at the least expense from a time

and capital perspective, which drives the framing of the solutions. In subsequent

sections, this thesis reviews techniques that seek to incorporate local climate either

qualitatively, from combined analytic solutions and correlations, or directly from the

governing equations.
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2.1.2 Physical Models

Physical models of cities have been used to study the UHI effect qualitatively and as

tools to further understand fundamental physical processes. In such scenarios, simi-

larity is maintained with a cluster of model 'buildings' to test hypotheses regarding

either momentum or energy.

One of the first physical models developed to study the energy balance of the urban

canopy layer was constructed by Oke (Oke, 1981). To that point there had been many

observational UHI studies, resulting in multiple plausible hypotheses to describe the

UHI effect. Yet few of these hypotheses had ever been proven. Oke determined that

the simplest UHI 'cause' to test was the surface geometry hypothesis. This hypothesis

states that the UHI reaches a maximum at night due to a reduced cooling rate versus

the rural surface, which is the result of increased trapping of short-wave radiation in

urban canyons, decreased loss of heat by turbulence, and reduced long-wave radiation

exchange with the night sky. The model thus investigated the role of both geometry

and thermal admittance in urban vs. rural temperature differences. Comparison

to field data validated the model for the given conditions and helped to prove the

importance of urban geometry on UHI (Oke, 1981).

More recently, Kanda et al. utilized data from the Comprehensive Outdoor Scale

Model (COSMO) to estimate the roughness lengths for momentum and heat trans-

fer over 'urbanlike' surfaces (Kanda et al., 2007). This work is fundamental to the

further development of urban canopy models (UCM)that predict urban heat fluxes.

An UCM relies on simplifications of the surface layer heat transfer and local heat

transfer correlations to reduce computational complexity. However, one of the more

generally used simplifications, the Monin-Obukhov similarity theory (MOST), relies

on momentum and heat transfer roughness lengths to determine the urban aerody-

namic features (Kanda et al., 2007). Two scale physical models of cubic concrete

forms, situated outdoors, were instrumented in such a way that direct measurement

of surface temperature and conductive heat flux at the roof, fagade, and ground for

each unit was collected. Kanda et al. used the resulting model data to derive a rela-
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tionship between the desired length scales and a roughness Reynold's number, which

they suggest should be used within the MOST framework to improve estimations of

the bulk heat transfer coefficient in UCMs.

A common theme that emerges from these two studies is that investigation of

energetic fluxes via physical modeling is of most use for furthering fundamental un-

derstanding of urban processes. In cities, the urban energy fluxes become too complex

for physical models to provide direct insight. An architect or design team would never

build a physical model that aims for energetic similitude with a proposed urban site.

However, despite the lack of scale thermal models of urban areas in design, scaled

aerodynamic models of urban areas have continued use in multiple fields.For the in-

terested reader please refer to Ahmad et al. and Plate.

From this brief review of simplified modeling tools in urban climate assessment,

we identify that the most pertinent models for building thermal simulation are those

algorithmic and empirical methods that produce hourly data. The Kershaw algorithm

was developed with empirical European data whereas the Crawley algorithm was

developed more generally.

2.2 Advanced Modeling Tools in Urban Climate

Assessment

In numerical climatology, researchers strive to accurately describe the impact of the

earth's surface on atmospheric flow. Influences of the earth's surface are confined

to a region of the atmosphere known as the troposphere (Oke, 1992). Within the

troposphere, the characteristics of momentum and energy transfer are classified by a

variety of turbulent regimes.

Due to the chaotic nature of turbulence, it is inherently difficult to resolve nu-

merical solutions of atmospheric flow. Additionally, the complex interactions within

cities that lie at the horizontal 'boundary' of atmospheric flows require great com-

putational flexibility. Four generally accepted definitions of horizontal atmospheric
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scale are (Oke, 1992):

1. micro-scale 10-2 to 103 m

2. local-scale 102 to 5 x 104 m

3. meso-scale 104 to 2 x 105 m

4. macro-scale 10- to 108 m

Each scale is inextricably linked within a complex system of thermal processes.

Progress in numerical climate models has allowed an increasingly finer scale of at-

mospheric simulation in recent years, yet a key difficulty that the numerical weather

prediction (NWP)cornmunity continues to address is the description of urban envi-

ronments in mesoscale climate simulations (Baklanov et a/., 2005). Therefore, urban

climatologists have emerged as a further subset of the numerical climatology commu-

nity.

Urban climatologists apply knowledge of urban physical processes to better ap-

proximate the impacts of 'urban surfaces' (i.e., cities) on flow within the Troposphere.

A city along the earth's surface produces large transfer effects within the turbulent

Troposphere. Approximate knowledge of these effects, which occur in a region known

as the 'atmospheric sublayer,' is pivotal for accurate meso-scale atmospheric climate

models. The urban canopy model (UCM) paradigm and many of the urban applied

computational fluid dynamic (CFD)models are the direct result of this crucial need. It

is important to note that NWP is not traditionally concerned with developing models

of the urban environment that are tractable for all thermal simulation communities.

Instead, there is a desire to develop numerical models of the atmosphere built up from

numerous complementary modules built for specific time and length scales.

While work to model across scales may result in more accurate predictions of

environmental variables, this level of computation is orders of magnitude more than

that currently used in building thermal simulation. Engineers typically operate at

the lower thermal scales, while climatologists are interested in either higher thermal

scale phenomena or in combining information across scales. An evolving dynamic has
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emerged, in which greater computational power has allowed scientists to push the

perceived limits of model complexity, while engineers often emerge to 'cherry-pick'

information from a desired thermal scale.

The following section aims to describe the landscape of advanced models used

by urban climatologists. It will conclude with a description of the Urban Weather

Generator (UWG) by Bueno et al., which is the only known example of an envi-

ronmental model of the urban climate scaled to the same order of computation as

building thermal simulation.

2.2.1 Emergence of Tractable Urban Climate Models

Baklanov et al. and Lun et al. review the current state of models and schemes that

exist to parameterize the 'urban surface' for application to meso-scale climate models

(Baklanov et al., 2005; Lun et al., 2009). The UCM is a subset of these tools. UCMs

are either 'single-layer' or 'multi-layer' in reference to the number of turbulent layers

modeled for the flux of momentum and energy into the meso-scale atmospheric model.

Multi-layer and single-layer models both rely on an averaged building geometric rep-

resentation; however, multi-layer models involve discretization of the conservation

equations and direct numerical solutions whereas single-layer models rely on dimen-

sional correlations and empirical coefficients.

An alternative to the UCM method is the use of combined high (i.e., street level)

and medium (i.e., meso-scale) resolution numerical solutions to the conservation equa-

tions. The literature contains examples of both existing and altered meso-scale atmo-

spheric models with coarse horizontal resolutions coupled to higher resolution compu-

tational fluid dynamic (CFD) techniques. The uses of such a method include human

outdoor comfort modeling, calculating wind fields around single or multiple build-

ings, dispersion of pollutants, and prediction of urban weather elements. Oxizidis

et al. applied an existing meso-scale atmospheric model to a micro-scale CFD and

statistical weather model to develop synthetic weather years for building thermal

simulation (Oxizidis et al., 2008). This level of computation is of much greater order

and expense than building thermal simulation. We are interested in models of the
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urban environment suitable for architectural design; therefore we focus on single-layer

UCMs.

In particular, Masson introduced the Town Energy Balance (TEB) specifically to

improve the physical representation of urban surfaces in meso-scale climate models.

TEB and the building-averaged 'urban-canyon' representation are precursors to the

UWG by Bueno et al. The TEB scheme applied numerical methods previously used in

urban climatology to an atmospheric model. It was necessary to reconsider significant

physical interactions between urban areas and the atmosphere such as shortwave

radiation, urban heat fluxes and moisture. Since TEB was designed as a tool for

urban surface parameterization, its output is confined to variables that describe the

turbulent energy and momentum fluxes from surface grids into the atmosphere. TEB

output consists of latent and sensible heat fluxes [W/m 2 ], upward radiative fluxes

[W/m 2 ] and component momentum fluxes [m2/s 2]. However, despite the advantages

of low computational order, the TEB scheme neither considers the impact of dynamic

building operation on urban environmental variables, nor was it designed explicitly

for use outside of a meso-scale atmospheric model (Masson, 2000).

Kikegawa et al. were more explicitly interested in the ability to mitigate the UHI

effect in urban areas. Therefore they developed a methodology that coupled a meso-

scale atmospheric model, a UCM, and a building energy model to explore the impacts

of various urban parameters on the cooling energy demand of Tokyo, Japan. This

work represents a greater level of detail than the TEB scheme in that building cooling

energy demand is calculated, but it also relies on an external meso-scale atmospheric

model. Additionally, this work is limited in that the meso-scale atmospheric model

domain is constrained to the Japanese context (Kikegawa et al., 2003).

The urban weather generator (UWG) from Bueno et al. is an alteration to the

TEB scheme for use in architectural thermal analysis. The UWG consists of four

components: the rural station model (RSM), the vertical diffusion model (VDM),

the urban boundary layer model (UBL) and the urban canopy iA building energy

model (UCM). The RSM uses meteorological values from a rural site to calculate the

rural sensible heat fluxes, which the VDM then processes into a vertical temperature
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profile. The vertical temperature profile above the rural station is an input to the

UBL model. The UBL then calculates the air temperatures above the urban canopy

layer and couples with the UCM to solve for the dry-bulb temperature (DB) and

relative humidity (RH) in the urban canyon for each hour of rural reference data.

The UWG is a streamlined meteorological model that combines UCM-based en-

ergy balance calculations with a building energy model and a reduced order atmo-

spheric model. By examination of the available single-layer UCMs, the UWG is the

only known use of this low-computational order scheme, with a complementary low-

computational order urban boundary layer model, for direct application to thermal

simulation of buildings in urban areas.

2.3 Needs & Current Limitations

In this literature review we have identified that two approaches have the greatest

potential utility to the thermal simulation user group: semi-empirical models and

numerical solutions to atmospheric conditions that result in hourly weather data.

Despite the existence of these methods, our user group of interest still needs to know:

'Which of these two methodologies is most appropriate for current practice in building

thermal simulation?'

Currently, there is no answer to this question because the methodologies have

not typically had appeal across user groups. That is to say, climatologists have little

interest in semi-empirical, hourly weather models and engineers have little time to

invest in NWP across an entire urban domain. A limitation in the research to this

point has been the lack of methodological comparison. Without a quantification

of the advantages or disadvantages of either methodology there is concern that less

appropriate climate information will remain in use throughout the thermal building

simulation user group.

Therefore, to address the thermal design community's stated need and the current

limitations of research into urban architectural analysis, this thesis compares two low-

computational order schemes for defining weather elements in urban environments.
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Chapter 3

Methodology

Section 3.1 first describes the study region and the conditions at each of the urban

and rural weather data sites. Section 3.2 introduces the analysis of the UHI effect in

central Cambridge, MA, our chosen urban site. Then a method to assess the impact of

weather data source (i.e., rural versus urban data) on predicted energy use is defined

in Section 3.3. The metric for comparing energy use across sites and across building

types is energy use intensity (EUI), which is a normalized metric defined fully in

Section 3.3. Next, Section 3.4 defines the method to generate urban weather data from

a rural site using each of the models. Section 3.5 explains a method for quantifying

the improvements that simulated urban weather can provide in predicting a building's

EUI as well as a method for determining the most important weather elements for a

given scenario. Finally, in Section 3.6 we define our method for quantifying the effect

of urban morphology on the ability to predict urban weather.

3.1 Site Descriptions

Boston, MA is located in the northeast United States and the regional climate is clas-

sified as cold and moist (Climate Zone 5A) by the International Energy Conservation

Code (Council, 2009). However, the broader Koppen-Geiger climate classification de-

fines the region as warm-temperate, fully humid with a warm summer (Kottek et al.,

2006).
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Three sites were identified for data collection. Weather station data was accessed

via an online repository of Automated Surface Observing System (ASOS) and Per-

sonal Weather Station (PWS) (Masters, 2012). Fig 3-1 shows the locations of each

weather station. The weather station (KMACAMBR4) providing our urban signal

is located in southwest Cambridge. The two sites examined as rural are the airport

weather station located at Hanscom Air Force Base (KBED) and the station located

at Boston-Logan International Airport (KBOS).

The urban location is composed mainly of residential buildings, with a mix of

some small commercial buildings (Fig. 3-5). There is very little vegetated area and

no major parks or water features exist within a 500 m radius of the station. The

topography is flat with few variations and no major rises in elevation. Using urban

patterns defined by Oke, this station is classified as urban climate zone two (Fig. 3-3)

(Oke, 2006a). The KBED station is 19 km inland to the northwest of the urban

station and situated on a flat patch of grass on the runway (Fig. 3-4). The KBOS

station is located 8.3 km due east of the urban station, also on the airport runway,

which is a peninsula that extends into a subsidiary of the Massachusetts Bay (Fig. 3-1

and Fig. 3-2).

A rural site is defined as a site within the study region, but outside the urban

area and its affected environs with minimal influence from large geographic features

(e.g., valleys, large bodies of water, etc.) (Lowry, 1977; Oke, 2006a). The two sites

examined as rural were the airport weather station located at Hanscom Air Force Base

(KBED) and the station located at Boston-Logan International Airport (KBOS). We

note after this brief description that the KBOS station does not conform to the

definition of rural; however, weather data from KBOS is the basis for the Boston

TMY data and is therefore of particular interest to building modelers.

Observed weather data in the EnergyPlus Weather File (EPW) format was neces-

sary to perform the desired building thermal simulations (Crawley et al., 1999). The

necessary variables were gathered from each of the stations shown in Fig. 3-1 and

converted to EPW format following the methodology defined in Appendix A.

38



Weather Station 0 Rural * TMY Urban

Figure 3-1: Map of the Boston, MA metropolitan area and locations of each of the
weather stations used to collect data. Each site's local geography and proximity
to the urban station may be seen. From left to right: Rural, Urban, TMY. Aerial
photograph from Microsofts Bing Maps

3.2 Experiment 1: UHI Quantification

Our first objective is to determine the magnitude of the UHI effect at the urban site.

To assess the UHI effect at the urban site, the observed urban temperature signal

was compared to both airport temperature signals based on the framework developed

by Lowry. Lowry's framework models weather elements as the linear combination

of three components: the background or reference climate C, the effects of the local

landscape L, and the effects of local urbanization E. Thus,

Mux = Cjtx + Litx + Eitx (3.1)
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Figure 3-2: Boston Logan International Airport is shown. We see just to the right

the coastline of the larger peninsula and a number of runways. Aerial photograph
from MassGIS (Office of Geographic Information (MassGIS), 2011).
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Figure 3-3: The urban context is shown. We see that there are not many tall build-
ings, but the overall density and urban fabric is much more built up than at either
reference station. Aerial photograph from MassGIS (Office of Geographic Information
(MassGIS), 2011).
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Figure 3-4: Hanscom Air Force base is shown. Again there are a number of runways

that differ from a grassy rural area, but there are neither large geographic obstruc-

tions nor bodies of water. Aerial photograph from MassGIS (Office of Geographic

Information (MassGIS), 2011).
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Figure 3-5: The KMACAMBR4 PWS weather station is shown with instruments

mounted above a residential building in central Cambridge, MA. Image by the author.

Where M is the measured value of a given weather element i during the time

period t at station x. C is the value weather element i observed in the absence of

landscape and urbanization effects. Lowry notes that weather stations divide into

three subsets: u for stations within the urban area itself; C for stations within the

surroundings of the urban area, but not immune from urbanization effects (i.e. E /

0, L = 0); r for stations outside of urbanization and geographic effects (i.e. E = L

= 0). Boundaries separating the urban and rural sites are not explicit and can only

be inferred from site analysis and initial comparison of measured weather elements.

Once EPW files for each weather station were developed, hourly values were compared

between stations for the maximun differences. Due to limitations in the generation

of the EPW files the maximum urban versus rural temperature difference is selected

without considering outliers. Outliers are calculated as:

Q1 - 1.5 * IQR < Xvtlie, < Q3 + 1.5 * IQR (3.2)

where Q1 is the first quantile of the data, Q3 is the third quantile and IQR is the

interquartile range (Fig. 4-2 through Fig. 4-5). Additionally, the maximum urban
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versus rural temperature difference was calculated after selecting out only night hours

with wind speed less than 1.8 [m/sj (Fig. 4-8 through Fig. 4-7).

3.3 Experiment 2: UHI Impact on Building EUI

The second objective is to quantify the inipact that location has on building energy

use intensity, which will further attest to the need for prediction of urban weather

elements. This is accomplished by simulating each of the described whole-building

thermal models for one year of operation. Specification of each model is defined in

Appendix B. For building simulations, the EnergyPlus simulation engine is used. In

this case, we apply the metric of annual cooling and heating energy use intensity.

Energy use intensity (EUI) is defined as the amount of site energy consumed by the

model per unit of floor area.

8 7 60 
E,

EUI = n=t * (3.3)

where Ei is the site energy at hour i and Aconditioned is the total conditioned area of

the building. The simulation energy values are listed under the EnergyPlus meters

'Cooling:Electricity' and 'Heating:Gas'. Simulation weather conditions are evaluated

with an EPW file from two airport stations and the urban station. A total of six

annual simulations are analyzed (Fig. 4-10 and Fig. 4-11).

3.4 Experiment 3: Simulated vs. Actual Weather

Elements

An urban weather file was first generated using the Crawley scheme. Based on the

location of Cambridge, ADB = 10C, 5*C was applied to each rural site. The sun's

position relative to each reference weather station was calculated in the numerical

program R version 2.14.2 using the package 'solaR' (Perpinan, 2012). The Crawley

algorithm re-calculates relative humidity using the new DB temperature and the
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unchanged wet-bulb temperature.

Next, the UWG was applied to our proposed building site. Utilizing the UWG to

produce an EPW format weather file requires multiple input parameters. Cambridge

was selected precisely because of the access to both an operational weather station

and characteristic urban data (i.e., building height, building footprint, aerial imagery,

etc.). Input values for the UWG are in Table 3.1. An initial sensitivity analysis

by Bueno et al.. indicates that factors governing the specific urban site's morphol-

ogy, vegetative features and reference weather station are of the greatest importance

(Bueno et al., 2012).

Cambridge, MA has amassed detailed information on the buildings within the site

area (Office of Geographic Information (MassGIS), 2011). A 500 in radius circle cen-

tered at the KMACAMBR4 weather station defined the site area. A 500 m radius is

the area assumed to influence urban weather station readings directly (Oke, 2006a).

The average building height, horizontal building density and vertical-to-horizontal ra-

tio of the buildings within this area were then calculated from the Cambridge buildings

data layer furnished by MassGIS and the following equations:

Nh z7 *1 h (3

N

Pbld- = (3.5)
Aurb

N F A
VH = u=rb (3.6)

Aurb

where hi = height of building i, Bi = footprint area of building i, Aur= area of

circle defining the urban site, and FAj = facade area of building i. To assess the

urban area's vegetated features, bounding curves were overlaid atop color (24 bit, 3

channel), 30 cm resolution, orthographic imagery of the urban area. By calculating

the area of the closed curves and dividing by the size of the urban area, we arrived at

a value for the horizontal vegetation density. Defining the building model parameters
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Parameter Central Square
Urban parameters
Location
Latitude
Longitude
City diameter
Average building height
Latent anthropogenic heat
Sensible anthropogenic heat
Horizontal building density
Vertical-to-Horizontal
urban area ratio
Horizontal vegetation den-
sity
Wall construction

Wall albedo
Roof construction

Roof albedo
Building floor construction
Road construction

Road albedo
Building parameters
Glazing ratio
Window construction
Internal heat gains
Infiltration/ventilation
Cooling system
Heating system
Weather station param-
eters
Construction
Non-vegetated surface
albedo
Vegetated fraction

Cambridge, MA
42.363Ai
-71.108Af
5000 m
9.7 m
0.0 W/m2
0.0 W/m2
0.38
1.3

0.05

Brick - 0.2
0.03 m

m; Insulation -

0.15
Tile - 0.06 m; Wood - 0.2m;
Insulation - 0.03m
0.25
Concrete - 0.2 m
Concrete - 0.2 m; Asphalt
- 0.05 m; Stones - 0.2 m;
Gravel and soil
0.08

0.3
Double-pane clear glass
6.25 W/m2
0.5 ACH
Off
Furnace

Soil
0.15

0.8

Table 3.1: Inputs to the UWG with Cambridge specific urban geometric parameters.
Other parameters from UWG validation in Toulouse, France.
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and canyon materials is a subjective problem. These inputs are the most uncertain

parameters. Lacking site-specific data, we used thermal, radiative, anthropogenic flux

and building parameters from a UWG validation for Toulouse, France.

Simulated EPW data from each model was compared to the observed urban data

via the root mean square error (RMSE) and mean bias error (MBE) statistics:

RMSE (3.7)RAISE 1 IN
NN

MBE = (xi - (3.8)
N

where N = 8760 is the number of hours in an EPW file, xi,1 is the estimated weather

element and X,2 is the observed weather element.

3.5 Experiment 4: Building EUI & Simulated Weather

After statistically analyzing the simulated EPW files, the fourth objective is to de-

termine:

1. What are the most influential weather elements on each building

model's EUI?

If the dry-bulb temperature and relative humidity are not the most influential

variables on each building's EUI then these urban environment models are less

useful. Bhandari et al. show the influence of individual weather elements on

building heating and cooling loads (Bhandari et al., 2012). Four experimental

EPW files were developed from observed data for each airport station. The

experimental EPW files are developed by inputting a combination of urban

weather elements into each airport EPW file. A summary of the data replace-

ment is show in Table 3.2 (Fig. 4-16 through Fig. 4-19).

2. How well does the EPW file generated by the UWG mimic the EUI

prediction produced by the urban observed EPW file?
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Observed Urban Element DB RH DB + RH Local Wind

Dry-Bulb Temperature X X
Relative Humidity X X
Wind Direction X
Wind Speed X

Table 3.2: An 'x' indicates, which urban variables are placed into each airport EPW
to create the experimental weather files.

Each building is simulated for one year of operation using the EPW file gener-

ated by the UWG. The predicted EUI is then compared to that predicted by

the observed urban EPW file. Four simulations are analyzed (Fig. 4-20 through

Fig. 4-23).

3. Do the EPW files created from the Crawley method's 'upper' and

'lower' bounds for ADB bracket the EUI prediction produced by the

urban observed EPW file?

Each building is simulated for one year of operation using the EPW file gener-

ated by the Crawley algorithm for ADB = 10C and ADB =5 C. The predicted

EUI is then compared to that predicted by the observed urban EPW file. Eight

simulations are analyzed (Fig. 4-20 through Fig. 4-23).

3.6 Experiment 5: Parametric Analysis of UWG

The urban morphology UWG input parameters may vary distinctly based on the

radius of influence that one chooses to define the urban site. To quantify this influence

the urban area is varied with five separate radii: 100 m, 250 m, 500 m, 1000 m, and

2000 m. Each value of the urban radius produced a new set of values defining the

horizontal building density, vertical-to-horizontal area ratio, and average building

height (Table 4.9). These new values were used to generate EPW files with the

UWG. Five additional annual whole-building simulations were analyzed to calculate

the impact of urban radius on annual EUI (Fig. 4-24 through Fig. 4-27).
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3.7 Summary

In this chapter we re-iterated the purpose of this thesis and described the methods

preceding the results in Chapter 4. Section 3.1 initialized our problem by defining the

locations of interest and provided associated imagery. Section 3.2 defined the analysis

of the UHI effect present at central Cambridge, MA, the urban site. Section 3.3 de-

fined both a method to assess the impact of weather data source on predicted energy

use and the normalized energy metric of EUI. Section 3.4 provided a detailed descrip-

tion of the inputs to the UWG and Crawley algorithm and defined how each input was

selected. Section 3.5 explained a method for quantifying the improvements that sim-

ulated urban weather can provide in predicting a building's EUI as well as a method

for determining the most important weather elements for a given scenario. Finally,

Section 3.6 defined a parametric methodology for separately quantifying the effect

of urban morphology on the generation of urban weather with the UWG. Note that

descriptions of the thermal building models are in Appendix B and a demonstration

of re-producing the weather data is in Appendix A.
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Chapter 4

Results & Discussion

In this chapter we present the results of each experiment described in Chapter 3.

Section 4.1 quantifies the UHI effect at the urban site. Once the magnitude of the

UHI is established, Section 4.2 quantifies the impact of the UHI on the predicted

energy use of typical urban buildings. Section 4.3 presents the results of each urban

weather generator and calculates statistical measures of how well each simulated signal

replicates the urban signal. Simulation results of the typical buildings with actual

and experimental weather data is presented in Section 4.4. Section 4.5 contains

the sensitivity analysis of the UWG to urban morphology and anthropogenic heat

parameters. Finally, a summary of results is compiled in Section 4.6.

4.1 Experiment 1: UHI Quantification

We hypothesized that there exists a systematic dry-bulb temperature difference be-

tween the defined urban site in central Cambridge, MA and both reference sites.

To examine this hypothesis, a year of dry-bulb temperature residuals between

the urban site and each of the rural sites were calculated. Dry-bulb temperature

differences between Hanscom Air Force Base and the urban site are in Fig. 4-2 and

Fig. 4-3. From Fig. 4-2 note that Tu-r(max) is reached twice during the summer and

the histogram in Fig. 4-3 shows that there is large variance in the sample of residual

dry-bulb temperature values. The same analysis applied to the dry-bulb temperature
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residuals between Boston-Logan International Airport and the urban site show that

3.1 C occurs with more frequency (Fig. 4-4), but the sample variation is reduced and

the annual mean of the residuals peaks sharply around 0*C (Fig. 4-5).

A result of classic heat island theory is that the maximum dry-bulb temperature

difference between an urban and rural site should occur at night during times of

very calm winds (Chapter 2). To test this classic behavior, data was selected from

times when the sun was down and the wind speed was less than 2 m/s. Fig. 4-8

and Fig. 4-6 show that Tu-r(nax) does increase. The variance of the Boston-Logan

sample decreases (Fig. 4-7), while the mean stays approximately the same. However,

the Hanscom Air Force Base sample variance increases and the mean is shifted higher

(Fig. 4-9).

Finally, to test the significance of observed dry-bulb temperature differences be-

tween the urban and the rural sites we apply a t-test. The null hypothesis to test

is: Ho: The mean of the peak, night-time, dry-bulb temperature for each month is the

same at the urban and rural sites. The alternative hypothesis is: H1 : The mean of

the peak, night-time, dry-bulb temperatures are different between the urban and rural

sites.

After calculating the peak, night-time temperature for each day of a month, the

mean of these values was calculated (Table 4.1). Taking the urban site mean as the

population mean for a given month and the calculated rural site mean as the sample

mean, a t-statistic was calculated. Fig. 4-1 plots the p-values for each test. None

of the monthly peak, night-time, dry-bulb temperatures observed at Boston-Logan

International Airport lie within the 95% confidence interval, while 7 months from

Hanscom Air Force Base meet this level of significance.

A typical UHI effect will be relatively non-existent during the day and a maximum

at night, but temperature differences between the urban site and Boston-Logan Inter-

national Airport show no statistically significant difference during night-time hours.

Conversely, Hanscom Air Force Base appears to exhibit a strong reference signal with

a statistically significant (p <0.05) night peak for 7 months of the year. These results

confirm that the rejection of KBOS as a rural site is well founded.
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Figure 4-1: T-test results for the urban versus rural comparison of mean peak, night-

time temperature for each month of the year 20.11. The 80% confidence interval is
the dashed line. Only months from KBED fall within the 95% confidence interval.

jcC] KBED KBOS Urban

January -2.1 0.8 -0.5 0.7 -0.3 0.8
February 0.6 0.9 2 0.8 2.4 0.9

March 3.7 0.8 4.9 0.7 5.9 0.8
April 10.8 0.9 11 0.8 11.9 0.8
May 15.1 0.8 15 0.8 16 0.8
June 18.2 0.6 19.9 0.7 20.6 0.7
July 23.4 0.5 25.1 0.5 25.6 0.5

August 21.9 0.5 23.2 0.3 23.4 0.3
September 19 0.7 20 0.5 20.8 0.6

October 12.7 0.9 14.9 0.8 14.5 0.9
November 11.7 0.8 12.2 0.6 12.8 0.7
December 5.8 1 7.4 0.8 7.7 0.9

Table 4.1: Average peak, night-time dry-bulb temperature for each month of 2011 at

each weather data site. The statistical significance of urban versus rural temperature
differences is plotted in Fig. 4-1.
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Figure 4-2: Dry-bulb temperature residuals between KBED and KMACAMBR4. The

maximum urban-rural temperature difference is 5.7 0 C when all 8760 hours of the EPW

file are considered. Outliers are excluded from selection of the maximum temperature

difference
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Figure 4-3: Distribution of dry-bulb temperature residuals between KBED and
KMACAMBR4. All 8760 hours of the EPW file are considered for calculation of
mean and standard deviation. For improved robustness the median is also calculated.
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Figure 4-4: Dry-bulb temperature residuals between KBOS and KMACAMBR4. The
maximum urban-rural temperature difference is 3.1 C when all 8760 hours of the EPW
file are considered. Outliers are excluded from selection of the maximum temperature
difference
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Figure 4-5: Distribution of dry-bulb temperature residuals between KBOS and
KMACAMBR4. All 8760 hours of the EPW file are considered for calculation of
mean and standard deviation. For improved robustness the median is also calculated.
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Figure 4-6: Dry-bulb temperature residuals between KBOS and KMA(A MBR4. The
maximum urban-rural temperature difference is 2.90C when only night and low-wind

speed hours of the EPW file are considered. Outliers are excluded from selection of
the maximum temperature difference
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Figure 4-7: Distribution of dry-bulb temperature residuals between KBOS and
KMACAMBR4. Only night and low-wind speed of the EPW file are considered
for calculation of mean and standard deviation. For improved robustness the median
is also calculated.

56

+ T(u-rjmax= 2.90 C



T(u-r)

4-

(U

E

CD
(N

C0

0-

0

0

0 1000 2000 3000 4000
0

5000

Hour

Figure 4-8: Dry-bulb temperature residuals between KBOS and KMACAMBR4. The
maximum urban-rural temperature difference is 2.9( when only night and low-wind

speed hours of the EPW file are considered. Outliers are excluded from selection of

the naximnum temperature difference
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Figure 4-9: Distribution of dry-bulb temperature residuals between KBOS and
KIMACAMBR4. Only night and low-wind speed of the EPW file are considered

for calculation of mean and standard deviation. For improved robustness the median
is also calculated.
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4.2 Experiment 2: UHI Impact on Building EUI

Section 4.1 has shown that there is a significant difference in dry-bulb temperature

between Hanscom Air Force Base and the urban site. Recognizing these significant

anomalies in the dry-bulb temperature signal, the next step is to quantify the impact

this variation has on building thermal simulation and prediction of an urban building's

energy use. We will employ a normalized energy metric, energy use intensity (EUI),

which is the sum of either cooling or heating energy required for operation normalized

by the building's conditioned area.

Although the weather station signal at Boston-Logan International Airport does

not vary significantly from the urban weather signal, we will also quantify the micro-

climate variation between these two sites through building thermal simulation and the

EUI. We carry this on because the Boston, MA typical meteorological year (TMY)

weather file is derived from this signal. Users of building thermal simulation often

employ TMY files to determine average performance and these simulations will aid

in determining the degree of bias that is introduced into EUI predictions by using

weather data from outside the urban site. Therefore, we analyze annual EUI of each

building type for each airport station.

Table 4.2 and Table 4.3 quantify the simulation results. From Table 4.2 we see

that the energy use of the single-family building is dominated by heating. This table

represents three possible simulation outcomes depending on which weather data is

used to predict the building's annual EUI. If KBOS input weather data is used for

simulation then, the results would predict 16% higher total EUI than the urban

results. If KBED weather data is used for simulation, then the prediction would be

20% higher than actual performance in the urban area. The single-family building

demonstrates that it is quite sensitive to the choice of environmental variables during

simulation. This shows that using rural (KBED) or typical (KBOS) weather stations

to predict the total EUI of a typical urban single-family building will introduce a

variation in EUI prediction from + 19 kWh/m 2 (+ 20%) to + 15 kWh/m 2 (+ 16%),

respectively.
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Table 4.3 shows that a small office building located near Hanscom Air Force Base

would use 8 kWh/m 2 (+ 19%) more energy for heating per square meter than an

urban small office building, while a small office building located near Boston-Logan

International Airport would use only 2 kWh/m 2 (+ 5%) more energy for heating per

square meter than an urban small office building. The comparative magnitudes of

heating and cooling negate the negative impact of increased cooling energy consump-

tion. The small office is slightly less sensitive to the environmental conditions during

simulation, which is seen in the flattening of the EUI curve between KBOS and Urban

(Fig. 4-11). Results in Table 4.2 and Table 4.3 confirm that using rural (KBED) or

typical (KBOS) weather stations to predict the total EUI of a typical urban small

office building will introduce a variation in EUI prediction from + 7 kWh/n 2 (+

15%) to + I kWh/n 2 (+ 2%), respectively.
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Figure 4-10: Variation in a single-family building's simulated total EUI, heating EII,
and cooling EUI based on the source of weather data for simulation. The goal is to

predict EUI at the Urban site, but typically only data from rural sites is available.
Cooling EUI is two orders of magnitude less than heating EU! for this cold, moist
climiate.

[kth i/m2 ] single-family

Cooling Heating Total
KBED 4 108 112
KBOS 4 104 108
Urban 5 88 93

Table 4.2: Normalized energy metrics for the single-family building under three sep-
arate simulation cases. The target values are those predicted from observed Urban

weather data.
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Figure 4-11: Variation in a small office building s simulated total EUI, heating ETI,

and cooling ETI based on the source of weather data for siniulation. The goal is to

predict EI at the Urban site, but typically only data from rural sites is available.

[kWh/rn2 ] Small Office

Cooling Heating Total
KBED 4 50 54
KBOS 3 44 47
Urban 4 42 46

Table 4.3: Normalized metrics of the small office building under three separate sim-

ulation cases. The small office building responds weakly to climatic variables when

compared to the single-family building. KBOS and Urban weather data predict nearly
identical values of the EUI.
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4.3 Experiment 3: Simulated vs. Actual Weather

Elements

Section 4.1 showed that there exist significant variation in dry-bulb temperature be-

tween the rural and urban building sites examined in the Boston, MA metropolitan

area. Section 4.2 quantified these differences with normalized energy metrics. Now

that we know there are errors introduced to building thermal simulation due to using

either rural (KBED) or typical (KBOS) weather data to model an urban building, we

move to the step of generating more representative urban weather data.

An unknown combination of local urbanization and local geographic effects alters

rural weather data into the urban weather data finally observed. Using the Crawley

algorithm and the Urban Weather Generator (UWG) we will generate urban weather

data from the rural data sets following the methodology described in Chapter 3.

The results of microclimate prediction schemes were analyzed with the root mean

square error (RMSE) and mean bias error (MBE) statistics. There are three periods

of interest: annual, summer design week and winter design week. For each period of

interest, the target signal to replicate is the urban dry-bulb temperature measured at

KMACAMBR4.

Each of the microclimate prediction schemes attempts to reduce both the RMSE

and MBE with respect to the urban air temperature signal. A RMSE of zero indicates

that the urban signal was predicted with no error. Comparing the observed rural

weather data to the observed urban data, KBED has an annual RMSE of 2.8'C and

KBOS has an annual RMSE of 1.8*C. The corresponding MBE is -1.1*C and -0.2*C,

respectively. If the Crawley algorithm or UWG are successful then we will have a

reduction in the RMSE for rural sites and the MBE will be closer to zero.

Each weather generator is applied with either the Hanscom Air Force Base or

Boston-Logan International Airport weather data as the input data. Results from

the weather simulations are tabulated in Table 4.4. The UWG reduces the RMSE at

an annual time scale and for both winter and summer design weeks for both stations

as input. UWG either reduces the magnitude of the MBE or causes no change in
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magnitude for all time periods and with both input stations.

Dry-bulb temperature statistics on the Crawley algorithm are varied. For most

cases, the Crawley algorithm produces a worse RMSE than the unadjusted signal

(Table 4.4), except for ADB - loC. This is most likely attributed to the mismatch

between the observed UHI effect and that prescribed by the Crawley algorithm for

ADB = 5C. Viewing the design week figures demonstrates the characteristic features

of the Crawley algorithm (Fig. 4-12 to Fig. 4-15). Observing the summer and winter

design week hourly data we can see that neither model captures large swings in the

temperature signal. We conclude by noting that, as measured by the RMSE, the

UWG reproduces the urban dry-bulb temperature signal better than the Crawley

algorithm for all time and data input combinations, except for the winter design week

with KBOS data as input (Table 4.4).

[C] Reference Station

KBED KBOS
RMSE MBE RMSE MBE

Base 2.8 -11 1-8 -02
U 1.7 -0.1 1.5 0.2

A 1 25 -0,5 1-9 0.3
5 3.5 16 3.9 25
U 1.8 0.2 1.7 0.6

S 1 2.9 -0.7 21 03
5 3.5 0.9 3.6 2
U 12 -0.5 0.8 0.4

W 1 1.5 -0.6 1.1 0.7
5 3.3 2-2 4.1 3.4

Table 4.4: Annual (A), summer (S) and winter (W) statistical analysis of modeled
weather files: UWG (U), ADB=10 C (1) and ADB=5 0 C (5).
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Figure 4-12: A summer design week comparison between the urban station and two

modeled stations with KBED as the input rural station.

Winter Design Week
(KBED)
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Figure 4-13: A winter design week comparison between the urban station and two

modeled stations with KBED as the input rural station.
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Figure 4-14: A summer design week comparison between the urban station and two

modeled stations with KBOS as the input rural station.

Winter Design Week
(KBOS)

Jan08 Jan10 Jan12

Figure 4-15: A winter design week comparison between the urban station and two

modeled stations with KBOS as the input rural station.
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4.4 Experiment 4: Building EUI & Simulated Weather

After statistically comparing the results of each model we turn to evaluate the impact

of individual weather elements and specific combinations of these elements on each

building's energy use intensity. Four experimental EPW files were created by inserting

values from the urban EPW into the corresponding column of each airport EPW.

Simulation results with KBED as the base airport station are plotted for the single-

family building in Fig. 4-16 and for the small office building in Fig. 4-17.

Examining the single-family building simulation results in Fig. 4-16 from left to

right in these figures we can see the decrease in both total EUI and heating EUI from

the rural to the urban EPW file. Intermediate values of the EUI occur for each of

the experimental EPW files. Inserting either the urban dry-bulb temperature ('DB'),

the wind speed and wind direction ('Local Wind') or the dry-bulb temperature and

relative humidity ('DB + RH') values into the rural EPW accounts for nearly half of

the difference in EUI between rural and urban sites (Fig. 4-16).

However, with the small office building the influence of the wind speed and wind

direction is negligible (Fig. 4-17). The largest reduction in total EUI difference for the

small office building is with the urban dry-bulb temperature ('DB') and the combined

dry-bulb temperature and relative humidity ('DB + RH') EPW files (Fig. 4-17). We

may conclude that for KBED as the rural airport station the most influential variables

for reducing the difference between rural and urban EUI are the dry-bulb temperature

and relative humidity. The results also suggest that improved prediction of dry-bulb

temperature itself is as good as predicting both DB and RH together.
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Figure 4-16: (hanges in the simulated total ETI for a single-family building with
variation of EPW valies. KBED as the rural base.
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Figure 4-17: Changes in the simulated total EUI for a small office building with
variation of EPW values. KBED as the rural base.

67

Single-Family Building

Ec

CD

0

C\i

0

Rural DB

0)

CD
C',

U)

ii)

C
LU

0 -

Rural



Single-Family Building

O Heating.EUI U Cooling.EUI

Local Wind Urban

Figure 4-18: Changes in
variation of EPW values.

the simulated total EUI for
KBOS as the rural base.

a single-fan ily building with

Small Office Building
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Figure 4-19: Changes in
variation of EPW values.

the simulated total EUI
KBOS as the rural base.

for a small office building with
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The results from the same experimental variation with KBOS as the rural base

EPW file are very different. Examining the single-family building results we see that

exchanging urban values for either relative humidity, dry-bulb temperature or both

has negligible impact on reducing the EUI difference between the urban and rural site.

The most influential variables in this situation now become the wind speed and wind

direction, which accounts for nearly all of the EUI difference under the experimental

conditions (Fig. 4-18).

The importance of dry-bulb temperature and relative humidity between KBOS

and the urban station is de-valued in terms of EUI reduction because KBOS is not a

rural station. KBOS is within the urban regime as we discovered by both aerial site

analysis and comparison of weather elements. The proximity of KBOS to the urban

site implies that the dry-bulb temperature and relative humidity signals already share

many similar characteristics, therefore for the single-family home the differences in

local wind speed and wind direction dominate the building's thermal load and thus

greatly influence the predicted EUI. For the small office building, which is less sensitive

to external loads than the single-family building, there is a negligible impact of altering

weather elements (Fig. 4-19).

After quantifying the statistical improvements to the DB temperature signal, we

now present the results for building simulations with the modeled EPWs (Fig. 4-20

through Fig. 4-23). Each table accompanying the Fig. 4-20 through Fig. 4-23 details

the difference in EUI results between modeled EPWs and the urban EPW.

69



Single-Family Building

C Heating.EUI E Cooling.EUI

DB = 1 DB= 5 Urban

Figure 4-20: Changes in the total EUIl
is KBED and the dashed lines are the

for a single-family
limits imposed by

building. The rural station
the rural and urban values.

[kJ 17h/n 2 ] Cooling Heating TotalEUI

Rural 4 108 112
Crawley_1 4 103 107

UWG 5 100 105
Urban 5 88 93

Crawley_5 5 84 89

Table 4.5: Normalized energy metrics for the single-family building with both urban
weather schemes and KBED as the rural station.
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Figure 4-21: Changes in the
KBED and the dashed lines

total EUI for a small office building.The rural station is
are the limits imlposed by the rural and urban values.

[kWh/m 2 ]

Rural
Crawley_1

UWG
Urban

Crawley_5

Cooling Heating

4 50
4 47
4 46
4 42
4 38

TotalEUI

54
51
50
46
42

Table 4.6: Normalized energy metrics for the small office building with both urban
weather schemes and KBED as the rural station.
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Figure 4-22: Changes in the total EIT for a single-family building.

[kWh/m?2 ] Cooling Heating TotalEUI

Rural 4 104 108
UWG 4 103 107

Crawley_1 4 99 103
Urban 5 88 93

Crawley_5 5 80 85

Table 4.7: Normalized energy metrics for the single-family building with both urban
weather schemes and KBOS as the rural station.
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Figure 4-23: Changes in the total EI for a small office building.

1[k h/m 21 Cooling Heating TotalEUI

Rural 3 44 47
UWG 4 42 46
Urban 4.1 42 46

Crawley_1 3 41 45
Crawley_5 4 33 37

Table 4.8: Normalized energy metrics for the small office building with both urban
weather schemes and KBOS as the rural station.
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Fig. 4-20 - Fig. 4-23 summarize the findings of the thesis as they display simulated

EUI results for both models as well as for all observed data. In each figure the 'Urban'

simulation result for each building type is a constant. The 'Rural' value is dependent

on, which rural weather station was used to define the simulation conditions (i.e.,

either Boston-Logan International Airport or Hanscom Air Force Base). Thus, the

difference in simulated EUI between the 'Urban' and 'Rural' value is the error to be

expected if no urban weather data is available during simulation.

Table 4.8 and Table 4.7 highlight that KBOS has a temperature profile very similar

to the urban area and is much warmer than KBED. In general, methods to modify

rural weather data to form urban data will increase the temperature of the input

signal. Since the urban area and KBOS experience similar climate effects due to

geography and urbanization, applying microclimate prediction models to this data

results in EPW files that greatly under predict the heating EUI. In particular, ap-

plying the UWG to weather data from a station that does not meet the definition of

rural, produces EPW files for simulation that will result in worse predictions of the

urban building's EUI (Fig. 4-22 and Fig. 4-23). The Crawley algorithm is still capa-

ble of producing upper and lower limits to the urban single-family building EUI even

with KBOS as input data; however, for the small office building this is no longer the

case. For both building types and for both sets of input weather data, the Crawley

algorithm with ADB = 5C produces EPW files whose simulations result in extreme

under prediction of the urban EUI.

4.5 Experiment 5: Parametric Analysis of UWG

Several key inputs to the UWG are the urban morphology parameters, which vary

distinctly based on the radius considered to define the urban site. We varied the

defining urban area with five separate radii: 100 m, 250 m, 500 m, 1000 m, and 2000

m (Table 4.9). However, due to the rather homogeneous nature of Cambridge, MA

the greatest variation is in the vertical-to-horizontal area ratio (0.55 < VH < 1.54)

and horizontal building density (0.17 < Hbld 5 0.42).

74



In Fig. 4-24 and Fig. 4-25 the EUI prediction gets better as the radius decreases

and approaches the rural station EUI prediction for large values. This result is ex-

pected for a relatively homogeneous urban area because as the geometry defined in

the UWG becomes less dense, fewer buildings contribute to the energy balance, which

implies less modification to the input rural data. Fig. 4-26 and Fig. 4-27 illustrate

the results when KBOS is the input rural station. For a very small radius the EUI

prediction dips below that of the 'DB/RH' prediction, but then increases with in-

creasing radius. The negligible change in EUI prediction with radius with KBOS as

the rural base is to be expected from the analysis in Section 4.4. Dry-bulb temper-

ature and relative humidity have negligible bearing on the EUI difference between

KBOS and the urban site due to their similar weather patterns. In general, the 500

m radius works well, but users must individually determine the dominant morphology

surrounding an intended site and alter the area of influence accordingly. The range

of EUI prediction that manifests due to variable radius of influence is negligible for

the small office building and all cases with KBOS as the input weather.

Radius Avg. Height Hbld VH

[m] [m]
100 9.65 0.42 1.54
250 9.23 0.35 1.31
500 9.7 0.38 1.3

1000 10.2 0.3 0.96
2000 10.1 0.17 0.55

Table 4.9: Change in urban parameters with increasing radius.

75



l Heating.EUI U Cooling.EUI

o -

Rural 2000 m 1000 m 500 m 250 m 100 m Urban

Figure 4-24: Evolution of the EI for a single-family building for various iterations

of the UWG. IKBED as the rural base.

Small Office Building

E Heating.EUI U Cooling.EUI

Rural 2000 m 1000 m 500 m 250 m 100 m Urban

Figure 4-25: Evolution of the EUI for a small office building for various iterations of
the UWG. KBED as the rural base.
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Single-Family Building
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Figure 4-26: Evolution of the EUIl for a single-family building for various iterations
of the IW(. KBOS as the rural base.
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Figure 4-27: Evolution of the EUI for a small office building for various iterations of
the ITWG. KBOS as the rural base.
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4.6 Summary

Observing the actual Tu-r(max) between Cambridge, MA (KMACAMBR4) and Hanscom

Air Force Base (KBED) for 2011, with all hours considered, showed Tu-r(max) -

5.7'C. Observing the actual Tu-r(max) between Cambridge, MA and Boston-Logan

International Airport (KBOS) for 2011, with all hours considered, showed Tu-r(max)

= 3.1 0 C. When only night hours with calm winds are observed Tu-r(mnax) = 6.4'C

between Cambridge, MA and Hanscom Air Force Base for 2011. Alternatively, for

2011 night hours with calm winds, Tu-(max) = 2.90C between Cambridge, MA and

Boston-Logan International Airport .

In addition, seven values of the monthly average night-time dry-bulb temperature

peak of 2011 at Hanscom Air Force Base are significantly different than the urban

elements at Cambridge, MA (p < 0.05). Zero of these 2011 values recorded at Boston-

Logan International Airport are significantly different than the urban elements at

Cambridge, MA (p > 0.2). We reject the hypothesis that Boston-Logan International

Airport is a rural weather site. We accept the hypothesis that Hanscom Air Force

Base is a suitable rural site in comparison to the urban site at Cambridge, MA.

Section 4.2 simulated a typical single-family building and small office building with

three separate definitions of the simulation weather file. The total EUI predicted by

using an urban weather definition is the minimum value for both building types. This

is due to the beneficial effect of the UHI in a heating dominated climate. Using rural

weather data from KBED results in 19 kWh/m 2 (20%) and 7 kWh/m 2 (15%) over

prediction of the EUI in a single-family and small office building, respectively. Using

rural weather data from KBOS results in 15 kWh/m 2 (16%) and 1 kWh/m 2 (2%)

over prediction of the EUI in a single-family and small office building, respectively.

Section 4.3 utilized both Crawley's algorithm and the Urban Weather Generator

to produce artificial urban weather data sets from each of the rural sites. The an-

nual baseline error statistics for Hanscom Air Force Base versus the urban site are:

RMSE = 2.8*C, MBE = -1.1'C. The annual baseline error statistics for Boston-Logan

International Airport versus the urban site are: RMSE = 1.8'C, MBE = -0.2 0 C. Ap-
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plying the UWG with inputs from Table 3.1 to KBED input data produces: RMSE

= 1.70C, MBE - -0.1 0C. Applying the UWG with inputs from Table 3.1 to KBOS

input data produces: RMSE = 1.50C, MBE = 0.2 0C. Applying the Crawley's algo-

rithm with ADB = 1 C and 5C to KBED input data produces: RMSEADB=1-C

= 2.5 0 C, MBEADB=1o 1= -0.5 0 C, RMSEADB=5C 3.5 0C, MBEADB=50 C 1.6 0 C.

Applying the Crawley's algorithm with ADB = 1 C and 5*C to KBOS input data pro-

duces: RMSEADB=1 C = 1.9 0C, MBEADB=1 C= 0.3 0C, RMSEADB=50 C 3.9 0 C,

MBEADB=5-C= 2.5 0C.

Crawley's algorithm alters the input dry-bulb temperature signal into one that fits

the observed urban signal, based on the annual RMSE and MBE, worse for all cases,

except for ADB = 1*C applied to KBED. The UWG improves the input dry-bulb

temperature signal fit to the observed urban signal for all cases. However, the UWG

does not ideally capture large disturbances in the urban dry-bulb temperature signal.

Section 4.4 details the impact of specific weather elements on EUI prediction as

well as the EUI prediction based on simulated weather data. A single-family building

simulated with the urban weather data has a predicted EUI of 93 kWh/n 2 and a

small office building simulated with the urban weather data has a predicted EUI of

46 kWh/r 2 . When KBED is the input rural station, the most influential weather

element on EUI prediction for both building types is the dry-bulb temperature (Fig. 4-

16 and Fig. 4-17). Having the exact urban dry-bulb temperature signal with the

remaining data from the rural station ('DB' in Table 3.2) results in 103 kWh/mn2

(+ 11%) for the single-family building and 48 kWh/m 2 (+ 4%) for the small office

building. However, with KBOS as the input rural station, the most influential weather

elements for predicting EUI of a single-family building are the combination of wind

speed and wind direction (Fig. 4-18, but for the small office building altering weather

elements has negligible impact on simulation results Fig. 4-19).

If Hanscom Air Force Base is used as the input weather data for the Crawley

algorithm and UWG, then the UWG reduces the error between single-family building

urban and rural energy predictions by nearly half. For a small office building the

error is reduced from 15% to 9%. The Crawley algorithm with ADB = 1PC does
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provide an upper limit of the simulated EUI and ADB - 5*C is a lower limit to

the simulated EUI. However, if Boston-Logan International Airport is used as the

input weather data for each model, then the simulated EUI resulting from the use

of UWG output is not improved over the simulated EUI from observed rural data.

Additionally, the Crawley algorithm now only forms upper and lower limits to the

actual urban simulation results for the single-family building.

Section 4.5 quantified the the impact of radius of influence on generation of urban

weather files with the UWG. With weather data from KBOS as the input data for

the UWG, the variation in EUI with radius is negligible for both buildings (Fig. 4-26

and Fig. 4-27. With weather data from KBED as the input data for the UWG, the

variation in EUI with radius is negligible for the small office building (Fig. 4-25) and

for the single-family building, the EUI varies by 3% from radius - 100 m to radius

2000 m (Fig. 4-24).

Each of the microclimate prediction methods has advantages and limitations,

which are summarized in Table 4.10.
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UWG Crawley

Advantages Limitations Advantages Limitations

Analytic model Detailed information about A variety of Only latitude
of urban microcli- the urban morphology is a numerical plat- and city popula-
mates built from prerequisite, which may not forms can tion determine
the bottom-up that be available in various lo- implement ADB, which
incorporates ur- cales. this extremely greatly reduces
ban morphological simple method- the site speci-
parameters and ology. ficity available
detailed building to designers.
energy simulations.

The UWG builds The RSM defines the heat The algorithm's
upon several im- transfer phenomena at the simplified struc-
portant physical reference site in a very strict ture leads to
representations manner, which can lead to over-prediction
of the urban en- poor results if the user does of DB temper-
vironment, in not understand these as- atures in the
particular the aver- sumptions and inputs an early morning
age oriented urban improper reference weather and after sunset.
canyon and Town station.
Energy Balance
(TEB).

Extremely flexible To reduce the model's The algorithm
in its ability to computational structure does not define
describe an urban the UWG does not solve for suitable refer-
area and the physi- wind speed or wind direc- ence weather
cal process that oc- tion. This increased model sites.
cur. simplicity requires analytic

correlations to compute
the mixing of temperature
in the UBL model, which
becomes less effective as the
height of the urban canopy
increases.

Table 4.10: Each model's advantages and limitations is summarized above. A core

limitation of the UWG is the inability to handle input weather data that is not strictly
rural.
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Chapter 5

Conclusions

5.1 Key Findings

Currently, the design of urban buildings does not account for site-specific micro-

climates due to a lack of observable data from operational weather stations or the

inability to model potential microclimates. Additionally, calibrating energy models of

urban buildings is potentially limited due to a lack of urban site-specific weather data.

While computational power is increasing and more advanced methods of urban anal-

ysis continue to emerge, finding low-order computational models, with relevance to

design teans remains a great challenge. This thesis compared two low-computational

order models of the urban climate that may be applied to address these issues.

Based on observed weather data for the year 2011 we predict the typical single

family building to have an EUI of 93 kWh/m 2 and a small office building to have an

EUI of 46 kWh/m 2 . If no urban weather data is available and data from a regional

airport, Hanscom Air Force Base, is used instead, then we find an over prediction of

the urban EUJ by 20%, in the case of the single family building, and over prediction

of the urban EUI by 15% for the small office building. If weather data from the

nearest weather station reporting typical meteorological year (TMY) data, Boston-

Logan International Airport, is used instead of urban data, then we find an over

prediction of the urban EUI by 16% and 2% for the single family building and small

office, respectively.
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Analyzing the dry-bulb temperature signal from Boston-Logan International air-

port we reject the hypothesis that it is a rural station with a significant temperature

difference from the urban site. Therefore, applying the Urban Weather Generator of

Bueno et al. to the weather elements of Hanscom Air Force Base we improve our sim-

ulated predictions of the urban EUI for both single family and small office buildings.

The over prediction is reduced from 21% to 13% for the single family building and

from 15% to 9% for the small office building. Alternatively, if the Crawley algorithm

is applied to Hanscom Air Force Base data in order to create upper and lower limits

of the urban single family building's EUI, then the lower bound gives an 8% under

prediction of the urban EUI and the upper bound gives an 11% over prediction of the

urban EUI. For the small office building the lower bound gives 8% under prediction

and a 10% over prediction.

In conclusion, we state that the critical first step to assessing the impact of UHI

on early design simulations is to characterize the the weather site that is the source

of data. If this site fails to meet the rural assumptions, then applying either of

these models will not assist in annual EUI prediction. Once the weather source is

properly identified as rural then the application of interest should be identified. For

applications that either require feedback with the urban design or have extensive data

on the urban morphology we recommend the use of the UWG. For applications that

lack urban site data and are order of magnitude estimations, the Crawley algorithm

generally is able to provide extremes of the predicted EUI. However, unlike the UWG,

the Crawley algorithm does not allow parametric exploration of an urban design

problem. If users of thermal simulation seek to answer questions about the coupled

effects of their buildings and existing buildings, then the Crawley algorithm may

not be appropriate. When modeling urban microclimates adhere to the following

guidelines:

1. Ensure that the reference station used as input adheres to a rural definition:

site within the study region but outside the urban area and its affected environs

with minimal influence from large geographic features i.e. valleys, large bodies

of water, etc.
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2. If the station that collects TMY or AMY data does not fit the rural definition

and there is no suitable rural site, do not apply either of these simple models

to the data; this will likely result in a worse statistical fit to the actual urban

DB signal.

3. If there is insufficient data to calculate urban morphological parameters, apply-

ing Crawley's scheme to a rural site can bracket the urban DB signal.

5.2 Future Work

Recommending tools that improve thermal simulation of buildings in urban climates

should focus on the following areas of future research:

1. Simple models that better account for weather sites that are not

strictly rural The KBOS weather station is at an airport and provides TMY

data for thermal simulation of buildings. However, it is very near to the ur-

banized area and is on a peninsula. Each of these factors contributes to the

observed weather elements from this station. Research should focus on a more

robust urban weather generator that may have parameters that allow some

greater flexibility in the definition of the input weather station.

2. Advanced techniques for constructing EPW files for simulation In-

complete environmental data is a common issue in the environmental sciences

(Schneider, 2001). Techniques for managing statistical data with missing or in-

complete data are varied in their complexity and applicability (Schneider, 2001;

Junninen et al., 2004). Deciding which methods are appropriate depend on the

final use of the data. In the case of annual whole-building simulation there

is a lack of research comparing the impacts of environmental data imputation

methods on predicted building performance metrics.

3. Comparing the impact of ground-slab interactions on EUI to UHI

impacts on EUI
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Buildings with energy use tied to the envelope may have significant changes

in energy use due to environmental interactions. The choice of which weather

conditions to use for simulating urban buildings was discussed in this thesis. An

additional concern is the effect of heat transfer at the building foundation. The

single-family building modeled in this thesis utilized the Winkelmann model to

estimate the ground-slab interface temperature while the small office building

ground-slab interface was prescribed as a constant 18*C (Winkelmann, 2002).

These parameters were not altered simply to adhere to the general standard

that defines each building model. Andolsun et al. discuss the differences in

EUI encountered for a selection of foundation conditions and models of the

heat transfer (Andolsun et al., 2010). Additional work may be done to compare

the trade-off in thermal building simulation between more representative urban

weather data and better data regarding foundation heat losses.

4. Generalizing model findings across more climate zones

The variation of climate between regions is an important factor when drawing

conclusions about these low-order models. An advantage of the UWG is that it

requires input from a rural weather station within the climate region. Therefore

the deterministic momentum and heat transfer calculations that result in urban

weather data are more readily generalized. As long as the user has adequate

knowledge of the building site's urban area there is reason to believe that the

UWG will result in similar performance across climate zones. However, for

semi-empirical models and correlations such as the Crawley algorithm it may

be more necessary to repeat comparisons across climate zones. The assumption

that the urban heat island intensity for any city varies between 1 and 5C, as

is assumed by the Crawley algorithm, may of course have specific outliers, but

as is noted by the EPA and referenced by Crawley there is reasonable data to

support this assumption (USEPA, 2012).

5. Compare the Kershaw model to the UWG and Crawley schemes

An algorithm by Kershaw was introduced in Section 2.1.1. This semi-empirical
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model uses constants developed by a regional analysis of UK weather stations

to predict urban air-temperature anomalies. This method is comparable to

the Crawley algorithm and may represent an additional viable alternative for

estimating EUI variations in buildings due to the UHI.
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Appendix A

EPW Tutorial

A.1 Weather Elements

The UWG and Crawley's algorithm are each designed to alter data in an Energy-

Plus Weather (EPW) file format. The full specification for this format is found in

the EnergyPlus Auxiliary Programs documentation and the paper by Crawley et

al (DOE, 2010; Crawley et at., 1999). Simulation weather data for an EnergyPlus

thermal simulation must contain the following weather elements: Dry Bulb Temper-

ature [ C], Dew Point Temperature [*C], Relative Humidity [], Atmospheric Station

Pressure [Pa], Horizontal Infrared Radiation Intensity [Wh/m 2], Direct Normal Ra-

diation [Wh/m 2], Diffuse Horizontal Radiation [Wh/m 2], Wind Direction[o], Wind

Speed [m/s], Opaque Sky Cover, Present Weather Observation, Present Weather

Codes, Liquid Precipitation Depth [mm].

Each of these variables was downloaded from www.weatherunderground.com and

the corresponding ASOS or PWS station. Solar radiation data for the year 2011 could

not be accessed from www.weatherunderground.com for the urban weather station.

Therefore this data was downloaded directly from http://weather.keneli.org/.
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A.1.1 Mining & Processing

The principal tool for accessing online weather data used in this thesis is the statis-

tical software package 'R' (R-2.142) (R Development Core Team, 2012) (Fig. A-1).

Processing of data was done identically for each weather element type (Fig. A-2).

Solar radiation was processed further from total solar radiation into its diffuse and

direct components using the Reindl method (Reindl et al., 1990). Neither of the two

methods examined in this paper provides updated values of the urban solar radiation,

therefore we controlled for radiation data in simulations by using data from the urban

site in each EPW file. However, horizontal infrared radiation intensity was recalcu-

lated for each site based on observed dry-bulb and wet-bulb temperature according

to the EnergyPlus documentation (DOE, 2010).

HIR = esky * -* Tdry-jlb (A.1)

where HIR - horizontal infrared radiation intensity [Wh/n 2 ], o = Stefan-Boltzmann

constant = 5.67e- 8 [W/m 2 K 4], esky = sky emissivity, and Tdry-bulb= dry-bulb tem-

perature [K]. To calculate the sky emissivity the following equation was used:

Csky = (.787 .764 * n Tdewpmnt ) * (1 + .0224N - .0035N 2 = .00028N 3 ) (A.2)
273

where Tdewpoint = dew-point temperature [K], N = opaque sky cover [tenths]. Cloud

cover observations were set to zero and were not included in calculations of horizontal

infrared radiation intensity.

A.1.2 Data Sources

Observed values of urban and non-urban weather elements were taken from two types

of weather stations: Automated Surface Observing System (ASOS) and Personal

Weather Station (PWS). Each of the non-urban weather stations, Boston-Logan In-

ternational Airport and Hanscom Air Force Base are serviced by weather stations

that are a part of the ASOS. The urban station, KMACAMBR4, is a PWS.
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The ASOS is the result of a collaboration between three U.S. governmental agen-

cies: the National Weather Service (NWS), the Federal Aviation Administration

(FAA), and the Department of Defense (DOD) (Oceanic and Administration, 1992).

The primary goal of the ASOS is to provide the detailed minute-by-minute observa-

tional weather data necessary to safely operate an aviation facility. Data collected

through the ASOS is also designed for use in climatologic and meteorologic research.

Each ASOS station is composed of three components: sensor group, acquisition con-

trol unit (ACU), and operator interface device (OID). The standard sensor group

instrumentation includes: cloud height indicator, visibility sensor, precipitation iden-

tification sensor, freezing rain sensor, pressure sensors, ambient/dew point tempera-

ture sensor, anemometer, and precipitation accumulation sensor. Select ASOS sites

will also include a lightning sensor. Siting of the sensor group follows the Federal

Standard for Siting Meteorological Sensors at Airports(for Meteorological Services

and Research, 1994).

Location of ambient/dew point temperature sensors is important to the data and

models described in this thesis. Per the ASOS siting standard:

Five feet above ground is the preferred height. The sensors will be pro-

tected from radiation from the sun, sky, earth, and any other surrounding

objects but at the same time be adequately ventilated. The sensors will

be installed in such a position as to ensure that measurements are repre-

sentative of the free air circulating in the locality and not influenced by

artificial conditions, such as large buildings, cooling towers, and expanses

of concrete and tarmac.(for Meteorological Services and Research, 1994)

In general, a PWS does not conform to a specified standard. However, PWS's

have integrated themselves into U.S. climatology due to the availability of quality

instrumentation and network access. For example, PWS data providers that partici-

pate in the Cooperative Observer Program (COOP) must adhere to the same siting

standards as ASOS along with a base level of instrumentation (for Meteorological Ser-

vices and Research, 2010). Again, this is not the norm for a PWS. It is the combined
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No

Yesj

Figure A-1: Websites that store PWS information facilitate direct access of weather
data through web addresses that house comma separated value files. Each address is
defined by a station and date string.

sensing ability of the large PWS network that creates the value for these readings.

Current online weather services collect and distribute data from across the U.S. See

Fig. 3-5 for images of KMACAMBR4.

This methodology has limitations as the percentage of missing or invalid data

increases. To allow re-production of the results a demonstration of the code is provided

in the following sections. As stated in the future works, it is important to determine

what degree of accuracy is needed when using actual weather data.
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Figure A-2: All weather elements were processed via the same algorithm, in which
the data frequency was determined and then missing elements were filled with the

previous element carried forward. Sub-hourly data was first filled and an hourly
average was then applied to produce the EPW.
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A.1.3 User Functions

This section contains the functions that will be used throughout the demo in Sec-

tion A.1.4.

> wunderdaily <- function(station = 'KBOS', date)f

+ # Reads the daily information of an airport weather station

+ # from weather underground.

+ # Data is formatted and transformed into a data frame.

+ #

+ # Args:

+ # station: A string representing the naming convention of an airport on

+ # weather underground.

+ # date: A date in standard unambiguous format i.e. "2011-08-07"

+ #

+ # Returns:

+ # The data frame of online information from the assigned day.

+ require(httr)

+ require(RCurl)

+ if(!is.POSIXct(date) & !is.Date(date))f

+ stop('Date must be of the type POSTXct.')

+ }.
+

+ base <- 'http://www.wunderground.com/history/airport/

+ end <- 'DailyHistory.html?format=1'

+ # parse date

+ m <- as. integer (format (date, '%m'))

+ d <- as. integer (format (date, '%d'))

+ y <- format (date, '%Y')

+ # compose final url
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+ finalUrl <- paste(base,

+ station,

+/, y,

+/, m,

+', d,

+ /', end, sep=")

+ tf <- 'tf.csv

+ # reading in as raw lines from the web server

+ # contains <br> tags on every other line

+ flag <- try(

+

+ {

+ resp <- GET( finalUrl )

+ writeBin( content (resp, 'raw'), tf)

+ i~

+ silent = T

+ )

+ if(

+ class( flag) == 'try-error' /

+ ( resp$statuscode == 404 )

+

+ download.file( finalUrl,

+ tf,

+ mode = 'wb',

+ method = 'curl')

+
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+ data <- read.csv( tf,

+ skip=1,

+ header=T )

+ file.remove( tf )

+ # only keep records with more than 5 rows of data

+ if(nrow(data) > 5 )

+ {

+ colnames (data) [1] <-'TimeLocal'

+ flag <- grep('DateUTC', colnames(data), invert = T)

+ # Remove DateUTC column

+ data <- data[,flag]

+ # convert Time column into properly encoded string

+ data[[1]] <- strptime(data [[1], format='XI:XM p')

+ dataff[1 <- substr(data[[1I], 11, 19)

+ date <- format (date, '%Y-%m-%d')

+ data[ff1 <- str_c(date,data [[1I)

+ # remove all times that didn't occur on the hour and convert

+ # time to proper format

+ if (station == 'KBOS'){

+ data<-data[grep(' :54', data[[1]]),]

+ I else if(station == 'KBED'){

+ data <- data fgrep(':56', data[[1]),]

+

+ data[[1]]<-ymdihms(data[[I1], quiet=T)

+ # sort and fix rownames
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+ data <- data[order(data[[1]]), I

+ row.names(data) <- 1:nrow(data)

+ # Done

+ return(data)

+ }

+}

> DegConverter <- function(data, base = 'celsius'){

+ # Converts degrees from Celsisus to Fahrenheit and vice versa.

+ #

+ # Args:

+ # data: A vector of temperatures that is to be converted

+ # base: A character string defining the original temperature scale

+ # Default is celsius.

+ # Returns:

+ # The vector of converted temperatures.

+ n <- length (data)

+ # Error handling

+ if (n < 1)f

+ stop ("Argument 'data' is of zero length.")

+ }

+ if (TRUE Xin% is.na(data)){

+ stop ("Argument 'data' must not have missing values.")

+ }

+ if (base == 'celsius'){

+ data <- data*(9/5)+32

+ }

+ else

+ data <- (data - 32)*(5/9)
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+ return (data)

+ }

> AddlndexColumns<-function(df){

+ # Function to add columns to an input data frame.

+ # The added columns are taken from the POSIXct class

+ # column of the data frame.

+ # Args: df: A data frame object whose first column is

+ # assumed to be of the class POSIXct

+ # Returns: df: The input df with five additional columns

+ # Hour, Day, Week, Month, Season

+ # Note: Requires the lubridate package.

+ if (is.POSIXct(df[[1]]) J/ is.Date(df[[1]])){

+ library (lubridate)

+ df$Hour <- hour(df[[1]])

+ df$Day <- day(df[[1]])

+ df$Week <- week(df[[1]])

+ df$Month <- month(df [[1]])

+ df$Season <- ifelse(

+ (df$Month == 11

+ df$Month == 21

+ df$Month == 12),

+ ".DJF",

+ ifelse(

+ (df$Month == 3/

+ df$Month == 4!

+ df$Month == 5),

+ "MAM",

+ ifelse(
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+ (df$Month == 61

+ df$Month == 7/

+ df$Month ==8),

+ " JJA",

+ ifelse(

+ (df$Month == 91

+ df$Month == 10!

+ df$Month == 11),

+ "SON", NA))))

+ return(df)

+ }

+ else{

+ stop('The first column must be of the class POSIXct.')

+ }

+}

> SkyInfraredRadiation <- function(DB-temps, DP-temps, base 'celsius'){

+ # Approximates horizontal infrared radiation from dry and wet bulb temps.

+ #

+ # Args:

+ # DB-temps: A vector of dry bulb temperatures in celsius

+ # DPtemps: A vector of dewpoint temperatures in celsisu

+ # base: A character string defining the original temperature scale

+ # Default is celsius.

+ # Returns:

+ # The vector of infrared radiation intensity in w/m^2.

+ n <- length (DB-temps)

+ n2 <- length(DP- temps)

+ # Error handling

+ if (n < 1 / n2 < 1){

+ stop ("Argument 'DB-temps' or 'DP-temps' is of zero length.")
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+ }

+ if (TRUE XinX is.na(DBhtemps)){

+ stop ("Argument 'DB-temps' must not have missing values.")

+ }

+ if (TRUE Xin% is.na(DPtemps)){

+ stop ("Argument 'DP-temps' must not have missing values.")

+ }

+ #Begin Calculations

+ if (base == 'celsius')f

+ HIR <- (.787 +

+ .764*log((DP-temps+273)/273))*(5.6697e-8)*(DB-temps + 273)^4

+ }

+ else{

+ DP-temps <- DegConverter(DP-temps, base = F)

+ DB-temps <- DegConverter(DB-temps, base = F)

+ HIR <- (.787 +

+ .764*log((DP-temps+273)/273))*(5.6697e-8)*(DB-temps + 273)^4

+ I

+ return(HIR)

+}

> RadiationSplitResults <- function(file ='solarOutput.txt'){

+ RadComponents <- read.table(file)

+ DNI <- RadComponents [[4]]

+ DHI <- RadComponents[[5]]

+ comp.df <- data.frame(DNI, DHI)

+ return(comp.df)
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+},
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A.1.4 Demo: EPW from online data

This demonstration is designed to demonstrate how to create a basic weather data file

in the EnergyPlus Weather (EPW) file format. Testing was completed on a Windows

7 64-bit operating system. To follow along the user will need to download and install

three additional items. First, install a version of the statistical software package R R

Development Core Team (2012). R-2.14.2 and R-2.15.0 have been used for testing.

To calculate the necessary solar data the user must also install DaySIM. Finally, a

typical meteorological year file in the EPW format should be saved in the current

working directory. This walkthrough will use the Boston, MA TMY3 file from the

Department of Energy.

Several functions, previously generated in order to facilitate the generation of the

EPW files, are located in Subsection A.1.3. Load these functions prior to attempting

the demo. To begin we will add in the necessary packages.

> require(lubridate)

> require(plyr)

> require (stringr)

> require (zoo)

We will work with the Hanscom Air-Force Base to re-create the KBED EPW file.

This function will pull one day's worth of data from the online server. For example:

> date <- as.Date(Sys.DateO-1)

> data <- wunder-daily(CKBED', date)

> print(data[c(1:3),1)

Extending this function we can easily gather one year of weather data:

> # get data for a range of dates

> date.range <- seq.Date(from=as.Date('2011-01-01'),

+ to=as .Date ('2011-12-31'),

+ by='1 day')

> # pre-allocate list
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> data.list <- vector (mode='list',

+ length=length(date.range))

> # loop over dates, and fetch data

> for(i in seq-along(date.range))

+ {

+ data.list [[i]] <- wunderdaily('KBED', date.range [i])

+ }

> # stack elements of list into DF, filling missing columns with NA

> KBED.data <- ldply(data.list)

> KBED.data <- AddlndexColumns(KBED.data)

> # # KBED data is characteristically reported on the hour. Select

> # # only that data recorded on the hour.

> # KBED.data <- KBED.data[grepC:56', KBED.data[[1]]),]

> # row.names(KBED.data) <- 1:length(KBED.data[[1]])

It is a good idea to save this raw data prior to any processing. We will save in the

current directory:

> # Save to CSV

> # Not Used: raw.path <- paste('\\path\\to\\,

> # 'my\ \directory\ \',

> # ' KBED. csv' ,

> # sep=")

> # write.csv(KBED.data, file=file(raw.path), row.names=FALSE)

> # rm(data.list, date.range, i, KBED.data)

> # KBED.data <- read.csv(raw.path, as.is = T)

> write.csv(KBED.data,

+ file='KBED.csv',
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+ row.names = F)

> # Grab the data from the file and put back into workspace

> KBED.data <- read.csv('KBED.csv', as.is = T)

> # Convert the object back into POSIXct class

> KBED.data[ll <- as.POSIXct(KBED.data[[1]])

> # End raw data grab

Now that we have the raw data saved outside of R as well as loaded into the workspace

we can choose to process however we like. For this simplifed EPW file the processing

will occur as described in Fig. A-2

> # Begin processing of raw data

> # Create merging data frame in order to fill missing values

> # The '00:56' is an artifact of KBED itself

> one.hour. interval <- seq(as.POSIXct('2011-01-01 00:56:00'),

+ as.POSIXct('2011-12-31 23:56:00'),

+ by='1 hour')

> x <- as.data.frame(one.hour.interval)

> colnames (x) [1] <- colnames (KBED. data) [1]

> # Merge and remove duplicates

> KBED.data <- merge(KBED.data, x, all.y = T)

> KBED.data <- KBED.data[!duplicated(KBED.data[[1]]), I

> rownames(KBED.data) <- 1:length(KBED.data[[1]])

> # Data Flags need to be removed. These are -9999.0

> KBED.data <- KBED.data[as.numeric(KBED.data[[2]i)>-9999, I

> KBED. data <- KBED. data [as .numeric(KBED. data [[3i)>-9999, I

> KBED.data <- KBED.data[as.numeric(KBED.data[[4]])>-9999, I

> KBED. data <- KBED. data [as .numeric(KBED. data [[5])>-9999, I
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> KBED.data[[8]] <- as.numeric(KBED.data[[8]])

> KBED.data <- KBED.data[as.numeric(KBED.data[[81])>-9999, I

> KBED.data[[10]] <- as.numeric(KBED.data[[10])

> KBED.data <- KBED.data[as.numeric(KBED.data[[13]])>-9999, I

> # Remerge

> KBED.data <- merge(KBED.data, x, all.y = T)

> KBED.data <- KBED.data[!duplicated(KBED.data[[1]]), I

> rownames(KBED.data) <- 1:length(KBED.data[[1]])

> KBED.data[[10][8760] <- 0 # Precipitation inches

> #Create zoo object to fill NA's

> KBED.zoo <- zoo(mapply(FUN = as.numeric,

+ KBED.data[, c(2:5, 8,10, 13)1),

+ KBED.data[[1]])

> KBED.zoo <- na.locf(KBED.zoo,

+ na.rm = F,

+ fromLast = T)

> KBED.data[, c(2:5, 8,10, 13)] <- coredata(KBED.zoo)

> # Not Used: processed.path <- paste ('~\\path\\to\\',

> # 'my\\directory\\',

> # ' KBED-processed. csv', sep=" )

> # write.csv(KBED.data,

> # processed.path,

> # row.names = F)

> write.csv(KBED.data,

+ 'KBED-processed.csv',

+ row.names = F)

> # Clean up workspace

> # rm(KBED.data,KBED.zoo,x)
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Once all data except for solar is processed we can alter the respective columns

of the base EPW file saved in the directory. Read the stock EPW file into the

workspace and convert the necessary units. All variables of the EPW file are in

standard international units.

> # Create a new data frame that will be used to write the epw file.

> # Not Used: epw.path <- paste('~\\path\\to\\',

> # 'my\\directory\\',

> # 'USAMABoston-Logan. Intl. AP. 725090_TMY3.epw',

> # sep=" )

> # epw.df <- read.csv(file = epw.path,

> # skip=8,header=F)

> # fill <- readLines(epw.path,n=8)

> # KBED.data <- read.csv(processed.path)

> epw.df <- read.csv(file =

+ 'USAMABoston-Logan. Intl. AP. 725090 TMY3. epw',

+ skip = 8,

+ header = F)

> fill <- readLines ('USAMABoston-Logan. Intl. AP. 725090_TMY3. epw',

+ n=8)

> KBED.data <- read. csvCKBED-processed. csv')

> # convert units of the EnergyPlus required columns:

> epw. d f[[7]] <- round (DegConverter (as . numeric (KBED. data$TemperatureF),

+ base = F), 1)

> epw. d f[[8]] <- round (DegConverter(as .numeric (KBED. data$Dew. PointF),

+ base = F), 1)

> epw.dff[[9]] <- KBED.data$Humidity

> epw.df [[10]] <- as. numeric (KBED. data$Sea. Level. Pressureln) * 3386

> epw.d f[[13]] <- SkylnfraredRadiation(epw.df[[7]],epw.d f[[8]])
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> epw.df [[2111 <- KBED.data$WindDirDegrees

> epw.df [[2211 <- as.numeric(KBED.data$Wind.SpeedMPH) * 0.44704

> epw. df[[34]] <- as.numeric(KBED.data$Precipitationln) * 25.4

> # Fill Remaining columns with missing values

> # as defined by auxillary programs

> # guide.

> epw.df[,c(11,12)] <- rep(9999, 8760)

> epw.dff[[14]] <- rep(9999, 8760)

> epw.df[,c(17:20)] <- rep(99999, 8760)

> epw.df[,c(23,24)] <- rep(99, 8760)

> epw.df[,c(25, 26)] <- rep(9999, 8760)

> epw.df[,c(29, 31, 33)] <- rep(999, 8760)

> epw.df[[3011 <- rep(.999, 8760)

> epw.df[,c(32, 35)] <- rep(99, 8760)

> # Change the year value to 2002 becuase it

> # will be uniform and is arbitrary

> epw.df[[1] <- rep(2002, 8760)

Once converted and placed into correct format now simply write the new EPW

file. Note that this EPW file still requires observed solar radiation data.

> # Not Used: output.path <- paste('~\\research\\uhimodeling\\',

> # 'rawdata\\epwfiles\V,

> # 'testKBED_2011.epw',

> # sep=")

> output .path <- 'demoKBED_2011.epw'

> write.table(fill,

+ output.path,

+ quote = FALSE,
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Avg. Monthly Dry-Bulb Temperature
(KBED, 2011)
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D1
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Figure A-3: Average Monthly dry-bulb temperature at KBED in 2011.

+ row.names = FALSE,

+ col.names = FALSE)

> write.table(epw.df,

+ output.path,

+ append = TRUE,

+ quote = FALSE,

+ row.names = FALSE,

+ col.names = FALSE,

+ sep = ',')
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Avg. Monthly Dry-Bulb Temperature
(Boston TMY3)

7
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Figure A-4: Average Monthly dry-bulb temperature of the Boston TMY3 file.
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Demo: Accessing Sustainable Design Lab @ MIT Data

The Sustainable Design Lab MIT has recently installed an operational weather sta-

tion within a building canyon on campus. Datais collected and hosted on a public

server. Follow the link to the data and save within the current working directory.

Once the data is loaded into the workspace we have:

> # The data is reported at five minute intervals

> MIT.df[1:3,1

Time..Eastern.Daylight.Time Wind.Dir...

2013-02-12 17:20:00 58

2013-02-12 17:25:00 56

2013-02-12 17:30:00 51

Pressure..mbar Temp.. .C RH... DewPt.. C

1007.8 5.26 53.6 -3.39

1007.8 5.15 53.7 -3.46

1007.9 5.08 53.9 -3.48

Wind.Speed..m.s Gust.Speed..m.s

0.8 1.5

0.8 2.3

0.8 2.0

Batt..V

4.19

4.20

4.21

The data spans a period from 2013-02-12 17:20:00 to 2013-05-05 00:40:00 and data

is reported every five minutes, which implies that an ideal data set would have 23405

entries. Counting the number of entries, the MIT data has 23405 reported entries as

of 2013-05-05. Now we aggregate the data into an hourly format, write to a .csv file,

and plot a period of interest.

> # Make data frame into a multi-dimensional zoo object

> MIT.zoo <- zoo(MIT.df [,c(2:length(MIT.df))],MIT.df [,1])

> # Aggregate the zoo object with the funtion toHourly

> MIT.zoo <- toHourly(MIT.zoo)

> # Write the hourly data to a data frame object and then to csv file

> hourMIT.df <- data.frame(Time = format (index (MIT.zoo), '%Y-%m-%d XH:XM:%S'),
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Hourly Dry-Bulb Temperature
(MIT SDL, 2013-05-05)
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Figure A-5: Hourly dry-bulb teimperature recorded at the weather station rnonitored

by the Sustainable Design Lab @ MIT.

+ round(as.data.frame(MIT.zoo),2),

+ stringsAsFactors=F)

> # plot the data frame for dry-bulb temperature
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Avg. Monthly Dry-Bulb Temperature
(MIT SDL, 2013-05-05)

2
Mar May Jul Sep

Figure A-6: Average monthly dry-bulb temperature recorded at the weather station
monitored by the Sustainable Design Lab A MIT through 2013-05-05. Monthly max-
imrnum and minimum dry-bulb temperatures are identified by the red and blue lines,
respectively.
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A.1.5 Demo: Solar Data for EPW File

> require (solaR)

Similar to the previous sections we will use first access the solar data from the

server.

> # get data for a range of dates

> date.range <- seq.Date(from=as.Date ('2011-01-01),

+ to=as.Date('2011-12-31'),

+ by='1 day')

> # pre-allocate list

> data.list <- vector(mode='list',

+ length=length(date.range))

> # loop over dates, and fetch data

> for(i in seq-along(date.range))

+ data.list[[il] <- KeneliStation-daily(date.range [i])

+ }

Once the data is in the workspace it must be processed

> tmp <- ldply(data.list)

> #combine the data from 5min into 1hour intervals

> tmp.zoo <- zoo(tmp$Solar, tmp$Timestamp)

> tmpind.hour <- format(index(tmp.zoo),

+ '%Y-%m-%d %H')

> tmp <- aggregate(tmp.zoo,

+ tmpind.hour,

+ mean)

> index (tmp) <- ymd _hms(str_c(index(tmp),

+ ":00:00"),

+ tz = 'EST',
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+ quiet = T)

> one.hour. interval <- seq(as.POSIXct('2011-01-01 00:00:00',

+ tz = 'EST'),

+ as. POSIXct ('2011-12-31 23: 00: 00',

+ tz = 'EST'),

+ by='1 hour')

> x <- one.hour.interval

> x <- zoo(,x)

> t <- merge(tmpx, all = F)

> t <- merge(t, x)

> tmp.zoo <- t

> tmp.hourly <- data.frame(TimeLocal = index(tmp.zoo),

+ SolarRadiation = coredata(tmp.zoo))

> # Calculate when sun is up and down

> x <- one.hour.interval

> BTd <- fBTd(mode = 'serie',

+ year = 2011)

> solD <- fSolD(lat = 42.36,

+ BTd = BTd)

> BTi <- local2Solar(x,

+ -71.03)

> solI <- fSolI(solD,

+ BTi = BTi)

> solI <- as.data.frame(coredata(solI))

> # Pad zeros where sun is down based on solI

> for(i in 1:length(solI$aman))-

+ if(soll$aman[i] == 0) tmp.hourly$SolarRadiation[i] <- 0

+ }

> tmp.zoo <- zoo(tmp.hourly$SolarRadiation,

+ tmp.hourly$TimeLocal)
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> # Now fill the NA values using zoo objects

> tmp.zoo<- na.locf(tmp.zoo,

+ na.rm = F)

> tmp.hourly <- data.frame(TimeLocal = one.hour.interval,

+ SolarRadiation = coredata(tmp.zoo))

> tmp.hourly <- AddIndexColumns(tmp.hourly)

Now that the radiation data has been processed into hourly values of the total so-

lar radiation we need to prepare a file that can be split into the diffuse and di-

rect components of irradiaiton. To accomplish this split we will use the Reindl

method as noted in Chapter 3 Reindl et al. (1990). An executable file is included

with DAYSIM entitled gen-reindl.exe and the default location on Windows is

C:\\DAYSIM\\bin\\genreindl.

> # Build the data frame that will be written to a .txt

> reindl.df <- tmp.hourly[, c('Month',

+ 'Day',

+ 'Hour',

+ 'SolarRadiation')]

> reindl.df$SolarRadiation <- ceiling(

+ reindl.df$SolarRadiation)

> reindl.dff[[3]] <- reindl.df [[3]) + 1

> # Need an output file for the data

> # Not Used: solar.output <- paste ('\\path\\',

> # 'to\\my\\directory\\',

> # I'testsolardata. txt',

> # sep=" )

> solar.output <- 'demosolarData.txt'

> write.table(reindl.df,

+ solar.output,
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+ append = F,

+ col.names = F,

+ row.names = F)

> # Path to genreindl

> path. to.gen.reindl <- 'C: \\DAYSIM\\bin\ \gen-reindl'

> # Path to input data

> path. to.input.data <- paste(getwdO,

+ solar. output,

+ sep=')

> # Path to output file

> path.to.output.data <- paste(getwdo,

+ 'demo_',

+ solarData',

+ Isplit',

+ '.txt',

+ sep= ")

> # Options

> options.for.Boston <- '-m 75 -1 71.02 -a 42.37'

> # String to run via .bat file

> cmd.line.gen.reindl.string <- paste(path.to.gen.reindl,

+-i',

+ path.to.input.data,

+ 1-0',

+ path.to.output.data,

+ options.for.Boston,

+ sep = ' ')

> # Write the resulting string to a batch file

> fileConn <- file ("reindlcall.bat")
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> wri teLines (cmd. line .gen .reindl . string,

+ fileConn)

> close (fileConn)

Run the batch file that was created. The radiation data is now ready to be placed

into the EPW file created in Section A.1.4.

> fill <- readLines('demoKBED_2011.epw',n=8)

> epw.df <- read. csvCdemoKBED_2011. csv',skip=8, header=F)

> epw.df[[15]] <- read.table(path.to.output.data,

+ header=F) [[4]i

> epw.df[[16] ] <- read.table(path.to.output.data,

+ header=F) [511

> write.table(fill,

+ 'demoKBED_2011.epw',

+ quote = FALSE,

+ row.names = FALSE,

+ col.names = FALSE)

> write. table (KBED. 201lepw. df,

+ 'demoKBED_2011. epw',

+ append = TRUE,

+ quote = FALSE,

+ row.names = FALSE,

+ col.names = FALSE,

+ sep =

The KBED EPW file used for simulations described in Chapter 3 is now complete.
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Summer Week Irradiation
(KMACAMBR4, 2011)
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Figure A-7: Hourly Direct Normal Irradiance and Diffuse Horizontal Irradiance for a
summer week in 2011 collected from an urban weather station.
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Appendix B

Whole Building Models

Urban micro-climates are known to impact building energy use (see chapter 2). Build-

ings with envelope dominated loads such as residential and low-rise types are more

climatically sensitive. To assess the ability of urban micro-climate models to improve

predictions of building energy use during the design of urban residential and low-rise

buildings this thesis employs whole-building thermal simulation.

To calculate the actual impact of urban climate on energy use predictions each

building was simulated using the observed values from the urban and rural stations.

Then simulated weather files were used to compare the ability of each model to re-

create the urban environment. Descriptions of each building model follows.

B.O.6 Single-Family Building

The single-family building studied is a model constructed to the Building America

Benchmark building specification (Hendron and Engebrecht, 2010). Plant and equip-

ment were auto-sized based on the Boston-Logan TMY3 design day data for summer

and winter. The ground temperatures are calculated via the Winkelmann method

per the Building America building specification (Winkelmann, 2002).
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Form

The single-family building is a two story building with a rectangular floor plate (L:W

= 6:5). The total conditioned area is 220 m 2 (2400 ft2) with a 110 m 2 (1200 ft2 )

unconditioned attic. The roof is a gable roof at 6:12 pitch and the foundation is

slab-on-grade.

Envelope

Opaque envelope components of the single-family building are of light weight con-

struction and built to International Energy Conservation Code 2009 (IECC)Council

(2009). A Boston, MA detached single-family home requires a nominally rated R-

value of 2.3 W/m 2 K (13 hft2"F/Btu) with an additional 0.13 m (5 in) of outboard

continuous insulation. The wall is modeled as built up layers using a framing factor

of 0.23, which is representative of 0.05 m X 0.1 m (2 in X 4 in) construction A 0.41

m on center (16 in on center). Interior walls are of similar construction, but lack

insulation. Attic insulation is required at 6.69 W/m 2K (38 hft2oF/Btu) and is laid

flat along the attic floor.

Glazed constructions are confined to the exterior walls. The exterior window

glazing has a solar heat gain coefficient is 0.245 and the U-factor of the entire assembly

is 1.987 W/m 2 K (0.35 Btu/hft2oF). The window-to-wall ratio is 15%. There are no

skylights and no internal glazing.

Mechanical Equipment

The building is sectioned into two thermal zones and an unconditioned attic. A single

conditioned zone defines the living space comprised of both stories and a zone defines

the return air plenum. All cooling, dehumidification and heating is done mechanically

at the zone level.

Each zone is heated by the object 'Coil:Heating:Gas', which is a simplified capacity

model of a gas furnace with node connections only in the building's air loop. Nominal

capacity of the coil is 1.432E+04 W. Each coil uses a default gas furnace efficiency of
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0.78. Gas consumption in the model is a function of the sensible heat load to burner

efficiency ratio and a part-load correction.

A packaged electric air-conditioning unit is specified for zone cooling and is mod-

eled with the object 'Coil:Cooling:DX:SingleSpeed'. The condenser is air-cooled and

the default performance curves are supplied. Total cooling capacity [W] rated at

1.13E+04, sensible heat ratio rated at 0.74, and air flow rate [ms/s] is rated at 5.86E-

01. The rated COP of the unit is 3.95. Power consumption of this object is the sum

of compressors and condenser fan power.

Dehumidification of the room air is accomplished locally on the demand side with

the zone equipment object 'ZoneHVAC:Dehumidifier:DX. At rated conditions the

zone dehumidifier has an energy factor of 1.2 L/kWh.

Internal Gains & Schedules

Internal gains are scheduled as a fraction of the design peak gains on a per zone

basis. Peak internal gains due to lights, plug loads, appliances, and people are in

Table B.1. Infiltration of the unconditioned attic zone is specified by a design ef-

fective leakage area. Infiltration of the living zone is calculated via a 'Zonelnfiltra-

tion:FlowCoefficient' object, which is a function of flow, stack and wind coefficients,

schedule fraction, temperature difference, and wind speed. Natural ventilation has a

design flow rate of 0.001 m3 /s, which is modified by the schedule fraction, tempera-

ture difference and wind speed. There is no mechanical ventilation and all fresh air

is supplied via infiltration and scheduled natural ventilation.
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Figure B-1: Single-Family building used for EnergyPlus simulations.

Supply Air Path

Living Zone

- - 1

Figure B-2: Schematic diagram of the single zone single family building heating and

cooling system. Dehumidification occurs at the zone level and the fan is in a 'blow-

through' configuration.

122



B.O.7 Small Office Building

The small office building studied is a model constructed to the Department of Energy

Benchmark building specification (Torcellini et al., 2008). Plant and equipment were

auto-sized based on the Boston-Logan TMY3 design day data for summer and winter.

The ground temperature at the building is a constant 180C per the benchmark files.

Form

The small office building is a single story building with a rectangular floor plate (L:W

= 3:2). The total conditioned area is 511 m2 with an unconditioned attic. The roof

is a hip roof and the foundation is a slab-on-grade floor.

Envelope

Each building within the benchmark building set is constructed to meet ASHRAE

90.1-2004 (American Society of Heating Regfrigerating and Air Conditioning Engi-

neers, 2004). Therefore the envelope system for this iteration of the small office

benchmark building follows the specification for Boston, MA, which is in climate

zone 5A. Exterior walls are composed .03 in (1 in.) stucco, .2032 m (8 in.) thick

concrete, .05 m (2 in.) continuous insulation, and .015 m (0.5 in.) gypsum board ap-

plied to the interior. The floor is 0.1016 m (4 in) of non-insulated, on-grade concrete

with a carpet interior modeled as no-mass. Interior walls that divide thermal zones

are modeled as two adjacent .015 m (0.5 in) gypsum layers. Separating each thermal

zone from the unconditioned attic is the attic floor construction defined by .015 In

(0.5 in) gypsum, .24 m (9.5 in.) insulation, and .015 m (0.5 in) gypsum. The final

opaque construction is the exterior roof, which is defined as an exterior 0.01 m (0.4

in.) roof membrane and 0.002 in (0.08 in) metal decking on the interior.

Glazed constructions are confined to the exterior walls and a single exterior fully-

glazed door. The exterior window glazing and door share identical thermal and optical

properties. The solar heat gain coefficient is 0.39 and the U-factor of the each glazing

assembly is 3.24 W/m 2 K (0.57 Btu/hft2oF). The window-to-wall ratio is 21.2%. There
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are no skylights and no internal glazing.

Mechanical Equipment

The building is sectioned into five thermal zones and an unconditioned attic. Four

zones are defined along the building perimeter and one zone encompasses the building

core. All cooling and heating is done mechanically. There is no scheduled natural

ventilation and the system operates without an economizer. Cooling and heating are

done at the zone level.

Each zone is heated by the object 'Coil:Heating:Gas', which is a simplified capacity

model of a gas furnace with node connections only in the building's air loop. Nominal

capacity of each coil is auto-sized on a per zone basis. Each coil uses a default gas

furnace efficiency of 0.8. Gas consumption in the model is a function of the sensible

heat load to burner efficiency ratio and a part-load correction.

A packaged electric air-conditioning unit is specified for zone cooling and is mod-

eled with the object 'Coil:Cooling:DX:SingleSpeed'. The condenser is air-cooled and

the default performance curves are supplied. Total cooling capacity [W], sensible heat

ratio, and air flow rate [m3 /s] are auto-sized on a per zone basis. The rated COP of

each unit is 3.67. Power consumption of this object is the sum of compressors and

condenser fan power.

Internal Gains & Schedules

Internal gains are scheduled as a fraction of the design peak gains on a per zone basis.

Peak internal gains due to lights, plug loads, and people are identical across zones.

Infiltration of the perimeter zones is scheduled on a flow per exterior area basis, while

infiltration to the attic and core is scheduled as air changes per hour. Mechanical

ventilation is auto-sized to meet minimum outdoor air requirements on a per person

basis. (Table B.1)
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Figure B-3: Small Office building used for EnergyPlus simulations.
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Figure B-4: Schematic diagram of the five zone small office building heating and
cooling system. Zone air returns through a shared return path and passes through

an outdoor air mixing box prior to being supplied to each zone.
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Parameter Single-Family Small Office

Conditioned area 211 m2 511 m2
Schedules Typical Building America Typical office

Lighting power 3.4 W/m2 11 W/m2
Elec. Equipment 3.1 W/m2 11 W/m2

People 3 28
Infiltration 10.3 ACH A 50Pa 2.4 ACH

Glazing 15% 15%
Constructions Stud walls; attic roof; slab- Mass walls; attic roof; slab-

on-grade floor per 2003 on-grade floor per ASHRAE
IECC 90.1-2004 5A

Zones 1 5 (4 perimeter + 1 core)
HVAC Objects Coil:Cooling:DX:SingleSpeed; Coil:Cooling:DX:SingleSpeed;

Coil:Heating:Gas; Zone- Coil:Heating:Gas
HVAC:Dehumidifier:DX

Table B.1: Simulation parameters for each EnergyPlus building model used in this
study.
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