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Abstract

Perovskite oxides such Bao.5Sr0 Co 0 8 FeO 803 6 (BSCF82) are among the most active

catalysts for the oxygen evolution reaction (OER) in alkaline solution reported to date.
In this work it is shown via high resolution transmission electron microscopy (HRTEM)
and Raman spectroscopy that oxides such as BSCF82 rapidly undergoes amorphization
at its surface under OER conditions, which occurs simultaneously with an increase in
the pseudocapacitive current and OER activity. This amorphization was not detected at
potentials below those where significant OER current was observed. Lower
concentrations of Sr'- and Ba' are found in the amorphous regions of BSCF82.
Perovskite oxides with lower OER activities such as LaCoO3 (LCO) and LaMnO3
(LMO) remained crystalline under identical electrochemical conditions. In addition, the
OER activity and tendency for amorphization are found to correlate with the oxygen p-
band center as calculated using density functional theory. This work illustrates that the
surface structure and stoichiometry of oxide catalysts can differ significantly from the
bulk during catalysis, and that understanding these phenomena is critical for designing
highly active and stable catalysts for the OER.
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1 Introduction

1.1 Motivation

The risks of anthropogenic climate change have led to intensive research towards

alternative sources of energy to conventional fossil fuels. Greenhouse gas emissions have

steadily increased and are projected to continue to increase in the near future," further

highlighting the need for scientific solutions to the global energy crisis. Clean, renewable

energy sources such as wind and solar energy have attracted significant attention, but

have the disadvantage of being intermittent in nature. One possible avenue to

improving the reliability and practicality of these technologies is a robust and efficient

way of storing intermittent energy as chemical fuel which can be used at a later time. In

particular, molecular hydrogen generated by the electrochemical splitting of water has

received a large amount of focus in the literature.3 - However, the efficiency of this

process is limited by the sluggish electrochemical kinetics of the oxygen evolution

reaction (OER), which is one half of the overall water splitting reaction (the other half

being the hydrogen evolution reaction, HER).

Commercial grid electrolyzers are attractive for their simplicity and commercial

readiness compared to the direct solar-to-fuel scheme." While larger-scale systems will

start to accumulate ohmic losses that make up a large part of the efficiency losses,

kinetic overpotential loss from the oxygen evolution reaction still remains significant13

and necessitates the use of precious metal oxides (IrO2, RuO2 ) for acidic electrolytes"

and nickel/nickel oxides which are susceptible to deactivation over time in alkaline

electrolytes."
17



There has been growing interest in the area of solar fuels,"' where sunlight is used

to drive the synthesis of chemical fuel, in a sort of "artificial photosynthesis". For these

applications, where current density is limited by the solar photon flux, highly efficient

catalysts may be particularly important as a way to reduce the photovoltage needed to

sustain a given current, relaxing constraints on semiconductor device performance. The

state-of-the-art OER catalysts typically require around 400 mV of overpotential5'10 to

sustain the current densities achieved in record photoelectrochemical cells.1 5 This is a

non-trivial amount of additional photovoltage for a device to provide.

It is clear that earth-abundant, inexpensive and highly efficient catalysts for the

OER will have an enormous impact on the viability of generating hydrogen from water,

and possibly for the generation of other hydrocarbon fuels as well, where the OER is a

half-reaction. However, the exact mechanism remains relatively poorly understood (i.e.

when compared to HER), even though there have been recent advances in achieving

high-performance catalysts with some first steps towards rational design. 37 01 1 There

remains much room for furthering our fundamental understanding of the reaction

mechanism and the requirements for a highly active, stable catalyst.

1.2 The Oxygen Evolution Reaction: Historical Overview

The OER is a 4 step, 4 electron transfer half-reaction, with the net reaction

typically written in acid as (2H20 02 + 4H+ + 4e-)1 17 and in alkaline as (40H- -

2H20 + 02 + 4e ).1'1" The slow kinetics of this reaction have been known-albeit not

fully understood-for nearly a century, along with the fact that the metal electrodes

18



studied frequently in early reports form oxide layers under OER conditions.2 0-" Hoar

proposed" that the electrochemical irreversibility is due to the permeability of the oxide

film to electrolyte and the resulting self-polarization (not taking into consideration

electrode kinetics), and mentions that a hypothetical catalytically-active stable metal

surface could provide reversible electrochemical behavior-although this is not possible

to test experimentally and is not in agreement with the modern picture of OER

irreversibility based on density functional theory."2 Hoar was also the first to make the

connection that the intersection of the Tafel lines for oxygen evolution and reduction

occurs at 1.23 V vs. reversible hydrogen electrode (RHE), which is the theoretical

thermodynamic potential.2 1 One study by Bockris23 treated the OER (and multi-step

electron transfer reactions in general) in an analogous manner to the much more widely

studied hydrogen electrode, which by that time was starting to be understood to be

governed by the binding strength of intermediate hydrogen species to the catalyst

surface.2" Bockris performed a theoretical analysis of the expected Tafel behavior of a

series of hypothetical reaction pathways, by first expressing rate equations for each step

in the OER, and making several assumptions on the coverage isotherm, species

concentrations and rate-limiting step.2 ' This allowed a table of theoretical Tafel slopes

to be generated for a series of proposed pathways, for comparison to experimental data.

Unfortunately, the Tafel slopes were not unique to each proposed mechanism and

therefore we cannot determine, from this type of analysis, the true mechanism of the

OER-which to this day is still not conclusively understood.

Other early work focused on the attainability of a "reversible" oxygen electrode,

especially in acidic solution with platinum working electrodes and careful elimination of
19



system impurities.18 ,28 -34 Here, "reversible" refers to observing an open-circuit potential

equal to the thermodynamic potential of 1.23 V vs. RHE. This is indeed attainable on

clean platinum electrodes with electrolytes that have been pre-electrolyzed to achieve

low impurity concentrations, however, once appreciable OER current begins, the anodic

oxidation of platinum stops the reversible behavior. 18 35 In general, the open circuit

potential of approximately 1.0 V vs. RHE typically seen on platinum electrodes, is

attributed to a competing process, or mixed potential, between oxygen reduction (for

which Pt is a good catalyst) and platinum oxidation, owing to the extremely slow OER

kinetics.3 4 With this in mind, it is important to distinguish between a surface that can

provide an open circuit potential near the thermodynamically reversible potential and a

surface that can sustain high OER current with low overpotential. Platinum was

therefore only of interest as a model surface for fundamental studies of the OER

mechanism in acidic electrolyte.

Other electrodes, such as precious-metals iridium and ruthenium, have also been

investigated. 36 39 Shortly thereafter, the highly-active rutile oxide catalysts IrO (used in

proton exchange membrane electrolyzers) and RuO 2 were discovered.' 4 These materials

have still been subjects of active research in recent times.5 37 42
-4 These oxides reigned as

the most-active OER catalysts until recently,' 0 when transition metal oxides were

demonstrated to be capable of exceeding precious-metal oxides in activity. Transition

metal electrodes (their oxidized surfaces) have also been measured, 19' 4 7 -5 including

perovskite oxides, which will be discussed further in the next section. Typically these

systems are more complicated than the metal surfaces frequently studied in hydrogen

20



evolution/oxidation and less can be said of the exact nature of the oxygen

electrocatalysis mechanisms on these surfaces based on the electrochemistry data alone."

The mechanism may very well change between different materials. Investigating

transition metal oxide catalysts for OER remains an active area of study.

Recently, focus has increased on amorphous or nano-structured cobalt and nickel

oxides as OER catalysts, deposited anodically in phosphate or borate buffer

solution. 7'6' 7 61 Notably, these catalysts have a self-repairing ability in the above-

mentioned buffer solutions and have high catalytic activity even in neutral pH.

Furthermore, when comparing films of different thickness, the activity increases,

suggesting that the oxide films are permeable to electrolyte and that cobalt sites within

the bulk of the material are capable of acting as active sites for the OER. 2 Preliminary

isotope labeling experiments via 180-rich oxide films revealed significant amounts of "02

and 302 from in-line mass spectrometry, hinting that bulk oxygen may play a role in

the OER mechanism.6 2 Structural studies of amorphous cobalt films via extended X-ray

absorption fine structure (EXAFS) have revealed that the bulk film is composed of

structural motifs or "clusters", consisting of interconnected Co'--oxo cubanes, with

cobalt in edge-sharing octahedra.3 '6" It has been suggested from this structure that the

space between clusters could be filled with cations, anions or water, giving structural

evidence for the possibility of bulk cobalt atoms being active for OER." Furthermore,

the activity seems to scale with the size of these clusters.5 765 These amorphous,

electrochemically-deposited oxide films are of importance not only as potentially viable

catalysts in commercial applications, but also for the new fundamental insights that

may be gained through their study.
21



This section ends with a discussion of recent developments in the understanding

of OER kinetics. Perhaps one of the most profound advances in the study of oxygen

electrocatalysis-or electrocatalysis in general-is the "volcano" plot, first introduced

from theoretical considerations by Balandin." This is a visual representation of

Sabatier's principle: the optimal catalyst will bind the adsorbed species neither too

strongly nor too weakly." Trasatti presented an experimental volcano plot from the

literature available at the time for the oxygen evolution reaction, with the experimental

OER overpotential at a given current plotted versus the heat of formation from a lower

oxide to a higher oxide (where the metal becomes more oxidized) for the various metals,

effectively giving a measure of the metal-oxygen bond strength." This has led to a

thermodynamic picture of catalysis, where catalytic activity is described in terms of the

binding strength of intermediate species in the overall reaction." In this framework, the

change in Gibbs free energy of adsorbed intermediates must be energetically downhill for

each reaction step in order for the overall reaction to proceed appreciably." In the ideal

case, each intermediate step would result in a change of Gibbs free energy of 1.23 eV,

such that when the electrode potential is 1.23 V vs. RHE, the energy landscape is flat

(Figure 1.1). Some development of this concept was done via density functional theory

calculations of the binding strength of oxygen intermediates on various surfaces.

Rossmeisl et al. found scaling relationships between related oxygen intermediate

species."," This means that the adsorption energy of -00H and -OH, for example, are

not independent. In the context of the thermodynamic framework described above, this

implies that there is a limit to the activity of an OER catalyst." In real systems the

22



changes in Gibbs free energy for different intermediates are not the same, and since they

are not independent of each other they cannot be individually tailored to give the ideal

binding strength (Figure 1.1). It is important to note that this framework does not take

into account transition states, only intermediates bound to the surface, and hence it

does not truly consider kinetics. It remains to be seen whether such scaling relationships

can be overcome by creative catalyst design, such as three-dimensional structures or

multiple types of active site.

4.92E V

3.69

r 1.23

0 Eapp = 1.23 V

Reaction Coordinate

Figure 1.1: Free energies of OER intermediates on an oxide surface, for the case of zero
applied potential and 1.23 V applied potential. The specific intermediates assumed are not
considered here. The "ideal" catalyst is shown in red, while a more realistic catalyst is shown in
blue. The ideal catalyst has a flat energy landscape at the thermodynamic equilibrium potential
of 1.23 V vs. RHE. Figure adapted from work by Rossmeisl et al.2 ' and Dau et al."

1.3 Perovskite Oxides as Oxygen Evolution Catalysts

Perovskites are a diverse set of compounds typically with formula ABO3 , where A

is typically an alkaline earth or lanthanide metal but can be monovalent, bivalent or

trivalent, and B a transition metal with the ideal cubic structure shown in Figure 1.2.70

The A-site is 12-fold coordinated with oxygen and the B-site is in an octahedral 6-fold
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coordination with oxygen. Ideally, the B-O distance is a/2, where a is the cubic unit cell

length, and the A-O distance is a/12, giving a Goldschmidt tolerance factor7 of 1:

t (rA + ro)
t= (1.1)

V2(rB + ro)

For perovskites with t ~ 1, and at high temperatures, the structure is usually

cubic. Deviations from t = 1 can result in different distortions of the structure, such as

orthorhombic or rhombohedral. Perovskites are incredibly useful as a set of model

compounds owing to the large variety in chemistry and structure available by changing

the A- and B-site cations and by changing the stoichiometry via alloying. They have

therefore been used in many studies for oxygen electrocatalysis.10 ' 72 76

Typically in electrocatalysis the ion of interest is the B-site, and is usually

assumed to be the active site for oxygen evolution. ''" From a crystal field theory

perspective, the octahedrally-coordinated B-site's d-state manifold will be split into

several levels, as shown in Figure 1.3. The states of interest for catalysis will be the

antibonding eg and t2g states, since they are typically the occupied states with highest

energy and their filling will roughly determine the strength of the B-O bond.' 77

Figure 1.2: Cubic perovskite structure. The central B-site transition metal (dark blue) is
octahedrally coordinated by oxygen (red), with the A-site alkaline earth or lanthanide metal
(yellow) at the corners in a 12-fold coordination by oxygen.
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Figure 1.3: Qualitative molecular orbital diagram for octahedrally-coordinated transition metal
ion. Asterisks denote antibonding states. In bold are the eg and t2g states of interest in catalysis.

Figure adapted from Cox."

Numerous perovskite oxides were studied in the early 1980s by Bockris and

coworkers,72 ,73 as well' as Matsumoto et al.79 83 Several possible mechanistic pathways 3

were proposed, attempts were made to correlate the catalytic activity with M-OH bond

strength and number of d-electrons, and the possible importance of different orbital

occupancies was mentioned.72 Nickel and cobalt perovskites were typically regarded as

the most active perovskites for oxygen evolution.75'79 More recently, a scheme was

proposed based on a simplified molecular orbital model that uses the eg orbital

occupancy as a descriptor for perovskite OER activity," similarly to the case for the

oxygen reduction reaction,76 which was itself inspired by the d-band center theory for

metal surfaces.84'85 The OER activities of a series of perovskites were found to form a

volcano plot (Figure 1.4) when plotted versus the eg orbital filling, which was

determined via X-ray absorption near edge structure (XANES) and spin states inferred
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from other studies in the literature. Perovskites with an eg orbital occupancy of

approximately 1 were found to be the most active (e.g. LaNiO3 , LaCoO3 ) and based on

this principle a highly active perovskite catalyst, BaO 5SrO.5CoO.8FeO.20 3 . was discovered,

showing that these descriptors can be used to rationally choose materials as candidates

for promising OER catalysts. From this work, this thesis has extended the study of

some perovskite catalysts, studying further the catalytic activity and surface structure

changes that occur on BaO.5SrO5Co0 8Feo.20 3.6 and related compounds.

1.4 1 , , . . . , , ,
/ a 50 pA cmax

1.5 LU NA Ba 0Sr,.Co ,Feo.20 sO4

LaCoO3 LaoCa,.,CoO3
SLaO5CaO,5MnO3 La NC; CoO

LaMnuCu. 0O La Ca FeO
1.6 OT 10 3

LaMnO3 +, LaMnOa

' LaCrO3

1,8 - 1(
0.0 0.5 1.0 1.5 2.0 2.5

e electron9
Figure 1.4: Volcano plot showing the relationship between OER catalytic activity, defined as
the overpotential at 50 iA cm-2 (estimated true oxide surface area), and the eg orbital occupancy
of the B-site transition metal ion. Figure from previous work. 0

1.4 Scope of this Thesis

This thesis presents an investigation of the surfaces of perovskite oxide catalysts

before and after electrochemical measurements in alkaline electrolyte. The highly active

catalyst BSCF82 was observed to have unusual pseudocapacitance relative to other

perovskites studied.10 Further investigation of the electrochemical behavior of this
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catalyst and other perovskites is presented. Then, high resolution transmission electron

microscopy (HRTEM) shows that BSCF82 and the closely related compounds

SrCo 8 Fe, 203_ (SCF82) and BaO5 SrO5 Co04 Fe. 0 O3 -1 (BSCF46) undergo a structural change

(distinct from corrosion) at their surfaces to an amorphous oxide. This surface change is

concomitant with an increase in the pseudocapacitive current and the OER activity.

The other perovskite catalysts were investigated that remained crystalline under

identical conditions. Raman spectroscopy is shown to be an effective tool for quickly

determining whether an oxide rapidly becomes amorphous at the surface during OER.

The effects of different electrochemical conditions, such as cycling electrodes or holding

potentiostatically, and changing the potential window, are also discussed. Parallels

between the amorphous surface layers and electrochemically-deposited cobalt oxide film

catalysts are drawn. Based on density functional theory calculations, it is shown that

the calculated oxygen p-band center position relative to the Fermi level is a descriptor

for both experimental OER activity and stability in the perovskites studied. Finally,

further interpretations and hypotheses based on the data are discussed along with future

research directions. This work illustrates the importance of understanding the exact

nature of the oxide surface where the OER takes place, in order to further understand

and develop active and stable oxide catalysts for the OER.
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2 Experimental

2.1 Oxide Synthesis and Characterization

Several techniques were utilized in this study for synthesizing perovskite oxides,

including LaCoO 3 (LCO), LaMnO3 (LMO), La0,Sr 0 6CoO3- (LSC46), SrCo0 8 Fe0 .O 3 -

(SCF82), and Ba0 .5 Sr 0 .5 Co1 ,Fe,03_6 (y 0.2, 0.6; BSCF82 and BSCF 46, respectively).

For LCO and LMO a co-precipitation method was used, where metal nitrates (99.98%,

Alfa Aesar) were mixed in the desired molar ratio in deionized water (18 MQ-cm,

Millipore) such that metal concentrations were approximately 0.1 M. This solution was

titrated with 1.2 M tetramethylammonium hydroxide (100%, Alfa Aesar) until a

precipitate formed. This precipitate was then filtered and dried before annealing at

10000 C. LCO was annealed in dry air, while LMO was annealed in Ar.

BSCF82 and BSCF46 were synthesized by a nitrate combustion method.1" The

alkaline earth and transition metal nitrates (99.9998+%, Sigma-Aldrich) were added in

the desired molar ratio to deionized water at approximately 0.2 M concentration. The

mixture was then heated until most of the water had evaporated, and continued until

sparks were observed in the remaining powder, indicating combustion of the nitrates.

After the sparking had ceased, the powder was annealed in air at 11000 C for 24 h.

SCF82 was synthesized by solid-state reaction. SrCO3, Co3 04, and Fe2 03 were

mixed in the correct molar ratio, ground with a mortar and pestle and fired in air at

1000' C for 12 h. The powder was then ground again and annealed in air at 1100 C for

24 h with intermediate grindings.
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LSC46 was synthesized by the Pechini method.8" Similarly to the above methods,

metal nitrates were measured out in the desired molar ratio and added to deionized

water. Citric acid (99%, Sigma-Aldrich) was added in a 5:1 molar ratio of citric acid to

total metal cations. The mixture was stirred at 750 C for 30 min, before adding ethylene

glycol in a 1:1 molar ratio to citric acid. This mixture was covered and stirred at 900 C

for 1 h.

Phase purity was verified via X-ray diffraction with a Rigaku high-power rotating

anode X-ray powder diffractometer with a typical range of 300 to 95' 2,0 under Cr KU

radiation. All oxides used in this study showed no sign of impurity phases.

Particle size analysis was performed using scanning electron microscopy (SEM,

JEOL 6320 FV). Specific area (cm 2/mg) was calculated using a spherical geometry

approximation:8 7

A t 7r 2 6 d2 6 (2.1)
( )prd3 p d3  pdra

Each sum was calculated over all the individual particles counted in the

micrographs. Adobe Photoshop CS5 was used to select particles using the lasso tool, and

the image analysis tools were used to obtain two-dimensional areas for each selected

particle, from which an effective spherical diameter was obtained for use in equation 2.1.

Powder specific areas determined via this method have been found to agree fairly well

with those obtained by Brunauer, Emmet and Teller (BET) analysis, typically within a

factor of 2-3.1o'88
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2.2 Electrode Preparation

Electrodes were prepared by a catalyst ink drop-casting technique." Catalyst ink

was prepared by weighing out oxide power and acetylene black (AB) carbon in a 5:1

weight ratio and dispersing in tetrahydrofuran (THF, 99%, Sigma-Aldrich) such that 10

pL of solution contained 0.05 mg of oxide. This dispersion was bath-sonicated for 1 h,

and tip-sonicated for 10 min before adding KOH-neutralized Nafion@ polymer (DE520,

Ion Power, DE) as binder in a 1:1 weight ratio to AB carbon and bath sonicating again

for 2 min. The Nafion solution was prepared by dropping in 0.1 M KOH to the as-

purchased Nafion liquid, with a 2:1 volume ratio of Nafion to KOH. Then, 10 gL of ink

was deposited on a glassy carbon rotating disk electrode with a micro-pipette such that

oxide loading was 0.25 mg/cm 2 and left to dry. Electrodes that were prepared for

Raman spectroscopy measurements did not contain AB carbon in order to avoid

background signal.

2.3 Electrochemical Measurements

Electrochemical experiments were conducted using a rotating disk electrode setup

consisting of a borosilicate glass cell, either a saturated calomel reference electrode

(SCE) or Ag/AgCl reference electrode, platinum wire counter electrode and Teflon

electrode holder (all from Pine Instruments) and a Biologic SP-300 potentiostat.

Reference electrodes were calibrated in 0.1 M KOH by bubbling hydrogen gas (ultra-

high purity, Airgas) for 20 minutes and measuring hydrogen oxidation/evolution at a

platinum disk electrode. The open-circuit potential was then defined as 0 V versus

reversible hydrogen electrode (RHE) after verifying stable, reversible electrochemical
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behavior. The electrolyte prepared with deionized water (> 18 MQ-cm, Millipore) and

KOH pellets (99.99% purity metals-basis, Sigma-Aldrich) to yield a concentration of 0.1

M. For OER measurements, oxygen gas (ultra-high purity, Airgas) was bubbled for 15-

20 minutes before electrochemical measurements, and was continued during

measurements, to ensure 02/H 20 equilibrium at 1.23 V versus RHE. Cyclic

voltammetry measurements used a scan rate of 10 mV/s. All measurements used a

rotation rate of 1600 rpm, with the exception of electrodes prepared for Raman

spectroscopy, which used a rotation rate of 900 rpm. There was no observed dependence

of OER current on rotation rate in the potential windows accessed in this study. High-

frequency AC impedance was used to determine the ohmic resistance R of the

electrolyte (typically 45 Q for 0.1 M KOH). Ohmic losses were corrected by subtracting

the ohmic drop iR from the measured potential where i is the measured current and R is

the electrolyte resistance as described above. Potentials corrected for ohmic drop are

denoted as E - iR. OER kinetic currents were capacitance-corrected by taking the

average between positive- and negative-going scans, and the specific activity was

obtained by normalizing the current by the surface area of each oxide as estimated via

SEM measurements described previously.

2.4 Characterization of Electrochemically-Cycled Electrodes

Samples were prepared for transmission electron microscopy (TEM) by removing

the electrode from electrolyte following electrochemical measurements, rinsing briefly

with ethanol, then swabbing a lacy carbon grid over the electrode. Grids were dried and
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stored in a vacuum oven at 700 C. Samples of the as-synthesized powders were made by

sonicating the powder in THF for 5 minutes and then collecting the powder on a lacy

carbon grid, followed by drying in a vacuum oven at 70* C.

TEM was conducted on a JEOL 2010F instrument operated at 200 keV. The

microscope was equipped with a field-emission electron gun and ultra-high resolution

pole piece, yielding a point-to-point resolution of 1.9 1. Fourier image analysis was

performed using Gatan Digital Micrograph software v2.01 (Gatan).

Energy-dispersive X-ray spectroscopy (EDS) was performed by operating the TEM

in scanning mode using an electron beam of approximately 0.7 nm. INCA (Oxford

Instruments) software was used for controlling beam position and for data analysis. Live

acquisition time was 60 s for each EDS spectrum, with the beam placed at various

positions on the catalyst surface or bulk, with a spatial resolution of approximately 2

nm owing to sample drift during data acquisition.

Raman spectroscopy performed on electrodes after electrochemical measurements

was done by removing the electrode from electrolyte, drying with compressed air and

using the electrode directly under the microscope of the LabRAM HR800 (Horiba Jobin

Yvon). A 633 nm He/Ne laser at 0.2 or 2 mW was used with a 50x objective (giving

spot size of approximately 30 Iu2), at room temperature. Sampling time was adjusted

per sample to yield approximately the same signal-to-noise ratio for each measurement

(6x30 s for LMO, 6x60 s for LCO, 6x60 s for BSCF82 (0.7-1.0 V potential range),

3x120 s for BSCF82 (all other potential ranges), and 6x120 s for LSC46). No change in

the Raman peak intensity was observed over the course of the 3-12 min sampling time.

Spectra were collected at six or more locations on each electrode.
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2.5 Density Functional Theory Calculations

Density functional theory (DFT) calculations used the Vienna ab initio

simulation package (VASP) with the Project-Augmented plane-wave method.89 91

Exchange-correlation was treated with the Perdew-Wang-91 generalized gradient

approximation (GGA) with soft O oxygen pseudopotential and the Hubbard U

correction.92,9 Energy convergence was within 3 meV per perovskite formula unit from a

Monkhorst-Pack 4x4x4 k-point mesh. The calculations are performed using the

simplified spherically averaged approach,9 4 where Uff is applied to d electrons ( Uj =

Uoulomb - exchange J) with values of 4, 4, and 3.3 eV for Mn, Fe, and Co,

respectively. 95' 96 Typically, 2x2x2 perovskite supercells were used for simulations and

fully stoichiometric compounds were used (no oxygen vacancies). For perovskites with

disordered cations (i.e. BSCF46, BSCF82, SCF82 and LSC46) a special quasirandom

structure (SQS) approach was used.97 Several sampled configurations' calculated 0 p-

band centers were used in a weighted average (weighted by the Boltzmann factor at 300

K for the energy of the sampled configurations) to achieve an effective 0 p-band center.
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3 Results and Discussion

3.1 Material Characterization

X-Ray diffraction (XRD) was performed on all oxides, namely LaCoO, (LCO),

LaMnO3 (LMO), LaOSrO6CoO 3- (LSC46), SrCo0 8FeO.2036 (SCF82), and Ba,0 5Sr 0 5Co1

,Fe,0 3 - (y = 0.2, 0.6; BSCF82 and BSCF 46, respectively), to ensure phase purity. The

resulting diffractometry results are shown in Figure 3.1, with relevant extracted lattice

parameters summarized in Table 3.1. All XRD data was gathered from pure oxide

powder with the exception of LSC46, which included Si as a reference (Figure 3.2).

75
AA LMO

60 ---
6 LCO

S4LSC46
- 30 BSCF46

.l| 15 - BSCF82

0 B-A.SCF820-

4 3 2 1
d-spacing (A)

Figure 3.1: X-ray diffraction data for the oxides studied in this work. LMO, LCO data were
gathered by Jin Suntivich. LSC46 data were gathered by Ethan J. Crumlin. SCF82 data were
gathered by Alexis Grimaud.

35



3.0 2.0 d-spacing (A) 1.0

3.2: Experimental XRD peak locations (red) with database peak positions for LSC46
nd Si (green). Si was included to give reference diffraction peaks.

able 3.1: Space groups and lattice parameters of the oxides studied in this work.

Material Space Group Lattice Parameters (A)
a b c

LMO Pnma 5.66 7.22 5.53

LCO R3c 5.44 5.44 13.09

LSC46 Pm3m 3.84 3.84 3.84

BSCF46 Pm3m 3.96 3.96 3.96

SCF82 Pm3m 3.86 3.86 3.86

BSCF82 Pm3m 3.99 3.99 3.99

xide surface area estimations were calculated based on scanning electron

microscopy (SEM; see Chapter 2.1). Calculated values of As are tabulated in Table 3.2.

Table 3.2: SEM-estimated surface areas of oxides in this work.
Material Specific Area (m 2 .g')

LMO 0.6

LCO 0.7

LSC46 1.2

BSCF46 0.1

SCF82 0.1

BSCF82 0.2
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3.2 Electrochemical Measurements

Cyclic voltammetry was performed on LCO, LMO, LSC46, SCF82, BSCF46 and

BSCF82, with the 1t and 5th cycles shown in Figure 3.3. The OER activity, defined as

the overpotential required for a given current density normalized to true oxide surface

area, increases as expected,1" with LMO < LCO < LSC46 ~ BSCF46 < SCF82 ~

BSCF82. The cyclic voltammograms of LCO, LMO, and LSC46 all reached a steady-

state after the first five cycles, after which no significant changes in the OER activity

were observed. In contrast, BSCF82 exhibited a drastic change in both pseudocapacitive

current and OER activity. OER activity increased steadily with cycling up to around

the 50 cycle mark (Figure 3.4a), 'after which it reached a steady-state with

approximately 4 times greater OER current at 1.6 V versus reversible hydrogen

electrode (RHE) than that of the first cycle. In contrast, LSC46 cycled up to 100 times

did not undergo any significant changes in OER behavior (Figure 3.4b).

Potentiostatic measurements were performed to observe any changes versus time,

and also to verify that the cyclic voltammetry measurement with the appropriate data

analysis yielded accurate values for the OER activity. Figure 3.4c shows potentiostatic

measurements at four applied potentials, on separate electrodes from those used for

cyclic voltammetry. In Figure 3,4d, any discrepancy between the potentiostatic (solid

marker) and cyclic voltammetry data (hollow marker) is explained by the experimental

error in the electrode deposition and not by the technique used, as seen in Figure 3.5.
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Figure 3.3: Cyclic voltammetry for (a) LMO, (b) LCO, (c) LSC46, (d) BSCF46, (e) BSCF82
and (f) SCF82. Number labels n indicate the nth cycle of cyclic voltammetry (1.1-1.7 V versus
RHE, 10 mV/s). All measurements were performed in 0 2-saturated 0.1 M KOH, corrected for
ohmic losses and normalized to the SEM-estimated surface area of oxides, and used an oxide
loading of 0.25 mg/cm2 supported on glassy carbon. Figure adapted from published work."
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(hollow markers) and potentiostatic data (solid
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Figure 3.5: Capacitance- and ohmic-corrected cyclic voltammogram data (1.0-1.7 V versus
RHE, 10 mV/s) of a BSCF82 electrode (0.25 mg/cm 2 oxide loading) on the first cycle (blue
line). Also shown are potentiostatic data on the same electrode taken immediately after the first
cycle (red X). Measurements taken in 0 2-saturated 0.1 M KOH, normalized to geometric
electrode area. Figure adapted from published work."

In verifying that the current observed is attributable to OER, we first note that

it has previously been observed from rotating ring-disk experiments that current in this

potential range is indeed almost 100% OER." To rule out corrosion or oxidation of

cobalt/iron in BSCF82 as being significant contributions to the observed current, the

ratio of electrons passed during the observed oxidation current to the total number of

cobalt and iron atoms present in BSCF82 was calculated. To obtain the total charge

passed that is attributable to OER, the capacitance- and iR-corrected current was

integrated (using the data from Figure 3.4a). To include current from both forward and

backward scans, the average of the forward and backward scans was mirrored in time
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for each cycle, as seen in Figure 3.6. Using this method, the ratio of electrons passed to

total cobalt and iron atoms is over 100 for both cyclic voltammetry and

potentiostatic/chronoamperometric (Figure 3.7) measurements. The ratio of oxygen

evolved to total oxygen present in the BSCF82, also calculated from amount of Faradaic

charge transfer, is approximately 10 for both cyclic voltammetry and potentiostatic

measurements. Because the catalytic activity was not observed to decrease during the

course of any experiments, dissolution or corrosion current is negligible when compared

with the OER current.

12

CM8
E o4

E

Capacitance conected and

0 300 7500 7800
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Figure 3.6: Selected regions of the data shown in Figure 3.4a. Data are capacitance- and iR-
corrected. For each cycle, the average of the forward and backward scan was mirrored in time to
account for current from both forward and backward scans. Figure adapted from published
work."
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Figure 3.7: Potentiostatic data measured on a single BSCF82 electrode, held at 1.6 V vs. RHE
for 2 h. This electrode did not contain AB carbon. Measurement performed by Marcel Risch.
Figure adapted from published work."

3.3 Transmission Electron Microscopy

High-resolution transmission electron microscopy (HRTEM) was used to examine

the surfaces both as-prepared powder and electrodes that had been cycled five times

from 1.1 to 1.7 V versus RHE. The surfaces of the as-prepared oxide powders were

highly crystalline; the surfaces of BSCF82 had very few thin amorphous regions. The

fast Fourier transforms (FFTs) of all the HRTEM images of the as-prepared particle

surfaces can all be indexed to the bulk crystal structure of the corresponding oxide

(Figure 3.8). After cycling, amorphous regions around 10 nm thick were present on the

surfaces of BSCF82, SCF82 and BSCF46. For BSCF82 cycled 185 times, the particles

became amorphous to the extent that could be observed with HRTEM (Figure 3.9c).
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HRTEM was performed on electrodes with and without AB carbon, with no significant

differences between the two (Figure 3.10). In contrast, the surfaces of LMO, LCO and

LSC46 remained crystalline after cycling, comparable to the as-prepared samples (Figure

3.8c-h). This does preclude instability in longer time scales or different voltage regimes.

Figure 3.8: HRTEM and FFTs from approximately 35 x 35 nm areas of (a) as-prepared

BSCF82, (b) cycled BSCF82, (c) as-prepared LMO, (d) cycled LMO, (e) as-prepared LCO, (f)
cycled LCO, (g) as-prepared LSC46 and (h) cycled LSC46. Cycling consisted of five cycles

between 1.1-1.7 V vs. RHE in 0 2-saturated 0.1 M KOH at 10 mV/s. HRTEM performed by
Christopher E. Carlton. Figure adapted from published work."
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Figure 3.9: HRTEM and FFTs of (a) as-prepared BSCF82 powder, (b) BSCF82 cycled 5
times, (c) BSCF82 cycled 185 times, (d) as-prepared BSCF46, (e) BSCF46 cycled 5 times, and
(f) LSC46 cycled 185 times. Cycles were 1.1-1.7 V vs. RHE at 10 mV/s, in 0 2-saturated 0.1 M
KOH. HRTEM performed by Christopher E. Carlton. Figure adapted from published work."

Figure 3.10: HRTEM and FFT of BSCF82 electrode that was cycled 5 times (a) with AB
carbon and (b) without AB carbon. The amorphous layers are similar and show that AB carbon
does not significantly contribute to the amorphization process. HRTEM performed by
Christopher E. Carlton. Figure adapted from published work."
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Analysis of the FFT patterns from HRTEM images collected from the surface

amorphous regions of BSCF82 revealed a bright diffuse ring that corresponds to a

spacing of approximately 2.8 A in real space (Figure 3.11b-c). This spacing, which is not

present in the interatomic distances of cubic perovskite (containing only corner-shared

transition metal octahedra), matches the cobalt/iron spacing in edge-sharing

octahedra.98'99 Energy-dispersive X-ray spectroscopy (EDS) performed in the surface

amorphous regions of BSCF82 revealed a decrease in the concentrations of the A-site

cations Ba 2
' and Sr2+, which suggests A-site cation leaching during cycling (Figure

3.12).

Ba/Sr (A-site)

Co/Fe (B-sie)

Figure 3.11: HRTEM and corresponding FFTs of particle surfaces of (a) as-prepared BSCF82,
(b) BSCF82 cycled 5 times, (c) BSCF82 cycled 100 times, (d) BSCF82 held potentiostatically at
1.7 V vs. RHE for 2 h, and (e) SCF82 cycled 5 times. Cycles were 1.1-1.7 V vs. RHE at 10
mV/s, in Or-saturated 0.1 M KOH. HRTEM performed by Christopher E. Carlton. Figure
adapted from published work."
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Figure 3.12: High angular annular dark field imaging and scanning TEM EDS of BSCF82
cycled 5 times between 1.1-1.7 V vs. RHE at 10 mV/s, in O2-saturated 0.1 M KOH. The
quantitative EDS results are shown in both the images (a) and (b), and plotted vs. the distance
from the particle edge in (c) and (d). Both (a) and (b) are the same image, with EDS taken at
different locations on the particle. A-site atom concentration (Ba and Sr) is compared to B-site
concentration (Co and Fe) for visual clarity. HRTEM/EDS performed by Christopher E.
Carlton. Figure adapted from published work."

Amorphous regions were also found in BSCF82 electrodes that were held

potentiostatically at 1.7 V versus RHE for 2 h (Figure 3.11d). Although the total

amount of charge passed was much higher during this experiment than in the case of

cycling 5 times, the thickness of these regions was comparable to the 5x cycled case.

Interestingly, this suggests that cycling the potential dramatically increases the rate of
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the amorphization process. Also, the in the FFT of the HRTEM images of the

potentiostatically held electrode, a diffuse ring with real space spacing of approximately

3.3 A was observed, which corresponds to interatomic distance of cations in spinel

Co3 O4 . This could indicate the formation of spinel-like motifs containing both octahedral

and tetrahedral environments for cobalt and iron cations, as reported for BSCF82 at

intermediate temperatures. The existence of spinel-like motifs is further supported by

Raman spectroscopy, where approximately 15% of all spectra contained peaks similar to

those present in spinel Co3O4 (Figure 3.13).

LSC46 (20X)

BSCF82 (4x)

CO304

200 400 600 800 1000
Raman shift (cm 1)

Figure 3.13: CoO 4 peaks have been observed in the Raman spectra of both BSCF82 and
LSC46, both cycled 5 times between 1.1-1.7 V vs. RHE at 10 mV/s. The multipliers in the
image refer to intensity scaling for visual clarity. Approximately 15% of spectra exhibited the

CoaO 4 -like peaks. These peaks were never observed for as-prepared samples or in LCO samples
before or after cycling. Raman spectroscopy performed by Kelsey A. Stoerzinger. Figure adapted
from published work."
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3.4 Raman Spectroscopy and Potential-Dependent Amorphization

Raman spectroscopy can be used as a rapid tool for probing the amorphization of

oxide surfaces after it has been established (e.g. via HRTEM) that such a process

occurs, and the oxides in question are Raman active. The Raman spectra of BSCF82

prior to cycling exhibits a broad peak at around 675 cm-1, attributed to internal motion

of oxygen within the cobalt and iron octahedra."' It is of interest to investigate the

conditions under which amorphization occurs, by varying the potential window used.

When BSCF82 was cycled between 1.1 and 1.7 V versus RHE as in the electrodes

examined via HRTEM, the vibrational mode of BSCF82 mentioned above broadens

after 5 cycles and was absent after 50 cycles. This is in good agreement with the

changes in the electrochemical data and the amorphization observed via HRTEM. Since

the information depth of Raman spectroscopy is estimated to be larger than 100 nm, the

lack of Raman signal after 50 cycles indicates that the amorphous layer is likely larger

than 100 nm, beyond the thicknesses that can be observed with HRTEM

(approximately 20 nm). In contrast, the Raman spectra for LMO, LCO and LSC46

(Figure 3.14) have negligible changes after cycling. Of particular interest are the peaks

at 420 and 600 cm-1 for LCO, which have been attributed to bending and breathing

modes of the oxygen cage of Eg and A2g symmetry, respectively.1 2 These peaks remained

visible after 50 cycles (Figure 3.14b), showing that there is no significant change in the

local symmetry of LCO when cycled under identical conditions to those of BSCF82.

The effect of changing the cyclic voltammetry window was investigated by

cycling BSCF82 50 times (at 10 mV/s) in three voltage ranges: 0.7-1.0 V, 1.1-1.5 V, and
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1.5-1.7 V versus RHE. No significant changes to the Raman spectra were observed for

the 0.7-1.0 V and 1.1-1.5 V voltage ranges; the 1.5-1.7 V range, showed loss of Raman

scattering accompanying the formation of a thick amorphous layer (Figure 3.14c). This

suggests that amorphization is potential-dependent and occurs most rapidly at

potentials above 1.5 V vs. RHE, where OER current is appreciable.

BSCF2 (b) LCO (a) BSCF82

50cS~c1.5-1.7V

5c 5C1.1-1.5V

AP AP 0.7-1.0 V

300 500 700 900 300 500 700 900 300 500 700 900
Rmuan shif (oM )

(d) LMO (0) LSC46 (4 BSCF46

S. A 50c Li 50 C

c sc 5c OOO/ C

AP AP

300 500 700 900 300 500 700 900 300 500 700 00
Raman shift (am4)

Figure 3.14: Raman spectra of (a) BSCF82 and (b) LCO before and after cycling 5 and 50
times, (c) BSCF82 after cycling 50 times in the indicated voltage windows, (d) LMO, (e) LSC46
and (f) BSCF46 before and after cycling 5 and 50 times. Cycling took place in 02-saturated 0.1
M KOH at 10 mV/s. Raman spectroscopy performed by Kelsey A. Stoerzinger. Figure adapted
from published work."

Various potentiostatic conditions were also investigated, comparing different

voltages with a fixed amount of charge passed. Similarly to the BSCF82 after cycling,

reduction of Raman scattering was observed at OER potentials (Figure 3.15). Oxidation
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current was also seen to increase over time; only when potential was held in the OER

region. At 1.45 V versus RHE for 24 h, no strong decrease in Raman signal was

observed, indicating that any amorphization layer is extremely small. OER potential

ranges may be essential for the rapid amorphization observed in BSCF82 and closely

related perovskites. Thus it is possible that OER may kinetically permit or enhance the

amorphization process, although this requires further investigation.
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Figure 3.15: Raman spectra (left) of BSCF82 after potentiostatically holding at the labeled
potential until 27.4 mC of charge had passed. Electrochemical data is shown on the right panel.
Times required were 0.06, 1.78, and 24 h for 1.600 (red), 1.475 (green) and 1.45 (blue) V vs.
RHE, respectively. For potentials with appreciable OER current, the current increased over
time, accompanying more drastic changes in the Raman spectra. Raman spectroscopy performed
by Kelsey A. Stoerzinger. Figure adapted from published work."
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3.5 Amorphization and Pseudocapacitive Current

The simultaneous increase in pseudocapacitive current, OER current, and

amorphous layer thickness leads to the possibility that the amorphous regions may be

accessible to electrolyte.03 105 This would potentially increase the effective number of

active sites for OER, and would also allow redox of the B-site cations to occur in the

bulk of the material, possibly explaining the change in pseudocapacitive current. A

rough measure of the electrochemically active surface area was performed by

determining the cathodic charge passed during the negative-going scan of cyclic

voltammetry, which would be proportional to the pseudocapacitance and the effective

surface area. When plotted versus the OER current at a given overpotential (Figure

3.16), there is a linear trend, where the OER activity increases four to five times and is

correlated with a factor of seven to eight increase in the pseudocapacitive cathodic

charge passed. This lends some support to the claim that amorphization leads to an

increase in the electrochemically active surface area. It should also be noted that on a

per-volume basis the number of cobalt and iron ions present in the amorphous regions

increases faster with region growth than the OER current, and thus not all of the

transition metal cations are electrochemically available as active sites. These findings do

not alter any previous claims of the high catalytic activity of BSCF82," where the

activity was typically extracted from the second or third cycle where the amorphous

layer is still thin. The maximum increase in electrochemically active surface area from

such a layer is less than a factor of two. It has also been recently shown that related
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cobalt perovskites can sustain OER activities even higher than BSCF82 without

becoming amorphous.06

M: 30
C6 5th cycle(20-> 25 0 -100> 810.1 0

0 20 oj . -
1.0 1.2 1.4 1.6 50

15 E-iR(Vvs. RHE) 30
'0

10 '' 15 20
w O-' 10

5 5
C X 2

0 20 40 60 80 100 120
E Cathodic Charge (mC)

Figure 3.16: Oxygen evolution current at 1.58 V vs. RHE vs. the cathodic charge passed
during a single cycle (1.1-1.7 V vs. RHE, 10 mV/s) in 0.1 M KOH. Cycle numbers are labeled.
Inset shows a single cycle (5th) with the shaded region being proportional to the cathodic charge.
Figure adapted from published work."

An interesting comparison arises when considering the highly active OER

catalysts formed from electrodeposited cobalt oxide films. When normalizing the OER

current of BSCF82 to the total number of cobalt atoms-taken as the lower limit of the

intrinsic OER activity per cobalt-it was found to be comparable to that reported for

the electrochemically deposited films,1, 59 ,6 2,65 as shown in Figure 3.17. Recently it has

been shown that the OER current per cobalt atom decreases with increasing "cluster"

size of an extended cobalt oxide motif, which is a result of reduced utility of cobalt for

OER. 7 Another recent report has investigated the local structures of the cobalt cations
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via extended X-ray absorption fine structure (EXAFS), and has shown that during

cycling, perovskite oxides BSCF82 and SCF82 both show an increase in the interatomic

spacing associated with edge-shared cobalt octahedra, and begin to show similarity with

the Fourier-transformed EXAFS of the electrochemically deposited amorphous cobalt

oxide films.10 7 Further investigation of the nature of the active sites in the amorphous

regions of these perovskites and their relationship to the electrochemically deposited

oxides is needed to obtain a fuller picture of how these catalysts function.
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Figure 3.17: Tafel plots for BSCF82 (solid squares, 2 "d cycle; open squares, 1 8 5 th cycle) and an

electrochemically-deposited amorphous Co oxide film (green triangle, 2 nd cycle) in 0.1 M KOH.
Tafel plots constructed from averaged forward-backward scans of cyclic voltammetry (10 mV/s)
and normalized to the total number of Co in bulk or on the surface. BSCF82 data was gathered

on a single electrode while the Co film data was the average of 5 independent measurements
(250 nmol/cm 2di,k loading, 200 nm thick). The number of cobalt atoms in BSCF82 was estimated

from the formula unit, mass loading and SEM-estimated surface area. For the Co-film, the

number of Co ions was estimated from the Faradaic charge passed during electrodeposition at
0.806 V vs. SCE in 0.1 M potassium phosphate (pH 7), assuming all charge was due to Co2

+ to

Co"* oxidation. Co film data was gathered by Marcel Risch. Figure adapted from published

work."
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3.6 0 p-band Center: A Descriptor from Density Functional Theory

Thus far only the amorphization and its effect on catalytic activity have been

discussed. In the following, a potential descriptor for OER activity and amorphization is

reported based on density functional theory calculations. It has recently been reported

that the oxygen p-band center, as calculated from density functional theory, acts as a

descriptor for several physical parameters relating to oxygen anions in the perovskite

structure such as the oxygen vacancy formation energy, oxygen mobility, and oxygen

surface exchange coefficient.9" This is turn leads the p-band center to describe the high

temperature ORR activity of perovskite oxides as cathodes for solid oxide fuel cells.

BSCF82, SCF82, and BSCF46 all have 0 p-band centers much closer to the Fermi level,

allowing oxygen redox to occur more easily, leading to Fermi level pinning of the 0 p-

band. The calculated 0 p-band centers for the oxides in this work, along with their

OER overpotentials at 0.25 mA/cm'0 x, are shown in Figure 3.18. Oxides with an 0 p-

band center higher than approximately -2.2 eV relative to the Fermi level become

amorphous during the OER in pH 13 electrolyte, while those with lower 0 p-band

centers do not. Since LSC46 has an 0 p-band center at -2.2 eV, it is likely that an oxide

at the threshold of becoming amorphous during OER has an 0 p-band center

somewhere between that of LSC46 and SCF82. Indeed, there has been further study of

the 0 p-band centers of related double-perovskite compounds that remain stable during

OER with high activity, possessing 0 p-band centers of approximately -1.8 eV relative

to the Fermi level.106
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Because a high 0 p-band center has been shown to provide higher oxygen lattice

mobility and higher oxygen vacancy concentration in BSCF82, 0 8 BSCF46 and SCF82,

changes in oxygen stoichiometry at the surface, whether from surface oxygen exchange

or bulk vacancy migration, may play an important role in the amorphization process, or

even in the OER mechanism itself. Further work is needed to understand the intimate

relationship between lattice oxygen, structural stability and catalytic activity in alkaline

solution.

(b)

BSCF46
BSCF82
SCF82
LSC46
LCO
LMO

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0
0 p-band center relative to EF (OV)
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0.0 0.1 0.2 0.3 0.4 0.5

q (V vs. RHE)

Figure 3.18: (a) Calculated 0 p-band centers of perovskites BSCF46, BSCF82, SCF82, LSC46,
LCO and LMO, and (b) the overpotentials at 0.25 mA/cm 2

0 ,. Stoichiometry in the calculations

is not exact due to the coarse composition grid in the simulated supercells. Oxides represented

with red bars exhibit rapid surface amorphization during water oxidation, while those

represented with blue bars remain highly crystalline. DFT performed by Yueh-Lin Lee. Figure

adapted from published work."
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4 Conclusions and Looking Forward

In this thesis, the amorphization of highly active BSCF82 and related compounds

BSCF46 and SCF82 during OER was described. These oxides rapidly became

amorphous at the surface when cycled in the OER potential region, with slower

amorphization occurring for potentiostatically-held electrodes. Amorphization was

accompanied by leaching of A-site cations from the surface and considerable increases in

the pseudocapacitive and OER currents. Amorphization also lead to the apparent

atomic spacing of 2.8 A from the ring observed in the FFTs of HRTEM images of the

particle surfaces, indicating the possible formation of edge-sharing transition metal

octahedra. All three of these oxides had similarly positioned 0 p-band centers as

calculated by density functional theory, being the highest relative to the Fermi level

compared to all the other oxides studied in this work. The perovskites LSC46, LCO and

LMO, which had lower 0 p-band centers relative to the Fermi level, did not become

amorphous and remained crystalline under identical electrochemical conditions.

There are several interesting research directions that arise from the results

presented earlier. First is the parallel between the amorphous layer grown on BSCF82,

BSCF46 and SCF82, and amorphous electrochemically-deposited cobalt films. Further

work has recently been done via EXAFS on BSCF82, SCF82 and the amorphous films,

showing that in the Fourier-transformed EXAFS interatomic distance peaks

corresponding to Co-Co distances in edge-sharing octahedra appear and grow with

electrochemical cycling in the OER region."" The possible similarity between the

amorphous cobalt films and the amorphous layers formed on perovskites is what first
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posed the question as to whether or not the perovskites' amorphous films were

permeable to electrolyte, giving access to bulk cobalt as active sites for OER. It has

already been reported that oxides formed on cobalt metal electrochemically are thought

to be hydrous, and the film growth cyclic voltammetry shows an increase in both

pseudocapacitance and OER current as the film becomes thicker." It had also been

suggested that hydrous oxide films could be an example of three-dimensional catalysis,

where the accessibility of bulk metal cation sites to electrolyte provide a higher

electrochemically active surface area.4 7 109 Similar findings had also been reported for

iridium oxide cycled in acidic solution.n'0 2 Further experiments to determine whether

or not the surface oxide films contain hydrous species such as hydroxide or

oxyhydroxide and how far into a heavily amorphized film the hydrous species exist, are

needed. Probing the subtle differences between different types of amorphous cobalt (or

other transition metal) oxides, such as studying the effect of any remaining A-site

cations in the amorphous layers, is also of interest to further understand how to

optimize such materials for OER.

Another interesting point is the fact that currently, the most active cobalt-based

oxide OER catalysts were primarily researched initially as high-temperature oxygen

reduction cathode materials for solid-oxide fuel cells (SOFCs) .113,114 It seems clear that

the nature of the transition metal-oxygen bond is of vital importance for OER catalysis.

Differential electrochemical mass spectrometry (DEMS) combined with isotope labeling

of oxygen could be of interest in determining to what degree lattice oxygen participates

in the OER. The degree to which oxygen vacancies are mobile in the bulk at room
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temperature, and whether oxygen can be exchanged at the oxide-electrolyte interface

could also be of interest to study, as changing oxygen stoichiometry locally near the

surface could have profound effects on oxide stability and OER activity. Investigating

the effects of pH and other electrolytes may also yield new insights. Overall, the many

questions surrounding the interrelationship between lattice oxygen, OER activity, and

oxide stability and its implications for permeability to electrolyte mean that there may

be many nascent advances waiting to be made in the field of OER catalysis on oxides.
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