
 

 

Strategies for reducing energy demand in the materials sector 
 

By 
 

Sahil Sahni 
 

B.Tech., Indian Institute of Technology Madras (2007) 
 
 

Submitted to the Department of Materials Science and Engineering  
in Partial Fulfillment of the Requirements for the Degree of  

 
Doctor of Philosophy 

 
at the 

 
Massachusetts Institute of Technology 

 
February 2013 

 
© 2013 Massachusetts Institute of Technology. All rights reserved. 

 
 
Signature of Author:  ______________________________________________________  

Department of Materials Science and Engineering  
      January 14th, 2013 

 
Certified by: _____________________________________________________________ 

Timothy G. Gutowski  
   Professor, Mechanical Engineering 

 
Certified by: _____________________________________________________________ 

Joel P. Clark 
Professor, Materials Science and Engineering 

 
Certified by: _____________________________________________________________ 

Christopher A. Schuh 
Professor, Materials Science and Engineering 

 
Certified by: _____________________________________________________________ 

Randolf E. Kirchain 
Principal Research Scientist, Materials Systems Laboratory 

 
Accepted by:_____________________________________________________________ 

           Gerbrand Ceder 
            Chair, Departmental Committee on Graduate Students



 

  2 

 
 



 

  3 

 
Strategies for reducing energy demand in the materials sector 

 
By 

 
Sahil Sahni 

    
Submitted to the Department of Materials Science and Engineering 

on 14 January 2013 in Partial Fulfillment of the 
Requirements for the Doctor of Philosophy in 

Materials Science and Engineering 
 

 
ABSTRACT 

 

This research answers a key question – can the materials sector reduce its energy demand 

by 50% by 2050? Five primary materials of steel, cement, aluminum, paper, and plastic, 

contribute to 50% or more of the final energy use and CO2 emissions by industry, and 

thus are of primary focus. Both technical and demand-side strategies are evaluated to 

conclude that halving energy demand by 2050 is unlikely given the limitations governed 

by thermodynamics, scrap availability, and producer/consumer preferences, however 

some of the strategies analyzed offer encouraging opportunities and should be pursued.  

 

The thesis starts with understanding the evolution of material demand as society 

transforms from a developing to a developed economy. Economic scopes of global, USA, 

China, and India are assessed. The evolution trends are starkly different. The US shows 

strong signs of saturation while; both developing economies of China and India do not. 

The actors of material demand are analyzed to determine what is driving the difference. 

Results show that consumer income and population have been consistently increasing, 

but in the second half of the 20th century, the US industry has demanded less material per 

dollar output, while the US industry output has continued to grow. Collectively they tend 

to cancel each other, presenting a material saturation phenomenon. For China and India 

not only is the industry income and industry share of GDP growing, for each unit value 

addition, industry has continued to demand more material, avoiding demand saturation. 
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One major way to reduce energy used for materials is to decrease the energy intensity of 

material production. Four technology based strategies are investigated without regard to 

cost: 1) widespread application of best available technology (BAT), 2) BAT to cutting 

edge technologies, 3) aggressive recycling, and finally, 4) significant improvements in 

recycling technologies. Taken together these aggressive strategies could produce 

impressive gains, on the order of a 20% reduction in energy relative to 2005, but well 

short of the goal of 50% reduction. Ultimately, we face fundamental thermodynamic and 

scrap availability constraints. Thus reducing material demand without compromising any 

service (called “material efficiency”) is outlined as an approach to solving this dilemma.  

 

One way to increase material efficiency is use products for longer. Remanufacturing can 

support this by bringing used products back to like-new condition. Remanufactured 

products that substitute for new products are claimed to save energy.  This comes from 

only looking at the materials production and manufacturing phases of the life cycle. 

However, when the use phase is included, the situation can change radically. For the 25 

product cases we analyzed, 8 cases clearly saved energy, 6 did not, and 11 were too close 

to call. The drivers for this difference are explained. Thus the energy saving potential of 

remanufacturing seems complex and uncertain, especially given the trend of powering up 

of products followed by improvement of their energy efficiencies. As a result focusing 

remanufacturing efforts on passive products is recommended. 

 

Thus scalable material efficiency strategies need to be discovered. However even with 

the optimistic energy efficiency strategies deployed, in order to achieve the targets, 

demand increase for the materials needs to be restricted to under 25% of 2005 quantities. 

This entails that by 2050 we would need to reduce global demand per capita by 10% of 

today’s global average and by 70% of today’s US average which is an insurmountable 

task. Material efficiency strategies hold an impressive technical potential but face severe 

economic and behavioral challenges that future research needs to overcome. 

 

Thesis Supervisor: Timothy G. Gutowski 

Title: Professor of Mechanical Engineering 
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Chapter 1: Introducing the material-

energy space 
 

Materials aid societal development in a variety of ways. Many of the anthropogenic 

demands, directly or indirectly, are provided by materials. Without materials there would 

be no cars to drive around, no houses to live in, and there would also be no computers to 

rely on. It is almost impossible to imagine a world without materials. It is this reliance 

that has driven a steep growth in consumption for materials around the globe. Figure 1 

exhibits the global trend in material extraction in the 20th century classified into three 

classes – biomass, fossil fuels, and industrial minerals. In 2006, we extracted almost 60 

billion tonnes of materials with 50% of these being industrial minerals, 33% biomass, and 

the rest 17% fossil fuels. Also interesting are the growth rates in consumption of the 

different material types. Clearly industrial minerals seemed to have grown the fastest at a 

cumulative annual growth rate (CAGR) of 4.3% over the second half of the 20th century. 

On the other hand fossil fuels consumption has grown at 2.8% while biomass at 1.3%. 

This means that not only is industrial materials the largest class of materials extracted, 

their extracted quantities are also growing the fastest. At 4.3% CAGR, the extraction for 

industrial minerals expectedly doubles every 16-18 years. 
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Figure 1: Global extraction of materials in the 20th century. (1 Gt = 1012 kg) [1] 

In this thesis we thus focus on industrial minerals to understand how we can reduce the 

energy associated with their demand. This includes materials that make up most of the 

products we consume today, both at home and in industries, such as metals, ceramics, 

polymers, composites, semiconductors, etc. Figure 2 gives a breakdown by weight of the 

industrial materials produced globally for the 20th century (note that Figure 1 presents 

extraction mass which includes the material of interest and the matrix, while Figure 2 

refers only to the produced mass of the material of interest). Only two materials – 

cement, and iron and steel have dominated this sector with consistently increasing 

influence of cement. Demand for steel has grown as well but at rates lower than cement. 

‘Other’ materials is the highly fragmented portion comprising of all other materials with 

each less than 5% contribution and most less than even 1%. Some of the biggest ones 

within these are salt; sand and gravel; phosphate, sulfur, and potash used in fertilizers; 

non-renewable organics like plastics, waxes, rubber, etc.; paper; and of course other 

metals like aluminum, copper, zinc, and manganese.  
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Figure 2: Breakdown of industrial minerals produced globally into the major 

components by weight. ‘Other’ includes the highly fragmented set of remaining 

materials with none being consumed at over 5% of total industrial minerals and 

most in fact less than 1% [2] 

 

Clearly, we consume a lot of materials (global average of slightly less than 500 kg of 

cement and 150 kg of iron and steel, per capita per year (in 2008)), but of course they 

make our day-to-day products that serve us with many of our needs. From an 

environmental perspective one needs to look deeper into the environmental attributes of 

the different materials and ask which ones dominate from that front, and more 

importantly what is the potential to mitigate their corresponding environmental impacts. 

In this thesis we specifically focus on the energy footprint of the materials sector and how 

we can reduce it. One can also consider other impacts like carbon, water, land use, 

resource depletion, toxicological impacts, etc., but these are beyond the scope of this 

work.  
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In the materials sector, at least, there exists a strong correlation between the energy and 

carbon footprint across materials, referring to the large fraction of the CO2 emissions 

originating from energy use.  This is shown graphically in Figure 3, with the correlation 

coefficient higher than 0.93. Overall, IPCC has shown that close to 91% of the total 

carbon from the sector is from the energy use [3]. However, some materials emit CO2 

during the chemical processing involved to convert the material from ore to a more useful 

form. One example of this is cement, a majority of which is clinker. Clinker is produced 

through calcination which involves heating of calcium carbonation to lime / clinker, 

emitting CO2. Stoichiometrically, around half of the CO2 footprint of cement comes from 

this process, while the rest is from the fuel combustion on site and for electricity 

production. Similarly 30% of the CO2 emissions associated with steel production are 

from the process of coke reacting with iron oxide in the blast furnace.  

 

 

 
Figure 3: The carbon emission in kg CO2 per kg of material produced versus the 

embodied energy [4, 5]. 

 

!
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Given this, our primary focus is thus to reduce the energy demand to provide the 

materials we use which will automatically lead to an almost proportional carbon 

reduction. A closer look into this helps focus even further as shown in Figure 4.  

 

 
Figure 4: Total energy used for the production of 29 materials worldwide, 

cumulative scale on the right [3, 5].  

 

This shows the material-energy space as a Pareto representation of over 29 high-energy 

consuming materials sorted in descending order of their total annual energy use. Also 

shown through the black line is the cumulative distribution function for the energy 

consumed by these materials. If the different plastics were to be combined into one 

material ‘plastic’, it is highly revealing to note that just five materials consume close to 

90% of the total energy consumed by these chosen set of 29 commonly used materials. 

These are steel, aluminum, plastic, paper, and cement. In fact when compared to the total 

energy or carbon consumed by the global industrial sector, these five materials 

collectively dominate, with almost 50% of the final energy footprint (see Figure 5). 

Amongst these steel has the largest footprint, followed by plastics (half of which is the 

fuel value), then cement, paper, and relatively smallest but significant contribution by 

aluminum. Note the difference between the energy and carbon contribution for cement. 

This relates to the previously described process based CO2 emissions associated with 
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cement production. With industry energy and carbon being roughly a third of total global 

footprints [3, 4, 6, 7], these five materials contribute a significant 15% of the global 

impacts. We thus try to focus our analysis to these materials, but consider others as and 

when needed.  

 

 
Figure 5: Breakdown of industrial energy consumption and carbon dioxide 

emissions [4, 6, 7] 

Note, both Figure 4 and Figure 5 exhibit the total energy for each material, which simply 

put, is the product of the total quantity of material produced, and the average energy 

requirement to produce a unit quantity of material, sometimes referred to as embodied 

energy or energy intensity. Another term, ‘material intensity,’ will be used to refer to the 

ratio of material demand and some measure of economic performance like GDP or GNP. 

Figure 6 elaborates on material demand and embodied energy further. First, material 

apparent consumption is presented for the US, China, India, and at the global level, over 
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the second half of the 20th century. High quality data for plastics was not obtained and 

thus omitted. For each material, in each geography, the consumption is normalized to 

index the 1960 value to 1. The CAGR are also shown to the right of each curve. As 

expected, the growth rates in China are significantly higher, especially in the recent 

decades. Globally material demand has risen at ~ 3-4.5% per annum, while for the US its 

around 1-3%. Demand for aluminum has exhibited the highest growth for all scopes 

ranging from 3% in the US to 10.5% in China and India each. Steel has been slower, 

which might also have to do with the large quantities in which steel is consumed, either 

making the percentage changes small or due to some kind of saturation, or both. The 

reasons for the different apparent consumption rates can relate to a broad range of 

characteristics, some specific for the individual materials, but eventually correspond to 

the final utilization of these materials in providing the services demanded. Part (b) of 

Figure 6 presents the material specific embodied energy data. The embodied energy and 

carbon vary by over an order of magnitude across these materials, with the most 

consumed material cement having the lowest, and aluminum having the highest. More 

details about the composition of the footprints and their temporal and geographical 

variation will be provided in subsequent chapters. However it can be summarized that 

while impact per unit produced has significantly reduced over time for these materials 

(roughly at 1% per annum), the growth in apparent consumption has often outpaced it, 

causing the total impact to grow [4, 8]. Part (c) of Figure 6, shows how the material 

production and the associated total energy use has changed between 1981 and 2005 for 

four regions around the world. Note the significant increase in cement and steel 

production in China with an undesirable increase in embodied energy by over 400% 

driven mainly by the compositional change in materials consumed. Also interesting is 

how Europe has managed to reduce its embodied energy over this period, even though 

the material production composition seems to have been almost the same. 

Compositionally there has been little change for North America as well, however its 

embodied energy has increased by over 20%. We analyze the details in the subsequent 

chapters. 
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(a) 

 

Material 

Embodied 

Energy 

(MJ/kg) 

Embodied CO2 

(kg CO2/kg) 

Steel 32 2.5 

Cement 5 0.8 

Paper 32 1.5 

Plastic 90 3 

Aluminum 199 9.5 

Copper 70 3.8 

Zinc 72 3.9 

 

(b) 
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(c)  

Figure 6: (a) Apparent consumption (mass) trends for key metals and minerals over 

the last 45 years in USA, China, India, and globally. The consumption data is 

presented as indices with the 1960 quantity for each individual material been 

normalized to 1. The percentages along each curve are the corresponding CAGRs 

[9].  (b) Embodied energy and CO2 of key materials (primary energy for primary 

production) [[5], Copper and Zinc from [10]]. (c) Material production quantities 

and total energy to produce them for different geographies across 25 years [11]. 

 

In this chapter we have determined a relevant scope for assessing energy reduction 

strategies for the materials sector. Specifically we found that assessing five key materials 

of steel, aluminum, cement, paper, and plastic, is crucial, and to look at addressing 

strategies for both embodied energy reduction, as well as material demand reduction.  

 

In the next chapter we start with framing the thesis with the targeted research questions, 

methodologies and frameworks for analysis, and an overview of prior work. In Chapter 3 
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we move ahead understanding material demand, specifically what drives demand and 

what that can mean for future demand, so as to gain insight into what levers we can 

target. Then we look at energy efficiency in chapter 4 where we estimate the potential to 

reduce material embodied energy through various technical strategies. In chapter 5 we 

move into the other set of strategies – material efficiency – and comprehensively analyze 

the energy saving potential of remanufacturing products over replacing them with newer 

ones. In the final chapter, chapter 6, we assess the overall feasibility of material 

efficiency to help meet the targets, followed by a summary of key conclusions and 

suggestions for future work. 
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Chapter 2: Research Objectives, 

Methodologies, and Prior Work 
 

Research Objectives 

Sustainability guidelines for energy and carbon emissions suggest that we need to halve 

our energy use from 2000 to 20501 or act even faster [12, 13]. This means that while we 

have to allow for the developing world to continue increasing their demand for material 

services, we need to find ways to decrease the overall global energy use. Thus the 

motivation of this thesis is to evaluate strategies that can potentially reduce energy 

demand by the materials sector to half, specifically focusing on five primary structural 

materials – steel, aluminum, cement, paper, and plastic, as they dominate the industrial 

energy and carbon impacts. The specific questions / objectives for each section of the 

thesis and the corresponding scope of research are presented below. 

 

Table 1: Research objectives and scope of work 

 Material 
demand 

Energy 
efficiency Remanufacturing Material 

Efficiency 
Research 

Questions/ 
Objectives 

Understand 
how demand 
for materials 
has changed 
historically and 
how various 
actors have 
contributed to 
this change 

Estimate the 
potential to 
reduce energy 
through 
decreased 
energy 
intensity of 
materials 

Test the 
hypothesis that 
remanufacturing 
products saves 
energy 

Gauge the 
feasibility of 
material 
efficiency 
strategies in 
achieving 
targets 

Scope of Novel method Assess the Conduct 25 Evaluate 

                                                             
1 For example, the IPCC recommends reducing CO2 by 50% to 80% by 2050. Among the options 
available; 1) energy efficiency, 2) development of a renewables electricity grid, and electification of 
materials production, and 3) carbon capture and storage, we focus on the first, which appears to have 
significant near term and scalability advantages over the other two options. 
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work to analyze how 
demand has 
changed and 
using IPAT 
analysis to 
study the role 
of population, 
affluence, 
material price, 
and industry 
choice in 
driving these 
changes 

potential of 
deploying best 
available and 
cutting edge 
technologies 
for primary 
production as 
well as 
increasing 
recycling rates 
and recycling 
energy 
efficiency on 
decreasing 
overall energy 
requirement to 
provide 
materials 

product case 
studies and 
compare the life 
cycle energy need 
from using a 
remanufactured 
product versus 
life cycle energy 
need from using a 
new product 

targets for 
material 
efficiency and 
compare them 
to historic 
trends in 
material 
demand to 
guide future 
research in this 
area 

 

 

Methodologies 

Provided below are the various frameworks and models used for data procurement and 

calculations. 

 

Energy demand by the materials sector 

Framework objective: To quantify the total energy used for materials production as a 

product of the quantity produced and the energy use per unit production 

 

    

Equation 1 

where 

Ei = energy use per year for material “i” (Joules) 

 Qi = material production per year (mass) 

 ei =  energy intensity (MJ/kg) (also referred to as ‘embodied energy’) 

 

iii eQE ⋅=
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Total energy use across different materials or different grades of materials is the sum ET 

= Σ Ei = QTeavg , where eavg is the average energy intensity across the selected material set 

and calculated as the ratio of the total energy use per year for all the materials ET and the 

total quantity produced per year for all the materials QT. 

 

Data used were of two kinds: 

 

(1) Procured practical data from either secondary databases or personal 

communications with industrial experts 

(2) Estimated theoretical minimum data through thermodynamic models 

 

In the case of energy intensity data, ‘e’, (1) and (2) were compared to get a sense of the 

efficiency of current processes and thus the potential for improvement.  

 

Procured practical data from secondary sources 

Framework objective: To qualify data procured from external sources by developing an 

attribute test set to check for consistency with the scope of this work 

 

Practical data refers to data of processes and technologies as they as practiced today, or 

historically. This data is mostly sourced from reputed secondary data sources but often 

also complemented with primary data surveys by contacting industrial experts. Provided 

in the Appendix are the data and sources used for all the primary calculations presented 

in this thesis. Key references and their use in this research is also provided in the next 

section on Prior Work. The respective references as well as others used in this thesis have 

been carefully chosen to ensure accurate representation to the scope of this work. This 

includes a close verification for consistency across the different data through 

qualification of the data through important attributes. The process of collecting 

appropriate data is unfortunately not simple. For instance, energy intensity data is 

normally collected from surveys of individual companies by organizations like 

International Energy Agency (IEA) for various sectors, World Steel Association for steel, 

IAI for aluminum, etc. However geographic and temporal boundaries, allocation 
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methods, and process specifics vary a lot across the data, making it often inconsistent for 

comparison. A significant portion of the effort and contribution of this thesis is in 

aggregating high quality data and references, to draw valuable and reliable inferences. 

Listed below in Table 2 are some of the attributes we have observed and tracked in the 

qualification of data: 

 

Table 2: Attributes and example questions used for data qualification 

Attribute Example Questions 

Source 
Is the source of data credible? 
Has it published similar reputable data of this kind 
elsewhere? 

Process boundary Is finishing included?  
What process is used for material processing?  

Operating conditions 
What are the operating conditions?  
Is there any rate dependence?  
How does economic downturn alter the data? 

Temporal boundary 
Does the data correspond to the desired year?  
Is the inter-temporal data normalized appropriately 
for comparison? 

Geographic scope Is the data global average, or country or region 
specific? 

Energy accounting 

Is it primary or final energy?  
Is fuel value included?  
How has primary energy been calculated, if its 
primary energy?  
Is it the lower heating value (LHV)? 

Secondary fraction 
How is recycling rate calculated? As a fraction of 
supply, or discards? 
Does it include new / home / old scrap? 

Mix of material demand 
Is the energy intensity for primary, secondary, or 
mixed production?  
What are the specifics if mixed? 

Material demand 
Is the quantity considered production or 
consumption or apparent consumption or apparent 
supply? 

 

Along with the above list of attributes we have also tried to follow Carl Sagan and 

Michael Sherman’s ideas on what to consider before relying on the data or claims made 

by a source [14, 15]. These provide great guidance for data collection and synthesis. 
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We have often observed a common lacking regarding clarity and consideration of the 

above attributes. The Bath University through the Inventory for Carbon and Energy has 

consolidated energy intensity data from different sources. Figure 7 presents this for the 

five basic materials of interest. The plastic embodied energy estimates include the fuel 

value.  It shows the large scatter in reported data and the lack of adequate qualification to 

draw confident comparisons [10].  

 

 
Figure 7: Embodied energy scatter from various sources gathered together by the 

Bath University ICE database [10]. The y-axis is embodies energy in MJ/kg and x-

axis is the time period in years. 
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As an example of data variation, references [5, 6, 11, 16-26] are credible sources 

providing energy intensity information for steel. The reader is encouraged to read and 

compare these to understand the complications behind data qualification. We give a 

subset of the data values and information directly available to qualify the data in Table 3.  

 

Table 3: Example of data scatter for steel with information available for 

qualification 

Reference 
Data 
value 

(MJ/kg) 

Qualification 
(checked for data qualifiers including geographic 

boundary, time stamp, process boundary, secondary 
fraction, type of energy: final or primary) 
Only available information presented 

IEA 
[6, 11] 19 

Global average, with 37% secondary fraction, 
corresponds to 2005, process boundary includes steel 
making and finishing, final energy 

Ashby 
[5] 22 42% secondary fraction 

EnerData 
[16] 17.5 Global average, 2007 

Bath 
University 

ICE 
[10] 

24.4 UK mix, with 42.7% secondary fraction 

US Dept of 
Energy 

[17] 
18.4 

US average, with 45.5% EAF fraction and 54.5% BOF 
fraction, 1998, process boundary includes steel making 
and finishing 

Worrell et 
al. 

[18] 
20.4 

US average, with 39% EAF fraction and 61% Integrated 
steel mills fraction, 1994, process boundary includes 
steel making and finishing, primary energy 

US EPA 
[19] 12 US average, with 53% EAF fraction, 2004 

de Beer et 
al. 

[20] 
20.1 US average, primary steel, includes 2.7MJ/kg for 

casting/rolling 

US DOE 
[20] 8.9 US average, secondary steel, includes 2.8 MJ/kg for 

casting/rolling 
World 
Steel 

Association 
[21] 

24 World average, 1990, process boundary includes steel 
making and finishing, primary energy 

Note: Integrated steel mills input a fraction of steel scrap along with ore 
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All data used in this work has been checked for the above attributes. However, given 

general operational variation, and uncertainty or potential errors in data collection and 

reporting, we complement the calculations with extensive sensitivity testing and scenario 

analyses. This ensures robustness of the results and inferences, as well as guides future 

research in prioritization of data collection and accuracy verification. 

 

Detailed guidance on data collection and qualification can be obtained through various 

standards like ISO 14000, GHG protocol, etc. [27, 28]. However the general steps 

followed in this research are presented below: 

 

a) Referencing data from credible sources like IEA, UN, USGS, EnerData, as well as 

from authors known to have published extensively in this space 

b) Data qualification through understanding the various associated attributes 

c) Benchmarking data with other sources to ensure accuracy 

d) Conducting a sensitivity analysis if expected uncertainty in data is high, and / or if 

the specific data is crucial to the undertaken objective of the study 

e) Clearly presenting all assumption made regarding data and their application 

 

Theoretical minimum data estimated through thermodynamic models 

Framework objective: To estimate the theoretical minimum energy requirement for 

material production using thermodynamic models and exergy analysis 

 

The purpose of this is to construct a thermodynamic model to estimate the energy used 

through the different steps of material processing. The goal is not to perfectly model 

practical systems, but in stead to determine the theoretical minimum energy requirements 

for the respective material processing steps so as to gauge the potential for improvement.  

Thermodynamic Framework 

First lets understand the thermodynamic framework. This has been adopted from the 

work by Bakshi, Gutowski, and Sekulic [29]. The system is depicted in Figure 8. It 
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consists of a material processing subsystem and energy supply subsystem that provides 

energy for the material processing. The boundaries and the control volumes are also 

shown. The environment outside of the system is at standard temperature, pressure, and 

chemical potential.  

 

 
Figure 8: System for thermodynamic framework 

 

The energy conversion subsystem (ΩECMA) provides energy in the form of work W and 

heat Q to the material processing system that then converts the incoming raw materials 

into processed materials.  For the overall system boundary, three basic equations can be 

written for ΩMA’s mass MMA, energy EMA, and entropy SMA balance: 

 

Mass Balance:  

 
dM

MA

dt
= ( !N

i,in
"M
i
)

i=1

!
MA

" ( !N
i,out
"M
i
)

i=1

!
MA
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Equation 2 

where
i
N! is the amount of matter per unit time of the ith component entering or leaving 

the system and 
 
!M
i
 is the molar mass of that component. 

 

Energy Balance: 

 

dEMA

dt
= !QECMA,k

MA

k

! " !Q
0

MA
+ !WECMA

MA
+ !HMA

raw " !HMA

prod " !HMA

res        

Equation 3 

Where !QECMA,k

MA and !W
ECMA

MA  represent rates of heat and work interactions, respectively, 

between ΩMA and its energy supplying subsystem ΩECMA. The H!  terms signify the 

cumulative sums of the enthalpy rates of all raw materials, processed materials, and 

residues in and out of the system.  

 

Entropy Balance:   

 

dSMA

dt
=!

k

!QECMA

MA

Tk
"
!Q
0

MA

T
0

+ !SMA
raw " !SMA

proc " !SMA
res
+ !Sirr,MA                                                 

Equation 4 

where !QMA
/T  terms represent the entropy flows accompanying the heat transfer and  !S

i  

just like , represent the cumulative sums of the entropy rates of material flows. The 

term Sirr,MA  accounts for the entropy generation as a result of expected irreversibilities 

through the processes occurring in the system. 

 

In creating this model we make the assumption that operations take place at steady state 

(left hand side of each of the above equations is 0), and eliminate !Q
0

between Equation 3 

and Equation 4 to generate a model to estimate the work rate requirement for material 

processing: 

H!
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!WECMA

MA
= (( !HMA

proc
+ !HMA

res
)! !HMA

raw
)!T

0
(( !SMA

proc
+ !SMA

res
)! !SMA

raw
)! 1!

T
0

Tk

"

#
$

%

&
'

k>0

( !QECMA

MA
+T

0
!Sirr,MA                

Equation 5 

H-TS is the Gibbs free energy. We see above H-ToS appears. The difference between this 

and the same quantity evaluated at the reference state (denoted by the subscript “o”) is 

called exergy. Exergy of a material flow represents the maximum amount of work that 

could be extracted from the flow considered as a separate system as it is reversibly 

brought to equilibrium with a well-defined environmental reference state. Similarly it can 

be the minimum amount of work required to take a material from the reference state to a 

new desired state. 

 

  

Equation 6 

Broadly speaking, exergy can be written as a sum of two parts: chemical exergy and 

physical exergy  

 

 
Equation 7 

 

The physical exergy refers to the physical attributes of the system, namely the 

temperature and pressure, and is the maximum amount of work that can be delivered 

when the system is relaxed and allowed to come back to (T0, p0), known as the “restricted 

dead state.” The chemical exergy contribution represents the additional available energy 

that can be extracted from the system by letting the chemical potential restore to the 

reference state, thereby returning the system to what is called ultimate dead state, or just 

the “dead state” (T0, p0, μi,o) [29]. This reference state is typically taken to be the natural 

state in which materials are found in the earth’s upper crust, atmosphere, and oceans. In 

this thesis, exergy values are calculated using the Szargut reference environment. Several 
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updates and alternative references, environments are available, but they hardly change the 

accuracy of this development [30, 31].  

 

Combining Equation 5, Equation 6, and Equation 7, one can rewrite the work flow as 

                           

 

 

( 

              

Equation 8 

Equation 8 provides the framework for estimating the minimum work input for any 

process, i.e., when irreversibilities are zero, ToSirr = 0. Equation 8 directly corresponds to 

an exergy balance between the inputs and outputs of the system with the exergy 

components being the following: (i) , (ii) , 

(iii) , and (iv) . In general one can write: 

 

ndestructiooutQoutWoutinQinWin xExExExExExExE !!!!!!! +++=++ ,,,,    

Equation 9 

Exergy destroyed (
 
!Ex

destruction
) captures any work requirement beyond the theoretical 

minimum requirement for material processing. 

 

Equation 8 and Equation 9 can thus be used to generalize the minimum work rate 

requirement for material processing, by setting .0=
irro
ST !!   
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On a per unit basis, one can write 
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𝑤!"# =  
!
!
 =  𝑒!"# −  𝑒!"    

Equation 11 

where ‘e’ (not to be confused with embodied energy) is the exergy per unit of material. 

Equation 11 gives the minimum work or energy requirement for a particular process. In 

other words, the difference in the sum of the exergies of the outputs and the inputs is the 

minimum energy needed.  

 

Using this framework let’s also estimate the minimum energy requirement for material 

separation be it for recycling or extraction of ore from the mine or purification of 

material. Here we assume that the mixture of materials being dealt with is ideal. This is 

not necessarily true for many recycling and extraction systems, but it provides for a 

simplified way for modeling the complex system with the results providing good 

guidance to understanding the theoretical minimum work requirements for material 

separation. 

 

 
Figure 9: An ideal separation process [29] 

 

Consider the open system shown in Figure 9. Once again the environment is assumed to 

be at standard temperature and pressure of To and po. A two component mixture denoted 

by “12” is separated into “1” and “2”. One can again write the mass, energy, and entropy 

(accounting for the irreversabilities) balance equations, as we did for the material 

processing system before. 

 

Pure 

Component 2 

Pure 

Component 1 

Mixture 12 

inW!
outQ!
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out,iin,i

sys,i
NN

dt

dN
!! !=   i = 1,2             

Equation 12 

2112 HHHWQ
dt

dE
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Equation 13 

irr
out SSSS
T

Q

dt

dS
!!!!

!

+!!+!= 2112

0

         

Equation 14 

where Ni is the corresponding moles, and “Sirr“ is the entropy production associated with 

irreversibilities in the system. Like before we assume steady state and solve for the 

desired flow of work. 

 

irrooin ST)S)SS((T)H)HH((W !!!!!!!! +!+!!+= 12211221         

Equation 15 

Another way of writing the same is in intensive form, 

 

irrmixmixin ST)sTh(NW !!!
0012 +!"!"=              

Equation 16 

or, 

 

irrmixin STgNW !!!
012 +!"=

#           

Equation 17 

To calculate the minimum work of separation per mol of mixture we set 0=
irr
S! .  

 

mixgNW !
"#= 12min

!!            

Equation 18 
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or in other words 

 

mixg
N

W
w !

"#==
12

min
min !

!

         

Equation 19 

That is, the minimum work of separation is negative the Gibbs Free Energy of mixing. 

Energy losses or other inefficiencies in the system such that 0>
irr
S! , will make the work 

required larger and deviate from the minimum work requirement.  

 

Since we assumed mixture 12 to be ideal, Δhmix= 0. Hence the minimum work for 

separation can be further simplified into 

 

wmin = T0Δsmix.                         

Equation 20 

The mixing entropy Δsmix for non-interaction particles, can be calculated using statistical 

mechanics, essentially Boltzmann’s entropy equation. See [29] for derivation. 

 

i

n

i

i
xxRTw ln

1

0min !
=

"=                    

Equation 21 

Note that this result is not restricted to a mixture with two components only but is general 

and applied to one with n components. In the equation xi is the mole fraction of the “ith” 

constituent, and R is the universal gas constant, 8.314 J/(mol·K).  

 

For the example considered in Figure 9, the minimum work requirement for separation is 

hence 

 

))1ln()1(ln(0min xxxxRTw !!+!=         

Equation 22 
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These separation models can be used to calculate the minimum energy requirement for 

materials separation like in the case of recycling. However, one can also use the same to 

analyze material extraction or material purification processes, as they relate to material 

separation as well. However the situation is slightly different. In this case only 1 is 

desired and the remaining materials (2 in the two component system) are not. We also 

assume that the mixture is large enough such extracting a mol of “1” does not 

significantly change the molar concentrations of the original mixture. Equation 22, 

written in its extensive form is as follows:  

 

 

Equation 23 

 

A similar equation can be written after 1 mol of component 1 is extracted. 

            

       

Equation 24 

Subtraction the above two equations 

 

)
1

(ln01 min,
x

RTw =                     

Equation 25 

Ni is the number of moles (or atoms) of each component. This is the minimum work to 

extract one mole of material “1” and concentrate it from mole fraction “x” to the pure 

form at x = 1.  

 

Clearly the work required to extract goes to infinity as the mole fraction of the desired 

component goes to 0.  In Chapter 4 we observe this phenomenon for metals with dilute 

ores like silver, gold, platinum, and palladium (see Figure 21). Similarly extracting an 

impurity from an ultra pure material requires a lot of work. However, for the problem of 

purification as per the model above the work required goes to zero as the impurity 
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concentration becomes more dilute. In this case, the thermodynamics of separation for an 

ideal mixture does not agree with the common observation, that the work to extract an 

impurity per unit of valuable material actually increases as the concentration of impurity 

decreases. In none of the applications of the above model do we encounter such a 

situation and thus this does not influence the estimations made in this thesis.  

 

Example Calculation of Theoretically Minimum Energy Demand 

The example of primary steel is used to present the theoretical minimum energy demand 

calculation. Production of steel can be broadly categorized in 4 main steps: 

 

(1) Extraction of iron ore 

(2) Reduction of iron ore 

(3) Adding elements to make the desired steel 

(4) Shaping the product steel 

 

The theoretical minimum energy for step (1), extraction of the ore, is estimated through 

the separation model in Equation 25. According to Szargut, iron is found in the earth’s 

crust in the form of hematite, Fe2O3, at an average molar concentration of 1.3 x 10-3 [30]. 

In other words, when hematite is at this concentration at To, po, it is in the “Dead State” 

with exergy equal to zero. By a combination of geological processes followed by the 

anthropogenic processes of exploration, mining and separation the iron ore in the crust 

can be purified to pure Fe2O3. The theoretical exergy value of pure hematite is calculated 

using for a process that concentrates hematite from a molar concentration of 1.3 x 10-3 to 

1. The result is given below.  

 

e
x
*
Fe2 03

= T
0
R ln

1

1.3!10
"3
=16.5kJ /mole  ~ 8.25 KJ/mole of Fe = 147 MJ/tonne Fe 

       

Equation 26 
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Note that in reality this process takes the ore from the concentration of the mine to pure 

metal concentration of 1. Mine concentration is higher than 1.3 x 10-3 and thus the above 

estimate includes a potential exaggeration.  

 

In step (2) Equation 11 can be used for the primary reduction reaction for hematite. In 

this stage of purification, the iron is reduced from a pure oxide to a pure metal.  The 

minimum work to create pure iron from Fe2O3 is equal to the exergy lost when pure iron 

is oxidized to Fe2O3. The oxidation reaction for this is as follows,  

 

2Fe+
3

2
0
2
! Fe

2
0
3
         

Equation 27 

Using Equation 10 and Equation 11:  

 

2ex *Fe +
3

2
ex *02 !ex *Fe2 03 = !"g* f (Fe2 03 )       

Equation 28 

Using data from Szargut, the theoretical minimum energy demand for this step is 6.6 

GJ/tonne of Fe. Note that this is significantly higher than the theoretical minimum energy 

requirement for Step (1). 

 

Step 3 includes adding elements to adjust the composition to the desired steel. Along with 

carbon, C, common alloying elements include Si, Mg, P, S, Ni, etc. Adding these 

elements does not take any energy and the mixing process is in fact spontaneous. In the 

theoretical minimum calculation, the energy to produce these material or auxiliary 

materials that support the reactions is not included. However, sometimes heat treatment 

may be needed for the formation of certain compounds but the energy required is again 

negligible compared to step (2). As an example the Gibbs Free energy to form iron 

carbide (Fe3C) is 0.11 GJ/tonne of Fe3C. However, steel may only contain carbon, on 
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average, at less than 0.5% by weight, the theoretical minimum energy demand for the 

carbide is only 0.002 GJ/tonne Fe [21]. 

 

Shaping the steel theoretically doesn’t require any energy, as the energy content of 

shaped and nonshaped steel is almost the same. This is also the premise of the near net 

shape casting [21]. 

 

Thus the theoretical minimum energy requirement to make steel is mostly what is used in 

the iron ore reduction step and is roughly 6.6 MJ/kg while the rest of the steps contribute 

to less than 1%. This is found to be true for the other materials considered in this thesis as 

well given the nature of steps 1,3, and 4.  

 

From theoretical to practical minimum energy demand 

The above calculation focused on the absolute minimum energy demand for material 

processing. This did not include the energy requirement for producing the supporting 

materials input into the material processing steps, however, one may consider including 

some or all of these to calculate what is called the practical minimum energy 

requirement. Unlike the theoretical minimum energy demand, the practical minimum 

energy demand is a strong function of what is included in defining the practical process. 

To start with a detailed exergy analysis of an integrated steel plant is provided below 

[21]. 

 

Table 4: Exergy analysis of an integrated steel plant (adopted from [21]). ‘trs’ refers 

to tonne of rolled steel. 

Input GJ/trs Output GJ/trs 
Coal 20.2 Rolled Steel 6.62 
Scrap 1.87 Coal tar 0.92 
Iron ore 0.22 Coke oven export gas 0.84 
Fluxes 0.2 Recollected steel 0.76 
LPG 0.05 Coke breeze 0.72 
Air-various 
flows 0.03 Blast furnace slag 0.56 
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Pellets 0.03 Benzole 0.25 
Oxygen 0.01 Basic oxygen furnace export gas 0.14 
  Medium-pressure steam 0.1 
  Total Useful Products 10.9 
  Losses 11.62 
Total 22.6 Total 22.6 

 

Defining practical operations to include the production of all useful products from the 

plant, the practical minimum energy can be declared to be 10.9 MJ/kg. This would mean 

a potential for improvement of 11.6 MJ/kg in this reference plant. On the other hand one 

may argue that only some of the included useful products are needed or in fact their 

compositions may be different. A report by Energetics Inc., prepared for the US 

Department of Energy analyzes this in greater detail [32]. They show how the practical 

minimum may vary significantly if carbon inclusion in steel, Si and Mn inclusion in steel, 

slag, and coke ash, are accounted for in the practical minimum.  

 

Given the operational dependence and accounting boundary dependence of practical 

minimum, this research uses the conservative absolute theoretical minimum for the base 

case analysis and later considers the effect of using practical minimum instead.  

 

Scrap material availability for secondary production 

Framework objective: To estimate the quantity of scrap material available for recycling to 

gauge the potential of recycling as an energy reduction strategy 

 

Consider the total production QP subdivided into Qprim (primary production) produced 

with energy intensity eprim, and Qsec (secondary production) produced with energy 

intensity esec.  The total energy ET for a given material then is,  

 

ET = Qprimeprim + Qsecesec = QPeavg 

Equation 29 

and, 
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QP = Qprim + Qsec 

Equation 30 

Let r be one measure of recycling rate defined as follows. This is in sync with how USGS 

defines recycling rate [33, 34]: 

 

𝑟 =  
𝑄!"#
𝑄!

 

Equation 31 

Thus using Equation 29, Equation 30 and Equation 31  

 

eavg =  (1-r)*eprim + r*esec 

Equation 32 

Note, production may be defined in different ways but we define production as the total 

output from the production facilities as recorded by organizations like USGS. The 

demand for material could be different due to the yield of the production facilities (some 

finished material / product is scrapped or returned by consumer). Since we are looking at 

the global scale, export and import are not factors of consideration. Refer to Figure 10 for 

a schematic of the material life cycle.  

 

 
Figure 10: Schematic of a material life cycle. Quantities of flows are shown in grey. 

Fractions are shown in black. Names of different kinds of scrap in blue. 
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In this case, 

 

QD = QP(1-c) 

Equation 33 

where QD is the quantity demanded defined as that entering “use.” Scrap material is 

generated at each step of the life cycle due to inefficiencies of the processes. Typically 

there are three kinds of scrap – Home Scrap (HS), Prompt or New Scrap (PS) (Graedel 

and Müller call this industrial scrap [35]), and Old Scrap (OS). As per USGS, HS is scrap 

generated as process scrap and consumed in the same plant as generated. PS is scrap 

produced during the manufacture of metals and articles for intermediate or ultimate 

consumption and used in other facilities. OS is scrap from discarded products after 

serving a useful purpose. A recycler typically prefers PS over OS given the lower 

uncertainty of supply and composition, and usually higher quality [33, 34]. In fact in all 

the material flow models we have reviewed, PS is assumed to flow back in entirety to 

material processing. Note that c and f are the fractions exiting that phase of the life cycle 

that return for scrap recycling [7, 33-35]. (1-c) is the same as the material yield of the 

production process and typically quite high as it directly reduces operational costs [7, 11]. 

f is the old scrap collection efficiency and can range from being close to zero (e.g. for 

cement) to over 90% (e.g. for car batteries) depending on the material and product, and 

the economics of recycling it. It may also be driven by external factors like regulation 

(e.g. for lead). More details can be found in [36]. 

 

Using the above equations,  

 

Qsec = QPS + QOS 

Equation 34 

QPS and QOS are the quantity of prompt scrap and old scrap respectively. HS is usually not 

considered since it is recycled internally and an inherent property of the operations [33, 

34]. eprim usually incorporates HS. 
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Also, 

 

QPS = QP*c 

Equation 35 

Allwood and coworkers claim that c is roughly around 10% for the materials under study 

(steel: 11%; Aluminum: 20%; plastic: 2%; paper: 6%) [7]. In other words 10% of the 

finished material produced is available for recycling in the form of PS. c has also 

improved tremendously over the years and is likely to do so into the future as well [11].  

 

For modeling OS a slightly more complicated analysis is adopted. Figure 11 shows an 

exponential demand curve over time, growing at an average year-to-year growth rate of i.  

 

The quantity of OS exiting use is essentially the quantity of material demand n years ago, 

where n is the residence lifetime for the material. Assuming a consistent material demand 

growth rate of i, 

 

𝑄!",!"# =
𝑄!

(1+ 𝑖)! 

Equation 36 

 

where, Qsec,max is the maximum OS available today. However as shown in Figure 10 only 

a fraction f (0 ≤ f ≤ 1) is collected due to economic and technical challenges. Thus, 

 

𝑄!" = 𝑓
𝑄!

(1+ 𝑖)! 

Equation 37 

Figure 11 shows this schematically. 
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Figure 11: Model for estimating scrap availability through a material flow analysis 

In other words, QOS, and thus r, are constrained by the efficiency of the recycling system 

as well as by the parameters of growth. 

 

Combining Equation 31, Equation 33, Equation 34, Equation 35, and Equation 37, one 

can rewrite r as, 

 

𝑟 = 𝑐 +  
𝑓(1− 𝑐)
(1+ 𝑖)!  

Equation 38 

In other words, as c increases the fraction of Qsec that is PS increases and that of OS 

decreases, and vice versa. Typically esec < eprim (see Figure 12), which is especially true 

for the five materials studied in depth in this thesis. Given this, Equation 32 dictates 

increasing r as a means to reducing total energy ET. This means there are two direct levers 

– increasing f and decreasing c. Increasing c may seem to increase r but it also increases 

QP given a certain demand QD, thus canceling out. This is better understood by deriving 

the expression for ET, given QD, using Equation 38 and Equation 32, 

 

𝑒!"# = 1− 𝑐  1−   !
!!! !

  𝑒!"#$ +
! !!!
!!! !

+ 𝑐 𝑒!"#  

Equation 39 
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and using Equation 29, 

 

𝐸! = 𝑄! 1− 𝑐  1−  
𝑓

1+ 𝑖 !  𝑒!"#$ +
𝑓 1− 𝑐
1+ 𝑖 ! + 𝑐 𝑒!"#  

Equation 40 

 

which can be rewritten using Equation 33 

 

𝐸! =
𝑄!

(1− 𝑐) 1− 𝑐  1−  
𝑓

1+ 𝑖 !  𝑒!"#$ +
𝑓 1− 𝑐
1+ 𝑖 ! + 𝑐 𝑒!"#  

Equation 41 

 

which is equal to 

 

𝐸! = 𝑄!  1−  
𝑓

1+ 𝑖 !  𝑒!"#$ +
𝑓

1+ 𝑖 ! +
1

(1− 1𝑐)
𝑒!"#  

Equation 42 

Thus given QD by society, ET can be decreased by increasing f and decreasing c, as esec < 

eprim. Other ways include decreasing eprim and esec, or even QD. 
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Figure 12: Primary and secondary production energy intensities for different 

materials and their current recycling rates, r, as fraction of supply. Final energy 

does not include losses in electricity production [4]. 

 

The model above is theoretical with simplifications. One can consider following more 

complicated models that account for time based changes in one or more of the following 

aspects: 

 

• Material demand growth rate, i – the average growth need not be exponential and 

the growth rate may as well vary over time 

• Residence lifetime, n – the average residence lifetime of the material may as well 

lengthen or shorten over time. This in fact is likely to be the case if some of the 

discussed material efficiency strategies come into play or if the end-product 

distribution changes 

• Deviation from averages – a more complex model may include considering a 

similar or more complicated model to Equation 42 for each type of end-product, 

and in each geography, as opposed to an average as used in this thesis 

 

A few researchers have been able to do this from a historic perspective. Two popular sets 

of studies are those by Graedel and co-workers [35, 37-45], and recycling reports by 
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USGS [33, 34]. As an example we provide the material flow details that Graedel and co-

workers put together in Figure 13 which look at the flows at each stage of the material 

life cycle and through each of the end products. Müller and co-workers have also 

constructed detailed material flow models to estimate not only the flows but also the 

stocks. The details of their model can be found in [46]. However, for each product, their 

model is similar to Equation 42, which is what makes its use at the aggregated level also 

acceptable. Overall, prior research has indeed modeled such details and provided greater 

insight, but the purpose of this research is not to consider the details at the national or 

product level, nor during the interim period from now through 2050, but instead to 

estimate the global average statistics for 2050. To account for any uncertainty associated 

with this simplification, a detailed sensitivity analysis is completed and presented. 

 

 
Figure 13: Detailed schematic of material life cycle flow used to construct a detailed 

model of recycling, by Graedel et al. [44]. 

 

Remanufacturing and comparative life cycle energy savings 

Framework objective: To estimate the life cycle energy savings of choosing to 

remanufacture a product over replacing it with new 
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Introduction to life cycle inventory analysis 

Life Cycle Inventory (LCI) is the quantification of raw materials requirements, energy 

demands, atmospheric emissions, waterborne emissions, solid wastes, and other inputs 

and outputs for the entire life cycle of a product, process, or activity [47]. As shown in 

Figure 14, LCI utilizes input-output inventories for main life cycle phases, which are as 

follows: raw materials processing, manufacturing and assembly, transport, use, and end-

of-life.   

 
Figure 14. Life Cycle Inventory inputs and outputs. The dotted line reveals the 

primary scope of analysis for this thesis (modified version of an original figure taken 

from [48]).  

 

In LCI each phase is considered to be a sub-system. Each sub-system requires inputs of 

materials and energy, and it has outputs associated to the activities and processes taking 

place in each stage. We choose energy consumption as inputs primarily for raw material 

acquisition and processing phase, manufacturing and assembly phase, and use phase, as 

shown by the dotted line in Figure 14. We gather all the relevant data, and organize it for 
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compiling life cycle energy inventories. There are three popular methodologies for 

compiling life cycle inventories: process LCI, economic input-output LCI, and hybrid 

LCI [49]. We utilize process LCI for the purposes of this thesis. 

 

Process LCI 

The most common form of LCI is the process LCI [50]. The analysis for this 

methodology is based on viewing lifecycle environmental impacts from the perspective 

of a single product unit. More specifically, the objective of process LCI is to track the 

raw materials and energy inputs for each constituent stage of a product life [49]. The 

analytics for process LCI utilizes process flow diagram methods as well as matrix 

inversion methods to perform environmental computations [49, 51]. 

 

Life Cycle Inventory: Energy Demands Analysis  

Raw Material Acquisition and Processing  

Each raw material requires energy to be produced. The energy requirements encompass 

extraction, processing, and purification that bring raw materials to useful conditions. We 

determine the amount of energy (in MJ per kg for each raw material) required to acquire 

and process the raw materials used for constructing the product. We use the bill of 

materials of the product in combination with the raw materials energy requirements in 

order to quantify energy demands for the raw materials production phase. For example, 

more than 50% of the mass of a mid-size refrigerator (47 kg out of 84 kg) is made from 

steel [52]. According to [53], it takes about 20 to 25 MJ to produce 1 kg of Steel. As a 

result, it takes on average about 940 to 1,175 MJ to process the steel embedded in a mid-

size refrigerator.  

 

In general, we rely on three dominant sources for typical energy cost of raw materials, 

namely [53],[54],[10]. These references provide a range of energy requirements for 

processing various raw materials. Though we use the entire range for computation 

purposes, we take the upper bounds as the final values for life cycle assessment in order 

to be conservative in identifying the upper bound limit for remanufacturing energy 
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savings. Also, for some products where a bill of materials was not obtainable, we utilize 

credible references, which have already computed the raw material processing energy 

demands. Refer to Appendix for a comprehensive set of reports with extra details on data, 

data sources, and methodology.   

 

Manufacturing and Assembly  

We rely on literature data and personal communications to determine the energy 

requirements for manufacturing and assembly for producing a product. Some of the 

references we consider use well-established sources that extensively study the 

manufacturing processes such as [55],[56],[5, 57-59]. These references provide an 

overview of manufacturing processes and provide energy analysis of industrial practices 

by calculating the primary energy required to manufacture the product starting with 

processed materials [56].  

 

Use  

The trends for unit energy consumption, service, and efficiency of products as studied in 

this report are from various sources such as governmental agency reports, prior academic 

researches, and industrial reports. We estimate the annual energy use consumption of 

products from these sources. Furthermore, we amortize the annual values over average 

useful lifetime to determine the use phase energy consumption of the products.  

 

Energy is obtained from various sources including coal, nuclear power, wind, solar 

energy, solid waste, wood biomass, and natural gas. The energy demands for producing 

electricity is correlated to the sources of fuel used to generate the electricity and the 

efficiency of the power generation [60]. Since the generated electricity is mixed in the 

transmission lines of the utility, it is difficult to distinguish the source of electricity in the 

grid. Therefore, typically, the computational models utilize regional or national average 

fuel mix for producing electricity in the grid.  

 

In determining the energy consumption of electronics products in the use phase, we take 

into account the energy efficiency of power generation as well as delivery transmission 
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losses for the analysis. For example, theoretically 1 kWh of electricity can produce 3.6 

MJ of energy (e.g. in the form of heat, etc.). However, this value does not take into 

account the primary sources of energy that are consumed to produce and transmit 1 kWh 

of electricity to consumer’s location. By taking into account power generation 

inefficiencies and transmission line losses, 10.6 to 11.3 MJ of energy is required for 1 

kWh of electricity delivered for useful work (e.g. variation in value is due to efficiency 

choices and transmission routes) [60]. The same discussion holds true for petroleum-

based sources of energy such as automotive fuel. Therefore, for our studies for the use 

phase of electronics products we use 10.6 MJ/kWh (as opposed to 3.6 MJ/kWh) for 

quantifying the energy requirements. Similarly, for the use phase of products in 

automotive industry we use 142 and 146 MJ per one U.S. gallon of gasoline and diesel 

fuel, respectively (as opposed to 132 MJ/gallon). 

 

Transportation and End-of-Life 

Based on the boundary conditions of our analysis, we do not include transportation and 

end-of-life phases in the primary analysis. These are expected to cancel out in the 

comparison assuming the same for the remanufactured and new version. However, these 

stages are considered in cases where they are expected to not cancel out (e.g. air freight 

of new laptops) and at the least in the sensitivity analysis in order to determine their 

relative significance in changing the conclusions. Following the above process, we 

evaluate the energy consumption contributions for each LCA stage in order to determine 

which LCA stages are more dominating than others. 

 

Comparative LCI Model 

The life cycle inventory (LCI) for the new product includes raw material processing 

Erm,new, manufacturing Em,new, use Eu,new, disposal Ed,new, and transpiration between the 

phases summed as ET,new. Similarly, for a remanufactured product the life cycle energy 

impacts include the remanufacturing Ereman,old of the old product, use Eu,old, final disposal 

Ed,new, and transpiration between the phases summed as ET,reman.  
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LCI
NEW

= E
rm,new

+E
m,new

+E
u,new

+E
d,new

+E
T ,new

 

Equation 43 

 LCI
REMAN

= E
reman,old

+E
u,old

+E
d,reman

+E
T ,reman

 

           Equation 44 

The customer would be indifferent between new and remanufactured units from an 

energy standpoint when LCINEW = LCIREMAN, and is expected to prefer the choice with a 

lower LCI if the objective is to save energy. 

 

While the model above looks simplistic being linear in nature, estimating the energy use 

in each phase can be complicated. Listed below are three critical considerations: 

 

• Conducting a comparative LCA requires equivalence of functional units. Often 

the function provided by a unit of the remanufactured product may be different 

from a unit of the new product. Examples include refrigerator volumes, washing 

machine volumes, tire mileage, and toner cartridge print output. In such a case we 

normalize the LCI with the lifetime function or service provided by the two 

versions such that the comparison is the energy use per unit service provided. 

• Allocation of energy to the use phase can be sometimes tricky. For instance, when 

comparing retreaded tires with new replacement tires, one needs to carefully 

account for the energy used by the car / truck to the tires. This becomes a function 

of the rolling resistance of the different tread kinds and needs careful 

consideration. Provided below, as an example, is how this was evaluated. 

• Remanufacturing theoretically brings a product back to ‘like-new’ condition, 

however we have reviewed extensive literature and consulted industry experts to 

account for any practical shortfalls to this claim. In several industries like motors, 

tires, and toner cartridges, there seems to be a common understanding of the 

degraded performance of remanufactured products and thus this was accounted 

for in the analysis. The impact of such degradation was found to be significant. 
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Example use phase energy accounting methodology 

In order to quantify the use phase energy consumption of tires it is critical to first 

understand the sources of heat dissipation and energy losses associated with a tire in 

operation. More specifically, the issue to address is the impact of rolling resistance on 

energy performance of tires.  

 

In this study, we take the contribution of rolling resistance on vehicle fuel consumption to 

be on average 15% for passenger cars, and 24% for heavy trucks [61, 62]. Furthermore, 

we illustrate the results based on the range for the contribution of rolling resistance on 

vehicle energy expenditure. We consider the range of contribution to be 10 to 20% for 

passenger cars and 15 to 33% for heavy trucks [61, 62]. Refer to [63] for detailed 

literature review of the contributions of rolling resistance losses on vehicle fuel 

consumption.  

 

How can one translate the changes in tire efficiency to changes in energy consumption? 

Industry officials, researchers, and tire manufacturers have been studying this for decades 

in order to improve the energy performance of tires. The assessments encompass various 

testing approaches such as experimental observations using standardized testing 

procedures, stress-strain simulations, numerical modeling (refer [63] for more 

information).  

 

One common approach for analyzing the contribution of tire rolling resistance on fuel 

consumption is to determine the changes in total vehicle fuel consumption with the 

changes in rolling resistance of tires. This is commonly referred to as ‘return factor’, or 

‘return ratio’, or ‘energy return’. 

 

  

  

 

Equation 45 
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where , , , , and   are the vehicle fuel energy consumption with initial 

set of tires (taken as the reference), modified vehicle fuel energy consumption due to 

modified tires, rolling resistance of initial set of tires, rolling resistance of the modified 

set of tires, and the return factor. 

 

In this study,  is computed based on the following equation,   

 

  

Equation 46 

 

Return factor provides a relation between the change in rolling resistance and its 

corresponding impact on vehicle energy consumption. Rolling resistance is the energy 

loss per unit distance travelled (J/m or N), where the higher the value the more vehicle 

fuel input required for overcoming tire energy losses.  

 

In this study, we are interested, however, in the impact of change in coefficient of rolling 

resistance on vehicle fuel energy consumption. Coefficient of rolling resistance is a 

dimensionless measure of tire efficiency that is defined in terms of rolling resistance 

force generated per unit load applied. Therefore, coefficient of rolling resistance is 

linearly correlated to rolling resistance as expressed below (refer to [63] for detailed 

information) 

     
 

Equation 47 

where  and W are the tire coefficient of rolling resistance and vehicle load on tires. 

Based on this relation, we can show that fractional changes in coefficient of rolling 

resistance is equivalent to fractional changes in rolling resistance, 
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Equation 48 

where  and are the coefficient of rolling resistance of the initial set of tires 

(reference case) and the modified set of tires.  Based on this, we can re-write Equation 45 

as follows, 

    

Equation 49 

The equation above can be re-arranged to solve for the modified vehicle fuel energy 

consumption, , as a result of utilizing the modified set of tires,  

 

     

Equation 50 

The total energy consumption of a vehicle, , consists of  a combination of energy 

expending components. In this study we break them into energy losses due to rolling 

resistance of tires,  , and losses due to all the other components (i.e. engine 

losses, transmission losses, aerodynamic losses).  
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We assume that the changes in rolling resistance of the tires do not change the energy 

requirements of other vehicle components. In other words,  

 

      

Equation 52 

In addition to the assumption above, we take a range of values for return factor in order to 

compensate for potential variations in other vehicle components due to changes in rolling 

resistance. Based on the given assumption we can show that the energy required for 

overcoming rolling resistances of all tires on a vehicle can be expressed as, 

 

       

Equation 53 

where  is the use phase energy consumption of all tires operating on a vehicle. 

 

In addition, based on the above assumption, we can compute the use phase energy cost of 

a new set of tires by taking into account the following expression,  

 

    

Equation 54 

Using Equation 50, we substitute for  to come up with the following equation, 
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where  is the energy requirement for overcoming rolling resistance energy losses of 

the modified set of tires on a vehicle. 

 

Note that details of each such methodology are available through the Appendix of the 

thesis. 

 

Material demand analysis 

Framework objective: To assess market demand2 trends as well as drivers/actors of 

material demand, and compare their influence across different materials and geographies 

 

Broadly speaking material demand has been analyzed using two approaches in the last 

few decades – using econometrics, and using what is called the “intensity of use” 

approach. The former entails estimating the demand function econometrically. Since the 

materials considered here are simply inputs to manufacturing of products, the demand 

drivers considered are those of end demand including factors of production, material 

price, and substitutes and complements. One may also factor in technology, policy, and 

some macroeconomic factors. Within these kind of models are also included the 

economic input-output models that link various sectors of the economy with each other. 

The intensity of use approach on the other hand analyses what is called material intensity 

or material intensity of use, given as the ratio of material demand and GDP (or some 

indicator of development). Using projections of GDP and population, and that of intensity 

of use, the material demand into the future is estimated. Labys and co-workers provide a 

thorough review of different models for the mineral market including econometric 

modeling for markets with various kind of competitive landscapes, engineering models 

that use engineering principles to link outputs and inputs, optimization models for 

selecting best operating parameters, system models involving dynamic relationships 

between the variables, and input-output models that can be used to conduct a more 

aggregated analysis encompassing macroeconomic variables of the economy [64]. For 

more information refer to [65-69].  
                                                             
2 In this chapter, material demand is represented through ‘apparent consumption’ as defined by the 
USGS. See end of subsection for limitations associated with this choice. 
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In this thesis the goal is not to forecast demand but to analyze the historic trends and 

interpret what it might mean for the future. This research borrows from both the 

econometric methodology as well as intensity of use methodology to use a new approach 

to studying material demand. The formulation is shown below: 

 

𝐷𝑒𝑚𝑎𝑛𝑑 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎  𝑑    =     
𝐼𝑛𝑐𝑜𝑚𝑒 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎 (𝑎)
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑃𝑟𝑖𝑐𝑒  𝑝  𝑋 𝐶ℎ𝑜𝑖𝑐𝑒 

Equation 56 

Similar to material intensity, it also adds the crucial factor of material price to it. Income 

per capita over price connotes the capacity of consumers to buy the material and thus the 

residual multiplier is practically the choice of the consumer on how much to buy. The 

motivation to include material price as a key actor stems from three reasons – (1) the 

observation of a strong (inverse) correlation between material price and production across 

different materials as presented in Figure 15 Part (a); (2) a similarly strong correlation 

between embodied energy and material price or material production presented in Figure 

15 Part (b) and (c); (3) it’s direct comparison between the demand of materials and the 

consumer’s choice to purchase the materials. Income and price are key inputs to 

economic production and this thesis analyzes the trends in material demand factoring in 

both. 
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(a) 

 
(b) 

 

 16 

 

 

 

Figure 6: Price of various materials plotted against the embodied energy of the materials. 

The data for embodied energy comes from [11], for material prices for metals from [21], 

plastics from [24] and brick, wood, and glass from [11]. Plastic prices are for year 2011, 

and all others are for 2009.  
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(c) 

Figure 15: Relationship between material price, embodied energy, and world 

production for different materials [4, 5].  

 

This formulation has never been used to study materials before, but was recently 

presented and applied by Tsao et al. for an energy-economic analysis of solid-state 

lighting [70]. Their data covers over three centuries of lighting technologies for different 

geographical scopes (Figure 16). It spans 8 to 10 orders of magnitude and startlingly 

shows a strong linear relationship between the two, meaning that in spite of increasing 

use efficiencies of lighting technologies, the usage per capita exhibits no diminishing or 

saturation signs. In other words, the use of lighting has stayed directly proportional to the 

consumer capacity to purchase lighting given by the ratio of income per capita and price 

of lighting. Note that lighting is consumed directly by all sectors of the economy and thus 

buying capacity in this case is the GDP per capita over price. Tsao et al. show this both in 

terms of consumption of lumens of light as well as associated energy of lighting. This 

comes as a big surprise especially with regards to environmental Kuznets curves and 

dematerialization theories though they do not specifically target lighting. However, 

lighting proves to be special in two regards – (1) it renders no substitutes, a rare quality 

amongst common consumables and services, (2) the expenditure on lighting as a fraction 

of GDP has remained more or less constant over the years, fluctuating by less than a 
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factor of two. This factor (called β by Tsao et al.) is the proportionality constant or the 

slope of the trend, thereby explaining the linear trend in Figure 16.  

 

 
Figure 16: Consumption of light against (β*GDP)/CoL taken from Tsao et al [70]. 

‘β’ is a constant and thus the chart presets consumption per capita [y-axis] vs. 

consumer capacity [x-axis] as defined above.  

 

A result like this instantly motivates testing if demand of materials shows similar trends 

or otherwise. This method gives new insight different from that obtained by ‘material 

intensity’ such that it better represents consumer choice trends by relating quantity 

demanded to the buying power of consumers. Assuming a positive correlation between 

the two, a ‘diminishing’ or ‘saturating effect’ would present itself as a convex curve with 

decreasing slope as values on the axes increase. On the other hand an exponential trend 

would present itself with the slope increasing as the two variables on the axes increase. A 

third result could be that shown for lighting where industry continues to demand the 

amount of material proportional to its buying capacity. In the different materials studied a 

negative correlation between the two has usually only been observed when an external 

factor has influenced it like regulation influencing the consumption of lead.  

 

Analyzing demand from this new perspective reveals some interesting trends and 

inferences, which are shared in the Results section in Chapter 3, but only partly caters to 

the goals of the work, which are to dig deeper and understand the reasons behind the 
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trends. Whether a material exhibits a saturating effect or not, it’s important to understand, 

at least to some extent, what is driving it to do so. For this the IPAT formulation is used, 

given as [71, 72]: 

 

𝐼𝑚𝑝𝑎𝑐𝑡  𝐼 =  𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛  𝑃 × 𝐴𝑓𝑓𝑙𝑢𝑒𝑛𝑐𝑒  𝐴 × 𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 (𝑇)  

Equation 57 

IPAT is a popular formula for assessing the effects of human activities on the 

environment. It emerged out of the Ehrlich-Holdren/Commoner debate in the early 1970s 

on deciphering the drivers of human impact on the environment. It has been used in 

various assessments in different forms in the last few decades [71-77].  

 

The Technology factor in Equation 57 is like the residual term encompassing all the other 

actors. The key strength of this method is the simplified specification of the key driving 

forces behind climate change. The multiplicative structure makes it clear that all of the 

forces do not influence the impact independently of one other, and thus no one factor can 

be held responsible for the impact. A couple of limitations of the same are the often 

misinterpreted proportionality between the impact and each actor such that a 1% change 

in the actor leads to a 1% change in the impact (overlooking the cross elasticities between 

the actors), and that it has limited scenario testing capabilities [77]. 

 

For analyzing demand of materials we utilize the following modified formulation of the 

IPAT equation: 

  

𝐷𝑒𝑚𝑎𝑛𝑑  𝐷 =  𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛  𝑃  ×
𝐼𝑛𝑐𝑜𝑚𝑒

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛   𝐴  ×
𝐷𝑒𝑚𝑎𝑛𝑑
𝐼𝑛𝑐𝑜𝑚𝑒  (𝑀. 𝐼. ) 

Equation 58 

The above equation indicates the relevance of population P, affluence A, and of studying 

material intensity, M.I., as is usually done to assess material demand. However, further 

disaggregation can allow the extraction of insights about what causes material intensity 

M.I. to change. This is shown in the equation below.  
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𝐷𝑒𝑚𝑎𝑛𝑑  𝐷

=  𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛  𝑃  ×
𝐺𝐷𝑃

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛   𝐴  ×
𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦 𝐼𝑛𝑐𝑜𝑚𝑒

𝐺𝐷𝑃   𝑆  

×
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑆𝑎𝑙𝑒𝑠
𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦 𝐼𝑛𝑐𝑜𝑚𝑒   𝐹 ×

𝐷𝑒𝑚𝑎𝑛𝑑
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑆𝑎𝑙𝑒𝑠  (

1
𝑝) 

Equation 59 

This equation is an identity with each term representing an actor influencing materials 

demand. All actors are well known accounting metrics commonly recorded and reported. 

This also makes the equation more intuitive. For example P or population refers to the 

total consumer base (in numbers), A or affluence refers to the average consumer income, 

S or industry share of GDP (income) relates to the consumer type – material buying or 

not, F is the fraction of income of material buying user that is spent on the material, (!
!
) 

the inverse of price refers to the amount of material obtained by the consumers for every 

dollar they spend on it. Note that, amongst different economic sectors, there is only one 

kind of consumer type for the kind of materials (metals and industrial minerals) 

considered here - industry, as other sectors of the economy, namely Services and 

Agriculture, consume these materials indirectly in the form of final products and goods. 

Thus the total demand is dictated by total demand or consumption by industry. This is 

why S in Equation 59 relates directly to the consumer type. This is not the case for 

lighting or fossil fuels or biomass, which are consumed directly by all sectors of the 

economy and thus accounted for in the GDP of each economic sector. Also, each of the 

factors is Equation 59 are transient and can change over time, and since total demand for 

a material depends on each of them, it is also influenced by their transience.  

 

Taking a logarithm on both left and right hand side of Equation 59 gives the following: 

 

log 𝐷 = log(𝑃)+ 𝑙𝑜𝑔 𝐴 + 𝑙𝑜𝑔 𝑆 + 𝑙𝑜𝑔 𝐹 − 𝑙𝑜𝑔(𝑝) 

Equation 60 
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For small changes, Equation 60 can be converted to the following expression by 

differentiating both sides of the equation: 

 

∆𝐷
𝐷 =  

∆𝑃
𝑃 +  

∆𝐴
𝐴 +  

∆𝑆
𝑆 +

∆𝐹
𝐹 −

∆𝑝
𝑝  

Equation 61 

In other words small changes in demand, D, are simply the sum of the small changes in 

the actors of demand. This way the individual forces from each of the actors can be 

estimated using the percentage change and assessed for how they influence the change in 

material demand. Equation 61 should not be misinterpret as a 1% change in any of the 

above actors causes a 1% change in demand, meaning the elasticity of demand to any of 

them is 1 (-1 for price). This is not true and should not be understood so since the 

different actors are usually interrelated (cross-elasticities are non-zero) meaning that a 

change in one is likely to create some change in another factor. Researchers have tried to 

include this through methods that essentially use exponential fitting (regression analysis) 

or stochastic modeling of consumption on the variables (actors) making the process less 

simple [77, 78]. The usage of the simple formulation of IPAT is quite popular and as long 

as it is used to indicate the magnitude of the different actors and not necessarily their 

independent final influence on the impact, which requires elasticity estimations ([77] call 

this ‘ecological elasticity’), it provides vital information with great confidence as well as 

ease.  

 

Methodological limitations 

It is crucial to highlight some of the limitations of the above methodology for material 

demand analysis. Taking these into consideration as implications are drawn from the 

results shown in the next chapter is utmost. Broadly speaking, the limitations are 

associated with the scope of material demand, and the interpretation of a decomposition 

analysis like IPAT, as used here. 
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Material demand in this section of the thesis is represented through ‘apparent 

consumption’ as defined by USGS [9]. Provided below is their definition of apparent 

consumption for the US [79] 

 

“Published statistics on mineral apparent consumption are limited to estimates of 

consumption of raw materials forms (ore, concentrate, and [or] refined metal). Apparent 

consumption is defined as mine production + secondary refined production + imports 

(concentrates and refined metal) – exports (concentrates and refined metal) + 

adjustments for government and industry stock changes. These estimates do not account 

for the amount of mineral commodities contained in manufactured products that are 

imported to the United States, nor do they deduct the amount of these mineral 

commodities contained in manufactured products that are exported from the United 

States.” 

 

Statistics on total consumption (including import and export of materials through that of 

manufactured products) are less commonly available given the lack of records. However, 

some studies that have attempted to estimate this. Some of them have published results 

significantly different from apparent consumption. For instance USGS published two 

case study reports elaborating on this difference, one of lead consumption in the US, and 

the other on lead acid battery. They report that in 2004 U.S. apparent consumption of lead 

is reported as 1.44 Mt, however, total consumption is 1.78 Mt, 24% higher. In 1993 the 

difference was 14%. This difference can be attributed to the rise in the total lead usage 

for lead-acid batteries from 50 to 84% of all lead end-use and the rise in lead-acid battery 

imports into the US after 1997 [79, 80]. Similarly Professor John Barrett at the University 

of Leeds has used input-output tables to show that steel consumption in the UK results in 

more production outside the country than domestically [81]. Also, Graedel and coworkers 

have contributed extensively to national material flows for several materials and 

geographies including exports and imports through semi-finished and finished products 

[82]. Their efforts prove to be one of the most extensive in this respect. 

 



 

  67 

Note that this doesn’t present itself as a problem when the analysis is done at the global 

scale, as in Chapter 3 global analysis, and in Chapter 4. However in Chapter 3, when the 

demand for materials in USA, China, and India is analyzed, this can prove to be a big 

limitation to this study. This thesis uses apparent consumption as indicative of total 

consumption, just like most other studies do, however this may not be true. This opens up 

a valuable opportunity for future research to contribute. 

 

Regarding application of a decomposition analysis like IPAT, one must be careful not to 

mistake the actors as forces. For example a change in 1% population refers to a change in 

1% magnitude of the actor. However the resulting force on the material demand, which 

defines how much material demand changes, has to do with multiple other factors 

including how this change influences a change in the magnitude of other actors. For 

example a change in population doesn’t mean no change in affluence. One example of 

this could be the rise in population resulting from the lower-income segment of the 

population, potentially due to lack of education. This could result in lowering of the per-

capita income. Similarly, it may lead in an increase in average income as well. How a 

change in affluence results in a change in material demand can be equally complicated. 

Thus the force, or overall change in material demand, resulting from a change in an actor 

warrants further analysis than presented in this thesis. The goal of this thesis is primarily 

to correlate material demand changes with changes in actors by decomposing the change 

into the change of different actors using IPAT analysis. This provides useful insight into 

which actors may have dominated material demand trends, guiding future demand 

projections and analysis. 

 

Prior Work 

This thesis has benefitted from numerous literature studies providing insight into various 

aspects of the research. This is because of the topic’s significantly high interest across 

numerous stakeholders over several decades, broad scope covering the global industry, 

and time dependent nature of the assessment meaning that most of the data and 

calculations correspond to a specific time stamp and can very well be repeated over time 

to improve upon the representativeness. In general most literature has either focused on a 
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particular material, or geography. Only recently, in the last 5 to 10 years, have a few 

research teams undertaken global level multi-material scopes, the best of which include 

work from IEA, IPCC, and our research collaborators Allwood and team. IEA serves as a 

central data collector and aggregator for energy intensities of different sectors and thus 

provides a good estimate of the best available technologies (BAT) and current average 

technologies. While they use this information for their own estimate of energy savings 

through BAT, this thesis leverages their data and other’s to calculate the same in 

evaluating BAT as one potential strategy. IPCC and Allwood focus on CO2 emission 

abatement with the former being a central organization for climate change, and the latter 

being an upcoming leading research group from the University of Cambridge (in 

collaboration with our team, the Environmental Benign Manufacturing Lab at MIT) 

spearheading this kind of research [3, 6, 7]. This thesis complements prior work by 

putting together data and information scattered through several studies and databases, and 

collecting more to answer the question – can the materials sector halve its energy 

through 2050? In this process this thesis also significantly contributes to the assessment 

of material demand trends and the actors driving its change, as well as a detailed analysis 

of remanufacturing as an energy saving strategy. To our knowledge, this is the only work 

that comprehensively evaluates the materials sector for energy savings, through both 

technical and demand side strategies. Provided below in Table 5 and Table 6 is a detailed 

list of literature studies in the space along with their contribution to this research. 

Wherever necessary the scope of the reference as well as how research in this thesis 

distinguishes itself from it is also described. The scope tries to address the materials, 

geographies, time periods, and impacts analyzed. References corresponding to the 

sections of production energy efficiency (Chapter 4), remanufacturing of products 

(Chapter 5), and material demand analysis (Chapter 3) are highlighted in orange, blue, 

and green respectively. Every corresponding Chapter further elaborates on the 

corresponding prior work and lessons learned to guide the research presented in this 

thesis. 
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Table 5: Summary of key prior work and comparison to contribution of thesis. Solid 

filling refers to a more comprehensive contribution of reference (row) to area of 

research (column), hatched refers to partial contribution. 
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Table 6: List of prior work, their scope of work, their contribution to this research, 

and additional contribution by this thesis 

Reference Scope of Work / Contribution to thesis / Thesis contribution 

International 

Energy Agency 

(IEA) 

 

[6, 11],[ 99], 

[100], [101] 

Scope: 

• Steel, aluminum, paper, cement, plastic, and chemicals 

• Global and national averages 

• Current (2005) and historic data 

• Energy and CO2 emissions 

 

Contribution of reference to this work: 

• Industry energy and CO2 emission breakdown into different 

sectors, and fuel types 

• Global BAT information for steel, aluminum, paper, cement, 

and petrochemicals 

• Projections of material demand through 2050 

• Projections of electricity grid mix and energy mix of industry 

through 2050 

• Estimates of energy and carbon reduction through 2050 using 

BAT 

• Cutting edge technologies in industry including hydrogen 

powered engines, black liquor gasification process, engine 

operation, etc. 

 

Additional contribution by thesis: 

• Repeat BAT energy saving potential through IEA and other 

data to validate IEA estimates 

• Extend evaluation to include other strategies of cutting edge 

primary and secondary production technologies, maximum 

recycling energy saving potential 
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• Assess material efficiency strategies including a detailed 

assessment of remanufacturing. IEA reports do not address 

material efficiency adequately 

• Investigate drivers of material demand to draw perspective of 

material efficiency potential to meet targets 

• Focus on energy as opposed to CO2 emissions to complement 

work by IEA, Allwood, and IPCC 

• IEA estimates a 43-63% increase in final energy from 

industry, relative to 2005, through their conservative ‘blue’ 

scenarios which predominantly only account for BAT. In this 

research we estimate a potential for 20% reduction through 

other aggressive strategies and opportunities 

Allwood et al. 

 

[7, 81, 102] 

Scope: 

• Steel, aluminum, paper, cement, and plastic 

• Global averages and UK averages 

• Recent data for 2005-2010 with some historic data as well 

• CO2 emissions 

 

Contribution of reference to this work: 

• Projected material flows and CO2 emissions from the five 

primary materials sectors through 2050 

• Assumed mix of fact-based and hypothetical scenarios of 

improved energy efficiency, recycling, increased material 

yield, carbon capture and storage, non-destructive recycling, 

and reduced demand 

• CO2 emission reduction potential from material efficiency 

strategies 

• White paper on material efficiency listing key questions for 

research 

• Example implementation of material efficiency strategies 



 

  72 

 

Additional contribution of thesis: 

• Focuses on energy to complement work on CO2 emissions by 

IEA, Allwood, and others, answering the question – can 

industry halve its energy demand through 2050? 

• Estimate a maximum feasible energy reduction potential as 

opposed to an estimate of 2050 savings through hypothetical 

scenarios 

• Detailed assessment of the material efficiency strategy of 

remanufacturing 

• Investigate drivers of material demand to draw perspective of 

material efficiency potential to meet demand targets 

Worrell et al. 

 

[18, 83-86] 

Scope: 

• Steel, paper, and cement 

• Mostly US focused with some cross-country comparisons 

• Mid to late 1990s 

• Energy intensity and CO2 intensity data 

 

Contribution of reference to this work: 

• BAT and cutting edge technologies for energy and CO2 

emission reduction for material industries in the US for the 

mid-90s 

• Cost abatement curves for technology deployment 

 

Additional contribution of thesis: 

• Aggregation of global energy savings through BAT and 

cutting edge across several materials 

• Projecting energy saving potential through 2050 accounting 

for recycling and material efficiency strategies 

Intergovernmental Scope: 
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Panel on Climate 

Change (IPCC) 

 

[12] 

• Steel, aluminum, paper, cement, plastic, and chemicals 

• Global and national averages 

• Current and historic data 

• CO2 emissions 

 

Contribution of reference to this work: 

• CO2 emission reduction targets to avoid 2 – 2.4 °C 

temperature rise through 2050 

• Energy and emission trends for industry, historic and 

projections, as well as some BAT data  

• Estimate CO2 emission reduction potential through different 

mitigation options including energy efficiency, fuel switching, 

heat and power recovery, recycling, renewable energy, and 

carbon capture and storage 

 

Added contribution of thesis: 

• Repeats BAT energy saving potential to validate estimates 

• Extend evaluation to include other strategies of cutting edge 

primary and secondary production technologies, maximum 

recycling energy saving potential 

• Estimate a maximum feasible energy reduction potential as 

opposed to an estimate of 2050 savings through hypothetical 

scenarios 

• Assess material efficiency strategies including a detailed 

assessment of remanufacturing 

• Focus on energy as opposed to CO2 emissions to complement 

work by IEA, Allwood, and IPCC 

Ashby 

 

[5] 

Scope: 

• Over 50 materials including basic materials 

• Unclear geographic, temporal, and process scopes 
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• Energy, CO2 emission, and water footprints 

 

Contribution of reference to this work: 

• Material profiles with global production volumes, energy 

intensities for primary and secondary production, recycling 

fractions of supply 

• Life cycle energy inventories of products 

Bath University 

ICE 

 

[10] 

Scope: 

• Over 50 materials including basic materials 

• Unclear geographic, temporal, and process scopes 

• Energy and CO2 emission footprints 

 

Contribution of reference to this work: 

• Collection of energy intensities from various resources of 

primary and secondary production of materials 

Ayers et al. 

 

[103] 

Scope: 

• Iron and steel, aluminum, copper, lead, and zinc 

• US average 

• 1993 

 

Contribution of reference to this work: 

• Exergy analysis of metal production 

US Department of 

Energy 

 

[20, 22, 24, 25],[ 

104] 

Scope: 

• Steel 

• Data for early 2000s 

• US average 

• Energy intensity 

 

Contribution of reference to this work: 

• BAT and cutting edge opportunities for energy reduction in 
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the US steel industry, including both primary and secondary 

steel production 

• Investment analysis for implementation of strategies 

• Estimation of theoretical minimum, practical minimum energy 

requirements (details in Methodology section) 

• Comprehensive overview of US steel energy use for different 

production steps in 1998 

de Beer, and 

Worrell 

 

[21] 

Scope: 

• Steel 

• US average 

• Energy intensity 

• 1993 

 

Contribution of reference to this work: 

• Comprehensive analysis of energy reduction, short term and 

longer term technologies, in the US iron and steel industry 

including theoretical minimum analysis using exergy 

modeling (details in Methodology section) 

US Department of 

Energy (DOE) 

 

[105] 

Scope: 

• Aluminum 

• Data for early 2000s 

• US average 

• Energy and CO2 emission 

 

Contribution of reference to this work: 

• Comprehensive analysis of energy use in the US Aluminum 

industry broken down into different steps 

• Historic analysis of energy and material use 

• Theoretical minimum energy requirements for each step using 

exergy and Gibbs Free Energy calculations 
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World Business 

Council on 

Sustainable 

Development 

(WBCSD) 

 

[106],[107],[108] 

Scope: 

• Cement 

• Most data for 2006 

• Global and national average 

• Energy and CO2 emission 

 

Contribution of reference to this work: 

• Detailed reporting of global state of the art energy use and 

CO2 emissions as well as assessment of numerous 

technological options on reducing them across the supply 

chain in cement making  

• Use of GNR and ECRA reports to predict CO2 emission 

projections through 2050 for the global cement industry 

McKinsey & 

Company 

 

[87, 90], [89], 

[88] 

Scope: 

• Aggregated estimates of all sectors of economy – do not 

explicitly bring out work on the 5 material sectors 

• Global scope 

• 2005-2010 and projections through 2030 or 2050 

• Energy and CO2 emissions 

 

Contribution of reference to this work: 

• Analyzed the potential for energy efficiency from a business 

perspective focusing on costs 

• Declared that energy efficiency offers a vast and low-cost 

energy resources for the US, with the potential of saving 23% 

of their projection of energy demand by 2020 

• Highlight that largest opportunities in the industrial sector are 

in the energy intensive industries like refining, pulp and paper, 

bleaching, hydrocracking, etc. 

• 42% of the savings have a payback period of less than 2.5 
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year 

• Specifically the US can reduce GHG in 2030 by 3-4.5% using 

tested approaches and high-potential emerging technologies 

with abatement marginal costs of less than $50 per ton 

• For the US, industry does not show up in the top 10 abatement 

strategies 

• For the US, top two industrial abatement strategies are process 

improvements and combined heat and power 

 

Additional contribution of thesis: 

• Focus on energy savings from the five material sectors 

specifically (details on these are not available through public 

reports by McKinsey and Company) 

• Technical analysis as opposed to focusing on business cost 

savings 

• Evaluation of other strategies of cutting edge primary and 

secondary production technologies, maximum recycling 

energy saving potential 

• Estimate a maximum feasible energy reduction potential as 

opposed to an estimate of 2050 savings through hypothetical 

scenarios 

• Assess material efficiency strategies including a detailed 

assessment of remanufacturing.  

• Investigate drivers of material demand to draw perspective of 

material efficiency potential to meet demand targets.  

McKinsey and Company seems to follow work of Allwood in 

their estimates. 

  

Lund 

 

Scope: 

• US remanufacturing industry 
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[91, 92] • 1995 thru 2008 

• All sectors 

 

Contribution of reference to this work: 

• Estimate the market size and the profile of the companies 

practicing remanufacturing 

• Comprehensive profile of the US remanufacturing industry 

including number of firms in different sectors, basic tactics 

and operating practices of the industry, strategies, and markets 

• Claim 50-80% energy savings from remanufacturing products 

and 40-60% price discount, relative to replacing with new 

 

Additional contribution of thesis: 

• Life cycle energy saving from remanufacturing products as 

opposed to only those from the materials production and 

manufacturing phases 

Intlekofer 

 

[93] 

Scope: 

• Residential appliance and computer industries 

 

Contribution of reference to this work: 

• Comparative energy of leasing products as opposed to buying 

new, where products with high use impacts and technological 

improvements can benefit from leasing because of decreased 

lifetime 

 

Additional contribution of thesis: 

• Focused on remanufacturing and analyzed products across 8 

different sectors including appliances and computers 

Kiatkittipong et 

al. 

• Life cycle optimization for minimizing energy consumption 

from computer monitors, induction motors, refrigerators, and 
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3 In the green section of the table ‘intensities’ refer to quantity per unit of GDP or GNP in that 
geographic and temporal scope 

 

[109] 

light bulbs 

 

Added contribution of thesis: 

• Focused on remanufacturing and analyzed products across 8 

different sectors including appliances and computers 

Geyer et al. 

 

[110] 

• Cost modeling of remanufacturing operations realizing focus 

on collection rate, component durability, and others 

Ijomah et al. 

 

[111] 

• Surveyed remanufacturing companies to highlight key 

challenges and requirements for remanufacturing operations 

• Suggested a generic remanufacturing model to account for 

interactions between the various remanufacturing activities 

  

Ausubel & 

Waggoner 

 

[94] 

Scope: 

• Intensities3 of CO2 emissions, energy use, food consumption, 

and fertilizer use 

• Global, US, China, India, Indonesia, Brazil, France 

 

Contribution of reference to this work: 

• Used IPAT formulation to study trends in material intensity, 

energy intensity, and CO2 emissions intensity to understand 

dematerialization 

• Determined underlying reasons for decrease in intensities as 

well as persistence of the trends 

 

Additional contribution of thesis: 

• Focused on key materials of steel, aluminum, copper, zinc, 

and cement 
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• Brought in the key actor of price 

• Assessed the trends and actors of demand through an IPAT 

analysis 

Ayres et al. 

 

[112, 113] 

Scope: 

• Material intensities of various materials, various geographies, 

and various time periods 

 

Contribution of reference to this work: 

• Explains dematerialization (decrease in material intensity) 

through improvements in resource conversion efficiency 

defined as the ratio of useful work output and exergy input 

• Recommends use of useful work as a part of the production 

function almost filling in for Solow residual 

Behrens et al. 

 

[95] 

Scope: 

• Cross-regional analysis of resource extraction including 

fossils, metal ores, industrial and construction minerals, and 

biomass 

 

Contribution of reference to this work: 

• Metal extraction exhibits the highest growth 

• Resource extraction per unit GDP has decrease by 25% 

between 1980 and 2002 

 

Additional contribution of thesis: 

• Focused on key materials of steel, aluminum, copper, zinc, 

and cement 

• Brought in the key actor of price 

• Assessed the trends and actors of demand through an IPAT 

analysis 

• Compared developed and developing economies 
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Cleveland and 

Ruth 

 

[114] 

Scope: 

• Material intensities of various materials, various geographies, 

and various time periods 

 

Contribution of reference to this work: 

• Contests that the observed decline in material intensity and its 

interpretation for dematerialization is not necessarily robust. 

Argues that little is known about several industries and that 

there is limited macroeconomic evidence to support the theory 

of dematerialization 

• Provides a summary of literature analyzing material intensity 

trends and inverted-U phenomenon 

European 

Commission 

 

[115] 

• Comprehensive assessment of domestic material consumption, 

direct material input, and other material flow indicators for 

EU-15 from 1980 to 2000, with a comparison with economic 

indicators, as well as a comparison with Japan and US 

Graedel et al. 

 

[35, 37-41, 45, 82, 

116-120] 

• Global, regional, and national material flow analysis for 

several metals including steel, copper, zinc, nickel, etc. 

Krausmann et al. 

 

[121] 

• Global material use analysis along with material intensity 

analysis for biomass, fossil fuels, construction minerals, and 

industrial minerals and ores 

Rogich, Williams 

et al. 

 

[122], [123] 

• US material consumption and production trends as well as 

material intensity trends 

Ruth 

 

[96, 97] 

Scope: 

• Copper, lead, zinc, aluminum, and iron 

• US focused 



 

  82 

 

Contribution of reference to this work: 

• Modeled material demand to estimate energy and emissions 

from materials production and potential dematerialization 

 

Additional contribution of thesis: 

• Compared developed and developing economies 

• Brought in the key actor of price 

• Assessed the trends and actors of demand through an IPAT 

analysis 

USGS 

 

[2, 9] 

• Material production and consumption over time in the US 

• Global and international production and consumption 

quantities of materials over time 

• Material price data 

• Material flow analysis of primary and secondary material in 

the US 

• Analysis of material supply and demand economic drivers 

Wernick et al. 

 

[98] 

Scope: 

• Material intensity trends for many materials including plastics, 

aluminum, potash, phosphorous, paper, timber, copper, steel, 

and lead 

• US focused 

• 1900-1990 

 

Contribution of reference to this work: 

• US material consumption and production trends as well as 

material intensity saturation trends 

 

Additional contribution of thesis: 

• Compared developed and developing economies 
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• Brought in the key actor of price 

• Assessed the trends and actors of demand through an IPAT 

analysis 

World Bank 

 

[124] 

• Cross-country material (and energy) consumption, production, 

and price trends with focus on China and India 

Layke et al. 

 

[125] 

• Trends in various material flow indicators like domestic 

processed output, domestic hidden flows, total domestic 

output, and net addition to stocks, across industrialized 

countries 

Xu and Zhang 

 

[126] 

• Trends in various material flow indicators like domestic 

extraction used, domestic material consumption, direct 

material input, domestic processed output, and others, in 

China 

Müller et al. 

 

[35, 127] 

• Steel stock and flows analysis for USA and global 

Hatayama et al. 

 

[128] 

• Comprehensive stock and flow diagram for steel in 42 

countries from 1980 through 2050 

Luo and Soria 

 

[129] 

• Comprehensive overview of world aluminum industry 

including consumption, energy use, technology distribution, as 

well as modeling for future projections 

ICSG 

 

[130] 

• Comprehensive global material flow modeling of copper scrap 

Spatari et al. 

 

[131] 

• Copper stock and flows analysis for North America 

Waggoner et al., • Comprehensive literature review on IPAT analysis and its 
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Chertow, Schulze, 

York et al., 

Kowalski et al., 

Dietz et al. 

[71-77] 

variants 

• Example applications of IPAT to difference systems (not 

material systems, as used in this thesis) 
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Chapter 3: Evolution of a materials 

society 

 

Abstract 

This chapter analyzes the evolution of material demand with societal development, by 

comparing trends in the final material demand with the buying capacity of the consumers, 

defined as income (industry revenue per capita) divided by the material price. Using this 

demand of key materials - Steel, Aluminum, Copper, Zinc, and Cement - is analyzed at 

the global level as well as for the developed economy of USA, and the developing 

economies of China and India. The trends are starkly different. The US shows strong 

signs of saturation while; both developing economies of China and India do not (yet). 

The trends at the global scale seem to be dominated by the developed world and only in 

recent years does the influence of growing Chinese demand start showing up. To 

determine what is driving the differences this research analyzes the actors of material 

demand and determines how each of them contributes to the different materials, in the 

different economies. Results show that consumer income and population have been 

consistently increasing, but in the second half of the 20th century, the US industry has 

demanded less material per dollar output, while the US industry output has continued to 

grow. Collectively they tend to cancel each other, presenting a material saturation 

phenomenon where percentage changes in demand are equivalent to that in population, or 

in other words, the percentage changes in demand per capita are close to zero. For China 

and India the case is the opposite where not only is the industry and industry share of 

GDP growing, for each unit increase in value addition, industry has continued to demand 

more and more material, driving up demand, and avoiding saturation effects. This paper 

goes beyond analyzing material intensities and determines what actors play a role in 

material demand and to what extent. A key conclusion derived from the analysis is of 

focusing on measures that reduce the material intensity of industry, i.e. looking for ways 
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to reduce material demand into the future without reducing the services demanded from 

them.  

 

Introduction 

In Chapter 1 we discovered how the material demand4 trends over the last 5 decades have 

been significantly different between the US and China or India. This includes not only 

the total quantities but also the respective CAGR. The reasons for the different demand 

rates can relate to a broad range of characteristics, some specific for the individual 

materials, but eventually correspond to the final utilization of these materials in providing 

the services demanded. Barring environmental concerns, continued demand growth can 

indicate signs of development. For example Graedel and co-workers show a strong 

correlation between material use and GDP and HDI [82]. However, if going forward, we 

aim to reduce material demand as one potential strategy to mitigate the energy and carbon 

impacts, without hampering any kind of development, we must first understand what 

drives material demand, and what are the different actors we can influence or should 

target to implement this strategy. This chapter addresses this with first understanding the 

historic evolution of a materials society from a new perspective, and then a 

decomposition of the trends into the corresponding actors. Like Chapter 1, this is done for 

key materials and for the geographic and economic scopes of USA, Global, China, and 

India.  

 

Prior work 

Interest in material demand trends has been high and growing for several decades now 

[112, 113, 132]. Several technical and political propositions have been made on reducing 

impact intensities of materials [6, 12]. Demand trends have been analyzed across 

different boundaries and different temporal scopes. Included in this is the empirically 

observed ‘delinking’ of material demand and economic development, one form of 

relative dematerialzation [76, 98, 112-114, 121-123, 126, 133, 134]. This is commonly 

                                                             
4 In this chapter, material demand is represented through ‘apparent consumption’ as defined by the 
USGS 
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measured through a ratio indicator called “Material Intensity” or “Intensity of Materials” 

given as: 

 

 

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝐷𝑒𝑚𝑎𝑛𝑑
𝐺𝐷𝑃 𝑜𝑟 𝐺𝑁𝑃 =

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝐷𝑒𝑚𝑎𝑛𝑑 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎
𝐺𝐷𝑃 𝑜𝑟 𝐺𝑁𝑃 𝑝𝑒𝑟 𝑐𝑎𝑝𝑖𝑡𝑎     [

𝑘𝑔
𝑈𝑆𝐷] 

Equation 62 

 

Material intensity is the amount of material needed to produce one unit of net value 

addition or GDP or GNP. The inverse of this is sometimes called productivity of material 

use [95]. The higher the material intensity, the greater the material demand to produce the 

same GDP. Thus a reduction in material intensity without compromising on final services 

provided has a sustainable connotation. Other metrics like material intensity per unit 

service (MIPS) have also been proposed but not yet used as popularly as material 

intensity [114]. Along these lines is also the hypothesized environmental Kuznets curve 

phenomenon, where material intensity (or equivalent metrics) is expected to exhibit an 

‘inverted-U’ shape curve (convex) such that as an economy develops, the material 

intensity first increases, peaks, and then eventually reduces. As a result several 

researchers have investigated the trend in material intensity over time or with economic 

development (GDP or GNP). Wernick et al. presented increasing US material intensities 

over several decades between 1920 and 1990 for plastics, aluminum, potash, and 

phosphorus; a constant intensity for paper; and decreasing intensities for timber, copper, 

steel, and lead, during the same period [98]. Timber exemplifies the material substitution 

effect, while the trend for lead is driven by regulation. Williams et al. conducted a similar 

analysis for the US consumption of steel, cement, paper, ammonia, chlorine, aluminum, 

and ethylene, and showed how in the second half of the 20th century, the first three have 

either decreased or remained flat, while the rest have increased [123]. They also fit the 

steel trend to a bell-shaped ‘inverted-U’ curve revealing the peak to be around 1920 

(potentially influenced by the World War). They highlight four interesting reasons to the 

maturing of basic materials use in the United States – increase in material use efficiency, 

material substitution, saturation in use, shifts in high income consumer preferences to less 
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material intensive goods and services. For an aggregated material analysis (agricultural, 

forestry, organics, metals, and minerals), Rogich et al. reveal a reduction in material 

intensity in the US from 1970-1990 by approximately 30% [122]. Similar is their result 

for the aggregate of plastics, wood, paper, and metals. On the other hand, at the global 

level, a recent report by Krausmann et al. shows that the aggregated material intensity for 

minerals had remained constant around 1 kg/$ GDP for the first half of the 20th century, 

increasing slightly then after, and then decreasing after 1970 [121]. To complement this, 

Behrens et al. draw a regional comparison of material intensities for aggregated material 

use (including fossil fuels, biomass, metals, and industrial and construction minerals) and 

show the fastest decrease for North America, a flat trend for Oceania, Latin America, and 

Caribbean, and a slower decrease for the rest at approximately the aggregated rate for the 

World [95]. For a country-by-country analysis, Xu et al. show a decrease in aggregated 

material intensities for the developed economies of USA, Japan and the Netherlands, 

while a constant trend for China and the Czech Republic [126]. Overall, due of boundary 

inconsistencies, its not easy to compare across these reports, but for many developed 

countries, the common result has been that of reducing material intensity indicating a so 

called ‘delinking’ or ‘decoupling’ between material dependence and economic 

development, where as for developing or transition countries the results vary – sometimes 

increasing, sometimes decreasing, and sometimes flat.  

 

Analyzing the trend in material intensity is indicative of productivity, but by no means 

defines material demand completely. For example, in most of the work cited above, 

though material intensity might be decreasing, overall demand and demand per capita 

have increased. Also material intensity trends are simple and intuitive but limitedly 

informative. A decreasing, increasing, or constant material intensity, over time can result 

from various causes and drivers, and though understanding each one precisely can be a 

monumental task, one definitely needs more clarity to draw inferences more confidently. 

For example, a decreasing material intensity could mean an absolute dematerialization, or 

a more rapidly increasing GDP, or decreasing economic industrialization, or perhaps a 

more efficient use of materials (or others). Plus material intensity alone conceals the role 

of population, which cancels out in the ratio [114] . The goal of this paper is to better 
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understand the demand trends for key materials. First, following similar intentions to that 

behind material intensity, this paper proposes a newer formulation that assess consumer 

choice of material demand defined as the ratio of demand and income over material price. 

Income over material price relates to the maximum a consumer can demand, which we 

call ‘buying capacity’ and thus this ratio is indicative of consumer choice of demanding 

the particular material. Second, this paper goes beyond mere indicator-trend analyses to 

shed brighter light upon the different actors that influence material demand, and 

understand the extent to which they do so (actors refer to the different actions taking 

place in society that eventually force material demand like population change or income 

increase. Some reports call them forces [72], however, the understanding followed in this 

paper defines forces as the influence Actors have on the impact which may entail 

estimating the elasticities of these actors on the final impact or understanding the 

interdependence of the actors). To augment this understanding, different economic scopes 

of USA (developed), Global, as well as China and India (developing) are considered. 

Using this knowledge it explains why demand for some materials in some economies is 

exhibiting a saturation phenomena, and why it is not for others. 

 

Materials and methods 

The methodology followed is as described in Chapter 2. The materials chosen for this 

study are key metals – Steel, Aluminum, Copper, and Zinc and the most consumed 

ceramic – Cement. Not enough credible data was found for paper and plastics to include 

them, especially for price given the wide variety of paper and plastics consumed. The 

data for this study has been acquired from credible sources and often crosschecked with 

other sources, especially in case of any inconsistency. Data for apparent consumption 

quantities are mostly taken from [2, 9], GDP and population from [135], prices from [9], 

and industry share of GDP from [136]. However details of data and sources for each 

material, and each geography, is available in the Appendix. 
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Results 

Following Equation 56 demand per capita [y-axis] Vs. industry income per capita over 

material price trends [x-axis] are generated for Steel, Aluminum, Copper, Zinc, and 

Cement, for the geographic scopes of USA, Global, China, and India. These are shown in 

Figure 17. Only the trends are presented along with the coverage years (in parenthesis), 

and not the data values to keep the presentation simple. All axes are on a linear scale. 

Also shown in broken ‘blue’ lines are the inferred trends for the different charts. These 

are not regressed but the author’s rendition inferred from regression lines. The results are 

interesting and partially comforting. Interesting because of the difference in the trends 

between developing (China, India) and developed (USA) economies. For all materials, 

China and India show a proportional increase in demand per capita with increase in 

income over material price. In some cases (like steel and aluminum demand in India) a 

change in slope is apparent referring to a change in choice, however the slope never turns 

to zero like in the case of USA. On the other hand, the developed economy of USA 

shows clear signs of saturation5. For each of the materials, a plateau phase is observed in 

the second half of the century where material demand increases relatively slowly. This 

result is comforting as a proportional (like for lighting in Figure 8) or exponential trend 

can be more threatening to resource depletion and environmental degradation, as 

discussed before. The trends on the Global scale are fairly similar to USA or the 

developed economy in general, given the dominance of the developed world on both 

demand and industry income at least up until 2000. Post 2000 demand in China picks up 

at faster rates (see Figure 6 in Chapter 1) impacting global trends more significantly. If 

China continues to demand more and more and increases its dominance on global 

demand, and if the developed countries continue to exhibit a relative saturation, the 

global trends would soon move away from mirroring the saturated trends of the 

developed world to proportionally increasing trends of China and the developing 

economies. Note that these results and trends presented in Figure 17 include the 

conclusions previously drawn from material intensity trends reported before. Müller et al 

have explained how the trends in demand can be explained by analyzing stocks. Materials 

stocks are the total quantity of the materials currently being used by society, and material 
                                                             
5 as defined in the Methodology section in Chapter 2 
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flows (demand refers to the annual flow) are the annual inputs or flows of materials to 

society.  In studies of iron and steel used in industrialized countries it has been observed 

that these stocks tend to plateau after a certain level of per capita income. The general 

idea is that society has adequate supplies of durable goods and infrastructure and, in fact, 

adding more might be difficult. Müller et al. found this plateau level for iron and steel 

stocks to be about 10t/cap. After this level is reached, society maintains a certain level of 

material production required to replace and maintain this stock level. This level is 

estimated to be in the vicinity of 500 kg/cap/yr.  For comparison, current global average 

per capita iron and steel stocks are estimated to be about 2.7t/cap, and global average iron 

and steel flows are about 200kg/cap/year [35, 81, 127]. 

 

Though relative magnitudes of per-capita demand of the materials are not shown in 

Figure 17, they are interesting to compare as well. For example, a USA based consumer, 

on average, demanded 380 kg of steel in 2005, almost double of global and Chinese 

levels, and close to 10 times the per-capita demand in India. On the contrary, US per-

capita demand of cement in 2005 was roughly 430 kg, approximately half of Chinese 

demand, but more than the global average of 360 kg. India on the other hand demanded 

only 100 kg/capita in 2005. The story for Aluminum and Copper is similar to that for 

Steel, with USA demanding 20 and 8 kg/capita respectively, roughly 5-6 times Chinese 

and Global levels which are equivalent, and 20-30 times Indian levels. With Zinc, USA 

demanded 3.6 kg/capita in 2005, again 10 times the Indian level, where as China 

demanded 2.2 kg/capita and the global average was 1.5 kg/capita. Given one primary 

difference between the geographic scopes is the economic structure; the results set a 

strong basis to deeper analyze the economic aspects for them over the years. To do this 

the IPAT formulation with actors of material demand as presented in Equation 59 and 

described in Chapter 2 is used. Further Equation 61 is utilized to breakdown the rate of 

demand change into the different (not independent) actors for each material, and each 

geographic scope, over the last 50 years from 1955 to 2005 (the economic slowdowns of 

2007-09 are avoided). The results are shown in Figure 18, in a similar arrangement to 

Figure 17. For each chart the vertical axes and scales as well as the horizontal axes and 

scales are the same and are shown on the boundary charts. Along with the six variables of 
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Equation 59 and Equation 61 (total demand plotted as the solid line), also shown are the 

percentage changes for ‘mass of material used over industry income’ referring to the 

quantity of material required by industry to provide the respective value addition. This is 

like the material intensity of the industrial sector and referred to as ‘M’ in this paper. All 

percentage changes are CAGR calculated between the labeled year and 5 years back.   
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Figure 17: Demand (y-axis) vs. buying capacity (x-axis) plotted for the different 

materials and different geo-economic scopes. Buying capacity is defined as the ratio 

of industry income for the particular economy and the corresponding material 

price. Each data-point corresponds to a particular year, and the temporal range is 

given in parenthesis.  

 

Figure 18 provides a lot of information both at the high level and at the level of each 

material, actor, or geography. The questions of interest for this chapter, arising from 

Figure 17, are essentially at the high level of each geographic scope. Hence, the analysis 

is presented in a top down approach. First to note is that for all geographies or countries 

(including global scale) the population has been continuously but slowly growing (~1-

2%). The growth rates for India are marginally higher than others. In terms of GDP per 

capita (affluence), China exceeds others significantly (5-10%) followed by India, and 

then Global and USA. For all years across all scopes GDP per capita has continuously 

risen. A factor that is commonly discussed in a cross-country analysis (especially 

between developing and developed) is the level of industrialization calculated as the 

fraction of GDP that corresponds to Industry. Diminishing material intensity trends are 

often attributed to ‘deindustrialization’ of economies where the less material intensive 

service sectors start dominating. Its observed that industry share has indeed shown 

growing trends for China and India, and recently diminishing trends for USA as well as 

Global scopes, however, the year to year percentage changes are quite small, usually only 

a couple of percent or lesser (positive or negative). Thus contrary to common belief of the 

large impacts of economic structure changes, it in fact appears to play a relatively meager 

(direct) role. Also interesting is how total demand D and M trace each other rather closely 

for USA, which is not the case for China and India. This potentially indicates that the 

industry demand for material quantity per unit dollar output has a more dominating effect 

on material demand in the US, while in China and India they are separated meaning that 

other actors play an influential role as well. Another interesting point to note is that both 

D and M have reduced in the last year for all materials, except cement, in the US, while 

the case for China and India is the opposite. On a global scale the trends for D and M 

appear to be more stable, especially with M closely fluctuating around the zero line and D 
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positive and around the 5% CAGR level. A dip in demand changes to the level of 

population is apparent for the years of 1975-2000 corresponding to the plateau/saturation 

effects observed in Figure 17. Prices and share of industry output spent on materials F 

seem to fluctuate a lot, quite inversely, at least much more than M. This firstly means that 

material prices tend to dominate changes in F, and secondly that M is relatively less 

elastic to material prices, at least in the short-term.  

 

On a material-by-material level, the demand trends of Figure 17 appear in their 

percentage change form just as expected. For example for Steel in the US, the rate of 

demand change is close or fluctuating around the population change explaining the 

plateaued or saturating effect. On the other hand, for China and India the demand trends 

have largely been positive. For China there is increasing growth in recent decades 

relating to the exponential trend for Steel and Aluminum, while for India the growth rates 

seem to fluctuate around a flatter trend. The soaring demand in the initial years around 

1950-1960 for China and India indicate the industrial transition when these industries 

started picking up. At the global scale 1975 onwards the growth of steel demand was 

close and fluctuating around that for population making the demand per capita trend in 

Figure 17 plateau. Similar is the case for other materials. The increasing impact of 

demand in China on global trends is clear with the rise in demand in 2005. Aluminum is 

equally interesting. The declining CAGR for US is apparent and explains saturation, 

while for the others it has been usually positive and even growing for China. Similar 

trends are observed for Copper and Zinc except at a global scale for Zinc where demand 

seemingly plateaus between 1975 and 1995 and then picks up again in recent years, and 

Copper for India shows large fluctuations apparently due to fluctuating M. Cement 

demand in the US and at the global scale also show much slower demand growth as 

compared to China and India, where increasing affluence in recent decades seem to 

dominate in promoting demand growth, along with the decreasing cement price in India.  

 

As an example, the case of global steel is elaborated. The global analysis presents the 

added benefit that the considered demand or apparent consumption is also equal to the 

total consumption as the import and export quantities are internal to the boundary. The 
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observed saturation trends at the global scale are hence that of total consumption and 

provide some confidence of using apparent consumption as an indicator of total 

consumption. For the case of global steel, the trend observed in Figure 17 is of an initial 

rise, followed by saturation starting the mid 1970s. Also one can observe a slight rise in 

the recent years around 2005. Figure 18 explains this. Population and Affluence have 

consistently increased during the observed period. Also, ‘s’ the fraction of industrial GDP 

has changed rather slowly. What seems to have changed dramatically, causing the 

demand trend to also change, are ‘F’ and ‘p’, the fraction of global industry income spent 

on steel, and the price of steel. Prior to the mid 1970s ‘F’ and ‘1/p’ changed positively 

driving demand, but after this period they changed negatively pushing back on demand. 

In fact ‘F’ and ‘1/p’ seem to move quite proportionately meaning that the quantity 

demand from industry is less elastic to industry steel price. That’s why ‘M’, at least in 

this case, proves to be a good indicator for the analysis over ‘F’ to study consumer choice 

supporting the use of material intensity as an indicator for analyzing demand saturation, 

as it has been in the past. One can also notice how ‘D’ and ‘M’ tend to closely follow 

each other post 1975, which was not the case before then when other factors seems to 

play a relatively more influential role. This hints that the reason for saturation-like-trends 

in global steel demand is primarily a function of the choice of industry to demand less 

material in spite of increased industry revenue, consumer base, and affluence, as well as 

decreased material price. Reasons for the change in choice are discussed in the next 

section. In the recent years choice coupled with a decrease in price, seems to result in the 

rising trend in demand. This may be closely related to the rising influence of China on the 

global market. 
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Figure 18: YtY changes in demand per capita and the corresponding actors 

mentioned in Equation 59. Also plotted is the change in ‘M’, material intensity of 

industry, which is the product of F and 1/p.  

 

Discussion 

Disaggregating demand into the various IPAT components and studying them in Figure 

18 sets the foundation for the intended analysis. This section presents the high-level 

understanding towards answering the question about what causes the contrast in trends 

discovered in Figure 17.   

  

 
 

Figure 19: Simplified representation of conclusions drawn from Figure 18. Colors 

are comparing different actors for same geo-economic scope. Darker is larger 

magnitude, green(ish) is positive, and red(ish) is negative. '*’s are comparing 

different geo-economic scopes for same actor with more '*'s referring to a larger 

magnitude.  
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To do so the paper utilizes the results presented in Figure 18 and takes total averages of 

each of the actors. To present the results however F and material price are combined, 

given their strong correlation (as observed in Figure 18), and M is used. These averages 

are then ranked through color-coding and symbols as shown in Figure 19. The actors are 

ranked for each geographic / economic scope through colors - green indicates a positive 

force by the actor (to increase demand) and red indicates and negative force (to decrease 

demand). The darker the color, the higher the magnitude of the force. Also shown are the 

relative magnitudes of each actor across the different geographic scopes. This is indicated 

through the symbol ‘*’ with more ‘*’s meaning a higher magnitude. Each actor follows 

its own independent scale and so the ‘*’ cannot be used to compare different actors (the 

color coding serves that purpose).  

 

The results are clear and directly answer the questions raised about understanding the 

trends of Figure 17. Lets neglect the last two rows for now, and come back to them later. 

Its strongly stands out that consumer affluence has been a strong and consistent driver of 

material demand, one with a high magnitude on average. Similar is the growing 

population though the intensity is lower. Both of these actors strongly promote increased 

demand for all materials across all geographic scopes. The affluence growth in China is 

the highest (as observed in Figure 18 and presented in Figure 19 with ‘****’) followed 

by India, and then USA and Global scale, which have the affluence growth at similar 

average rates between 1950 to present. With regards to population, India exhibits the 

fastest growth and USA the slowest, while China and Global averages are intermediate 

and similar. Industry share, which is Industry output as a fraction of the GDP (S) is 

different for the different scopes. China and India have grown slowly, while for USA and 

Globally this has decreased on average. However the magnitudes are small (given by the 

lighter colors) but highest for USA (decreasing faster than at Global scale), similar in 

magnitude to that for India, while at China and Global scales the trend is slower. The last 

actor given by the material intensity for Industry or M also shows significant variation 

across the different geographic scopes. It’s growing for all but USA, with strong growth 
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for India and fastest growth for China (3-4 times faster than India). At the global scale M 

is growing at moderate rates, while for USA it is declining at moderate rates.  

 

Reviewing the charts on a geography level (row by row) explains the trends observed and 

conclusions drawn earlier from Figure 17. It’s realized that China and India continue with 

strong growth given that all the actors are driving it in this direction. For China M and A 

are the biggest actors. However for the US, though A and P are driving up demand, both 

S and M are reducing it, decreasing the final demand for the market and causing the 

observed saturation effect. On the global average the reducing S and slightly weaker 

effect of the actors keeps the demand growing between 1955-2005. Looking specifically 

at the period of 1975-2000 at the global scale (second-last row) it is clear that both S and 

M counteract the demand promoting actors of P and A, leading to the observed saturation 

at the global scale. This is very similar to the saturation observed for the US. So overall, 

Figure 19 is able to inform which actors are driving demand, in which direction, and in 

what capacity, for the different geographic scopes. 

 

The last row of Figure 19 traces back the same calculation for the US, but for the first 

half of the 20th century as opposed to the second, as for all other rows. At this time, the 

US by itself was developing rapidly with economic structures more like what China and 

India are today (to some extent). The results directly inform the same. We note that the 

rapid growth in material demand during the first half of the 20th century in the US was 

driven by all the actors promoting demand. Affluence and M increased most followed by 

population and S. In fact the increase in M was the dominant factor, indicating the 

increasing industrial dependence on material for generating the desired profits. However 

from then to the second half of the century, the service sector has begun to dominate 

(especially with industrialization moving overseas) and the reliance of industry on 

materials to create economic value has begun to decrease. This is why we see the 

saturation effects for the developed economy of USA, and not (yet) in the developing 

economies like China and India. Similarly we see that for the last quarter of the 20th 

century the global drivers are playing a similar role to the second half of the 20th century 

for the US. Hence the similar trends observed in Figure 17.  
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Comparing the relative magnitudes of the different actors for US demand in the first and 

second half of the 20th century, it’s evident that population and income played similar 

roles, and the key change is in the industrial material intensity (and also economic share 

but to a smaller extent), i.e. quantity (mass) of material demand to produce the industrial 

income. Two broad reasons for this decrease could be (1) a relative decrease in the 

‘numerator’ i.e. a slowing down in the increase of material demand by industry while 

industry revenue continues to grow at the same rate; (2) a relative increase in the 

denominator, i.e. industry revenue has grown faster while growth in material demand by 

industry has remained the same. The final effect is likely to be caused by a combination 

of both. For example, industry by its construction could be changing, such that it is 

relying on other sources of income that are not necessarily heavily material dependent, at 

least for that material. Material substitution could be one reason. Another could simply be 

a saturated demand for the primary materials studied – for example industry gradually 

moving towards products (material end-use) that have a relatively longer life, and as a 

result require replacement less frequently, diminishing demand. In this case the demand 

for products by new customers can continue to grow, but the replacement demand will 

diminish. In such a case industry now adjusts to the changing demand and caters to other 

services that perhaps require lesser or other materials. Another plausible reason could be 

that industry has become more efficient with the use of material, with lower losses, as 

well as optimized material input for the desired service. This is definitely true for the 

steel industry [6, 11]. 

 

Regarding increasing use life of the material (demand side changes), [35, 45] has shown 

that from the earlier decades of the 20th century to the late 90s, the fraction of all steel 

used in North America for building and construction (long residence life) has doubled 

from 20% to 41%. Hatayama and co-workers project the fraction of end-use to buildings 

is going to continue to increase to over 50% on a global scale, after which it tends to 

reduce and stabilize around 45% [128]. Similarly for Copper, ICSG shows that the US 

end use of copper was 51% in building and construction in 2006, up from 24% in 1980 

[130]. The increasing fraction of longer lifetime applications directly transforms into 
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diminishing growth in demand. It is interesting to note, that research also reveals that for 

Asian countries the lifetime of steel in buildings is around 33 years roughly half that of 

developed countries like USA [128]. If this were due to the building reconstruction rate 

being higher in Asia, then this would add to higher demand growth rates for cement, 

aluminum, and zinc as well. Specific examples of material substitution include 

composites and plastics substituting metals or the substitution of timber explained before. 

An example industry moving to less material intensive sources of income includes 

electronic products that help generate a larger fraction to industry value addition per unit 

material consumed given that their relative prices are higher. With regards to more 

efficient use of materials (supply side changes), one of many examples is of reducing 

material per kilometer of long-distance telecommunication cables at roughly (-9%) 

CAGR over the last century [134]. Similarly known is the reducing coke input to produce 

one ton of steel, which directly relates to predominant energy savings as well [134]. Of 

course there can be rebound effects associated with such improvements if prices 

decrease, which negate some or all of the material savings [4, 137]. Unfortunately, data 

scarcity and modeling complexity does not permit a simplistic analysis on how each of 

these comes into play, beyond observing specific examples.  

 

A crucial question out of the work is whether China and India, and the rest of the 

developing world will also exhibit signs of saturation in to the future, at what levels of 

demand, and when. A simple estimate would be to assume that they follow the US and 

saturate at similar levels growing at the existing rates until then. This would require the 

global demand of steel and zinc to more than double, of aluminum and copper to roughly 

quadruple, and that of cement to increase by 20%, keeping the population levels the 

same. However, the story for these countries could in fact be very different. The United 

Nations ‘medium’ scenario estimates for population growth up until 2050 are at a CAGR 

of 0.02% for China, 0.9% for India, 0.8% Globally, and 0.7% USA [135, 138]. These are 

significantly lower than historic growth rates and achieving such control will be 

challenging but also rewarding in terms of reducing material demand. Combining these 

with the projected ‘Constrained growth scenarios’ by PwC, affluence is expected to 

exhibit a CAGR of 3.1% for China and India each, 1.8% Globally, and 1.4% for the US 
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[139]. These are again much lower numbers for China and India compared to historic 

statistics of the previous few decades. Also both of the above estimates are of the 

conservative cases, especially the ones for affluence, and have associated negative 

impacts because of slower economic growth. However, even if conservative, both 

population and affluence will continue to drive up demand and if saturation is to be 

experienced by the developing world, significant changes in industrial material intensity 

would have to be incurred through either or combination of the factors listed before. The 

industry share of the economy will also contribute in this regard, however historically 

these have been significantly lower than the driving push from population and affluence. 

Such a result emphasizes the role of material efficiency in society and its ability to 

alleviate burdens associated with material demand. Allwood and co-workers provide a 

comprehensive discussion on such strategies [81, 102, 140]. 

 

Summary and next steps 

In summary, this chapter uses a new way to study evolution of material demand through 

societal development by comparing material demand to the ratio of income divided by 

the material price referred to as ‘buying capacity’ in this thesis. ‘Saturation’, as referred 

to here, is when such a plot shows a convex trend with demand growth diminishing with 

increasing income over material price. Contrasting trends reveal saturation phenomena 

for the developed economy of USA, and not for the developing economies of China and 

India. Global trends appear to mirror the developed world, however the increasing 

influence of the developing world has begun to show up in the recent years. The use of an 

IPAT like formulation helps determine the key role of population and affluence in 

growing demand (stronger for China and India), while diminishing industry material 

intensity and deindustrialization help contain material demand for USA. The robustness 

of M revealed the price inelastic nature of industrial demand to materials, making it a 

worthy indicator for material demand modeling. For China and India, all the actors, on 

average, promoted demand, and while affluence and population are projected to continue 

drive up demand, it is to be seen what material efficiency strategies can we deploy to 

reduce industrial material intensities and alleviate the growing pressures of material 

production.  
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Chapter 4: Energy efficiency of materials 

production 

 

Abstract 

In this chapter we review the energy requirements to make materials on a global scale by 

focusing on the five structural materials which dominate energy used in materials 

production: steel, cement, paper, plastics and aluminum. We then estimate the possibility 

of reducing absolute materials production energy by half, while doubling production from 

the present to 2050. The goal therefore is a 75% reduction in energy intensity. Four 

technology based strategies are investigated without regard to cost: 1) widespread 

application of best available technology (BAT), 2) BAT to cutting edge technologies, 3) 

aggressive recycling, and finally, 4) significant improvements in recycling technologies. 

Taken together these aggressive strategies could produce impressive gains, on the order 

of a 56% reduction in energy intensity, but this is still short of our goal of a 75% 

reduction. Ultimately, we face fundamental thermodynamic and scrap availability 

constraints on our ability to improve the energy intensity of materials production. A 

strategy to reduce demand by providing material services with less material (called 

“material efficiency”) is outlined as an approach to solving this dilemma. 

 

Introduction 

We have learnt and understood the enormity of the anthropogenic demand for materials. 

The energy required to make these materials and their associated products, and the carbon 

emissions associated with this production are also huge. Industry requires on the order of 

a third of the total worldwide energy use per year, and contributing a similarly large 

proportion of total anthropogenic carbon emissions [6, 7, 11].  
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In this chapter, we examine the determinants of these large energy requirements, and look 

for potential future reductions, and in particular, potential constraints on these reductions. 

We particularly focus on embodied energy, which is the energy required to produce a unit 

of material. This when multiplied with the total units consumed or produced results in the 

total energy needed to provide these materials. 

 

Framework 

As a point of reference we are looking to reduce our energy use in the materials sector 

even while we allow demand to grow. For example, sustainability guidelines for energy 

and carbon emissions suggest that we need to halve our energy use from 2000 to 2050. At 

the same time, to allow developing countries to “catch up” to the developed world, we 

would need to allow for a doubling of demand [[141], [3], [7]]. This is shown more 

discretely in the material demand projections by IEA in Figure 20 [6]. Later on we repeat 

the analysis for the respective high and low demand projections for each material, but as 

a base case we consider doubling of the demand for each material. Taken together, this 

would require that the energy intensity of materials production in 2050 to be only one 

quarter of that in 2000. In other words, we are looking into the possibility of obtaining a 

75% reduction in the average energy intensity of materials production. We set aside 

potential complications such as price effects and rebound and proceed as if we are 

operating in a world where the incentives exist to encourage this goal. Also, the 

efficiency improvement calculations are based on final energy and thus electricity 

generation and grid improvement are independent of our calculations. In the sensitivity 

and scenario analysis, more details and alternative calculations schemes are discussed. 
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Figure 20: Forecasts of material demand by the IEA up to 2050. Both ‘high’ and 

‘low’ projections are plotted as bands [6].  The ‘blue-line’ is explained in Chapter 6. 

 

Embodied energy 

The embodied energy is the energy required to produce a material from its raw form, per 

unit mass of material produced.  The energy is usually measured in terms of the lower 

heating value (LHV) of the primary fuels used plus any other primary energy 

contributions.  These energy requirements are dominated by two main steps.  The first 

step involves the mining, crushing, washing and separation of the ore from the 

surrounding material (call gangue), and the second step is a chemical reduction process 

that produces the refined material from its ore, (called smelting in metals processing).  

Many of the important metal ores are either oxides or compounds with sulfur, which in 

turn are often converted to oxides during processing.  The reduction step for these oxides 

uses a reducing agent, usually carbon, which yields a final output including refined metal 

and carbon dioxide gas.  Hence the reduction process can produce a certain amount of 

carbon dioxide (on the order of one mol of CO2 per mol of metal) in addition to the 

carbon dioxide associated with the energy requirements (which depends critically on the 

nature of the energy source).  The ratio of carbon dioxide emitted by the carbon reduction 

reaction, to that from energy use varies by material and technology but is generally in the 

range of 1:1 (some cement operations) to 1:10 (some aluminum operations).  In general, 

however, the carbon dioxide intensity of materials production is dominated by the energy 
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intensity of production and the implied fuel usage with a very strong correlation between 

the two as seen in Chapter 1. 

 

Early materials production processes were relatively simple requiring only harvesting, as 

for stone and timber, and mixing and heating as for bricks and concrete. These materials 

are still in use today, and generally produced much more efficiently than in early days, 

with energy intensities on the order of 1-5 MJ/kg. Newer materials, extracted from dilute 

ores, and involving a reduction step, are much more energy intensive. For example, the 

energy intensities for a variety of metals are plotted in Figure 21 versus the dilution 

(reciprocal of the ore grade or mass concentration “c” of the metal at the mine).  

 

 

 
Figure 21: Embodied energy of 16 metals [5] plotted against the dilution, or inverse 

of concentration, of the common ores used to produce the metals [117].  

 

 

While there is a considerable scatter in the plot, it does show that these materials are quite 

energy intensive compared to earlier materials, and that above a certain dilution, energy 

intensity e increases with dilution (1/c).  The trend can be explained by the change in the 

dominating energy step.  In the lower dilution range, particularly for materials such as 
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iron and aluminum, the energy requirement for production is dominated by the chemical 

reduction step.  At the other end of the figure, for those metals that are highly dilute (and 

generally less reactive), such as gold and platinum, the energy requirements are 

dominated by the mining and separation steps, and generally increase with increasing 

dilution of the ore. The scatter in the low dilution area can be explained in part by the 

differences in the thermodynamic requirements for the chemical reduction process.  This 

can be estimated by looking at the magnitude of the standard Gibb’s free energy of 

formation for the common ores used to make these metals.  For example, looking in the 

low dilution area of the figure, the Gibb’s free energy for the ores for titanium (TiO2), 

and aluminum (Al2O3), are relatively large (17.8 and 27.1 MJ/kg respectively) compared 

to the Gibb’s free energy for the ores used to produce iron (Fe2O3) and manganese 

(MnO2), (6.6 and 8.9 MJ/kg respectively). Other major differences, which affect the 

embodied energies, are the quality and availability of the ore, the ore matrix, the 

complexity of the smelting and production processes, the age of the technology 

employed, and the degree of purity required in the final output.  Because these factors can 

vary considerably around the world, each data point in Figure 21 could actually be 

represented by a cluster of points around a mean value that could easily vary by ± 20% or 

more.  See [[10],[5], Figure 7, and Table 3]. Note that unlike the engineering properties 

of a material, such as strength or stiffness, which can be obtained under well-specified 

conditions, the embodied energy is a function not only of the material itself, but also of a 

larger system that surrounds the material and is often not well defined. Hence this level of 

uncertainty is somewhat inherent to the type of large boundary analysis we are 

performing.  

 

Historical data shows that industry has made significant reductions in the energy intensity 

of materials, particularly for those produced in high volumes.  

Figure 22 gives time series data for average worldwide production of pig iron and 

aluminum.  These data are plotted in terms of e (for the chemical reduction step only, 

which dominates for these two cases) versus Q, with a few dates marked to indicate the 

progression of time.  The energy intensity data for pig iron corresponds to the coke used 

in blast furnaces, while the energy intensity value for aluminum corresponds to the 
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electricity used in the smelting of aluminum (the so called Hall – Héroult process).  The 

pig iron data shows an almost one order of magnitude reduction in the energy intensity 

over a time period of about 200 years.  The aluminum data shows an equally impressive 

reduction over about a century.  The average annual improvements for the energy 

intensity for these technologies have been in the range of 1.0 to 1.5%.  The plots also 

show the theoretical minima for these operations.  These minima are approximated using 

the thermodynamic models presented in chapter 2. It is readily apparent that while there 

is still room for improvement, new improvement will be constrained by thermodynamics. 

Generally as one approaches a thermodynamic limit, progress slows down and the 

performance levels off near to, but never obtaining the limit. Figure 23 shows a 

breakdown of the energy intensity for aluminum smelting by major regions of the world 

over the time period 1980 to 2005.  The data show the variation in the world data as well 

as the world average marked by the dashed line in the middle.  Taken together  

Figure 22 and Figure 23 suggest two important strategies to further reduce the world 

average energy intensity of materials production.  The first would be to move the world 

average down to the best available technology (BAT) and the second would be to move 

further toward the theoretical minimum. 

 

The constraints on the first strategy are primarily financial.  Materials production 

facilities require large capital investment.  Once these costs are sunk there is a large 

incentive to continue operation for decades.  In fact, looking closely at Figure 23 reveals 

that some of the least energy efficient facilities are actually operated in the developed 

world where the installations are older, while the newer more energy efficient facilities 

are in the developing world. This pattern is repeated for other materials as well, see 

results for world cement production [6]. At the same time, it is to be noted that because 

materials production is so energy intensive, and materials are available on local and 

global markets, no one can remain competitive and be energy inefficient for long.  

Therefore, while there may be outliers, the bulk of production for globally competitive, 

energy intensive materials cannot stray too far from the best available technology. After 

reviewing the data for our so-called top five materials we estimate that a worldwide move 

from today’s average to best available technologies would result in an overall energy 
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reduction of about 18% (Best available technologies or BAT is as given by International 

Energy Agency (IEA). BAT in many cases can be the same as Best practice technology 

(BPT) that is best available and economical, but can be different when a new technology 

has emerged. Saygin and co-workers in their work distinguish the two for several 

industries [142]).  This agrees with detailed estimates made by us and others, including 

the International Energy Agency IEA [11],[6],[7]. Some of the technologies involved in 

these improvements would include worldwide implementation of by-product gas 

recovery from steel production and thin slab casting, retrofitting of aluminum smelters 

and point feeders, continuous digesters and dry sheet forming for paper production, wet 

to dry kilns for cement, as well as fuel and clinker substitution and improvements in 

cracking and distillation for plastics. In addition, widespread implementation of 

combined heat and power and more efficient electric motors are assumed. Data used in 

our calculations are provided in Appendix. 

 

Additional energy reductions can be made with research breakthroughs and by 

implementing cutting edge technologies.  Each of the top five materials already have 

technology roadmaps with key energy challenges identified, and funded research and 

scale up on going [101].  At the same time, the major energy intensive steps for the top 

five materials are already in the vicinity of 60% efficient (relative to their thermodynamic 

limits).  If we make the fairly aggressive assumption that these can be further improved to 

within half the remaining distance to the theoretical limit (~80% efficient) we estimate an 

additional overall reduction in total energy requirements for materials production of 

about 19%, for a total of 37% when combining both strategies. Some of the breakthrough 

technologies considered here include, alternative reduction technologies with fuel and 

feedstock substitution, black liquor gasification for paper and inert anodes for aluminum 

and other cutting edge technologies some of which may not have been discovered yet. 

Additional details can be found in [18], [86], [83], [85], [7], [11], [101],[6]. This also 

includes improving the yield of the material processing and manufacturing processes by 

decreasing in Equation 38 to its theoretical minimum of 0. The resulting magnitude of 

this improvement may seem smaller than expected to some.  The reason is that this 

improvement applies only to primary production, not secondary (recycled) production, 
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which in some cases already represents a significant fraction of supply.  We discuss 

recycling next. 

 

 

 

 
 

(a) Pig Iron 

 

 

 

 
 

(b) Aluminum 

 

Figure 22: Historic trends in global average energy requirements for production of 

pig iron from ore, and for aluminum smelting, versus the respective global 

production volumes. The corresponding years are labeled above the chart. Also 
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Figure 4: Historic trends in global average energy requirements for production of pig iron 

from ore, and for aluminum smelting, versus the respective global production volumes. 

The corresponding years are labeled above the chart. Also included are the theoretical 

minimum values for the two processes. For aluminum the primary energy is shown on the 

right vertical axis using global average electricity factor of 9.3 MJ/kWh
2
. Data for iron 

energy intensity is obtained from [19] and that for aluminum from [20]. Production data 

is obtained from [21]. Pie chart data is taken from [18], [20], [22]. 

 

 

 

                                                
2
 Note that this conversion could also be done on a local level with quite a different 

conversion factor. This is important for aluminum because over half of world production 

is by hydroelectricity. 
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included are the theoretical minimum values for the two processes. For aluminum 

the primary energy is shown on the right vertical axis using global average 

electricity factor of 9.3 MJ/kWh. Data for iron energy intensity is obtained from 

[143] and that for aluminum from [105]. Production data is obtained from [9]. Pie 

chart data is taken from [85], [105], [21]. 

 

 

 
Figure 23:  Historical Regional data for the energy intensity of aluminum smelting 

(taken as is from [6]). 

 

Another way to reduce the energy requirements for materials production would be to look 

to a new material source with a lower energy intensity e.  This could be to harvest the 

already processed materials in end-of-life products.  That is, since recycling generally 

avoids many of the energy intensive steps in primary production (e.g. chemical reduction, 

mining and separation etc.) it is well known for having a lower energy requirement as 

compared to primary production.  For example, the production of secondary aluminum 

may require only on the order of 10% of the energy intensity of primary aluminum.  And 

for steel it may be only 50% of primary energy intensity [5].  The problem here is that 

while we know that we can generally make the energy intensity of secondary production 

small compared to primary production, there are serious constraints on the quantity of 

secondary materials that can be captured and processed. This problem is particularly 
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apparent for emerging countries while they are building their infrastructure which adds 

materials to stocks rather than making them available for recycle [127].  

 

To explore this effect, we use the model described in Chapter 2 on estimating available 

scrap based on material demand growth. As a reminder, we use an expression for r as 

given in Equation 38, with c = 0. Thus, 

 

𝑟 =  
𝑓

(1+ 𝑖)! 

Equation 63 

 

Table 7: Recycling parameters for top five materials. (‘Cur’ = current average; 

‘CE’ = cutting edge; ‘r’ = Recycling rate as a fraction of supply). Details are 

provided in the Appendix. 

 
 

If we now assume a fairly aggressive effort to increase the fraction f and apply estimates 

for relevant recycling parameters given in Table 7, we estimate a net additional reduction 

in the world energy intensity required to produce materials at about only 7% of current 

usage (increased recycling decreases the primary material fraction and thus diminishes 

the savings from BAT and cutting edge strategies).  Note that this percentage depends on 

the order of implementation of our proposed energy saving strategies (current to BAT to 

cutting edge). If recycling were implemented before any of the other improvements 

(using column 5 instead of column 6) the percentage change would have been 20%. 

Never the less the total combined savings would remain the same, at about 44%, 

regardless of the order. Finally, we implement yet a further recycling improvement by 

assuming an additional reduction by 50% in the energy intensity of secondary materials 
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production, es. Many of these secondary processes have not yet been optimized, often for 

practical reasons related to the collection and sorting of incoming scrap. By uniformly 

assuming this 50% reduction for all materials we are still quite far any thermodynamic 

limits, for example the melting of the metals and thermoplastics only requires on the 

order of 10 to 20% of our assumed values. This provides still more improvement, raising 

our total potential savings to 56%. Note that this improvement step appears quite large 

because we have already implemented aggressive increases in recycling rates in the 

previous improvement. This is just about as far as we can go with energy efficiency, even 

using very optimistic assumptions, and yet we are still substantially short of our goal of 

75%. 

 

Material substitution 

Material substitution is another strategy to move towards more sustainable materials that 

reduce energy demand, by substituting the higher energy materials with lower energy 

ones. Referring to Figure 15, Part (b), this would mean moving towards materials that 

have the lowest abscissa, assuming that the change in required quantity of production 

would not undo the sought after energy savings. Looking at the same figure, this can also 

play out favorably from a cost perspective (for the customer that is the product 

manufacturing sector consuming these materials) as lower embodied energy materials 

tend to be lower priced. However there are at least four major problems that arise in 

considering material substitution as a strategy for reducing energy demand – (1) limited 

available opportunity as it seems that the materials with lowest embodied energy are the 

ones produced the most indicating that industry may already have exploited this 

opportunity; (2) design constraints – meaning that material quantity and type are often 

driven by volume / design restrictions of the end product and the technical properties of 

the material (be it mechanical, electrical, chemical, or other); (3) a potential increase in 

the quantity of the lower energy material so as to provide the same service. This could 

very much result in decrease in quantity. Ashby has shown that newer materials indeed 

provide better properties for construction materials. However, moving from natural 

materials (i.e. stone, timber, etc.) to these new modern materials, one sees that material 

strength and elastic modulus have increased by about 1-2 orders of magnitude, while the 
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energy requirements to make these new materials has increased by about 3-4 orders of 

magnitude (see Figures 9.14 and 9.15 in [5]); (4) life cycle energy footprint – a material 

with higher embodied energy, like aluminum and composites, can return comparative 

energy savings in the use phase, for example, using aluminum in automobiles over steel 

may lead to a higher energy investment in manufacturing the car but lower gasoline 

requirement when in use. More examples on this can be found in [5, 144]. The next 

chapter on remanufacturing elaborates extensively on thinking about energy savings from 

a life cycle perspective. Unfortunately prior research hasn’t necessarily identified the 

clear winners based on life cycle energy footprints of different materials as it is heavily 

dependent on the application and consumer behavior during and at the end of product 

use, as well as how the energy accounting is conducted [145, 146]. 

 

Given the complications of clear guidance based on life cycle energy footprints of 

materials, and that price-based material substitution has already captured a lot of the 

energy savings potential (of the top five; steel, paper and concrete are near the bottom of 

the energy intensity scale), we do not see material substitution, as a major strategy to 

reduce materials energy requirements. In fact the trend may be of societal movement 

towards more energy intensive materials. A straightforward example is Figure 20, where 

the higher energy intensive materials of aluminum and plastic are growing much faster 

than the lower energy intensive materials like cement and steel (overlooking a life cycle 

energy analysis). 

 

In summary, we have looked at the possibility of reducing the energy intensity of 

materials production by 75% over the next four decades and found that this appears very 

unlikely. An analysis that includes significant new breakthroughs in production 

technology and recycling systems as well as deployment worldwide falls considerably 

short of this mark, providing only about a 56% reduction. In terms of total energy E this 

means a reduction of 12% in 2050 relative to 2005. The essence of this problem is that 

materials production energy is dominated by a small group of materials that have been in 

production for some time, and have already become quite efficient. Iron and steel, 

cement, concrete, paper and aluminum have all been in production for at least a century. 
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Plastics, which are newer, will be reaching a century in production just a decade or two 

from now. Hence, while future gains in energy efficiency for these materials are still 

quite likely, major improvements are restricted in part by the laws of thermodynamics.  

 

Calculation details 

The base case calculations above assumed a doubling in demand for each material 

through 2050. However, as we observed in Figure 20, that demand ranges for each 

material can be different. Obviously the higher the projected demand, the more difficult 

would it be to halve the total energy required to provide the materials. Thus, being 

conservative we show the details of the results for the ‘low-demand’ or lower estimates in 

Figure 20. This would mean aluminum growing by a factor of 2.6, steel, paper, and 

plastic, each by a factor of 1.8, and cement by a factor of 1.4 through 2050. Figure 24 

shows the cumulative reduction in ‘e’ and ‘E’ in total and for each material through each 

of the four strategies considered. Note, since now the low-demand projections are used, 

which are different for each material, the straightforward 75% reduction goal for ‘e’ does 

not hold. However, the goal for reducing ‘E’ by 50% of today is shown in the green bars. 

Also shown in red bars is BAU 2050, business as usual, which assumes no change in ‘e’ 

through 2050, while demand grows. Key takeaways from these results: 

 

• The total savings from adding each strategy are almost the same for the low-demand 

case as the base case of doubling demand. In the former we get a net reduction in ‘e’ 

of 57%, while in the low-demand case we get 56%. In fact, if the high-demand case 

were to be considered the reduction in ‘e’ is 55%. However, reduction in ‘E’ varies 

more as it factors in the demand. For the three cases of low-demand, doubling, and 

high-demand, the reduction in ‘E’ is 20%, 12%, and -6%, respectively, i.e. for the 

high-demand case E in 2050 is higher than E 2005 by 6%. Thus no matter what 

demand scenario is considered, the target is far from met, however, the strategies do 

yield significant savings relative to BAU 2050. This highlights the enormity of the 

challenge in meeting energy reduction targets of halving E by 2050. 
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• Looking at each material, we note that none of the individual materials meet the goal 

of reducing ‘E’ by 50% either. Steel and cement come closest with a 32% and 26% 

reduction respectively, while ‘E’ for plastics in fact increases by 14% relative for 

2005. The savings are even lower for the high-demand case, in which case only steel 

exhibits a reduction in ‘E’. This emphasizes the need to focus on demand along with 

embodies energy, as a means to reduce total energy. 

 

• In general we observe steel contributing to highest to the savings relative to BAU 

across the five considered materials. In fact, steel provides for over half of the savings 

with roughly an equal split in savings from the rest. This indicates the importance of 

focusing on steel for energy savings. 

 

• The order of implementation of the strategies influences the saving but the cumulative 

sum is indifferent. For example, if Es were deployed before RR, the net additional 

saving from each may be different but the sum would be the same.  
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Figure 24: Cumulative reduction in ‘e’ and ‘E’ relative to 2050 values for the most 

conservative low-demand case. Target for ‘E’ reduction is 50% shown in green. 

BAU 2050 assumes no change in ‘e’ through 2050. 

Scenario and sensitivity analysis 

I. All calculations above do not include the fuel value of plastics. The table below 

provides the comparative results if fuel value were to be included for the three demand 

scenarios: 

 

% reduction in E in 
2050 relative to 2005 IEA low demand Doubling of 

demand^ IEA high demand 

Without Fuel Value of 
plastics^  20% 12% (6%) 

With Fuel Value of 
plastics 11% 4% (19%) 

^as presented in manuscript 

( ) refers to a negative value, in this case E2050 being higher than E2005 

 

The percentage savings are diminished because of adding the fuel value to plastics and 

not being able to alter it through 2050. The energy savings from each step of sequentially 

deploying the strategies (BAT  BAT + CE  BAT + CE + RR  BAT + CE + RR + 

Es) are provided below: 

 

% reduction in E in 2050 
relative to 2005 BAT BAT + CE BAT + CE + 

RR 
BAT + CE + 

RR + Es 
IEA- low demand without 
Fuel Value of plastics (53%) (17%) (2%) 20% 

IEA- low demand with Fuel 
Value of plastics (58%) (28%) (8%) 11% 

Double demand without 
Fuel Value of plastics (64%) (26%) (11%) 12% 

Double demand with Fuel 
Value of plastics (69%) (36%) (17%) 4% 

IEA- high demand without 
Fuel Value of plastics (95%) (51%) (34%) (6%) 

IEA- high demand with Fuel 
Value of plastics (104%) (65%) (42%) (19%) 

Notes:  
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1. Order of sequence matters, however net savings of BAT + CE + RR + Es are 

uninfluenced by the order 

2. Fuel value of plastics is only allocated to primary material and not to secondary 

materials 

 

 

II. Described below are the different scenarios considered that include testing of the 

sensitivity of key variable. 

 

A 
A+ Cutting edge energy requirement for primary production is ¾ in the range 

between BAT and theoretical minimum, closer to theoretical minimum 

A- Cutting edge energy requirement for primary production is ¼ in the range 
between BAT and theoretical minimum, closer to BAT 

B 
B+ Cutting edge energy requirement for secondary production is 25% of current 

average 

B- Cutting edge energy requirement for secondary production is 75% of current 
average 

C 
C+ Collection rate for scrap (fraction of available for collection) is 100% for each 

of Steel, Aluminum, Paper, and 50% for Plastic, and 25% for Cement 

C- Collection rate for scrap (fraction of available for collection) is at average 
values of 2005-06 

D D+ Current average primary production energy intensities are 10% higher 
D- Current average primary production energy intensities are 10% lower 

E E+ Current average secondary production energy intensities are 10% lower 
E- Current average secondary production energy intensities are 10% higher 

F F+ All of the positive scenarios above combined 
F- All of the negative scenarios above combined 

 

The influence of varying the scenarios on the reduction in total annual energy ‘E’ in 2050 

relative to 2005 is shown below. The target is 50% shown in the green line. The error 

bars correspond to demand variation with the lower end (less savings) corresponding to 

the IEA high demand projection, and the higher end (more savings) corresponding to the 

IEA low demand projections. The columns represent the base case results for assumed 

doubling of material demand.  
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Figure 25: Total energy reduction in 2050 relative to 2005 for the various scenarios 

considered. The target of 50% reduction is shown as the green line. 

In none of the cases, except for F+, is the target met. Also with IEA high demand, in 

most cases more energy is consumed in 2050 relative to 2005.  

 

Summary and next steps 

It is not our intention here to predict the future, but only to point out what we see as very 

likely constraints on our ability to both meet energy reduction targets and increase 

demand. It does not seem likely that material production (and more generally the 

industrial sector) can meet the dual goals we set out earlier in this paper of roughly 

doubling production, while halving energy use. In fact, this analysis suggests that we may 

only be able to halve energy with no increase in demand.  Furthermore, for the strategies 

discussed in this paper to be implemented, significant technical breakthroughs and 

financial incentives are required.  Currently the prices for energy and materials are too 

low to significantly alter the prevailing game plan, which is to substitute energy and 

material for labor. 
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Table 8: The magnitude of effect relative to price of increasing energy price or 

imposing a CO2 tax. Prices same as in Figure 15. Energy fraction of cost taken from 

[101], and CO2 intensities from [5]. 

 
 

At the same time we recognize the potential vulnerability of the top five materials to 

price increases, particularly those brought about by higher energy prices and potential 

carbon taxes.  To illustrate this, we have constructed Table 8 that shows potential cost 

effects relative to price for our top five materials.  Whether an energy cost increase would 

necessarily translate into a material price increase (and further to a product price 

increase) depends on several factors.  For one, large energy intensive material producers 

work hard to establish long term, low cost energy sources to insulate themselves from 

energy price increases and fluctuation.  For example, about one half of all aluminum 

smelted use hydropower, with long-term agreements.  Never the less, these potential cost 

effects do indicate a certain level of pressure on these producers and the potential for 

price increases.  These price increases on the other hand, could weaken demand and 

increase the effort to increase efficiency and find substitutes. 

 

In summary then, our analysis using extremely optimistic estimates for future energy 

efficiency cannot deliver sufficient savings to meet our 2050 targets as outlined at the 

beginning of this paper. There are, however, additional strategies, which could be 

employed to provide material services to consumers by using materials more efficiently 

and there by reducing demand.  We term this collection of strategies “material efficiency” 

[102], [81].  They include the ideas of providing equivalent materials services but with 

reduced materials requirements. Materials efficiency includes such ideas as extending the 

Material
Price 

(USD/ton)

Energy Frac 

of Operating 

cost

CO2 

(kg/kg)

energy price 

inc. by 50%

CO2 is 

taxed at 

$20/ton

CO2 is 

taxed at 

$100/ton

Steel 700$          15% 2.5 8% 7% 37%

Aluminum 2,400$       30% 9.5 15% 8% 42%

Paper 800$          12% 1.4 6% 4% 18%

Cement 100$          30% 0.7 15% 15% 74%

Plastics 1,985$       60% 2.5 30% 3% 13%

magnitude of effect relative to price
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life of products, using materials more effectively in design, reusing materials and 

remanufacturing.  The savings from this approach could be quite large and could allow us 

to meet our targets for energy and carbon. For example, conceptually at least, if we were 

to double the life of all current products, this could result in a maximum reduction in our 

demand by half.  We dedicate the next two chapters in analyzing material efficiency in 

greater detail. 
 



 

  124 

Chapter 5: Material efficiency through 

remanufacturing 

 

Abstract 

A popular strategy to increase material efficiency is to produce products that are used 

longer, there by increasing the total service provided be the product while consuming the 

same quantity of material and other resources used to make the product. This does not 

mean that we should not replace old products with new, but it essentially encourages 

reselling and reusing of products and potentially displacing new production. 

Remanufacturing can support this by bringing used products back to like-new condition. 

Remanufactured products that can substitute for new products are thus generally claimed 

to save materials and energy.  These claims are made from studies that look mainly at the 

differences in materials production and manufacturing.  However, when the use phase is 

included, the situation can change radically.  In this chapter we first analyze the energy 

saving potential from remanufacturing products. 25 case studies for eight different 

product categories were studied, including: 1) furniture, 2) clothing, 3) computers, 4) 

electric motors, 5) tires, 6) appliances, 7) engines and 8) toner cartridges.  For most of 

these products, the use phase energy dominates that for materials production and 

manufacturing combined.  As a result, small changes in use phase efficiency can 

overwhelm the claimed savings from materials production and manufacturing.  These use 

phase energy changes are primarily due to efficiency improvements in new products, and 

efficiency degradation in remanufactured products. For those products with no, or an 

unchanging use phase energy requirement, remanufacturing can save energy. For the 25 

cases, we found that 8 cases clearly saved energy, 6 did not, and 11 were too close to call. 

In some cases we could examine how the energy savings potential of remanufacturing 

has changed over time. Specifically, during times of significant improvements in energy 
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efficiency, remanufacturing would often not save energy. A general design trend seems to 

be to add power to a previously unpowered product, and then to improve on the energy 

efficiency of the product over time. These trends tend to undermine the energy savings 

potential of remanufacturing. Thus overall while the strategy of remanufacturing to save 

materials and energy could hold a lot of potential, the caveats extracted from this analysis 

are critical in deriving the desired benefits.  

  

Introduction to material efficiency through remanufacturing 

One of the key conclusions derived from Chapter 3 is to develop strategies that reduce 

material intensity of industry ‘M’ = kg material needed / industry revenue. Similarly, 

Chapter 4 told us to focus on material efficiency to bridge the gap to achieve halving of 

the total energy. By definition material efficiency means reducing the ratio of material 

used and the service provided by it. This can be done by either using lesser material for 

the same service, or increasing the service extracted from the same material, or a 

combination of the two. Obviously reducing material content in products to provide the 

service has direct economic savings for the producer and is probably already optimized. 

Innovative designs through future research can add more. However, we believe there is 

great potential in being able to extract more service from the same material/product. This 

could be a combination of more types of services and longer service life. A popular way 

to do this is to extend the life of products such that the physical life of the product allows 

for multiple use phases of the product. By no means does this go against consumerism 

where we like to replace our products for new ones sooner, but in stead this means that 

once used, these products with residual life in them should be resold or reused (if 

acceptable to the owner) such that the product continues to serve the society. If this 

salvage life or extended service were accounted for in the material price, this would mean 

a reduction in ‘M’ as well. Another way for this to happen is for the OEMs to take back 

products having residual life after use and reselling them, there by extracting increased 

revenue from the same product. In such a case, the OEM or third party, if it may be, can 

refurbish the product to like-new condition, which is called remanufacturing. In this 

chapter we analyze remanufacturing and refurbishing as a primary strategy for material 

efficiency to add to our objective of halving total energy of the industrial sector. This 
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inherently includes reselling of products thereby increasing total product use life, or total 

service provided by the same product.  

 

Introduction to remanufacturing 

Remanufacturing is generally seen as the most environmentally friendly of “end of life” 

treatments for a retired product.  If the remanufactured product can be considered a 

substitute for a new product, then a credit is usually claimed for the avoided resource use 

and emissions associated with the new product production.  The biggest savings is 

generally from the avoided new materials production, but the difference between new 

manufacturing and remanufacturing can also be significant.  At the same time, 

remanufactured products generally sell for about 50-80% of the new product.  Hence 

remanufacturing can be seen as a win-win; it saves money (for the consumer) and it saves 

the environment. 

 

In the United States, remanufacturing is at least a $50 billion industry with direct 

employment of about 480,000 in 73,000 firms [91].  Remanufactured products include 

automotive and aircraft parts, compressors and electrical motors, office furniture, tires, 

toner cartridges, office equipment, machine tools, cameras and still others [91]. One of 

the primary requirements for remanufacturing is that the retired products have significant 

residual value at the end of life.  The second is that the remanufacturing firm can 

effectively capture the retired product.  And the third is that the product can be restored to 

like-new condition (in terms of product function) with only a modest investment. In terms 

of number of remanufacturing plants, the largest remanufacturing categories in the US 

are tires, followed by motors and generators and motor vehicle parts [92]. 

 

The fact that a product can have significant residual value at its end of life can present a 

dilemma for the original equipment manufacturer (OEM).  For example, if the OEM 

decides to not remanufacture its own products, then it might find itself competing with its 

own products remanufactured by another firm.  To avoid being placed in this situation, an 

OEM might employ a variety of strategies to defeat “third party” remanufacturing.  These 
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strategies might include making spent products inoperable, rapid (minor) design changes, 

using a “prebate” system, and buying back the spent products.  All of these strategies 

have been employed by various printer OEMs with varying success in an effort to protect 

their ink cartridge business. For example, the prebate system employed by Lexmark, 

attempts to enter into a contractual agreement with the buyer to return or throw away the 

spent ink cartridge in exchange for a discount.  However, the U.S. District Court of 

Kentucky barred this practice recently citing a U.S. Supreme Court 2008 decision in 

Quanta Vs. LG Electronics [147], interpreting it as an attempt to avoid the patent 

exhaustion doctrine.  

 

An alternative position is to embrace remanufacturing and to make it part of the OEM’s 

business strategy.  A variety of firms have done this, particularly for truck tires and heavy 

equipment (Caterpillar, Cummins, Goodyear, Michelin). This strategy can build a strong 

long-term relationship with customers.  As a general method for supplying products to 

customers however, remanufacturing presents some challenges.  One challenge is to 

match supply and demand.  The early steps in remanufacturing, which consist of 

recovering the spent product (sometimes called “the core”), cleaning it and testing it, all 

represent an investment.  To capture the value of that investment and to guard against 

fluctuations in core supply, a remanufacturer may have to maintain a large inventory of 

cleaned and tested cores.  A second challenge is that remanufacturing is labor intensive.  

The condition and variety of incoming cores can vary significantly.  This means that 

remanufacturing must be flexible.  Hence two conditions that favor remanufacturing are: 

1) a relatively low wage, skilled labor market, and 2) modest inventory storage costs.  In 

addition to this, the remanufacturer will need to have an effective way to recover spent 

cores. 

 

The aim of this chapter is to test the hypothesis ‘remanufacturing of products saves 

energy,’ as popularly claimed. The research questions that motivated this study, were: 1) 

how big is the energy savings potential of remanufacturing, with a particular interest in 

identifying the products that represent the best opportunities for energy savings, and 2) 

how could this energy savings potential be expanded, both in terms of remanufacturing 
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more of the usual category of products, and to expand to new product categories. While 

the focus is on remanufacturing, the analysis inherently includes general strategies that 

extend the life of products – refurbishing, reselling, reusing, etc.  

 

Energy saving potential of product remanufacturing 

While it’s impossible to consider every product we use globally – consumer and 

industrial products – we conduct representative case studies of 8 different product 

categories: 1) furniture, 2) clothing, 3) computers, 4) electric motors, 5) tires, 6) 

appliances, 7) engines, and 8) toner cartridges, many with very high remanufacturing 

potential in the United States. Collectively they form 25 case studies. The analysis was 

framed in terms of a product replacement decision for a consumer.  That is, we pose a 

scenario in which a consumer intends to replace a product and we examine the normative 

question: to save energy, should the consumer acquire a remanufactured version of the 

retired product, or should the consumer buy new?  To give an idea of the ideal energy and 

material saving potential Figure 26 gives the global material savings if all units of the 

products considered in this study are successfully remanufactured at end of use displacing 

new production. We note that this can yield a significant 2% savings for iron and steel, 

3.5% for copper, over 6% for aluminum, and roughly 1.5% for plastics. The estimated 

energy savings could be as large as 4.4 EJ, which is equal to the combined energy used 

today by all aluminum production globally [6]. This considers the avoided energy and 

materials for producing the new products, as well as the energy cost to refurbish / 

remanufacture the used unit. Note these estimates do not consider the already 

remanufactured fraction and thus are over-estimates. This is especially true for rubber, 

since tires on the road are predominantly retreaded tires in the US.  
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Figure 26: Expected savings for key materials (absolute in Mt (columns) and as a 

fraction of global production (circles)) if all units of the considered products are 

remanufactured successfully at end of use. Note axis for absolute savings is in 

logarithmic scale.  

 

Thus extending product life has great potential to save energy and materials. However, 

we extend this analysis and dedicate this chapter towards presenting complications in the 

analysis that might make this claim untrue demanding a more careful and thoughtful 

assessment in the implementation of material efficiency strategies like remanufacturing. 

 

Life cycle energy analysis of products 

The above analysis of energy and material savings from increasing product life only 

consider the energy saved in material production and manufacturing of the products. 

However, to calculate the total savings potential a life cycle approach is needed so that 

use phase impacts are also compared. Thus the above analysis is extended, by using a life 

cycle energy analysis for the two product options.  This means that it includes the energy 

requirements for materials production, manufacturing and the product use phase. We 

perform a sensitivity analysis to consider elements that were not included in the analysis, 
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as well as parameter variation.  Variations on system boundaries and elements beyond the 

life cycle of a single product are discussed at the end of the chapter. Details of the 

methodology are provided in Chapter 2. 

 

The life cycle energy analysis of products is now a well-established field of study.  Many 

studies have already been performed, many software programs are available to help in 

this analysis, and international standards exist to guide the practitioner.  In this study, we 

take advantage of the analyses by others for products that fit into the general categories 

for remanufacturable products.  In order to double check these studies, and to resolve 

differences between multiple studies for similar products, we developed a life cycle 

energy estimation tool for materials production and manufacturing [148].  The tool only 

requires a bill of materials (BOM) for the product and uses well known estimates both for 

the embodied energy in materials [5, 143], and for the energy requirements for various 

manufacturing processes [59, 148].  Comparisons between the life cycle energy results 

from others and our model helped validate the accuracy of the data used in this study. 

 

Others have also addressed related questions in the literature such as in studies on the 

remanufacturing of specific products, optimum product replacement strategies, and 

product leasing [93, 109-111, 149-153]. An important and generally well-known result 

from product life cycle studies is that for most products the energy requirement for 

materials production dominates the energy requirements for manufacturing.  In addition, 

observations from remanufacturing studies show that most of the original materials in the 

remanufactured product are saved, and the energy required for remanufacturing is almost 

always much less than that required for the original manufacturing [91, 154-156]  

 

A second common observation from life cycle analysis (LCA) studies for “powered” 

products, which require an energy source, is that it is very common for the use phase to 

dominate energy use. That is, the energy requirements of the use phase can exceed the 

combined requirements of both materials production and manufacturing.  As a result, as 

will be seen, even small changes in use phase energy can produce significantly different 

outcomes. 
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Based on these observations, for some products in this study we chose to ignore the 

energy requirements for remanufacturing. This, of course, will bias the results slightly in 

favor of remanufacturing; however as will be seen, the effect is generally negligible.  

Furthermore, this simplification opens up the interpretation of these results to include 

several other categories of product restoration such as repairing, refurbishing and even re-

selling if the product is still in like-new condition. 

 

Research results 

We start with two representative cases, refrigerators and heavy-duty truck tires, which 

illustrate the methodology, and point out special issues that can arise. The analysis that 

follows considers a product retired in year X after a first lifetime of L years.  The 

comparison is between a like-new, but remanufactured product of model year (X – L) 

versus a new product of model year X.   Because of the magnitude of the use phase 

energy for powered products, we will pay particular attention to changes in usage patterns 

and changes in energy performance in the U.S.  In addition, we normalize the analysis to 

account for improvements to the product that can be captured in the functional unit, e.g. 

larger refrigerators and longer lasting tires. 

 

 

Refrigerators 

Consider the case of a refrigerator that breaks down in year X after a first life of L years 

of service because of a failed compressor.  All other functions for the refrigerator perform 

at their like-new level corresponding to their original model year (X – L).  (This of course 

is an optimistic statement favoring remanufacturing). The options considered in this 

analysis are to replace the failed compressor with one that has been remanufactured and 

use the refrigerator for another L years, or to buy new.  The analysis calculates the life 

cycle energy requirements per cubic meter of cooled space for the materials, 

manufacturing and use phases.  In this case, we assume that the materials and 

manufacturing energy requirements to remanufacture the product are zero.  The analysis 
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is performed for four cases corresponding to new model years in 1966, 1980, 1994 and 

2008.  The key assumptions used in this study pertain to the use phase energy 

requirements, which have already been well documented for medium sized residential 

refrigerators used in the U.S. over the time period 1947-2008.  See in particular 

Rosenfeld 2003 [157] and AHAM 2008 [158]; also Kim 2005 [152] gives a good review 

of this topic.  The data show that over this time period, the electricity requirements per 

unit go from about 350 kWh/yr in 1947, to a peak of about 1850 kWh/yr in 1974, to 

about 450 kWh/yr in 2008.  The early rise is due to added features (e.g. defrosting, larger 

freezer) and increases in size, while the decrease is due to energy efficiency mandates 

first in California in 1974 and later at the federal level.  During this time period 

refrigerators grew from about 0.23 m3 cooled volume in 1947 to 0.61m3 in 2008.  DOE 

sets the typical service lifetime for a refrigerator in the range of 10 -16 years.  In this 

study we assume a lifetime of L = 14 years (also used by [159, 160]).  Using these values 

means that a 2008 new refrigerator will use 6300 kWh electricity or (using a grid 

efficiency of 1/3) about 68 GJ of primary energy over its lifetime.  To estimate the 

primary energy requirements for the materials and manufacturing of a modern 

refrigerator we reviewed the studies of others [152, 161-163] and using the bill of 

materials provided by [152] applied our model [148].  The results give a range of 4,442 to 

6,847 MJ for a late 1990s era model with 0.59m3 of cooled space.  Again, to be 

conservative (in favor of remanufacturing) we used the higher value of about 6.9GJ and 

assume that it is applicable to 2008, which is argued below.  Comparing this with 68 GJ 

one sees that the use phase energy is larger by about a factor of 10.  In the 1974 case (the 

peak year for energy use per refrigerator) the ratio is over 40, and in the 1952 case (the 

remanufactured model year for the 1966 new comparison) the ratio is about 9.  The 

upshot of this is that materials and manufacturing energy play a relatively small role in 

the life cycle energy requirements of a refrigerator.  During the 56 years examined here, 

it is true that materials and manufacturing energy would have changed, but we argue that 

these changes were probably not much different than the original range given earlier (4.4 

to 6.9 GJ).  This case can be made based upon the observation that among the various 

changes, the two most important probably cancelled each other out.  That is, among 

design changes one would expect more optimized use of materials (e.g. thinner sections), 
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materials substitution (mostly plastics for ferrous metals) and most importantly larger 

size (a factor of 2.1 from 1952 to 2008).  The size change however would probably be 

offset by increased efficiency in materials production.  Trends given by Smil 2009 [143], 

Chapman and Roberts 1983 [164] and Dahmus and Gutowski 2010 [8] suggest that a 

reasonable estimate for efficiency improvements for ferrous metal production (the 

dominant material in refrigerators) would be about 1.5% per year.  At this rate, over 56 

years, yields a factor of improvement of about 2.3.  Overall, then it appears that increases 

in energy due to 1) the substitution of plastics for ferrous metals and, 2) an increase in 

size, would be offset by improvements in design, and materials production efficiency.  

Improvement in parts manufacturing would also have increases (injection molding and 

thermoforming of plastics vs. sheet forming) and decreases due to efficiency 

improvements, but overall would be insignificant. 

 

Putting this all together we show in 

Figure 27 the new-product life cycle energy plotted on the Y axis, and the 

remanufactured-product life cycle energy plotted on the X axis.  Points above the 

dividing line favor remanufacturing, while points below the line favor buying new.  

Following the points around the figure shows that in the early years when use energy was 

increasing, remanufacturing is favored; however, after 1974 improvements in use phase 

efficiency favored buying new.  In the inset one can see the resulting life cycle energy for 

the four new model years (1966, 1980, 1994, and 2008).  The life cycle energy for the 

remanufacturing case is essentially the earlier model year (e.g. 1966 for the 1980 

comparison) minus the materials and manufacturing contribution.  The figure clearly 

shows how small the materials and manufacturing energy is compared to the use phase 

energy. 
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Figure 27: Comparative life cycle energy assessment between new and 

remanufactured refrigerators from 1966 to 2008. The insert shows the distribution 

of life cycle energy use across the different phases, for refrigerators manufactured 

in the corresponding years. The labels “Remanufacture” and “Buy New” are the 

decisions the consumer should make to reduce energy if the data point falls in it’s 

respective half of the plot area. 

 

Heavy duty truck tires 

For a second illustrative example, consider the decision to replace a spent truck tire with 

a new or an “equivalent” retreaded tire.  Retreading truck tires is a big business in the 

United States.  According to Michelin about 44 % of all replacement tires are retreaded 

[165].  From a life cycle analysis perspective there are several important differences 

between this example and the previous example for refrigerators.  The first difference is 

that we found fewer life cycle studies in the literature for tires and far more variation in 

the available data, in particular concerning rolling resistance and the tire use phase.  

Secondly, the life span of a truck tire is far shorter than that of a home refrigerator.  

Driving at 50 mph for 8 hours a day, 5 days a week for 50 weeks adds up to 100,000 

miles in one year, equal to the tire lifetime.  Hence historical changes in use phase 

!
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efficiency are far less important than the technology options a decision maker has when 

he or she goes to replace a tire.  Additionally, retreading adds significant new material to 

the old casing, and is in itself an energy intensive process.  As a result, the energy 

requirements for materials and manufacturing for the remanufacturing of tires are 

included in this example. 

 

The base case considered for this study is a class 8 tractor trailer truck (gross vehicle 

weight greater than 33,000 lbs. or 14,969 kg) with a fuel mileage of 5.5 mpg [166] and 18 

radial tires. The life cycle inventory (LCI) for the materials and manufacturing for the 

radial tires relied on available data in the literature [167-170] and our estimation method 

[148].  We estimate the materials production and manufacturing for a new 55 kg radial 

tire to be 3,622 + 643 = 4,265MJ [170].  The estimate for the remanufactured tire is 1365 

MJ.  Hence there is a 68% energy savings if only these two phases of the life cycle are 

considered.   

 

To estimate the use phase, we assume that the use phase energy of a tire is equivalent to 

the fraction of the fuel required to overcome the rolling resistance divided by the number 

of tires.  Rolling resistance as a fraction of total fuel consumed for trucks however, 

depends on many factors including driving and roadway conditions, speed, tire pressure, 

tire wear and more. As a consequence, values given in the literature for the fraction of 

fuel required to overcome rolling resistance vary enormously from 13% up to 47% of the 

total fuel used [170].  The US Department of Energy (DOE) however suggests a smaller 

range from 13% to 33% [171].  In order to manage this variation, we identify a midpoint 

fraction (24%) with a specific measured rolling resistance coefficient of 0.0068 and then 

make comparisons to this reference case. We do this because rolling resistance 

coefficients can be directly measured in the laboratory under highly controlled 

conditions.  The key assumption is that changes in the fuel required to overcome tire 

rolling resistance are proportional to the coefficient of rolling resistance [170] (Chapter 2 

brings out more details on the methodology). To make comparisons with other tire 

technologies then, we use the following values of the coefficient of rolling resistance; for 

conventional bias ply tires 0.0097, for new improved radials (sometimes called low 
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rolling resistance tires) 0.0061 and for new single-wide tires 0.0054 [169, 171].  New 

single-wide tires are now offered by a number of tire companies.  They can replace a pair 

of conventional tires when mounted together on the axle.   

 

An additional complication for tire remanufacturing is that because these operations can 

take place at many small companies, there can be significant variation in the quality of 

the retreading job.  While it is true that a tire retreading operation can restore a tire to 

near original performance, from the available data there is evidence that retreading can 

sometimes fail to achieve like-new product performance.  For example, measurements by 

Michelin show that the rolling resistance for retreaded radial tires can increase between 

7% to 9% compared to new radials [172]. 

 

Putting this all together requires a series of assumptions often for variables that can have 

a large range of values.  We tried to select values that represented central tendencies, or 

to slightly bias the calculation in favor of remanufacturing.  For example, our assumption 

that both the new radials and the retreaded radials have the same mileage lifetime of 

100,000 miles favors retreading. 

 

For the overall use phase calculation, we assume 100,000 miles traveled at 5.5 mpg with 

24% of the fuel used to overcome rolling resistance; this gives an energy value per tire of 

35,640 MJ [170].  If the retreaded tire has an 8% increase in rolling resistance, this adds 

an additional 2851MJ for the use phase of the remanufactured tire.  Now if we compare 

this to the savings from the difference in the materials production and manufacturing 

phases (4265 – 1365 = 2900 MJ) we see a potential savings of 49MJ for the retreading 

option.  But this is only about 0.1% of the life cycle energy for the new tire.  This 

difference is clearly within the margin of error for the life cycle energy methodology. 

There is no measurable increase, nor decrease, in the total energy consumed between the 

two options.  If the lifetime of the retreaded tire is less, then more than one retreaded tire 

will be needed and this will favor buying new.  If we assume the rolling resistance 

fraction is larger, say 33% instead of 24% (less starting and stopping, driving 

continuously at a slightly reduced speed to decrease aerodynamic drag) then this will 
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favor buying new. If one can show that the performance of the retreaded tire is equal to 

the new tire then retreading can produce a maximum savings of 2900 MJ (about 7.6% 

reduction in life cycle energy compared to the new tire – also probably within the margin 

of error for the methodology).  But this would be the exceptional case, not the rule.  

Using the coefficients of rolling resistance given earlier, one can calculate that choosing a 

retreaded radial ply (0.0068) instead of a retreaded bias ply tire (0.0097) will save 15,199 

MJ.  (This is about 28% of the bias ply tire lifecycle energy, and clearly significant). In 

this calculation we assumed that the material and manufacturing energy for the bias tire 

was the same as that for the radial.  Other significant energy savings can be calculated by 

using the new lower rolling resistance tires listed above. 

 

 

25 case studies 

The results from the two previous cases, though quite different in details, lead to rather 

similar conclusions.  In both cases the life cycle energy is dominated by the use phase, 

and in both cases no clear answer can be given to the simple question, does 

remanufacturing save energy?  The answer is nuanced and depends upon many details.  

When we opened this study up to still more products, we found this situation occurred 

quite often.  In fact, the answer to the question, does remanufacturing save energy? is 

conditional and highly dependent upon current product development trends.  

Furthermore, when there was a clear answer, it was just as likely that the answer was 

“no” as it was “yes”.   

 

The details for these case studies are given in Table 9, with relevant product and scenario 

data, and a reference number system (1 – 25) that is carried through to the graphical 

representations of the results in Figure 28 and Figure 29. Literature references and data 

sources are provided in the Appendix. Figure 28 is a log-log plot of the absolute values 

for the life cycle energy for the new (Y-axis) and remanufactured products (X-axis). 

Figure 29 is the percent energy savings for remanufacturing relative to the new product 

option in order 1 through 25. 
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Table 9: Comparative LCI of energy use between new and remanufactured 

products [173] 

Category

Ref # 

for 

Figure 

2 and 3

Product 

Details

Mass 

New; 

Mass 

Reman 

(kg)

Year 

of Mfg 

(X)

Service 

Life
Emfg Euse Product Details

Year 

of Mfg 

Service 

Life (L)
Emfg Euse Scenario

Normalized 

Unit for 

Energy

Referen

ces

20 Dishwasher 59;59 2008 10 years 4,818 34,641 Dishwasher 1998 10 years 0 44,896 Remanufacture
MJ/unit 

product

21,24, 

26,SI.1

23 Refrigerator 84;84 2008 14 years 11,326 118,560 Refrigerator 1994 14 years 0 170,852 Remanufacture MJ/m3

11,20, 

21,26, 

SI.1

25

Washing 

Machine (front-

load)

59;59 2008 11 years 48,391 401,027
Washing Machine 

(top-load)
1997 11 years 0 1,260,508 Remanufacture MJ/m3

21,26, 

SI.1,SI.2

7
Desktop 

Control Unit
10;10 2005 4 years 2,193 6,008

Desktop Control 

Unit
2001 4 years 0 6,341 Reuse/Upgrade

MJ/unit 

product

4 Laptop 2.8;2.8 2005 4 years 1,201 2,537 Laptop 2001 4 years 0 1,867 Reuse/Upgrade
MJ/unit 

product

6 CRT Monitor 14;14 2005 4 years 910 4,275 CRT Monitor 2001 4 years 0 3,763 Reuse
MJ/unit 

product

8 LCD Monitor 6;6 2005 4 years 963 1,981 LCD Monitor 2001 4 years 0 2,547 Reuse
MJ/unit 

product

24 Laptop 2.8;24 2005 4 years 1,201 2,537
Desktop w/ CRT 

Monitor
2001 4 years 0 10,104 Reuse/Upgrade

MJ/unit 

product

21 LCD Monitor 6;14 2005 4 years 963 1,981 CRT Monitor 2001 4 years 0 3,763 Reuse
MJ/unit 

product

2 Office Desk 122;122 - - 3,290 0 Office Desk - - 0 0 Reuse
MJ/unit 

product

1 Office Chair 29;29 - - 1,350 0 Office Chair - - 0 0 Reuse
MJ/unit 

product

5 Cotton T-shirt 0.25;0.25 - - 47 65 Cotton T-shirt - - 1 65 Reuse
MJ/unit 

product

3 Viscose Blouse 0.2;0.2 - - 47 7 Viscose Blouse - - 1 7 Reuse
MJ/unit 

product

Toner 

Cartridge
10

Toner 

Cartridge
- -

6000 

pages
73 978 Toner Cartridge -

6000 

pages
6 978 Refill

MJ/fraction of 

usable pages
37,SI.7

12

Passenger Car 

Gasoline 

Engine

151;151 1999
120,000 

miles
11,901 556,121

Passenger Car 

Gasoline Engine
1987

120,000 

miles
2,795 553,924 Remanufacture

MJ/unit 

product
18,30

11

Combination 

truck Diesel 

Engine

1349; 

1349
1999

750,000 

miles
86,673 20,342,257

Combination 

truck Diesel 

Engine

1987
750,000 

miles
1,850 19,309,871 Remanufacture

MJ/unit 

product

17,18,30 

SI.8

19

22 kW Electric 

Motor Energy 

Efficient

190;166 - 6 years 18,216 4,579,302

22 kW Electric 

Motor Standard 

Efficient

- 6 years 2,222 4,784,652 Rewind
MJ/unit 

product

14

22 kW Electric 

Motor Energy 

Efficient

190;190 - 6 years 18,216 4,579,302

22 kW Electric 

Motor Energy 

Efficient

- 6 years 3,080 4,628,969 Rewind
MJ/unit 

product

15

22 kW Electric 

Motor NEMA 

Premium

238;190 - 6 years 19,942 4,535,505

22 kW Electric 

Motor Energy 

Efficient

- 6 years 3,080 4,628,969 Rewind
MJ/unit 

product

18

22 kW Electric 

Motor NEMA 

Premium

238;238 - 6 years 19,942 4,535,505

22 kW Electric 

Motor NEMA 

Premium

- 6 years 3,674 4,584,221 Rewind
MJ/unit 

product

17

200 kW 

Electric Motor 

NEMA 

Premium

1758; 

1512
- 6 years 123,767 60,746,916

200 kW Electric 

Motor Standard 

Efficiency

- 6 years 16,400 62,499,231 Rewind
MJ/unit 

product

13

200 kW 

Electric Motor 

NEMA 

Premium

1758; 

1758
- 6 years 123,767 60,746,916

200 kW Electric 

Motor NEMA 

Premium

- 6 years 21,200 61,063,967 Rewind
MJ/unit 

product

22

Heavy-Duty 

Truck Tires 

Radial

55;55 -
100,000 

miles
4,265 35,640

Heavy-Duty 

Truck Tires Bias-

ply

-
100,000 

miles
1,365 50,839 Retread

MJ/unit 

product

9

Heavy-Duty 

Truck Tires 

Radial

55;55 -
100,000 

miles
4,265 35,640

Heavy-Duty 

Truck Tires 

Radial

-
100,000 

miles
1,365 35,640 Retread

MJ/unit 

product

16

Heavy-Duty 

Truck Tires 

Advanced 

Radial

55;55 -
100,000 

miles
4,265 31,971

Heavy-Duty 

Truck Tires 

Radial

-
100,000 

miles
1,365 35,640 Retread

MJ/unit 

product

Tires

12,31,32

33,35, 

SI.11, 

SI.12, 

SI.13,  

SI.14, 

SI.15, 

SI.16

New Remanufactured

Appliances

Computers SI.3

Furniture SI.4

Textiles SI.5,SI.6

Engines

Electric 

Motors

38,SI.9,

SI.10
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Figure 29 clearly reveals that the answers to our question are split; there is a group of 

products that can provide large relative energy savings (products numbered 1 – 8), and 

there is a group of products that strongly favor buying new (products numbered 20 – 25) 

and then there is a group in the middle that are more nuanced (products number 9 – 19). 

The products in the first group (1- 8) include office furniture (2 cases), clothing (2 cases) 

and computer equipment (4 cases).  They all save energy when remanufactured, resold or 

upgraded because there have been insignificant changes in the use phase energy over the 

time period considered.  For the office furniture there is no use phase energy.  For the 

computer equipment, energy efficiency improvements within the same kind of devices 

over the time period (2001 – 2005) are not large enough to overcome the manufacturing 

phase savings achieved by reusing. Similarly, (though not included in this study) the 

refurbishing of returned new products would fall into this category. 

 

 
Figure 28: Comparative LCI of energy use between new and remanufactured 

products. See Table 9 for a legend to the case numbers. 

!
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Figure 29: Percentage life cycle energy saving by choosing to remanufacture over 

new for the 25 product case studies. See Table 9 for a legend to the case numbers. 

 

 

At the other end of the figure, products 20-25 are cases where the use phase energy has 

changed significantly due to efficiency mandates and/or the introduction of new efficient 

technologies.  Case 20 compares a remanufactured 1998 dishwasher with a much more 

energy efficient 2008, Case 21 compares a CRT to an LCD display, Case 22 compares a 

retreaded bias ply truck tire to a new radial truck tire, Case 23 compares a 1994 

refrigerator to a 2008 model, Case 24 compares a used desktop computer to a new laptop, 

and Case 25 compares a rebuilt top loader clothes washing machine to a new front loader.  

In each case, choosing the remanufactured product over a new will result in a significant 

additional energy requirement as indicated in Figure 29.    

 

In the middle of this figure are a number of products (9 – 19) that require more 

explanation.  It should first be pointed out however that all of these cases lie between 

+7% and -4% of the new product energy requirement, and we are not sure the LCI 

methodology can make accurate statements in this range.  Nevertheless, starting with 

Case 9 we compare a retreaded radial truck tire to a new radial truck tire.  A savings is 

indicated here because we have not included the potential loss in performance for the 

!
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retreaded tire.  As discussed earlier, this loss can be substantial, with the result that the 

potential savings shown would be reduced to zero.   

 

Case 10 is for the refilling of a toner ink cartridge.  The projected savings would be 6% 

provided the refilled cartridge functioned as new.  In this area there is very little data on 

the performance of refilled cartridges and nothing we have found from the 

remanufacturing industry.  However one report, commissioned by HP, suggests that it 

takes 101 sheets of paper to print 100 good copies with a new cartridge and 114 to print 

100 with a refilled cartridge [174].  If this data were correct, the embodied energy in the 

extra paper and electricity needed to print the additional 13 pages would be enough to 

offset the projected savings. However, in order to make all assumptions in favor of 

remanufacturing, data and results presented in the tables and figures, for cartridges as 

well as other products, assume that the remanufactured products perform like-new and do 

not experience such degradation in performance.  

 

Case 11 represents the remanufacturing of diesel engines.  This product has been studied 

by Sutherland and co-workers who indicate a large potential savings due to avoided 

materials production and manufacturing [154].  Furthermore the energy efficiency of 

diesel trucks has been essentially flat at about 5.5 mpg over the time period 1975 to 2006 

[166].  Hence we have calculated a potential 5% energy savings.  At the same time, it is 

clear that even a small reduction in the fuel economy of a rebuilt engine or improvement 

in the new could offset this gain.  For example, a change of only 0.025 mpg would be 

enough to undo this savings. 

 

Cases 12 through 19 are dominated by two different sizes of electric motors.  The smaller 

(22 kW) comes under the EPAct regulation of 1992, while the larger (200 kW) does not.  

The cases essentially compare different new motor efficiency ratings, with various 

rewound motors.  The key piece of information included in these calculations is that we 

used the DOE recommendation to reduce the efficiency of the rewound 22 kW motors by 

0.5% and for the rewound 200 kW motors by 1% [175, 176].  This difference is enough 

to shift the result, in terms of energy usage, in favor of buying new.  Again, we state our 
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doubts whether the LCI methodology can really make meaningful statements when the 

differences are so small. 

 

All of these cases are plotted in terms of absolute energy requirements in Figure 28. 

Points that lie above the dividing line favor remanufacturing, while those below, favor 

buying new. Note that the energy resources used by motors and engines are large, and so 

small performance improvements, if they can be substantiated, could represent significant 

savings in magnitude. They would however, be small relative to the total energy 

resources used. 

 

Discussion 

When taken as a whole, it seems that making general energy savings claims for 

remanufacturing is not advisable.  It happens that, historically, remanufacturing did save 

energy (and materials too) when products were unpowered. But current design trends of 

powering up products appear to have altered the energy resources usage substantially.  

That is, products that used to have no use phase are now powered. For example, rakes, 

snow shovels, and hammers, are now leaf blowers, snow blowers, and power tools.  This 

trend brings convenience and reduces human toil, but at the same time subsequent 

improvements in energy efficiency could work to reduce the potential energy savings 

promised by remanufacturing. (In Figure 28 this phenomena would be represented by 

products moving from on, or very near to the Y-axis – where remanufacturing would 

clearly save, to the dividing line – where the outcome involve small differences between 

large numbers). It has often been proposed to design using a modular platform in order to 

incorporate new features in used products. This could be a significant advancement for 

remanufacturing. For the purpose of this paper, this would mean incorporating energy 

efficiency improvements. However, it was also observed in this study that many of the 

major efficiency improvements in products are not incremental but radical, with major 

transformations in the product architecture, inhibiting such upgrades. Examples include 

desktop to laptop computers, top-load to front-load washing machines, and bias-ply to 

radial tires. On the other hand, the upgrading of components could be accomplished if 

they were standardized.  
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At the same time, other old benefits still accrue. Remanufacturing does provide local 

skilled jobs, generally reduces transportation when the primary materials come from far 

away, and may displace some primary production if the remanufactured product is truly a 

substitute for a new product. Concerning transportation, in the sensitivity analysis, it 

became apparent that transportation could become an issue for some extreme cases such 

as the air transport of new laptop and notebook computers from Asia to the United States. 

This can add substantially to the energy requirements of new products. Under these 

conditions, remanufacturing can appear energy saving. The case for laptops presented in 

this paper (# 4 as per Table 9) shows that even if transportation is not included, the 

energy savings by reusing the old laptop can be close to 50% of the manufacturing plus 

use phase energy requirements of the new laptop. Adding international transport will 

increase these relative energy savings to 58% making reuse even more favorable. We also 

would like to point out that while there are many additional aspects of remanufacturing 

that could be explored, one that strikes us as particularly important is the degree to which 

the remanufactured products actually substitute for new. This is a research issue unto 

itself. Past work indicates that the relationship can be quite complex, and in some cases 

the two products can end up being more like complements than substitutes [177, 178]. 

Thus overall while the strategy of remanufacturing to save materials and energy holds a 

lot of potential, the caveats extracted from this analysis are critical in deriving the desired 

benefits. As such, the trend in powering up of products followed by improving energy 

efficiency diminishes the energy saving potential from remanufacturing. Coupling this 

with scalability challenges of driving consumer behavior to remanufacture or use 

remanufactured goods leads us to believe that over all remanufacturing may not play a 

very significant role amongst the various strategies for energy demand reduction in the 

materials sector. 
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Chapter 6: Material efficiency targets, 

feasibility, and future work 
 

Feasibility of achieving material efficiency targets 

We have determined that amongst the two levers for reducing E, ‘e’ and ‘Q’, we can 

reduce e of 2050 by 57% relative to e of 2005 (in the most optimistic case), which relates 

to a reduction in E by 20%, falling well short of halving E over the same period. This 

would happen after deploying highly aggressive energy reduction strategies including 

some that are not even known of today. This means that in order to achieve the halving 

target the other level, Q, has to contribute as well and that we cannot allow demand to 

double (Figure 20). In fact it would only be achieved if the aggregate demand for the 

materials were restricted to increasing by only 25% relative to 2005. That means the ratio 

of demand in 2050 to that in 2005 cannot be more than 1.25. The 25% takes into account 

the interrelationships between the strategies like increased savings in ‘e’ due to increased 

recycling fraction of supply as demand growth is decreased. Figure 20 shows what this 

increase would mean through the plotted blue line at the bottom. Clearly this is 

significantly lower than any of the projections, high or low, for any of the materials. 

Clearly the challenge we face in trying to achieve this goal is huge. Figure 30 gives a 

demand per capita comparison between today “2005” and IEA projections of “2050-low” 

and “2050-high”, as well as with US current average labeled “2005-USA”, and what a 

25% restriction on Q increase would mean, labeled “2050-target”. The enormous 

challenge of achieving the target is again apparent. It would mean that on average each 

person would demand 10% lower material than today. Relative to IEA projections, the 

target demand would need to be close to 40% lower, and around 70% lower than what a 

US national demands today (except for cement). Without even exploring material 

efficiency opportunities, and referring to historic demand trends around the world as 

shown in Figure 6, it seems like this is close to being insurmountable. 
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Figure 30: Demand per capita comparison between today “2005” and IEA 

projections of “2050-low” and “2050-high”, as well as US average labeled “2005-

USA”, and what a 25% restriction on Q increase would mean, labeled “2050-

target”. The numbers in the green bar are for 2050-low. 

 

Material efficiency options 

Allwood and co-workers have conducted detailed research in analyzing material 

efficiency options and their potential to reducing CO2 emissions [7, 81, 102]. Three key 

strategies that help reduce the material demand (input and final demand), without 

influencing the service-supply by materials are a) redesigning products to reduce weight; 

b) increasing the life of products or reusing material/components without melting (non-

destructive recycling); and c) using materials more intensely by either extracting more 

service or more kinds of service per person or have more people use the same material, 

thereby extracting more overall service from the same material. Theoretically, if each 

were to be implemented 25%, meaning a) a 25% reduction in weight of products by 

optimized design; b) a 25% increase in the life of products; and c) increasing the intensity 

of use of materials by 25%, we can reduce the final demand of materials by (1 – 

(0.75)/(1.252)) ~ 50%. In this calculation the 0.75 refers to the 25% reduction through (a) 

which is then divided by 1.25 for each of (b) and (c). Thus aggressive material efficiency 

strategies can, theoretically, help achieve the targets. The important question is if this is 

feasible and if so how. 
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Allwood and co-workers have shown a potential for reducing material content by up to 

30% in construction beams, 10-30% in line pipes, and another 30% in each of car bodies, 

food cans, and rebars. The added benefit of saving materials by improved design is that it 

directly translates to cost savings for the producer (assuming other costs are unaffected), 

and thus becomes a natural incentive for strategy deployment. The idea of longer lasting 

products was discussed in detail in Chapter 5, and can lead to net energy expenditure if 

the life cycle energy is considered. In order to avoid this, Allwood et al. suggest 

following an onion skin model where in the replacement parts (that can also allow for 

upgrade of the older products to new state of the art) are placed in the outer skins and the 

rest inside. In other words, going from inner core to outer layers the expected lifetime of 

the products decreases. This way there is great incentive for consumers to reuse the core 

while replace the outer layers, easily, with state of the art replacement parts, assuming the 

state of the art replacement parts are compatible with the old core. A similar cost share 

onion skin model can be also used to provide incentive for reuse of higher cost cores. 

Similar to extending product life is reusing product components, given that most products 

fail because of the failure of a few components while the others can be reused. Here again 

the challenge could be that of compatibility with the new replacement parts. The third 

idea is around increasing the intensity of material or product usage. There are very few 

products out there (especially amongst consumer goods) that are used at capacity. In fact 

Allwood and others declare that transportation means are usually used at less than 10% 

capacity. Similar is the case for other metal products like domestic washing machines. 

We know the same for buildings, which in fact offer a much longer use life. Overall their 

assumptions for the degree of deployment of each strategy encouragingly shows that the 

targets can be met for aluminum and steel, less convincingly for aluminum given the 

higher projected demand [81]. We believe that the challenges in doing so are not only 

difficult but also too complex to solve in some cases and we discuss them in the next 

section.  
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Material efficiency challenges 

While material efficiency strategies offer great opportunities in theory, their application 

may not be very straightforward. Provided below are a few challenges we see that need to 

be overcome in order to derive the desired reduction in material demand, without 

compromising on the services demanded through materials. 

 

Table 10: Challenges associated with the different material efficiency strategies in 

consideration 

 Producer 
Economics 

Consumer 
Behavior Technical 

Light-weighting 

• Reduced product 
price, driven by 
consumer 
perception 

• Increased price 
of supplied 
materials due to 
reduced 
economies of 
scale 

• Consumer 
perceiving 
lighter products 
as inferior 

• Lower guaranty / 
warranty on 
product 

• Higher insurance 
premiums 

• Safety protocols 
inhibiting light-
weighting 

• Light-weighting 
can lead to 
shorter product 
lives and/or 
reduced intensity 
of use 

Extending 
product life 

• Reduced demand 
of product 
leading to 
decreased profits 
or increased 
product upfront 
price 

• Consumer need 
for rapid 
performance 
improvement 
and change 

• Consumer 
education on 
product 
upgrading 

• Designing for 
upgrade and 
future 
technology 
adoption in 
existing products 

Increasing 
intensity of use 

• Reduced demand 
for product 
leading to 
decreased profits 
or increased 
product price 

• Consumer 
resistance to 
share 

• Increasing 
intensity can 
lead to shorter 
product life 

• Monitoring 
equitable sharing 

 

Clearly there are significant challenges all around. However, we do believe, that some 

aspects of material efficiency could be implemented quickly, and at low cost if 

consumers were motivated to do this. Another strong driver could be policies that 
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encourage material efficiency. Soderhom and Tilton have suggested that given such 

challenges, and the lack of clear understanding for the potential of the various material 

efficiency strategies, political intervention should target the damage directly and let 

society or businesses figure out the technical strategies in reducing the damage. An added 

complication is the dynamic nature of the environmental remediation potential and of the 

feasibility of each strategy with the advent of new technologies and changes in prices. 

The technical analysis however guides businesses in understand how they can reduce this 

damage, as well as makes policy makers better informed [179].  

 

For further information on material efficiency, refer to Allwood and co-workers who 

have provided detailed papers framing the key questions around this subject, as well as 

discussing the different challenges and mechanisms to deploying material efficiency 

strategies [102, 140]. 

 

Summary and future work 

In summary the work in this thesis shows that achieving the set out targets of halving 

energy demand from the materials sector by 2050 will probably not be feasible. Three 

key findings that support this are: 

 

1. Very optimistic energy intensity strategies (eventually constrained by theoretical 

limits) with conservative low-demand projections can reduce the total energy by only 

20% of today’s level. High-demand projections lead to a net increase in energy by 6% 

of today’s energy demand 

2. Savings from remanufacturing are uncertain and undermined by energy efficiency 

trends. With more and more products being powered up followed by increase in their 

energy efficiency, along with the challenge of overcoming consumer demand for 

newer products, deriving energy saving through remanufacturing is more complicated 

than previously considered 

3. Material demand reduction targets to bridge the remaining gap are very challenging, 

restricting increase of demand to only 25% of today’s quantities. This entails that by 

2050 we would need to reduce demand per cap by 10% of today’s level which is an 
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insurmountable task given the historic trends and future projections of material 

demand 

 

One of the best cases to support the achievement of material demand targets is the so-

called saturation phenomenon as discovered in Chapter 3. To understand the salient 

points of this case, one must differentiate between materials stocks; the total quantity of 

the materials currently being used by society, and material flows; the annual inputs or 

flows of materials to society.  In studies of iron and steel used in industrialized countries 

it has been observed that these stocks tend to plateau after a certain level of per capita 

income. The general idea is that society has adequate supplies of durable goods and 

infrastructure and, in fact, adding more might be difficult. Müller et al found this plateau 

level for iron and steel stocks to be about 10t/cap. After this level is reached, society 

maintains a certain level of material consumption required to replace and maintain this 

stock level. This level is estimated to be in the vicinity of 500 kg/cap/yr.  For comparison, 

current global average per capita iron and steel stocks are estimated to be about 2.7t/cap, 

and global average iron and steel flows are about 200kg/cap/year [35, 81, 127].  It is 

interesting to take these numbers and estimate the amount of iron and steel required to 

move the world from its current average values, to the levels of the developed world. In 

order to build world stocks of iron and steel to an average value of 10t/cap for a 

population of 9 billion, total production of at least 71 Gt of new primary material would 

be required, assuming that all existing stocks are recycled in a closed loop. To 

accomplish this goal, annual primary steel production would (if growing linearly) have to 

increase by a factor of 2.7 in parallel with growth in secondary steel production. This 

estimate underscores the enormity of the task: achieving a world-wide 'saturation' stock 

level of 10t/cap requires that we mine and refine most of the 79Gt of identified ore from 

which usable iron can currently be economically and legally extracted [127]. This is not 

impossible, iron is one of the more abundant elements in the Earth’s crust and we will not 

run out. But understandably, the potential complications involved for a task of this scale 

are clearly beyond what can be fully taken into account in any forecast. Note also, that 

the nominal growth rate shown in Figure 20 for steel (a doubling in demand) would not 

result in raising the current world average (200kg/cap/yr) to the current level of iron and 
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steel consumption in the developed world (500kg/cap/yr). To accomplish this goal, steel 

would have to increase by a factor of 3.2 (assuming a world population of 9 billion) 

rather than 2.0. 

 

Thus achieving the targets would require new thinking about how we use materials. 

Could the developed world work towards a goal of reducing their basic material 

requirements, while allowing the developing world to catch up to this new level?  This is 

decidedly not a business as usual scenario, but is worth looking into in more detail. 

Material efficiency could greatly help in reducing the energy demand from the materials 

sector. However, it has not been explored in as much depth as energy efficiency. New 

thinking in this area to address not only engineering challenges but also policy challenges 

is sorely needed. While we see this approach as technically possible, we foresee several 

unaddressed technical challenges along with some major behavioral and economic 

challenges to large-scale deployment, requiring significant inputs from the social 

sciences. Overall material efficiency seems to provide an innovative extension to energy 

reduction strategies with potentially large untapped potential and should increasing 

become an important area of research in the coming decades. However, given the 

challenges discussed and the severity of the targets, achieving a 50% reduction in 

cumulative energy from the five materials studies is unlikely. This means that either or 

both transportation and buildings sector would have to do better than just halving their 

energy to make up from the shortfall from industry. At a rough glance this is not so 

difficult as clearly both these sectors offer a number of low hanging opportunities for 

reducing their energy demand. At the same time if the targets are to be assessed purely 

from CO2 analysis, then the greening of the grid along with electrification of the different 

sectors can also play a big role. However, MacKay has shown how the low power density 

of most of our renewable energy sources can create a big limitation to greening of the 

grid, requiring infrastructures much larger than what we use today to produce our 

energy[180, 181]. Another potential option is of carbon sequestration, which is yet to 

become commercially feasible for large-scale deployment but could prove to be a 

significant contributor in the later years. More research on each of these can be found in 

[3, 99, 100, 182-188]. 
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In closing highlighted below a few specific areas of future work from this research that 

directly or indirectly will drive reduction in energy demand from the five basic materials. 

While halving the total energy from the five basic material sectors may not be feasible it 

is nonetheless essential to continue to find and deploy strategies that reduce the energy 

demand from the materials sector. The suggestions for future work are categorized into 

primary production, recycling supply, policy, and material efficiency.  

 

 

 
Figure 31: Potential areas of future work (research and strategy deployment) from 

this thesis 

 

Primary production: 

• Finding incentives for material production plants to upgrade to best available 

technologies. With newer installments in developing countries like those in Asia 

and Africa, best available technologies are already being installed. But the upfront 

capital costs for upgrade have deterred existing plants. It would be valuable to 
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research ways in which the material production equipment can be redesigned to 

incorporate upgrades without full replacement, as more energy efficiency 

technologies evolves over time. 

• Researching ways to (a) further reduce the energy intensity of primary production 

of materials beyond BAT – through cutting edge technologies; (b) making these 

novel technologies commercially scalable. There are several technologies in lab 

that hold potential into the future but more research will be needed to move the 

energy intensity to the midpoint between BAT and theoretical minimum. 

 

Recycling supply 

• Finding ways to enhance scrap collection infrastructure. Waste collection rates 

vary from being close to a 99% for products like car batteries to almost 0% for 

some of the plastics. Part of the reason is the poor collection infrastructure. 

Another major reason is the uncertain or poor economics of waste recycling. 

Researching ways to improve recycling profitability will automatically lead to 

development of collection infrastructure and recycling facilities. With the recent 

rise in commodity prices, scrap recycling can become much more incentivized 

and might spur this development. 

• As the recycling fraction of supply increases into the future, especially if 

recycling economics and infrastructure develop, then it would be good for both 

the environment and bottom-line to discover or invent energy-efficiency 

opportunities that reduce the energy requirement for secondary production. 

Chapter 4 discussed some of these, but it requires more work to make the existing 

technologies commercially scalable, and to develop new technologies to drive 

further improvements. Note that the developed world, like steel in the US, already 

relies heavily on secondary fraction, and thus there already exists an attractive 

market for improving EAF or other secondary material production technologies. 

 

Material efficiency 

• Researching ways to overcome the discussed challenges to material efficiency 

strategies as well as determine other new strategies. Examples include, 
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redesigning products that can be upgraded with newer technology such that a 

remanufactured product can potentially substitute perfectly for a new. With 

regards to material intensity of use, developing nations are likely to build both 

stable public transportation systems that encourage material sharing, as well as a 

need for individual vehicles with rising purchasing power. Several big cities 

around the world are example of the former substituting the latter through their 

development with increased population density and urbanization. However, there 

still remain challenges to derive similar motivations for material sharing in other 

applications like buildings, or even consumer goods, with one obvious deterrent 

being security. 

• There needs to be greater clarity on the economics of material efficiency. Energy 

efficiency typically falls in line with cost savings, but material efficiency does not 

necessarily render its benefits directly. Making products that end up being used 

for longer (or resold after use) or making products that are easily shared leads to a 

decrease in net demand for products hurting producer profitability. Designing 

products with lower material content can reduce costs for the producer but can 

hurt the revenues if the product is perceived as being inferior. In fact the trend in 

the past has been to use efficiency for performance enhancement. For example, in 

the recent decades, in the US, there has been a greater demand for vehicle 

performance attributes of size, acceleration, and other amenities, over energy or 

material efficiency given the lower cost of energy and materials. In this particular 

case, the new CAFE standards and rising commodity price might in fact lead to 

producers focusing on energy and material efficiency, like they did after the first 

set of CAFE standards. 

 

Policy 

• A direct way to drive the required changes is to instate policies. Research can 

significantly contribute towards guiding their development. The challenge here is 

the lack of understanding in prioritizing amongst the various options amongst 

energy and material efficiency and hence lacking unanimous support for a 

particular policy structure. However, several ideas have been discussed in 
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literature around ways in which policy could drive efficiency. These include 

carbon credits, cap and trade, emission taxing, subsidies, as well as influencing 

the behavior of the consumer. However policies often come with good and bad 

effects, and research can help provide a comprehensive analysis of each. Overall 

based on the research presented in this thesis, we advice policy makers to not only 

focus on the conventional energy efficiency goals but also consider how material 

efficiency can be further driven. Soderhom and Tilton have provided their 

thoughts on the same [179]. A simplistic approach would be for policy makers to 

see how to drive up net material costs or waste management costs so as to push 

for light weighting. Similarly finding ways to influence consumer behavior 

towards material sharing and extending product life (if energy saving) would play 

a critical role in industrial energy reduction through the coming decades. 
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Appendix 
 

A.1: Data used for demand analysis (Chapter 1, 3, and 6) 
 

 USA China India Global 

Aluminum 
Price [9] [9] [9] [189] 

Demand [9] [190, 191] [190, 191] [9] 

Steel 
Price [9] [9] [9, 192] [9] 

Demand [9] [190, 193] [190, 191] [9] 

Copper 
Price [9] [9] [9] [189] 

Demand [9] [190, 191] [190, 191] [9] 

Zinc 
Price [9] [9] [9] [189] 

Demand [9] [190, 194] [190, 195] [9] 

Cement 
Price [9] [196, 197] [196, 198] NA 

Demand [9] [199]  [200-202] NA 

GDP [203] [204] [135, 136]  [121] 

Population [203] [135, 205] [204, 206] [121] 

Industry Share [136] [136] [136] [136] 
 

 

Provided below is the raw data procured from the above resources and some additional charts used in the 

analysis. “F” is the fraction of industry income spent on the material, referring to ‘choice’ from Chapter 2 

and 3. 
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A.2: Data used for energy efficiency analysis (Chapter 4) 

 

 
All energy data are in final energy 

Plastics energy data exclude fuel value 
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Notes & Definitions

Average energy required for primary production of material in 2005

Best available technology for primary production of material in 2005

Cutting edge technology for primary production, assumed half way 

between BAT and Theoretical minimum (calculated using exergy)

Average energy required for secondary production of material in 2005

Cutting edge energy required for  secondary production of material 

(Calculated assuming 50% of Es 2005)

Material scrap collection rate in 2005 

[quantity scrap collected/quantity exited use] 

(Calculated using r2005, i, n)

Material scrap collection rate in 2050 

[quantity scrap collected/quantity exited use]

Average residence time in use phase

CAGR of material produced 

(Calculated using Q2006 and Q2050)

Assumed Production = Consumption at global level 

Global material production in 2005/2006

Global material production in 2050

Recycling rate of material in 2005 

[material recycled/total supplied]

Recycling rate of material in 2050 

[material recycled/total supplied] 

(Calculated using i, n, f2050)
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A.3: References used for data in A.2 
C: Calculated as explained in A.2; A: assumed 
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A.4: Data sources used for remanufacturing analysis (Chapter 5) 

 

Category 

Ref # for Table 9, 

Figure 28, Figure 

29 

Data sources 

Appliances 

20 [158, 162, 163, 212, 213] 

23 [152, 157-159, 163, 212, 213] 

25 [158, 163, 212-214] 

Computers 

7 

[215, 216] 

4 

6 

8 

24 

21 

Furniture 
2 

[217, 218] 
1 

Textiles 
5 

[219-221] 
3 

Toner Cartridge 10 [174, 222, 223] 

Engines 
12 [155, 166, 224] 

11 [154, 155, 166, 224] 

Electric Motors 

19 

[175, 225-228], [228], [226], 

[225] 

14 

15 

18 

17 

13 

Tires 

22 
[63, 110, 167-169, 171, 227, 

229-233] 
9 

16 
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A.5: Assumptions and comments regarding remanufacturing analysis 
 

 
[a] = [154]; [b] = [215]; [c] = [221]; [d] = [174] ; [e] = [176] 
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