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Abstract

Underwater implosion, the rapid collapse of a structure caused by external pressure,
generates a pressure pulse in the surrounding water that is potentially damaging to
adjacent structures or personnel. Understanding the mechanics of implosion, specifi-
cally the energy transmitted in the pressure pulse, is critical to the safe and efficient
design of underwater structures. Hydrostatically-induced implosion of unstiffened
metallic cylinders was studied both analytically and numerically. An energy balance
approach was used, based on the principle of virtual velocities. Semi-analytic solutions
were developed for plastic energy dissipation of a symmetric mode 2 collapse; results
agree with numerical simulations within 10%. A novel pseudo-coupled fluid-structure
interaction method was developed to predict the energy transmitted in the implosion
pulse; results agree with fully-coupled numerical simulations within 6%. The method
provides a practical alternative to computationally-expensive simulations when a min-
imal reduction in accuracy is acceptable. Three design recommendations to reduce
the severity of implosion are presented: (1) increase the structure's internal energy
dissipation by triggering higher collapse modes, (2) initially pressurize the internals of
the structure, and (3) line the cylinder with a flexible or energy absorbing material to
cushion the impact between the structure's imploding walls. These recommendations
may be used singly or in combination to reduce or completely eliminate the implosion
pulse. However, any design efforts to reduce implosion severity must be part of the
overall system design, since they may have detrimental effects on other performance
areas like strength or survivability.
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Chapter 1

Introduction

1.1 Background and History

Underwater implosion refers to the rapid collapse of a solid structural shell resulting

from fluid loading. Implosion occurs when the hydrostatic pressure exceeds the critical

buckling pressure of the structure, or through a combination of hydrostatic pressure

less than critical buckling pressure and a triggering event, such as an underwater

explosive load (UNDEX). The duration of a typical implosion event is on the order of

milliseconds. Implosion of a structure generates a pressure pulse in the surrounding

water, similar to the pressure pulse created by the collapse of a gas bubble from an

UNDEX event. Figure 1-1 shows a typical implosion dynamic pressure history, as

measured at a point in the surrounding fluid.
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Figure 1-1: Typical dynamic pressure history for an underwater implosion event.
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The negative phase represents the decrease in pressure due to the collapsing cylin-

der walls and the associated in-rushing water. The large positive spike is caused by

the rapid deceleration (and subsequent compression) of the water when the structure

reaches its maximum collapse and stops moving. The primary impetus for studying

underwater implosion is the damaging effect that this implosion pressure pulse may

have on an adjacent structure, such as a submarine hull. A related concern is the

safety of personnel, particularly divers, who may be directly exposed to an implosion

pressure pulse.

The study of underwater implosion began with Lord Rayleigh's study of collapsing

spherical bubbles in 1917 [6]. In the 1950s, imploding glass spheres were considered

for use as deep-ocean sound sources. Isaacs, in 1952, proposed an oceanographic

signaling device that would mechanically implode a glass sphere when it reached

the ocean bottom [7]. Implosion was seen as a safer, more convenient alternative to

explosion for creating underwater signaling devices. Urick was the first to attempt

to quantify the pressure pulse resulting from implosion [8]. He imploded a number

of sealed air-filled glass bottles, ranging in size from 4 oz. to 1 gallon, at depths

of 500-7500 ft, and recorded the resulting pressure signals with a single hydrophone

suspended at a depth of 50 ft. Urick calculated the acoustic energy transmitted in

the implosion pressure pulses, and concluded that the transmitted energy was a very

small fraction (~ 0.2%) of the total available potential energy in a gas cavity of

volume V and pressure pl. Furthermore, he observed that the energy transmitted

in an implosion pulse was significantly less than that of an oscillating gas bubble

of equivalent size. This observation indicated that a significant amount of energy is

absorbed by the deformation and fracture of the glass bottle.

Price and Shuler [1] reported pressure-time history and energy density spectra

pV1 Urick calculated the available potential energy in a gas cavity as 1 where y is the ratio

of specific heats for the enclosed gas (1.4 for air).
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data from at-sea implosion experiments with steel cylinders ranging from 8-30 inch

diameter. The pressure-time histories show a negative pressure phase corresponding

to the cylinder surface accelerating away from the water (i.e., collapsing), followed by

a positive pressure phase corresponding to the cylinder surface accelerating toward

the water (or equivalently, the surface coming to rest and the water decelerating

against it). The sharp positive pressure spike corresponds generally to the moment of

contact between the two sides of the cylinder. Whereas Urick observed oscillations in

the pressure signal from his imploding glass bottles very similar to the bubble pulses

from an explosion, Price observed that cylindrical implosions generally exhibit only

a single negative and positive pressure phase (see Fig. 1-2). He concluded that the

oscillation decreases as the ratio of structure to volume of enclosed air increases. Price

also experimented with cylinders with multiple compartments and different materials.

His data provides an important insight into implosion of cylinders, and the effect of

features like bulkheads and stiffeners.

A) EXPLOSION PULSE

OVERLOAD

B) GLASS BOTTLE
IMPLOSION PULSE
IAFTER URICK )

STEEL CYLINDER
IMPLOSION PULSE

C) _,- . (RICE)

Figure 1-2: Comparison of explosion, glass bottle implosion, and steel cylinder im-
plosion pressure pulses. Cylinder does not exhibit repeated oscillations [1].
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Underwater implosion has been known to cause a cascade of secondary implosions.

The most dramatic example of this phenomenon occurred in November 2001 at the

Super-Kamiokande Cherenkov detector facility in Japan. The facility utilized 11,146

50 cm diameter photomultiplier tubes (PMTs), submerged in a 42 m deep tank of

water. During routine refilling operations, a single PMT imploded due to hydrostatic

pressure. The resulting pressure pulse caused a cascade of secondary implosions that

destroyed 6777 PMTs [2, 9]. This costly incident has heightened the interest in

underwater implosion and the resulting pressure pulse.

Closely related to the problem of underwater implosion is the problem of buckling

in submarine pipelines. This problem was studied extensively, starting with Palmer

and Martin in 1975 [5]. They calculated the quasistatic propagation pressure for a

pipeline using an energy balance between strain energy in the pipe and work done by

external pressure. The resulting expression for propagation pressure was:

Pprop = 7 (o-o (1.1)

where o- is the flow stress of the material, h is the cylinder thickness, and D is the

cylinder diameter.

Palmer and Martin also proposed a simple kinematic model of plastic ring de-

formation consisting of four stationary plastic hinges and four rigid quarter circle

segments (Fig. 1-3). Their calculations assumed a rigid-perfectly plastic material

and included only bending energy and not membrane energy; thus, they underesti-

mate the propagation pressure.

Wierzbicki and Bhat [10] expanded on Palmer and Martin's work by developing

a simple moving plastic hinge ring deformation model, shown in Fig. 1-4.

They also incorporated a rigid-linear strain hardening material model. Their
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W-1

Figure 1-3: Palmer and Martin's stationary hinge ring model.

Figure 1-4: Wierzicki and Bhat's traveling hinge ring model.

resulting expression for propagation pressure was:

Pprop = 3+ 12 (3ho)} (
(1.2)

where E, is the strain hardening modulus. Kyriakides, et al., [11] also studied the

problem of propagating buckles extensively, and conducted numerous experiments to

validate the analytic results.

Suh and Wierzbicki [4] investigated plastic deformation of metallic cylinders sub-

jected to combined loading (lateral indentation, bending moment, and axial force).

They developed a string-on-foundation model that accurately describes the deforma-

tion of a cylinder and is mathematically simplified enough to be used in analytic
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solutions. Section 2.2 describes the string-on-foundation model, which will be used as

the basis for analytic solutions in this research. Suh and Wierzbicki assumed a rigid

perfectly plastic material model, and used the principal of virtual velocities as the

basis for their solutions. They investigated a number of different boundary conditions

on the cylinder ends, and concluded that the resistance of the tube to deformation is

strongly dependent on the boundary conditions.

Hoo Fatt and Wierzbicki [12] and Hoo Fatt [13] studied the plastic response of

cylinders under various dynamic loading conditions. Using similar methodology as

Suh, they developed solutions for both unstiffened and ring-stiffened cylinders sub-

jected to impact and impulsive loading. Hoo Fatt also introduced the concept of

equivalent parameters (constants) using an averaging procedure in the circumferen-

tial direction to eliminate one spatial variable.

Current State of the Art

Most of the recent research directly related to underwater implosion has been driven

by U.S. Navy interest. Cor and Miller [14, 15] studied spherical and cylindrical

implodable volumes and the effect that energy absorption by internal structure has on

the implosion pressure pulse. They concluded that internal structure can significantly

reduce the implosion pressure pulse, and they identified future work very similar to

the research reported in this thesis. However, Cor and Miller have not pursued

their implosion work any further, leaving the problem of structural energy absorption

during implosion unsolved.

Very few experimental studies of underwater implosion exist in the literature,

largely because of a limited number of test facilities capable of conducting implosion

tests. Turner [16] conducted implosion experiments on thin-walled glass spheres and

demonstrated that the structural failure mode and time history have a significant

effect on an implosion pressure pulse. Diwan, et al., [2] measured the shock wave
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(implosion pulse) resulting from the hydrostatically-induced implosion of a PMT, and

compared the results to numerical simulations. The implosion experiments reported

in both these papers were conducted in the test facility at the Naval Undersea Warfare

Center (NUWC) in Newport, RI, shown in Fig. 1-5 below.

Figure 1-5: Propulsion Noise Test System (PNTS) at the Naval Undersea Warfare
Center (NUWC) in Newport, RI [2].

Numerous authors (e.g., Brett and Yiannakopolous [17] and Hung, et al., [18])

have studied and reported UNDEX effects on cylindrical structures. However, the

impetus for their work is understanding the direct effects of UNDEX rather than

subsequent implosion. In most of the literature, the loading conditions (UNDEX and

hydrostatic pressure combined) were such that the cylinder did not fully implode.

Very little, if any, literature has been published on UNDEX-initiated implosion and

the subsequent implosion pressure pulse.

General Implosion Mechanics

Under purely hydrostatic loading, a metallic cylindrical structure tends to buckle and

implode in a symmetric fashion into one of several possible mode shapes, as shown
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in Fig. 1-6 below.

Mode 2 Mode 3 Mode 4

Figure 1-6: Symmetric collapse modes under purely hydrostatic loading.

The buckling mode of a cylinder subjected to hydrostatic pressure is determined

by the cylinder's length (2L), diameter (D), and thickness (h), in accordance with

classical elastic-plastic buckling theory. Cylinders with large 2L/D (>~ 5). collapse

in mode 2, while lower 2L/D collapse into mode 3 or 4[3]. Fracture may or may not

occur during the implosion process, depending on material parameters, shell thickness,

loading, boundary conditions, etc. Figure 1-7 shows photos of representative test

samples illustrating the different collapse modes.
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(a) Mode 2.

(b) Mode 3.

(c) Mode 4.

Figure 1-7: Representative test samples illustrating different collapse modes [3].
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If hydrostatic loading is combined with UNDEX, the implosion process becomes

more complex. UNDEX itself is a complicated process, consisting of an initial shock

wave followed by multiple bubble pulse pressure loadings. Underwater Explosions, by

R.H. Cole [19], is the definitive reference on UNDEX. A representative pressure-time

history from an UNDEX event is shown in Fig. 1-2(A). The response of an implodable

volume subjected to UNDEX depends on many parameters, including explosive charge

size, standoff distance, hydrostatic pressure, and orientation of the structure relative

to the charge. The structure may implode due to the initial shock loading, or due to

one of the bubble pulses. Implosions triggered by UNDEX tend to exhibit asymmetric

collapse modes, often accompanied by significant fracture. Because of the complexities

involved in UNDEX-initiated implosion, this work focuses solely on hydrostatically-

induced implosion.

1.2 General Description of Fluid-Structure Inter-

action Problems

Underwater implosion is a fluid-structure interaction problem. Fluid-structure inter-

action (FSI) problems are a broad class of problems involving both solid and fluid

mechanics. A general FSI problem consists of an elastic or elastic-plastic solid body

either surrounded by a fluid or surrounding a fluid. The solid body may be rigid or

deformable. The problem is solved by imposing continuity conditions at the fluid-

solid interface. Specifically, kinematic continuity of displacement and velocity and

kinetic continuity of normal stress must be imposed at the interface [20].

An FSI problem is further complicated if the solid body undergoes large transient

deformations, as in the case of underwater implosion. In hydrostatically-induced im-

plosion, the hydrostatic pressure loading on the solid body causes rapid movement of

the solid surface (i.e., deformation or crushing of the body). This rapid movement
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of the solid surface causes corresponding motion of the adjacent fluid (because of

kinematic continuity requirements), which in turn causes a local hydrodynamic pres-

sure change (decrease) in the fluid. The hydrodynamic pressure during the cylinder

collapse is illustrated in Fig. 1-1. The changing fluid pressure acting on the solid

surface changes the acceleration of the solid surface, which further changes the fluid

velocity and pressure. In a typical underwater implosion, the entire collapse occurs

in a few milliseconds. Thus, the implosion problem is a fully-coupled, highly dynamic

and nonlinear problem.

In general, FSI problems are too complex to be solved analytically, so they are an-

alyzed numerically. The general solution approach is to solve the equations governing

fluid flow and solid displacement at each time step, while simultaneously imposing

the continuity requirements. Extensive research has been done on optimizing numer-

ical methods for solving FSI problems (e.g., [21, 22, 23]). Fully coupled numerical

simulation of FSI problems is beyond the scope of the current research; rather, this

work focuses on a pseudo-coupled analytic solution method.

1.3 U.S. Navy Involvement

Underwater implosion is of great interest to the U.S. Navy, primarily because of the

danger that an implosion could pose to an adjacent submarine. Submarines carry

a variety of devices and systems that could potentially implode. Examples include

drydeck shelters (DDS) mounted externally to the submarine topside deck, unmanned

underwater vehicles (UUVs) carried either external or internal to the submarine,

and countermeasure devices (either external or internal). Figure 1-8 below shows

photographs of implodables associated with Navy submarines. The implodables of

interest to the Navy range in size from e 0.001 m3 to a 10 m3 outer envelope volume

(5 orders of magnitude).
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(a) Submarine with drydeck shelter (DDS). Approximate DDS
volume is 10 m3 .

(b) Unmanned underwater vehicle (UUV). Approximate UUV
volume is 0.5 m3 .

(c) Submarine-launched countermeasure device. Approximate
countermeasure volume is 0.001 m3 .

Figure 1-8: Examples of implodables associated with U.S. Navy submarines.
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The Navy defines an implodable volume as "any pressure housing containing a

non-compensated compressible volume at a pressure below the external sea pressure

(at any depth down to the maximum operating depth) which has the potential to

collapse. The outer shell volume is used when calculating the volume of an implodable.

Subtracting the volume of items internal to the implodable is not allowed. Externally

mounted lights, gauges, bottles/flasks, spheres/tanks and beacons are examples of

implodable items." [24].

The Navy uses a formal approval process for all implodable volumes to be car-

ried aboard submarines. The current approval methodology calculates the maximum

potential energy available from the complete structural collapse of the implodable

volume, and assumes that all this energy will be transmitted into the water in the

form of a pressure pulse. No allowance or adjustment is made for structure or ma-

terial inside the implodable volume, or for energy absorbed by the structure during

collapse. In reality, a significant fraction of the available energy will be absorbed by

the structure during collapse. As such, the current methodology is very conservative

and results in overestimating the energy (and corresponding damage effect) of the

implosion pressure pulse. Subsequently, the implodable volumes must be structurally

overdesigned to meet the current required safety standards.

The Navy sought to address this problem by organizing and funding a research

program through the Office of Naval Research (ONR). The first step was creation

of a Multi-University Research Initiative (MURI) to investigate certain aspects of

the implosion problem such as small-scale laboratory testing, algorithm development,

and fracture modeling. The MURI consisted of researchers from Stanford University,

University of Texas at Austin, MIT, and Northwestern University. As part of the

MURI, an implosion test facility was constructed at University of Texas at Austin,

shown in Fig. 1-9 below.

In conjunction with the MURI, a Future Naval Capability (FNC) Implosion pro-
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Figure 1-9: Implosion test facility at University of Texas at Austin [3].

gram was started. The FNC was a five-year (fiscal year 2008-2012), $18M program,

and included development of a physics-based modeling tool, development of an im-

plosion design and assessment tool, and full-scale at-sea implosion testing. The com-

putational framework for the physics-based modeling tool, developed at Stanford,

was published in the PhD thesis by Rallu [25]. Portions of the laboratory implosion

experiments and numerical simulations were reported by Turner and Ambrico [26].

Figure 1-10 shows the configuration for one of the actual at-sea tests conducted as

part of the FNC, an implodable cylinder attached to a larger host cylinder.

The present research is an extension of MIT's original involvement in the MURI.

The current work seeks to address analytic questions not directly addressed by the

MURI or FNC. The goal of this research is to obtain analytic solutions, validated with

numerical simulations and experimental data, for the plastic strain energy absorbed

by an unstiffened cylindrical structure during implosion. This solution will then be

used to estimate the energy that may be transmitted in the form of a pressure pulse.

The results will support more realistic, less conservative approval criteria for Navy

implodable volumes.
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Figure 1-10: Implodable volume and host configuration for at-sea test.

1.4 Outline of Thesis

This thesis consists of 7 chapters. With the exception of Chapters 1 and 7, each

chapter is self-contained and addresses one specific topic. Several chapters have been

(or will be) submitted separately for publication. Chapter 1 provides background on

underwater implosion and motivation for the current research. Chapter 2 describes

the problem formulation and underlying assumptions in the solution methodologies.

Chapter 3 describes the numerical simulations used to validate the analytic results.

Chapter 4 contains derivations of the analytic solutions for plastic energy dissipation

of an unstiffened cylinder during implosion. Chapter 5 presents a pseudo-coupled

fluid-structure interaction solution method using an explicit time-stepping approach.

Chapter 6 applies the knowledge from Chapters 4 and 5 to provide design recom-

mendations for minimizing the implosion pulse of underwater structures. Finally,

Chapter 7 summarizes the conclusions of this work and identifies future work related

to underwater implosion.
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Chapter 2

Problem Formulation and

Simplifying Assumptions

This thesis deals primarily with hydrostatically-induced implosion of unstiffened metal-

lic cylindrical shells. The cylinders have rigid flat endcaps. The hydrostatic pressure

is assumed to be uniform over the entire surface of the cylinder (i.e., the difference in

depth of one part of the cylinder compared to another is insignificant). The solutions

apply to symmetric mode 2 collapse 1 . In all cases, the diameter-to-wall thickness

ratio (D/h) is greater than 20. The standard thin-walled pressure vessel assumptions

and equations of membrane theory apply:

_ pR (2.1)
a-h

_pR

o- h (2.2)2h

where ao is hoop stress and ox is longitudinal stress in the undeformed cylinder.

Figure 2-1 below shows the basic geometry, coordinate system, and notation used

throughout this thesis.

'Experiments indicate that cylinders with length-to-diameter ratios (2L/D = LIR) greater than
about 5 will collapse in mode 2[3]. Most real-world implodables fall into this category.

37



Center cross-section

D=2R

p

I x=O

2LL

D 2L

Figure 2-1: Geometry and loading of a cylindrical shell.
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2.1 Equilibrium (Principle of Virtual Velocities)

The quasi-static global equilibrium for the problem of an imploding cylinder is ex-

pressed via the principle of virtual velocities:

Eext = int (2.3)

where Eext is the rate of external work and Eint is the rate of internal plastic energy

dissipation. For the case of purely hydrostatic loading, p, the left hand side of Eq.

(2.3) is given by:

text = pihdS (2.4)

where S represents the entire cylinder surface and w is the normal displacement of

the surface. In general, p may be a function of time and space. The expression for

internal plastic energy dissipation is:

ti= h ofi, &jidS (ij=1,2,3) (2.5)
S

Because the cylinders are thin-walled, a plane stress state exists, and Eq. (2.5) can

be rewritten as:

Eint = (Nacpia + Mapkap) dS (a, =1,2) (2.6)

where top and ka3 are the generalized strain and curvature rate tensors, and Na and

Ma are the corresponding membrane force and bending moment tensors. The first

term on the right hand side of Eq. (2.6) represents membrane energy; the second

term represents bending energy. Substituting the x-O coordinate system from Fig.
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2-1 for af and expanding Eq. (2.6) gives:

nt= 2 R j xx xx + Nootoo + 2Neotxo + Mxxkxx + Mookoo + 2Mxokxo) dOdx
0 0

(2.7)

2.2 Ring-Generator Model of Cylinder

The basic computational model of a cylindrical shell used in this work was first devel-

oped by Suh and Wierzbicki [4]. The cylinder is modeled as a series of unconnected

rings or cross-sectional slices and a bundle of unconnected longitudinal generators.

The rings and generators are loosely connected, as shown in Fig. 2-2.

a) Rings b) Generators c) Loose connection
between rings and
generators

Figure 2-2: Ring-generator model of a cylindrical shell [4].
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The rings are assumed to be inextensible in the circumferential direction (doo =

0), so energy is dissipated only by bending in the circumferential direction. The

generators are treated as beams which can dissipate energy in bending or membrane

action. However, the change in longitudinal curvature of the generators is negligible

compared to the change in circumferential curvature of the rings (kXX < k~o). Thus,

bending of the generators is neglected in this work. The generators dissipate energy

only by membrane action (i.e., stretching or compressing axially).

The loose connections between rings and generators require that lateral displace-

ment of the two elements be the same at the connection point. However, the two

elements are free to rotate relative to each other. Thus, the connection does not

provide any resistance to shear (i.e., Mo = 0 and No = 0). These simplifying

assumptions reduce Eq. (2.7) to:

Eint = 2J R j (Nxxxx + Mookoo) dOdx (2.8)
0 0

Because shear energy is neglected, it is reasonable to expect that any analytic

solutions will underestimate the total plastic energy dissipation. Suh [4] estimated

the effects of shear and made the following conclusions:

1. Shear is less significant in symmetric collapse than in non-symmetric collapse

(hydrostatically-induced implosion causes symmetric collapse).

2. The shear effect (as a percentage of total energy dissipation) is greatest for

small tube deformation. For deformation on the order of tube radius, the shear

increases plastic energy dissipation by no more than 10%.
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2.3 Material Model

The cylinder material is idealized as rigid, perfectly plastic with flow stress U0 . The

deflections that occur during implosion are on the order of the cylinder radius (i.e.,

large deflections). Therefore, the elastic deformations that occur prior to collapse are

negligible compared to the plastic deformations that occur during collapse. Thus, the

rigid perfectly plastic material idealization is reasonable.

The flow stress, o, lies between the yield stress and ultimate strength, and incor-

porates strain-hardening effects in an approximate way. The flow stress is calculated

by requiring equal areas under the actual material stress-strain curve and the rigid

plastic stress-strain curve, up to a given value of plastic strain, E1. This is known as

the energy equivalent flow stress. All analytic solutions and numerical simulations

in this work use aluminum 6061-T6. The specific material characterization was con-

ducted and reported by Beese [27]. The material follows the Swift hardening rule,

given by:

o = A(e, + Eo)" (2.9)

where e, is plastic strain, sO is yield strain, and A and n are strain-hardening param-

eters of the material. The flow stress is calculated as follows:

- A(ep + Eo)"dE, = o (2.10)
El o

For this specific material (A16061-T6), A=438 MPa, n=0.07, and co=0.00434 [27].

The resulting flow stress is 351 MPa, assuming the range of expected plastic strain to

be Ei = 0.2. Figure 2-3 shows the actual A16061-T6 stress-strain curve, as measured

by Beese, along with the 20% energy equivalent flow stress o-o.
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Figure 2-3: 20% Energy equivalent flow stress for A16061-T6. Areas under actual and
rigid plastic stress-strain curves must be equal.
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2.4 Yield Condition

The dimensionless membrane force and bending moment tensors are denoted by:

np = N, ma = Ma (2.11)No M0

where No = oh is the fully plastic membrane force per unit length and Mo = oh 2 /4

is the fully plastic bending moment per unit length. The dimensionless components

are related through the yield condition:

f (map, n,,) = 0 (2.12)

From the previous simplifications, the general membrane force N0 g reduces to just

N22, and the general bending moment Mp reduces to just Moo. The Huber-Mises

yield condition then reduces to:

32 1
4n, + in6 6  (2.13)

Equation (2.13) forms the ellipse shown in Fig. 2-4. Wierzbicki and Hoo Fatt [28] ap-

proximated the actual elliptical yield condition with a rectangular limited interaction

curve defined by:

|Nex| = No, IMoo| = Mo (2.14)
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Figure 2-4: Huber-Mises yield condition for a cylindrical shell and a rectangular
approximation.
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The rate of internal energy dissipation using the limited interaction yield condition

is given by:

$n = 2  LR 1
2 7r (JNox| + Mokoo| dOdx (2.15)

0 0

The absolute value signs in Eq. (2.15) are necessary to ensure that the energy

dissipation is always non-negative, as required by the associated flow law of plasticity

and Drucker's stability postulate.

From Fig. 2-4, it is clear that the approximate yield condition overestimates

the stress state for all cases where im9 ol > 0.5. Thus, using the approximate yield

condition will overestimate the plastic energy dissipation. However, the exact degree

of overestimation cannot be calculated without a full three-dimensional analysis of the

problem, which is analytically intractable. The overestimation due to the approximate

yield condition is partially offset by the underestimation due to neglect of shear

effects. The exact result of these two combined errors is impossible to determine, but

is believed to be small.

2.5 Kinematic Assumptions and Models for Cylin-

der Collapse

Evaluation of Eq. (2.15) requires a kinematic model of sufficient simplicity to make

analytic solutions possible. Following the framework established by the ring-generator

cylinder model, the kinematic model must address 1) the collapse of individual cross-

sectional rings, and 2) the variation of collapse along the longitudinal length of the

cylinder.
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2.5.1 Phases of Collapse

The symmetric mode 2 collapse of a cylinder under hydrostatic load is divided into

three phases. Phase 1 is from initiation of collapse until the moment of first contact

between opposite cylinder walls. First contact occurs at a single point on the center

cross-section. After first contact, the cylinder begins to flatten in both the radial

direction on the center cross-section, and the longitudinal direction. Phase 2 is from

the moment of first contact until the moment of maximum flattening of the center

cross-section. The degree of flattening of the center cross-section is dependent on

the hydrostatic pressure and the diameter-to-thickness ratio (D/h). Following Phase

2, the flattening progresses longitudinally along the cylinder until it reaches a final

state. Phase 3 is from the end of Phase 2 until the final state. As in Phase 2, the

extent of final flattening is dependent on the hydrostatic pressure and the diameter-to-

thickness ratio (D/h). Figure 2-5 depicts the three collapse phases for a representative

numerical simulation.
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(a) End of Phase 1

(b) End of Phase 2

(c) End of Phase 3

Figure 2-5: Phases of mode 2 collapse.
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2.5.2 Models for Ring Collapse

Stationary Hinge Model

A number of kinematic models for plastic ring deformation under the action of ex-

ternal pressure have been proposed and used. The simplest model, first used by

Palmer and Martin [5], consists of four stationary plastic hinges connecting four rigid

segments (Fig. 2-6).

W I

Figure 2-6: Stationary hinge model [5].
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This model is called the stationary hinge model throughout this work. The shape

of the ring at any time is fully described by a single degree of freedom (DOF): either

displacement of the center point, w, or the angle a. During Phase 1 collapse, w varies

from 0 to R, and a varies from 7r/4 to 7r/2. From the geometry of the model, the

relationship between w and a is:

= 1 - V 2cosa
R

(2.16)

This relationship is nearly linear, as seen in Fig. 2-7, and can be approximated as:

w
- = 1.287a - 1.0431
R

(2.17)

1*

0.9
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0.7

0.6

0.5 - -----------

0.4 
/

0.2

0.1

0 - - -
0.785 0.885 0.985 1.085 1.185

= 1.287o - 1.0431
R2 = 0.9981

1.285 1.385 1.485

Oa

Figure 2-7: Stationary hinge model relationship
proximation.

between w and a, with linear ap-
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The stationary hinge model is only applicable during Phase 1; it does not allow

for flattening of the ring during Phases 2 and 3. Therefore, another kinematic model

is required to analyze Phases 2 and 3.

Moving Hinge Model

In this thesis, a new 1 DOF traveling hinge kinematic model is proposed which is valid

during all phases of collapse. This model is hereafter referred to as the moving hinge

model (MHM). In Phase 1, the ring progresses through deformed shapes characterized

by the parameter w (deflection from the original position), as shown in Fig. 2-8. Each

quarter of the ring is divided into two arcs: one with constant radius R and angle a,

and the other with variable radius r and angle (! +a). As the deformation progresses,

a increases and r decreases.

The relationship between a and r follows from the condition of ring inextensibility:

7r 7r
Ra+ (+a) r= -R

or

- =_2 (2.18)
R - + a

The angle a at the end of phase 1 is designated af, and is calculated from simple

trigonometry:
_R

cos a R = r(2.19)

With the substitution of Eq. (2.18), the following equation is obtained for af:

cos af = - + a (2.20)
2 7r

whose approximate solution is
7r

af ~- [rad] (2.21)
4
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R

(a) Intermediate state

(b) End of Phase 1

Figure 2-8: Moving hinge model deformation during Phase 1

52



The relation between w and a is derived as follows:

w = R - [(r + R) cosa - R]

= 2R - (r + R) cosa (2.22)

Rearranging terms and substituting Eq. (2.18) gives:

w wrcosoa
- =2- (2.23)
R (E + a)

As with the stationary hinge model, this relationship is nearly linear (Fig. 2-9), and

can be approximated as:
w a
- = 1.346a (2.24)
R a5
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Figure 2-9: Moving hinge model relationship between w and oz.
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The accuracy of the MHM can be evaluated by comparing the predicted ring

shape to a numerical simulation at different stages of collapse. Figure 2-10 shows

the comparison for w = 0.25R, w = 0.5R, w = 0.75R, and w = R. The comparison

indicates that the MHM closely approximates the actual shape of the collapsing ring

throughout Phase 1.

In Phase 2, the MHM progresses through deformed shapes characterized by the

parameter b (the half-width of the flattened portion of the ring), as shown in Fig.

2-11. Each quarter of the ring is divided into three segments: a straight segment of

length b, an arc with variable radius R 1 and constant angle af = ', and an arc with

variable radius r and constant angle E + af = 3.

In order to restrict the model to 1 DOF, two assumptions are made:

1. The angle a is constant and independent of b, and is equal to af, the angle at

the end of Phase 1.

2. The ratio r/Ri remains constant from the end of Phase 1 throughout Phase 2.

At the end of Phase 1, r = rf and R1 = R. From Eq. (2.18),

E 7-r 7- r 1r - = - (2.25)
R E + a5 E+ 7 3

The inextensibility condition gives:

7r 7r
b+ aR+ (-+ a) r = R (2.26)

Applying the above assumptions to Eq. (2.26) results in the following relation between

b and r:
ft 2b

r = R - (2.27)
3 37r

Thus, the ring shape at any instant is fully described by a single DOF (b or r).
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Phase 1

Comparison of moving hinge model and numerical simulation during
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(a) Intermediate position

(b) Progressive deformation states

Figure 2-11: Moving hinge model deformation during Phase 2
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2.5.3 Longitudinal Assumptions

Bhat and Wierzbicki [29] and Dyau and Kyriakides [30] studied propagating buckles

in long pipelines under hydrostatic load. They concluded that in an infinitely long

unconstrained pipeline, a localized region of deformation (i.e., buckling) occurs, and

the deformation zone then travels in both directions along the length of the pipe.

Figure 2-12 illustrates this scenario, where ( represents the length of the deformed

region.

Figure 2-12: Expanding deformation zone in long pipeline under hydrostatic load.

In contrast, the present analysis of finite-length cylinders with rigid endcaps un-

der hydrostatic load indicates that deformation occurs along the entire length of the

cylinder, even in the earliest stages. There is no traveling or expanding longitudi-

nal deformation zone. Figure 2-13 shows the longitudinal deformation profile during

Phase 1 from a representative numerical simulation, for varying levels of central de-

flection wo.

WO

2L

Figure 2-13: Longitudinal deformation profile during Phase 1 (numerical simulation).

In this work, it is assumed that the longitudinal deformation profile is linear or

triangular, as shown in Fig. 2-14.
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2L

Figure 2-14: Linear longitudinal deformation profile during Phase 1.

This linear profile is expressed mathematically as:

w(x) = WO 1 - (2.28)
L

where wo is the deflection of the center. This linear approximation of longitudi-

nal profile is used throughout the remainder of this thesis. The effect of this linear

approximation on energy dissipation is evaluated for a specific example cylinder in

Appendix A. Compared to a more accurate cubic longitudinal profile, the linear ap-

proximation underpredicts the energy calculations by only 3.4%. The benefit of the

linear approximation simplicity compared to the cubic profile far outweighs this small

error. Thus, it was determined that the linear profile approximation is adequate for

this work.

In order to understand the difference in longitudinal behavior between the previous

pipeline work and the present work, a study was done using an ABAQUS numerical

simulation. First, to investigate the effect of length, a very long (but finite) cylinder

with rigid endcaps was considered. The length of the cylinder represented in Fig.

2-13 was increased so that the length-to-diameter ratio (2L/D) was 50 (compared

to the original 2L/D=8, typical value for problems considered in this thesis). All

other properties of the model were kept the same, including the rigid endcaps. The

results showed that, even for the extremely long cylinder, the deformation occurs

along the entire length, just as it did for the shorter cylinder. Figure 2-15 shows the
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long cylinder in progressive states of deformation. Even in the earliest stages, it is

possible to see some deformation along the entire cylinder length.

L endcap

(a)

(b)

ruuui
(c)

(d)

(e)

(f)

(g)

Figure 2-15: Progressive deformation of numerical model with 2L/D = 50.
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Second, to investigate the effect of initial imperfections, a triggering load was

introduced into the very long numerical model. The trigger was a large point load

initially applied at the longitudinal center, then removed, to simulate an indenter.

The results for this simulation are shown in Fig. 2-16. In this case, the deformation

starts at the location of the trigger force and spreads longitudinally, just as it does

in the infinite pipelines. Figure 2-16 also illustrates the flip-flop mode of buckling

behavior in long pipes, described by Kyriakides and Netto [31].
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endcap,

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 2-16: Progressive deformation of numerical model with 2L/D = 50 and in-
denter load at center.
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These results indicate that the difference in longitudinal behavior reported for

pipelines and that observed in the present work may be explained primarily by the

presence of trigger loads or imperfections. If a trigger load or imperfection is present,

the deformation will begin at that location and travel longitudinally, as observed in

long pipelines. If no imperfections or trigger loads are present, the deformation will

occur along the entire length and will be greatest at the center of the cylinder.

The previous discussion applies to the longitudinal deformation profile during

Phase 1. As the collapse continues through Phases 2 and 3, when wo = R, the

flattened center section of the cylinder expands towards the ends. For example, Fig.

2-15d represents the end of Phase 1, and Figs. 2-15e, 2-15f, and 2-15g show the

flattened section expanding toward the end during Phases 2 and 3. The longitudinal

profile during Phases 2 and 3 is also approximated as linear, as shown in Fig. 2-17.

L

I ft-tI-tf-f 014 -------- 1 ..1..
Figure 2-17: Linear longitudinal deformation profile during Phases 2 and 3.

This longitudinal profile is expressed mathematically as:

if x < C
(2.29)

if (<<x<L

where ( is the length of the center flattened section.
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2.6 Effect of Internal Air

The implodable volumes considered in this work contain trapped air. As the cylinder

collapses, the air compresses. Compressing the internal air requires energy, and this

amount of energy must be added to the right hand side of Eq. (2.3).

In general, the energy required to compress a gas is given by:

E = - pidV (2.30)

where pi is the gas pressure and V is the volume. It is assumed the air in the cylinder

is an ideal gas. For polytropic compression of an ideal gas,

pi =0 p(o j (2.31)

where pi. and V are initial conditions, and n is the polytropic exponent. If adiabatic

compression is assumed, then n = -y, the ratio of specific heats for the gas (CP/CV =

1.4 for air). Combining Eqs. (2.30) and (2.31), with n = Y, gives the following

expression for energy required for adiabatic compression:

Eairadiabatic = -i(i ) 1 (2.32)

An alternative assumption is that the compression is isothermal rather than adi-

abatic. For isothermal compression, n = 1. The energy required for isothermal

compression is then:

Eair,isothermal = Pio V In )(2.33)

The actual air compression during implosion is likely somewhere between isother-

mal and adiabatic (i.e., 1 < n < 1.4). Because the implosion event happens so rapidly

(on the order of a few milliseconds), it is reasonable to assume that very little heat
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will transfer across the cylinder boundary and the process is closer to adiabatic than

isothermal. Therefore, adiabatic compression is assumed throughout the remainder

of this work.

For the implosion problems considered in this thesis, the volume at the end of

collapse varies from about 10% to 30% of the original volume. For V = 0.1Vo and pi, =

0.1 MPa (atmospheric pressure) undergoing adiabatic compression, the maximum air

pressure in the cylinder is given by:

piax = 0.1MPa 1  = 2.5MPa (2.34)
(0.1)

The maximum internal air pressure, pi_,,, can be compared to the external hydro-

static pressure, p, to determine what will happen in the event of fracture of the solid

cylinder material. If p > pm_, water will flow into the cylinder through any fractures.

If pi_,x > p, air will flow out of the cylinder. In all the cases considered in this work,

P > Pimax

In order to determine the significance of Eai, in the overall energy balance of an

implosion problem, a specific problem was analyzed both with and without internal

air. Failure to include internal air in the analysis will result in overestimating the

implosion pulse energy by about 8%. Details are provided in Appendix B.

2.7 Dynamic Effects

The quasi-static global equilibrium for an imploding cylinder was given by Eq. (2.3):

Eext = int

However, the actual implosion problem is dynamic in nature. Part of the external

work done on the cylinder goes into accelerating the structure. Therefore, the equi-

librium equation must include a dynamic term on the right-hand side (equivalent
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to the rate of change of kinetic energy). This dynamic term can also be called the

D'Alembert inertia term, and can be written as:

Edyn = (m)wdS (2.35)

where m is the mass per unit area2 . The dynamic term is very important, because it

represents the maximum amount of energy available to be converted into an implosion

pulse. Combining the equation of quasi-static equilibrium, the expression for energy

required for air compression, and the expression for D'Alembert inertia gives the

following total energy balance equation for the underwater implosion problem:

Eext = Eint + ai, + Edn (2.36)

In this work, the D'Alembert inertia term cannot be directly calculated, because in

general the velocity and acceleration functions are not known. Rather, the dynamic

term is found by calculating all the other terms in Eq. (2.36) and subtracting.

21f the structure is surrounded by fluid, as in underwater implosion, then m also includes the
added mass of surrounding fluid.
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Chapter 3

ABAQUS Numerical Simulation

Numerical simulations of a cylinder subjected to hydrostatic pressure were made using

ABAQUS/Explicit, v. 6.10. The purposes of the simulations were twofold:

1. To inform the kinematic assumptions made in the development of the analytic

solutions.

2. To validate the accuracy of the analytic solutions for plastic energy dissipation.

3.1 Model Description

The cylinder was modeled using S4R shell elements (4-node, reduced integration,

finite membrane strain elements) and consisted of an extruded tube with flat end

plates. The thickness was uniform throughout the tube and end plates. Figure 3-1

shows a representative cylinder model.
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Figure 3-1: ABAQUS model consisting of extruded tube and flat end plates of uniform
thickness (shell elements).
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A number of different cylinder geometries were modeled, spanning the following

ranges:

* 12.7 mm < R < 19.07 mm

* 274.6 mm < 2L1 < 1907 mm

* 0.714 mm < h < 0.889 mm

This range of dimensions corresponds roughly to the sizes of cylinders tested by the

University of Texas at Austin, for which data was available for comparison.

Two different mesh sizes were used: a coarse mesh with elements approximately

3x3 mm, and a fine mesh with elements approximately 1x1 mm. These element sizes

resulted in 40-80 elements around the circumference of the cylinder. Most of the

simulations were done with the coarse mesh. The fine mesh was used to provide a

higher-resolution look at the kinematics of the collapsing cylinder for specific models.

The mesh size had no noticeable effect on the energy dissipation calculations.

The material used in all numerical simulations was A16061-T6. The material model

incorporated isotropic strain hardening, using the stress-strain relationship reported

by Beese [27]:

= 438 (Ep + 0.00434)0"07 MPa (3.1)

The Young's Modulus of the material was 69.2 GPa, and the yield stress was 263.4

MPa. No fracture modeling was included in the simulations.

Boundary conditions were applied at the circumference of the end plates to pre-

vent translation in the x and y directions and rotation around all three axes. This

effectively makes the end plates rigid, with translation in the z direction being the

only allowed motion. In a few simulations, translation in the z direction was also

prevented, to investigate the effect on energy dissipation.

'As defined in Chapter 2, the total cylinder length is 2L.
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For each different cylinder model, a static buckling analysis was run first to de-

termine the minimum buckling pressure of the cylinder. Then a dynamic analysis

was run with the minimum buckling pressure applied as a uniform hydrostatic load.

In some cases, simulations were also run with pressure greater than the minimum

buckling pressure, to investigate what effect the magnitude of the pressure had on

collapse kinematics and energy dissipation.

The ABAQUS model does not in any way account for the fluid (water) surround-

ing the cylinder. In effect, it simulates implosion in air. This has the following

implications:

1. The simulation does not include the damping effect of the surrounding water.

Therefore, the simulated velocities will be greater than the real problem.

2. The simulation does not account for the dynamic fluid pressure acting on the

cylinder surface. The simulation applies a constant uniform hydrostatic pressure

to the cylinder surface throughout the collapse. In the real problem, the fluid

pressure acting on the surface drops in response to the surface motion.

Despite these significant limitations on the simulation, it was adequate for the in-

tended purpose. The intent was not to model the fully-coupled fluid-structure inter-

action. The purpose of the simulation was simply to analyze the kinematics of an

imploding cylinder and the associated plastic energy dissipation. These parameters

are largely independent of the surrounding fluid effects.

3.2 Modeling Internal Air

The air trapped inside the cylinder was modeled in ABAQUS using the idealized

surface-based fluid cavity keyword. The ABAQUS user's manual [32] states that

a surface-based fluid cavity can be used to model a liquid-filled or gas-filled structure,
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and is defined by a surface that fully encloses the cavity (in this case, the inner surface

of the cylinder)2 . It allows inclusion of fluid effects (specifically pressure on the inside

cylinder surface), without the added complexity of actually using fluid elements. A

surface-based fluid cavity idealizes the fluid volume by assuming that fluid pressure

and temperature are uniform throughout the cavity at any point in time. The fluid

cavity was defined in accordance with the following assumptions:

e The fluid (air) is an ideal gas.

e Compression is adiabatic.

o No leakage occurs out of or into the cavity.

The output variables of interest related to the fluid cavity are air pressure and cavity

volume, as functions of time. Figure 3-2 shows the air pressure and volume for a

typical simulation.

2The end plates are included in the model so that a closed surface can be defined around the air
cavity. Otherwise, the end plates are unnecessary.
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Pressure

Figure 3-2: Internal air cavity volume and pressure vs. time for a typical implosion.
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3.3 Exploration of Explosive-Induced Implosion

The ABAQUS cylinder model was used to conduct a brief study into explosive-induced

implosion. As before, the surrounding water was not included in the model, so the

simulation was effectively in air. The shockwave created by an airblast explosion is

nearly identical to the shockwave generated by an underwater explosion (UNDEX).

However, the bubble pulse phenomenon that occurs in UNDEX [19] does not occur

in air. Therefore, this analysis only simulates the effect of the initial explosive shock

wave.

Explosive airblast loading was applied using the built-in ABAQUS CONWEP

model. The CONWEP model calculates a scaled distance based on user-input ex-

plosive size (entered as equivalent mass of TNT) and stand-off distance (the distance

between the explosive charge and the loading surface). The model then uses the

scaled distance and stored empirical airblast data to provide peak pressure, arrival

time, positive phase duration, and decay coefficient for the incident and reflected

pressure waves [33]. A major advantage of the CONWEP model is that the explosive

loading effect is automatically converted into a pressure-time history loading on the

cylinder surface; thus, there is no need to model the fluid domain.

Simulations were run with various combinations of hydrostatic pressure and ex-

plosive charge size. The goal was to investigate what combinations of hydrostatic

and explosive loading would cause complete implosion of the cylinder, and to quali-

tatively investigate how the implosion mode (or collapse shape) changes for different

combinations of hydrostatic and explosive loading. The specific model tested had the

following dimensions:

* D=38.14 mm

e 2L=231.88 mm

e h=0.71 mm
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The minimum buckling pressure for this cylinder under purely hydrostatic loading

was 1.5 MPa.

The hydrostatic pressure was varied from 0.2 MPa to 1.25 MPa. The explosive

charge size varied from 25 g equivalent TNT (yielding a peak pressure of 0.05 MPa) to

700 g equivalent TNT (yielding a peak pressure of 0.7 MPa). In all cases, the stand-

off distance was 1 m. This standoff was large enough such that the spherical shock

wave front created by the explosion was essentially planar across the length of the

cylinder. Figure 3-3 shows all loading combinations that were tested, and whether or

not implosion occurred for each combination. Furthermore, if implosion occurred, it

was classified as symmetric or asymmetric (a subjective classification based on visual

observation of the collapsed shape).
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Figure 3-3: Implosion results for varying combinations of explosive and hydrostatic
loading.
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A best-fit curve through the "No Implosion" points of Fig. 3-3 serves as an

implosion threshold. Combinations of explosive and hydrostatic loading below the

threshold would not be expected to cause complete implosion. In this particular case,

the threshold is approximated by the curve shown on the figure, with the following

2nd-order polynomial equation:

pexp = 0.1186p - 0 .5 5 6 5Phyd + 0.5861 (3.2)

As expected, for a given hydrostatic pressure, the larger the explosive load the

more asymmetric the collapse becomes. Figure 3-4 shows the collapse shapes (cut

away at the center cross-section) of two different explosive charge sizes, both with

hydrostatic pressure of 1.25 MPa. The explosive charge in both cases is located 1 m

to the right of the cylinder. Note that even in Fig. 3-4a, there is a slight asymmetry

visible on the center cross-section.

76



(a) Symmetric collapse

TNT).
(charge size=100 g

(b) Asymmetric collapse (charge size=500 g

TNT).

Figure 3-4: Effect of explosive charge size on collapse symmetry (phyd=1. 2 5 MPa).
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Finally, the total plastic energy dissipation and total external work done on the

cylinder (E, and W, as calculated by ABAQUS) were compared for the symmetric

and asymmetric collapse cases (Table 3.1).

Table 3.1: Plastic energy dissipation and external work for symmetric vs. asymmetric
collapse.

Symmetric Asymmetric
E, 239 J 287 J
W 261 J 310 J
E,/W 0.916 0.926

The asymmetric case (corresponding to the higher explosive load) collapses more

fully, so both E, and W are higher. However, the ratio Ep/W differs by only 1%

for the two cases. This suggests that the plastic energy dissipation, as a percentage

of external work, is largely independent of collapse symmetry. The overall energy

balance equation for underwater implosion was given by Eq. (2.36), repeated here:

Eext = tin + Eair + Ed~n

where Eint=E, and Eext=W. This equation and the previous observation suggest that

the implosion pulse, which is directly related to Ed, is also largely independent of

collapse symmetry.

This brief study of explosively-induced implosion is far from conclusive and is not

a major emphasis of this thesis. However, it does provide some insight into explosive

effects and how explosively-induced implosion differs from hydrostatically-induced

implosion.
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Chapter 4

Energy Dissipation Calculations

4.1 Kinematic Assumptions and General Energy

Dissipation Expressions

The kinematic assumptions used in the energy dissipation calculations are described

in detail in Chapter 2 and are summarized here. Two kinematic models of a collaps-

ing ring are considered: the stationary hinge model (SHM) and the moving hinge

model (MHM). The SHM is only valid during Phase 1, because it does not allow

for flattening of the ring cross-section. The MHM is valid throughout all phases of

implosion. A linear deformation profile in the longitudinal direction is assumed, given

mathematically by Eqs. (2.28) and (2.29).

w(x) = wo (1 - x) (Phase 1)

if x < (R,

W(XR 1 -(,
(Phases 2 & 3)

if(< < L
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The total plastic energy (bending plus membrane) dissipated by the collapsing

cylinder is calculated for Phases 1, 2, and 3. In Phase 1, both the SHM and the

MHM are used, and the results are compared. In Phases 2 and 3, only the MHM

is used. The general equation for rate of plastic energy dissipation is given by Eq.

(2.15), repeated here:

t 21 Rj (I No6xx I + I Mokoo |) dcdx (4.1)
0 0

The first term on the right-hand side of Eq. (4.1) represents membrane energy, and

the second term represents bending energy.

Equation (4.1) gives the instantaneous rate of plastic energy dissipation. In order

to calculate total energy dissipated, it is necessary to integrate this rate with respect

to time:

E = dt (4.2)
0

For each phase of collapse, the time parameter is replaced by a time-like kinematic

parameter that describes the state of collapse during that phase (see Table 4.1).

Table 4.1: Time-like parameters for each collapse phase.

4.1.1 Bending Energy

The general approach for calculating bending energy for a cylinder is to calculate the

energy dissipated per individual ring cross-section, then integrate over the cylinder

length to find the total energy dissipated. The instantaneous rate of bending energy
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dissipation is:

Eb = 2 R Mok,, I ddx + | Mo09 | (4.3)

where the first term on the right-hand side is due to regions of continuous deformation,

and the second term is due to curvature changes at plastic hinges. For moving plastic

hinges, # = vI i - K21, where v is the speed of the moving hinge and IK1 - K21 is the

difference in curvature across the hinge [34]. Mo is the fully plastic bending moment

(MO = o-oh 2/4), and is assumed to be constant and uniform throughout the material.

4.1.2 Membrane Energy

The general approach for calculating membrane energy is to calculate the energy

dissipated per individual longitudinal generator, then integrate over the cylinder cir-

cumference to find the total energy dissipated. The instantaneous rate of membrane

energy dissipation is:

Em = 2 R I NoIxx | d~dx (4.4)
o0 o

where No = oh. The longitudinal strain, ex, is given by:

= du 1 (dw ) 2

dx 2 dx

where u represents displacement in the axial direction and w represents displacement

in the transverse direction. The fully plastic axial force, No, is assumed to be constant

and uniform throughout the material.

With the assumption of a linear deflection profile in the longitudinal direction:

dw _ 6(0) (4.6)
dx L
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where 6(0) is the transverse displacement of a point on the center cross-section. This

quantity varies with the circumferential coordinate 6, as shown in Fig. 4-1.

Center cross-section (x=O)

5(0=nc/2)

Figure 4-1: Transverse displacement of center cross-section as a function of angle 6.
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Substituting Eq. (4.6) into Eq. (4.5) gives:

du 1 6,2
EXX= - + -

dx 2 L

dii J
exx =- + -

dx L2

(4.7)

(4.8)

The instantaneous rate of membrane energy dissipation can then be written as:

Em = 2NR j j + - I dOdx
0 0 dx L2 (4.9)

It is sometimes more intuitive and convenient to work with the ratio j- instead ofR

6Substituting and integrating over x gives:

Em = 2NoR 6| .(x=L)dO + 2N R 2 -7 dO
fo (x=O) L J kR 2 1)

(4.10)

The first term on the right side of Eq.

cylinder, and may be positive or negative.

the generator, and will always be positive.

Free vs. Fixed Boundary Conditions

The boundary conditions on the ends of

dissipation. In most real-world situations,

to any other structure and supported only

structure in such a way that the ends are

ends will move towards the center during

side of Eq. (4.10) will be negative. Thus

less than if the ends were constrained from

(4.10) is due to axial movement along the

The second term is due to the rotation of

the imploding cylinder affect the energy

an implodable volume will be unattached

by buoyancy, or will be attached to a host

free to move axially. In this case, the free

collapse, and the first term on the right

the membrane energy dissipated will be

moving axially. If the ends are physically
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constrained, then the axial movement term vanishes'. The effect of the end boundary

conditions on membrane energy dissipation during Phase 1 is illustrated in Fig. 4-2.

The two conditions are identical until about i = 0.27, because there is minimalR

movement of the free ends to that point. Beyond that point, the free ends begin to

move towards the center and reduce the overall membrane energy. For the specific

cylinder considered, the free ends reduce the membrane energy dissipation by about

50% at the end of Phase 1.

25

20

15

10

5

0
0

Phase I Membrane Energy
(R=19.07mm, h=0.714mm, L=347.9mm)

Fixed ends

0.2 0.4 0.6

Free ends

0.8 1

wO/R

Figure 4-2: Effect of end boundary conditions on Phase 1 Em.

1If the mass (i.e., inertia) of the endcaps is large enough that they do not significantly move
during implosion, then the effect is essentially the same as if the ends were physically constrained.
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The majority of numerical simulations in this work were done with free end bound-

ary conditions, since this more closely models the real-world situation. In order to

investigate the effect that the end conditions have on the magnitude of energy dis-

sipation, a few simulations were run with fixed end conditions (i.e., translation and

rotation of the endcaps in all three directions were constrained to zero) and compared

to the same cylinder (and same loading) with free end conditions. Figure 4-3 shows

the collapsed shape of a cylinder with both types of boundary conditions. It is clear

from the figure that there is a qualitative difference in the two collapse shapes. The

model with free ends (Fig. 4-3a) shows a broader area of flattening closer to the

end, indicating that the bending energy for that case is likely higher. Conversely, the

model with fixed ends (Fig. 4-3b) shows more extreme membrane stretching near the

end, indicating that the membrane energy for that case is likely higher (as expected).

It is impossible to qualitatively predict which of these two competing effects will

dominate. Unfortunately, ABAQUS does not differentiate between bending and mem-

brane energy; it computes total plastic energy dissipated. The total plastic energy

dissipated, as a function of time, is plotted in Fig. 4-4 for the free and fixed end sim-

ulations. During Phases 1 and 2, the two cases are nearly identical. During Phase 3,

the free case is initially higher. Then near the end of collapse, the fixed case increases

past the free and finishes at a higher magnitude. This indicates that the extreme

membrane stretching of the fixed case at the end of collapse is a larger effect than the

increased bending of the free case. The difference in final magnitude for this example

is about 30 J, or 4.5% of the total plastic energy dissipated.
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(a) Ends free to translate axially.

(b) Ends constrained in all 3 directions.

Figure 4-3: Effect of end boundary conditions on collapsed shape.
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500 - 1- - -- - - - - - -... - -.. ................ ...... - - ---------- - - - -- - - - .......
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L=137.3mm
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- Free ends
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0.001 0.00105 000 1 0.00115 0.0012 0.00125 0.0013 0.00135 0.0014

t (ms)

Figure 4-4: Effect of end boundary conditions on total energy dissipation.
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In all analytic solutions in this work, the cylinder is assumed to have fixed ends and

the first term on the right side of Eq. (4.10) vanishes. This is because the kinematic

assumptions upon which the energy dissipation equations are based (described in

detail in Section 2.5.3) do not allow for axial displacement.

4.1.3 Path Dependency of Plastic Energy Dissipation

Plastic energy dissipation is in general a path-dependent process (i.e., it depends on

the deformation history between states and not just the end states). Plastic energy

dissipation is always non-negative, meaning that total energy dissipated can never

decrease during a deformation process. Generally speaking, it is easier and more

straight-forward to calculate the energy dissipation by considering only the initial

and final states of deformation, rather than integrating along the entire deformation

path. This is called the path-independent approximation. The path-independent ap-

proximation will always be a lower bound to the actual value of energy dissipated. It

represents the "straight line" deformation from initial to final state, where each ele-

ment of material is only bent and stretched in one direction. If the actual deformation

path involves any repetitive or reverse bending and/or stretching of material elements,

then the energy dissipated will necessarily be greater than the path-independent so-

lution. This concept is illustrated in Fig. 4-5. The energy required to bend the

bar from state A to state C via the intermediate state B is greater than the energy

required to go directly from state A to C.

88



B

E AB /

EAB+EBC>E AC
Figure 4-5: Simple illustration of the path-dependence of plastic energy dissipation.
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The path-independent bending and membrane energy are calculated as:

Eb = |MoAi 0 JdS + J MoA6j (4.11)
isi

and

Em = j|INoAe.,IdS (4.12)
JS

where A() represents the change from initial state to final state.

For the stationary hinge model, the path-dependent and path-independent solu-

tions are identical. This is because the collapse of the stationary hinge model from the

initial undeformed state to the final state (end of Phase 1) follows the "straight line"

path. Energy is dissipated only at the plastic hinges (because the ring segments are

rigid between the hinges), and the hinges bend in only one direction during collapse.

This chapter includes both path-dependent and path-independent energy calcula-

tions. Whenever possible, path-dependent calculations are used, because the real en-

ergy dissipation is path-dependent. However, in the case of Phase 2 and 3 membrane

energy calculations, the path-independent approximation must be used. Otherwise

the solution is computationally impossible. In Phase 1, the calculations are done both

ways to demonstrate that the path-independent approximation gives a lower answer.

4.2 Phase 1

Phase 1 energy dissipation is calculated using both the stationary hinge model (SHM)

and the moving hinge model (MHM).
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4.2.1 Bending Energy

Stationary Hinge Model

The stationary hinge kinematic ring model consists of four plastic hinges connecting

four rigid segments, as shown in Fig. 4-6.

W1

Figure 4-6: Stationary hinge model [5].
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For each plastic hinge, 6 = 26. Since plastic dissipation occurs only at the plastic

hinges, equation (4.3) gives the instantaneous rate of bending energy dissipation for

a single cross-sectional ring as:

b = 8Mod (4.13)

Then the total bending energy for a single ring is calculated as:

Eb = Ebdt= J8M0o dt = 8Mo] da = 8Mo (a - (4.14)

The angle a varies along the axial length of the cylinder during Phase 1 deformation,

so a (and consequently Eb) are functions of x. The relationship between w and a for

the stationary hinge model, first given by Eq. (2.17), is:

w
- = 1.287a - 1.0431 (4.15)

Combining Eq. (4.15) and the assumed linear longitudinal deformation profile (Eq.

(2.28)) gives:

wo ) 1.0431
a(x) = + ( D 1 (4.16)

R 1.287 1.287

The total bending energy for the entire cylinder is found by integrating Eb(x) over

the cylinder length:

Eb,tot = 2 L8Mo (a(x) - ! dx (4.17)

Substituting the expression for a(x) gives the following result:

Eb,t0 t = 6.22MoL (4.18)
R

At the end of Phase 1, wo = R and Eb,tot = 6.22MoL. As explained earlier, the

path-dependent and path-independent solutions are identical for the stationary hinge
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model.

Moving Hinge Model

For the moving hinge model during Phase 1, the ring is divided into 4 symmetric

quarters. Each quarter consists of two segments separated by a moving plastic hinge:

one with radius R, and one with radius r (see Fig.4-7).

R

Figure 4-7: Moving hinge model during Phase 1.
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The curvature and rate of change of curvature for each segment are:

- j(0 < 4 a)

1 Ce$~

f 0 (0 # 5a)

Using the geometric relation between R and r (Eq. (2.18)) and substituting into Eq.

(4.3) gives the rate of bending energy dissipation for a single cross-section as:

Eb = Mo
r

2 Rdp + Mos

which simplifies to:
27r Mob&

Eb = 2,ME f
(4.21)

Integrating with respect to time gives:

Eb(x) = 87rMo ln 7 - a(x)

The relationship between w and a for the MHM, first given by Eq. (2.24)

= 1.346a
R

(4.22)

, is:

(4.23)

Combining Eq. (4.23) and the assumed linear longitudinal deformation profile (Eq.

(2.28)) gives:

a(x) = R
1.346R

(4.24)

Substituting Eq. (4.24) into Eq. (4.22) and integrating over the cylinder length gives
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the following result for the Phase 1 path-dependent bending energy using the MHM:

{ -r 4R ~1 r 1 W O \ r 7rw o w o ( .5
Eb,t2t = 162rMoL ln 2 wo [2In 2 -2 4R) ln (2 4R 4 (4.25)

The path-independent solution using the MHM is much simpler. From Eq. 4.11,

the bending energy for each cross-section is:

Eb(x) = 16Moa(x) (4.26)

Substituting the expression for c(x) (Eq. (4.24)) and integrating over the cylinder

length gives the following result for the Phase 1 path-independent bending energy

using the MHM:

Eb,tot = 47rMoL - (4.27)

Evaluation of equations (4.25) and (4.27) at the end of Phase 1 (i.e., when wo = R)

gives Eb,tot(path-dependent) = 4.917rMOL and Eb,tot (path-independent) = 47rMoL.

The path-dependent value is ~ 25% larger, as expected.

In summary: the Phase 1 bending energy was calculated three ways, and the

results are given in Table 4.2.

Table 4.2: End of Phase 1 bending energy.

Model Eb
SHM 6.22MoL

MHM (path-independent) 12.57MOL
MHM (path-dependent) 15.43MOL
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4.2.2 Membrane Energy

Stationary Hinge Model

Calculating the membrane energy dissipated (Eq. (4.9) or (4.10)) requires an expres-

sion for 6, the transverse displacement of a point on the center cross-section. For the

SHM, Fig. 4-8 shows the geometry of the collapsing ring.

Figure 4-8: SHM geometry for calculating 6.
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Point A(xo,yo) moves to point A'(x,y). The angle a is the time-like parameter

that determines the extent of collapse, and the angle 6 determines the position of the

point on the ring. The displacement 6 is given by:

j= (x- o)2+(y-yo)2 (4.28)

After some trigonometric manipulations, the following relationship is obtained:

()2 =3 - 2sin6 - V2'(sina+cosa) - 2sinacosa - 2V2cosasin6+

... + 2Vcos sin (a - 6) - 2 sin (a - -6) (4.29)

Evaluation of this expression for 6 and its time derivative 6, as a function of a, is

extremely cumbersome. Alternatively, it is assumed that 6 will vary linearly with wo,
7r

for any value of 6. At the end of Phase 1 (when a = -):
2

=) 3 - 2sin 6 + V (sin 0 - cos 6 - 1) (4.30)

Assuming that 6 changes linearly as wo progresses from 0 -+ R, then:

6 3 - 2sin 0 + V (sin 0 - cos 0 - 1) 0" (4.31)
R R

The accuracy of this assumption is plotted in Fig. 4-9 for three different values of 6.

It is clear that the linear assumption is more accurate for larger values of 6. Over

the range 0 < 6 < E, the linear approximation under-predicts the exact value of A.

Over the range 1 > 0 < E, the linear approximation over-predicts the exact value of

. Therefore, it is reasonable to assume that, when integrated over the whole range

of 0 - 2 < , the linear approximation will be reasonably close to the exact value.
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1.2 -

1 .............. -- - - - - - - - - ---- - - - - - -/ 2
- Exact (Eq. 4.29)

- - Linear Approx (Eq. 4.31)

a: 6=ic/30.6

0.4 , -

0.2 ___ _

0 0.2 0.4 0.6 0.8 1

w/R

Figure 4-9: Comparison of exact 6/R with linear approximation, for different values
of 0.
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Given Eq. (4.31), the following expressions are true:

6 = j3 - 2sin 6+ V2 (sin 6 - cos 6 - 1)wo

6 = /3 - 2 sin6 + V2 (sin 0 - cos6 - 1)tdo

Substituting Eqs. (4.32) and (4.33) into Eq. (4.9) and integrating over the length

gives:

Em = 47rNoRi |x-L +8NoR 2 d9

= 47rNoR6 |x=L +3 NoRj23 - 2sin6+Vf2(sinO-cos6 - 1)) wovdod0

(4.34)

Fixed end conditions are assumed, so the first term on the right-hand side vanishes.

Evaluation of the integral gives the following result:

Sm = 8 NoR 3

NoR
= 3.928 L w0 oo

Integrating with respect to time gives the following result for total membrane energy

dissipated:

(4.35)

NoR 2Em,tot = 1.964 Wo
L

= 1.964 L
L

Moving Hinge Model

The deformed shape of the MHM at the end of Phase 1 is shown in Fig. 4-10, along

with two representative points, A and B. Point A moves to A' and B moves to B'.

The ring is divided into four symmetric quarters, and each quarter is divided into two
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(4.32)

(4.33)

WO)2

R
(4.36)
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segments: 0 < 0 < af and af < <
2

Figure 4-10: MHM geometry for calculating 6.
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The general expression for displacement of any point point on the ring is given by

Eq. (4.28). After some trigonometric manipulations, the following relationships are

obtained (valid at the end of Phase 1):

6)2 (2 cos0 - 1)2 , <0 af

2R -1sin2 2 +26(3 \r619 3 2in (30) - 2sin 6+ sin6sin (30) + 2 cos cos (30), af < 0 <9 33 3a -f
(4.37)

The path-independent approximation for the membrane energy dissipation is given

by:

4NoR 3
Em = L

Substituting Eq. (4.37) and evaluating

membrane energy at the end of Phase 1:

d6 (4.38)
0  R

the integral gives the following result for

NoR 3
Em = 2.38 L

L
(4.39)

The path-dependent rate of membrane energy dissipation is given by Eq. (4.10). To

make the calculations tractable, the expression for (j 2 (Eq. (4.37)) is replaced by a

polynomial approximation. Using a Taylor series expansion for cos6,

62
cos 6 ~ 1- -

2
(4.40)

the right-hand side of Eq. (4.37) for 0 < 6 < af can be replaced by:

,2 1 ] = (1 -62)2 (4.41)

Figure 4-11 shows the exact function for (j)2 (from Eq. (4.37)) , along with the

polynomial approximation over the range 0 < 6 < 1. The quantity of interest in

calculating Em is the integral of (j)2, or the area under the curve in Fig. 4-11. As
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shown in the figure, the portion of the curve beyond 0 = 1 contributes little to the

total integral. To evaluate the accuracy of the polynomial approximation, the integral

of the exact expression was evaluated (equal to 0.595) and compared to the integral of

the polynomial approximation (equal to 0.533). Thus, the polynomial approximation

underestimates the integral by approximately 10%, a reasonable approximation.

End of Phase 1 (MHM)
0.9

0.8

0.7

0.6

cc 0.5

0.4

0.3

0.2

0.1

0

- -- - - -

0 0.2

- Exact

- - Polynomial Approx

0.4 0.6 0.8 1 1.2 1.4 1.6

0

Figure 4-11: MHM displacement at end of Phase 1, with polynomial approximation.
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As before, the displacement is assumed to vary linearly with ! (or equivalently,R

from Eq. (2.24)), so:
af

a _4 R
6=R(1- 02) - =R (1 02) a (4.42)

aef 7r

and
4R (1 - 02)6 (4.43)

7r 1(.3

Substituting these expressions into Eq. (4.10), again dropping the first term due to

fixed end conditions, gives:

128N 0 R 3a& ( 2
= r2 L (1 _ 2)2 d

128N 0R3as (8)
w2  -15 (4.44)7r2L 15

Integrating with respect to the time-like parameter a gives:

Em = 128NoR3 (8) (C) (4.45)
7r2L 15 2

Finally, substituting a = "0 gives the membrane energy dissipated, as a function of

Em = 2 .13 NoR 3 ()) 2  (4.46)
L (R

Note that this result is actually less than the path-independent approximation given

by Eq. (4.39). This is because of the polynomial approximation used for (j)2 in the

path-dependent calculations. Figure 4-11 clearly shows that the polynomial approxi-

mation underestimates the exact value for (j2. If the same expressions for (2 were

used in the path-independent and path-dependent calculations, the path-independent

result would be lower (as expected). In summary: the Phase 1 membrane energy

was calculated three ways, and the results are given in Table 4.3.
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Table 4.3: End of Phase 1 membrane energy.

Model Eb

SHM 1.964
T,

MHM (path-independent) 2.38
M (Tp

MHM (path-dependent) 2.13 NR
T,

4.2.3 Comparison with Numerical Simulation

In order to determine which kinematic model gives a more accurate value for energy

dissipation during Phase 1, the results were compared to a numerical simulation for

a representative cylinder geometry. Figure 4-12 shows the comparison.

300 -- - -_____ _

Phase I Plastic Energy Dissipation

2 5 0 - -- - - - - - - - - - - - -

- - MHM (Bending)

200 - ------ --- -- - -- - - - ---- - ------- MHM (Membrane)

---- MHM (Total)
L=347.9mm
h=0.714mm - -SHM (Bending)

150 j ---- SHM (Membrane)

- SHM (Total)

wU - ABAQUS (Total)

100------------------------- ----

0 0.2 0.4 0.6 0.8 1
Wo/R

Figure 4-12: Comparison of Phase 1 analytic energy dissipation solutions to numerical
simulation.
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The following observations are made from Fig. 4-12:

1. Membrane energy dissipation is nearly identical for the two models.

2. For both models, membrane energy is much smaller than bending energy.

3. The MHM bending energy is much larger than SHM bending energy.

4. The MHM grossly overestimates energy dissipation during Phase 1 (> 100%

error compared to ABAQUS).

5. The SHM total energy dissipation is very close to the ABAQUS value at the

end of Phase 1.

Observations 3 and 4 are due to the fact that the MHM kinematics cause reverse

curvature of some segments of the ring during collapse (i.e., the segment first bends

in one direction then bends the other direction later in the collapse). This requires

greater bending energy than if the structure moved directly from the initial to final

state. Figure 2-10 illustrates the differences between the actual ring kinematics as

seen in ABAQUS, and the kinematics predicted by the MHM. The overall goal of

the analytic energy calculations is to accurately predict the energy dissipation for a

given cylinder geometry, without the need for numerical simulation. Therefore, since

the SHM energy calculations more closely match the numerical simulation (which in

turn is assumed to accurately model the real cylinder and the real energy dissipation),

the SHM will be used for Phase 1 throughout the remainder of this thesis.

4.3 Phase 2

Phase 2 energy dissipation is calculated using the MHM only, because the SHM is not

applicable during Phase 2 (or 3). The MHM kinematics during Phase 2 are shown

in Fig. 2-11. The important geometric relationships and assumptions for the model
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(first presented in Chapter 2) are:
7F

af =

R1 = 3r

and

R 2b
r = -

3 37

Each quarter of the ring is composed of three segments:

* A straight segment with length b.

* A curved arc with radius R1 and angle af =

" A curved arc with radius r and angle 3

4.3.1 Bending Energy

The instantaneous rate of bending energy dissipation is given by Eq.

curvature for each of the ring segments is:

0,

K =
R1

r

OR < b

b < OR b+ -R 14
7F IT

b+ -R 1 <OR < -R
4 - 2

and the rate of curvature is:

0,

11 
-

r2

OR<b

b < OR < b+
gb

3 3r
(R b)2'

7
4,R4

b+ -R 1 < OR < R
42
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Each quarter-ring has two moving plastic hinges. For each hinge, 0 is calculated as

follows:

#1 =V K2 -K 1

irR - 2b
(4.52)

and

#2 = V2 K3 - K2 I

=b4 (1
= 0.58b (

/- 2

7r
v)2

1
R 2b
3 31r

2
+ I

ir
(1
r

2.327rb
,rR - 2b

(4.53)

Substituting these expressions into Eq. (4.3) gives the following result for the instan-

taneous rate of bending energy dissipation for a single cross-sectional ring:

-(b+ fj)

Eb=4Mo [f 4R

which simplifies to:

-2bR

7r (R -- J
2bR

dO
(R+4R) 3-r (R -7r)2

21.287rMob

7rR - 2b

Integrating with respect to time gives (for a single cross-sectional ring):

Ebdt = 10.647rMo ln ( rR7rR - 2b)
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7rR - 2b

2.327rb
(rR - 2b

(4.54)

(4.55)

Eb = J (4.56)

V 2_

7r )

i i

1

R -2b
7r



Equation (4.56) is a function of x, because b = b(x). This necessitates an ana-

lytic expression for b(x). During Phase 2, the center cross-sectional ring is flattening

(described by the parameter bo), while at the same time the tube is flattening longi-

tudinally (described by the parameter (2). The function b(x) defines the boundary of

the flattened portion of the tube (see Fig. 4-13).

:1, Tr

Figure 4-13: Cylinder geometry during Phase 2.
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A number of different ABAQUS numerical simulations were evaluated to deter-

mine the best form of the function b(x). Linear, parabolic, cubic, and square shape

functions were considered. It was determined that the parabolic shape best matched

the numerical simulations. Two new non-dimensional parameters were introduced:

6o = (4.57)

and

= (4.58)

The final values of these dimensionless parameters (i.e., at the end of Phase 2) are:

0f bof
Ro-~ (4.59)

and
S= (2f

(f-L (4.60)

Then the function b(x) may be written as:

2 Rbo f box

b(x) = { 2L

01

x < 2f Lbo
bofR

x >Lbo
bofR

(4.61)

Note that bo is the time-like parameter for Phase 2, so that b(x) also varies with time.

In order to calculate the total bending energy for the cylinder, Eq. (4.56) must

be integrated over the cylinder length. The integral is divided into 2 sections: (1)

0 < x < (2 (the partially flattened portion), and (2) (2 < x < L (which looks just

like the end of Phase 1). The bending energy for section (1) is found by substituting
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Eq. (4.61) into Eq. (4.56) as follows:

< Lbo

Eb(1) = 2(10.64)7rMo fR In -2( dz (4.62)
fo grR 2 b- Rbof box

The bending energy for section (2) is given by Eq. (4.18), with ' = 1 and L replacedR

by (L - "fLbobofR

Eb(2) = 6.22MOL 1 - R (4.63)

Simplifying the integral and combining the two sections gives the following expression

for total Phase 2 bending energy:

(2f Lbo (2 LEb,to= 21.287rMo - ln(grR) + [b (1 -2n(7rR - 2bo)) +...{ bo, R 2Rbofbo

7r 2 R2 (2fbo
..-+ (- ln(rR) + ln(irR - 2bo)) + rRbo + 6.22MoL 1 - b

2 bofR

(4.64)

4.3.2 Membrane Energy

The exact path-dependent Phase 2 membrane energy cannot be directly calculated

as the bending energy was, because of the complexity and uncertainty in mapping

the displacement of individual points during Phase 2. Therefore, a path-independent

approximation is used in conjunction with an assumption that the longitudinal strain

varies linearly with the angular coordinate, 0. The strains of the leading genera-

tor (0 = 0) and the edge generator (0 = f) are calculated from the definition of

logarithmic strain:

= 2L 2  (4.65)
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where L' is the deformed length of the generator. Figure 4-14 shows the relative

locations of the leading and edge generators, along with the geometry for calculating

the strain.

From Fig. 4-14b, the deformed length of the leading generator is:

L' = (2 + (L - <2)2 +R 2 (4.66)

and the strain E becomes:

2(22{ L -( 2 )2 +R 2 - 2LC2 + R 2

)= 2L 2 (4.67)

From Fig. 4-14c, the deformed length of the edge generator is:

L' = L 2 +(a-R)2 (4.68)

and from the MHM kinematics,

a = bo + R1 + r

= bo + 4r

4 18)
= Rb11-37r

Then

L' = L2 + R +b o 1- )]

and the strain E becomes:

(4.69)

(4.70)

= + 2(1 - ) + b (1
2(=1 2L2
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Q .O~

0=0

(a) Positions of leading and edge generators.

L

(side view)I I

( 2

(b) Leading generator (0 = 0).

~1

(c) Edge generator (0 = 7).

Figure 4-14: Leading and edge generators for strain calculations.
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Assuming that the strain varies linearly between 0 = 0 and 0 =!1, then:

E(O) = E(0=0) + (=- 6(0=0)) (4.72)
2

From Eq. (4.12), the total membrane energy for the cylinder is given by:

Em = 8NoL e(6) RdO (4.73)
0

Substituting Eq. (4.72) and simplifying the integral gives the following expression for

total membrane energy dissipated during Phase 2:

F - 2 2, 2
_ -rNoR 2 2 f L2 bo 22fLbo 2fLbo

L bof 2 R2 +boR \bofR

2C6,L 2 bo R2 2b
...- 2 +R2+ 2 + 1- 8 +b 1 (4.74)

bofR 9 3 37r 0k 37rx

4.4 Phase 3

The deformation during Phase 3 is described by the time-like parameter (3. The shape

of the flattened portion at the end of Phase 2, described by the function b(x), is frozen

and translates along the longitudinal length. The shape of the Phase 3 deformation

is shown in Fig. 4-15. The cylinder can be divided into three segments as shown in

the figure. Segment (1) is a flattened section with uniform width b ,R and length (3.

Segment (2) is a flattened section bounded by b(x), given by Eq. (4.61). Segment (3)

is identical to the end of Phase 1, but over the shortened length (L - (2 - ( 3 ). The

end of Phase 3 (i.e., the final collapse shape) is defined by the dimensionless term:

, = (4.75)
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bo, R

Figure 4-15: Cylinder geometry during Phase 3.
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4.4.1 Bending Energy

The Phase 3 bending energy is the sum of the energy dissipated in each of the three

length segments. For segment (1), the bending energy is found by integrating Eq.

(4.56) over the length (3, with b(x) = bofR (constant):

Eb,1 = 21.28irMo In 7rR (4.76)
( r R - 2bo, R

For segment (2), the bending energy is given by Eq. (4.62), with bo = bofR. The

bending energy for segment (3) is given by Eq. (4.18), with ' = 1 and L replaced

by (L - ( 2fL - (3). Combining the three segments gives the following expression for

total bending energy during Phase 3:

Ebtot = 21.287rMo ln ( R2 ( L + + In ( R 2 } +
( r R - 2bo, R )-2 2bo, 7r R - 2bo, R Abo,

... + 6.22ML 1 - (3) (4.77)

4.4.2 Membrane Energy

The Phase 3 membrane energy is calculated in the same manner and with the same

assumptions as Phase 2. The strain of the leading generator, as a function of (3, is:

2(C3±+0L)2 +2(3+ L) L)2 + R2 - 2L ((3 + L) + R2

=) 2L 2

(4.78)

For the edge generator (6 = 2), the deformed length is:

L' = (3 + (L - 3 )2 + [1+-bo, R - (4.79)
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and the strain is:

E(0=1) = ( L2(3 + 2(3 (L -

... 2R 2 bof

3
8)

Substituting these expressions into Eqs.

+ bofR 1

+ R2bof 2 (1

8 )] 2
- 2( 3 L +

8 )21
9

(4.80)

(4.72) and (4.73) and simplifying gives

the following result for total membrane energy dissipated during Phase 3:

Em,tot = ,WNoR [4(3 + 4(3 2fL + 2 2 L2 ± 2 ((3 +( , L)

10R 2

..- 26,fL2 -4( 3 L+ 9

2R 2bo
.. + 3 ' (1

(L - (3)2 +

8 \2

37r

+ bofR 1I
8 )] 2

37r

+ R2bof (1 (4.81)

4.5 Validation of Analytic Results

The resulting equations for energy dissipation for all three phases are summarized

below:

Phase 1 (time-like parameter wo):

Eb,tot = 6.22MoL-
R

Em,tot = 1 .9 64 .NoRE3 (WO) 2

L (Rii
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Phase 2 (time-like parameter bo):

C;2Lbo C2 fL
Ebtot = 21.287rMo - ln(ir R) +{ bof R 2Rbofbo

wr2R2
2 + (- ln(7rR) + ln(rR - 2bo)) +2

rNoR
Em,tot = -

2
(2f L2bo
bo+ R

[b 2 (1 - 2ln(-rR - 2bo)) +..

(2,bo
7rRbO + 6.22M0 L 1 -

bo ,R

+ 2 2f L -(2f + R2 
bif R \ bof R)

R2 2Rbo (oR) 8 b / 2

+ 3 37r 1 3-7r

Phase 3 (time-like parameter (3):

Ebtot = 21.287rMo ln +R L ± - + ln -b 1 - -2 +
7r R - 2bo, R )"2 2bo, 7R - 2bo, R Abof

.+6.22M0 L 1 - (,3-

Em,tot = 4(+NoR A24(2,L+22L2+2(C3+ ,Lf L- fL-(3 )2+R2 _

S 10 IR 2 -32+R 8 -2
...- 2(2 fL 2 - 4 3 L+ +2(3 (LC 3 )2+ +bofR 1--

+ 2R 2bof (1 8\ 2 2(1 82
.. + 3 (1 37rT+Rb,{ 37r

Each phase's energy equations are a function of a different time-like parameter.

In order to plot the energy dissipation over the complete collapse (for comparison

with numerical simulations), it is necessary to use a common, continuous, monoton-

ically increasing time-like parameter. The cylinder internal volume (V) is one such

parameter, and can be readily calculated using the kinematic model assumptions.
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4.5.1 Volume Calculations

The cylinder volume during each phase was calculated as a function of the same

time-like parameter as the energy dissipation.

Phase 1

The time-like parameter for Phase 1 is wo. Referring to Fig. 4-6, the area of any

cross-sectional ring may be written as:

A(x) = 4 [ vrR cos a(x)%2R sin c(x) + R 2 (T - (4.82)

and a(x) is given by Eq. (4.16). The total cylinder volume is:

V = 2 A(x)dx (4.83)

Substituting and evaluating the integral gives the Phase 1 volume as:

2.574 sin (Ir)V1 = R2 L 27r - 4+ (Wn) 2R (4.84)

Phase 2

Just like the Phase 2 bending energy calculations, the Phase 2 integral is divided into

2 sections: (1) 0 < x < (2 (the partially flattened portion), and (2) (2 < x < L

(which looks just like the end of Phase 1). Referring the Fig. 2-11, the area of a

cross-sectional ring in section (1) may be written as:

R2 rR231
A =4 -1 I + 7r2 -3) (4.85)

2 8 8_
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Substituting the expressions for R1 and r and simplifying gives:

A(x) = 2.144 (
(9

4Rb(x) 4b(x) 2

9 + 9 2 )

Substituting the expression for b(x) (Eq. (4.61)) and integrating from x=0 to x=(2

gives:

V = 0 .4 76  - R
bof

2b2
+ 0

Ir2R

8bo
37r

(4.87)

The volume of section (2) is identical to Eq. (4.84), with i = 1 and L replaced by

V = 4.857R 2L 1
2fbo

bof R
(4.88)

Combining the two sections gives the Phase 2 volume as:

( 2 Lbo
V2=0.476 -

bo, (R+
2b2

wr2R

8bo
37r )

+ 4.857R 2 L

As shown in Fig. 4-15, the cylinder during Phase 3 can be divided into three sections.

The volume of section (1) is a linear function of (3. Section (1) has constant cross-

sectional area, given by Eq. (4.86) with b(x) = bof, and length (3:

V = 0.476R2(3 1
4bof Ab+

w

The volume of section (2) is constant, and is given by Eq. (4.87) with bo = bo,:

V = 0.476 2fLR 2

( 1 +
- 22bo0 r
72

8bof

37r
(4.91)
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Phase 3

2fbo

bof R
(4.89)

(4.90)



The volume of section (3) is identical to Eq. (4.88) but with (L - (2) replaced with

(L - (2, - (3):

V = 4.857R 2 L 1- -
(4.92)

Combining the three sections gives the Phase 3 volume as:

A 3 bo Abof 2 2 bo6" 2 8bo, - (3)
V3 = 0.476R 2

3  - 7+ 2) +0.476(fLR2 (1 + 2 +4.857R2 L (1 - (2-

(4.93)

The volume relationships for all three phases are plotted in Fig. 4-16. The x-axis is

the percent change in volume, and the y-axis is the relevant dimensionless parameter

for each phase. This figure illustrates the relative amount of volume change per phase.

bo0

1.2

1
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0.6

0.4
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Phase 3- - - --........................... .............. ........................ .........

0 0.2 0.4 0.6 0.8
AV/Vo

Figure 4-16: Relative change in volume for the three collapse phases.
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4.5.2 Comparison with Numerical Simulation

In order to validate the accuracy of the analytic solutions, they are compared to

numerical simulations for two specific cylinder geometries. The energy dissipation

is plotted vs. percent volume change (AV/V). The analytic solutions are plotted

parametrically, where both energy dissipation and volume are functions of the same

time-like parameter. The ABAQUS results are also plotted parametricallly, where

the energy and volume are recorded as functions of time. Figure 4-17 shows the

comparison.

There is a visible discontinuity in the analytic solutions from the end of Phase 1 to

the start of Phase 2. This is not unexpected, since the Phase 1 and Phase 2 solutions

use different kinematic models and assumptions. The most significant discontinuity

occurs in the membrane energy, and is due primarily to the linear strain assumption

used in the Phase 2 and 3 solutions.

Correction for Linear Strain Assumption in Phase 2 and 3

Recall that the Phase 2 and 3 membrane energy calculations used a path-independent

approximation and assumed a linear change in strain from 0 = 0 to 0 = Z. This

assumption overestimates the actual strain for intermediate angles, as indicated by

the jump increase in membrane energy at the start of Phase 2. The Phase 1 membrane

energy calculation did not use the linear assumption, because it was straightforward

to find the actual strain for any angle 0 (see Eq. (4.32)).

In order to quantify the error introduced by the linear strain assumption, the Phase

1 membrane energy was re-calculated using the linear assumption and compared to

the more exact solution previously derived. The resulting expression for Phase 1

membrane energy using the linear strain assumption is:

21rNoR 2

Em'tt = L wo + R - R2 + 2Rwo -W02 (4-94)
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Figure 4-17: Comparison of analytic and numerical energy dissipation.

122

- - Eb
..... Em

- - Etot

- ABAQUS

200

150

100

50

0



The exact Phase 1 membrane energy solution was:

Em,tot = 1.964 NoR3

L (R

Comparing these two expressions at the end of Phase 1 (when wo = R) gives:

Em,iinear ~.1.8 7Em,exact (4.95)

It is reasonable to assume that this ratio will hold throughout the cylinder collapse;

therefore, a correction factor can be applied to the Phase 2 and 3 membrane energy

solutions to correct for the overestimation of the linear strain assumption. When the

Phase 2 and 3 membrane solutions are divided by the correction factor (1.87), the

discontinuity across Phase 1-2 is almost entirely eliminated (see Fig. 4-18).

Both cylinders in Figs. 4-17 and 4-18 are made of aluminum 6061-T6.

4.5.3 Determining bof, (2f and (3

The Phase 2 and 3 analytic solutions are functions of bof, (, and (, as well as the

applicable time-like parameter for each phase. The parameters bof, 2f and (, are

constant for a given cylinder geometry and loading, and the values were determined

from numerical simulation, by visually measuring the deformed shape of the cylinder

at the end of Phase 2 and 3. The accuracy of the parameters is limited by the

element size (approximately 1 mm x 1 mm in most cases). By examining several

different cylinder simulations, it was determined that the values vary, as summarized

in Table 4.4.

It was originally assumed that the same average value of bof, ,2f and (, could

be used for all cylinder geometries. To test this hypothesis, the energy dissipation

was calculated using different values of the dimensionless parameters spanning the

ranges in Table 4.4. Two different cylinder geometries were evaluated, and the results

123



600 - - - - -- - -

Phase 1 Phase 2 Phase 3

5 0 0 + - - ------ -- - - - ........- - -..........

400

-00 - Eb
300 -1 ' - - - - - - - - - - - -

- Em

-- Etot

-- ABAQUS

R=12.7 mmP

L=137.3 mm
h=0.889 mm

100

0<.-................

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Av/V,

(a) Cylinder with R/h = 14.3, L/R = 10.8.
3 0 0 .- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Phase 1 Phase 2 Phase 3

250

2 0 0 .....---- ------ ---------- - - - - - - - --- - - - - - - - - - --.... ... ........... .. ........ .. ...... .. ........ ............. .............. ..... - - - -- - - - - - - - - - - -

Eb
1 5 0 ----- ------- - - - - - - - ----------------- --------- ---- - - - - -- - - - -------- --------- ----- ------ ------ ----- - -........ -.... . -..... - - - - - - - - --... .. ... ... ....... ... ..

-0..... EM

. ' -- Ebot

-ABAQUS

R=19.07 mm
L=183.4 mm
h=0.714 mm

50

0 0.1 0 2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(b) Cylinder with R/h = 26.7, L/R = 9.6.

Figure 4-18: Comparison of analytic and numerical energy dissipation (with correction
factor for linear strain assumption).
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Table 4.4: Dimensionless parameter ranges.

Parameter Range
bof 0.7-1.07
C2f 0.28-0.5
C3, 0.16-0.46

are summarized in Table 4.5. The analysis revealed that varying the dimensionless

parameters over the full range changed the energy calculations by more than 2.25x

(125% error). Therefore, it is clear that the assumption of a single value for all

cylinders is not valid.

Table 4.5: Sensitivity of energy dissipation to non-dimensional parameter values.

bo C2 +C3 Ett = E+ Em
R/h=26.7 0.7 0.62 255 J
L/R=9.6 0.95 0.74 377 J

1.07 0.86 577 J

R/h=14.3 0.7 0.62 265 J
L/R=10.8 0.95 0.74 394 J

1.07 0.86 597 J

A total of nine combinations were calculated for each cylinder geometry (only

three each are shown in Table 4.5), and the results are presented graphically as 3D

surface plots in Fig. 4-19.
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Figure 4-19: Variation of energy dissipation over a range of bof and (2f + (3f.
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Since a single dimensionless parameter value for all cylinder geometries is not valid,

a study was conducted to determine how the parameters vary and what the principal

driving factors are. Fourteen different cylinder geometries were analyzed, spanning

the R/h and L/R ranges typical of U.S. Navy implodables. For each geometry, an

ABAQUS model was created and a static buckling analysis was run to determine

the minimum buckling pressure of the cylinder. Then a dynamic analysis was run

with that buckling pressure applied. The dimensionless parameters (bof, ,2f and 3f)

were determined from the collapsed cylinder shapes. The data indicated that the

non-dimensional parameters are strongly dependent on the geometric ratios R/h and

L/R. Figure 4-20 presents the data plotted versus R/h, for different values of L/R.

Consistent trends are apparent in the data, so that the plots can be used to determine

the proper value of the non-dimensional parameters for any cylinder geometry within

the given ranges of R/h and L/R.
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4.6 Energy Dissipation as Percentage of Total Ex-

ternal Work

The overall energy balance for an underwater implosion problem was given by Eq.

(2.36). An upper bound on the external work done on the cylinder can be calculated

by assuming that the external pressure is constant on the cylinder surface throughout

the collapse. With this assumption, the external work may be written as:

Eext = W = JpdV = pAV (4.96)

It is informative to calculate the ratio of plastic energy dissipated to external work,

since this gives an indication of how much energy remains to potentially be released in

the implosion pulse. This ratio was calculated for two example cylinders, and results

are shown in Table 4.6.

Table 4.6: Energy dissipation as percentage of external work.

R/h=26.7 R/h=14.3
L/R=9.6 L/R=10.8

p 1.1 MPa 6.4 MPa
Et t 258 J 550 J
W 326 J 775 J

Et_/W 0.79 0.71

These results indicate that plastic energy dissipated is a relatively constant per-

centage of external work (71%-79%). Of course, the actual external work done on the

cylinder will be less than that calculated by Eq. (4.96). The actual pressure on the

cylinder surface decreases during collapse because of the corresponding fluid move-

ment, as described in section 1.2. Thus, the ratio of plastic energy dissipated to actual

external work will be greater than that shown in Table 4.6. Chapter 5 addresses the

fluid-structure interaction and the varying pressure on the cylinder surface.
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4.7 Summary and Conclusions

The expressions for plastic energy dissipation derived in this chapter, and summarized

in section 4.5, are reasonably accurate compared to numerical simulation results. The

final energy values (analytic and numerical) for the two examples presented in Fig.

4-18 are summarized in Table 4.7.

Table 4.7: Comparison of analytic and numerical energy dissipation values.

R/h=26.7 R/h=14.3
L/R=9.6 L/R=10.8

Analytic 258 J 550 J
Numerical 237 J 562 J
% Error 8.9% 2.1%

The % error (calculated as the difference divided by the numerical value) is less for

the cylinder with lower R/h, indicating that the analytic solutions are more accurate

for thicker-walled cylinders. Furthermore, the analytic solution for the thicker cylinder

underestimates the numerical value, while the thinner cylinder overestimates. Recall

from Chapter 2 that there are two primary effects that cause error in the analytic

solutions: 1) the assumed yield condition causes overestimation of energy dissipation,

and 2) neglect of shear causes underestimation of energy dissipation. Suh [4] showed

that shear energy dissipation is inversely proportional to R/h (i.e., shear is more

significant for thicker-walled cylinders). Thus, it is expected that the analytic solution

for a thicker cylinder will be closer to (and possibly even less than) the numerical value

than a comparable thinner-walled cylinder. The results in Table 4.7 are consistent

with this expectation.

The analytic solutions are strongly dependent on the values of the dimensionless

parameters bof, ,2f and (,. For a given cylinder geometry, these parameter values

may be determined from the graphs in Fig. 4-20. This makes the derived solutions

semi-analytic rather than purely analytic, because they rely on information extracted
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from numerical simulations.

The semi-analytic solutions are also directly proportional to the material flow

stress, o-O. Therefore, it is critical that an accurate value of flow stress be determined

and used for the specific material of the cylinder.

The results (both semi-analytic and numerical) show that plastic energy dissipa-

tion constitutes at least 70% of the total external work done on the cylinder. There-

fore, less than 30% is available to be released in the implosion pulse. This conclusion

is further refined in Chapter 5 by considering the fluid-structure interaction.
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Chapter 5

Simplified Fluid-Structure

Interaction

The basic nature of fluid-structure interaction (FSI) problems was described in section

1.2. In general, FSI problems such as underwater implosion are too complex for

analytic or semi-analytic solutions. In this chapter, a novel explicit time-stepping

methodology is introduced, which yields a pseudo-coupled analytic solution for the

fluid pressure history and implosion pulse energy.

5.1 Overview of Simplified FSI Methodology

This section provides a brief overview of the simplified FSI approach developed in

this thesis. Details of the individual steps are provided in subsequent sections. The

goal of this simplified FSI methodology is to obtain an estimate of the energy in the

implosion pulse. The overall energy balance for an implosion event is:

Epuise = W - Ei - Eair (5.1)
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where Epuse is the energy released in the implosion pulse, W is the work done on

the cylinder by the fluid, Eine is the plastic energy dissipated by the cylinder, and

Ei, is the energy required to compress the internal air. Expressions for Eint and E,

were developed in chapters 4 and 2, respectively. The difficulty comes in accurately

calculating W, because the fluid pressure acting on the cylinder surface varies both

spatially and temporally during the implosion event. During implosion, the cylinder

structural walls rapidly collapse until they contact the opposite wall and motion stops.

As the structure collapses, the surrounding fluid accelerates to follow the structure.

The moving fluid creates a dynamic pressure in the vicinity of the cylinder that is

negative in sign. The dynamic pressure adds to the constant hydrostatic pressure to

give the total fluid pressure acting on the surface.

Recall that at the end of Chapter 4, it was shown that the plastic energy dissipation

accounts for about 70-80% of the total available energy of an implosion event (see

Table 4.6). However, the analysis in Chapter 4 assumed a constant pressure acting

on the cylinder surface and thus overestimated the work done on the cylinder by the

fluid (which is equivalent to the total available energy). The analysis in this chapter

estimates the dynamic fluid pressure on the surface to give a more accurate estimate

of the implosion pulse energy.

It is impossible to analytically calculate the fluid pressure acting on the surface,

as a function of time and space, throughout the whole implosion event. However,

a reasonable approximation can be obtained during Phase 1, because the pressure

varies more slowly and predictably during Phase 1 than during the remainder of the

event'. The overall energy balance at the end of Phase 1 is:

KE = W - En - Eair (5.2)

where KE is the kinetic energy of the system (cylinder plus surrounding fluid). It is

'Refer to Fig. 1-1 for a typical pressure history of an implosion event.
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assumed that all kinetic energy of the system is eventually converted into implosion

pulse energy. The maximum kinetic energy during the implosion event occurs just

after the end of Phase 1, as shown in Fig. 5-1. The kinetic energy continues to

increase slightly beyond the end of Phase 1, because portions of the cylinder are still

accelerating inward even though the center section has stopped. The fundamental

hypothesis of the simplified FSI methodology is that the kinetic energy at the end of

Phase 1 will equal the energy released in the implosion pulse.
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Figure 5-1: Kinetic energy vs. time (from representative ABAQUS simulation).
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The difference between the fluid pressure acting on the surface and the varying

(diminishing) pressure needed to continue plastic deformation of the cylinder (i.e., the

critical pressure, described in detail below) at any instant is called excess pressure.

The excess pressure is the driving force that continues to accelerate the cylinder

inward. The relationship between the various pressures during Phase 1 is illustrated

in Fig. 5-2.

PPhydrostatic+Pd

Pexcess

PC

t (or w)

Pd=dynamic fluid pressure
p=actual fluid pressure acting on the surface

pe=critical pressure for the cylinder

Pexcess=pressure causing acceleration of cylinder

Figure 5-2: Pressures during cylinder collapse (Phase 1).
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The simplified FSI methodology consists of the following steps:

1. Calculate the critical pressure of the cylinder, pc, using the energy dissipation

expressions derived in Chapter 4.

2. Use the explicit time-stepping methodology to estimate the fluid dynamic pres-

sure at any time. The dynamic pressure is caused by fluid velocity. The fluid

velocity is found by starting from known initial conditions and assuming con-

stant acceleration (caused by the fluid pressure) over each small time interval.

3. Add the fluid dynamic pressure to the hydrostatic pressure to obtain the total

fluid pressure acting on the cylinder surface at any time.

4. Calculate the work done on the cylinder by the fluid during Phase 1:

W = jp(t)V(t)dt (5.3)

5. Calculate the kinetic energy of the system from Eq. 5.2. The implosion pulse

energy is very nearly equal to this value of kinetic energy.

5.2 Cylinder Critical Pressure

The critical pressure (pc) of the cylinder is defined as the external pressure required

to begin the collapse, and to continue the collapse once it has started. The critical

pressure decreases as the displacement (wo) increases. The quasi-static equation of

equilibrium (principle of virtual velocities) is:

Eext = E + E. (5.4)
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The energy required to compress the internal air (Eai) was given by Eq.

(assuming adiabatic compression). Taking the time derivative of this equation gives:

Eai, = -pio
V0- V (5.5)

The volume during Phase 1, as a function of 1, was given by Eq. (4.84). The time

derivative of this expression is:

V = 2.574R3L
cos (w) (7r) wo - sin ("') to2R 2R 22R

The original cylinder volume is V = 27RR2L. Substituting these expressions into Eq.

(5.5) gives:

Eair = -pio

By definition, Pc is the pressure that maintains the equilibrium of Eq. (5.4). So:

+ -9m+ Eai,
Pc =- (5.8)

The solutions for Phase 1 energy dissipation (Eb and Em) were given in section

4.5. Taking time derivatives of these expressions gives:

L
Eb =6.22Mo-wo

R

- R
3.93No R-woIo

L

(5.9)

(5.10)
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( 27r

-f

27r-4+ 2.574 sin("2
R

E (5.7)

and

(2.32)
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Substituting into Eq. (5.8) and simplifying gives:

-6.22MoJ0 - 3.93No wo 27r
PC R~5 LrvO __±j\1--+ i 2.574 sin! ftO

2.574RL 2R () - sin 27r - 4 +

(yk 2 
R

R1

(5.11)

Note that V < 0 for 0< 12 < 1. The (-) signs in Eq. (5.11) account for this, so that

the resulting pressure is positive. Figure 5-3 plots Eq. (5.11) for an example cylinder.

The three individual components (Eb, Em, and Ea.i) are plotted, along with the total.

It is clear from the figure that the majority of the required external pressure is due to

bending energy. This is consistent with Fig. 4-18, which showed that bending energy

is much more significant than membrane energy. As expected, the critical pressure

drops rapidly as the cylinder collapse progresses.

--- Eb
R=12.7 mm Em
L=137.3 mm Eair
h=0.889 mm Total

5-

4-3

0.5
wO/R

Figure 5-3: Critical pressure (pc) during Phase 1.
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The above analysis (specifically Eq. (5.11)) assumes that the external pressure

is spatially uniform. In reality, different portions of the cylinder will have different

velocities during collapse, so the dynamic pressure (and consequently the total fluid

pressure) will vary over the surface. Therefore, the critical pressure calculated is

really the spatial average over the entire cylinder surface.

5.3 Explicit Time-Stepping Methodology

For each infinitesimal piece of cylinder material, the excess pressure will cause accel-

eration, :

Pexcess = (P - Pc) = m) (5.12)

where m is the mass per unit area.

Figure 5-4: Acceleration of infinitesimal material patch.
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If the time interval, At, is sufficiently small, then the acceleration may be consid-

ered constant during the time interval, so that:

n = 6w_ 1 + wn-1At (5.13)

and
1

Wn = Wn_ 1 + ?b-iAt + -in-1At 2  (5.14)
2

The assumption of constant acceleration over At allows for the explicit calculation of

the problem parameters at any time t starting from known initial conditions.

In order to calculate the fluid dynamic pressure from the surface velocity 7b, po-

tential flow conditions are assumed. Potential flow theory is valid for incompressible,

inviscid, irrotational flows. A flow may be considered incompressible if the Mach

number is < 1. For typical underwater implosion problems, the maximum cylinder

surface velocity (which is equal to the maximum fluid velocity, v) is on the order of

100 m/s. The speed of sound in water, c, is about 1500 m/s. Thus, the typical Mach

number is:
v 100

M = - = 1500=0.07 < 1 (5.15)
c 1500

The incompressible assumption is therefore valid throughout the implosion process,

except for the brief instant of impact when fluid compression occurs. The effect of

viscosity can be measured by calculating the Reynolds number, which is a measure

of the ratio of inertial to viscous forces, for a typical flow during implosion. If the

Reynolds number is > 1, the viscous forces are negligible and the flow may be con-

sidered inviscid. For a typical implosion flow:

vL l00m/s * 1m
Re = - =108 >>1 (5.16)

V 10- 6m 2 /s

The inviscid assumption is therefore valid. Finally, the flow during implosion is irrota-
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tional. The fluid starts in a state of rest, which is irrotational, and Kelvin's Theorem

states that the flow will remain irrotational for all subsequent time. Thus, the poten-

tial flow assumptions are valid, except for the brief instant of impact. From fluid

potential flow theory, the dynamic pressure at any instant is:

Pd = - + - 12 (5.17)8t2

where p is the fluid density and # is the fluid potential. By definition, V# is equal to

the fluid velocity. On the cylinder surface:

V0 = 7 (5.18)

Then at every time step:

Pd,n = -p + (5.19)

Pn = Ph1 d + Pd,n (5.20)

-Pn -Pc,n (.1
Wn = '" (5.21)

m

With this complete set of equations, it is possible to calculate the surface position,

velocity, acceleration, and fluid pressure acting on the surface at any time. As with the

cylinder critical pressure, these parameters vary spatially over the cylinder surface.

So the values calculated are really spatial averages over the entire cylinder surface.

The calculations are straightforward, with the exception of the fluid potential #.

Therefore, as a first approximation, the contribution of ( to the dynamic pressure

is neglected2 , and the dynamic pressure is calculated as:

Pd,n = 1 *2 (5.22)

2This approximation is justified, at least for Phase 1, in Section 5.6.
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Fluid Added Mass

Because the surrounding fluid moves with the cylinder walls during collapse, some

energy is required to accelerate the fluid. This is accounted for by including the added

mass of the fluid with the solid mass of the cylinder walls. Each infinitesimal piece

of cylinder material is treated as a flat plate moving in a direction perpendicular to

the plane of the plate, as shown in Fig. 5-5.

Direction of motion

RdU

dx

Figure 5-5: Infinitesimal section of cylinder wall approximated as a flat plate.
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For such geometry, the added mass of the fluid per unit area (i.e., dx = RdO = 1)

is given by [35]:
7r

Ma = P- 4(5.23)

The mass per unit area for the cylinder material is simply the material density,

Ps, times the wall thickness, h.

A simple MATLAB routine was written to evaluate Eqs. (5.13), (5.14), (5.20),

(5.21), and (5.22) as functions of time t. The routine also calculates the critical pres-

sure and cylinder volume from Eqs. (5.11) and (4.84) at each time interval. The

user inputs to the routine are cylinder geometry (L, R, and h), cylinder material

properties (co and ps), fluid density (p), initial internal air pressure (pj0), and hy-

drostatic pressure (phyd). The calculations are done both with and without the fluid

added mass. Figure 5-6 shows the critical pressure and fluid pressure acting on the

cylinder surface vs. time for an example cylinder (the same cylinder represented in

Fig. 4-18a).
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L=137.3 mm ps=2700 kg/m 3

R=12.7 mm p=1000 kg/m 3

h=0.889 mm Ref: pi0=0.1 MPa

cso=351 MPa Ref: Phyd= 6 .73 MPa

7

- -P

1 L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

t (msec)

(a) Without added mass.

7

---

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
t (msec)

(b) With added mass.

Figure 5-6:
(Phase 1).

Cylinder critical pressure and fluid pressure acting on surface vs. time
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A few observations can be made from Fig. 5-6:

1. Critical pressure is a function of displacement ('a). Thus, at the end of Phase

1 the critical pressure is the same both with and without added mass.

2. The cylinder with fluid added mass collapses more slowly because of the in-

creased inertia from the fluid.

3. The cylinder with fluid added mass experiences less of a dynamic pressure drop,

corresponding to lower fluid velocity than the case without added mass.

Figure 5-7 shows the pressure behavior vs. displacement for both cases with and

without added mass. As noted previously, the critical pressure vs. displacement is

identical for the two cases.

Note that the plot starts at a finite value of w > 0. This is because the critical

pressure goes to infinity as w -+ 0. The minimum value of w on the plot represents

the displacement when the critical pressure first drops below the hydrostatic pressure

(i.e., pc < Phyd). The maximum value of w is the cylinder radius. The figure clearly

shows that the inclusion of added mass causes less of a dynamic pressure drop for a

given displacement.

In order to evaluate the accuracy of this explicit time-stepping methodology, an

example is compared to a fully coupled FSI numerical simulation3 . The numerical

simulation had identical cylinder geometry, material properties, and initial pressures

as the analytic solution. The numerical fluid pressure was recorded on the cylinder

surface at the point where the leading generator intersects the center cross-section.

The numerical pressure at this point and the spatially averaged analytic solution

pressure are plotted vs. time in Fig. 5-8. Because the start time on the numerical

simulation is arbitrary, the numerical plot is shifted horizontally to minimize the

difference between the two curves.
3 The numerical simulation was done by Dr. Ryan Chamberlin, Naval Undersea Warfare Center,

Newport, RI.
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L=137.3 mm p= 27 00 kg/m 3

R=12.7 mm p=1000 kg/m 3

h=0.889 mm Ref: p10=0.1 MPa

c50=351 MPa Ref: Phyd= 6 . 73 MPa
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Figure 5-7: Cylinder critical pressure and fluid pressure acting on surface vs. dis-
placement (Phase 1).
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L=137.3 mm pS=2700 kg/m 3

R=12.7 mm p=1000 kg/m 3

h=0.889 mm Ref: pjO=O.1 MPa

cro=351 MPa Ref: Py=6.7 3 MPa

CL
2L
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0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

t (msec)

Location of numerical
pressure calculation

Figure 5-8: Comparison of analytic and numerical solutions for fluid pressure on the
cylinder surface.
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The following observations can be made from Fig. 5-8:

1. The final pressure values for the analytic and numerical solutions are nearly

identical.

2. The analytic solution collapses more rapidly than the numerical simulation.

This is likely due to the way in which added mass is approximated in the

analytic solution, the spatial averaging inherent in the analytic solution, and

the neglect of a in the calculation of dynamic pressure.
at

5.4 Kinetic Energy Calculation

Given the analytic solution for fluid pressure, the work done on the cylinder by the

fluid at any time may be calculated from Eq. (5.3). Substituting the expressions for

Ein and Eai, developed in chapters 4 and 2, respectively, the kinetic energy can then

be directly calculated from Eq. (5.2).

Alternatively, the kinetic energy may be calculated by integrating the kinetic

energy rate with respect to time:

KE = j kEdt (5.24)

The instantaneous rate of change of kinetic energy is equal to the excess pressure

times the instantaneous rate of volume change:

KE = (p - pc) (5.25)

Both approaches give identical results for the kinetic energy.

The expressions for W, KE, Eine and Eai, may be easily evaluated as functions

of either time or displacement with a simple MATLAB routine. The complete energy
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balance during Phase 1 for an example cylinder is plotted vs. displacement in Fig.

5-9.

L=137.3 mm p,=2 700 kg/m 3

R=12.7 mm p=1000 kg/m

h=0.889 mm Ref: pi0=0.1 MPa

a0=351 MPa Ref: Phy=6.73 MPa

2 4 6
w (mm)

8 10 12 14

Figure 5-9: Complete energy balance during Phase 1.
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For this example, the total work done during Phase 1 is 102.6 J. For comparison, if

the external pressure is assumed constant (as it was in chapter 4), then the work done

would be 214.7 J. Thus, the assumption of constant external pressure overestimates

the work by more than 100% during Phase 1. The simplified FSI method provides a

much more accurate estimate of work done on the cylinder by the fluid.

5.5 Validation of the Simplified FSI Methodology

An alternative method of calculating implosion pulse energy using measured fluid

pressures was developed by Chamberlin, et al., at the Naval Undersea Warfare Center,

Newport, RI [36]. The fluid pressure is recorded (either experimentally or via fully-

coupled numerical simulation) at sample points in the fluid adjacent to the cylinder.

The resulting pressure histories look similar to the representative implosion signature

shown in Fig. 1-1. The intensity of an acoustic pressure wave is:

_(
2)

I = (5.26)

where c is the speed of sound in the fluid. The units of intensity are [ ".re]. The

energy flux [energy] is then:

Flux = ] 2dt (5.27)

where t1 and t2 are the start and end of the implosion event. Finally, the total energy

is calculated by integrating the energy flux over a bounding surface area:

E=]]2 P-dtdS (5.28)
s ti PC

Chamberlin demonstrated that the bounding surface may be approximated as a

sphere with radius equal to the offset of the pressure measurement location. Fur-

thermore, he showed that the energy calculated is largely insensitive to the pressure
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measurement location. Thus, any one pressure location can be used to calculate the

pulse energy by assuming the pressure is constant on the surface of the sphere with

radius equal to the offset. Then the pulse energy is:

ft2 2

E = 47R2e P- dt (5.29)
r ti PC

where Rref is the offset of the pressure measurement location. In order to validate

the hypothesis that pulse energy is equal to the kinetic energy at the end of Phase

1, an example case is evaluated. The example case is identical to that of Fig. 5-9,

but with a slightly higher hydrostatic pressure (6.94 MPa vs. 6.73 MPa). The pulse

energy was calculated using a numerical simulation pressure history recorded at the

cylinder end, 101.6 mm (8R) from centerline. The comparison is shown in Table 5.1.

Table 5.1: Pulse energy compared to Phase 1 kinetic energy.

L=137.3 mm
R=12.7 mm
h=0.889 mm
0 =351 MPa

Phyd=6.9 4 MPa
Pulse Energy (from Eq. 5.29)=43.95 J

Phase 1 Kinetic Energy=41.30 J
% Difference=6.0%

The comparison indicates very close agreement between the two energy values.

5.6 Summary, Limitations and Conclusions

The simplified FSI methodology provides an accurate estimate of implosion pulse

energy, given the cylinder geometry (L, R, and h), cylinder material properties (uo and

p.), fluid density (p), initial internal air pressure (pi0 ), and hydrostatic pressure (Phyd).

The method gives results comparable (within < 10%) to experiments or numerical
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simulations, at a much lower cost (as measured by computational or experimental

effort). As expected, the simplified FSI method underestimates the pulse energy,

because the kinetic energy at the end of Phase 1 is slightly less than the maximum

during the whole implosion event (see Fig. 5-1).

The simplified FSI methodology only calculates the implosion pulse energy. It

does not predict the pulse peak pressure or total impulse delivered by the implosion

pulse. These quantities require knowledge of the complete pressure history of the

implosion event, which cannot be analytically predicted.

The dynamic fluid pressure was calculated using Eq. 5.22, neglecting the effect

of the time derivative of the fluid potential, . During Phase 1, this is a reasonable

approximation. During Phase 1, the changes in fluid velocity and pressure occur

relatively slowly (compared to Phases 2 and 3). It is therefore expected that the

contribution to dynamic pressure of the term 9 will be much smaller than the term

, and the first term may be neglected. This is no longer the case once the first

contact occurs between cylinder walls (i.e., after Phase 1). When contact occurs, the

structural motion abruptly stops and the fluid rapidly decelerates and compresses.

This compression of the fluid causes a high pressure wave which propagates away from

the cylinder (i.e., the implosion pulse). The changes in fluid velocity and pressure

during this period are extremely rapid, and the term 9 cannot be neglected. In fact,

the presence of fluid compression at the instant of impact violates the assumptions of

potential flow theory. Thus, it is critical that the simplified FSI methodology involve

only Phase 1 to estimate the implosion pulse energy.

The simplified FSI methodology applies specifically to metallic cylinders that col-

lapse via mode 2, without material fracture. However, the method may be applied

to cylinders that fail via higher modes to provide an upper bound on pulse energy.

A given cylinder will dissipate the minimum amount of plastic energy deforming into

mode 2 compared to higher modes, primarily because the higher modes require more
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bending of the material. From Eq. 5.2, the minimum value of Eint corresponds to

the maximum value of KE, which is equivalent to the pulse energy. So the simplified

FSI methodology should provide an upper bound on pulse energy for a given cylin-

der geometry and pressure, regardless of the actual collapse mode. Note that this

conclusion has not yet been tested or validated, and is left as future work.
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Chapter 6

Design Recommendations for

Implodable Structures

The principal goal of studying underwater implosion is to minimize the effect of the

implosion on adjacent structures. The effect of implosion can be minimized in two

ways:

1. Prevent implosion from occurring, by designing the implodable with a very high

safety factor for the worst-case operating conditions, or

2. Allow that implosion may occur under certain conditions, and design the im-

plodable to minimize the implosion pulse energy or peak pressure when it occurs.

The first method is extremely conservative and results in heavy, expensive implod-

ables. The second method can be implemented by using the knowledge and tools

developed in the previous chapters to guide the design of implodable structures, with

the goal being to minimize the energy released in the implosion pulse.

In Chapter 5, it was shown that for a simple mode 2 collapse the kinetic energy

at the end of Phase 1 is very nearly equal to the implosion pulse energy. The kinetic
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energy at the end of Phase 1 is given by Eq. (5.2), repeated here:

KE=W-EintE -Eair (6.1)

The external work W is a function of the fluid pressure acting on the cylinder and

the change in volume. It is assumed that the implodable specifications require a

certain internal volume of gas (otherwise, it would not be considered an implodable

volume). Then the external work done during collapse cannot be changed by design'.

However, the plastic energy dissipation (Eint) and energy required for compression

of the internal gas (Eair) can be changed by design choices. It is clear from Eq.

(6.1) that the kinetic energy (and subsequently the implosion pulse energy) can be

reduced by increasing either Eint or Eair. The following sections suggest specific

implodable design practices that will increase Eint or Eair and subsequently decrease

the implosion pulse energy.

6.1 Methods to Increase Et

The process of plastic energy dissipation during implosion was discussed in detail in

Chapter 4. One way in which the energy dissipation can be increased for a given cylin-

der (i.e., without changing material or dimensions) is by triggering a higher collapse

mode. In general, higher collapse modes will dissipate more energy, mainly because

of the increased circumferential bending required. To verify this, the ABAQUS nu-

merical simulation of Chapter 3 was utilized. An example cylinder (with perfect

geometry) that naturally collapsed in mode 2 was simulated, and the total plastic

energy dissipation was recorded. Then a static buckling analysis was performed on

the perfect structure to determine the buckling modes. For this particular example

The analysis of different collapse modes in the next section shows that the external work is
nearly independent of collapse mode. External work values are constant within 4%.
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cylinder, the first five buckling mode shapes are shown in Fig. 6-1.

(a) Mode 2.

(b) Mode 2A.

(c) Mode 2B.

(d) Mode 3.

(e) Mode 3A.

Figure 6-1: First five buckling modes for example cylinder.
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Modes 2A and 2B have the same 2-lobe cross-sectional shape as mode 2, but the

cylinder length is subdivided into 2 or 3 segments rotated 90 degrees relative to each

other. Similarly, mode 3A is identical to mode 3 but with the length subdivided into

2 segments. These intermediate modes exist for this cylinder because the length-to-

diameter ratio is relatively large ( = 10.8).

The same cylinder was then subjected to initial geometric imperfections to trigger

collapse in higher modes. The geometric imperfections were introduced as individual

mode shapes, with maximum magnitude A = 1 mm (R=12.7 mm, so A = 0.08).

Dynamic simulations were run with imperfections in each of the first four modes, and

resulting energy dissipation and external work are plotted in Fig. 6-2.

900 0.82
-- Eint

800 ----- 0.8 -r-W

-+-W-Eint
700. -.-- - ---- --........................

0.78 -+-Eint/w

0.76

0.74
Uii

400 -........

0.72
300 -

0.7
200 -

100 ---- ---- - 0.68

- 0.66
2 2A 28 3

Buckling mode

Figure 6-2: Effect of collapse mode on plastic energy dissipation and external work
(A = 0.08).
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The external work, W, is nearly independent of collapse mode (within 4%), but

the plastic energy dissipation, Eint, varies. The energy of the implosion pulse can

be roughly approximated as W - Eint. The ratio E provides another measure

of implosion pulse energy (higher EL corresponds to lower pulse energy). In this

example, mode 2B clearly has the minimum W - Eint and maximum i, which

indicates the minimum implosion pulse energy for this cylinder.

Next, the effect of the imperfection magnitude was investigated for the mode of

minimum pulse energy (mode 2B in this case). Seven different values of 4 were

evaluated, from 0 (perfect geometry) to 0.08, and results are plotted in Fig. 6-3.
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280

260

240

220

200

18 s

0.8

0.75

A7

140

120 - -_ _ --- _------__----

100 0.6
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

A/R

Figure 6-3: Effect of imperfection magnitude on plastic energy dissipation
nal work.
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The case with A = 0.008 actually generates a larger implosion pulse than the caseR

with no imperfection. This is because the imperfection is not large enough to trigger

the desired collapse mode 2B. Thus, the cylinder still collapses in the natural mode

2, but the imperfection serves to lower the plastic energy dissipation. The result is

a larger implosion pulse. The minimum implosion pulse is seen at about A = 0.015.R

The pulse energy is essentially constant above that magnitude of imperfection. For

this example, the difference between the minimum pulse and the baseline with no

imperfection is 96 J, or 41% of the baseline value.

Of course, intentionally causing geometric imperfections in the cylinder reduces

the overall strength and resistance to buckling compared to the perfect geometry.

In order to minimize the strength reduction, it is desirable to use the minimum

imperfection magnitude necessary to achieve the desired mode shape. Figure 6-3

shows that there is a clear minimum value of A that forces the desired mode shapeR

and also yields the smallest implosion pulse (in this case, j = 0.015). For this

example, applying the mode 2B imperfection with magnitude A = 0.015 reduces theR

collapse pressure from 6.37 MPa to 6.34 MPa, a decrease of only 0.5%.

It may be difficult to manufacture precise mode shape imperfections into a real

implodable. A less elegant alternative way to introduce imperfections is to create local

weak spots in the structure in such a way as to trigger the desired collapse mode.

For example, to trigger mode 3 collapse, the wall thickness of the center cross-section

could be thinned slightly at three points spaced 120 degrees apart. This could be

done quite simply by grinding flat spots onto the outer cylinder surface, as shown in

Fig. 6-4. The flat spots in this figure are greatly exaggerated to be more visible.
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Cylinder center cross-section

Ground flat spot '

Figure 6-4: Intentional imperfections to trigger mode 3 collapse.
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This method will have a greater detrimental effect on the overall collapse strength

of the structure than the precise mode shape imperfection method described earlier.

Therefore, the effect of the imperfections on the overall structural design must be

carefully considered.

Alternatively, a thin layer of energy absorbing material (such as a honeycomb

structure) could be added to the inner surface of the cylinder. The energy absorbed

by this layer would add to the plastic energy dissipation of the main cylinder structure

and reduce the kinetic energy (and therefore the implosion pulse energy) according

to Eq. (6.1).

6.2 Methods to Increase Eair

The energy required for adiabatic compression of the air was given by Eq. (2.32),

repeated here:

Eair,adiabatic = - -) 1 (6.2)

The energy required is directly related to the initial internal air pressure, pi.

Thus, if the implodable interior is initially pressurized above atmospheric pressure,

then the energy required to cause the same volume change (i.e., complete collapse of

the cylinder) will be greater. The effect of increasing internal pressure was evaluated

quantitatively using the tools and methodology developed in previous chapters.

Constant Cylinder Geometry

First, the internal pressure was varied while holding the cylinder geometry constant.

As the internal pressure of a given cylinder is increased, the initial collapse pressure

increases by an equal amount, because buckling and collapse are caused by the differ-

ential pressure felt across the cylinder wall. Therefore, for this analysis the external
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hydrostatic pressure, Phyd, is varied from the reference value by the same amount as

the initial internal pressure, pi0. The reference condition is an initial internal pressure

of 1 atmosphere (0.1 MPa), yielding an implosion pulse energy E0 . The simplified

FSI methodology of Chapter 5 was used to calculate the pulse energy over a range

of internal pressures for two example cylinders (the same two cylinders previously

analyzed in Chapters 4 and 5). The non-dimensional pulse energy (yL) is plotted vs.

the non-dimensional pressure (tO) in Fig. 6-5. The plot indicates that (as expected)

the pulse energy decreases as initial internal pressure increases. There exists a value

for pio above which the cylinder will not fully implode and the implosion pulse does

not occur.
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Cylinder A Cylinder B

L=137.3 mm p,=2700 kg/m 3  L=183.4 mm p,=2700 kg/m 3

R=12.7 mm p=1000 kg/m 3  R=19.07 mm p=1000 kg/m 3

h=0.889 mm Ref: piO=O.1 MPa h=0.714 mm Ref: piO=O.1 MPa

a0=351 MPa Ref: Phyd= 6 .7 3 MPa cTo=351 MPa Ref: Phyd=11 MPa

-Cylinder A

- - Cylinder B

1

0.9

0.8

0.7
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0.3

0.2

0.1

0

Figure 6-5: Effect of varying internal pressure on implosion pulse energy (constant
cylinder geometry).
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Constant Hydrostatic Pressure

Second, the internal pressure was varied along with the cylinder wall thickness, h,

to maintain a constant initial collapse pressure (or hydrostatic pressure). This is

the more realistic approach because in most real applications, an implodable will be

designed for a specified operating depth. As the internal pressure is increased, the wall

thickness may be correspondingly decreased to maintain the same collapse pressure.

The ABAQUS numerical model, described in Chapter 3, was used to evaluate the

buckling pressure of the two example cylinders over a range of wall thicknesses. The

buckling pressure was subtracted from the constant hydrostatic pressure to give the

required internal pressure for each thickness. The reference condition is the original

wall thickness (ho) with an internal pressure of 1 atmosphere (0.1 MPa). The non-

dimensional pressure ( -h) is plotted vs. the non-dimensional thickness ( ) in Fig.
Phyd h

6-6. The two example cylinders show a nearly identical inverse relationship.
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Cylinder A Cylinder B
L=137.3 mm p,=2700 kg/m 3  L=183.4 mm ps=2700 kg/m 3

R=12.7 mm p=1000 kg/m 3  R=19.07 mm p=1000 kg/m 3

h=0.889 mm Ref: pjO=0.1 MPa h=0.714 mm Ref: piO=O.1 MPa

cO=351 MPa Ref: Phyd= 6 .7 3 MPa ao=351 MPa Ref: Phyd= 1 .1 MPa

Pio

0.7

0.6

0.5

0.4
-Cylinder A

Phyd 0.3 -- ----- - - - -- Cylinder B

0.1-

0.7 0.75 0.8 0.85 0.9 0.95 1

h
ho

Figure 6-6: Internal pressure vs. cylinder wall thickness (constant hydrostatic pres-
sure).
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The simplified FSI method of Chapter 5 was then used to calculate the pulse

energy over a range of wall thicknesses and corresponding internal pressures for the

two example cylinders. The non-dimensional pulse energy (j) is plotted vs. the

non-dimensional pressure (Pi 0 ) and non-dimensional thickness (L) in Fig. 6-7. The
Phyd h

plots indicate that the pulse energy decreases as initial internal pressure increases and

wall thickness decreases. There exists a value for pio above which the cylinder will

not fully implode and the implosion pulse does not occur.

167



Cylinder A Cylinder B

L=137.3 mm p,=2700 kg/m 3  L=183.4 mm PS= 2 700 kg/m 3

R=12.7 mm p=1000 kg/m 3  R=19.07 mm p=1000 kg/m 3

h=0.889 mm Ref: piO=0 .1 MPa h=0.714 mm Ref: pjO=O.1 MPa

cO=351 MPa Ref: Phyd= 6.7 3 MPa a0=351 MPa Ref: Phyd=
1 .1 MPa

-Cylinder A
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(a) Energy vs. internal pressure.
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h

(b) Energy vs. thickness.

Figure 6-7: Effect of varying internal pressure and thickness on implosion pulse energy
(constant hydrostatic pressure).
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Limitations on Internal Pressure

The previous analysis shows that increasing the initial internal pressure, accompanied

by either a corresponding increase in collapse pressure or a corresponding decrease

in wall thickness, lowers the implosion pulse energy. If the internal pressure is high

enough, complete implosion can be prevented. However, there are practical limits

to the internal pressure. First, the contents of the implodable (electronics, sensors,

propulsion systems, etc.) must be able to survive and operate in the pressurized

atmosphere. If the implodable is to be manned, then the human response to pressure,

and the necessary subsequent decompression, must be considered. Second, internal

pressure causes structural stresses opposite in sign from the stress caused by external

pressure. In some cases, the stress from internal pressure could be design-limiting.

An alternative way to increase Eai is by changing the composition of the gas,

which changes the ratio of specific heats (-y). From Eq. (6.2), it follows that a higher

value of -y gives a higher value of Eair, for the same volume ratio. The noble gases

helium, neon, argon, krypton, xenon, and radon all have -y = 1.67, compared to air

with -y = 1.4. For all the example cylinders analyzed in this work, the volume ratio

at the end of Phase 1 was approximately - = 1.3. For this volume ratio, increasing

y from 1.4 to 1.67 increases Eai, by 3.7%. Therefore, using a noble gas instead of

air as the internal medium would cause a slight increase in Ei and a corresponding

decrease in implosion pulse energy.

In summary, the maximum reduction in pulse energy will be realized when a noble

gas medium is used in combination with the highest possible internal pressure, limited

by the considerations discussed above.
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6.3 Use of Flexible Material Inside Cylinder

The final design recommendation of this thesis is discussed qualitatively only; no

quantitative analysis has been done to date. The recommendation seeks to reduce

the peak pressure reached during the implosion, rather than reduce the implosion

pulse energy.

A representative fluid pressure history from an implosion event is shown in Fig.

6-8.

600
Pd

(psi) 4 0 0

200

0-

-200
-0.8 -0.4 0 0.4 0.8

t (ms)
Figure 6-8: Typical dynamic pressure history for an underwater implosion event.
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The large pressure spike is caused by compression of the fluid when the in-rushing

motion abruptly stops. The magnitude of the pressure spike is closely related to the

deceleration of the solid surface and accompanying fluid. The fluid dynamic pressure

(assuming potential flow conditions) is given by Eq. (5.17), repeated here:

pd = -P + 1 V# |2 (6.3)

As noted before, the potential flow assumptions are not strictly valid at the instant of

impact, because of fluid compressibility. However, Eq. (6.3) still gives an estimate of

dynamic pressure if compressibility is neglected. During Phase 1 collapse, the second

term on the right-hand side of Eq. (6.3) is much larger than the first term, resulting

in the large negative dynamic pressure just before impact. At the instant of impact,

2 acquires a large negative value while I V# 12 drops significantly. The result is that

the first term dominates the second, giving a large positive value of dynamic pressure.

Thus, the magnitude of the pressure spike can be reduced by reducing the magnitude

of 2 at the instant of impact, which in turn is reduced by slowing the deceleration

of the solid surface and accompanying fluid.

One way to reduce the surface deceleration is to add a layer of flexible material,

such as rubber or polyurea, to the inside of the metallic cylinder. This layer serves to

cushion the impact between opposite cylinder walls by converting some system kinetic

energy into elastic stored energy. The stored elastic energy may be permanently

stored if the structure remains fully crushed, or it may be released if there is a slight

rebound. In either case, the finite (albeit small) duration of the elastic process serves

to lengthen the overall duration of the energy conversion process, which effectively

reduces the deceleration of the surface. The total energy transmitted in the implosion

pulse is the same as if the flexible layer were not present; however, the pulse power

(energy/time) is lower because the pulse duration is longer.
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The flexible lining material could be applied uniformly to the inner surface of the

cylinder to provide cushioning at every point of contact. However, analysis shows

that the peak pressure occurs very close to the end of Phase 1. Therefore, only the

region of the cylinder which experiences the first contact must be cushioned to achieve

the bulk of the benefit. If the specific collapse mode is known, then the flexible lining

can be optimized by only applying in the areas of first contact. Figure 6-9 shows

an example of a uniformly applied lining, as well as a lining optimized for mode 2

collapse.

Solid cylinder

Flexible lining material

Figure 6-9: Flexible cylinder lining to reduce implosion severity.
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The semi-analytic tools and methods developed in this work are not able to quan-

titatively evaluate this design recommendation. A fully-coupled numerical simulation

is required to fully evaluate its effectiveness in reducing the peak pressure of the im-

plosion pulse. The details of lining optimization are left as future work.
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Chapter 7

Conclusions and Future Work

This chapter summarizes the results and conclusions of the present research and

provides recommendations for future work.

7.1 Conclusions

The underwater implosion problem was analyzed using an energy balance approach,

with the principle of virtual velocities as a foundation. The primary goal of the

research was to develop tools and methods to accurately estimate the severity of an

implosion pulse (quantified by the pulse energy), given a cylinder geometry, material

properties, and external hydrostatic pressure. A secondary goal was to apply the

knowledge gained through the research to make design recommendations to minimize

the implosion severity.

Assumptions

A number of assumptions and simplifications, summarized in the following list, were

required to make the problem tractable. The assumptions are described in detail in

Chapter 2.
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1. The material was modeled as rigid-perfectly plastic, with flow stress -o.

2. The bending and membrane effects were separated by assuming a rectangular,

limited interaction yield condition.

3. Shear energy dissipation is neglected.

4. The 3D kinematics of implosion are simplified into single degree of freedom

models for all three collapse phases. The circumferential shape is described by

the stationary hinge model in Phase 1, and by a new moving hinge model in

Phases 2 and 3. The longitudinal shape is assumed to be triangular or linear in

all phases.

5. The internal air compression is treated as adiabatic and uniform throughout

the cylinder.

6. Only symmetric mode 2 collapse, without fracture, is considered.

ABAQUS Numerical Simulations

A numerical model of a hydrostatically-loaded cylinder was developed. The model did

not include fluid effects. The model was used to investigate the kinematics of cylinder

collapse and to guide the assumptions used in the analytic energy derivations. The

simulations also calculated plastic energy dissipation, for comparison to the analytic

solutions.

Plastic Energy Dissipation

Expressions for the plastic energy dissipation (bending and membrane) for all three

phases were developed. In all cases, the energy expression was a function of a single

time-like parameter, though the parameters were different for each phase. The Phase 2

and 3 results were semi-analytic, because they required estimates of non-dimensional
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parameters extracted from numerical simulations (bof, ,2f, and (,). The derived

energy expressions match numerical simulations within 10%. The error is significantly

less for thicker-walled cylinders (i.e., cylinders with lower R/h). In all cases analyzed,

the plastic energy dissipation constituted at least 70% of the total external work done

on the cylinder.

Simplified FSI Methodology

A simplified fluid-structure interaction methodology was developed to evaluate the

effects of the surrounding fluid and calculate the implosion pulse energy. The method-

ology uses an explicit time-stepping approach, with the assumption of constant pres-

sure and corresponding acceleration over very small time intervals. The simplified

FSI methodology provides an accurate estimate of implosion pulse energy, given the

cylinder geometry (L, R, and h), cylinder material properties (o and ps), fluid den-

sity (p), initial internal air pressure (pi0 ), and hydrostatic pressure (Phyd). The results

for a specific example cylinder are within 6% of fully-coupled numerical simulation

results.

Implodable Design Recommendations

Three general implodable design recommendations, summarized in the following list,

were made based on the results of the energy derivations and simplified FSI method-

ology. The intent of the first two recommendations is to reduce the implosion pulse

energy. The intent of the final recommendation is to reduce the magnitude of the

implosion pressure spike.

1. Increase the plastic energy dissipation for a given cylinder geometry and hy-

drostatic pressure. This can be done by designing the implodable so that it

preferentially collapses into higher modes that dissipate more energy, or by
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adding a layer of energy-absorbing material to the inner cylinder surface.

2. Increase the energy absorbed by the internal air. This can be done through a

combination of increasing initial pressure and/or utilizing a gas with a higher

ratio of specific heats (-y) than air.

3. Reduce the deceleration of the cylinder at the instant of impact between oppo-

site cylinder walls. This can be done through the use of a flexible cushioning

material on the inner cylinder surface.

The effectiveness of these design improvements will vary with each specific implod-

able's unique set of design specifications and constraints. However, these recommen-

dations can be applied, in some degree, to all implodables to reduce the effect of

implosion on an adjacent structure.

7.2 Future Work

Three areas of future work directly related to this research were identified.

Analytic (or Semi-Analytic) Solutions for Higher Modes

As shown in Chapter 6, the collapse mode affects the plastic energy dissipation, which

is inversely related to the energy transmitted in the implosion pulse. The analytic

energy solutions and the simplified FSI methodology developed in this work apply

specifically to symmetric mode 2 cylinder collapse.

The entire analysis process described in Chapters 2, 4, and 5 could be repeated

for other symmetric collapse modes. First, a viable set of kinematic assumptions and

models must be developed that accurately represents the higher mode collapse shape.

Then the plastic energy dissipation could be calculated, following the same process
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used for mode 2. Finally, a simplified FSI methodology, using explicit time-stepping,

could be developed, just as it was for Phase 2.

Analytic or semi-analytic solutions will always be limited to symmetric, pre-

dictable collapse modes. This is because an essential part of the analytic solution

process is accurately predicting the kinematic behavior during collapse. For this rea-

son, analytic or semi-analytic solutions cannot be used to investigate UNDEX-induced

implosion, which is inherently asymmetric.

Optimization of the Flexible Cylinder Lining Concept

As discussed in Chapter 6, a flexible or energy-absorbing cylinder lining would serve

to reduce the severity of the implosion pulse. The cost of this improvement will

be additional weight, as well as reduction in internal usable volume of the cylinder.

The lining could be optimized with regards to weight and thickness by targeting the

regions of the cylinder where first contact will occur during collapse. A fully-coupled

numerical simulation is required to fully evaluate the cylinder lining concept and its

effectiveness in reducing the peak pressure of the implosion pulse.

Improvement of the FSI Solution

In Chapter 5, it was shown that the potential flow assumptions are valid throughout

the implosion process, except for the brief instant of impact between opposite cylinder

walls. The dynamic fluid pressure was estimated by neglecting the term o, though

this assumption was not formally justified. In order to fully evaluate the fluid behav-

ior, it is necessary to calculate the fluid potential function # = #(x, y, z, t). Once the

potential function is known, then the fluid velocity (V' = V4) and dynamic pressure

(Pd= -p + I | V4 |2)) can be found at any location and time.

From potential flow theory, the governing partial differential equation (PDE) is
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the Laplace equation:

V2# = #22 + #YY + #22 = 0 (7.1)

A boundary value problem (BVP) is formulated by specifying boundary conditions on

the boundary of the fluid domain. In the case of underwater implosion problems, the

fluid boundary is the solid cylinder surface. If the normal velocity vn = o is specified

on the cylinder surface, then the BVP is of the Neumann form. A conceptual solution

methodology for the Neumann BVP is outlined in the following steps:

1. Solve the structural deformation problem, assuming the loading is constant

hydrostatic pressure and neglecting the effects of the fluid. The desired output

is the velocity field of the structural surface. This was accomplished by the

ABAQUS numerical simulation described in Chapter 3.

2. Use the surface velocity from step 1 as the boundary condition for the BVP.

Solve the BVP for #(x, y, z, t). Use # to calculate the dynamic pressure, pd(x, y, z, t).

3. Add the resulting dynamic pressure function to the constant hydrostatic pres-

sure and repeat the structural solution with the total pressure. Continue iter-

ating until the solution converges.

Of course, the difficulty in this process is analytically solving the BVP for #(x, y, z, t).

Preliminary work was done on this problem and is presented in Appendix C. The

solution was not continued in this research because of time constraints and because

of uncertainty as to the usefulness of the results1 .

If deemed worthwhile, future work could be pursued to further develop an analytic

solution for #(x, y, z, t). The result could be used to 1) justify the Phase 1 dynamic

pressure assumption, and 2) provide insight into the fluid behavior (velocity and

pressure) at any location and time.

'The usefulness of an analytic solution, which will necessarily include simplifying assumptions,
is questionable when fully-coupled FSI numerical simulations are available (but computationally
expensive).
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Appendix A

Effect of Linear Longitudinal

Deformation Assumption on

Energy Dissipation

In Section 2.5.3, the longitudinal deformation profile during collapse was discussed. It

was assumed that the longitudinal profile is linear or triangular. In order to validate

this assumption, the accuracy of the resulting energy calculation is evaluated for a

specific example case.

The longitudinal deformation profile for an example cylinder at the end of Phase 1

is shown in Fig. A-1. The actual shape (from ABAQUS simulation) is plotted, along

with the linear approximation and a best-fit polynomial curve. The actual shape is

very closely matched by a third-order polynomial function. The linear approxima-

tion underestimates the displacement near the cylinder center, and overestimates the

displacement near the cylinder ends.
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In Chapter 4, it was demonstrated that the contribution of bending energy is much

larger than membrane energy. Therefore, it is only necessary to consider bending

energy to assess the accuracy of the linear profile assumption. The bending energy

during Phase 1, as a function of a(x), was given by Eq. (4.17), repeated here:

Eb,tot = 2 L Mo (a(x) - dx (A.1)

where a(x) is dependent on the assumed longitudinal profile.

Assuming a linear longitudinal profile, the bending energy during Phase 1 was

given by Eq. (4.18), repeated here:

Eb,tot = 6 .2 2 MoL-ff (A.2)
R

At the end of Phase 1, wo = R, so that Eb,tot = 6.22MoL. If the more accurate

third-order polynomial function from Fig. A-1 is used, then the total bending energy

at the end of Phase 1 is given by:

Eb,tot = MO (2.317 * 10- 6L4 - 1.859 * 10- 3 L3 + 1.073 * 10- 1L 2 + 212.704L) (A.3)
R

For this example cylinder, L = 347.9 mm and R = 19.07 mm. Substituting these

values into Eqs. (A.2) and (A.3) gives the following results:

Table A.1: Effect of longitudinal profile on Phase 1 bending energy.

Linear Profile Eb,tot = 2164MO

Cubic Profile Eb,tot = 2237Mo

Percent Difference 3.4%
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Appendix B

Significance of Internal Air

In order to determine the significance of Eai in the overall energy balance of im-

plosion, an example problem is considered. The specific example is the cylinder

represented in Fig. 4-18a, with the following dimensions: R=12.7 mm, L=137.3 mm,

and h=0.889 mm. For this cylinder, the total plastic energy dissipation (from the

semi-analytic solution) is 550 J (Table 4.7). The energy required to compress the

internal air (assuming adiabatic compression) is found from Eq. (2.32), repeated

here:

Eair,adiabatic = ____- 1 (B.1)

For this example, pio = 0.1 MPa, V = 138,235 mm3 , and V = 14,597 mm 3 . Substi-

tuting these values into Eq. (B.1) gives:

Eair = 50.4J (B.2)

Thus, for this example:
Fai _50.4

a - = 9.2% (B.3)
Eint 550

An alternative way to evaluate the significance of internal air is to look at the

kinetic energy history for an implosion event. Figure B-1 shows the kinetic energy
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history for an example implosion, both with and without the inclusion of internal air.

OKLU

01~0111 BOM' L I U2U11hh I

Without air

With air

Time

End of Phase 1

Figure B-1: Effect of internal air on kinetic energy.

The figure shows that the internal air reduces the peak kinetic energy of the

system by about 8%. In effect, the air acts as a damper to slow the collapse of the

cylinder, which in turn will reduce the magnitude of the implosion pulse. In Chapter

5, it was demonstrated that the peak kinetic energy of the system is about equal to

the energy of the implosion pulse. Therefore, neglecting the internal air will result in

overestimating the pulse energy by about 8%.
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It should be noted that the analysis in this appendix assumes an initial internal

air pressure of 1 atmosphere (0.1 MPa). The magnitude of Ei, can be increased by

increasing the initial pressure or by using a gas other than air, as discussed in section

6.2.
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Appendix C

Analytic Solution for #(x, y, z, t)

Assuming potential flow conditions exist, the potential function #(x, y, z, t) satisfies

the Laplace equation:

V24 = #22 + 4OY + 422 = 0 (C.1)

subject to the boundary condition V# = V' on the cylinder surface. In order to make

the problem tractable, the 3D geometry of the cylinder is projected onto a 2D (x-y)

plane, and all displacement and velocity is assumed to be normal to the plane (i.e., in

the z direction). The domain D(x, y, t) defines the region of the cylinder projection,

or more specifically the region of non-zero velocity, on the x-y plane (-L < x < L,

-R < y R). The domain is a function of time because after the instant of first

contact, there is an expanding region of zero velocity in the center of the cylinder.

The boundary condition can then be expressed as:

- J F(x, y, t) on D(x, y, t) (C.2)
0 otherwise

where F(x, y, t) is the normal velocity of the projected cylinder surface. This bound-
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ary value problem has the following general solution:

#(xy,z,t) = If: c/(k.,k,,t)ekk+kszdkxdk,

Applying this general solution, the boundary condition becomes:

$5xz-0 = Jj - k~ + kk ik,k,)ei(k.x+ky)dkxdky (C.4)

In order to evaluate the coefficients 4 (kx,kyt), we make use of the Fourier transform

integral. The general form of the Fourier transform integral is:

g(x, y) = ( G(kx, ky)ei(k.x+ky)dkxdky

The inverse Fourier transform integral is:

G(kx, ky) = Jj g(x, y)e-i(kx+kyy)dxdy

In this case,

G(kx,ky)= 

and

(27r) 2g(x, y) =

Therefore:

{
- kx2+ kyck(k:,k,,t)

F(x, y, t) on D(x, y, t)

0 otherwise

2 2

( , )2
x YVk + k (kxkyt) 27r

or

(kky,)= 4r2 + k lID

D F(x, y, t)e-i(kx+kyy)dxdy
D

F(x, y, t)e-i(kxxkly)dxdy
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Substituting this expression into the general solution gives:

#(x, y, z, t ) = JJ 4,2 1 k2 F (, p, t)e-i(kk)dAd (kx+ky)e- Vk2+k zdkxdky

(C.11)

If F(x, y, t) is known from the structural deformation solution, then Eq. (C.11) can

be evaluated for #(x, y, z, t).

The infinite integrals in Eq. (C.11) can be bounded to the range over which kx

and ky are significant. In order to determine this range, the integral

f!L f_'R Fe-i(kx+kyy)dxdy

must be evaluated over a range of kx and k.. To evaluate the integral, the following

simple function was chosen for F(x, y, t):

F(x, y, t) = 1 - 1 - (At2 + Bt) (C.12)

This function is a simplification of the actual velocity profiles obtained using the

ABAQUS numerical simulation. The integral was numerically evaluated over the

range - 1< kx - and -j - k < i, and the results are plotted in Fig. C-1.

The plot shows that the value of the integral is only significant when |kx| 5 1

and Ikyl < . Thus, the infinite integrals in Eq. (C.11) may be replaced with these

limits.

The time dependence of F(x, y, t) does not appear in the general solution for #,

so the spatial and temporal dependencies may be separated as follows:

#(x, y, z, t) = #(x, y, z)T(t) (C.13)

where T(t) is determined (or approximated) from the structural solution.
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Figure C-1: Range of significance of k_ and ky.

Improved Boundary Condition

The function F(x, y, t) describes the velocity of point (x,yO) with respect to time.

The function is valid until the time when the velocity of that point becomes 0 (be-

cause of contact). In order to make the solution valid over the period of contact, the

Heaviside step function is introduced.

H(x) = {0, x <0

1, X;> 0
(C.14)

The Heaviside step function can be smoothly approximated by:

1
H(x) ~

1 + e- 2 kx
(C.15)

where k is a constant defining the sharpness of the step transition (a larger value of

k represents a sharper step transition at x=0).
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If r*(x, y) is a function that defines the time of contact for point (x,y,O), so that

r*(0, 0)=the time of first contact at the center of the cylinder (i.e., the end of Phase

1), then the boundary condition, Eq. (C.2), can be written as:

#2(x, y, 0, t) = F(x, y, t) [1 - H(t - r*(x, y))] = F(x, y, t) 1 1 + e2k(tr*(x,))l

(C.16)

The general solution for #(x, y, z, t) is then:

R 10

#(Xyz,) J 4r 2 'k 2 + k 2  F(s, y, t) 1 1*(''y) 1*.''
Se-i(k&+kys)dAdQ] ei(k.x+kyy)e -k+ky zdkxdky (C.17)

where:

" F(x, y, t) = #2|2=o on D

* T*(x, y) = function that defines when #z Ix,y,o = 0

* k = factor that defines the sharpness of the step transition to zero velocity

The factor k is directly related to the stiffness or flexibility of the cylinder inner

surface (see Section 6.3 for a discussion on use of flexible cylinder linings). Figure

C-2 plots the approximate Heaviside step function (Eq. (C.15)) for several values of

k. In order to evaluate Eq. (C.17), a value of k must be chosen that is appropriate

to the physical conditions of the actual cylinder.
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Figure C-2: Heaviside step function for various values of k.
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Appendix D

MATLAB Listings

Cylinder Critical Pressure

%Calculates and plots the quasistatic cr itical pressure (Pc) as a .

function of wO

clear

%User Inputs

sigma=351;% material flow stress (MPa)

R=12.7;%cylinder radius (mm)

L=137.3;%cvlinder length (mm)

t=0.889;%cyli..nder thickness (mm)

Pext=6.73;%external hydrostatic pressure (MPa)

PO=0.1;%initial internal air pressure (MPa)

M=sigma*t^2/4;%fullv plastic bending moment

N=sigma*t;%ful..ly plastic membrane force
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w=[.l:.01:R];

Pcl=-(6.22*M*L/R)/(2.574*R^3*L)./((cos(pi/2*w/R)*pi/2/R.*w-sin(pi/2*w...

/R))./w.^2);%Pc due to bending energy

Pc2=-(.491*8*w/L*N*R)/(2.574*R^3*L)./((cos(pi/2*w/R)*pi/2/R.*w-sin(pi.

/2*w/R))./w.^2);%Pc due to membrane energy

Pc3=PO*(2*pi./(2*pi-4+2.574*sin(pi/2*w/R) ./(w/R))) .1.4;%Pc due to ...

air comp-ression

Pc=Pcl+Pc2+Pc3; %Total Pcrit

%Non-dimensional critical pressure

Pclbar=Pcl*R^2/sigma/t^2;

Pc2bar=Pc2*R^2/sigma/t^2;

Pc3bar=Pc3*R^2/sigma/t^2;

Pcbar=Pc*R^2/sigma/t^2;

wbar=w/R;

i=find(Pc<Pext,1);%index of Pc corresponcing to first value < Pext

%Plot results

figure(1)

plot(wbar(i:length(wbar)),Pcl(i:length(Pcl)),'r-',wbar(i:length(wbar...

)),Pc2(i:length(Pc2)),'b-.',wbar(i:length(wbar)),Pc3(i:length(Pc3...

)),'c:',wbar(i:length(wbar)),Pc(i:length(Pc)),'k-')

xlabel ( 'wO/R')

ylabel('Pc (MPa)')

legend('Eb', 'Em', 'Eair', 'Total')

title('Quasistatic Pc during Phase I')
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Explicit Time-Stepping Procedure

%pres-...t.m

%Routine to calculate and plot iterative steps of P and Pc during ...

Phase 1

%units length mm, pressure=MPa, time=sec, density=tonne/mm^3

%Assumes constant acceleration, a= (P-Pc) /m, over each time interval

delta t

clear

clf

%User inputs

L=137.3;%cylinder length

R=12.7;%cylinder radius

h=0.889;%cylinder thickness

sigma=351; %material flow stress (MPa)

M=sigma*h^2/4;%fully plastic bending moment

N=sigma*h;%fully plastic membrane force

%Iterative calcs are done with and witnout added mass. Variables ...

with 'a' include added mass

delt=.0000001; %time step delta t (sec)

roh=le-9;%density o. water (tonne/mm^3)

rohs=2.7e-9;%density of cylinder material (tonne/mr^3)

m=rohs*h;%mass/area of cylinder material (tonne/mm^2)

ma=rohs*h+roh*pi/4; %mass/area of cylinder material + added mass of

water (tonne/mm^2)

Pint=0.1;%initial irternal a pressure (MPa)
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w(1)=1.61;%initial def.Lection, to account for fact that Pc goes to ...

infinity at w=O (i value from Pcrit .m)

wa(1)=w();%initial deflection with added mass included

wdot(1)=0;%initial velocity

wadot (1)=0;%in.i.tial velocity with added mass

Pd(1)=-roh/2*wdot(1) ^2;%initial dynamic pressure

Pad(1)=-roh/2*wadot (1) ^2;

P (1)=6.73;%.initi.al external pressure (MPa)

Pa(1)=6.73;

Pc(1)=(-6.22*M*L/R-.491*8*N*R/L*w(1))/(2.574*R^3*L*(cos(pi/2*w(1)/R)*

pi / 2/R*w (1) -s in(pi / 2*w (1) /R) )/w (1) ^2) +Pint *(2 *pi *w (1) /R/ (2 *pi-4+2 ..

.574*sin (pi/2*w (1) /R) ))1. 4; %cylinder crit ical pressure

Pac(l)=(-6.22*M*L/R-.491*8*N*R/L*wa(1))/(2.574*R^3*L*(cos(pi/2*wa(1)/

R) *pi/2/R*wa (1)-sin (pi/2*wa (1) /R) ) /wa (1) ^2) +Pint* (2*pi*wa (1)/R...

/(2*pi-4+2.574*sin(pi/2*wa(1)/R)))^l.4;

t(1)=0;

ta(1)=0;

KE(1)=0;%kinetic energy

KEdot(1)=0;

We (1) =0; %external work

Wedot(1)=0;

KEa(1)=0;

KEadot(1)=0;

Wea(1)=0;

Weadot(1)=0;

%i:Lterat.ions wAhout added mass

for i=2:50000;
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t (i) =t (i-1)+delt*1000;%tme

w(i) =w (i-1)+wdot (i-1) *delt+delt^2/2* (P (i-l)-Pc (i-1)) /m;% ...

displacement at step i

KE(i)=KE(i-1)+(KEdot(i-1)*delt)/1000;%KE=Joules

We (i) =We (i-1) +Wedot (i-1) *delt/1000;

if w (i)>=R%check if contact has occurred yet

break

else

wdot(i)=wdot(i-1)+delt*(P(i-1)-Pc(i-1))/m;%velocity at step i

Pd(i)=-roh/2*wdot(i)^2;%dnamic pressure at step i

P(i)=P(1)+Pd(i);

Pc(i)=(-6.22*M*L/R-.491*8*N*R/L*w(i))/(2.574*R^3*L*(cos(pi/2*w(i)...

/R)*pi/2/R*w(i)-sin(pi/2*w(i)/R))/w(i)^2)+Pint*(2*pi/(2*pi...

-4+2.574*sin(pi/2*w(i)/R)/(w(i)/R)))^l.4;

V(i)=R^2*L*(2*pi-4+2.574*sin(pi/2*w(i)/R)/(w(i)/R));%cylinder ...

volume at step i

Vdot(i)=2.574*R^3*L*wdot(i)/w(i)^2*(pi/2*w(i)/R*cos(pi/2*w(i)/R)-.

sin(pi/2*w(i)/R));

KEdot (i)=-(P (i)-Pc(i) ) *Vdot (i);

Wedot (i)=-P (i) *Vdot (i);

end

end

%iterations with added mass

for i=2:50000;

ta (i) =ta (i-1)+delt*1000;

wa (i) =wa (i-1) +wadot (i-1) *delt+delt^2/2* (Pa (i-1)-Pac (i-1)) /ma;%...

displacement at step i

Epa(i)=(6.22*M*(wa(i)-wa(1))/R*L+.2455*8*N*R/L*(wa(i)-wa(1))^2)..

'1000; %tctal plastic energy dissipated (J) (subtract :i.nit ial.

wa, because i-t is elastic)
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Eair(i)=1/.4*Pint*2*pi*R^2*L*((2*pi/(2*pi-4+2.574*sin(pi/2*wa(i)/

R)/wa(i)*R))^.4-1)/1000; %energy required. to compress air

KEa(i)=KEa(i-1)+(KEadot(i-1)*delt)/1000; %KE=Joules (includes ...

energy of both solid and water)

Wea(i)=Wea(i-1)+Weadot(i-1)*delt/1000;

if wa(i)>=R%check if contact has occurred yet

break

else

wadot(i)=wadot(i-1)+delt*(Pa(i-1)-Pac(i-1))/ma;%velocity at step

Pad(i)=-roh/2*wadot (i) ^2; %dvnam.ic pressure at step i

Pa (i) =Pa (1) +Pad (i);

Pac(i)=(-6.22*M*L/R-.491*8*N*R/L*wa(i))/(2.574*R^3*L*(cos(pi/2*wa

(i)/R)*pi/2/R*wa(i)-sin(pi/2*wa(i)/R))/wa(i)^2)+Pint*(2*pi ...

/(2*pi-4+2.574*sin(pi/2*wa(i)/R)/(wa(i)/R)))^1.4;

Va(i)=R^2*L*(2*pi-4+2.574*sin(pi/2*wa(i)/R)/(wa(i)/R));%cylinder

volume at step i

Vadot(i)=2.574*R^3*L*wadot(i)/wa(i)^2*(pi/2*wa(i)/R*cos(pi/2*wa(i

)/R)-sin(pi/2*wa(i)/R));

KEadot (i)=-(Pa(i)-Pac(i) ) *Vadot (i);

Weadot(i)=-Pa(i)*Vadot(i);

end

end

deltaV=Va(2)-Va(length(Va));%total change in volume

Wextmax=deltaV*Pa(1)/1000%external work, assuming constant P

KEsum=Wea-Epa-Eair;

%Numerical simulation data, for comparison

tNUWC=[0+.052:.05:.35+.052];%shifted by 0.052 to best match analytic

so luti. on

pNUWC=[6.73 6.58 6.3 5.54 4.25 2.74 1.96 1.85];
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%various plots of results

figure (1)

plot (w(1:length(w)-1),Pc, 'k',w(1:length(w)-1),P, 'b--',wa(1:length(wa)

xlabel ('w (mm)')

ylabel('P (MPa)')

legend('Pc', 'P (without added mass) ','P (with added mass)')

grid on

figure(2)

plot(t(1:length(t)-1),Pc,'k',t(1:length(t)-1),P,'b-')

xlabel('t (msec)')

ylabel('P (MPa) ')

legend('Pc', 'P')

title('Without added mass')

grid on

figure(3)

plot(wa(1:length(wa)-1),Pac,'r',wa(1:length(wa)-l),Pa,'b')

xlabel ('w (mm) ')

ylabel('P (MPa) ')

legend('Pc', 'P')

title('With added mass')

grid on

figure(4)

plot (ta(1:length(ta)-1),Pa, 'b-',tNUWC,pNUWC, 'r-')

xlabel('t (msec)')

ylabel('P (MPa) ')

legend ('Analytic', 'N-umerical')

grid on
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figure (5)

plot(ta,Wea,'r',ta,KEa,'b')

xlabel('t (msec) ')

ylabel('Energy (J)')

legend('Wext','KE','Location','NorthWest')

title('With added mass')

grid on

figure(6)

plot(wa,Wea,'k-',wa,Epa,'r-.',wa,KEsum,'b--',wa,Eair,'m:')

xlabel('w (mm)')

ylabel('Energy (J)')

legend('W','Eint','KE ','Eair','Location','NorthWest')

text(6.2,95, 'W=Eint+Eair+KE')

axis([O 14 0 110])

grid on
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