
Cooling System Design Tool for Rapid Development and Analysis of Chilled
Water Systems aboard U.S. Navy Surface Ships

By
Amiel B. Sanfiorenzo

Bachelor of Science in Computer Engineering
Penn State University, 2005

Master of Business Administration
Charleston Southern University, 2008

Submitted to the Department of Mechanical Engineering
In Partial Fulfillment of the Requirements for the Degrees of

Naval Engineer

and

Master of Science in Mechanical Engineering

at the
Massachusetts Institute of Technology

June 2013
0 2013 Amiel B. Sanfiorenzo. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of
this thesis document in whole or in part in any medium now known or hereafter created.

A9 I

Signature of Author
k

/

Amiel B. Sanfiorenzo
Department of Mechanical Engineering

May 13, 2013

Certified by-,
/ Chryssostomos Chryssostomidis

Thesis Supervisor
Professor of Mechanical and Ocean Engineering

Accepted by
David Hardt

Chairman, Committee for Graduate Students
Department of Mechanical Engineering

- - I - I I - - -.



(THIS PAGE INTENTIONALLY LEFT BLANK)

2



Center for Ocean Engineering * * Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering HUE Cambridge, Massachusetts 02139-4307

Cooling System Design Tool for Rapid Development and Analysis of Chilled
Water Systems aboard U.S. Navy Surface Ships

Amiel B. Sanfiorenzo

Submitted to the Department of Mechanical Engineering on May 14,2013
in Partial Fulfillment of the Requirements for the Degrees of

Naval Engineer
and

Master of Science in Mechanical Engineering

Abstract

Over the last several decades, there has been a dramatic increase in the complexity and power
requirements of radars and other combat systems equipment aboard naval combatants and this trend is
expected to continue for the foreseeable future. This increase in the power demand has a direct effect
on the amount of heat which has to be removed by the cooling systems, with future combatants
expected to require 5-10 times the cooling capacity currently installed on naval combatants (McGillan,
Perotti, McCunney, & McGovern). In the past, the cooling system could be designed and integrated into
the ship towards the later stages of the ship design process; however, this is no longer possible. The
growing complexity and size of the cooling systems needed require preliminary design and integration in
the early-stages of the ship design process. To design and integrate cooling systems several tools are
available to the naval architect, but vary in complexity and usefulness depending on the design stage
considered.

The focus of this thesis is on the early-stage design of cooling systems aboard U.S. Navy surface ships
utilizing the principles of naval architecture and mechanical engineering concepts. The intent was to
study the heat transfer process within the chilled water system and the auxiliary seawater system and
develop a Cooling System Design Tool (CSDT) based on the thermodynamic laws that govern heat
transfer as well as the hydrodynamic principles that govern fluid flow, specifically the incorporation of
flow network analysis (FNA). The key purposes of the CSDT are to provide rapid visualization and
analysis of the cooling system to test overall feasibility and performance of the system.

The framework of the model was built using Matlab in conjunction with Excel. The program interacts
with the user primarily through the command window, guiding the user through the design process.
Some visualization is provided as the design progresses, allowing the user to quickly determine and
correct errors in the design. The CSDT also displays important results of various analyses that can be
performed on the data, including a weight summary, a static temperature distribution, and a
temperature distribution that captures transients in space and time. The program interaction, chilled
water plots and analyses output enables the user with the ability to quickly visualize, develop and
analyze cooling systems aboard naval vessels.

Thesis Supervisor: Chryssostomos Chryssostomidis
Title: Professor of Mechanical and Ocean Engineering

3



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

i'iw Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

(THIS PAGE INTENTIONALLY LEFT BLANK)

.4



Center for Ocean Engineering U Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

Table of Contents
Abstract ......................................................................................................................................................... 3

List of Figures.................................................................................................................................................9

List of Tables................................................................................................................................................13

Biographical Note ........................................................................................................................................ 14

Acknow ledgem ents.....................................................................................................................................15

1.0 Chapter 1: Introduction........................................................,..........................................................16

1.1 Organization of Thesis.................................................................................................................16

1.2 Topic M otivation ......................................................................................................................... 16

1.3 Description of Cooling System s.............................................................................................. 18

1.3.1 Description of Chilled W ater System s ............................................................................ 19

1.3.2 Description of the Seawater System .............................................................................. 20

1.3.3 Description of Electronic Cooling W ater System s .......................................................... 21

1.4 Thesis Intent ................................................................................................................................ 22

2.0 Chapter 2: Design Tool Fundam entals ....................................................................................... 23

2.1 Heat Transfer Fundam entals.................................................................................................. 23

2.1.1 M odes of Heat Transfer................................................................................................... 23

2.1.2 Types of Flow ....................................................................................................................... 24

2.1.3 Tem perature Profile ............................................................................................................ 27

2.1.4 Convective Heat Transfer Coefficient............................................................................ 29

2.1.5 Assum ptions ........................................................................................................................ 31

2.2 Pipe Characteristics ..................................................................................................................... 31

2.3 Flow Network Analysis ................................................................................................................ 33

2.3.1 Series Flow ........................................................................................................................... 36

2.3.2 Parallel Flow ........................................................................................................................ 37

5



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

2.3.3 Branch Flow ......................................................................................................................... 37

2.4 Pum p Characteristics...................................................................................................................39

2.4.1 System and Pum p Curves................................................................................................ 39

2.4.2 Head loss ............................................................................................................................. 41

2.4.3 Pum p Selection....................................................................................................................42

2.5 Valve Characteristics ................................................................................................................... 44

2.6 Flow Configurations.....................................................................................................................45

2.6.1 Bends ................................................................................................................................... 45

2.6.2 Tees ..................................................................................................................................... 46

2.7 Expansion Tank............................................................................................................................48

2.8 Heat Exchangers..........................................................................................................................51

2.8.1 Notional Flat Plate Heat Exchanger Design ..................................................................... 53

2.9 Air Conditioning Sizing.................................................................................................................55

2.9.1 Air Conditioning Cooling Coils ......................................................................................... 55

2.10 Air Conditioning Plants................................................................................................................58

3.0 Chapter 3: Design Tool Architecture ......................................................................................... 60

3.1 User Inputs .................................................................................................................................. 60

3.1.1 Excel Spreadsheet Inputs ................................................................................................ 60

3.1.2 M atlab Inputs ...................................................................................................................... 71

3.2 Analysis........................................................................................................................................97

3.2.1 Step 1: Preliminary Sizing of Piping Diameters and Preliminary Calculation of Branch

Velocities and Branch M ass Flow Rates Based on Heat Load ...................................................... 98

3.2.2 Step 2: Determination of Network Segments ................................... 102

3.2.3 Step 3: Refining Branch Velocities and Branch Mass Flow Rates Using Network Analysis

Accounting for Head loss Associated with Bends, Friction, and Across Valves ................................ 105

6



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program -i77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

3.2.4 Step 4: Account for Entrance and Exit Effects Utilizing Refined Branch Velocities...........106

3.2.5 Step 5: Determ ination of Pressure Drop as a Function of Distance..................................107

3.2.6 Step 6: Determ ination of Stagnation Points......................................................................109

3.2.7 Step 7: Final Calculation of Velocities and Mass Flow Rates Using Network Analysis with

Network Isolated at Stagnation Points.............................................................................................112

3.2.8 Step 8: Calculate Branch Inlet Tem peratures....................................................................115

3.2.9 Step 9: Determination of A/C unit Capacity Required and Selection of A/C units............116

3.2.10 Step 10: Expansion Tank Sizing..........................................................................................117

3.2.11 Step 11: W eight Analysis ................................................................................................... 117

3.2.12 Step 12: Static Tem perature Analysis................................................................................119

3.2.13 Step 13: Transient Tem perature Analysis ......................................................................... 120

3.2.14 Validation of the M odel.....................................................................................................130

3.3 Design Guidelines............................................................................................................................135

4.0 Chapter 4: Sim ulation & Results....................................................................................................137

4.1 Static Analysis............................................................................................................................139

4.2 W eight Analysis ......................................................................................................................... 143

4.3 Transient Analysis......................................................................................................................145

4.3.1 Loss of Chiller.....................................................................................................................145

4.3.2 Step Load ........................................................................................................................... 147

4.3.3 Tem perature Distribution..................................................................................................148

5.0 Chapter 5: Conclusions..................................................................................................................151

5.1 General Conclusions..................................................................................................................151

5.2 Areas of Future Study................................................................................................................151

5.2.1 CSDT v3.0..................................................................................................................................152

5.2.2 System Extensions .................................................................................................................... 153

7



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

References.................................................................................................................................................155

Appendix A: Sim ulated Heat Loads ........................................................................................................... 158

Appendix B: Refrigerant Characteristics....................................................................................................163

R134a Refrigerant - Saturated...............................................................................................................163

R134a Refrigerant - Superheated Vapor .............................................................................................. 165

R404a Refrigerant - Saturated ........................................................................................... .... 167

R404a Refrigerant - Superheated Vapor .............................................................................................. 171

Appendix C: M atlab Code..........................................................................................................................176

geom etry.m ........................................................................................................................................... 176

analysis.m .............................................................................................................................................. 261

analysis2.m ............................................................................................................................................ 383

analysis_interface.m ............................................................................................................................. 451

cac_h_sat.m..........................................................................................................................................452

calc_h_SHV.m ........................................................................................................................................ 453

calc_hc.m .............................................................................................................................................. 454

friction_factor.m ................................................................................................................................... 455

pum p_curves.m ..................................................................................................................................... 456

8



Center for Ocean Engineering a - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

List of Figures

Figure 1: Heat flow from heat load to sea via DW, and SW loops .............................................................. 18

Figure 2: Schematic of chilled water plant (valves not shown)...............................................................19

Figure 3: Example of chilled water vital load branch - DDG51 1W (Fang, Jiang, Khan, & Dougal) ...... 20

Figure 4: Heat flow from heat load to sea via DW, CW, and SW loops.......................................................22

Figure 5: Depiction of (a) laminar and (b) turbulent flow (Sellens) ....................................................... 24

Figure 6: Examples of fins used in cooling electrical components (Alpha Novatech, 2007)...................25

Figure 7: Flow across a cylinder for different flow regimes (Sunden, 2011) .......................................... 26

Figure 8: Cross-sectional view of pipe and associated temperature profile for steady-state heat transfer

acro ss the pipe w all.....................................................................................................................................28

Figure 9: Electrical analogy to heat flow (thermal circuit).....................................................................28

Figure 10: Exam ple of branch piping network ....................................................................................... 38

Figure 11: Electrical network analogy to branch piping network .......................................................... 38

Figure 12: Example of a centrifugal pump (ThomasNet, 2013) .............................................................. 39

Figure 13: System curve (System Curve and Pump Performance Curve) .............................................. 40

Figure 14: Pump performance curve (System Curve and Pump Performance Curve)...........................40

Figure 15: Operating point (System Curve and Pump Performance Curve) .......................................... 41

Figure 16: Envelope of operation of Bell & Gossett 1510 series pump based on pump speed (Bell &

G o ssett, 1998 ) ............................................................................................................................................. 4 2

Figure 17: Bell & Gossett 1510 series performance curves operating at 1750 rpm (Bell & Gossett, 1998)

..................................................................................................................................................................... 4 3

Figure 18: Schematics of gate valve, globe valve and check valve (Bonney Forge, 2012).....................44

Figure 19: Figure of smooth, circular bend and miter bend (Cross-Flooding area, 2004)......................45

Figure 20: Flow configurations through tees: diverging flow through header (upper left), diverging flow

through branch (upper right), converging flow through header (lower left), converging flow through

branch (lower right) (Rennels & Hudson, 2012) .................................................................................... 46

Figure 21: Schematic of multi-pass cross counter flow shell and tube heat exchangers (Adam, 2004).....51

Figure 22: Depiction of flow for two-stream cross-flow (Travkin, 2001).............................................. 51

Figure 23: Flat plate heat exchanger (Energy-Film ) ................................................................................ 52

Figure 24: Single and double serpentine cooling coil flow configurations (Foltz, 1990) ........................ 55

9



Center for Ocean Engineering m m Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering I Cambridge, Massachusetts 02139-4307

Figure 25: 60 series cooling coil (DRS Technologies, 2011) .................................................................... 57

Figure 26: 50 series cooling coil (DRS Technologies, 2011) .................................................................... 57

Figure 27: Unit cooler (DRS Technologies, 2011)...................................................................................57

Figure 28: Va por-compression refrigeration cycle diagram (enggcyclopedia) ...................................... 58

Figure 29: CSDT architecture.......................................................................................................................60

Figure 30: LoadData tab .............................................................................................................................. 61

Figure 31: HXCHG R D B tab .......................................................................................................................... 62

Figure 32: Chiller D B tab..............................................................................................................................69

Figure 33: Refrigerant cycle with pressure and temperature variables shown (enggcyclopedia).........70

Figure 34: Single main piping configuration (top); simple rectangular double main piping system

(middle); complex tapered double main piping system (bottom)........................................................ 73

Figure 35: Default layout of complex double main piping system........................................................ 74

Figure 36: O ffset distances..........................................................................................................................75

Figure 37: CW zones and heat load by compartment and by zone with 4 zones and default zonal

bo undaries...................................................................................................................................................76

Figure 38: CW zones and heat load by compartment and by zone with 5 zones and modified zonal

bo undaries...................................................................................................................................................7 7

Figure 39: Default single main piping configuration 3-D....................................................................... 80

Figure 40: Default single main piping configuration 2-D....................................................................... 80

Figure 41: Default simple rectangular double main piping configuration 3-D.......................................81

Figure 42: Default simple rectangular double main piping configuration 2-D.......................................81

Figure 43: Default complex tapered double main piping configuration 3-D ......................................... 82

Figure 44: Default complex tapered double main piping configuration 2-D ......................................... 82

Figure 45: Isolation valve placement at main piping junctions and zonal boundaries .......................... 83

Figure 46: Form ation of branch piping.................................................................................................. 85

Figure 47: AUX SW piping structure ............................................................................................................ 87

Figure 48: AUX SW piping w ith branch piping............................................................................................88

Figure 49: Default single main piping system with branches (plan view)..............................................89

Figure 50: Default single main piping system with branches (perspective view)......................................90

Figure 51: Default simple rectangular double main piping system with branches (plan view).............91

Figure 52: Default simple rectangular double main piping system with branches (perspective view)......92

10



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

Figure 53: Default complex tapered double main piping system with branches (plan view).................93

Figure 54: Default complex tapered double main piping system with branches (perspective view).........94

Figure 55: Chilled water system segmented into areas 1, 2 and 3 ...................................................... 95

Figure 56: Close-up view of area 1 .............................................................................................................. 95

Figure 57: Close-up view of area 2 .............................................................................................................. 96

Figure 58: Close-up view of area 3 .............................................................................................................. 96

Figure 59: Tem peratures within heat exchanger .................................................................................. 98

Figure 60: Temperature distribution for counter-flow (Engineering Toolbox)......................................99

Figure 61: Example of initial static temperatures as a function of branch index (unordered).................102

Figure 62: currheader pt and nextheader-pt.......................................................................................103

Figure 63: segvalve_loc and next-header-pt ......................................................................................... 103

Figure 64: currheader pt updated to location of segregation valve ...................................................... 104

Figure 65: No branch or valve between currheader pt and nextheader-pt.......................................104

Figure 66: currheader pt updated to nextheader pt; nextheaderpt set to next bend location ..... 105

Figure 67: Chilled water velocities in branches and supply header..........................................................107

Figure 68: Pressure as a function of location in supply header for clockwise and counterclockwise flow

for each chiller/pum p superim posed........................................................................................................110

Figure 69: Pressure as a function of location in supply header excluding pressure variations due to

changes in height.......................................................................................................................................1 11

Figure 70: Pressure as a function of location in supply header including pressure variations due to

changes in height.......................................................................................................................................112

Figure 71: Electrical analogy of chilled water system including two pumps in parallel and several

branches in parallel ................................................................................................................................... 113

Figure 72: Electrical analogy of chilled water system with stagnation points shown in red .................... 113

Figure 73: Electrical analogy of chilled water system with parallel pumps now isolated.........................113

Figure 74: Sim plification of netw ork ......................................................................................................... 114

Figure 75: Network reduced to a single pump and a single equivalent resistance to flow per isolated loop

................................................................................................................................................................... 1 14

Figure 76: Transient Excel spreadsheet.....................................................................................................120

Figure 77: Pressure distribution before event .................................................................................... 121

Figure 78: Pressure distribution after event ............................................................................................. 123

11



Center for Ocean Engineering Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

Figure 79: Annular element of cooling system piping...............................................................................124

Figure 80: Example of temperature as a function of time plot.................................................................129

Figure 81: Example of temperature as a function of distance plot...........................................................130

Figure 82: Fluid tem perature versus tim e.................................................................................................131

Figure 83: Equivalence of plane wall with symmetric convection (left) and adiabatic surface (right).....133

Figure 84: Surface temperature of outer pipe wall as a function of time ................................................ 135

Figure 85: Breakdown of heat load by compartment and by zone for simulated design.........................137

Figure 86: 3-D representation of chilled water system and auxiliary seawater system for simulated

d esig n ..................................................................................................................................-- ---....--... ..138

Figure 87: Input for sim ulated transient ................................................................................................... 145

Figure 88: Pressure distribution before and after loss of chiller 6............................................................146

Figure 89: Temperature response at four different locations in branch 5. Location 1 - immediately before

heat exchanger (upper left), location 2 - at heat exchanger (upper right), location 3 - a few meters

downstream from the heat exchanger (lower left), location 4 - near the end of the branch (lower right)

................................................................................................................................................................... 14 7

Figure 90: Temperature response at four different locations in branch 9 (heat load step response from

59 kW to 0 kW). Location 1 - immediately before heat exchanger (upper left), location 2 - at heat

exchanger (upper right), location 3 - a few meters downstream from the heat exchanger (lower left),

location 4 - near the end of the branch (lower right)...............................................................................148

Figure 91: Temperature distribution along the supply header at 10 seconds..........................................149

Figure 92: Temperature distribution along the supply header at 120 seconds........................................149

Figure 93: Temperature distribution along the supply header at 10 seconds..........................................149

Figure 94: Temperature distribution along the supply header at 120 seconds........................................149

Figure 95: Temperature distribution along branch 9 at 10 seconds.........................................................150

Figure 96: Temperature distribution along branch 9 at 120 seconds.......................................................150

Figure 97: Temperature response within the return header at riser 1 junction.......................................150

12



Center for Ocean Engineering i * Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

List of Tables

Table 1: Range of average convective heat transfer coefficients for various flow and fluid (Mills, 1999).25

Table 2: Dimensions and weights of copper alloy number 715 tube (MIL-T-16420K-1, 1978) ............. 32
Table 3: Dimensions and weights of copper alloy number 706 tube (MIL-T-16420K-1, 1978) ............. 33
Table 4: Notional valve loss coefficient values (Rennels & Hudson, 2012).............................................45

Table 5: 60 series cooling coil characteristics (MIL-PRF-2939G, 2001) (Frank & Helmick, 2007)...........56

Table 6: 50 series cooling coil characteristics (DRS Technologies, 2011)...............................................56

Table 7: Unit cooler characteristics (MIL-C-2939E(SH), 1984) (DRS Technologies, 2011) ...................... 56
Table 8: Pressure drop values for 60 series cooling coils (Frank & Helmick, 2007)...............................64

Table 9: Calculated values of convective heat transfer coefficient on air side of 60 series cooling coils...68

Table 10: Default transverse A/C unit locations............................. .......... ........................................ 78
Table 11: Thermal conductivities of various copper-nickel compositions.......................................... 100

Table 12: Valve w eights...........................- -----.... -. ------................................................................... 118

Table 13: Hangar w eight per m eter of pipe ............................................................................................. 119

Table 14: First four roots and associated coefficients for Bi=0.1650........................................................134

Table 15: R134a Saturated table (R134a - TetraFlouroEthane Properties, 2008).................................164

Table 16: R134a - Superheated vapor table (Ppressure 0.06MPa-0.5MPa) (R134a -TetraFlouroEthane

Pro perties, 2008)....................................---------------------.-------..-..-.. . ---.................................................. 165

Table 17: R134a Superheated vapor table (pressure 0.6MPa-2.OMPa) (R134a - TetraFlouroEthane

Properties, 2008)....................................-----------.......--------. . ---.......................................................... 166
Table 18: R404a Saturated table (Solvay Fluor) -- -.. -------------....................... ....................................... 170
Table 19: R404 Superheated vapor table (pressure 0.082MPa-0.204MPa) (Solvay Fluor).......................171

Table 20: R404 Superheated vapor table (pressure 0.222MPa-0.465MPa) (Solvay Fluor).......................172

Table 21: R404a Superheated vapor table (pressure 0.497MPa-0.921MPa) (Solvay Fluor).....................173

Table 22: R404a Superheated vapor table (pressure 0.974MPa-1.649M Pa) (Solvay Fluor).....................174

Table 23: R404a Superheated vapor table (pressure 1.732MPa-2.871MPa) (Solvay Fluor).....................175

13



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program E I 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

Biographical Note

Lieutenant Ben Sanfiorenzo began his military career as an enlisted soldier in the United States Army. He

enlisted in 1997 and following boot camp at Fort Jackson, SC, continued on at Fort Gordon, GA to

complete his Advanced Individual Training as a Network Switching Systems Operator/Maintainer (31F).

Upon completion of his training, he was stationed at Fort Richardson, AK as a team chief of a Small

Extension Node. LT Sanfiorenzo earned his Associates of the Arts degree from the University of Alaska,

Anchorage in 2001.

Following active duty, LT Sanfiorenzo joined the Pennsylvania Army National Guard in 2001 while

concurrently earning his Bachelor's degree in Computer Engineering from Penn State University. In

2004, LT Sanfiorenzo returned to active duty through the Navy NUPOC program. LT Sanfiorenzo earned

his Bachelor's degree in 2005.

Upon completion of Officer Indoctrination School in Newport, RI in 2006, LT Sanfiorenzo reported to

Naval Nuclear Power Training Command where he was an instructor in the Enlisted Mathematics

Department, the Enlisted Reactor Principles Department, and the Division Director of the Enlisted

Mathematics Department. While at NNPTC, LT Sanfiorenzo earned his Master of Business

Administration from Charleston Southern University in 2009.

After being selected for lateral transfer into the Engineering Duty Officer community, LT Sanfiorenzo

began his training by pursuing a Naval Engineers degree and a Master of Science in Mechanical

Engineering degree from the Massachusetts Institute of Technology. Upon completion of his technical

training, LT Sanfiorenzo will serve on a submarine to earn his warfare qualification ED dolphin pin.

Lieutenant Sanfiorenzo's awards include the Navy Commendation Medal and the Army Achievement

Medal (two awards).

14



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program I I 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

Acknowledgements

First, and foremost, I would like to thank my wife for the support she has given me over the past year
while working on this thesis and over the past few years while pursuing my degrees here at MIT. She is
very supportive of my dedication to my work and understands all too well the sacrifice in time necessary
to accomplish anything worthwhile. I would also like to thank my children, Joseph, Elle, and Zoe for their
love and patience and hope I have instilled in them the importance of hard work and perseverance.

I would also like to thank my thesis supervisor, Prof. Chrysostomosis Chryssostimidis for his guidance
and feedback while designing the CSDT and writing this thesis. I would also like to thank Dr. Julie
Chalfant for her support and vast knowledge of ship systems which has helped me out tremendously.
Lastly, I would like to thank Prof. George Karniadakis for his guidance and expertise in heat transfer
which enabled me to overcome many difficulties in the design of the CSDT.

To the Navy, I give special thanks for allowing me the opportunity to attend MIT, which had been a
dream of mine since I was a child.

Lastly, I would like to mention this work is supported by the U.S. Department of Defense, Office of Naval
Research Award Number N00014-08-1-0080, ESRDC Consortium, and MIT Sea Grant College Program
under NOAA Grant Number NA060AR4170019, MT SG Project Number 2008-ESRDC-01-LEV.

15



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

1.0 Chapter 1: Introduction

The focus of this thesis is on the early-stage design of cooling systems aboard U.S. Navy surface ships

utilizing the principles of naval architecture and mechanical engineering concepts. The intent was to

study the heat transfer process within the chilled water system, the seawater system and the electronic

cooling water system and develop a Cooling System Design Tool (CSDT) based on the thermodynamic

laws that govern heat transfer as well as the hydrodynamic principles that govern fluid flow, specifically

the incorporation of flow network analysis (FNA). The key purposes of the CSDT are to provide rapid

visualization and analysis of the cooling system to test overall feasibility and performance of the system.

1.1 Organization of Thesis

This thesis contains five chapters (Introduction, Design Tool Fundamentals, Design Tool Architecture,

Simulation & Results, and Conclusions) and two appendices. The Introduction provides background

information and fundamental concepts pertaining to chilled water systems, seawater systems and

electronic cooling water systems. It also provides a brief discussion pertaining to the motivation behind

the CSDT and the intent of this thesis. Design Tool Fundamentals provides the theory to which the CSDT

algorithm was based upon. This includes: fundamental heat transfer concepts, pipe characteristics, flow

network analysis, pump and valve characteristics, head loss associated with flow configurations and

junctions, heat exchanger and cooling coil characteristics, expansion tank design concepts, and A/C unit

characteristics. Design Tool Fundamentals also provides assumptions made pertaining to the theory

behind the CSDT as well as validation of those assumptions wherever possible. Design Tool Architecture

describes the layout of the CSDT, in particular the user inputs and outputs provided by the CSDT, and an

in-depth explanation of the CSDT algorithm. Design Tool Architecture also explains the program

requirements and the user pre-requisites, and guidelines in designing a chilled water system. Simulation

& Results discusses in detail an example of a cooling system modeled using the CSDT, including

pertinent analyses of the cooling system. The modeled cooling system is analyzed statically as well as

dynamically. Several scenarios are explored to study the effects of the thermal transients. Lastly,

Simulation & Results also contains validation of the CSDT transient analysis through the use of analytic

comparison. The final chapter, Conclusions, the major benefits and drawbacks of the CSDT are

discussed, as well as areas of future research. The attached appendices include the notional heat loads

used in the simulation and refrigerant characteristics.

1.2 Topic Motivation

Over the last several decades, there has been a dramatic increase in the complexity and power

requirements of radars and other combat systems equipment aboard naval combatants and this trend is

expected to continue for the foreseeable future. This increase in the power demand has a direct effect

on the amount of heat which has to be removed by the cooling systems, with future combatants

expected to require 5-10 times the cooling capacity currently installed on naval combatants (McGillan,

Perotti, McCunney, & McGovern). In the past, the cooling system could be designed and integrated into

16



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering U U Cambridge, Massachusetts 02139-4307

the ship towards the later stages of the ship design process; however, this is no longer possible. The
growing complexity and size of the cooling systems needed require preliminary design and integration in
the early-stages of the ship design process. To design and integrate cooling systems several tools are
available to the naval architect, but vary in complexity and usefulness depending on the design stage
considered.

For early-stage design, ASSET and Rhinoceros may be used. ASSET provides the naval architect with the
basic idea of a ship based on relatively few input parameters. This is often the start to a new (or
modified) ship design, and it offers much in return pertaining to weights, electric loads and general
hydrostatic analyses. This information can then be used in conjunction with other tools such as POSSE or
Rhinoceros for further development in other specific areas such as intact and/or damaged stability and
2-D/3-D arrangement drawings of the ship. ASSET does provide output pertaining to the cooling system
such as weight and power requirements. However, this is based on historical data of older surface ships.
ASSET offers very little in the design of the cooling system, only allowing the user to specify weight,
center of gravity, area and power through the use of the Payloads and Adjustments table.

Rhinoceros is a CAD tool that can be used to design the internal and external arrangements of a ship.
This may be used in the design of a cooling system, but only gives the naval architect the ability to
visualize the layout of the cooling system if the design is already known. Rhinoceros offers no capability
to analyze the cooling system, other than visualization.

For mid-stage design, Paramarine can be used. The tool offers much capability in analyzing the cooling
system, including visualization of the piping structure, weight analysis and flow analysis. The major
drawback of using Paramarine is the complexity of the tool. There is a very steep learning curve
associated with Paramarine and much time has to be invested in order to become proficient and take
advantage of what Paramarine has to offer.

Finally for late-stage design, commercially available tools such as Flowmaster*, PIPE-FLO*, and
FluidFlow* may be used. These tools are useful in solving for flow and pressure within the piping
network, and have the capability to integrate several systems together such as the HVAC and chilled
water systems, but require an in-depth model of the ship and piping structure.

A previous MIT 2N student, Ethan Fiedel, recognized this need for an early-stage cooling system design
tool that is easier to use than Paramarine and which does not require an in-depth model of the ship.
Fiedel's version of the CSDT (CSDT v1.0) provided much insight into the design of the chilled water
system and provided an interface with Paramarine for further analysis. However, a drawback to
CSDT v1.0 was the use of rules of thumb for determining flow within the piping network (Fiedel, 2011).
In contrast to CSDT v1.0, this version of the CSDT (CSDT v2.01) focuses on designing the cooling system
through the use of hydrodynamic and thermodynamic principles beginning with the projected heat
loads of the ship and the location of these loads.

This paper refers to CSDT v2.0 simply as CSDT. When referring to Fiedel's version, the v1.0 is explicitly stated.

17



Center for Ocean Engineering E o Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

1.3 Description of Cooling Systems

There are many different types of cooling systems aboard U.S. Navy surface ships. This paper focuses on

three cooling systems including the chilled water system, the seawater system and the electronic

cooling water system. All three cooling systems provide similar functions in providing cooling to various

electronic components but vary in cooling water temperature and purity.

The chilled water system is only one of many freshwater systems aboard U.S. Navy vessels. The purpose

of the chilled water system is to provide cooling for electronic cooling water heat exchangers for

electronic components requiring demineralized water below a certain temperature and for other

electronic equipment requiring cooling water. The A/C cooling coils use a significant amount of chilled

water, accounting for as much as 75% of the heat load serviced by the chilled water system. Other

components requiring chilled water may include SQS-53 (surface sonar), SLQ-32 (surface electronic

warfare system), SPY Antenna (surface radar), A/C Unit Lube Oil Cooler, among other electronics

equipment and coolers (Frank & Helmick, 2007).

The seawater system provides a low cost solution in removing waste heat offering a lower weight and

smaller footprint than that of the chilled water system, but the cooling fluid temperature is generally

higher (Johnson, West, Miller, & Zouridakis, 2004). Also, if used directly to cool electronic equipment,

fouling of the channels may take place. Therefore, a flat plate heat exchanger is typically used to

transfer heat between the seawater loop and a demineralized water loop as seen in Figure 1 below.

SW Loop DW Loop

Sea tHeat Load

Direction of Heat Flow
Figure 1: Heat flow from heat load to sea via Dw, and sW loops

The electronic cooling water system is a system specifically designed to remove heat from electronic

equipment by supplying necessary quantities of conditioned coolant water. The electronic cooling water

system can be broken down further into three distinct cooling water systems based upon the cooling

water temperature required by the electronic equipment.

18



Center for Ocean Engineering U U Massachusetts Institute of Technology
Naval Construction & Engineering Program * I 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering U E Cambridge, Massachusetts 02139-4307

1. For high temperature limit applications: The seawater primary cooling system supplies cooling

water for electronic components requiring cooling water in excess of the highest expected

seawater temperatures.

2. For low temperature limit applications: The chilled water primary cooling system supplies chilled
water for electronic components requiring cooler cooling water.

3. For mid temperature limit applications: If the required cooling water temperature is close to

that of the maximum expected seawater temperature, then a hybrid approach may be taken.

The electronic cooling water system is cooled by chilled water when the seawater temperature
is high, but can be cooled by seawater if the seawater temperature is low enough.

Each of these three configurations utilize a heat exchanger to transfer heat from either the seawater
or chilled water loop to the demineralized water within the electronic cooling water system.

1.3.1 Description of Chilled Water Systems

The chilled water system may be composed of several chilled water plants. Each chilled water plant is
made up of several major components, including: an air conditioning chilled water plant (a chiller),
chilled water pumps (historically centrifugal pumps), a chilled water expansion tank, a chilled water
supply and return header, and various instruments and controls. The chilled water system is usually
broken up into several zones within the ship. Each zone contains a chilled water plant and branch piping
which serve to provide a closed looped system capable of circulating chilled water within the loop and
provide cooling for all equipment within that zone. The chilled water supply and return piping have
components which run longitudinally along the majority of the ship's length (chilled water mains) and
vertical components (chilled water risers) which connect the chillers to the chilled water mains. The
chilled water branches are typically smaller diameter piping which branches off of the supply header and
provides cooling to the heat loads. The branch piping reconnects downstream to the return header,
forming a closed loop. Cross-connections provide connections athwartships between chilled water
mains. A diagram showing the interconnections of the major components is shown in Figure 2.

CHILLED WATER CHPLLEDER
-tLUEN HADER SUPPLY HEADER
KE IUiN HEALIl:K

CHILLED WATER
EXPANSION TANK

SEAWATER OUT - A TWATER IN

Figure 2: Schematic of chilled water plant (valves not shown)

19



Center for Ocean Engineering Ilu Massachusetts Institute of Technology
Naval Construction & Engineering Program j l 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

The chilled water plant can be configured in several different ways. The simplest configuration consists
of a single freshwater chiller, a single chilled water circulating pump and a single chilled water expansion
tank. The chiller takes the hotter fluid returning from the branch piping and return header and cools it to
approximately 6.60C (Pruske & Kiehne). The cooler fluid is pumped by the circulating pump and is
discharged into the supply header, where it diverges into the branch piping. Connected to the return
header, the expansion tank provides an expansion volume when the chilled water is secured and the
temperature of the water rises. In addition, the expansion tank provides a source of make-up water.
Other configurations of chilled water plants consists of two chillers with two pumps operating within a
single zone and sharing a single supply and return header. This increases the cooling capacity within that
zone. It is also possible to have a single chiller and pump in two different zones, each with their own
supply and return headers with the two zones having a cross-connection. This provides flexibility in
separating the two zones by shutting the cross-connect valve; however, the cross-connect valve could
be opened if one system is down, allowing the other chilled water plant to supply chilled water to both
zones.

Within each zone, the heat loads can be broken up into vital and non-vital loads. Vital loads consist of
machinery space services, electronic equipment, and vital air conditioning cooling coils. Non-vital loads
contain all services not classified vital. An example of a vital load branch of the chilled water system is
shown in Figure 3.

CW SUPnl.Y MAL

PASSAGE -

-- - SONAR EQPT LM NO. 1

FANROOM

ACCESS SOA EQT RSIv NO3

3-18--Q 34-

Figure 3: Example of chilled water vital load branch - DDG51 1w (Fang, Jiang, Khan, & Dougal)

1.3.2 Description of the Seawater System

The seawater system provides seawater to the ship through the use of the main and auxiliary seawater
systems. The auxiliary seawater system is of primary importance since this is the system used for A/C
unit heat rejection. The auxiliary seawater system is composed of several SW pumps which pump
seawater from the sea chests through a seawater piping system. The seawater can be used to transport
waste heat from various locations such as the condensing coils within the A/C plant or the seawater side

20



Center for Ocean Engineering * o Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

of FW/SW heat exchangers. A drawback to the seawater system is that the temperature of the sea has
to be accounted for. Also, the impurity of the sea does not allow the seawater to be used directly to cool
components in most applications. However, the main benefit of the seawater system is the plentiful
source of water it provides and the relatively low cost of the seawater system, making it an attractive
option for cooling systems. In fact, the use of a FW/SW cooling system is used wherever possible due to
the lower cost over the chilled water system and the lower footprint required in implementing a FW/SW
cooling system (Johnson, West, Miller, & Zouridakis, 2004).

1.3.3 Description of Electronic Cooling Water Systems

The electronic cooling water system is a closed system that works in conjunction with either a chilled
water loop or a seawater loop or both. As stated above, this is dependent on the cooling water
temperature needed within the electronic cooling water system.

The most desirable type would be a seawater cooling system-electronic cooling water system
configuration since this is the lowest cost solution. However, this configuration is only possible if the
cooling water needed is 5-10"F above the maximum seawater temperature. The electronic components
transfer their heat to the electronic cooling water via a heat exchanger, possibly through the use of a
cold plate with very thin channels. The warmer electronic cooling water then transfers heat to the
seawater within the seawater loop via a seawater/demineralized water heat exchanger. The warmer
seawater is then discharged overboard and cooler seawater is pumped in the seawater inlet.

Another configuration of the electronic cooling water system would be that of the chilled water cooling
system-electronic cooling water system. This configuration is necessary when the electrical components
require a high level of cooling water purity and a low temperature for the cooling water. The
configuration is similar to that described above in that the electronic cooling water system comprises a
closed loop that transfers heat via a heat exchanger. The heat exchanger transfers the heat from the
warmer demineralized cooling water to the cooler chilled water. This cools down the demineralized
water within the electronic cooling water system and this cooler water is circulated through the
channels of the electronic component heat exchangers. The chilled water then rejects heat to the sea
via the condenser 2 within the A/C unit.

The last configuration of the electronic cooling water system is the seawater/chilled water cooling
system-electronic cooling water system. This configuration is used when the electronic components
require a cooling water temperature between the two ranges discussed above. This configuration
incorporates two heat exchangers, a SW/DW heat exchanger and a CW/DW heat exchanger. Seawater
can be used as the primary heat sink. When the seawater inlet temperature is low enough, the heat is

2 There is actually an additional closed loop within the A/C unit. The warmer chilled water transfers heat to the
cooler refrigerant within the A/C unit. The refrigerant is compressed causing a rise in temperature. The hot
refrigerant transfers heat to cool seawater. The warmer seawater is then discharged overboard. This is discussed in
greater detail in Section 2.10.

21



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

transferred to the seawater loop. However, if the seawater temperature is too great, the heat from the

electronic cooling water system is transferred to the chilled water system via the CW/DW heat
exchanger.

A diagram of the heat flow of the electronic cooling water system, the chilled water system and the
seawater system and its interfaces are shown below in Figure 4.

Sw Loop

Sea

CW Loop DW Loop

Heat Load

Direction of Heat Flow
Figure 4: Heat flow from heat load to sea via Dw, cw, and SW loops

1.4 Thesis Intent

The intent of this thesis is to provide a more refined CSDT that can be used by Naval Architects, students
training to become Naval Architects, Technical Warrant Holders and practicing engineers. This includes
modeling the CSDT from thermodynamic and hydrodynamic principles. The framework of the model was

built using Matlab in conjunction with Excel. The program interacts with the user primarily through the
command window, guiding the user through the design process. Some visualization is provided as the

design progresses, allowing the user to quickly determine and correct errors in the design. The CSDT also

displays important results of various analyses that can be performed on the data, including a weight

summary, a static temperature distribution, and a temperature distribution that captures transients in

space and time. The program interaction, chilled water plots and analyses output enables the user with

the ability to quickly visualize, develop and analyze cooling systems aboard naval vessels.

22

N M

11111



Center for Ocean Engineering U - Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

2.0 Chapter 2: Design Tool Fundamentals

Thermodynamic laws and equations and hydrodynamic principles form the basis of the CSDT. This is the

most fundamental difference between CSDT v1.0 and the version discussed in this paper. Where

CSDT v1.0 incorporated rules of thumb to determine the pipe characteristics (e.g., diameter) and flow

characteristics (e.g., velocity and mass flow rate), the current CSDT version uses thermodynamic and

hydrodynamic principles to determine these characteristics (Fiedel, 2011).

2.1 Heat Transfer Fundamentals

The major components that comprise the chilled water system include: valves, pumps, heat exchangers,

expansion tanks, and the pipes that connect these components together. To determine the pipe
dimensions it is necessary to explore the heat transfer processes involved within the chilled water

system.

2.1.1 Modes of Heat Transfer

Conduction and radiation are the two modes of heat transfer; however, convection is also often thought

as a separate and distinct mode of heat transfer. The main difference between conduction and radiation

is the mean free path of the energy carriers. Conduction can be described as the transfer of energy
between molecular elements with a short mean free path between interactions. Radiation is similar, but

the mean free path is much larger. On the other hand, convective heat transfer can be described as the
process of heat transfer between a solid and a moving fluid, an efficient way to transfer heat since
thermal energy is transported due to fluid motion (Mills, 1999). This paper focuses on the heat transfer

processes involving conduction and convection. The basic equations used to compute the rate of heat

transfer for convection and conduction are:

Q = cyATeon
Equation 1 (Mills, 1999)

and

Q = UAATeond
Equation 2 (Mills, 1999)

respectively, where Q is the rate of heat transfer [W], ?h is the mass flow rate of the fluid [kg/s], c, is the

specific heat capacity of the fluid [J/kg-K], ATconv is the differential temperature of the fluid undergoing
convection [K], ATcond is the differential temperature across the boundary/medium [K], U is the overall

heat transfer coefficient [W/m 2-K], and A is the area of the surface in which the heat transfer occurs

[m2].

23



Center for Ocean Engineering Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

2.1.2 Types of Flow

In addition to the modes of heat transfer, it is also important to distinguish between the types of flow
that exist for convective heat transfer. Flow can be laminar or turbulent, forced or natural, internal or
external.

2.1.2.1 Laminar vs. Turbulent

When hydrodynamically fully developed, laminar flow within a cylindrical tube has a parabolic velocity
profile consistent with Poiseuille flow, For turbulent flow, there is greater mixing of the fluid within the
center of the channel (tending to flatten out the velocity

Parabolic
profile towards the center of the channel), and therefore, | c.m
there are greater rates of heat transfer and higher -V i-.4
convective heat transfer coefficients. The flow regime
can be determined by the Reynold's number: (a)

VD
Re = -

Equation 3 (Mills, 1999) K777~ij7v n
where Re is the Reynolds number (dimensionless), V is
the velocity of the fluid [m/s], Dis the characteristic 5: Depiction of (b)Figure 5Deitoof(a) lamninar and (b) turbulent
dimension of length [m], which in this case is the diameter flow (Sellens)
of the pipe, and v is the kinematic viscosity [m2/s] (Mills, 1999). Laminar flow generally forms with Re <
2,300, while fully turbulent flow forms with Re > 10,000. There is a critical zone that exists for Re

between 2,300-5000 and a transition zone that depends on the Re number and the relative roughness of
the pipe (Mills, 1999). A profile of flow within a channel is shown in Figure 5 which depicts laminar flow
and turbulent flow in a cylindrical pipe.

2.1.2.2 Forced Convection vs. Natural Convection

For convective heat transfer, the main methods of heat removal are through forced convection (air),

forced convection (liquid), natural convection (air), and natural convection (liquid). The difference

between natural convection and forced convection is that in forced convection the fluid (either air or

liquid) is propelled by some external force, usually a fan or a pump. With natural convection, the fluid

circulates due to differences in density caused by differences in temperature. The hotter, less dense
fluid rises and the cooler, denser fluid falls. This can result in circulation of the fluid with gravity as the

force which sustains the flow of the fluid. The method of heat removal plays a crucial role in the

efficiency of heat transfer between the heat source and the heat sink. Typical ranges of the average

convective heat transfer coefficients of air and water undergoing forced convection and natural
convection are summarized in Table 1 below. The average heat transfer coefficient is dependent on the

geometry of the system, the fluid velocity, and the fluid thermal conductivity.

24



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering U E Cambridge, Massachusetts 02139-4307

Flow and Fluid hi [W/m2-KJ

Natural convection, water 15-1,000

Forced convection, water 50-10,000
Table 1: Range of average convective heat transfer coefficients for various flow and fluid (Mills, 1999)

Higher average convective heat transfer coefficients will result in smaller differential temperatures
needed for the same rate of heat transfer. Because of this, forced convection is generally used in chiller
systems; however, many systems aboard naval vessels

use forced convection (air) to cool electrical

components, which is not as efficient as direct contact

with water as discussed in the paper Thermal-Electric

Co-Simulation of Power Conversion Systems aboard an
All-Electric Ship (Pruske & Kiehne). To increase the

surface area of the electrical components, fins are

generally used, which results in higher heat transfer

coefficients. Some examples of fins used in standard

integrated circuits packages can be seen in Figure 6. In -Figure 6: Examples of fins used in cooling electrical
addition, fins can be attached to the outer surface of components (Alpha Novatech, 2007)

the chilled water piping in contact with the hot flowing air. This increases the surface area in contact
with the air, thus increasing the heat transfer efficiency. However, even with the use of fins both on the
electrical components and on the chilled water piping, the growing trend of increased heat generation
and thermal loads may be too great as the Navy shifts towards larger and more powerful electrical
systems and the all electric ship. With this in mind, other methods of thermal management should be
explored such as direct contact of fluid with electrical components along with more exotic methods such
as two-phase flow and jet spray methods.

2.1.2.3 Internal vs. External Flow

Internal flow describes the flow of chilled water within the cooling system. The velocity profile for
internal flow is shown above in Figure 5. External flow is a bit more complicated and is as equally
important to the chilled water system because within the heat exchangers, forced air passes across the
external surface of the pipe cylinders3. Figure 7 shows the flow pattern for flow across a cylinder for
different regimes.

3 This is assuming the heat exchanger is similar to that of a cooling coil. For a flat plate heat exchanger, a cold plate
heat exchanger, or a more exotic heat exchanger, the heat transfer mechanism on the secondary side differs.

25



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Re - REGINE OF UNSEPARAT19 FLOW

5 10 15 - Re . 41 A FIXED PAMR OF FPPL
VORTICES IN WAKE

43 - Re N "AN0 < Re < 16
TWO REGIMES IN WICH VORTEX
STREET IS LAWNAR

10 - Re 3 TRANSITION RANCE TO TURSU-
LENCE IN VORTEX

300. Re - 3X115 VORTEI STREET IS FULLY
TURBULENT

3 X 10 Ru 3.5 X 106
LAeINAR SOUNDARY .AVER HAS UNDERGONE
TURSULENT TRANSITION AMD WAKE IS
NARROWER ANO OISORGANIZED

3.5 x 1 Re
RE-ESTAALISHMENT OF TURCU-
LENT VORTEX STREET

Figure 7: Flow across a cylinder for different flow regimes (Sunden, 2011)

Most of the heat sources identified within the library of the CSDT have associated heat transfer
coefficients; however, if not specified, a set of empirical equations can be used to determine the
average Nusselt number. The equations suggested by Churchill and Bernstein are shown below.

1 1
__0.62Re 2Prz

NuD = 0.3 + D for ReD < 10 4

[1 + ('Pr) ]

1 1 1-
0.62Re 2Prz Rv

NuD = 0.3 + DR 1 1 +

4 2 
82,000

1+ r

Equation 4 (Mills, 1999)

for 2x104 < ReD < 4x10 5

Equation 5 (Mills, 1999)

26

0 0



Center for Ocean Engineering 3 U Massachusetts Institute of Technology
Naval Construction & Engineering Program IEE 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering U E Cambridge, Massachusetts 02139-4307

4
1115

0.62Re'Pri Re 2 \
NuD = 0.3 + D 1 + 282,000) for 4x10 5 < Re0 < 5x106

1+

Equation 6 (Mills, 1999)

where NUD is the average Nusselt number (dimensionless), Re0 is the Reynolds number

(dimensionless), and Pr is the Prandtl number (dimensionless). These equations should be used with
caution, as they represent external flow over a cylindrical pipe. If the geometry is more complex,
including bends, fins, cross-flow, etc., then the above equations should not be used and the convective

heat transfer coefficient should be determined experimentally.

2.1.3 Temperature Profile

The main purpose of the chilled water system is to cool electrical equipment such that the system and
component levels of electrical equipment stay below a certain temperature threshold. If this threshold is
surpassed, then failure of electrical systems and/or components will follow. With this in mind, a
maximum temperature threshold is established for each group of equipment cooled by the chiller
system. By default, it was assumed that the electrical components could not exceed a temperature of
100*C. Through the use of forced convection of air (or some liquid), the electrical components are
cooled through the use of a fan blowing over the surface of the components (or recirculation pump in
the case of a liquid). The hotter air (liquid) then passes over the surface of the piping of the chilled water
system (the tube bundles within the heat exchanger). The surface temperature of the chilled water
system piping is much cooler and thus cools the hot air (liquid), which is then recirculated back to the
electrical components. The surface of the piping is heated up by the hot-air (liquid) and heat is
transferred through conduction across the outer wall of the pipe to the inner wall of the pipe. The piping

holds the chilled water which flows at some velocity. The forced convection of water within the pipe
removes the heat generated by the electrical components and transfers the heat to the chiller unit. In
steady state, the heat generated by the heat source is equivalent to the rate of heat transfer across each
boundary, as well as the rate of heat transfer from inlet to outlet4 .The cross-sectional view of the pipe

and its associated temperature profile for steady-state heat transfer is shown below in Figure 8.

4 This assumes the loss into the surrounding air is negligible. In reality, some of the heat load will be dissipated into
the surrounding air through the boundaries of the component, such as the cabinet walls which house electronic
equipment. The CSDT makes the assumption that the heat load provided by the user is not the total heat
generated by the component, but rather the portion of that heat load which is to be removed by the chilled water.

27



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

L"e

Figure 8: Cross-sectional view of pipe and associated temperature profile for steady-state heat transfer across the pipe wall

The temperature profile shows the rate of heat transfer from the hotter fluid through the pipe wall and
into the fluid within the pipe with the distance varying radially from the center of the pipe. When in
steady-state, the rate of heat transfer will be equal across each boundary and will be equivalent to the
rate of heat generation of the heat source (electrical waste heat). The variable Tax corresponds to the
temperature of the hotter fluid being blown across the surface of the electrical components. This hot
fluid comes in contact with the surface of the outer pipe wall. The surface temperature of the outer pipe
wall is T1. The temperature drops linearly through the pipe wall by conduction. Lastly, the temperature
drops throughout the flowing fluid within the pipe, with the center of the pipe having a temperature of
Te. The surface temperature of the inner pipe wall is T2. Each layer also has specific thermal properties
described by the variables he,,, he,0, and k. The two fluids undergoing forced convection have associated
heat transfer coefficients he,i and he,,. The pipe has a certain thickness, L, and a thermal conductivity, k,
which is dependent on the material composition.

This heat transfer process can be depicted using an electrical diagram. The difference in temperature
from the heat source to the free stream fluid flowing in the pipe can be thought of as a voltage
potential. Each boundary also has some resistance to the flow of heat and can be thought of as a
resistor. The flow of heat from the heat source to the heat sink (the fluid in the pipe) can be thought of
as current. Figure 9 is a thermal circuit showing the heat transfer process.

Figure 9: Electrical analogy to heat flow (thermal circuit)

Each resistance can be calculated if the properties of the medium are known. Going from the electrical
components to the outer wall of the piping, the following equation was used to determine the
resistance to heat flow, where Ai is the area of contact (the inner surface area of the pipe):

28



Center for Ocean Engineering 3 3 Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

1 1
Rmax-1 = heLA hc2r

Equation 7 (Mills, 1999)

To determine the resistance to heat flow across the piping wall, the following equation was used:

In (r()
=27rkL

Equation 8 (Mills, 1999)

The above equation had to take into account the curvature of the pipe, which is why there is a
logarithmic term in the numerator as opposed to a linear term as is the case for a slab. Lastly, to
determine the resistance to heat flow from the inner wall to the fluid in the center of the pipe, the
following equation was used:

1 _ 1
R2-e

2-- c,oAo hc,o21Tri
Equation 9 (Mills, 1999)

Using the equations of resistance (Equations 7-9) along with the analogy of Ohm's law, the temperature
values at each node can be determined as shown in the equation below.

1 _n 11
Tma= Te+ R= Te+ + + r

unit length unit length h, 12rro + 2nkL hc,,o2nri

Equation 10 (Mills, 1999)

2.1.4 Convective Heat Transfer Coefficient

An important parameter to be calculated is the convective heat transfer coefficient. To determine the
convective heat transfer coefficients hcj and he,o the flow regime must be known for the two fluids. For
the case of laminar flow, the convective heat transfer coefficient can be computed using the following
equation:

k
he = 3.66-

D

Equation 11 (Mills, 1999)

where kis the fluid thermal conductivity [W/m-K] and D is the diameter of the pipe [m]. This equation
assumes that the temperature along the pipe wall is constant and that the point of interest is far from
the entrance of the pipe, where there may be some fluctuations in hc due to vortices and a step-change
in heat exchange across the pipe length at the pipe entrance.

29



Center for Ocean Engineering *EEEMassachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, BuHding 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

For the case of fully turbulent flow (ReD > 10,000) and Pr > 0.5, the convective heat transfer coefficient
can be computed using the following equation:

V08k 0.6 (pcy) 0 4
he = 0.023 D0.20.4

Equation 12 (Mills, 1999)

where Vis the velocity of the fluid [m/s], kis the fluid thermal conductivity [W/m-K], p is the density of
the fluid [kg/m 3], cy is the specific heat capacity of the fluid [J/kg-K], D is the diameter of the pipe [m],

and v is the kinematic viscosity [m2/s). Again, it is assumed that the temperature along the pipe wall is

constant and that the point of interest is far from the entrance of the pipe. This equation can be
rewritten using dimensionless parameters as follows:

NUD = 0.023(ReD)0 -8 (Pr)0 .4
Equation 13 (Mills, 1999)

where NUD is the Nusselt number and Pr is the Prandtl number defined as:

NUD = hcLD
Nn k

Equation 14 (Mills, 1999)

and

Pr = -'

Equation 15 (Mills, 1999)

respectively, where y is the dynamic viscosity [kg/m-s].

Initially, the convective heat transfer coefficient for turbulent flow is calculated using the above
equation; however, the equation is not valid for ReD within the transition zone and only provides an
approximation for the convective heat transfer coefficient. Once the pipe diameter and velocity have

been estimated, a more refined approximation of the convective heat transfer coefficient can be
obtained using Gnielinski's formula:

( (ReD - 1000)Pr
NUD =

1 + 12.7 ()2(Pr - 1)

Equation 16 (Mills, 1999)

This equation provides a more accurate value for the convective heat transfer coefficient, and is valid for
thermally fully developed flow with Pr > 0.5 and 3,000 < ReD < 106, although there is greater
uncertainty with ReD < 104 due to intermittent turbulence with error reaching up to 20% (Mills, 1999).

30



Center for Ocean Engineering - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

2.1.5 Assumptions

Some assumptions were made in order to simplify the equations involved in determining the necessary

pipe diameter and fluid velocity within the pipe. This included:

e A constant temperature of 6.60C was assumed along the length of the supply header and at the
inlet of each branch during the first iteration of computation involving pipe sizing and
determination of head loss. However, the second iteration did not include this assumption, with

the calculated head loss from the first iteration used in determining the associated inlet
temperatures for each branch. These inlet temperatures were subsequently used in resizing the

various branch diameters and header diameter.

e The effect of radiation is negligible.

e The effect of natural convection is negligible.

e The temperature at a particular length of piping is only dependent on the radial component, r.

The liquid is incompressible, with a constant p (during operation of the chilled water system).

* Changes in fluid properties are negligible, including: k, v, and c, (during operation of the chilled

water system).

Representative values for valve loss coefficient were chosen for gate, globe and check valves

when loss coefficients were not known.
Only gate, globe and check valves were modeled within the CSDT.

The equations provided by Churchill and Berstein were assumed adequate in calculating the
average Nusselt number for heat exchangers (with the exception of flat plate heat exchangers)

that did not have an associated heat transfer coefficient within the CSDT library. The equations

do not take into account specific arrangement of the cylindrical tubes or fin geometry, if

present.

e The radius of curvature for pipe bends was assumed to be three times the inner pipe diameter.

This value can be modified by the user within the CSDT.
e The radius of pipe entrance/exit curvature was assumed to be 0.1 times the inner branch pipe

diameter. This value can be modified by the user within the CSDT.

2.2 Pipe Characteristics

As mentioned earlier, the pipe material plays a role in the heat transfer from the heat source to the heat
sink. The two types of piping material used include: copper-nickel alloy 90-10 (copper alloy number 715)
and copper-nickel alloy 70-30 (copper alloy number 706). The thermal conductivity of copper-nickel
alloys range from 10-50 W/m-K with copper alloy number 715 having a thermal conductivity of
50 W/m-K and copper alloy number 706 having a thermal conductivity of 29 W/m-K (Copper
Development Association, Inc., 2012).

As specified in MIL-T-16420K, there are specific tube diameters and thicknesses used aboard naval
vessels. These thicknesses depend on the copper alloy number and the class to which the pipe belongs.

31



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering'

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

There are six classes covered in the document, of which five are discussed here. They include: Class 200,
Class 700, Class 1650, Class 3300, and Class 6000. The Class denotes the maximum working pressure in
lb/in2. Below, Table 2 summarizes the various diameters and thicknesses of pipes for each class of
copper alloy number 715 tube.

Outside Class 00 Class 700 Class 1650 Class 3300 Class 6000
Diameter hickness Wt/ft Thickness Wt/ft Thickness Wt/ft Thickness Wt/ft Thickness Wt/ft

in. In lbs in lbs in lbs in lbs in lbs
0.125 - - - - - - 0.028 0.033 0.028 0.033
0.250 0.035 0.092 - - - - 0.035 0.092 0.058 0.136
0.375 - - - - - - 0.049 0.194 0.083 0.295
0.405 - - - - - - 0.058 0.245 0.095 0.359
0.500 0.035 0.198 0.065 0.344 0.035 0.198 0.072 0.375 0.120 0.555
0.540 0.065 0.376 0.065 0.376 0.042 0.255 0.072 0.410 0.120 0.614
0.675 0.065 0.483 0.072 0.529 0.049 0.373 0.095 0.671 0.148 0.950
0.750 - - - - 0.058 0.489 0.109 0.851 0.165 1.18
0.840 0.065 0.614 0.072 0.673 0.058 0.552 0.120 1.05 0.203 1.57
1.000 - - - - 0.072 0.814 0.134 1.41 0.220 2.09
1.050 0.065 0.780 0.083 0.977 0.083 0.977 0.148 1.63 0.238 2.35
1.250 - - - - 0.095 1.34 0.165 2.18 0.284 3.34
1.315 0.065 0.990 0.095 1.41 0.095 1.41 0.180 2.49 0.300 3.71
1.500 - - - - 0.109 1.85 0.203 3.21 0.340 4.80
1.660 0.072 1.39 0.095 1.81 0.120 2.25 0.220 3.86 0.380 5.92
1.900 0.072 0.16 0.109 2.38 0.134 2.88 0.250 5.02 0.425 7.63
2.000 - - - - 0.148 3.34 0.284 5.93 0.454 8.55
2.375 0.083 2.32 0.120 3.30 0.165 4.44 0.340 8.43 0.520 11.7
2.500 - - - - 0.180 5.09 0.340 8.94 0.547 13.0
2.875 0.083 2.82 0.134 4.47 0.203 6.60 0.380 11.5 0.630 17.2
3.500 0.095 3.94 0.165 6.70 0.250 9.89 0.458 17.0 0.760 25.3
4.000 0.095 4.52 0.180 8.37 0.284 12.8 - - - -

4.500 0.109 5.83 0.203 10.6 0.340 17.2 - - - -

5.000 0.120 7.13 0.203 11.9 0.380 21.4 - - - -

5.563 0.125 8.28 0.220 14.1 0.425 26.6 - - - -

6.625 0.134 10.6 0.259 20.1 0.457 34.3 - - - -

7.625 0.134 12.2 0.284 25.4 0.526 45.5 - - - -

8.625 0.148 15.3 0.340 34.3 0.595 58.2 - - - -

9.625 0.187 21.5 0.340 38.4 0.664 72.5 - - - -

10.750 0.187 24.1 0.380 48.0 0.741 90.3 - - - -

12.750 0.250 38.1 0.454 68.0 0.879 127 - - - -

14.000 - - 0.473 77.9 - - - - -

15.000 - - 0.503 88.8 - - - - - -

16.000 - - 0.534 101 - - - - -

Table 2: Dimensions and weights of copper alloy number 715 tube (MIL-T-16420K-1, 1978)

Table 3 summarizes the various diameters and thicknesses of pipes for class 200 copper alloy number
706tube.

32



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Outside diameter Class 200
Wall thickness Wt/ft

inches in lbs
0250 0.035 0.092
0500 0.035 0.198
0.540 0.065 0.376
0.675 0.065 0.483
0.40 0.065 0.613
1.0 0.065 0.779
1.315 0.065 0.989
1.660 0.072 1.39
1.90 0.072 1.60
2.375 0.083 2.32
2.875 0.083 2.82
3.500 0.095 3.94
4.000 0.095 4.51
4.500 0.109 5.83
5.000 0.120 7.12
5.563 0.125 8.28
6.625 0.134 10.6
7.625 0.140 12.2
8.625 0.151 15.3
9.625 0.187 21.5
10.750 0.187 24.0
12.750 0.250 38.0

Table 3: Dimensions and weights of copper alloy number 706 tube (MIL-T-16420K-1, 1978)

2.3 Flow Network Analysis

Flow network analysis is a method that can be used to determine the velocities at every location of a
pipe network simultaneously. It is important to use flow network analysis because each component of
the network depends on every other component of the network. Branch velocities cannot be accurately
solved in isolation. The analogy to flow network analysis would be solving for currents and voltages in an
electrical circuit using Kirchoff's current law (KCL) and Kirchoff's voltage law (KVL).

The chilled water piping system is a network of interconnected pipes. The system is composed of two

different pipe types, the header and branch pipes. The header pipes branch out into parallel segments

which are the portions that come in contact with the heat sources. Each branch will vary in diameter,

length and other characteristics such as bends, tees, and valves which will affect the mass flow rate

within that branch, and ultimately the mass flow rate in the header piping. The fundamental equations

that govern how fluid will flow within the network of pipes are based on the conservation of mass,

momentum and energy.

Intuitively, the mass flow rate at the inlet of a branch segment is equal to the mass flow rate at the

outlet of the segment (conservation of mass), and:

ni = pAV
Equation 17 (Rennels & Hudson, 2012)

33



Center for Ocean Engineering 11111 Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering = I Cambridge, Massachusetts 02139-4307

where ri is the mass flow rate [kg/s], p is the density of the fluid [kg/m 3], A is the cross-sectional area of
the pipe [MI2] and V is the average velocity of the fluid [m/s]. Therefore:

(pAV) 1 = (pAV) 2
Equation 18 (Rennels & Hudson, 2012)

where 1 denotes the branch pipe inlet and 2 denotes the branch pipe outlet.

Conservation of momentum states that the sum of the forces acting on a control volume is equal to the
change in momentum of the fluid. This can be shown in the equation below for a pipe with flow along
the x-axis.

F=(PA)1-(PA)z+1n(V1-Vz)x
Equation 19 (Rennels & Hudson, 2012)

where Fx is the apparent force acting on the control volume due to frictional resistance and/or
difference in pressure across the control volume along the x-axis.

Lastly, the conservation of energy is used to derive the general energy equation. Neglecting forms of
energy such as electrical, atomic or chemical, which are not germane to the flow problem pertaining to
the chilled water system, the general energy equation takes the form:

P1  .P1 V2 JU1  JQ1  E, P2  (PzVS JU2  JQz Er
-- + +Z 1+-+--+-=- + 2g+ Zz+ +- -

p1 g 29 g m gMg p 2g g mg mg
Equation 20 (Rennels & Hudson, 2012)

where P is the pressure [N/m],g is the acceleration due to gravity [m/s 2], qp is the kinetic energy
correction factor, Z is the relative height with respect to some reference height [m], j is a conversion
factor used to convert heat units to specific work units [N-m/kcal], Q is heat flux [kcal/s], E, is the
mechanical work done on the fluid by a pump [N-m/s], and ET is the work done by the fluid on a turbine
[N-m/s]. Some of these parameters are not relevant to the chilled water system, such as ET, but are
included above for completeness

Even though there are great temperature differences from the heat source to the bulk fluid, within the
closed system of the chilled water, the temperature differences are within a few degrees. This does not
contribute significantly to changes in density (pressure changes also have little impact on the density of
the chilled water); therefore, the above equation can be simplified for the case of the chilled water
system to the equation below:

(P1 -- )P + (P1V? - .P V?)(z Z Ey H
+ + Z1 Zz) + --- = HL

Pg 2g mhg
Equation 21 (Rennels & Hudson, 2012)

where HL is head loss [m]. Two main sources of head loss include: losses due to surface friction and
losses due to induced turbulence. Whenever two mediums are in direct contact with one another and

34



Center for Ocean Engineering * * Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

have a net difference in velocity, surface friction will be present. Flow regime plays a significant role in

determining the head loss attributed to surface friction. The Hagen-Poiseuille law can be used to

determine head loss due to surface friction for laminar flow. The Darcy-Weisbach equation can be used

to calculate head loss for turbulent flow. The Hagen-Poiseuille law is shown below:

32pLV
HL-D 2 pg

Equation 22 (Rennels & Hudson, 2012)

The Darcy-Weisbach equation is shown below:

LV 2  v 2

HL=f =K -
2Dg 2g

Equation 23 (Rennels & Hudson, 2012)

where K is the loss coefficient (dimensionless) and is defined as:

L
K =f -;

Equation 24 (Rennels & Hudson, 2012)

The loss coefficient can be found for any component that contributes to head loss. Examples of these

include: pipe bends, valves, pipe expansions, pipe contractions, pipe orifices, pipe entrances, pipe exits

and the intersection of pipes that form a tee. These pipe elements will be discussed in greater detail in
the proceeding sections. The Darcy friction factor can easily be determined for laminar flow by
combining the Hagen-Poiseuille law and the Darcy-Weisbach equation to obtain:

64

Re
Equation 25 (Rennels & Hudson, 2012)

For turbulent flow, the Colebrook-White equation can be used, which is valid even in the transition zone

(2,100 < Re < 5000). The use of the Colebrook-White equation lends itself better to a computer program

than does the Moody chart, which provides a visual representation of the equation to determine the

Darcy friction factor. The Colebrook-White equation is shown below:

-2

f -21og 
+2.51

3.7D Reff

Equation 26 (Rennels & Hudson, 2012)

This requires an iterative approach as can be seen in the equation. An initial guess of f = 0.02 is

assumed and plugged into the equation. This process is repeated 2-3 times with the Darcy friction factor

converging quickly. For Cu-Ni alloy pipes, the surface roughness (e) is 0.05mm (Norsok Standard Fifth

Edition, 2006).

35



Center for Ocean Engineering * l Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

The second contributor to head loss is induced turbulence. The Borda-Carnot equation can be used to
determine the head loss due to induced turbulence caused by a sudden expansion in pipe diameter. The
Borda-Carnot equation is:

V2 A1,2
HL ( 29 A2

Equation 27 (Rennels & Hudson, 2012)

Using the equations described above, the flow network of the chilled water system can be analyzed.
Network analysis can be divided into three types of flow: series flow, parallel flow and branch flow. The
next three sections explain each of these flows in greater detail.

2.3.1 Series Flow

Series flow takes in to account several elements of a pipe that are aligned with one another such that
the mass flow rates of each element are equal. An example of this would be a straight pipe connected to
a gate valve followed by a segment of straight pipe, a 90* bend, straight pipe, a flow reducer, and a last
segment of straight pipe. For this case, all elements are in series with one another with the outlet of one
segment connected to the inlet of the following element. With the exclusion of a pump, there will be a
pressure drop along the length of the pipes, with each element contributing to the overall loss of
pressure due to the associated surface friction losses and induced turbulence losses. Since the overall
pressure loss is the sum of the individual pressure losses, the loss coefficients of the elements can be
summed together as long as the cross-sectional area of each component is factored in. The overall head
loss for series flow with N elements is:

2 N

(HL)oa = 2

Equation 28 (Rennels & Hudson, 2012)

In addition, the overall pressure loss can be found using:

N

(AP)oa =rMZK2 K-

2gp. A?
Equation 29 (Rennels & Hudson, 2012)

sThis will not always be the case. It is possible for the pressure along a length of pipe to go up due to the decrease
in velocity. The pressure will go up if the velocity head which is converted to pressure head is greater than the
pressure drop associated with friction along the pipe length.

36

. ... .... ..



Center for Ocean Engineering * * Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

2.3.2 Parallel Flow

Parallel flow pertains to flow coming from a central source which diverges into two or more paths and
then converges back somewhere downstream. Applying the conservation of energy and the
conservation of mass principles, the following equation can be found:

KN 
K 05-2

Oa i-0.

Equation 30 (Rennels & Hudson, 2012)

Afterwards, the solution to this equation can be inserted into the following equation to solve for the
individual mass flow rates for the parallel branches:

1i= rnTEawI K)G

Equation 31 (Rennels & Hudson, 2012)

where the total mass flow rate is equal to the sum of the individual mass flow rates. Hence:

N

7hTotal

i=1
Equation 32 (Rennels & Hudson, 2012)

2.3.3 Branch Flow

Branch flow is the combination of series flow and parallel flow, but may be more complicated since the
parallel branches do not necessarily converge downstream. However, for chilled water systems, the
branches do converge into the header pipe, and thus, the application of the equations for series flow
and parallel flow will suffice for solving the branch flow problem that this particular system presents.

An example of a branch flow network can be modeled using an electrical circuit analogy. Figure 10
shows a diagram of a segment of a cooling system. With the various sources of head loss modeled as a
resistive component, the flow through the various pipe branches can be determined given a differential
pressure or an inlet mass flow rate. Figure 11 shows an electrical circuit analogy to the chilled water
system diagram.

37



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir

B

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

1

-*4--a--

A

Figure 10: Example of branch piping network

Kfric at fric KI K fric K hxc r K fric ate ic

K-be K-bend

K-fri K-fric

K fric Ka fric I fi K c r fic a eK fic

K-exit K-entrance

K-fri _fric

K_gate
K gate

K _fri f Pump hadf K-fric

Mass flow rate

Figure 11: Electrical network analogy to branch piping network

38

Hxchgr

Hxchgr

0

11111111011111000-



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

2.4 Pump Characteristics

The chilled water system has a circulating pump, typically a motor driven centrifugal pump, which

provides the pump head needed to circulate the fluid within the chilled water system at the necessary

flow rate. The sizing of these pumps depends on three factors: the required pump capacity, the pump

head and the operating speed of the pump. An example of a centrifugal pump is shown in Figure 12

below.

Figure 12: Example of a centrifugal pump (ThomasNet, 2013)

2.4.1 System and Pump Curves

To properly size a pump, the system curve of the pump and the pump curve must be considered. The

system curve shows the system head as a function of flow rate and is comprised of the static head in the

system and the head loss associated with major and minor losses. Figure 13 below shows an example of
the system curve along with how the curve shifts with changes in head loss (e.g., shutting or opening

valves) (System Curve and Pump Performance Curve).

39



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

.'Changed conditions

Flow Rate - q M.UqinsiWomon.com
Figure 13: System curve (System Curve and Pump Performance Curve)

The pump performance curve depends on the specific pump considered and provides the head of the
pump as a function of flow rate. An example of pump performance curves for a pump with impeller
diameters of 6 in, 8 in, and 10 in is shown in Figure 14 below (System Curve and Pump Performance
Curve).

10 in dia.

8 in dia.

6 in dia.

NPS~r

Flow Rate - q m.eginu-noolbox.com
Figure 14: Pump performance curve (system Curve and Pump Performance Curve)

Superimposing the system curve and the pump curve will yield the operating point, the point at which
the two curves intersect. The operating point specifies the head in the system along with the flow rate
which will be expected for that specific system and selected pump. Figure 15 below shows an example
of the operating point (System Curve and Pump Performance Curve).

40



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iii Massachusetts institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

NPSIr P

Flow Rate - q ww.eigierkqjoobox.com
Figure 15: Operating point (System Curve and Pump Performance Curve)

Typically, the pump selected should have the operating point coincide with the best efficiency point

(BEP) (System Curve and Pump Performance Curve).

2.4.2 Head loss

The head loss accounts for friction losses, load losses and regulating fitting losses. The total pump head

can be found using the equation:

Hp = HLF + HLL + HLRF
Equation 33

The pump capacity was found by determining the mass flow rates through each branch and the
subsequent mass flow rate through the supply header. This is a somewhat complex process utilizing flow

network analysis and dependent on the heat loads and the electronic component heat exchanger

geometry.

As stated in Section 2.1.5, it was assumed that the temperature inlet for each branch did not vary and

was equal to the inlet temperature of the supply header of 6.6"C. This assumption was validated by

calculating the associated temperature rise along the length of the supply header due to head loss. The

equation for the temperature rise AT due to head loss is shown below.

AT =HL
ccp

Equation 34 (Rennels & Hudson, 2012)

where C1 is a conversion factor equal to 778.169262 [ft-lbf/Btu]. A simulation was conducted that

contained 180 heat loads with a branch for each load. The branch pipe diameter was calculated, along

with the header pipe diameter and various flow velocities through the header and each branch. The

greatest rise in temperature would be seen in the branch furthest downstream. The rise in temperature

41



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

along the length of the supply header was on the order of 10~- *C. This is due to the relatively low
velocities encountered within the chilled water system. Appreciable rises in temperature due to head
loss is not seen until velocities approach sonic speeds. Therefore, neglecting the rise in temperature
associated with head loss is reasonable. The heating up of the chilled water due to the environment is of
greater concern with temperature rises on the order of 10- *C calculated.

2.4.3 Pump Selection

Due to the endless supply of pumps available, the approach used within CSDT v1.0 was also used,
considering the 1510 series pump manufactured by Bell & Gossett (Fiedel, 2011). The 1510 series pumps
which operate at 60 Hz can be operated at slow, medium, and high speed with speeds of 1150 rpm,
1750 rpm and 3500 rpm, respectively (Bell & Gossett, 1998). Figure 16 shows the envelope of operation
for the 1510 series pumps based on speed.

60 Hz

I
Is

, I t I I

U
a
a
U
U

S

U

a

U

4 4 4

A0 * 4 *945*+*C% 11 1%%% %' %% '%%
Figure 16: Envelope of operation of Bell & Gossett 1510 series pump based on pump speed (Bell & Gossett, 1998)

The CSDT only considers Bell & Gossett 1510 series pumps operating at 1750 rpm. The 1510 series
performance curves operating at 1750 rpm is shown in Figure 17 below.

42



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

IAd

Massachusetts institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

-b4, 4 k +#k, % 4#4 * %*b40

Figure 17: Bell & Gossett 1510 series performance curves operating at 1750 rpm (Bell & Gossett, 1998)

The pump selection process begins with the head loss of the system for a specific A/C unit line-up and

operating condition (e.g., shore, design, cruise, battle). The mass flow rate can also be found based on

the specific A/C unit line-up and operating condition. With this information, the intersection of head and

mass flow rate yields the optimal pump for that A/C unit configuration.

A difficulty arises in that the head loss of the system and the requisite mass flow rate differs depending

on the A/C unit line-up and operating condition. To select the pump, the design condition is used, but

with many different options available for A/C unit line-up, there may be different optimal pumps

considered. A solution to this problem may be the selection of a variable speed pump which operates

efficiently at different speeds depending on the A/C unit line-up. A second solution may be selecting a

pump with a high efficiency over a wide range of mass flow rates and heads.

For the development of the CSDT several points follow:

e The pump selected provides a solution but does not guarantee the optimal solution.

Only pumps of the Bell & Gossett 1510 series were considered. Other manufacturers and series

would provide greater available options for pump selection.
0 Impeller diameters were not considered.

e An average weight of 1200 kg was used for all pumps selected.

43

1 1750 RPM



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

2.5 Valve Characteristics

Valves are used for a variety of reasons. Some are used for isolating a segment of the system such as a
gate valve. Others are used for controlling the flow through the system such as a control valve or a globe
valve. Yet, others are used for ensuring flow in a specific direction such as a check valve.

It is assumed that there is a gate valve at either end of the branch for branch isolation. Also, a control
valve is assumed to be at the outlet of each branch to control the flow depending on temperature. For
the header branch, it is assumed there is a gate valve on the supply header and on the return header.
Lastly, it is assumed there is a check valve downstream of each chilled water pump.

Since valve geometry and size vary greatly, there is no explicit formula that can be used to calculate the
loss coefficient of the specific valve accurately. The pressure drop must be specified by the
manufacturer and included as an input into the CSDT program. Schematics of a gate valve and a globe
valve can be seen in Figure 18. As can be seen in the schematics, the flow path is much more tortuous
for the globe valve, resulting in a higher loss coefficient and greater head loss. If no manufacturer data is
available for the specific valve used in the chilled water system, a nominal value for the valve loss
coefficient was used. The nominal values chosen for the valve loss coefficients can be seen in Table 4.

rn
1

3_
4
5

7
_a_

10
11
12

DE8OCRTON
HANDWHEEL
YOKE SLEEVE
GLAND RANGE
GLAND EYE BOLT
PACKING
BONNET BOLT
BODY
BONNET
BAC SEAT

SEAT ING
WEDGE

4
5

7
a
9

DE8CRFenON

YOKEBLUEvE
GLAND R.ANGE
GLAND EYE BOLT

ONNETROLT
BODY
BONNET
BACKSEAT

DIo
SEAT FIG

rr. DE80MPnION
I COVER

1~ 9 DLT
2 3 017Y

4 HPMG PIN
35 SEAT RIN

6 HIGE
7 DISC

Figure 18: Schematics of gate valve, globe valve and check valve (Bonney Forge, 2012)

44



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Valve Type Notional Loss Coefficient Value (dimensionless)
Gate - Full Port 0.2
Globe - Standard 3.5
Globe - Angle 4
Check - Swing 1.5

Table 4: Notional valve loss coefficient values (Rennels & Hudson, 2012)

2.6 Flow Configurations

As mentioned earlier, the specific elements of the flow need to be taken into account as they all
contribute to the pressure drop across the pipe. Specifically, pipe bends and tees contribute to the head

loss within the chilled water system.

2.6.1 Bends

Bends in pipes contribute to the head loss that takes place within the chilled water system. For the

design of the chilled water system, it was assumed that all bends constituted a 90* angle and that all

bends were smooth.

An empirical equation used to calculate the loss coefficient due to a bend in a pipe was used. The

equation is:

r +
K = fagj + (0.10 + 2.4f)sin ()+

6.6f[ sin ) + sin(Z]

4a

Equation 35 (Rennels & Hudson, 2012)

where a is the bend angle in radians (0-n), r is the radius of curvature of the pipe measured from the

centerline of the pipe [m], and d is the pipe diameter [m]. This equation is valid for smooth pipe bends.

The loss coefficient for miter bends can be computed using a different empirical equation, but was not

considered in the CSDT.

A picture of a smooth, circular bend and a miter bend is shown below in Figure 19.

Figure 19: Figure of smooth, circular bend and miter bend (Cross-Flooding area, 2004)

45



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 1 1 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering l KECambridge, Massachusetts 02139-4307

in the design of the CSDT, it was assumed that the spacing between the bends were sufficiently long

such that coupling effects can be ignored. In addition, the radius of curvature was assumed to be equal
to 3D, or 3 times the pipe diameter. In industry, the radius of curvature varies from a short bend (one
pipe diameter), to a long bend (1.5 times the pipe diameter), to a bend that is 3, 5 or 10 times the
diameter (3D, 5D and 10D respectively). However, according to MIL-STD-16278(SH), the minimum bend
radius allowed within piping systems is 2D, thus short bends and long bends are not allowed without
special permission (MIL-STD-1627B(SH), 1981). The default value of 3D within the CSDT can be modified
by the user to other values such as 2D, 5D or 10D.

2.6.2 Tees

An important source of head loss in the chilled water system is the convergence and divergence of flow.
The most common angle of convergence and divergence is 90*, forming a T shape, i.e. tee. The four
specific types of tee configurations used within the chilled water system are: the divergence of flow
through the header, the divergence of flow through the branch, the convergence of flow through the
header, and the convergence of flow through the branch. Figure 20 shows the four configurations of
converging and diverging flow.

#3

_ __ _ 1 ,II

3

Figure 20: Flow configurations through tees: diverging flow through header (upper left), diverging flow through branch
(upper right), converging flow through header (lower left), converging flow through branch (lower right) (Rennels & Hudson,

2012)

Entrance effects cause disruption in flow and tend to increase the rate of heat transfer at localized
areas. For turbulent flow, fully developed hydrodynamic flow can exist 10-15 pipe diameters from the
entrance of the pipe assuming no large scale eddies are present. The hydrodynamic entrance length6

(Lef) may be as high as 20-40 pipe diameters if large scale eddies are present. The thermal entrance

6 The hydrodynamic entrance length is the distance required for the friction factor (f) to decrease within 5% of
the fully developed value of the friction factor (f.).

46

............................ ............... - .......



Center for Ocean Engineering
Navel Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

length7 (Leh) is somewhat lower for high or low Pr, with 5 pipe diameters sufficient for fully developed
thermal flow.

For diverging flow through the header, the loss coefficient can be found using the equations below:

1 1\ 2

K12 = 0.36 - 0.98- + 0.62 t--
?hA2 m;2)

and

711
K1 2 2 = 0.62 - 0.98-- +

2 2

N12(
0.36 --

m:2

$26
+ 0.03 I-

Equation 36 (Rennels & Hudson, 2012)

26
+ 0.03 (-2)

Equation 37 (Rennels & Hudson, 2012)

where K1 21 and K1 22 are loss coefficients.

For diverging flow through the branch, the loss coefficient can be found using the equations below:

.3
K131 = 1.00 - 1.13 =+ 0.81

(d3
-1.08 + K dlj3

Equation 38 (Rennels & Hudson, 2012)

d31.12

1 383

Ksq = 0.57 - 1.07 -- 2.13 -L + 8.24 -
dG3) d3 d3)

1.08 - + KEq

Equation 39 (Rennels & Hudson, 2012)

5

-8.48 --3 + 2.90 -

Equation 40 (Rennels & Hudson, 2012)

For converging flow through the header, the loss coefficient can be found using the equation below:

* 2 - 2CM 1 _ i)

Equation 41 (Rennels & Hudson, 2012)

and

7 The thermal entrance length is the distance required for the Nusselt number to decrease within 5% of Nuo,.

47

and

where

rn i di+ +h dK133= 0-81- 1.13--( N1

2 2
K211 = 1 - 0.95 -9 2 2Cxc 1h

1 1



Center for Ocean Engineering Massachusetts institute of Technology
Naval Construction & Engineering Program I 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

2 2 2( 2  
2

Equation 42 (Rennels & Hudson, 2012)

where

r r\ 2  fr 3
Cm 0.23 + 1.46 - 2.751- +1.651-

d3 ) 1d 6
Equation 43 (Rennels & Hudson, 2012)

and

Cxc = 0.08 + 0.56 - -1.75 (r +1.83 -
d3 d32 d3

Equation 44 (Rennels & Hudson, 2012)

For converging flow through the branch, the loss coefficient can be found using the equation below:

K3 1 = 1 + 2(2 Cxc -CM)A+ [(2Cyc - 1) + 2(Cc - 1)

Equation 45 (Rennels & Hudson, 2012)

and

Ks = 2Cyc - 1+- d2(Cxc - 1)+ 2(2 - Cxc - 0.92 -- I
Equation 46 (Rennels & Hudson, 2012)

where

C = 1 - 0 .2 5 (d 3 0.11 - 0 .6 5  ) 2 + 0.83 () 3 J .
Equation 47 (Rennels & Hudson, 2012)

2.7 Expansion Tank

During normal operation of the chilled water system, the rise in temperature across the system is very
small, on the order of 5-10*C. This will not result in an appreciable increase in volume due to changes in
density; however, there would be an appreciable increase in volume due to a rise in temperature if the
system is not in operation and the temperature within the pipes rises to ambient temperatures, or
worse yet, if the heat loads are still present, causing even greater rises in temperature of the. chilled
water. This volume expansion is accounted for through the use of an expansion tank. The expansion
tank is connected to the chilled water system through the return header and can be isolated by use of a
gate isolation valve. Each A/C unit-chilled water pump combination must have its own expansion tank.

48



Center for Ocean Engineering M Massachusetts institute of Technology
Naval Construction & Engineering Program * 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering U U Cambridge, Massachusetts 02139-4307

The expansion tank serves several purposes. The first is to serve as an expansion volume to mitigate the

effects of pressure due to changes in chilled water temperature. The second purpose of the expansion

tank is to collect air entrained in the system. The third purpose of the expansion tank is to provide a

source of makeup water to replace water lost due to leaks within the system. Lastly, the expansion tank

is to provide some predetermined pumping capacity for the chilled water pump. To determine the

operating water capacity of the expansion tank, we multiply an assumed time by the pump flow rate:

Vo = trQcw
Equation 48

where Vo is the operating water capacity of the expansion tank [gal], tr is the assumed duration of time

the expansion tank is required to supply water to the chilled water pumps [s], and Qcw is the capacity of

the pump [gal/min]. The default value for tr is 30 seconds, but can be changed by the user. The capacity

of the pump was determined by the method described in Section 2.4.

To ensure air does not enter the chilled water system with a leak present, the system is operated at a

minimum pressure, P0 , of 5 psi under all conditions. To maintain this pressure, the expansion tank must

be maintained at a pressure greater than this. The expansion tank charging pressure can be found using

the equation:

Pc = P0 + pwHT
Equation 49

where Pc is the expansion tank charging pressure [psi] and HT is the vertical distance between the

expansion tank and the highest point [ft].

Including a 10% safety factor, the total expansion tank capacity was determined using the equation:

Vr1 = 1.1 V0 1 + PC
Equation 50

where PATM is atmospheric pressure [psi].

A second method to compute the expansion tank volume is to determine the volume needed to account

for the expanding fluid within the system from a rise in temperature from 32*F to 1200F.

The expanded volume can be calculated fairly easily since the pipe dimensions are known as well as the

change in density occurring due to the rise in temperature. The density of pure water at 6.6*C is 999.41

kg/m 3, which is the target temperature within the supply header. A more conservative approach is

taken, using pure water at 0*C, which has a density, pc, of 1000 kg/m 3 .The assumed temperature rise in

sizing the expansion tank is 1200F, which is equal to 48.890C and has an associated density, ph, of
988.31 kg/m 3.Therefore, the volume expansion due to a rise in temperature from 320 F to 120*F is:

49



Center for Ocean Engineering I Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

VE = --- 1) (V -+ VO)

Equation 51

where V, is the volume of water in the piping [gal]. Again, including a 10% safety factor, the total
expansion tank volume needed is then found using the equation:

VT2 = 1-1 (VE + VO
Equation 52

The larger of the two values, V, or VT2 , is then used as the expansion tank volume.

The thickness of the expansion tank was calculated assuming the pressure vessel is thin-walled. With
this assumption the radial stress is negligible in comparison to the tangential stress and the tangential

stress can be assumed to be uniform across the wall. Summing the forces and rearranging yields the
equation:

Pr
t = -

Equation 53 (storage Tank Thickness Determination, 2013)

where P is the design pressure [psi], r is the tank inner radius [m], and o-is the maximum allowable

stress of the material [ksi]. To account for the weld, a weld joint factor is added to the equation. The

equation is then:

Pr
cE - 0.1P

Equation 54 (storage Tank Thickness Determination, 2013)

where E is the weld joint factor. The weld joint factor was assumed to be 1.00 which is a recommended

value for butt welds undergoing pressure loading (Conversion Factor of Weld Joint). The design pressure

was assumed to be twice that of the operating pressure. With a maximum expected operating pressure

of 100 psi, the design pressure is 200 psi. Using stainless steel to construct the tank, an allowable stress

of 4900 psi was used. This yields an expansion tank thickness of 0.76 mm for a tank with a radius of 0.4
m. The minimum thickness of the tank was assumed to be the greater of the calculated value or 4 mm.

To calculate the dimensions of the expansion tank (radius and height), the surface area of a right circular
cylinder was minimized for a given volume (calculated using the above method) with the ratio of the

radius to height is equal to 0.2. Within the CSDT a maximum height of 2 m was allowed. Therefore, if a
larger tank was needed, the right circular cylinder would not retain the optimal ratio between radius and
height. A single tank with a non-optimal radius-to-height ratio will still have less surface area than
multiple tanks with optimal radius-to-height ratios; therefore the program constructs a single expansion
tank per A/C unit.

50



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program * * 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

2.8 Heat Exchangers

There are several types of heat exchangers available, but the concept is similar in all cases. The heat

exchanger provides a way for heat to be transferred from one medium to another. The various heat

exchangers vary based on the geometry of the flow configuration, the type of heat transfer surface and

the construction materials. Some of the basic types of heat exchangers include: single stream, two-

stream parallel flow, two-stream counter flow, two-stream cross-flow with zero one or both streams

either mixed or unmixed, two-stream cross-counter flow, and two-stream multi-pass. Some examples of

these heat exchangers can be seen in Figure 21 and Figure 22 below.

Figure 21: Schematic of multi-pass cross counter flow shell and tube heat exchangers (Adam, 2004)

Cold fUi

Hot fluid

Figure 22: Depiction of flow for two-stream cross-flow (Travkin, 2001)

The type most encountered in chilled water systems is the shell-and tube type heat exchanger which is a
two-stream multi-pass configuration. This is a more complicated heat exchanger design than most

mentioned above, but is necessary to achieve compactness. The simpler heat exchangers such as a two
stream parallel flow would require a very long section of piping in order to achieve the surface area
contact between the heat source and heat sink and would not be practical for large heat loads. The shell
and tube design heat exchanger provides the tube bundles which have greater surface area and the

multiple passes the air flow makes with the tubes allows the heat exchanger the more compact form.

51



Center for Ocean Engineering N 11 Massachusetts Institute of Technology
Naval Construction & Engineering Program 1 1177-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering I I Cambridge, Massachusetts 02139-4307

As can be assumed, heat exchanger selection greatly affects the thermal efficiency of the system and
greatly contributes to head loss due to the number of bends encountered by the flow, the entrance and
exit losses, and the greater surface area within the heat exchanger necessary for greater heat transfer
from one medium to the other. Because of these factors, it will be difficult to determine the associated
head loss of the heat exchanger and the rate of heat transfer across the heat exchanger based solely on
geometry. Therefore, it is crucial that the CSDT have reliable, accurate and complete information
pertaining to the parameters associated with head loss and heat transfer for each heat exchanger used
within the chilled water system. Otherwise, the accuracy of the CSDT will diminish greatly, but a rough
approximation for the rate of heat transfer across the heat exchanger and the head loss attributed to
the heat exchanger can be determined using the fundamental equations described above, in particular,
the equations used to determine the average Nusselt number given by Churchill and Bernstein. With the
average Nusselt number, the average convective heat transfer coefficient and the rate of heat transfer
can be determined.

The geometry of the heat exchanger can be very complicated, and the above method will only provide
an approximate solution. The tubes of the heat exchanger may be staggered or aligned, which will affect
the flow of air that passes external to the tubes. In addition, fins may be present on the outer surface of
the tubes in order to increase the surface area in contact with the hotter air. This will affect the
convective heat transfer coefficient, but is not considered in the determination of the average Nusselt
number which introduces a source of error.

For the electronic cooling water system, there is an interface between the system and the heat sink
(either the chilled water system and/or the seawater system). The interface is the heat exchanger
between the demineralized water loop and the chilled water and/or seawater loop. The type of heat
exchanger typically used for the seawater/demineralized water heat exchanger is a titanium flat plate
heat exchanger. The type of heat exchanger typically used for the chilled water/demineralized water
heat exchanger is a shell and straight tube heat exchanger with double tube sheet construction. The
demineralized water flows through the shell side and the chilled water flows through the tube side.
Figure 23 shows a schematic of a flat plate heat exchanger.

Figure 23: Fiat plate heat exchanger (Energy-Film)

52



Center for Ocean Engineering E U Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering U Cambridge, Massachusetts 02139-4307

2.8.1 Notional Flat Plate Heat Exchanger Design

A notional flat plate heat exchanger is provided in the Excel spreadsheet used in conjunction with the

Matlab program. The flat plate heat exchanger was designed starting from the fluid type on the

secondary side, along with the expected inlet and outlet temperatures of the secondary fluid. The

process in designing the flat plate heat exchanger was based on a similar example found in

Fundamentals of Heat and Mass Transfer 7t ed. (Incropera & DeWitt, 2002).

The following bullets summarize the assumptions made in designing the notional flat plate heat

exchanger:

" The notional flat plate heat exchanger considers demineralized water on the secondary side

with an inlet temperature of 30*C and an outlet temperature of 18 0C.

* The mass flow rate of the demineralized water was assumed to be 0.5 kg/s. The resulting heat

load was calculated to be 25.08 kW.

* The mass flow rate of the chilled water was assumed to be 3.6 gpm/ton, which is equivalently

1.6197 kg/s.

e The inlet chilled water temperature was assumed to be 7.2*C and the outlet chilled water

temperature was assumed to be 10.9"C.

* Cross flow was assumed.

e The dimensions of the heat exchanger (length, width, height) were assumed to be identical.

* 60 gaps were assumed within the heat exchanger.

A plate thickness of 0.5 mm was assumed.

With the inlet and outlet temperatures on the primary side and the secondary side defined, the log

mean temperature difference was found using the equation:

(TDW,in - -out ~ DWout - CW,in
ATiog-.mean =InTDW,in - Tcwout)I(TDwout - CWin

Equation 55 (Incropera & DeWitt, 2002)

The log mean temperature was calculated to be 14.5*C.

Assuming fully-developed laminar flow between the heat exchanger plates, the Nusselt number was

determined to be (Incropera & DeWitt, 2002):

hcDh
Nu =7.54

k
Equation 56 (Incropera & DeWitt, 2002)

which is valid for rectangular channels of infinite length (the thickness of the channel is much smaller

than the length of the channel) and the surface temperature is uniform.

53



Center for Ocean Engineering * o Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Departmennt of Mechanical Engineering EN E Cambridge, Massachusetts 02139-4307

With this, the convective heat transfer coefficients for the primary and secondary sides were found to
be:

W N
hcL = 4.28 -

and

W N
he =4.54 --pri m-KL

where N is the number of gaps, and L is the length of the heat exchanger. The length of the heat
exchanger was then computed to be 0.2218 m.

Assuming a plate thickness of 0.5 mm, the gap thickness was found to be 3.2 mm. With copper plates,
the dry weight of the heat exchanger was calculated to be 12.75 kg. Assuming a factor of 1.5 for casing,
inlet and outlet plenums, the weight was estimated at 19.13 kg. The wet weight accounts for half the
gaps filled with chilled water and the other gaps filled with demineralized water. The heat exchanger
wet weight was calculated at 28.57 kg.

With a hydraulic diameter of 6.4 mm, the mean chilled water velocity and the mean demineralized
water velocity were calculated as 0.0658 m/s and 0.0204 m/s, respectively. The corresponding Reynolds
numbers are 336.896 and 135.592, respectively. The assumption that laminar flow existed for the chilled
water side and the demineralized water side was valid.

Additional flat plate heat exchangers could be modeled by copying the notional flat plate heat
exchanger and modifying the following parameters:

* Secondary fluid
* Secondary fluid specific heat capacity (taken at the mean temperature)
* The design inlet temperature of the secondary fluid
e The mass flow rate of the secondary fluid
* The design outlet temperature of the secondary fluid (this can be calculated and entered if the

heat load is known)
* The convective heat transfer coefficient on the secondary side - This will most likely be the most

challenging variable to determine. If the flow is laminar and fully developed, then the same
approach above using the Nusselt number can be used.

e The number of gaps
* The thermal conductivity of the plates

The calculation of the weight assumes copper as the material used in constructing the plate. If the user
wishes to modify this, then the weight will also have to be entered manually along with the thermal
conductivity of the plate material.

54



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

2.9 Air Conditioning Sizing

The chilled water system provides cooling to the Heating, Ventilation, and Air Conditioning (HVAC)

system through the air conditioning cooling coils. To properly size the chilled water system, it is
necessary to accurately model the HVAC system and size the air conditioning cooling coils. Similar to
breaking up the ship's chilled water plants into zones, the HVAC system is also broken up into zones.

2.9.1 Air Conditioning Cooling Coils

Two typical air conditioning cooling coil configurations used aboard older U.S. Navy ships are the

double-serpentine coils and the single-serpentine coils. The differences between the two configurations

are the number of passes and circuits in each type of cooling coil. The single serpentine cooling coil has

the same number of rows and the same number of tubes per row, but has half the number of circuits

and twice the number of passes per circuit than the double serpentine cooling coil. The two air

conditioning coil configurations are shown below in Figure 24.

19

Qcc

QL cc
Q.u

SECTON VIW PLAN VIEW

SINGLE SERPENTINE COOLING COIL FLOW CIRCUIT -
8 ROWS. 12 TUBES PER ROW. 12 CIRCUITS, 8 PASSES
PER CIRCUIT

30

a =r =

3= ==

C ==== =
12 - -"=a

-~ 0

o =C
o -'

ROWS -41

0

Ic

19'

SECTION VIEW PLAN VIEW

DOUBLE SERPENTINE COOLING COIL FLOW
CIRCUIT - 8 ROWS. 12 TUBES PER ROW. 24
CIRCUITS. 4 PASSES PER CIRCUIT

Figure 24: single and double serpentine cooling coil flow configurations (Foltz, 1990)

As mentioned, the two serpentine cooling coils are an old design which may only exist on older ships.

The double serpentine cooling coil (50 series cooling coil) has been replaced by the 1.5 serpentine

cooling coil (60 series cooling coil). However, since the 50 series cooling coils may still be used on older

ships, they were included in the heat exchanger database. In addition, unit coolers which are based off
of the 50 series cooling coils have also been included within the heat exchanger database. The

55



Center for Ocean. Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'IiT Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

characteristics of the 50 series cooling coils, the 60 series cooling coils and the unit coolers have been
included in Tables 6-8 below. Figures 16-18 show a photo of the unit cooler and the 60 series cooling
coil.

6Z 16470 450 500 56.9/55.3 0.90 0.70

64 39970 975 488 55.2/53.7 2.40 0.70

66 112.20 2500 500 52.7/52.1 4.00 0.80

68 240.70 5000 500 51.1/50.9 1 _3.50m" 0.95
Table 5: 60 series cooling coil characteristics (MIL-PRF-2939G, 2001) (Frank & Helmick, 2007)

Sizes Capacity Airflow Air Dimensions Dry Weight Wet
(BTU/hr) (CFM) Velocity W"xH'"xD" (lbs) Weight

it minbs)

52T 23 450 500 28-3/4x14-3/8x15 176 18

54 50 975 488 40-1/2x16-7/8x15 301 317

56 121 2500 500 55x23-3/8x15 562 602

58 234 5000 500 56-3/8x45-7/8x17-5/8 1225 1310
Table 6: 50 series cooling coil characteristics (DRS Technologies, 2011)

Sizes Capacity Air Flow Water Frame Size Dry Weight Wet
(BTU/hr) (CFM) flow I."xW"xD" (lbs) Weight

9m) (bs)

52 22;200 340 1 7.0 125-1/4 x14-3/8x38-5/8 236 239

54 49,300 750 15.0 37-1/4x16-5/8x40-7/8 411 427

Table 7: Unit cooler characteristics (MIL-C-2939E(SH), 1984) (DRS Technologies, 2011)

56



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Type DW61-68
Cooling Coils (60 Series)

Figure 25: 60 series cooling coil (DRS Technologies, 2011)

Typ DW51-58
Cooling Coils (50 Series)

Figure 26: 50 series cooling coil (DRS Technologies, 2011)

Type UW5I-55
Unit Coolers

Figure 27: Unit cooler (DRS Technologies, 2011)

The head loss across the cooling coils will affect the flow into the branch containing the cooling coils. If
the head loss is high, then there is a greater resistance to flow and thus more flow will be diverted into

other parallel branches of the chilled water system. To account for this, the loss coefficient and head

loss across the cooling coils must be known or calculated. The loss coefficient is composed of the losses

due to friction, which is a factor of length, diameter and friction factor; and the losses due to 180*

bends. There will also be losses associated with entrance and exit effects. The CSDT can compute these

57



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

losses; however, the difficulty arises when determining the head loss on the secondary side. This will be
discussed in greater detail in Section 3.1.1.2.

2.10 Air Conditioning Plants

The air conditioning plants are the mechanisms used to lower the temperature of the warmer water
within the return header to the 6.6*C inlet temperature of the supply header8 . There are various types of
A/C units such as centrifugal type, screw type, and reciprocating type, but they all operate using the
same underlying principles. An example of a specific A/C unit is the R-114 centrifugal A/C plant. The
R-114 air conditioning plant utilizes a vapor compression system using centrifugal compressors.

Figure 28 below shows a schematic of the refrigeration cycle internal to the A/C unit. The A/C unit
contains a closed loop containing a refrigerant such as R134a. The refrigerant runs through two different
heat exchangers, one being a heat exchanger involving the chilled water, where heat is absorbed from
the chilled water, and the other being a heat exchanger involving seawater, where heat is discharged to
the seawater.

side

Low Pressure
Side

Evapomtor

Figure 28: Vapor-compression refrigeration cycle diagram (enggcyclopedia)

The refrigeration cycle starts with a cool refrigerant such as R134a. The cool refrigerant is heated up by
the warmer chilled water. With a low boiling point, the rise in temperature causes the refrigerant to
change states and become a vapor. The vapor is then compressed by a centrifugal compressor, a screw
compressor or some other mechanism. The refrigerant rises in pressure and temperature. The hot
refrigerant enters a condenser (a heat exchanger), where heat is transferred from the hot refrigerant to
seawater. The cooler refrigerant then enters an expansion valve. This reduces the pressure and
temperature of the refrigerant. The process then repeats itself (Cloutier).

a This assumes the total heat load serviced by the A/C unit is less than or equal to the A/C unit cooling capacity. If it
is not, the outlet temperature of the A/C unit will rise.

58



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

The total plant capacity is determined by the mass flow rate of the header and the differential

temperature across the chiller. The chiller that most closely satisfies the plant capacity required is then

selected for that particular zone. The refrigeration cycle is modeled using notional values for:

* Evaporator outlet temperature

* Compressor inlet pressure

e Compressor outlet pressure

* Throttling inlet pressure

* Compressor efficiency
* mass flow rate

Using the heat transfer equations, the chilled water outlet temperature can be determined, along with

the refrigerant compressor inlet temperature, the refrigerant compressor outlet temperature, the

refrigerant throttling inlet temperature, the evaporator inlet temperature, the evaporator outlet

temperature, and the seawater outlet temperature. This process is explained in greater detail in Section

3.1.1.3.

59



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

3.0 Chapter 3: Design Tool Architecture

The CSDT is comprised of Matlab code and an Excel Spreadsheet. The Matlab code consists of a
geometry module, an analysis module, a modification module, and several functions. A schematic of the
CSDT architecture is shown in Figure 29 below.

User Input

tIp
User Input

User In ut

Optional

Geometry OutpLt

I
I
I

I
I
I
I
I
I
I
I
I

I
~L.

AnalysisOutput
Figure 29: CSDT architecture

3.1 User Inputs

There are two major components of the CSDT, the first being the Excel spreadsheets and the second
being the Matlab program. The Excel spreadsheets contain the heat load data, the heat exchanger
database and the A/C unit (chiller) database. The Matlab program reads in the information provided by
the spreadsheets and designs and analyzes the chilled water system with the aid of the user. A minor
component of the CSDT is the Modification module which is an optional component of the CSDT.

3.1.1 Excel Spreadsheet Inputs

There are seven tabs within the Excel spreadsheet, with the first three requiring user input and the last
four containing tables of refrigerant characteristics. The first tab contains data pertaining to the heat
loads. The second and third tabs contain heat exchanger data and chiller data and serve as the
program's database.

60

Functions

Fnc_1.m

Fnc 2.m

Fnc 3.m

Fnc 4 m

Fnc n.m

I

I



Center for Ocean Engineering K Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Doepartment of Mechanical Engineering Cambridge, Massachusetts 02139-4307

3.1.1.1 LoadData Tab

When first starting the design of the chilled water system, the user needs to enter the load data in the
excel spreadsheet "CSDTinput" under the tab "LoadData". A screenshot of the "LoadData" spreadsheet
is shown below in Figure 30.

3 Entr Da YTeftwAre Belowill
4 Prierits 1-2 areconsideed vital. All else are considered non-vital.

5 * Coordisesese is basedn distance from midships

0 * oe eatedegr elreither dte heat exchanger type, or a specific heat exchanger.

7 lim l ery s: Cokg Cill (cc). 50 Series Cooling Coil (Scc), 60 Series Cooling Coil (Socc). Unit Cooler Cooling Coil (uc), Other Cooling Coil (oc) Fiat Plate (f), Shell and tube (st, Cold Plate (cp) Other (a)

a E l atesic it n ger: tEnter cc for the heat exchanger type and 3 for the heat exchanger to select cc3 listed within the heat exchanger database

9

12 Cooling Load for Various Conditions Lc.ation**

13 t.o .. Electrcal Demand Shore Design Cruise Battle X Y Z Heat Eding Heat
14 .aui 1la kW kW kW kW kW in m in T* **___

15 ___1 _ _1 4M . 69 7.91 32A1 0M 25.20 M _c

16 am0E 1 50 A56 20. 20.2 M22 33.14 0.06 22.83 00_c
17 rsa 1 20 3.56 L97 .97 L" 0.00 3.2 0cc

18 20M 14 =3.s 1U.M 1.1 3I.81 6 19 61110C
19 8 _ _ _ _ _ 2500 6.34 33.54 1152 15.54 -3.51 6. :. an _

20 0" IL1 750 AS 5.81 4.99 5.J 20.12 -6.52 - o 30O M=
21 4M 3 1 0 2 6.1 6 5 3.77 .70 19 ot
22_ POW 1 U 9.7 3. 0 &.M_ 2. 2.W2 an
23 1 1.7 1 200 9. 4.n a 6.56 45 .72e _l___we a

24 n00 1 05 .9 30 30.09 230 "M 4.70 2M0.a
2s, use I 2.4 6.65 L4A W , .s an 0 - 9.5o an eec
20A2 4.92 A2 -1&3. 0.00 22,8 I
27 lSP 1 1 __ _ 5.92 3.3 L2 -17.M O.0 . M
28 2 1 _,02 7.07 BA2 - -3 M a4m M
29 1.2 L62 .12 32.7 1659 40 c
30 Rs12 - 0.n7 s.n2 0. 1.4 0.00 As am
31! lim;1 2 L5 _55 L_ 3. -. 54 5.51 M.5 L MM

Figure 30: LoadData tab

A heat load is defined by any piece of equipment or HVAC unit that requires chilled water cooling. As
can be seen in the figure, there are several columns pertaining to data required for each heat load. The
first is the heat load name.

After the name has been selected, a priority has to be assigned to the heat load. The priority ranges
from 1-8 with 1 corresponding to the highest priority. This convention was retained from the previous
version of the CSDT. The priority is used by the Matlab program to determine vital or non-vital status. If
a heat load has a priority of 1 or 2, then the heat load is considered to be a vital load and the design
pertaining to vital loads is adhered to; otherwise, the load is considered non-vital.

The third column contains the electrical power required by the heat load (in kW). This is different than
columns 4-7 which is the heat load under various conditions (also in kW). The heat load is the amount of
heat rejected by the component (radar, electrical cabinet, HVAC cooling coil, etc.) that needs to be
removed by the chilled water system. The operating conditions considered include: shore, design, cruise
and battle conditions. The heat load required in each condition is necessary because if only one

condition was considered, the heat exchanger and branch piping associated with that load may be
undersized when considering another operating condition.

61



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

A very important parameter needed by the user is the location of the center of the heat load. The heat
load location is entered in columns 8-10 (in meters) with the origin (0,0,0) corresponding to midships,
centerline, and baseline of the ship, respectively.

The last two columns pertain to the heat exchanger associated with each load. The heat exchanger type
is tied to the second Excel spreadsheet tab "HXCHGR DB" discussed in the next section. The user selects
the type of heat exchanger used as the interface between the heat load and the chilled water system.
The user can either select the heat exchanger type, selecting from: cooling coil (cc), 50 series cooling coil
(50cc), 60 series cooling coil (60cc), unit cooler cooling coil (uc), other cooling coil (oc), flat plate heat
exchanger (fp), shell and tube heat exchanger (st), cold plate heat exchanger (cp), or other heat
exchanger (o). If the user selects to enter a heat exchanger type, then the next column should remain
blank. Selecting a type of heat exchanger will prompt the Matlab program to select a heat exchanger of
that type properly sized for that particular heat load (or as closely sized as is possible with the heat
exchanger available within the heat exchanger database). If the user wishes to select a specific heat
exchanger for a particular heat load, then the user specifies the type in column 11 (cooling coil (cc), flat
plate (fp), shell and tube (st), or other(o)) and the number corresponding to the specific heat exchanger
as listed in the tab "HXCHGR DB". When selecting a specific heat exchanger, it is important to properly
size it. In other words, the greatest heat load possible in any operating condition must be lower than the
rating of the heat exchanger, otherwise flow velocities and/or temperature limits may be exceeded.

3.1.1.2 HXCHGR DB tab

The next tab in the "CSDT input" Excel spreadsheet is the "HXCHGR DB" tab. This tab includes data for
several types of heat exchangers, forming a heat exchanger database. A screenshot of the "HXCHGR DB"
tab is shown in Figure 31 below.

P a

11MM 2I o fi meW wabo h Hq- I

12 1

i-igure si: mxLm1j us tao

62



Center for Ocean Engineering U Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

The figure above only displays the first type of heat exchanger type, the cooling coil. The database

extends to the right containing similar data columns for the flat plate heat exchanger, the shell and tube

heat exchanger, the cold plate heat exchanger and an 'other' category for more exotic types of heat

exchangers. The heat exchangers currently modeled in the database include:

e 50 series cooling coil (double serpentine)

a 60 series cooling coil (1.5 serpentine)
e Unit cooler cooling coil (double serpentine)

e Notional flat plate heat exchanger (cross-flow)

e Notional cold plate heat exchanger

e Notional concentric tube heat exchanger (cross-flow)

Although the 50 series cooling coils and unit cooler cooling coils are no longer implemented on U.S.

Navy vessels, they were included in the database in case an older ship's chilled water system were to be

modeled with the use of this tool.

To accurately model the temperatures within the chilled water system, and to attempt to capture the

temperature profile extending beyond the chilled water system into the heat exchanger and finally to

the secondary fluid (be it air, demineralized water, or even oil), an extensive set of data is needed for

the heat exchangers within the heat exchanger database. This exemplifies the difficulty that arises
between creating a simple-to-use model, and a model that makes few assumptions to accurately portray

the flow and temperature distribution within the chilled water system. As a compromise, the most

essential parameters that describe the heat exchanger are kept, while the specific heat exchanger
geometries are not. Essentially, the heat exchanger is treated as a box, using only average inlet and

outlet values to simplify the calculations and to reduce the amount of information required by the user

to add a heat exchanger to the database. Values calculated from assumptions made about the heat

exchanger are highlighted in red. The rationale for each assumption is stated in the preceding
paragraphs.

The first column of the 'HXCHGR DB' tab lists the name of the heat exchanger. The convention is as

follows: the heat exchanger type and ascending number. The Matlab program uses this information to

identify the individual heat exchangers.

The second column gives a brief description of the heat exchanger. This affords the user with some

information about the heat exchanger if the user wished to select a particular heat exchanger for a

particular heat load. This column does not have to be filled in, in that the program does not use any data
contained in the description columns, but it is helpful to provide a description of heat exchangers added
to the database for future users.

63



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

i'ior Massachusetts institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

The third column provides references for the data contained for any specific heat exchanger. Again, the
program does not require this information, but it is useful to provide source documentation if the need
arises to further investigate a particular heat exchanger.

Columns 4-6 provide the heat capacity of the heat exchanger in BTU/hr, tons, and kW, respectively. The
heat capacity is the heat transfer rate of the heat exchanger under certain conditions. The heat capacity
should be greater or equal to the maximum heat load under any operating condition for a particular
load for similar conditions.

Data for both sides of the heat exchanger is needed to accurately capture the performance of the heat
exchanger. The chilled water side is referred to as the primary side or the primary loop. The
air/demineralized water/oil/etc. side of the heat exchanger is referred to as the secondary side or the
secondary loop.

To determine the head loss across the heat exchanger on the primary side, values from "2 1 't Century
HVAC System for Future Naval Surface Combatants-Concept Development Report" NSWCCD-98-TR-
2007/06 were used. The head loss values for the 60 series cooling coils are listed in Table 8 below.

60 Series Cooling Coil Head Loss Values

61 0.3 0.09144

63 2.2 0.67056

65 2.4 0.73152

67 4 1.2192

Table 8: Pressure drop values for 60 series cooling coils (Frank & Helmick, 2007)

Similar data for the 50 series cooling coils or the unit cooler cooling coils was not available. Therefore,
nominal values for head loss were used for those types of heat exchangers.

Columns 8-10 list the inlet, outlet and differential chilled water temperatures. The heat exchanger heat
capacity was calculated based on an inlet chilled water temperature of 45*F or 7.22"C. The outlet chilled
water temperature was calculated using the equation:

Q =Icp(Th - Tc)
Equation 1 (repeated)

The chilled water mass flow rate needs to be entered in column 11. For the cooling coils listed in the
database, the chilled water mass flow rate was calculated using the equation below:

64

iiI;;R;:: -



Center for Ocean Engineering * U Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering HUE Cambridge, Massachusetts 02139-4307

gal
fi = 3.6 t * tons capacity

mmn- ton
Equation 57

The 3.6 gpm per ton capacity flow rate is the design flow rate of the cooling coils when determining the

heat exchanger cooling capacity (Frank & Helmick, 2007).

To determine the heat transfer across the heat exchanger boundary, the surface area on the primary

and secondary side is needed. This is difficult, since different manufacturers of the same coil size and

type will have differing geometry. Therefore, the surface areas were calculated based on assumptions of

the heat exchanger geometry. The cooling coil outer diameters were assumed to be 0.625 inches with a

thickness of 0.025 inches9. The 50 series cooling coils and the unit coolers are double serpentine

configurations with 8 rows and 12 tubers. The 60 series cooling coils are a 1.5 serpentine configuration

with 6 rows and 12 tubers. The length of a row was assumed to span the width of the heat exchanger.

Therefore, the inner surface area can be calculated using the equation:

SAinner = (0.625in - 0.025in) * 7r * rows * tubers * widthhchar
Equation 58

Error is introduced in calculating the surface area since bends are not considered, the outer diameter

and tube thickness may vary depending on the coil size, if a flatter coil is used instead of a cylindrical

coil, and if turbospirals are used within the cooling coil. A turbospiral is a spiral piece of copper on the

inside of the cooling coil which acts to trigger turbulent flow within the cooling coil. However, the above

equation gives at least a rough approximation of surface area for a particular cooling coil type.

The outer heat exchanger surface area is even more error-prone due to complex fin geometry and

variations in fin design and heat exchanger design. To get at least a rough approximation of outer

surface area, the inner surface area was scaled up 15 times. This value was chosen based on the paper

"The Design of Air Conditioning and Ventilation Systems for nuclear Submarines" which performed

calculations in the analysis of a 46DW cooling coil. The paper initially used a factor of 15 and revised this

number to 14.31 (Foltz, 1990). The value of 15 was chosen since there are many unknowns in the heat

exchanger geometry and a precise value of 14.31 was unwarranted. The inner surface area of the coils

and outer surface area of the coils are entered in columns 12 and 15, respectively.

The heat flux of the heat exchanger is calculated in column 13. This value is determined by dividing the

cooling capacity by the inner surface area of the cooling coils. Values on the order of 1W/cm 2 was found

for the net flux of the cooling coils, which was to be expected due to the inefficiency of forced

convection air on the secondary side. The low heat fluxes associated with cooling coils was the main

driver in offering a section for 'other' types of heat exchangers. This category of heat exchangers could

include two-phase flow heat exchangers, heat exchangers utilizing jets, some combination of the two, or

9 These values were chosen based on the paper "21st Century HVAC System for Future Naval Surface Combatants-
Concept Development Report" NSWCCD-98-TR-2007/06

65



Center for Ocean Engineering UEE Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

some other exotic heat exchanger type that is capable of heat fluxes on the order of 300-500 W/cm2 or
higher.

The overall heat transfer coefficient, U, is calculated using the equation below:

_____ T\1i Tut

SAinner * [(Tina Tinair Tout) - (Th T
Equation 2 (repeated, rearranged)

The.overall heat transfer coefficient is with respect to the inner surface area of the cooling coils. The
values for the overall heat transfer coefficient range from 0.02-0.15 W/cm 2-K, which are reasonable
values for this type of heat exchanger.

Column 16 lists the convective heat transfer coefficient, heair, on the secondary side of the heat

exchanger. This is the most difficult parameter to be determined. The convective heat transfer
coefficient is actually an average value. To determine this value analytically, a finite element approach
would have to be taken, with the local convective heat transfer coefficient found at each location on the
outer surface of the cooling coils and then integrated over the entire surface. This is not computationally
feasible, especially since the outer cooling coil geometry and flow are not known. To get a notional value
of the convective heat transfer coefficient, the average temperature on the outer surface (estimated)
and the average temperature on the secondary side are taken in conjunction with the estimated outer

surface area and the known heat transfer rate. The convective heat transfer coefficient is then
computed using the equation:

hcair=T 
T

SAouter * GlTi n - inair 2Tout*) T 2 ])

Equation 59

where,

2= (Tf - T Tc + + Qper unit length (Douter
\2 ) hcwaterSAinner 2 1(kcopper Dinner

Equation 60

and,

h Cwater = 0.8V0-0.6 (Ppy )0.4
= 0.0230.4

Equation 12 (repeated)

and,

66



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

AQ * Sne0per unit length D nner
Dinner

Equation 61

As can be seen from the above equations, several simplifying assumptions are made in determining the

convective heat transfer coefficient on the secondary side.

1. The inner surface area assumes cylindrical tubing as opposed to flattened tubing. It also

assumes the inner diameter of the tube is 0.6" for all cooling coils, and turbospirals are

neglected.

2. The outer surface area is estimated to be 15 times that of the inner surface area, which would,
in reality, vary from manufacturer to manufacturer.

3. In calculating T2, the wall temperature on the outer surface of the cooling coils, the convective

heat transfer coefficient on the water side is calculate using the equation described in Section 2.

This equation is valid for flow through a cylindrical tube. The turbospirals within the cooling coils

will have an effect on the convective heat transfer coefficient and the only way to determine

this effect would be to generate parametric equations based on a specific manufacturer's heat

exchanger. The turbospirals are ignored in order to easily compute a value for the convective

heat transfer coefficient on the primary side.

4. The temperature rise across the copper material of the cooling coils is calculated by again

neglecting the outer fins and treating the heat exchanger as a simple cylindrical tube. This

assumption has little effect on the overall temperature rise since the resistance to heat flow

caused by the fins would be very small in comparison to the film layer on the air side or even the

film layer on the water side.

5. Pipe bends, entrance and exit effects, and friction resistance were also neglected with the

thought that these are also all negligible in comparison to the temperature rise in the two film

layers on either side of the heat exchanger boundary.

Because of these assumptions, the convective heat transfer coefficient on the secondary side is more of

a notional value to be used in computations done by the Matlab program. To get the true convective

heat transfer coefficient on the secondary side, the specific heat exchanger would have to be modeled

in greater detail and the flow on the secondary side of the heat exchanger would also have to be

modeled. The calculated values of the convective heat transfer coefficient on the secondary side are

reasonable, however, as they do fall in the range expected for forced convection air. Forced convection

air should result in values in the range of 5-200 W/m2-K for the convective heat transfer coefficient. The

values computed for the 60 series cooling coils falls within this range. Table 9 summarizes the calculated

convective heat transfer coefficient on the air side for the 60 series cooling coils.

67



Center for Ocean Engineering * f Massachusetts Institute of Technology
Naval Construction & Engineering Program 111177-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

60 Series Cooling Coil

61 7.36

63 17.93

65 33.65

67 89.77

Table 9: Calculated values of convective heat transfer coefficient on air side of 60 series cooling coils

The inlet, outlet and differential temperatures on the secondary side are required in columns 17-19,
respectively. For the 60 series cooling coil, these values were available in MIL-PRF-2939-G. For the 50
series cooling coils and the unit cooler cooling coils, the inlet temperatures were known. The outlet
temperatures were assumed to be 580F (14.44*C) for coil sizes 51 and 52, 56*F (13.33*C) for coil sizes 53
and 54, 54*F (12.220C) for coil sizes 55 and 56, and 52*F (11.11*C) for coil sizes 57 and 58.

The mass flow rate of the air on the secondary side is required in column 20. This value was provided for
the 60 series cooling coils. To determine the mass flow rate of the air on the secondary side for the 50
series cooling coils and the unit cooler cooling coils, the following equation was used:

c -(T - Touta)
Equation 1 (repeated, rearranged)

The specific heat capacity of the air was unknown, but was back-calculated using the known values of
the 60 series cooling coil. The specific heat capacity was calculated to be roughly 1500 J/kg-K with a
deviation of less than 2% for most of the cooling coils. This value also falls between that of the specific
heat capacity of dry air at sea level (which has a value of 1003.5 J/kg-K) and water (which has a value of
4203 J/kg-K). A value of 1500 J/kg-K seems reasonable for the heat exchanger since the higher
temperature and humidity would cause the specific heat capacity to fall within this range (but closer to
the lower limit since air is being considered).

The dimensions of the heat exchangers are entered in columns 21-23. These values are used by the
Matlab program to size the heat exchangers when constructing the three-dimensional plot of the chilled
water system. The varying size of the heat exchangers within the 3-D plot allows quick visualization of
where the larger heat loads are located. The heat exchanger dimensions for the cooling coils are listed in
MIL-C-2939-E (outdated) and MIL-PRF-2939-G (current).

The dry and wet weights of the heat exchangers are entered in columns 24 and 25, respectively. These
weights are used by the Matlab program when performing a weight analysis of the chilled water system.

68



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering i'i~r

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

With the heat load location, an accurate center of gravity of the chilled water system (with heat

exchangers included) can also be determined.

Similar columns are included for data entry of the four other categories of heat exchangers: flat plate,
shell and tube, cold plate and other types of heat exchangers.

3.1.1.3 Chiller DB tab

The last tab in the 'CSDT input' Excel spreadsheet is the 'Chiller DB' tab. This tab includes data for four

types of chillers (AC units) forming the chiller database. A screenshot of the 'Chiller DB' tab is shown in

Figure 32 below.

S C

4

2

0

D _, E 15 H 1- J ( L N N 0 p Q5 R

No0te: The peses mnd terpatus prvded are notionelvekses andare na h rW the spedfted references7hese preures On
tempert a associted row tabl ar used to osey node the refrgrnt cfce wthin the AC unit to deturnn th pow
equired by t compressor and to caindate the seawa mAss flow rate.% StIon 3.L1 of Cfing sytMn Ear $W DE ToW for Na

Appoemn (=3) forfurtherepann of the Cher O.

13 di - , 5 s a ig~ gaAC ret.1 5118213 426.518 1500 20000 5.00 2.40 2.30 R134a L1. 6.66667

24 c2 aME -!admoEw trIftuga AC ref.1 2047285 170.507 600 9500 3.90 1.80 1.78 R1m a.=_ O L 6.66667

N.__2A re !!!u 2!=!!!!!EM !!m! a!!! J7Mt JMML J!:!!!!LW J!MUt J6!L .. A!! .. L J!!! -Jm!! J!!!! !!!!!
16 04 9"iAVnACt retITab11mW 1Z= : 18D01 7'M 7 43, 110 2-W RU"6 Dag am LOD = am 3M= 555=

17 cS I

19 c7

22 c1 _

24 c12

25 c __

291 Wi _ _ _ _ _ _ _

30 C
31 c19

to 4S Ir DS1 e4 . 32: Chiller Daw tab 6 R Elm

Figure 32: Chiller DB tab

The four groups of chiller units include: centrifugal A/C unit types, reciprocating A/C unit types, screw

A/C unit types, and other A/C unit types. The data required for each type of A/C unit is similar. If the

user wishes to add to the database, all information needs to be documented within the spreadsheet.

Similar to the heat exchanger spreadsheet, the first three columns contain the name of the chiller using

the same naming convention described for the heat exchangers. This name is what the Matlab program

uses to identify the specific chillers. The second and third columns provide a description and/or name of

the chiller and the source documents in which the chiller data was obtained.

Columns 4-6 include the capacity of the chiller in BTU/hr, tons, and kW, respectively.

The weight of the chiller (including coolant) is included in column 7. With such large weights associated
with the chillers, these weights should be as accurate as possible since a large error in chiller weight

69

A

2

3
4

5

6



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

would cause a large error in overall weight of the chilled water system. The Matlab program uses the
weight of the chiller in performing the weight analysis of the chilled water system. Along with the chiller
location, which is found through the use of the Matlab program, an accurate center of gravity of the
chilled water system is possible.

Column 8-10 includes the dimensions of the chiller units. These values also need to be accurate in order
to ensure the chiller units fit within the compartments in which they are placed. This is especially true
for the larger chiller units. Chiller units c3 and c4 were taken CSDT v1.0, which sized the chillers
parametrically (Fiedel, 2011).

Column 12 includes the refrigerant type used for the chiller.

Columns 13-18 include the pressures and temperatures of the refrigerant at various locations within the
refrigerant cycle shown in Figure 3310. These pressures and temperatures are used in conjunction with
the refrigerant tables to determine the corresponding enthalpies at these locations. The enthalpies are
used to determine the heat transferred through the condenser into the seawater.

P2, T2

Condemero
P3, T3

Low Prenne
P T4 PT

Figure 33: Refrigerant cycle with pressure and temperature variables shown (enggcyclopedia)

Lastly, Column 19 includes the chilled water outlet temperature of the chiller unit. This temperature is
assumed to be met as long as the total heat load removed by the chiller is less than the capacity of the

1 P4 and T4 are not needed in the chiller database since the enthalpy does not change across the expansion valve.

70



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

chiller". Most of the chillers within the chiller database currently use the standard temperature of 44*F

(6.670C), but the ability is there to include chillers that output colder chilled water such as c4 which

provides a chilled water temperature of 42"F (5.56*C).

3.1.2 Matlab Inputs

The main components of the chilled water design tool are the Matlab programs "geometry.m" and

"analysis.m". The geometry module requires user input for principle ship dimensions and when a design

decision needs to be made. The user interacts with the Matlab program through the use of command

prompts in the command window. There are also some pop-up windows which appear throughout the

program when a visual representation of the chilled water system would be beneficial in aiding design

decisions.

The program starts out asking general questions about the ship's dimensions. These include:

" Length Overall (LOA)

* Beam

Engine Room Deck Height Above the Keel

Useable height in the engine room

The program provides default vales for these ship parameters if the user does not have a specific ship in

mind. These default values are notional ship values taken from CSDT v1.0 (Fiedel, 2011). The user has

the ability to overwrite the default values for one or more of the ship's dimensions. The dimensions

must be inputted in metric, just as all subsequent parameters must also be inputted in metric. The

default values provided by the program are:

e LOA = 143.561 m

* Beam = 20.390 m

* Engine Room Deck Height Above the Keel = 1.397 m

0 Useable Height in the Engine Room = 3.098 m

After providing ship dimensions or accepting the default values, the program asks for the transverse

bulkhead locations. The bulkhead locations must be entered as an array following the format:

[FP BKHD 1 BKHD 2 BKHD 3 ... BKHD N AP]

The longitudinal axis is defined with midships at zero, the forward perpendicular (FP) at LOA/2 and the

aft perpendicular (AP) at -LOA/2. The bulkhead location array also must include the FP in the first cell of

the array and the AP in the last cell of the array. The default values are again notional values and are

determined by the following array:

1 If the chiller capacity is less than the total heat load serviced by the chiller, the outlet temperature will rise
proportionately by the difference in heat transferred into the chilled water and heat transferred out by the chiller.
The rate of temperature increase will depend on the thermal capacity of the chilled water.

71



Center for Ocean Engineering I E Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

LOA
x [100 90 82.5 67.5 52.5 37.5 20 5 -10 -27.5 -43.5 -50 -80 -100]

The user has the ability to overwrite the default bulkhead locations keeping in mind the array format, or
can accept the default locations if the locations are not known. It would be ideal if these first inputs
were generated from a separate module preceding the design of the chilled water system. This could
potentially be an area of future work. However, due to time constraints, the program gathers the
general ship dimensions and bulkhead locations from the user through the use of the command
window.

After the ship dimensions and bulkhead locations have been identified, the Matlab program reads in the
data provided by the Excel spreadsheet. The spreadsheet must be saved in the same folder as the
program with the file name 'CSDTinput.xlsx' in order for the program to find it. If the Excel spreadsheet
is not in the same folder as the program, an error message is displayed and the program ends. Any data
entered previously is lost and would have to be re-entered after the excel spreadsheet is located in the
correct folder.

At this point, no design decisions regarding the design of the chilled water system have been made. The
first design decision encountered is the main piping configuration. The program offers three default
main piping layouts. If the chilled water system is designed for an auxiliary ship, then a single main
piping system should be selected, otherwise, a double main piping system should be chosen. The
program offers two double main piping system layouts. The first layout is a simple rectangular loop. The
second layout is a loop that can be modified to follow the shape of the hull. There are no cross-
connections for either of the double main piping system layouts except at the bow and stern. An
example of each piping layouts is shown in Figure 34 below.

72



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Figure 34: sin* main piping configuration (top); simple rectangular double main piping system (middle); complex tapered

double main piping system (bottom)

If the single main piping system is selected, the main piping height must be inputted. If the user does not

have a main piping height, then the default value of 5.2 m is used. The single main piping system runs

along the centerline of the ship 3 m from the bow to 3 m from the stern.

If the double main piping system is selected, then the main piping height port and starboard must be

inputted. The default values are a height of 5.2 m on the port side and 10.2 m on the starboard side. The

user can overwrite these default values, but should consider vertical separation of 1-2 decks for

survivability consideration with one of the main piping heights corresponding to the damage control

deck. The extents of the rectangular double main piping system is 3 m from the bow, 3 m from the

stern, and half the beam minus 0.9 m from centerline. For the more complex double main piping

system, there is a series of default locations corresponding to 90* bends in the piping. The bends results

in a tapering of the double main piping system at the bow and at the stern. Figure 35 shows the default

layout of the more complex double main piping system. If the user wishes to modify the layout of this

main piping system, then the bend locations must be inputted in a matrix format. If the bends are

symmetrical port and starboard, then the following format should be used:

[X1 Y; X2 Y 2 ; X3 Y 3 ; X4 4; ... ; Yn Yn]

73



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

where the bend locations (in the x-y plane)are entered starting from the centerline forward and

continuing counter-clockwise until centerline aft. In the figure, the locations of the first six points are all
outer bends. The last point, point 7 occurs within the aft taper and is an inner corner. The bend

locations are specified for the supply header only. The return header bend locations will be offset by the
offset distance discussed shortly.

Figure 35: Default layout of complex double main piping system

If the bend locations are not symmetrical, then the following format should be used:

[X1 Y1 ; X2 Y 2 ; X3 Y3; ... ; Xm mM; Xm+1 Ym+1; Xm+2 Ym+2; Xm+3 Ym+3; ... ; Xn Yn]

The points entered should start from centerline forward and be entered counter-clockwise until
centerline forward. Similar to the case above, the points in the taper near the bow should be the outer
bends and the points in the taper near the stern should be the inner bends.

The main piping should be within 3 ft of the hull, except for curved sections of the hull which allows a
maximum distance of 8 ft. Since the hullform is not defined within the program, this step cannot be
done automatically. An area of future study could be to incorporate the hull structure as mentioned
earlier. If the hullform is known, this process could be automated, eliminating the need of the simple
rectangular layout and optimizing the layout of the tapered double main piping system.

Next, the program asks for the piping offset distance between the supply and return header. Figure 36
below gives a visual representation of the offset distance. The default offset distance for the header is
0.5 m. Similarly, the offset distance for the branch piping is also prompted for. The default branch piping
distance is 0.1 m.

74



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

z

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

offset "
distance

distance

Figure 36: Offset distances

The next step in designing the chilled water system is to determine the number of chilled water zones.

The heat loads are broken up into zones along the length of the ship. The zones can be isolated from

one another during a casualty. The greater the number of zones, the more survivable he ship is;

however, increasing the number of zones also increases the weight, space required, and ultimately, cost.

All zones terminate at a transverse bulkhead. The fewest number of zones allowed by the program is

two. While, it is possible for each compartment to be designated as a zone, the number of zones will

generally be much less. The default number of zones is four. To aid in decision making, the program

plots the heat load in each compartment and the heat load within each default zone. By default, the

four zones are broken up into approximately equal lengths, with the zones terminating at the nearest

transverse bulkhead. Figure 37 below shows the output provided by the program.

75



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering i'i~r Massachusetts institute of Technology

77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Figure 37: CW zones and heat load by compartment and by zone with 4 zones and default zonal boundaries

With the heat load plots, the user can make a better decision on how many zones may be needed and
where to terminate each zone so that the heat loads in each zone are relatively close in magnitude. If
new zonal boundaries are provided by the user, the zonal boundaries must be entered as an array
starting from the FP and proceeding aft. After the user provides the number of zones (or accepts the
default) and provides new zonal boundaries (or accepts the default) the program shows the final heat
loads in each compartment and within each zone. An example is shown in Figure 38 below with the
number of zones changed to five and the zonal boundaries redefined to produce a more even
distribution of the total heat load within each zone.

76



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Figure 38: CW zones and heat load by compartment and by zone with 5 zones and modified zonal boundaries

The number of A/C units needs to be defined by the user next. The program provides default values

which are dependent on the main piping configuration chosen. If a single main piping system is being

designed, then the default number of A/C units is one per zone. If a double main piping system is being

designed, then the default number of A/C units is two per zone (one port and one starboard). These

default values are the minimum number of A/C units that can be installed for the number of zones

chosen. If the user wishes to change the number of A/C units, then they must provide an array with the

number of A/C units in each zone starting with the forward-most zone and proceeding aft.

To determine if the A/C units will fit within the compartments, the user is prompted to select the type of

chiller to be used. First, the program provides a list of A/C units available from the A/C unit database

within the Excel Spreadsheet. The categories include: centrifugal, reciprocating, screw, and other. By

default, the program considers all types of A/C units and selects the A/C unit closest in capacity that

satisfies the cooling needs within that zone. If the user wishes to select the type of A/C unit to be used,

then a pop-up menu would appear which provides the user with the categories available. The program

will then only consider the type of A/C unit selected by the user when designing the chilled water

system. The user does not have the ability to select one type of A/C unit in one zone and another type of

A/C unit in another zone.

77



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

The program then uses the A/C unit type selected by the user or the default setting to make an initial

estimation of the A/C unit size needed within each zone. This is done by determining the total heat load
within each zone and dividing that total evenly by the number of A/C units within that zone. The
program then looks within the A/C unit database for the A/C unit that most closely meets the capacity
calculated. The dimensions of that specific A/C unit are then used by the program for sizing purposes.

Once the A/C unit size is known, the A/C units can be placed within the ship. By default, the A/C unit is
positioned in the aft-most compartment which is large enough to fit it in each zone. The A/C unit is
positioned 1 m forward of the bulkhead and on the engineering deck. The transverse locations of the
A/C units are dependent on the number of A/C units within the zone. Below are the default transverse
locations of the A/C units for each case.

Number of A/C units per Zone A/C Unit Default Transverse Location

2 1 beam/4

3 1 beam/4

3 -beam/4

2 -beam/4

4 -beam/4

2 0

4 beam/4

6 1 beam/4

3 -beam/4

5 0

Table 10: Default transverse A/C unit locations

For the case of 4 A/C units per zone, the first two A/C units are positioned in the aft-most compartment
that can fit them and the remaining two are positioned in the adjacent compartment forward. For the
cases of five or six A/C units per zone, the first three A/C units are positioned in the aft-most
compartment that can fit them and the remaining A/C units are positioned in the adjacent compartment
forward.

78



Center for Ocean Engineering U Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

Although it is possible to have other configurations other than one pump to one A/C unit, this is the only

option available by the program. The default location of the pump is 1 m forward of the A/C unit. This
location cannot be modified by the user.

The program provides a plan view of the ship (treated as a rectangle with dimensions LOA x beam) with
the transverse bulkheads, the chilled water zones, and the A/C units and pumps placed using the default
locations mentioned above. If the user is satisfied, they can proceed through the design of the chilled
water system; otherwise, the user has the ability to modify the A/C unit locations. The locations

correspond to the center of the A/C unit. The locations have to be entered as a matrix starting from the
forward most A/C unit portside working towards starboard, then aft. An example of the format is shown
below.

[X1 Y1 zi; X2 Y2 Z2 ; X3 Y3 Z3 ;...; Xn An Zn]

After the A/C unit locations have been identified, the program creates the structure of the main piping
system. The structure includes connections from the A/C unit to the pump, then a riser section, the
supply header, cross-connections (if a double main piping system), the return header, the return riser,
and a connection to the A/C unit. Also, a recirculation line across the pump is modeled. This structure is
created for each A/C unit. The program then outputs a plan view of the main piping structure including

pumps and A/C units, and also a 3-dimensional representation of the main piping structure. The
3-dimensional representation can be zoomed in and out and can be rotated along all three axes. 2-D and
3-D examples of the main piping structure for each main piping layout using all default parameters are
shown below in Figures 39-44.

79



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Figure 39: Default single main piping configuration 3-D

Figure 40: Detault single main piping contiguration Z-D

80



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Figure 41: Default simple rectangular double main piping configuration 3-D

Figure 42: Default simple rectangular double main piping configuration 2-D

81



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'IiT Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Figure 43: Default complex tapered double main piping configuration 3-D

t-igure 44: ueTauit complex tapered double main piping contiguration Z-D

Isolation valves are created by the program and added to specific locations within the main piping
system. There are three isolation valves at the junction where the riser connects to the header. One
isolation valve is located 1 ft forward of the junction. Another isolation valve is located 1 ft aft of the
junction. A third isolation valve is located 2 ft from the end of the riser section. This configuration is
repeated for each supply and return riser junction. In addition, isolation valves are located on either side

82



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program I I 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering I I Cambridge, Massachusetts 02139-4307

of a bulkhead separating CW zones for both the supply and return headers. This may result in some
redundancy occurring in some spots with isolation valves in close proximity to one another.

Modifications may be made through the optional Modification module. This requires extensive

knowledge of the CSDT program and the associated variables, but with careful programming, changes
can be made as to the number of isolation valves and their locations. Below, Figure 45 shows a close-up
of the isolation valves at the junction of the risers and supply and return headers as well as the isolation
valves located on either side of a bulkhead separating two CW zones.

Isolation Valves Fwd isolation Valves Aft Of Junction Supp er
of Bulkhead of Junction

Isoan W~V * I-%Isolation Valves

t' at end of Riser Re eader

i Sup isr

4khead Sep rating Zones

Figure 45: Isolation valve placement at main piping junctions and zonal boundaries

In addition to the isolation valve placement mentioned above, two isolation valves are placed at the
athwartships cross-connection for the double main piping systems, one each for the supply and return
headers.

A check valve is placed downstream of each chilled water pump to prevent flow going in the wrong
direction and damaging the pump. The branch piping structure is then created. The vital/non-vital status

of the branch piping determines if there is only a single path from the heat load to the main piping
system or of there is a redundant path. The vital/non-vital status is determined by the program by
reading in the priority of the heat load from the Excel Spreadsheet. I f the priority is less than three, the
heat load is considered vital, else, it is considered non-vital. The set-point between vital and non-vital

status can be changed by the user as well and the minimum priority could be greater than 8 if the user
wishes to add more fidelity in the load priority.

83



Center for Ocean Engineering EUE Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

Each branch is considered to be in parallel with all other branches. Although this is not true in all cases,

it was too complex to create a structure that was generic enough to allow for series/parallel branch
configurations. The development for a more generic approach that allows for series/parallel branch
structures is a potential area for future work.

Since each heat load is in parallel with all other heat loads, each heat load has its own dedicated branch
piping which connects it to the main piping supply and return headers. The branch structure is stored as
a 10x2x3x180 matrix. The 10 in the matrix corresponds to 10 points describing the start, bends, and end
of each branch. The 2 in the matrix corresponds to the primary and secondary branch for each heat
load. For vital loads, there will be a branch in each of these indices; however, for a non-vital branch,
there will not be a branch in the second index. The 3 in the matrix corresponds to the x,y,z coordinates
of either the start, end or bend of a branch. Lastly, the 180 is variable depending on the number of heat
loads listed in the excel spreadsheet. The case study utilized 180 loads taken from CSDT v1.0 (Fiedel,
2011).

The program creates the branch structure automatically. The structure is dependent on the location of
the heat load with respect to the main piping structure. The simplest case is that of the single main
piping structure. All heat loads within the longitudinal extent of the main piping system is connected at
the same longitudinal location of the supply and return headers. The branch piping is created starting at
the x-location of the heat load on the supply header. It continues along vertically up to the vertical
location of the heat load. The pipe then continues transversely up to the heat load. The pipe is then
offset vertically by the branch offset distance specified earlier and is connected to the return header in
the reverse fashion, accounting for the branch offset distances as well as the header offset distances. An
example of the branch connection is shown in Figure 46 below.

84



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Point4

Point3

Point

TyB

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Figure 46: Formation of branch piping

For heat loads outside the longitudinal extent of the main piping, there would be additional bends in the

branch piping, but the principle is the same.

For the double main configurations, there is a choice as to which supply and return header piping the

heat load could be connected to. As mentioned before, if the heat load is vital, it would be connected to
both, else it would be connected to the closest header. If the heat load is on the centerline of the ship,
then it is connected to the starboard side by default.

Each branch also includes two gate valves and a globe valve. The gate valves are positioned one

upstream of the heat load and the other downstream of the heat load. The globe valve is positioned
downstream of the heat load. The gate valves allow for isolation of the branch in case of a casualty. The
globe valve allows for throttling of flow through the branch. The locations of the valves are done

automatically and does not allow for user manipulation within the Geometry module; however, the

locations can potentially be modified through the use of the Modification module.

After the branch piping structure is defined, the program then sizes each heat load to a heat exchanger.
The user input from the excel spreadsheet is used to identify what type of heat exchanger is to be used

for each respective heat load. The heat exchanger of the proper type is then chosen based on having

sufficient capacity to meet the demands of the heat load. The heat exchanger characteristics are then

85



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

read in and stored in an array of arrays. One of the arrays includes the dimensions of the heat

exchanger. This is used to properly size the heat exchangers in the subsequent plots.

At this point, the chilled water system is largely defined. The chilled water system interfaces with the
seawater system through the A/C units. The next step of the program is then to model a generic
seawater auxiliary system.

The program begins by locating four auxiliary seawater pumps. The four default locations are:

+08Beam E k Ab I+SWPumpHt]0.3 LOA k0.8 Bem EngDeck Ht AboveKeel + Spm~
2 2

Seawater isolation valves are located in close proximity to the AUX SW pumps, two upstream and one
downstream.

The piping of the AUX SW system is comprised of a connection from the sea chest to the pump then a
riser section which forms a tee junction with the AUX SW supply header. There are two supply headers
that run fore-aft. The supply headers are located port and starboard and are offset vertically to maintain
vertical separation for survivability considerations. The two AUX SW supply headers are connected by
two cross-connects. Figure 47 below shows the structure of the AUX SW piping created by the program.

86



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'IIF Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Figure 47: AUX SW piping structure

The AUX SW supply headers supply the seawater to the AUX SW branches. Each A/C unit has its own

dedicated AUX SW branch. In addition, the user can specify the locations of other heat exchangers of the

form SW/XX. The SW/XX heat exchangers also have their own dedicated AUX SW branch. Lastly, the user

has the ability to specify if the shaft bearing is accounted for. If it is, the user specifies the location of the

shaft bearing or uses the default value. The user also specifies the gpm flow rate to the shaft bearing

and any SW/XX heat exchangers being accounted for in the design of the AUX SW system. Figure 48

below shows the AUX SW piping including the branch piping to the A/C units, a shaft bearing located at

[-57.4 0 2.4]and two SW/XX heat exchangers located at [20 3 10] and [-30 -2 15].

87



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Figure 48: AUX SW piping with branch piping

The program outputs a 3-dimensional model of the chilled water system up to this point. The structure
of the main piping system is included along with the A/C units, the pump, the structure of the branch
piping system, the various check, gate, and globe valves, as well as the heat exchangers centered at the
location of the heat load. The AUX SW system is also included in the plot. Examples of the plan and
perspective views of the 3-dimensional chilled water-models up to this point are shown in Figures 49-54
below.

88



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Figure 49: Default single main piping system with branches (plan view)

89



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

MINIM Massachusetts institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Figure 50: Default single main piping system with branches (perspective view)

90



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

~I VII;JThL.
I

TT4 T'I

Figwe 51: Default simple rectangular double main piping system with branches (plan view)

91

iij



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Egure 5z: Detauit simple rectangular double main piping system with branches (perspective view)

92



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'IIF Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Iiwe 53: Default complex tapered double main piping system with branches (plan view)

93



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Figure 54: Default complex tapered double main piping system with branches (perspective view)

There is a lot represented in the above plots. To discern what is shown, the simple rectangular double

main piping system with branches is shown in greater detail in the preceding figures. Figures 55-58

identifies each of the components in the 3-D plot of the CW/SW systems.

94



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Figure 55: Chilled water system segmented into areas 1, 2 and 3

CW branch piping

cdouble CW supply header

Athwartships cross-connection

Figure 56: Close-up view of area 1

95



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Vital load

Vital loads 2 fow paths
Non-vital loads: 1 flow path

Figure 57: Close-up view of area 2

ASW branch isolation valve

Double isolation valves
at hull penetration
Figure 58: Close-up view of area 3

96



Center for Ocean Engineering U - Massachusetts institute of Technology
Naval Construction & Engineering Program I I 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering U E Cambridge, Massachusetts 02139-4307

The program does not have the capability to modify the branch piping, such as the ability to route the
branch piping around major pieces of machinery/equipment, etc. This level of refinement would have to
be done in another program such as Paramarine (with an interface program between Matlab and
Paramarine needed) or done through the use of the Modification module, but will require extensive
knowledge of the program and programming expertise. Also, the number of hull penetrations are fixed
based on the default AUX SW geometry created and the number of A/C units in the CW design (four for
SW inlet and n number for SW outlet based on n number of A/C units included in the CW design).
Further refinement could also be pursued in this area, allowing for grouping and placement of sea chests
to minimize hull penetrations.

At this point, the program has gathered most of the user inputs required to design the initial layout of
the chilled water system and auxiliary seawater system. The remaining portion of the program analyzes
the system designed to determine the feasibility/performance of the system.

3.2 Analysis

As mentioned earlier, the Matlab program is broken up into two major modules. The first module
utilized the user inputs to design the chilled water system and create the chilled water structure. The
second module includes the analysis of the chilled water system modeled and is quite extensive. The
analysis focuses on calculating the weight, the static temperature distribution, the temperature
distribution and temperature response during transients of the chilled water system. This is
accomplished through a structured process as summarized below:

* Step 1: Preliminary sizing of pipe diameters and preliminary calculation of branch velocities and
branch mass flow rate based on heat load

* Step 2: Determination of network segments

* Step 3: Refining branch velocities and branch mass flow rates using network analysis accounting
for head loss associated with bends, friction, and across valves

* Step 4: Account for entrance and exit effects utilizing refined branch velocities
* Step 5: Determination of pressure drop as a function of distance

e Step 6: Determination of stagnation points
* Step 7: Final calculation of velocities and mass flow rates using network analysis with network

isolated at the stagnation points

* Step 8: Calculate branch inlet temperatures
* Step 9: Determination of A/C unit capacity required and selection of A/C units
* Step 10: Expansion tank sizing

* Step 11: Weight Analysis

Step 12: Static Temperature Analysis

* Step 13: Transient Temperature Analysis

Each of the steps listed above is described in greater detail in the proceeding sections.

97



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

3.2.1 Step 1: Preliminary Sizing of Piping Diameters and Preliminary Calculation of Branch

Velocities and Branch Mass Flow Rates Based on Heat Load

Using the same approach as within CSDT v1.0, the branch piping diameter was found parametrically

using the equation:

D =(4KQ 0-4
Cr

Equation 62 (Fiedel, 2011)

where Kis 4.5 gpm/ton, Q is the heat load [tons], C is 4 ft/(sec-in 5 ), and D is the inner pipe diameter.

This gives a reasonable diameter to begin analyzing the chilled water system. The diameters are then

rounded up to the nearest diameter listed in Table 2 and Table 3 along with the corresponding pipe

thickness.

At this point, the inlet temperature (the temperature of the chilled water entering the heat exchanger)

is assumed to be equal to 6.67*C. The branch mass flow rate is also assumed to equal 4.5 gpm/ton.

These two initial conditions are not entirely accurate, but provide a starting point for the program and

are later updated. With these initial conditions, all other conditions across the heat exchangers are

found. Figure 59 shows the corresponding temperatures.

T out sec

T ave sec
TI

T in sec

Wal
Tcold cw

U.
I
I
I
I
I
I
I
I
I
I
I
I
*
~Javec~4

III
I
I
I
II
I

1I
I
I
LW4..rnJ

Thotcw

Wall
Tout sec

!--T ave sec
T2

I

I
T in sec

Figure 59: Temperatures within heat exchanger

98

I

I

I

I

I

I

I

I

Ia



Center for Ocean Engineering f U Massachusetts Institute of Technology
Naval Construction & Engineering Program j 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering U E Cambridge, Massachusetts 02139-4307

A second simplifying assumption is the temperature distribution for cross flow. The temperature
distribution from inlet to outlet on the primary and secondary side would resemble that shown in Figure
60below, but is simplified as a linear rise and fall.

*low**** w as* * a s e0se 0 0

Counter-flow

T

tt4

Figure 60: Temperature distribution for counter-flow (Engineering Toolbox)

The outlet temperature (the temperature of the chilled water exiting the heat exchanger) is found using
the equation:

To u t - + TinM - c,
Equation 1 (repeated, rearranged)

where 0 is the heat load [W], ,t is the mass flow rate of the chilled water in the branch [kg/s], c, is the

specific heat capacity of the chilled water, taken to be 4203 J/kg-K, and Tin is the inlet temperature of
the chilled water [C].

The temperature at the inner wall of the heat exchanger is found using the equation:

= (Tout + Tin) +
2 SAhxchgrinner - hca

Equation 63

where SAhxchgrin, is the inner surface area of the heat exchanger [m2], and hcm is the convective

heat transfer coefficient of the chilled water [W/m 2-K]. The convective heat transfer coefficient is found
as described in Chapter 2.

99



Center for Ocean Engineering iismMassachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering I I Cambridge, Massachusetts 02139-4307

For heat exchangers with a tubular boundary (i.e., cooling coil), the temperature at the outer wall of the

heat exchanger is found using the equation:

QIDhxchgr tube 2Dxchgr tube + thxchgr tube 1
= T1 + Axchgrinner Dxchgr tube 2 7rkhxchgr

2
Equation 64

where Dhxchgr tube is the inner diameter of the tubes within the heat exchanger [m], thxchgr tube is the

thickness of the tubes within the heat exchanger [m], and kxchgr is the thermal conductivity of the

tubes within the heat exchanger.

For heat exchangers with a slab boundary (i.e., flat plate heat exchanger), the temperature at the outer
wall of the heat exchanger is found using the equation:

2 T 1 + QkhxchgrSAhxchgr
txchgr plate

where txchgr plate is the thickness of the plates within the heat exchanger [m].

The thermal conductivity of the heat exchanger tubing is based upon the percentages of copper and
nickel in the composition of the pipe. The program assumes the composition of the piping is 90% copper
and 10% nickel. Other possible compositions include: 80% copper and 20% nickel, 70% copper and 30%
nickel, and 100% copper. The thermal conductivities for each of these compositions are shown in Table
11.

Piping Composition Thermal Conductivity (W/m-K)

90% Copper - 10% Nickel 50

70% Copper - 30% Nickel 10
Table 11: Thermal conductivities of various copper-nickel compositions

The average temperature of the fluid on the secondary side of the heat exchanger is found using the
equation:

Tfluidavg = T2 + SAx- hShxchgrouter cpluid
Equation 65

where SAhxchgrouter is the outer surface area of the heat exchanger [m2], and hcfluid is the convective

heat transfer of the fluid on the secondary side of the heat exchanger [W/m 2-K]. The convective heat
transfer of the fluid on the secondary side is not computed as it was for the chilled water on the primary

100



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

side, but instead had to be determined experimentally or by the manufacturer of the heat exchanger
and provided to the program via the excel spreadsheet.

The differential temperature across the heat exchanger on the secondary side is found using the
equation:

A Tfluid
Thfluid - C

Equation 1 (repeated, rearranged)

where lfluid is the mass flow rate of the fluid on the secondary side of the heat exchanger [kg/s], and
cPfluid is the specific heat capacity of the fluid on the secondary side [J/kg-K].

The inlet and outlet temperatures of the fluid on the secondary side are determined by the equations:

Tfluidn Tf Luida - A _fluid

2
Equation 66

and

A fluid
Tfluidout Tfluidag +

Equation 67

Of course, these temperatures are only valid once the system is in equilibrium and the temperatures
reach steady-state.

An example of the various temperatures for each branch is shown in Figure 61 below. The example
considers 180 heat loads with the first load equal to 1 MW cooled through a flat plate heat exchanger.
All other heat loads are 60 kW or less and are cooled through a cooling coil.

101



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering i'i~r Massachusetts Institute of Technology

77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Figure 61: Example of initial static temperatures as a function of branch index (unordered)

3.2.2 Step 2: Determination of Network Segments

Up to this point, the program has data stored in vectors, such as the branch locations, but does not have

the data ordered with respect to distance along the header. The determination of the network segments

processes the data stored in the vectors and orders it with respect to the start of flow from a particular

riser section and the direction of flow, either clockwise at the riser-header junction, or

counterclockwise. Thus, a matrix is created which stores the index of various vectors, such as branch

locations, with each row corresponding to a specific riser and direction.

Before proceeding, a quick description of variables is given:

e currheader pt - A point which keeps track of the current location in the supply header.

e nextheader pt - A point which keeps track of the next bend in the supply header.

e branchloc - A matrix containing the x,y,z coordinates of each branch.

e seg_ valve_/oc - A matrix containing the x,y,z coordinates of each segregation valve.

e branchorder - A matrix which stores the riser number, the direction of flow (1 for clockwise, 2

for counterclockwise), and the branch index.

e Locationx - A matrix which stores the position of the points in which pressure is calculated with

respect to the associated riser. The position is simply the distance travelled along the length of

the pipe from the riser to the point of interest.

e dPdX-A matrix which stores the associated cause of the pressure drop at a specified point, i.e.

1=pressure drop due to friction along pipe walls, 3=pressure drop due to friction across

segregation valves.

102



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

* Pressureheight h - A matrix which stores the pressure drop associated with a change in height.

Initially, the program starts by defining currheader pt at the junction of the riser and supply header for
the riser under consideration. Depending on the direction of flow (clockwise or counterclockwise), the
program defines nextheader pt at the location of the next bend in the supply header. With these two
points, the direction under consideration is found. Figure 62 gives a visualization of currheader pt and
nextheader pt.

cuff

---- d&rection

Figure 62: currheaderpt and next-header-pt

The program searches through the vector containing the branches and determines the location of the
next branch. Similarly, the program finds the location of the next valve. Figure 63 gives a visualization of
seg valveloc and branchloc.

segvalveloc branch loc

irection

Figure 63: segyalveloc and next-header-pt

The program determines if the branch location is closer to currheaderpt or if the valve location is
closer. The currheader pt is updated to the closer of the two. This can be seen in Figure 64. If the next
closest point was that of branchloc, then the next element in branchorder is set equal to the index of
brancl_/oc. In any event, the distance between the next element and that of currheader pt is stored in

103



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Location_x.

segyvalkvoc

currheader pt -

~-irection

Figure 64: curr-header-pt updated to location of segregation valve

In addition, information pertaining to the pressure drop associated with the element and distance

traveled is stored in the matrix, dPdX. The pressure drop associated with a change in height is stored in

the matrix Pressure heighth.

The process is repeated until there are no branches or valves between currheader pt and

next header pt as seen in Figure 64. In that case, currheader pt is set to next header pt,

next header pt is set to the next bend in the supply header piping, and the direction is updated. This

can be seen in Figure 66. The whole process is repeated until a complete loop is performed.

frwnch Icc

currheader pt

irection seg valvejoc

Figure 65: No branch or valve between currheader pt and nextheader.pt

104



Center for Ocean Engineering U - Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

branchkloc

curr_headerpt

-directio A,

7 /e-vlv o

riser next.header pt

Figure 66: curr-headerpt updated to next-headerpt; next-header pt set to next bend location

The process is then again repeated starting from the same riser with flow in the opposite direction.
Afterwards, the program moves on to the next riser, where everything is repeated with clockwise flow
and counterclockwise flow. This is continued until all risers are considered.

3.2.3 Step 3: Refining Branch Velocities and Branch Mass Flow Rates Using Network
Analysis Accounting for Head loss Associated with Bends, Friction, and Across Valves

Previously, in step 1, it was assumed that the branch mass flow rates were equal to 4.5 gpm/ton. This is
not necessarily true since the configuration of the piping network will have an effect on flow velocities
and mass flow rates. In an attempt to get a more accurate value for branch mass flow rates, flow
network analysis is used.

Initially, the total mass flow rate is assumed to be the sum of the branch mass flow rates found
previously. The velocity for each branch is calculated from the contribution of each riser with flow going
clockwise and counterclockwise. This is done taking into account the loss coefficient due to friction
along the pipe walls, the loss coefficient due to bends in pipes, the loss coefficient due to friction across
valves, and the loss coefficient due to friction across the heat exchangers. The sum of all loss coefficients
within a branch yields the overall loss coefficient for that branch.

The overall loss coefficient is found by first calculating the Darcy friction factor. The Darcy friction factor
is a function of the pipe diameter, the flow velocity within the branch, the thermal conductivity of the
chilled water, the kinematic viscosity of the chilled water, the surface roughness factor, the density of

the chilled water, and the specific heat capacity of the chilled water. Most of these values are assumed
constant although there is temperature dependence, but for the range of temperatures considered, the
error is negligible. The flow velocity, however, was assumed. The first iteration yields only an
approximation of the Darcy friction factor.

The loss coefficient due to friction uses the calculated Darcy friction factor, and as a result is also just an
approximation of the true loss coefficient due to friction. The other coefficients are also computed using

105



Center for Ocean Engineering m u Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

the equations described in Ch. 2. Similarly, the overall loss coefficient is calculated for the header

segments separating the branch piping junctions.

With the overall loss coefficients of the branches and the header segments, a resistive network can be

set up in which the flow velocities can be solved. The velocities of each branch is solved for in this way,
along with the velocities within the header segments utilizing the conservation of mass.

After the iteration is complete, a delta will exist between the initial velocity assumed within a branch

and the computed velocity at the end of the iteration. The process is repeated until the velocities

converge with a delta of less than 10~8 m/sec (usually within 4-5 iterations).

With a better approximation of the velocities with a branch and within the header segments, the mass

flow rates through those segments can be determined. The more accurate velocities also yield more

accurate outlet temperatures on the chilled water side, as well as temperatures on the secondary side.

3.2.4 Step 4: Account for Entrance and Exit Effects Utilizing Refined Branch Velocities

With more refined velocities, entrance and exit effects of the branches can be accounted for. Similar to

the above step, the overall loss coefficients are calculated for each branch using the best estimate for
flow velocity. The difference between the previous step is that in addition to accounting for the loss due

to friction, bends, and valves, the loss coefficients due to flow entering a path and exiting from a path is

also accounted for. These two loss coefficients are highly dependent on velocities, which is why time

was spent getting a better approximation for velocity taking into account the other loss coefficients.

Also, similar to the method described above, the process is repeated until the differential velocities

between iterations are negligible. Again, the mass flow rates, and various temperatures are re-

calculated. Figure 67 shows the evolution of the branch velocities after each refinement made. Note

that the branch index corresponds to the order of the branch junctions along the supply header.

Therefore, branch index 1 is the first branch junction after the riser junction (assuming flow in the

clockwise direction). The isolation valve between the last branch junction and the riser is considered

shut so that flow is in one direction throughout the supply header piping. Additionally, all other A/C

pumps are off so flow is in response to a single A/C unit and pump in operation.

106



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Figure 67: Chilled water velocities in branches and supply header

As can be seen in the above plot, the initial assumption of velocity based solely on the branch geometry
is incorrect with the branch velocities fluctuating about a horizontal line. In contrast, once FNA is used,
the trend in branch velocities shows a decrease in velocity as the distance from the branch junction to
the riser increases. The velocity of the chilled water also shows a decrease along the length of the supply
header.

3.2.5 Step 5: Determination of Pressure Drop as a Function of Distance

Using the information stored in the matrix dPdX along with the more accurate branch velocities and
header segment velocities and the distance between pressure drop sources, the pressure as a function
of distance along the supply header was determined.

Five sources of pressure drop were considered: the pressure drop associated with a branch junction, the
pressure drop associated with friction along the pipe wall, the pressure drop across a valve, the pressure
drop associated with a bend in the pipe, and the pressure drop across a heat exchanger. The pressure
drop associated with changes in height was analyzed separately as discussed in Section 3.2.2.

The pressure drop along the header could be found using the equation:

dP wcw

dx 2 eaer
Equation 68 (Rennels & Hudson, 2012)

107



Center for Ocean Engineering mim Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

The first case involves head loss associated with entrance effects. The ?hcw within the header at the

branch junction was converted to kcw.

The differential pressure across the branch entrance was determined using the equation:

dP =cw &cw W
-=P1 - P2 = CW 1.62 -0.98 .1 - 0.64 - 2I + 0.03 -'2

dx entrance 29pcwAheader wcw2 Wcw 2  w)
Equation 69 (derived from Equation 37 and Equation 68)

where Pi is the pressure within the supply header prior to the branch junction [Pa], P2 is the pressure

within the supply header after the branch junction [Pa], vcw is the mass flow rate within the supply

header prior to the branch junction [Ibm/sec], Wcw 2 is the mass flow rate within the supply header after

the branch junction [lbm/sec], and Aheader is the cross-sectional area of the supply header.

The second case involves head loss associated with friction along the pipe walls. To determine the

pressure drop along a length of pipe, the following equation was used:

dP fL _cw___ _ cw

dxfriction Dheader 2gpcw Aeader Kfriction 29pAeader
Equation 70 (derived from Equation 24 and Equation 68

where f is the Darcy friction factor associated with that segment of pipe, L is the length of pipe

considered [m], and Dheader is the diameter of the supply header [m].

The third case involves head loss across a segregation valve. To determine the pressure drop across a

segregation valve, the following equation was used:

dP &cw
--- al = Kvalve 2
dxvave eaer

Equation 70 (repeated)

where Kvalve is the loss coefficient associated with the segregation valve. A value of 0.2 was used as a

notional value for this type of valve (Rennels & Hudson, 2012).

The fourth case involves head loss associated with a bend in the supply header pipe. To determine the

pressure drop associated with a pipe bend, the following equation was used:

6.6f ( sin !+ sin j
dP ir r 7r 2 2) 1;1,

- = f + 0.10 + 2.4f sin + 2dxbena 2d 2h9c~ eader

Equation 71 (derived from Equation 35 ana Equation 68)

where is the bend radius ratio (with a default value of 3.0).

108

. .... ......



Center for Ocean Engineering U U Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

The fifth case involves head loss associated with the heat exchanger. This value is specified in the heat
exchanger database and read in by the Matlab program. The head loss across a heat exchanger is a set
value and is not calculated as a function of mass flow rate. This exemplifies the tradeoff between having
a model which accurately portrays flow under all circumstances and a model that is easy to use. If the
flow across the heat exchanger is close to the design flow rate, then the actual head loss should also be
close to the specified head loss.

The sum of the differential pressures yields the total differential pressure at each corresponding index
within the matrix.

dP dP dP dP dP dP
+- +- +-xcdxtotai dxentrance dxfriction dXvaive dXbend dxixchar

Equation 72

The pressure is then computed along the pipe length, with each point representing a source of pressure
drop. This can be shown with the following Matlab code snippet:

for i=1:max(size(Location x))

if i<max(size(Location x))

Pressure(m,n,i+1)=Pressure(m,n,i)-dPdXtotal h(m,n,i);

end
end

Other sources of pressure drop such as sudden contraction or expansion of pipe could be accounted for
in this section, but since the supply header is of constant diameter this was not considered. If greater
generality of the program is desired, then some code would have to be added in this step of the
program to account for the desired sources of changes in pressure.

3.2.6 Step 6: Determination of Stagnation Points

At the riser-header junction, a portion of the chilled water will flow clockwise and the remaining will
flow counterclockwise. With several risers in parallel, there exist points between each pair of adjacent
risers in which the clockwise flow exiting one riser junction will have the same pressure as the flow
exiting the adjacent riser with counterclockwise flow exiting from it'2. At this point, the flow stagnates.
To break up the network into smaller independent networks, it is imperative to determine these
stagnation points. These stagnation points represent the points in which the network can be isolated
and analyzed independently.

1 This assumes the pumps are well balanced, meaning that one pump will not overpower an adjacent pump
causing flow to go in the wrong direction. Check valves are located downstream of each pump to ensure this does
not happen.

109



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Assuming the pressures at the base of each riser are all equal, the pressure differentials caused by

changes in height were neglected. The magnitude of the pressure along the length of the header pipe

for each riser were then compared with one another, and the intersection of the lines were considered

the stagnation points within the header network. Errorl Reference source not found. shows a

representation of the pressures associated with each riser superimposed on one another. The reference

point chosen (0 on the x-axis) corresponds to the riser junction of the forward-most portside riser

junction. Positive proceeds clockwise along the supply header piping.

Figure 68:. Pessurm as a function of location in supply header for clockwise and counterclockwise flow for each chiller/pump
superimposed

The pressure along the header pipe was plotted with respect to distance from the riser junction. It was

interesting to see that the pressure drops were not symmetrical with clockwise flow and

counterclockwise flow as one may assume. Since the pressure drops were a function of velocity, the

difference in flow velocities at a point from clockwise flow or counterclockwise flow contributed to

differences in head loss at the same point depending on the direction of flow. Figure 69 below shows

the pressure drop from one junction with flow going clockwise (extending in the positive x-direction)

and flow going counter-clockwise (extending in the negative x-direction). Figure 69 does not include the

effects of changes in height along the pipe length.

110



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Figure 69: Pressure as a function of location in supply header excluding pressure variations due to changes in height

Accounting for changes in height along the length of the header piping, the following pressure
distribution is found (Figure 69) for the same flow and junction as the figure above.

111



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Figure 7u: Pressure as a tunction OT location in suppiy neaier inciuaing pressure variations oue to cnanges in neignt

3.2.7 Step 7: Final Calculation of Velocities and Mass Flow Rates Using Network Analysis
with Network Isolated at Stagnation Points

The chilled water network was first analyzed considering only one riser junction at a time, i.e., only

accounting for flow from one A/C unit/pump in operation at a time. The network becomes much more

complicated when there are several sources of flow in parallel. To circumvent the difficulties arising

from parallel sources of flow, the piping network is isolated at the stagnation points discussed in Section

3.2.6. This can be seen in Figures 68-72 below.

112



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Figure 71: Electrical analogy of chilled water system including two pumps in parallel and several branches in parallel

Figure 72: Electrical analogy of chilled water system with stagnation points shown in red

Figure 73: Electrical analogy of chilled water system with parallel pumps now isolated

113



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

Figure 74: Simplification of network

Figure 75: Network reduced to a single pump and a single equivalent resistance to flow per isolated loop

With the network segmented at the stagnation points, the velocity and mass flow rates are once again

computed using network analysis. The network is isolated at the stagnation points, forming an isolated

loop for each pump. The total head loss propagating clockwise from the riser junction and

counterclockwise from the riser junction is found using flow network analysis. This is further reduced by
considering the total head loss seen across each the pump. The pump head will equal the head loss.

An adequate pump would have to be selected such that the efficiency of the pump is satisfactory for the

head calculated and mass flow rate calculated. This was not done by the program, but should be

implemented in a future iteration of the CSDT. Using the pump curves shown in Section 2.4.3, a specific

pump could be selected; however, equations would have to be developed possibly through the polyfit
and polyval functions in Matlab in order to mathematically describe the pump curve plot for the 1510
series Bell & Gossett centrifugal pumps (or some other pump series). With pumps selected, the specific
pump performance curve can be referenced to determine if the initial mass flow rate guessed at is
correct based on the head loss of the system. If not, the mass flow rate would be adjusted and the

process repeated (i.e., pressure distribution found using modified mass flow rates, stagnation points

found, network simplified, total head loss across pump found, mass flow rate determined from pump

performance curve for specified pump head).The CSDT currently assumes the mass flow rates were

initially correct and the pressures at each riser junction are perfectly in balance.

Once the mass flow rate for each pump converges to a solution, the process is reversed. Starting from

the simplified network with a single source and a single equivalent resistance to flow, the mass flow rate
is found. To determine the mass flow rate propagating clockwise and counterclockwise from the riser

junction, the network seen in Figure 74 is referred to. This is done by considering the conservation of

mass at the junction (analogous to KCL) and FNA. The process is continued, solving for flow within each

114



Center for Ocean Engineering U - Massachusetts institute of Technology
Naval Construction & Engineering Program I I 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

parallel branch applying FNA and mass conservation until the mass flow rates within each branch and
header segment are known.

3.2.8 Step 8: Calculate Branch Inlet Temperatures

The assumption that the inlet temperature of the chilled water was equal to the outlet temperature of
the A/C unit was revisited. The initial outlet temperature of the A/C unit was assumed to be 6.67*C (later
on this is also revised to account for the actual outlet A/C unit temperature dependent on the actual A/C
unit selected). It is known that the outlet temperature of the A/C unit will rise as the chilled water flows
along the length of pipe. This rise in temperature is due to several factors, such as compression of the
fluid across the pump, friction along the pipe walls, head loss across valves and bends, and head loss
attributed to entrance and exit effects. These sources of head loss have already been determined by the
program. The associated temperature rise is determined for the first branch junction by the equation:

ATbranch junction = Tbranch junction ~ TAC out

= (Tbranch junctiorn - Tpump out) + (Tpump out - Tpump in) + (Tpump in - TAc out)
V 2 1 p V2 1

= K2 - + - + K1 --TF2 + C, Ccpr 2g C2c,
Equation 73

where Tbranch junction is the temperature of the chilled water at the junction of the branch piping and
supply header [*C], TAc out is the outlet temperature of the chilled water from the A/C unit [*C], c, is the

specific heat capacity of the chilled water [Btu/lbf-*F], K1 and K2 are the overall loss coefficients for the
segment of pipe from the A/C unit to the pump and for the segment of pipe from the pump to the
branch junction, respectively, H, is the pump head [ft], il is the pump efficiency, and C2 is a conversion
factor equal to 778.169262 [ft-lbf/BtuJ. The heat loss through the pump was ignored since this is much
smaller than the pump power.

The branch junction's downstream f the first branch junction includes the differential temperature
discussed above plus the differential temperature arising from the distance between the two junctions.
The equation is as follows:

ATbranch junctiondownstream Tbranch junctiondownstream - Tbranch junction
V2 1

= K - Tbranch junction

Equation 74

where K3 is the overall loss coefficient from the segment of piping extending from the first branch
junction to the branch junction of interest.

In a similar manner, the chilled water inlet temperatures of the heat exchangers can be determined by
the equation:

115



Center for Ocean Engineering i Massachusetts Institute of Technology
Naval Construction & Engineering Program 111177-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

V 2 1
ATin =- in branch junctiondownstream = K4  C2 c, - rane junctiondownstream

Equation 75

where K4 is the overall loss coefficient from the segment of piping extending from the branch junction
to the inlet of the heat exchanger.

With the refined chilled water inlet temperatures, the other temperatures of interest can be
recalculated once again. The recalculated temperatures do not suffer from the initial assumptions of
mass flow rate or branch inlet temperatures.

3.2.9 Step 9: Determination of A/C unit Capacity Required and Selection of A/C units

With the revised temperatures and revised piping network (isolated at the stagnation points), the A/C
unit capacity required can be determined. The differential temperature across the A/C unit can be
found, (assuming an outlet temperature of 6.67"C by default). In addition, the total mass flow rate is
also known and is equal to the mass flow rate of the chilled water through the A/C unit. Therefore, the
A/C unit capacity is found using the following equation:

ACcapacity = rhcpAT

Equation 76

The program selects all A/C units to have the same capacity. The capacity is chosen as the A/C unit
within the chiller database that is closest (but greater) to the greater of the highest individual calculated
A/C capacity or the average A/C capacity needed with 50% of the A/C units operational. For example,
assuming there are four A/C units with capacities of 100 tons, 65 tons, 110 tons and 85 tons, the total
capacity needed is 360 tons. Assuming 50% of the A/C units are operational at a given time, each A/C
unit must at least supply 180 tons. The maximum individual A/C unit capacity is 110 tons, thus the
greater of 110 tons and 180 tons is chosen. If the smallest available chiller available which is greater
than or equal to 180 tons is a 200 ton chiller, the program will size each of the four chillers to 200 tons.

The user has the ability to override the program and select another A/C unit from the database. The
outlet temperature of the A/C unit is then read in by the program to ensure the assumption of 45'F was
valid. If it was, the program continues, if not, then the temperatures in the previous step are
recalculated.

If a different A/C unit selection process is to be incorporated, this section of code would have to be
modified. For example, an N-1 approach could be taken, where the A/C units are sized such that the
cooling needs of the heat loads under the worst case operating condition could be met with a loss of
one A/C unit. This approach would have a significant effect on reducing the total weight of the chilled
water system as compared to the method employed by the CSDT.

116



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering I'Iir Massachusetts Institute of Technology

77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

3.2.10 Step 10: Expansion Tank Sizing

To size the expansion tank, the same method used within CSDT v1.0 was used (Fiedel, 2011). The
expansion tank has to be large enough to supply chilled water to the pump for the time specified by the
user (the default is 30 seconds). In addition, the tank acts as a surge volume accounting for the
expansion of the fluid as it changes in temperature. The more limiting of the two criteria is what drives
the size of the tank. This process was discussed in detail in Section 2.7.

3.2.11 Step 11: Weight Analysis

The CSDT also has the capability to perform a weight analysis of the chilled water system. The weight
analysis includes the weight of the system as well as the LCG, VCG, and TCG of the system. The weight
and center of gravity is broken down into the chilled water system and part of the auxiliary seawater
system. Each system is then broken down further into the components which form each system. The
weight breakdown structure is listed below:

1. Chilled Water System
a. Piping

1. M
ii. Br

b. Lagging
i. La
ii. La

c. Valves

ain Piping
anch Piping

gging - Main

gging - Branch

i. Globe Valves
1. Main Globe Valves
2. Branch Globe Valves

ii. Gate Valves
1. Main Gate Valves
2. Branch Gate Valves

iii. Check Valves
1. Main Check Valves
2. Branch Check Valves

d. AC Units
e. Expansion Tanks
f. Pumps
g. Brackets
h. Instrumentation
i. Chilled Water
j. Heat Exchangers

2. Auxiliary Seawater System
a. Piping
b. Valves
c. Pumps

d. Brackets
e. Salt Water

117



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

The weight breakdown is much more granular for the chilled water system, since this is the main focus

of the CSDT program. The program also asks for a weight margin. The margin is added to the total

weight of the systems.

Most of the components listed above are self explanatory as to how the weight and center of gravity

were computed since the geometry, position and densities are known. However, some of the weights of

the components were estimated.

To determine the weight of the valves within the chilled water system, typical valve weights were used

based on valve size. The valves were sized according to the pipe diameter. Table 12 below lists the

weights for various valve types.

Diameter Gate Valve Weight Globe Valve Weight Check Valve Weight
[m] [kg] [kg] [kg]

0.0190 4.2 4

0.0381 11 10.6

0.0635 17

0.1016 50 55 36

0.1524 80 98 62

0.2540 185 305 158

0.3556 395 590 324

0.4572 670 1040 548

0.6096 1150 1700 1150
Table 12: Valve weights

The pipe hangar weight was accounted for by using a hangar weight per unit distance of pipe length.

This metric was dependent on the diameter of the pipe being supported by the pipe hangars and was

determined based on the dimensions of the pipe hangar, the pipe hangar density, and the pipe hangar

spacing along the length of the pipe (ASTM International, 2008). Table 13 lists the pipe hangar weight

per meter of pipe for various pipe diameters.

118



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Diameter Hangar Weight per Meter of Pipe
[ml [kg/m]

0.0095 0.0550

0.0190 0.0655

0.0317 0.0718

0.0508 0.1190

0.0762 0.1333

0.1016 0.1292

0.1524 0.2624

0.2534 0.3734

0.3556 0.4673

0.4572 0.5744

0.6096 0.6810
Table 13: Hangar weight per meter of pipe

3.2.12 Step 12: Static Temperature Analysis

At this point, the velocity distribution is known within the system. Using an energy balance approach,
the temperatures are found along the supply header with the temperature rising as the fluid propagates

towards the stagnation points. The rise in temperature is insignificant, however. The conversion of

mechanical energy to thermal energy through head loss is on the order of 10~50C.The rise in temperature

of the chilled water due to the temperature of the environment was neglected for the static
temperature analysis since the fluid is flowing and the resistance to heat transfer is significant due to the

pipe lagging 3 . The temperature across the heat exchanger is computed based on the mass flow rate and

the heat load' 4 and the chilled water exiting each heat exchanger within each branch is found. The

temperature along the return header is found using an energy balance approach taking into account the

outlet temperature and mass flow rate of each branch.

1 The transient analysis does take this into account; however, and the rise in temperature is on the order of a few
hundredths of a degree Celcius assuming a quiescent air temperature of 200C and a lagging thickness of 0.75".
Even with a higher environmental air temperature, the rise in temperature will still be insignificant (<0.1 0C).
14 Since the system is in steady-state, the heat load is equal to the heat transfer at each boundary between the
heat soure and heat sink (neglecting internal heat generation which was found to be insignificant).

119



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

To determine the temperature distribution across the heat exchanger the same approach outlined in

Section 3.2.1 was used.

3.2.13 Step 13: Transient Temperature Analysis

The transient analysis section of the program is very extensive making up half of the analysis module.

The analysis is performed in several steps. The first step gathers information from the user regarding the

initial conditions of the system and the changes which occur during an event. The second step

determines the initial pressures within the chilled water system. The third step calculates the initial

velocities and stagnation points. The fourth step calculates the pressures after the event occurred. The

fifth step calculates the velocities after the event. The sixth step calculates the temperatures throughout

the chilled water system with respect to location and time. Lastly, the seventh step plots the

temperature responses.

Part A: User Input

The program begins the transient analysis by first gathering user input. First, the program prompts for
the load condition to be considered during the transient: shore, design, cruise, or battle. The program
takes this response and populates an excel spreadsheet 'Transient.xlsx' with the heat loads
corresponding to the load condition. The user is then directed to the spreadsheet to fill in the remaining
information needed. A screenshot of the spreadsheet is shown in Figure 76 below.

Thema..ae e-ahec oro the loadeoanfon specine In analysI&M schangettste WWe soad value mn be entered Indte Venowacome
vabess aea1iasasswae fmredch ied aner the tansient enderftheenxm Hest tend at V-41.
Thee snmesenm haen Is a sinesma idasips is at x= with the tbowr In the +x-direction, port is tossads -te, and up Is +r.
The eWminsamamt be spedied fr each chier besfre and anter the senslent (spEdfe as enther on or off)-

s-iii Iwens I3Uw mcbhnedtR.

16.

3.

5.

L

-

01

L

a.
30L

L

0.

1

chWW- sI I nlaI

- (M I W n in I att~ I at -~
30430667 5.0975 3.362833 on on

2 30.430667 -5.0975 3.362833 Qff Off
3 -16.22666 5.0975 3.362833 On on

4 -16.22666 -5.0975 3.362833 O0' Of

5 -66.26752 5.0975 3.362833 00 Off
6 -66.26752 -5.0975 3.362833 Off Off

I Iz|
Figure 76: Transient Excel spreadsheet

120

3.2.13.1

1 _~ 5

2 S_
3 Asa

4

5 FAsM
6 RIII21

7 -
a WSWe
9 -&
10 RM

12 pw

13 V61-

14 U525
is ae
16 15M

17 U526

18 |M2.1

is --

chmm



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program * * 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering U E Cambridge, Massachusetts 02139-4307

The first column of the spreadsheet simply numbers the heat load according to location of the branch

junction along the supply header. The first load corresponds to the first junction clockwise from the

forward-most portside riser junction. The load numbers increase clockwise along the supply header. The

second column gives the load name for the corresponding heat load. This is the same load name

specified in the Excel spreadsheet 'CSDT input' under the 'LoadData' tab. The maximum heat load is

listed in the third column. The heat loads before and after the event need to be specified in the fourth

and fifth column. The program populates the fourth column based on the load condition; however, if the

initial heat loads deviate from this, the user needs to adjust the values. The chiller number column and
chiller location columns are populated by the program. The chiller numbering is as follows: starting from

the forward-most chiller portside proceeding starboard then aft. The last two columns need to be filled

in by the user and correspond to the status of the chiller before and after the event.

3.2.13.2 Part B: Initial Pressures

The program takes the input from the spreadsheet and determines the pressure distribution along the

length qf the supply header. An example of the pressure distribution is shown in Figure 77 below.
4

Figure 77: Pressure distribution before event

121



Center for Ocean Engineering i omMassachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

The above plot is formed by superimposing the pressures associated with flow going clockwise and

counterclockwise with the source emanating from the chillers turned 'on' within the Excel spreadsheet.
The peaks correspond to the riser locations of the chillers that are operational (red circles). The troughs
correspond to the stagnation points (green circles). For the example above, there are six chillers with
chillers one, three, and five are on and chillers two, four, and six are off.

There are a few areas of concern with the plot above which could be a potential candidate for future

work. First, the peaks do not match up exactly with the risers. The index of the peak may be off by one

or two. This is not a major concern, though because the peak is not used within the program, just the

trough. More importantly, the beginning and end of the plot should line up with one another. It does

not. This is because only a single iteration is done within the program. To achieve continuity at the
boundaries of the plot, the process of determining the pressure distribution should be iterated. The
stagnation points are found at the troughs of the pressure distribution plot. With this new information,

the pressure distribution could then be recalculated. The plots again superimposed, and the stagnation

points re-determined. This will result in a better approximation of the pressure distribution with the

boundaries approaching one another. The process should then be repeated to the desired accuracy. This

was not done because the absolute value of pressure is not needed. What is of importance is the

pressure at a location relative to the pressure to other locations. Even with a second iteration of

determining the pressure distribution is done, it was assumed the location of the minimum pressures

will not change or will change very little.

3.2.13.3 Part C: Initial Velocities and Temperatures

The location of the stagnation points are used to determine the initial velocities as discussed in Section

3.2.6. It takes into account the loss coefficients due to friction, bends, valves, and entrance and exit

effects. The temperatures are also calculated within each branch and return header. The supply header

is assumed to be a constant temperature equal to the outlet temperature of the chiller. This may

contribute to error on the order of a fraction of a degree, but will approach the true value during the

transient temperature analysis.

3.2.13.4 Part D: Final Pressures

The same approach described in Section 3.2.13.2 is used to determine the pressure distribution and the

subsequent stagnation points after the event. Figure 78 shows an example of the pressure distribution

for an example in which chiller five is turned off, leaving only chillers one and three operational.

122



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Figure 78: Pressure distribution after event

3.2.13.5 Part E: Final Velocities

The final velocities are computed in a similar manner as in Section 3.2.13.3. The difference comes in the

calculation of the temperatures. A major assumption is the velocities change abruptly between the

instant before and after the event. This assumption is made due to the difference in the timescale of the
velocity transient and the temperature transient with the response of the temperature transient being

much greater than the response of the fluid velocity transient. Further work could be done to eliminate
this assumption and to incorporate the inertia of the fluid and the corresponding ramping up or down of
the fluid velocity at each location within the piping structure.

3.2.13.6 Part F: Final Temperatures (Transient Response)

The purpose of the preceding steps was to determine the initial conditions prior to the event and the
resulting change in velocity due to the reconfiguration of chiller operation. With this information, the

transient temperature response can be determined using a finite element approach.

123



Center for Ocean Engineering 1 1EMassachusetts Institute of Technology
Naval Construction & Engineering Program 111177-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

To perform the transient analysis, the cooling system was broken up into annular segments along the

length of the pipe as shown in Figure 79. The length of the annular segment within the branches was
determined by finding the minimum branch length and dividing it into five segments. If the segment
length is greater than one meter, then the annular length for the branch piping is set to one meter, else
the annular length calculated for the shortest branch is used for all branches. The supply header is then
broken up into segments between distinct branch junction locations. The minimum distance between
distinct branch junction locations is then found and the shortest length is segmented further into two
segments. If this length is greater than one meter, then the annular length for the header piping is set to
one meter, else the annular length calculated for the shortest header segment is used for all header
segments. This approach is used to minimize the number of segments within the piping structure while
maintaining some level of granularity. The user can not change the size of the annular lengths to prevent
unstable responses.

Q2 , r-dot
Gloss

- -4
I%

-. Pip ediameter

Qloss dL

Q1

Lagging
Figure 79: Annular element of cooling system piping

A time step is then determined. A very important criterion for the time step is it must be less than the

length of the annular segment divided by the maximum velocity of the fluid. If this is violated, then an

unsteady condition is possible, with temperatures dropping and increasing in greater amplitude after

each time step. Therefore, to ensure a stable temperature response, values for the minimum time step
is calculated for the branches and for the header (since they will have different maximum velocities and

may have different annular lengths). The minimum of the two time steps calculated is then used

rounded down to the nearest tenth of a second'-5. The user can change the time step but must be

careful to not select a time step greater than the minimum recommended value. Decreasing the time

is The program takes the floor of the quotient. If the result is zero, then the program computes the time to the
nearest hundredth of a second. if this is still too large, an error will be displayed.

124



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program I I 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

step will have a profound effect on the computing time needed to iterate through the code as well as

the amount of memory needed to store the large matrices.

The default length of time considered by the program is roughly 60 seconds. The user has the ability to

change this value, again considering the impact of increasing time will increase the computing time and

memory needed.

At this point, the main loop of the program determines the temperature at each node, incrementing

time by the specified time step. The temperature of the annular element was taken to be the average

temperature within the differential volume of fluid. To determine the change in temperature over a

small time increment dt, the following equation was used:

dT _1

dt 1p V (Q1 + Q2 + QOoss + Qgen)

Equation 77

where dV is the differential volume of the cylindrical element of fluid [M 3], Q1 is the rate of heat

transfer into the volume from fluid entering the element [W], Q2 is the rate of heat transfer out of the

volume from fluid exiting the element [W], oloss is the rate of heat transfer exiting the surface of the

fluid in contact with the pipe wall [W], and Qgen is the rate of heat transfer generated within the fluid

due to friction [W].

For the heat flux across the surface of the pipe, heat transfer is by conduction across the pipe and

lagging, but also by convection from the fluid to the pipe and from the lagging to the quiescent air

external to the cooling system. The heat transfer equation for Qiossxt for element x at time t follows:

$jossx,t = Ux,tAx(To - Tx,t)
Equation 78

where T. is the quiescent air temperature [*C], Tx,t is the average fluid temperature for the xth element

at time t [*C], Ax is the surface area of the inner pipe wall for the xth element, and Ux,t is the overall

heat transfer coefficient across the fluid to the quiescent air for the xth element at time t [W/m 2-K]. The

quiescent air temperature was taken to be 20*C at all locations. Segmenting the ship into blocks and

determining the surrounding air temperature can also be an area of future work. The overall heat

transfer coefficient can be computed as follows16:

I rln( + )ri rx

xt , kCu-Ni klagging 3hairt

Equation 79

16 The overall heat transfer coefficient is computed with respect to the inner pipe surface wall, and thus, the radius
of the pipe is used as the reference radius. Accordingly, the surface area is that of the inner pipe surface wall.

125



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program I 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

where r,, rzx, r3, are the respective radii of the fluid, the copper-nickel alloy pipe, and the lagging for
the xth element [m}, kCu-Ni is the thermal conductivity of the copper-nickel alloy pipe" [W/m-
K], kiagging is the thermal conductivity of the lagging 8 [W/m-K], hfluiad, is the convective heat transfer
coefficient of the fluid within the pipe [W/m'-K] for the xth element at time t, and hairxt is the
convective heat transfer coefficient of the air external to the cooling system [W/m'-K] for the xth
element at time t.

The convective heat transfer of the fluid within the pipe was determined using the equations below,
depending on the flow regime. For laminar flow:

hluit := 3 .6 6 2rl
Equation 80 (derived from Equation 11)

which is independent of time. For turbulent flow:

V0-8 k iuiapcc)uid
hrudt 0.023 V f

2r 0f vi~ita
Equation 81 (derived from Equation 12)

which is valid for Pr > 0.5 and Re > 10,000. If the Reynolds number falls within the transition range,
then Gnielsinki's formula was used to determine the convective heat transfer coefficient.

The convective heat transfer of the quiescent air was computed using the equations for natural
convection of horizontal cylinders:

hi D kair
hair = D

2Dx
Equation 82 (incropera & DeWitt, 2002)

where, for a horizontal cylinder:

2

01.387Ra1/6
ND= 0.60 + 0 7 t }

[ 0.559 
9/16 a2

Equation 83 (incropera & DeWitt, 2002)

where RaDxt is the Rayleigh number for the xth element at time t. The Rayleigh number can be
computed using the equation:

1 The default value used is for Cu-Ni 70-30 alloy with a value of 50 W/m-K.
1 The default value used for the insulation was 0.035 W/m-K.

126

.... ..... ... ..



Center for Ocean Engineering * * Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

g#(Ts - To)2r 3
Rax,ta -t

Equation 84 (Incropera & DeWitt, 2002)

where g is gravity, f# is the fluid coefficient of thermal volumetric expansion, Ts,, is the surface

temperature of the lagging for the xth element at time t (*C], and a is the thermal diffusivity [m2/s].

The fluid coefficient of thermal volumetric expansion for air can be found using the equation:

f = air
Equation 85 (Incropera & DeWitt, 2002)

where Tair is the air temperature, taken to be the average between the surface temperature and the

quiescent air temperature [*K].

The majority of the cooling system involves horizontal cylinders, so for preliminary analyses, this was the

only equation used for the external environment.

The rate of heat generation within'the fluid is based solely on friction of the fluid with the piping.
Friction causes the conversion of mechanical energy to internal energy of the fluid. This conversion of

energy can be accounted through the pressure drop that takes place along some length of pipe. The

heat transfer equation for Qgenxt for element x at time t follows:

KXVz.t 5*K (pcdVxt
Qgen," - 2 -778.169 ft - lb ) 9*F dt

BTU
Equation 86 (incropera & DeWitt, 2002)

where Kxt is the loss coefficient along the length of the annular segment for element x at time t

(dimensionless), V2 is the fluid velocity for element x at time t, 778.169 ft-lbis a conversion factor, c,(iesoks) Xt BTU

is the specific heat capacity with units of T* within the first set of brackets and units of - within
lbf -- F kg-OK

the third set of brackets9, dVx,t is the differential volume of the fluid20 within the annular element for

element x at time t, and dt is the incremental time step set by the user. Of note, the loss coefficient is

the sum of the loss coefficient due to friction of the fluid along the pipe, the loss coefficient due to

bends within the pipe, the loss coefficient due to various valves, and the loss coefficient due to entrance

and exit effects of piping. The loss coefficient due to friction along the length of the pipe is a continuous

variable and is a function of the length of the pipe. However, the other loss coefficients are treated as

discrete variables. Because of this, these loss coefficients are lumped into a single element. For example,
a particular gate valve may extend into 3 elements (if the analysis is done with sufficient granularity).
The loss coefficient associated with the gate valve would then be attributed to only one of these

19 A consequence of working in both English units and metric units
20 Not to be confused with the derivative of velocity

127



Center for Ocean Engineering * f Massachusetts Institute of Technology
Naval Construction & Engineering Program 1 1I77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

elements, say, the second of the three elements. This was initially considered; however, after careful

consideration, the contribution of oenxtdue to friction is negligible for the speeds considered and only

comes into play for fluid velocities approaching the speed of sound.

The remaining two variables, 0i and Q2, is greatly dependent on the fluid velocity. The two variables can
be thought of as accounting for the amount of heat transferred by the slug of water preceding the
annular segment from the previous time step which is occupying the annular segment in the current
time step and the amount of heat transferred by the slug of water which occupied the annular segment
in the preceding time step which has since moved to the following segment in the current time step.
This is the reason that the time step is so critical. The slug of water being transferred between time
steps must be equal to or less than the actual volume of water occupying the annular segment, else
instabilities may result.

The temperature at each node is then calculated by taking the temperature from the preceding time

step at the same location and adding the corresponding differential temperature change over the time
step in question. This is shown in the equation:

( dT

Equation 87

where Txt is the temperature at location x and time t, Tx,t-1 is the temperature at location x and time

t - 1, Xt is the differential temperature at location x and time t over the time step, and dtx,t is the

time step.

3.2.13.7 Part G: Plots

The last portion of the transient analysis plots the temperature response with respect to time and/or
location. The first option provided by the program is the temperature response as a function of time.
The program prompts the user to specify the general location under consideration: supply header,
branch, or return header.

If the supply header (or return header) is selected, the program provides the user with pertinent indices
including the indices corresponding to the riser locations, the indices corresponding to the stagnation
points and the indices for all branch junctions. The program then prompts the user for the supply header
(or return header) index which the user wishes to analyze. The output is a plot of temperature starting
at the steady-state temperature at that location computed as described in Section 3.2.13.3 and the
corresponding transient temperature response over the time interval specified.

If the branch is selected, the program provides the user with the number of branches in the chilled
water system. The user must specify the branch which is to be analyzed. The program then displays the
number of indices within the specified branch along with the index of the heat exchanger in that branch.

128



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering I'ir Massachusetts Institute of Technology

77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

The user is then prompted for the branch index which is to be analyzed. The output is similar to that

described above. An example of the temperature response is shown in Figure 80.

Figure dU: Example ot temperature as a Tunction OT time plot

The user can look at other locations until they are satisfied and exits the loop. At this point, the program

asks the user if they want a plot of the temperature distribution over a section of pipe at a specified

time. The user selects the general location to be analyzed as before choosing between the supply

header, the return header or a branch. If the supply header or return header is selected, the user is only

prompted for the time at which the temperature distribution is to be plotted. If the user specifies a

branch, the user must enter the branch number and the time. The program outputs the temperature

distribution at the specified time. An example of the temperature distribution at a specific time is shown

in Figure 81 below.

129



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'IiT Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Figure 81: Example of temperature as a function of distance plot

3.2.14 Validation of the Model

To validate the model, the time dependent output of the model was compared with a simple example
that could be solved analytically. The example focused on verifying how the CSDT models conductive
heat transfer from the fluid through the pipe, through the lagging and to the surrounding quiescent air.

The example used to validate the model considered the outer surface temperature of the supply header
pipe. The pipe considered was a nickel-copper 70-30 alloy with a density of 8950 kg/m 3, a thermal
conductivity of 50 W/m 2-K and a specific heat capacity of 376.812 ./kg-K. The pipe had a diameter of
59.055 mm and a thickness of 2.1082 mm. The lagging had a thickness of 1 cm and a thermal
conductivity of 0.035 W/m 2-K. The initial temperature of the pipe, fluid, lagging and quiescent air was
20 0C. At time t=0- seconds, the fluid had a velocity of 1.5288 m/s, and the fluid temperature was 200C.
Friction was ignored along with the heat generated due to friction. At time t=0+ seconds, the fluid had
the same velocity, but the fluid temperature was 6.6*C, representing the fluid exiting the chiller. The
step response of the fluid temperature can be seen in Figure 82.

130



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

i'nr Massachusetts institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Figure 82: Fluid temperature versus time

The example was first modeled using the lumped capacitance method.

the outer pipe wall temperature was:

T = T, + e-BiFo(T - TOO

The equation used to determine

Equation 88 (Incropera & DeWitt, 2002)

where Tco is the temperature of the bulk fluid [*C], in this case it is 6.60C, Tg is the original temperature

of the pipe wall [*C], in this case it is 20"C, F is the Fourier number, and Bi is the Biot number.

The Fourier number is dimensionless time that corresponds to the ratio of the heat conduction rate to

the rate of thermal energy storage in a solid. The Fourier number can be found using the equation:

at
Fo =_ --

Equation 89 (Incropera & DeWitt, 2002)

where a is the thermal diffusivity [m2/s), t is time [s], and Lc is the characteristic length.

The thermal diffusivity can be found using the equation:

k
a-

PCp
Equation 90 (Incropera & DeWitt, 2002)

For the copper-nickel alloy pipe, the thermal diffusivity was found to be 1.4826x10 5 m2/S.

The characteristic length can be found using the equation:

V

Equation 91 (Incropera & DeWitt, 2002)

131



Center for Ocean Engineering Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

where V is the pipe volume [m 3] over some arbitrary length, and As is the surface area of the inner wall

[m 21 over the same arbitrary length. For the supply header pipe, the characteristic length was found to
be 1.0729 mm, which is approximately half of the pipe thickness.

The Biot number corresponds to the ratio of the internal thermal resistance of a solid to the boundary
layer thermal resistance. The Biot number can be found using the equation:

Bi = hLc

Equation 92 (Incropera & DeWitt, 2002)

To calculate the Biot number, the convective heat transfer coefficient was needed. This depends on the
flow regime of the fluid. With the diameter and fluid velocity, the Reynolds number was easily
calculated to be 62,265. This corresponds to fully turbulent flow and the equation:

h = 0.023 o .2, . 4

Equation 12 (repeated)

was valid in determining the convective heat transfer coefficient since Re > 10,000 and Pr > 0.5 (Pr
for water at 6.6*C is about 10.7). The Biot number was determined to be 0.1615. This value is greater
than what is recommended for the lumped capacitance model to be used (Bi < 0.1), but was computed
due to its ease with the knowledge that the results of the lumped capacitance model would have some
error associated with it.

To get a better estimate of the outer pipe wall surface temperature, the pipe wall was modeled as a
semi-infinite wall. This is reasonable since the thickness of the wall is much less than the diameter of the
pipe. With lagging on one side of the pipe, a wall of thickness L with an adiabatic condition on one
surface and some surface condition on the other surface corresponds to a wall of thickness 2L with

symmetric surface conditions on both walls due to the boundary condition at x* = 0 is similarly =0.Tx
This is illustrated in Figure 83 below.

132



Center for Ocean Engineering
Naval Construction & Engineering Progran
Department of Mechanical Engineering

Massachusetts institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

4%0
t * . t

0

T,h T, h

-L L

=x/ x*=x/L

Figure 83: Equivalence of plane wall with symmetric convection (left) and adiabatic surface (right)

To simplify the analysis, radiation was considered negligible, and thus omitted from the analysis. With

these assumptions, the temperature within the semi-infinite solid wall could be solved analytically. An

exact analytical solution can be obtained through the infinite series:

0* Cne-Fo COS((nX*)

n=1

where x* is the dimensionless form of the cylinder radius with

x * =

Equation 93 (Incropera & DeWitt, 2002)

Equation 94 (incropera & DeWitt, 2002)

and the coefficient Cn is given by

4sin((n)
= 2(n + sin(2(a)

Equation 95 (Incropera & DeWitt, 2002)

and the discrete values of (n are positive roots of the transcendental equation

Equation 96 (Incropera & DeWitt, 2002)

An approximate solution can be obtained by including only the first term of the infinite series. This

reduces the above equation to:

133

(ntan((n) = Bi



Center for Ocean Engineering E 111 Massachusetts Institute of Technology
Naval Construction & Engineering Progran 111 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

0* = Ce-Focos((x*)
Equation 97 (Incropera & DeWitt, 2002)

Since the mid-plane temperature of a semi- infinite wall with symmetric surface conditions corresponds
to the outer wall of a semi-infinite wall with an adiabatic surface condition, the equation can be further
reduced since the mid-plane corresponds to x* 0.

0* = C1eFo
Equation 98 (incropera & DeWitt, 2002)

For a Blot number of 0.1650, the coefficients C1 and {1 are 1.02595 and 0.3953, respectively. The first
four roots of the transcendental equation {ntan({n) = Bi, for Bi = 0.1650 is given in Table 14 below
along with the corresponding values for Cn.

01= 0.1650

1 0.3953 1.02595
2 3.1933 1.00455
3 6.3093 1.00452
4 9.4423 1.00451

Table 14: First four roots and associated coefficients for Bi=0.1650

The CSDT model considered the rate of heat transferred from the cooler fluid and into the pipe. The
model also considered the rate of heat transferred from the warmer quiescent air external to the
lagging, through the lagging and into the pipe. The model actually computes the average temperature
within the pipe and not the temperature external to the pipe; however, since the temperature gradient
across the pipe wall is small, the average pipe temperature gives a good approximation to the external
surface temperature of the pipe.

A plot of the pipe outer wall temperatures for the various analytical methods described above along
with the predicted pipe outer wall temperature versus time is shown in Figure 84 below. As can be seen
from the figure, the CSDT model is in close agreement with the analytical models. For small values of
time, there is some disagreement with the series solution model. This is due to the error associated with
the approximated series solution for values of F < 0.2 which corresponds to t < 0.06 sec. To get a
highly refined curve, the time step used within the model was 0.01 sec.

134



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program * 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

_- -pdeprhc method
-- One4.rm apx to seros soluaon

Four-erm apprat to seos soubton
_____ Bens modal

Figure 84: Surface temperature of outer pipe wall as a function of time

In addition to the example discussed above, the output of the transient analysis code was compared to
the output of the steady-state code. After enough time, the temperature transient passes and a state of
thermal equilibrium is reached. These temperature values were calculated for several elements of a
simple cooling system network. The steady-state temperatures were calculated at the same locations of
the cooling system network. The cooling system modeled comprised of four heat loads all of equal value
(3 kW). The four heat loads were connected in parallel, with a single supply header and a single return
header. The cooling system had a single chiller, pump and expansion tank.

There is much agreement between the two methods along the length of the piping system with
differences less than 0.01*C. This gives greater confidence in the validity of the transient code.

3.3 Design Guidelines

In designing the cooling system, there are many criteria that must be satisfied. These criteria are in place
to ensure adequate redundancy and survivability of the cooling system. These criteria focus on the main
piping system separation, the isolation of the cooling systems vital and non-vital loads, and the
additional capacity of the chillers to supply vital loads with cooling when the ship has sustained battle
damage.

Depending on the level of redundancy required, the main piping system may consist of a single main or
a double main. Single mains comprise of a single supply and return header which runs longitudinally,
centerline of the ship. For the double main system, separation between the two mains is essential for

135



Center for Ocean Engineering * f Massachusetts Institute of Technology
Naval Construction & Engineering Program 111177-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

survivability. Athwartship separation of the double main piping system is achieved by placing the mains

close to the most outboard structure. The port and starboard mains are also separated vertically.

The risers are vertical sections of pipe that connect the chiller to the main piping. A segregation valve
should be located on either side of the main where the riser connects to the main to allow restriction of
flow either clockwise or counterclockwise from the junction. In addition, the riser should have a
segregation valve right before the connection to the main to allow for total isolation of flow from that
riser.

The design of the cooling system should also satisfy some damage loss criteria. The damage criteria may
be damage along some length of the ship as a percent of the ship's length, or it may be a specified
number of compartments (e.g., 2 compartment flooding). Considering a loss of all chillers located within
the worst case damage scenario should not degrade the ability of the entire cooling system in supplying
cooling to all vital loads.

136



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering I Cambridge, Massachusetts 02139-4307

4.0 Chapter 4: Simulation & Results

A simulation of a chilled water system was conducted utilizing the CSDT to model the chilled water

system and the auxiliary seawater system. The simulation was conducted with all analyses performed.

The simulation included the same heat loads used within CSDT v1.0 (Fiedel, 2011). These heat loads are

summarized in Appendix A. The simulation included all default values provided by the program with the

exception of the number of zonal boundaries, which was set to three for more efficient sizing of the A/C

units as well as the addition of auxiliary seawater piping to the shaft bearing and auxiliary seawater

piping to three generic SW/XX heat exchangers. The breakdown of heat loads by compartment and by

zone is shown in Figure 85. A 3-D representation is shown in Figure 86 below.

Fpe 85: Breakdown of heat load by compartment and by zone for simulated design

137



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'IIF Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Figure 86: 3-D representation of chilled water system and auxiliary seawater system for simulated design

The program provides a few reports throughout the design of the chilled water system. The first two of
these reports pertain to the sizing of the A/C units. For the simulated design, the reports are:

Report 1: Minimum Chiller Capacity

Chiller 1 Chiller Capacity(tons):
Chiller 2 Chiller Capacity(tons):
Chiller 3
Chiller 4
Chiller 5
Chiller 6

Chiller Capacity(tons):
Chiller Capacity(tons):
Chiller Capacity(tons):
Chiller Capacity(tons):

Total Chiller Capacity(tons):

89.1544
134.8273
95.7981
18.4245
25.5806

Chiller Capacity(kW):
Chiller Capacity(kW):
Chiller Capacity(kW):
Chiller Capacity(kW):
Chiller Capacity(kW):

39.2951 Chiller Capacity(kW):

403.0800 Chiller Capacity(kW): 1417.5730

138

313.5430
474.1678
336.9077

64.7961
89.9633

138.1952
------------------------------------------------------------------------------------



Center for Ocean Engineering * * Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering U U Cambridge, Massachusetts 02139-4307

Report 2: Default Chillers Selected

Chiller 1 Chiller Capacity(tons): 147.8595 Chiller Capacity(kW): 520.0000
Chiller 2 Chiller Capacity(tons): 147.8595 Chiller Capacity(kW): 520.0000
Chiller 3 Chiller Capacity(tons): 147.8595 Chiller Capacity(kW): 520.0000
Chiller 4 Chiller Capacity(tons): 147.8595 Chiller Capacity(kW): 520.0000
Chiller 5 Chiller Capacity(tons): 147.8595 Chiller Capacity(kW): 520.0000
Chiller 6 Chiller Capacity(tons): 147.8595 Chiller Capacity(kW): 520.0000

Total Chiller Capacity(tons): 887.1568 Chiller Capacity(kW): 3120.0000
Capacity Installed/Minimum Capacity Required: 2.20
Minimum number of chillers needed to meet maximum heat load demands: 3

As can be seen by report 1, the largest capacity chiller is chiller 2. This makes sense when looking at the

3-D model of the chilled water system. Most of the heat loads are located in the forward-most zone. By

default, the program allocates the starboard side chiller to support any loads which are centerline. Thus,
with chiller 2 being the forward-most chiller on the starboard side, it is expected that this chiller will

need to have the highest capacity.

Report 2 shows what the program sets each chiller's capacity to. They are all equal and are the smallest

sized chillers within the chiller database which meets the requirements specified in Section 3.2.9. Report

2 also shows that the installed chiller capacity is 220% greater than what is needed, but this provides

redundancy (at a cost and weight penalty). Only three of the six chillers are needed to meet the cooling

needs of the ship at any given time.

Report 3 provides the sizing of the expansion tanks. For the simulated design, report 3 is:

Report 3: Expansion Tank Sizing

Expansion Tank Height(m): 1.980539
Expansion Tank Radius(m): 0.990270
Expansion Tank Thickness(mm): 4.000000

4.1 Static Analysis

The first analysis performed was the static temperature analysis. All fluid flow and heat transfer is

assumed to be in steady-state. When performing the static analysis, all four operating conditions should
be considered along with all possible combinations of chillers in operation to ensure flow and cooling
requirements are met under all conditions. An example of the static temperature output for the design

condition and for a single chiller configuration is provided below.

139



Center for Ocean Engineering E I Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

Load: 1 Q(W): 562.7200 Diameter(m): 0.01532 Velocity(m/sec): 1.1977 Mass flow rate(kg/s): 0.2207 Thot(C): 7.2737 Telec(C): 7.9882
Load: 2 Q(W): 14490.0400 Diameter(m): 0.03975 Velocity(m/sec): 0.5093 Mass flow rate(kg/s): 0.1522 Thot(C): 12.6038 Telec(C): 10.4922
Load: 3 Q(W): 3798.3600 Diameter(m): 0.01951 Velocity(m/sec): 0.6579 Mass flow rate(kg/s): 0.1212 Thot(C):. 7.7715 Telec(C): 8.2372
Load: 4 Q(W): 1336.4600 Diameter(m): 0.01532 Velocity(m/sec): 1.4005 Mass flow rate(kg/s): 1.7381 Thot(C): 8.9779 Telec(C): 9.7203
Load: 5 Q(W): 562.7200 Diameter(m): 0.01532 Velocity(m/sec): 0.6509 Mass flow rate(kg/s): 0.4909 Thot(C): 12.0705 Telec(C): 11.9295
Load: 6 Q(W): 1793.6700 Diameter(m): 0.01532 Velocity(m/sec): 1.3833 Mass flow rate(kg/s): 0.2549 Thot(C): 7.5206 Telec(C): 8.7480
Load: 7 Q(W): 16881.6000 Diameter(m): 0.03975 Velocity(m/sec): 1.2070 Mass flow rate(kg/s): 0.9103 Thot(C): 9.2790 Telec(C): 10.2692
Load: 8 Q(W): 17690.8617 Diameter(m): 0.03975 Velocity(m/sec): 1.2435 Mass flow rate(kg/s): 3.2040 Thot(C): 9.2213 Telec(C): 8.7854
Load: 9 Q(W): 11149.2417 Diameter(m): 0.03099 Velocity(m/sec): 1.0825 Mass flow rate(kg/s): 2.7893 Thot(C): 11.4490 Telec(C): 10.5077
Load: 10 Q(W): 1899.1800 Diameter(m): 0.01532 Velocity(m/sec): 0.6657 Mass flow rate(kg/s): 0.1227 Thot(C): 9.9416 Telec(C): 11.3539
Load: 11 Q(W): 914.4200 Diameter(m): 0.01532 Velocity(m/sec): 1.1023 Mass flow rate(kg/s): 0.5223 Thot(C): 8.6697 Telec(C): 10.8986
Load: 12 Q(W): 949.5900 Diameter(m): 0.01532 Velocity(m/sec): 1.4798 Mass flow rate(kg/s): 0.2726 Thot(C): 7.8026 Telec(C): 9.5877
Load: 13 Q(W): 9993.5555 Diameter(m): 0.03099 Velocity(m/sec): 0.5852 Mass flow rate(kg/s): 0.1078 Thot(C): 10.3148 Telec(C): 11.4785
Load: 14 Q(W): 1336.4600 Diameter(m): 0.01532 Velocity(m/sec): 0.9372 Mass flow rate(kg/s): 0.7068 Thot(C): 9.4018 Telec(C): 9.8892
Load: 15 Q(W): 34396.6117 Diameter(m): 0.05728 Velocity(m/sec): 0.5559 Mass flow rate(kg/s): 0.1024 Thot(C): 9.6898 Telec(C): 10.5305
Load: 16 Q(W): 9706.9200 Diameter(m): 0.03099 Velocity(m/sec): 1.4551 Mass flow rate(kg/s): 5.5393 Thot(C): 9.2215 Telec(C): 9.6364
Load: 17 Q(W): 56060.9800 Diameter(m): 0.05728 Velocity(m/sec): 1.4460 Mass flow rate(kg/s): 0.2664 Thot(C): 6.7926 Telec(C): 6.9841
Load: 18 Q(W): 6506.4500 Diameter(m): 0.02456 Velocity(m/sec): 1.2766 Mass flow rate(kg/s): 0.2352 Thot(C): 7.7937 Telec(C): 9.2436
Load: 19 Q(W): 1688.1600 Diameter(m): 0.01532 Velocity(m/sec): 0.5144 Mass flow rate(kg/s): 0.0948 Thot(C): 7.0202 Telec(C): 7.0979
Load: 20 Q(W): 3851.8184 Diameter(m): 0.01951 Velocity(m/sec): 0.9333 Mass flow rate(kg/s): 0.7039 Thot(C): 9.8766 Telec(C): 10.4425
Load: 21 Q(W): 4396.2500 Diameter(m): 0.02456 Velocity(m/sec): 0.9050 Mass flow rate(kg/s): 0.1667 Thot(C): 7.5704 Telec(C): 8.2636
Load: 22 Q(W): 932.3567 Diameter(m): 0.01532 Velocity(m/sec): 0.6661 Mass flow rate(kg/s): 0.3156 Thot(C): 10.2196 Telec(C): 11.9047
Load: 23 Q(W): 1301.2900 Diameter(m): 0.01532 Velocity(m/sec): 1.2206 Mass flow rate(kg/s): 0.3648 Thot(C): 8.1238 Telec(C): 11.4333
Load: 24 Q(W): 9144.5517 Diameter(m): 0.03099 Velocity(m/sec): 0.5808 Mass flow rate(kg/s): 0.1070 Thot(C): 10.5771 Telec(C): 11.7989
Load: 25 Q(W): 1652.9900 Diameter(m): 0.01532 Velocity(m/sec): 1.0160 Mass flow rate(kg/s): 0.7663 Thot(C): 9.0368 Telec(C): 10.3695
Load: 26 Q(W): 3165.3000 Diameter(m): 0.01951 Velocity(m/sec): 0.8428 Mass flow rate(kg/s): 0.6356 Thot(C): 9.4052 Telec(C): 10.4463
Load: 27 Q(W): 8124.2700 Diameter(m): 0.03099 Velocity(m/sec): 0.9389 Mass flow rate(kg/s): 0.1730 Thot(C): 8.1666 Telec(C): 9.3908
Load: 28 Q(W): 6524.7384 Diameter(m): 0.02456 Velocity(m/sec): 1.5714 Mass flow rate(kg/s): 0.2895 Thot(C): 7.9676 Telec(C): 10.1828
Load: 29 Q(W): 1301.2900 Diameter(m): 0.01532 Velocity(m/sec): 0.9491 Mass flow rate(kg/s): 0.4497 Thot(C): 8.7886 Telec(C): 10.6803
Load: 30 Q(W): 2110.2000 Diameter(m): 0.01532 Velocity(m/sec): 0.6374 Mass flow rate(kg/s): 0.1174 Thot(C): 8.5911 Telec(C): 9.3476
Load: 31 Q(W): 59474.5802 Diameter(m): 0.06962 Velocity(m/sec): 0.7490 Mass flow rate(kg/s): 0.3549 Thot(C): 9.9208 Telec(C): 9.8826
Load: 32 Q(W): 1336.4600 Diameter(m): 0.01532 Velocity(m/sec): 1.8033 Mass flow rate(kg/s): 4.6465 Thot(C): 8.3689 Telec(C): 8.3560
Load: 33 Q(W): 140.6800 Diameter(m): 0.01532 Velocity(m/sec): 0.6602 Mass flow rate(kg/s): 0.1216 Thot(C): 8.1805 Telec(C): 8.8232
Load: 34 Q(W): 879.2500 Diameter(m): 0.01532 Velocity(m/sec): 1.5795 Mass flow rate(kg/s): 1.9602 Thot(C): 8.6222 Telec(C): 9.4726
Load: 35 Q(W): 1113.8339 Diameter(m): 0.01532 Velocity(m/sec): 0.5395 Mass flow rate(kg/s): 0.0994 Thot(C): 8.7718 Telec(C): 9.3095
Load: 36 Q(W): 14771.4000 Diameter(m): 0.03975 Velocity(m/sec): 1.0280 Mass flow rate(kg/s): 0.1894 Thot(C): 6.8438 Telec(C): 7.0101
Load: 37 Q(W): 140.6800 Diameter(m): 0.01532 Velocity(m/sec): 0.6602 Mass flow rate(kg/s): 0.1216 Thot(C): 9.2125 Telec(C): 10.2939
Load: 38 Q(W): 13681.1300 Diameter(m): 0.03975 Velocity(m/sec): 1.9355 Mass flow rate(kg/s): 0.3566 Thot(C): 8.0287 Telec(C): 11.0402
Load: 39 Q(W): 9495.9000 Diameter(m): 0.03099 Velocity(m/sec): 1.6082 Mass flow rate(kg/s): 0.2963 Thot(C): 7.7684 Telec(C): 9.6984
Load: 40 Q(W): 1055.1000 Diameter(m): 0.01532 Velocity(m/sec): 0.9453 Mass flow rate(kg/s): 1.1732 Thot(C): 11.2034 Telec(C): 10.2587
Load: 41 Q(W): 633.0600 Diameter(m): 0.01532 Velocity(m/sec): 0.6619 Mass flow rate(kg/s): 0.1220 Thot(C): 7.7649 Telec(C): 8.2337
Load: 42 Q(W): 8370.4600 Diameter(m): 0.03099 Velocity(m/sec): 1.3501 Mass flow rate(kg/s): 1.0182 Thot(C): 8.9353 Telec(C): 10.0514
Load: 43 Q(W): 4712.7800 Diameter(m): 0.02456 Velocity(m/sec): 0.6619 Mass flow rate(kg/s): 0.1220 Thot(C): 8.6569 Telec(C): 9.5083
Load: 44 Q(W): 1582.6500 Diameter(m): 0.01532 Velocity(m/sec): 1.0436 Mass flow rate(kg/s): 0.7871 Thot(C): 9.3888 Telec(C): 10.1012
Load: 45 Q(W): 2233.6467 Diameter(m): 0.01951 Velocity(m/sec): 0.4437 Mass flow rate(kg/s): 0.0817 Thot(C): 8.3048 Telec(C): 8.5034
Load: 46 Q(W): 6506.4500 Diameter(m): 0.02456 Velocity(m/sec): 0.4303 Mass flow rate(kg/s): 0.0793 Thot(C): 10.4671 Telec(C): 10.8612
Load: 47 Q(W): 1758.5000 Diameter(m): 0.01532 Velocity(m/sec): 0.6043 Mass flow rate(kg/s): 0.1806 Thot(C): 11.4401 Telec(C): 11.7186
Load: 48 Q(W): 738.5700 Diameter(m): 0.01532 Velocity(m/sec): 1.6135 Mass flow rate(kg/s): 0.7645 Thot(C): 8.2651 Telec(C): 9.1491
Load: 49 Q(W): 7631.8900 Diameter(m): 0.03099 Velocity(m/sec): 0.6593 Mass flow rate(kg/s): 0.1970 Thot(C): 10.3194 Telec(C): 10.7171
Load: 50 Q(W): 4572.1000 Diameter(m): 0.02456 Velocity(m/sec): 0.7200 Mass flow rate(kg/s): 0.1327 Thot(C): 9.0640 Telec(C): 10.2859
Load: 51 Q(W): 7315.3600 Diameter(m): 0.03099 Velocity(m/sec): 1.1834 Mass flow rate(kg/s): 4.5051 Thot(C): 9.8934 Telec(C): 10.0986
Load: 52 Q(W): 2550.5284 Diameter(m): 0.01951 Velocity(m/sec): 0.5728 Mass flow rate(kg/s): 0.1055 Thot(C): 9.0456 Telec(C): 9.7664
Load: 53 Q(W): 1090.2700 Diameter(m): 0.01532 Velocity(m/sec): 0.9028 Mass flow rate(kg/s): 2.3262 Thot(C): 10.8290 Telec(C): 9.8605
Load: 54 Q(W): 7209.8500 Diameter(m): 0.03099 Velocity(m/sec): 0.5454 Mass flow rate(kg/s): 0.1005 Thot(C): 10.3312 Telec(C): 11.2972
Load: 55 Q(W): 1582.6500 Diameter(m): 0.01532 Velocity(m/sec): 0.7494 Mass flow rate(kg/s): 0.5652 Thot(C): 11.0052 Telec(C): 11.2278
Load: 56 Q(W): 8688.0451 Diameter(m): 0.03099 Velocity(m/sec): 0.9748 Mass flow rate(kg/s): 1.2097 Thot(C): 9.3302 Telec(C): 9.5643

140



Center for Ocean Engineering - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

Load: 57 Q(W): 4009.7317 Diameter(m): 0.02456 Velocity(m/sec): 0.7391 Mass flow rate(kg/s): 0.3502 Thot(C): 10.2752 Telec(C): 10.2236
Load: 58 Q(W): 20679.9600 Diameter(m): 0.03975 Velocity(m/sec): 0.6328 Mass flow rate(kg/s): 0.2998 Thot(C): 11.9975 Telec(C): 11.5491
Load: 59 (W): 949.5900 Diameter(m): 0.01532 Velocity(m/sec): 0.7829 Mass flow rate(kg/s): 0.9716 Thot(C): 11.6194 Telec(C): 10.3781
Load: 60 Q(W): 1055.1000 Diameter(m): 0.01532 Velocity(m/sec): 0.7428 Mass flow rate(kg/s): 0.5602 Thot(C): 10.0279 Telec(C): 10.1935
Load: 61 Q(W): 4853.4600 Diameter(m): 0.02456 Velocity(m/sec): 1.5035 Mass flow rate(kg/s): 0.2770 Thot(C): 6.7879 Telec(C): 6.9824
Load: 62 Q(W): 10309.3821 Diameter(m): 0.03099 Velocity(m/sec): 1.5035 Mass flow rate(kg/s): 0.2770 Thot(C): 6.8785 Telec(C): 7.2188
Load: 63 Q(W): 33235.6500 Diameter(m): 0.05728 Velocity(m/sec): 0.7198 Mass flow rate(kg/s): 0.1326 Thot(C): 9.1911 Telec(C): 10.4781
Load: 64 Q(W): 4150.0600 Diameter(m): 0.02456 Velocity(m/sec): 1.0580 Mass flow rate(kg/s): 2.7260 Thot(C): 10.6577 Telec(C): 9.9376
Load: 65 Q(W): 773.7400 Diameter(m): 0.01532 Velocity(m/sec): 0.9023 Mass flow rate(kg/s): 0.4275 Thot(C): 9.6225 Telec(C): 8.2558
Load: 66 Q(W): 1230.9500 Diameter(m): 0.01532 Velocity(m/sec): 0.9160 Mass flow rate(kg/s): 0.1688 Thot(C): 7.6588 Telec(C): 8.4374
Load: 67 Q(W): 16107.8600 Diameter(m): 0.03975 Velocity(m/sec): 1.3061 Mass flow rate(kg/s): 0.3904 Thot(C): 8.3391 Telec(C): 9.5223
Load: 68 Q(W): 8440.8000 Diameter(m): 0.03099 Velocity(m/sec): 0.5185 Mass flow rate(kg/s): 0.0955 Thot(C): 11.5725 Telec(C): 10.5705
Load: 69 Q(W): 879.2500 Diameter(m): 0.01532 Velocity(m/sec): 0.9211 Mass flow rate(kg/s): 0.4364 Thot(C): 9.8500 Telec(C): 10.1865
Load: 70 Q(W): 10093.7900 Diameter(m): 0.03099 Velocity(m/sec): 1.4415 Mass flow rate(kg/s): 3.7142 Thot(C): 10.3011 Telec(C): 10.0568
Load: 71 Q(W): 140.6800 Diameter(m): 0.01532 Velocity(m/sec): 0.8909 Mass flow rate(kg/s): 0.1641 Thot(C): 8.2475 Telec(C): 9.4336
Load: 72 Q(W): 10.0000 Diameter(m): 0.01532 Velocity(m/sec): 0.5045 Mass flow rate(kg/s): 0.0929 Thot(C): 9.0080 Telec(C): 9.4940
Load: 73 Q(W): 1301.2900 Diameter(m): 0.01532 Velocity(m/sec): 0.4883 Mass flow rate(kg/s): 0.0900 Thot(C): 9.6434 Telec(C): 10.1908
Load: 74 Q(W): 9179.3700 Diameter(m): 0.03099 Velocity(m/sec): 0.7965 Mass flow rate(kg/s): 0.3774 Thot(C): 10.8575 Telec(C): 10.9619
Load: 75 Q(W): 2040.9151 Diameter(m): 0.01532 Velocity(m/sec): 0.4323 Mass flow rate(kg/s): 0.0797 Thot(C): 10.7643 Telec(C): 11.1980
Load: 76 Q(W): 2426.7300 Diameter(m): 0.01951 Velocity(m/sec): 1.6158 Mass flow rate(kg/s): 1.2186 Thot(C): 8.2464 Telec(C): 9.3154
Load: 77 Q(W): 1371.6300 Diameter(m): 0.01532 Velocity(m/sec): 1.1415 Mass flow rate(kg/s): 1.4167 Thot(C): 8.9185 Telec(C): 9.3351
Load: 78 Q(W): 8194.6100 Diameter(m): 0.03099 Velocity(m/sec): 0.9386 Mass flow rate(kg/s): 0.4447 Thot(C): 8.8686 Telec(C): 10.8012
Load: 79 Q(W): 22368.1200 Diameter(m): 0.03975 Velocity(m/sec): 0.8118 Mass flow rate(kg/s): 0.1496 Thot(C): 10.0240 Telec(C): 12.1707
Load: 80 Q(W): 5873.3900 Diameter(m): 0.02456 Velocity(m/sec): 1.3458 Mass flow rate(kg/s): 0.2480 Thot(C): 7.6795 Telec(C): 9.0820
Load: 81 Q(W): 562.7200 Diameter(m): 0.01532 Velocity(m/sec): 1.6115 Mass flow rate(kg/s): 0.4816 Thot(C): 7.8138 Telec(C): 11.4428
Load: 82 Q(W): 3007.3867 Diameter(m): 0.01951 Velocity(m/sec): 1.1791 Mass flow rate(kg/s): 0.5587 Thot(C): 8.6740 Telec(C): 11.1431
Load: 83 Q(W): 9706.9200 Diameter(m): 0.03099 Velocity(m/sec): 0.9251 Mass flow rate(kg/s): 1.1481 Thot(C): 11.3757 Telec(C): 10.3744
Load: 84 Q(W): 5047.2467 Diameter(m): 0.02456 Velocity(m/sec): 1.4491 Mass flow rate(kg/s): 1.0929 Thot(C): 8.4894 Telec(C): 9.5042
Load: 85 Q(W): 1019.9300 Diameter(m): 0.01532 Velocity(m/sec): 0.8441 Mass flow rate(kg/s): 0.6366 Thot(C): 9.5194 Telec(C): 10.6319
Load: 86 Q(W): 1794.0217 Diameter(m): 0.01532 Velocity(m/sec): 1.2111 Mass flow rate(kg/s): 0.9134 Thot(C): 8.8200 Telec(C): 9.6659
Load: 87 Q(W): 9003.5200 Diameter(m): 0.03099 Velocity(m/sec): 0.5973 Mass flow rate(kg/s): 0.1100 Thot(C): 7.8836 Telec(C): 8.2940
Load: 88 Q(W): 1073.0367 Diameter(m): 0.01532 Velocity(m/sec): 0.7368 Mass flow rate(kg/s): 0.2202 Thot(C): 10.7329 Telec(C): 11.4595
Load: 89 Q(W): 562.7200 Diameter(m): 0.01532 Velocity(m/sec): 0.9675 Mass flow rate(kg/s): 0.2891 Thot(C): 9.6189 Telec(C): 10.7861
Load: 90 Q(W): 51243.7451 Diameter(m): 0.05728 Velocity(m/sec): 1.2069 Mass flow rate(kg/s): 0.2224 Thot(C): 7.8712 Telec(C): 9.3090
Load: 91 Q(W): 1266.1200 Diameter(m): 0.01532 Velocity(m/sec): 1.2119 Mass flow rate(kg/s): 1.5040 Thot(C): 8.9400 Telec(C): 9.4798
Load: 92 Q(W): 13575.6200 Diameter(m): 0.03975 Velocity(m/sec): 0.7970 Mass flow rate(kg/s): 0.1468 Thot(C): 7.7498 Telec(C): 8.4171
Load: 93 0(W): 3622.8617 Diameter(m): 0.01951 Velocity(m/sec): 0.9765 Mass flow rate(kg/s): 0.7365 Thot(C): 9.3598 Telec(C): 9.9507
Load: 94 Q(W): 13716.6517 Diameter(m): 0.03975 Velocity(m/sec): 1.4488 Mass flow rate(kg/s): 1.0927 Thot(C): 8.4514 Telec(C): 9.4542
Load: 95 Q(W): 5134.8200 Diameter(m): 0.02456 Velocity(m/sec): 0.8736 Mass flow rate(kg/s): 0.4139 Thot(C): 9.4071 Tele(C): 11.5422
Load: 96 Q(W): 2954.2800 Diameter(m): 0.01951 Velocity(m/sec): 0.8703 Mass flow rate(kg/s): 1.0801 Thot(C): 10.9589 Telec(C): 9.9984
Load: 97 Q(W): 3024.6200 Diameter(m): 0.01951 Velocity(m/sec): 0.5339 Mass flow rate(kg/s): 0.2530 Thot(C): 11.7611 Telec(C): 11.0183
Load: 98 Q(W): 4185.2300 Diameter(m): 0.02456 Velocity(m/sec): 0.6228 Mass flow rate(kg/s): 0.4697 Thot(C): 10.7289 Telec(C): 10.5662
Load: 99 Q(W): 1336.4600 Diameter(m): 0.01532 Velocity(m/sec): 0.5236 Mass flow rate(kg/s): 0.1565 Thot(C): 12.1747 Telec(C): 12.0967
Load: 100 Q(W): 3094.9600 Diameter(m): 0.01951 Velocity(m/sec): 0.7614 Mass flow rate(kg/s): 0.3607 Thot(C): 10.4944 Telec(C): 10.4979
Load: 101 Q(W): 61090.2900 Diameter(m): 0.06962 Velocity(m/sec): 1.7350 Mass flow rate(kg/s): 0.3197 Thot(C): 7.9236 Telec(C): 10.3491
Load: 102 Q(W): 2321.2200 Diameter(m): 0.01951 Velocity(m/sec): 1.3408 Mass flow rate(kg/s): 1.6640 Thot(C): 9.1663 Telec(C): 9.9355
Load: 103 Q(W): 1055.1000 Diameter(m): 0.01532 Velocity(m/sec): 1.4468 Mass flow rate(kg/s): 0.6855 Thot(C): 8.1990 Telec(C): 10.6806
Load: 104 Q(W): 1195.7800 Diameter(m): 0.01532 Velocity(m/sec): 0.7905 Mass flow rate(kg/s): 0.5961 Thot(C): 11.4816 Telec(C): 10.4925
Load: 105 Q(W): 40691.3383 Diameter(m): 0.05728 Velocity(m/sec): 1.2108 Mass flow rate(kg/s): 0.9132 Thot(C): 8.9305 Telec(C): 9.8359
Load: 106 Q(W): 6811.3739 Diameter(m): 0.02456 Velocity(m/sec): 1.4163 Mass flow rate(kg/s): 1.7577 Thot(C): 8.9093 Telec(C): 9.7135
Load: 107 Q(W): 1547.4800 Diameter(m): 0.01532 Velocity(m/sec): 0.6405 Mass flow rate(kg/s): 0.1914 Thot(C): 10.5359 Telec(C): 10.8956
Load: 108 Q(W): 2567.4100 Diameter(m): 0.01951 Velocty(m/sec): 1.3771 Mass flow rate(kg/s): 0.2537 Thot(C): 7.7554 Telec(C): 9.3156
Load: 109 Q(W): 10304.8100 Diameter(m): 0.03099 Velocity(m/sec): 1.3579 Mass flow rate(kg/s): 0.6434 Thot(C): 8.3968 Telec(C): 10.9836
Load: 110 Q(W): 2110.2000 Diameter(m): 0.01532 Velocity(m/sec): 0.7578 Mass flow rate(kg/s): 0.3591 Thot(C): 9.4170 Telec(C): 11.1058
Load: 111 Q(W): 13540.4500 Diameter(m): 0.03975 Velocity(m/sec): 1.3829 Mass flow rate(kg/s): 0.4133 Thot(C): 8.5297 Telec(C): 9.9825
Load: 112 Q(W): 2426.7300 Diameter(m): 0.01951 Velocity(m/sec): 1.0349 Mass flow rate(kg/s): 2.6665 Thot(C): 11.4088 Telec(C): 10.6347

141



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Load: 113 Q(W): 5310.6700 Diameter(m): 0.02456 Velocity(m/sec): 0.7838 Mass flow rate(kg/s): 0.1444 Thot(C): 9.6802 Telec(C): 11.4898
Load: 114 Q(W): 1547.8317 Diameter(m): 0.01532 Velocity(m/sec): 1.1669 Mass flow rate(kg/s): 0.5529 Thot(C): 8.6648 Telec(C): 11.0936
Load: 115 Q(W): 6717.4700 Diameter(m): 0.02456 Velocity(m/sec):1.4154 Mass flow rate(kg/s): 1.0675 Thot(C): 8.5092 Telec(C): 9.5117
Load: 116 Q(W): 2004.6900 Diameter(m): 0.01532 Velocity(m/sec): 1.4180 Mass flow rate(kg/s): 3.6537 Thot(C): 9.8665 Telec(C): 9.6956
Load: 117 Q(W): 20222.7500 Diameter(m): 0.03975 Velocity(m/sec): 0.5400 Mass flow rate(kg/s): 0.0995 Thot(C): 8.6015 Telec(C): 9.0992
Load: 118 Q(W): 5169.9900 Diameter(m): 0.02456 Velocity(m/sec): 0.6175 Mass flow rate(kg/s): 0.1845 Thot(C): 9.7505 Telec(C): 12.5403
Load: 119 Q(W): 7913.2500 Diameter(m): 0.03099 Velocity(m/sec): 0.4919 Mass flow rate(kg/s): 0.2331 Thot(C): 12.4830 Telec(C): 11.4522
Load: 120 Q(W): 2638.1017 Diameter(m): 0.01951 Velocity(m/sec): 0.4944 Mass flow rate(kg/s): 0.2342 Thot(C): 13.2585 Telec(C): 12.1213
Load: 121 Q(W): 140.6800 Diameter(m): 0.01532 Velocity(m/sec): 0.8716 Mass flow rate(kg/s): 0.2605 Thot(C): 9.0765 Telec(C): 12.6581
Load: 122 Q(W): 2391.5600 Diameter(m): 0.01951 Velocity(m/sec): 1.1826 Mass flow rate(kg/s): 0.5603 Thot(C): 8.8622 Telec(C): 9.4765
Load: 123 Q(W): 246.1900 Diameter(m): 0.01532 Velocity(m/sec): 1.2500 Mass flow rate(kg/s): 0.2303 Thot(C): 8.7379 Telec(C): 11.3367
Load: 124 Q(W): 5697.8917 Diameter(m): 0.02456 Velocity(m/sec): 1.2537 Mass flow rate(kg/s): 0.3747 Thot(C): 8.2079 Telec(C): 11.8358
Load: 125 Q(W): 1406.8000 Dlameter(m): 0.01532 Velocity(m/sec): 1.0156 Mass flow rate(kg/s): 0.1871 Thot(C): 8.6351 Telec(C): 10.4554
Load: 126 Q(W): 6489.2167 Diameter(m): 0.02456 Velocity(m/sec): 0.6337 Mass flow rate(kg/s): 0.1168 Thot(C): 10.9672 Telec(C): 12.6442
Load: 127 Q(W): 45721.0000 Diameter(m): 0.05728 Velocity(m/sec): 1.0176 Mass flow rate(kg/s): 0.3041 Thot(C): 8.6754 Telec(C): 12.3215
Load: 128 Q(W): 808.9100 Diameter(m): 0.01532 Velocity(m/sec): 0.5052 Mass flow rate(kg/s): 0.0931 Thot(C): 9.7232 Telec(C): 10.3620
Load: 129 Q(W): 5310.6700 Diameter(m): 0.02456 Velocity(m/sec): 0.8726 Mass flow rate(kg/s): 0.4135 Thot(C): 10.5864 Telec(C): 10.8923
Load: 130 Q(W): 4642.4400 Diameter(m): 0.02456 Velocity(m/sec): 1.0176 Mass flow rate(kg/s): 0.3041 Thot(C): 8.4828 Telec(C): 11.7853
Load: 131 Q(W): 703.4000 Diameter(m): 0.01532 Velocity(m/sec): 0.5437 Mass flow rate(kg/s): 0.1625 Thot(C): 11.1987 Telec(C): 11.2110
Load: 132 Q(W): 8264.9500 Diameter(m): 0.03099 Velocity(m/sec): 0.6532 Mass flow rate(kg/s): 0.3095 Thot(C): 9.8841 Telec(C): 11.3597
Load: 133 Q(W): 2743.2600 Diameter(m): 0.01951 Velocity(m/sec): 0.8716 Mass flow rate(kg/s): 0.2605 Thot(C): 9.3653 Telec(C): 10.1920
Load: 134 Q(W): 49132.4900 Diameter(m): 0.05728 Velocity(m/sec): 1.0251 Mass flow rate(kg/s): 1.2722 Thot(C): 9.2059 Telec(C): 9.5157
Load: 135 Q(W): 1969.5200 Diameter(m): 0.01532 Velocity(m/sec): 1.2662 Mass flow rate(kg/s): 1.5714 Thot(C): 8.7440 Telec(C): 9.2990
Load: 136 Q(W): 1828.8400 Diameter(m): 0.01532 Velocity(m/sec): 1.0899 Mass flow rate(kg/s): 2.8081 Thot(C): 11.0088 Telec(C): 10.2564
Load: 137 Q(W): 5838.2200 Diameter(m): 0.02456 Velocity(m/sec): 1.4927 Mass flow rate(kg/s): 0.2750 Thot(C): 7.5954 Telec(C): 9.0757
Load: 138 Q(W): 53141.8700 Diameter(m): 0.05728 Velocity(m/sec): 0.7651 Mass flow rate(kg/s): 0.1410 Thot(C): 9.6951 Telec(C): 11.4280
Load: 139 Q(W): 56729.2100 Diameter(m): 0.05728 Velocity(m/sec): 0.6348 Mass flow rate(kg/s): 0.1897 Thot(C): 10.4385 Telec(C): 10.7636
Load: 140 Q(W): 3235.6400 Diameter(m): 0.01951 Velocity(m/sec): 1.2818 Mass flow rate(kg/s): 0.6073 Thot(C): 8.6444 Telec(C): 9.3320
Load: 141 Q(W): 1090.2700 Diameter(m): 0.01532 Velocity(m/sec): 0.7335 Mass flow rate(kg/s): 0.3475 Thot(C): 10.6880 Telec(C): 10.6061
Load: 142 Q(W): 1160.6100 Diameter(m): 0.01532 Velocity(m/sec): 1.8508 Mass flow rate(kg/s): 1.3958 Thot(C): 8.0639 Telec(C): 9.2741
Load: 143 Q(W): 914.4200 Diameter(m): 0.01532 Velocity(m/sec): 1.1495 Mass flow rate(kg/s): 0.3435 Thot(C): 8.3476 Telec(C): 11.9064
Load: 144 Q(W): 4677.6100 Diameter(m): 0.02456 Velocity(m/sec): 1.1351 Mass flow rate(kg/s): 0.2091 Thot(C): 6.6783 Telec(C): 6.6907
Load: 145 Q(W): 1125.4400 Diameter(m): 0.01532 Velocity(m/sec): 0.5559 Mass flow rate(kg/s): 0.4193 Thot(C): 11.8761 Telec(C): 11.4286
Load: 146 Q(W): 4150.0600 Diameter(m): 0.02456 Velocity(m/sec): 0.6492 Mass flow rate(kg/s): 0.4896 Thot(C): 11.5723 Telec(C): 11.4963
Load: 147 Q(W): 6647.1300 Diameter(m): 0.02456 Velocity(m/sec): 1.2979 Mass flow rate(kg/s): 0.9788 Thot(C): 8.7186 Telec(C): 9.6766
Load: 148 Q(W): 5803.0500 Diameter(m): 0.02456 Velocity(m/sec): 1.2784 Mass flow rate(kg/s): 0.2355 Thot(C): 7.9104 Telec(C): 9.5242
Load: 149 Q(W): 1371.6300 Diameter(m): 0.01532 Velocity(m/sec): 1.3724 Mass flow rate(kg/s): 0.6503 Thot(C): 8.1854 Telec(C): 10.4845
Load: 150 Q(W): 1688.1600 Diameter(m): 0.01532 Velocity(m/sec): 0.6414 Mass flow rate(kg/s): 0.4838 Thot(C): 11.7375 Telec(C): 11.6253
Load: 151 Q(W): 8089.1000 Diameter(m): 0.03099 Velocity(m/sec): 1.3693 Mass flow rate(kg/s): 0.4092 Thot(C): 8.1498 Telec(C): 12.0246
Load: 152 Q(W): 17479.4900 Diameter(m): 0.03975 Velocity(m/sec): 0.8895 Mass flow rate(kg/s): 0.6709 Thot(C): 9.2240 Telec(C): 10.3571
Load: 153 Q(W): 13405.3972 Diameter(m): 0.03975 Velocfty(m/sec): 1.3748 Mass flow rate(kg/s): 1.0368 Thot(C): 8.6606 Telec(C): 9.6849

4414.1867 Diameter(m): 0.02456 Velocity(m/sec): 1.0845
4115.2417 Diameter(m): 0.02456 Velocity(m/sec): 0.6983
12063.3100 Diameter(m): 0.03099 Veloclty(m/sec): 1.1130
2110.2000 Diameter(m): 0.01532 Velocity(m/sec): 0.5127
8686.9900 Diameter(m): 0.03099 Velocity(m/sec): 0.5576
1055.1000 Diameter(m): 0.01532 Velocity(m/sec): 1.0599
16565.0700 Diameter(m): 0.03975 Velocity(m/sec): 0.6541
2321.2200 Diameter(m): 0.01951 Velocity(m/sec): 0.5896
3112.8967 Diameter(m): 0.01951 Velocity(m/sec): 1.1157
4712.7800 Diameter(m): 0.02456 Velocity(m/sec): 0.7804
3622.5100 Diameter(m): 0.01951 Velocity(m/sec): 0.6279

Load: 165 Q(W): 22722.2819 Diameter(m): 0.03975 Velocity(m/sec): 1.3837
Q(W): 8018.7600
Q(W): 8370.4600
Q(W): 5416.1800

Diameter(m): 0.03099
Diameter(m): 0.03099
Diameter(m): 0.02456

Velocity(m/sec): 1.3837
Velocity(m/sec): 1.7897
Velocity(m/sec): 0.6472

Mass flow rate(kg/s): 1.3460 Thot(C): 10.3225 Telec(C): 9.7252
Mass flow rate(kg/s): 0.1287 Thot(C): 8.6181 Telec(C): 9.5572
Mass flow rate(kg/s): 0.5274 Thot(C): 9.6023 Telec(C): 10.2825

Mass flow rate(kg/s): 0.0945 Thot(C): 8.5273 Telec(C): 8.9352
Mass flow rate(kg/s): 0.2642 Thot(C): 10.7842 Telec(C): 12.1026
Mass flow rate(kg/s): 0.1953 Thot(C): 8.5952 Telec(C): 10.5059
Mass flow rate(kg/s): 0.4933 Thot(C): 10.7039 Telec(C): 10.6342

Mass flow rate(kg/s): 0.1086 Thot(C): 8.9778 Telec(C): 9.7352
Mass flow rate(kg/s): 1.3846 Thot(C): 9.2052 Telec(C): 9.6523
Mass flow rate(kg/s): 0.9685 Thot(C): 10.0280 Telec(C): 9.9535
Mass flow rate(kg/s): 0.1157 Thot(C): 8.4752 Telec(C): 9.1629
Mass flow rate(kg/s): 0.2549 Thot(C): 7.9144 Telec(C): 9.7183

Mass flow rate(kg/s): 0.2549 Thot(C): 8.6365 Telec(C): 11.4865
Mass flow rate(kg/s): 0.8480 Thot(C): 8.4977 Telec(C): 9.7227
Mass flow rate(kg/s): 0.1934 Thot(C): 10.5603 Telec(C): 10.9541

142

Load: 154
Load: 155
Load: 156
Load: 157
Load: 158
Load: 159
Load: 160
Load: 161
Load: 162
Load: 163
Load: 164

Q(W):
Q(W):

Q(W):
Q(W):

Q(W):

Q(W):
Q(W):
Q(W):

Q(W):
Q(W):

Q(W):

Load: 166
Load: 167
Load: 168



Center for Ocean Engineering U - Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

Load: 169 Q(W): 7631.8900 Diameter(m): 0.03099 Velocity(m/sec): 0.8729 Mass flow rate(kg/s): 0.2609 Thot(c): 10.1801 Telec(c): 11.2730
Load: 170 Q(W): 19484.1800 Diameter(m): 0.03975 Velocity(m/sec): 1.3837 Mass flow rate(kg/s): 0.2549 Thot(C): 7.5372 Telec(c): 8.7949
Load: 171 Q(W): 8264.9500 Diameter(m): 0.03099 Velocity(m/sec): 0.9915 Mass flow rate(kg/s): 0.7478 Thot(C): 9.5766 Telec(c): 10.2574
Load: 172 Q(W): 8194.6100 Diameter(m): 0.03099 Velocity(m/sec): 0.6056 Mass flow rate(kg/s): 0.1116 Thot(c): 10.4918 Telec(C): 11.8355
Load: 173 Q(W): 562.7200 Diameter(m): 0.01532 Velocity(m/sec): 0.9219 Mass flow rate(kg/s): 1.1441 Thot(c): 10.3462 Telec(c): 10.6213
Load: 174 Q(W): 4766.9418 Diameter(m): 0.02456 Velocity(m/sec): 1.1980 Mass flow rate(kg/s): 0.2207 Thot(c): 8.7142 Telec(C): 11.1462
Load: 175 Q(W): 3763.1900 Diameter(m): 0.01951 Velocity(m/sec): 0.6144 Mass flow rate(kg/s): 0.1132 Thot(c): 8.6630 Telec(c): 9.3856
Load: 176 Q(W): 668.2300 Diameter(m): 0.01532 Velocity(m/sec): 0.4776 Mass flow rate(kg/s): 0.0880 Thot(c): 10.2805 Telec(c): 10.8944
Load: 177 Q(W): 3587.3400 Diameter(m): 0.01951 Velocity(m/sec): 0.9529 Mass flow rate(kg/s): 0.7186 Thot(c): 9.8808 Telec(c): 10.5393
Load: 178 Q(W): 8335.2900 Diameter(m): 0.03099 Velocity(m/sec): 0.6332 Mass flow rate(kg/s): 0.3000 Thot(c): 11.8267 Telec(c): 9.6590
Load: 179 Q(W): 1125.4400 Diameter(m): 0.01532 Velocity(m/sec): 1.1980 Mass flow rate(kg/s): 0.2207 Thot(c): 8.1077 Telec(c): 9.8154
Load: 180 Q(W): 1125.4400 Diameter(m): 0.01532 Velocity(m/sec): 0.9191 Mass flow rate(kg/s): 1.1406 Thot(C): 9.6896 Telec(c): 9.8763

The load number corresponds to the branch index. Q is the heat load [W]. The inner branch diameter
[m] and chilled water velocity [m/sec] within the corresponding branch are shown. The mass flow rate

[kg/sec] is also shown. Thot [C] corresponds to the temperature downstream of the heat exchanger.

Telec [C] corresponds to the outlet (colder) temperature on the secondary side.

For the example above, the heat exchangers considered for all heat loads were the cooling coils since

these were the most well-defined heat exchangers within the heat exchanger database. Because of this,
the low Telec temperatures are to be expected since the hot inlet air temperatures are estimated to be

26.7*C. For other applications such as heat exchangers with high heat fluxes used for the removal of

heat from high energy radars, the inlet temperature will play a critical role in determining an accurate

outlet temperature on the secondary side. This outlet temperature is expected to be much higher as

those shown above (on the order of 100*).

4.2 Weight Analysis
The second analysis performed was the weight analysis. The weight of the chilled water system and the

seawater system was determined along with a breakdown by components. The center of gravity for

each component group and overall system was also included. A weight margin of 10% was included to
account for miscellaneous items unaccounted for and for uncertainty in the design. For the simulated
design, report 4 is:

143



Center for Ocean Engineering mim Massachusetts Institute of Technology
Naval Construction & Engineering Program 1 1177-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

Report 4: CW/SW Weight Summary

Item Weight (MT) LCG (m) TCG (m) VCG (m)
CW System: 159.1343 -6.8345 -0.1020 5.9911
Pipe: 29.1421 -2.5767 -0.0862 7.3868
Main: 24.9003 -5.4880 -0.0824 6.8900
Branch: 4.2418 14.5127 -0.1087 10.3037

Lagging: 0.9619 3.6922 -0.0945 8.4568
Main: 0.5204 -5.4880 -0.0824 6.8900
Branch: 0.4415 14.5127 -0.1087 10.3037

Valves: 20.7776 -5.0816 -0.4872 5.6592
Globe: 1.5560 7.0650 -2.1066 7.6973
Main: 0.0000 0.0000 0.0000 0.0000
Branch: 1.5560 7.0650 -2.1066 7.6973

Gate: 13.5336 -7.3983 -0.5057 7.5678
Main: 10.3600 -11.8358 0.0000 7.4500
Branch: 3.1736 7.0878 -2.1566 7.9525

Check: 5.6880 -2.8924 0.0000 0.5605
Main: 5.6880 -2.8924 0.0000 0.5605
Branch: 0.0000 0.0000 0.0000 0.0000

Chillers: 34.8000 -17.3545 0.0000 3.3628
Expansion tanks: 3.4869 -17.3545 0.0000 3.3628
Pumps: 7.2000 -13.8415 0.0000 3.3628
Brackets: 0.0000 5.3659 -0.0967 8.7425
Instrumentation: 0.3000 -17.3545 0.0000 3.3628
Chilled water: 46.5960 -5.8153 -0.0662 6.6338
Heat Exchangers: 15.8698 8.1791 -0.0265 9.4093

SW System: 17.2747 -4.7642 -0.1887 4.3308
Pipe: 2.9109 -7.7654 -0.3113 5.8375
Valves: 0.8000 -1.2000 0.0000 2.8576
Pumps: 6.0000 0.0000 0.0000 1.8970
Brackets: 0.3029 -7.7654 -0.3113 5.8375
Salt water: 7.2609 -7.7654 -0.3113 5.8375

Total: 176.4091 -6.6318 -0.1105 5.8285
Margin: 17.6409 -6.6318 -0.1105 5.8285

Total with margin: 194.0500 -6.6318 -0.1105 5.8285

As can be seen in the weight report, the chilled water system weighs approximately 159 MT, the
auxiliary seawater system weighs approximately 17 MT and the combined systems with the added 10%
weight margin weighs approximately 194 MT. The center of gravity is 6.6 m aft of midships, slightly
starboard, and nearly 6 m from the baseline. This is also consistent with the 3-D model which is fairly
symmetric forward-aft and port-starboard. The large, heavy A/C units will bring down the VCG so the
6.6 m VCG is reasonable.

144



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering i'i~r Massachusetts Institute of Technology

77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

4.3 Transient Analysis

Transient analysis is an important part of determining the feasibility and performance of a particular

cooling system design. When in steady-state, the temperatures and flow velocities may be satisfactory,

but without performing transient analysis on particular scenarios, it is not possible to guarantee the

localized temperatures of certain regions or flow velocities are within acceptable limits.

Transient analyses were performed on the modeled chilled water system for two simultaneous events, a

loss of a chiller with the chiller riser secured and no further action taken and a step load of a heat load

with no action taken. The design heat loads were considered for the simulation. Figure 87 below shows

the heat loads and the status of each chiller before and after the event. Only heat load RS58 (load

number nine) differs before and after the event with a step response from 56 kW to 0 kW.

Messtanaammete- imamoferthlodecmelenspedfiedin AnalyisnamChantathini dvalueeanbeented ineVelilmrolimn.
noeMoemammem e11 isefofreads Iteaathe transleatUnde theiman Heat todat t+.
7be 0 11 -0 beenmeI baio isstwyidships is art xstte bowr inthe*4-diection, portis tonise, =and1Upis4r

I'll& INi 1 0 qmitsg m neadhschilterbeformandftthtraww SiE!!"pedfe ohroerof).

UWas.d Chillr

lang a ~ t-I altt. Chafe CWhleratkmannof

ammme==- IB (Wf QF Iame x(m) yM z~n) at%4e- Iatt*ee

-1WUN

2 11s14Mi2 3.79M3 1.7* 3.78
3 ISM_ a .5r6272 0.56472" ,.5.272

4 NSA ___816 1___ _6

5 _L14924 1LI UL249

6 asa M%.9442' O.W 0.942
7 Ism% .935 _94M

11 _s__ 3.3_6_as66__4__6

a 3L55U 3'L" 398

Iwo asa 16816 1.W 1L883

n AsL4396251 4.&"W 432

12 RN2 L30129 L201"

13 as6 L 65299 Lf L6530

14 sa.27 & W _.22

1s L329 L 30129

36 W45% SPA745 _50
17 CssiL14068 .1f~d i
is Rt21_ 11383 L1M

1

*
Figure 87: Input for simulated transient

30.430667 5.0975 3.3628331 en
2 30.430667 -5.0975 3.362833 an on
3 -16.22666 5.0975 3.362833 Off off
4 -16.22666 -5.0975 3.362833 on on
5 -66.26752 5.0975 3.362833 off off
6 -66.26752 -5.0975 3.362833 on off

__-0 --

4.3.1 Loss of Chiller

The loss of a chiller with the chiller riser secured will result in changes in the velocity within the supply

header, a differing number and location of the stagnation points and resulting changes in the branch

velocities. These differing velocities will then have an effect on the temperature response at each of the

heat exchangers. Figure 88 shows the pressure distribution before and after the loss of chiller six along

145

1

143 P

I

o.5627 0.56272 0.5%272 an I

I.140681 4.14W8



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

with the resulting effect on stagnation location. Figure 89 shows the temperature response at four

locations in a single branch, immediately before, at and two different locations after the heat exchanger.
The temperature variation as a function of time is due primarily to the change in the velocity within that
branch, but some initial discrepancy may exist between the steady-state temperatures calculated and
the transient temperatures calculated.

Figure 88: Pressure distribution before and after loss of chiller 6

146



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Figure 89: Temperature response at four different locations in branch 5. Location 1 - immediately before heat exchanger

(upper left), location 2 - at heat exchanger (upper right), location 3 - a few meters downstream from the heat exchanger

(lower left), location 4 - near the end of the branch (lower right)

The temperature response at location 1 may seem alarming, but after considering the temperature

scale, it is reasonable to assume that the rise is due to error between the more simplified steady-state
temperature analysis and the transient analysis. The difference in temperature is few hundredths of a

degree Celsius and can be assumed constant. The temperature response at location 2 shows the correct
behavior for a step-change in velocity. The beginning and ending values are also consistent with steady-
state calculations using the initial and final velocities to determine the respective mass flow rates and

resulting differential temperatures across the heat exchanger. The temperature response at locations 3
and 4 are in line with what is to be expected. The curve shifts to the right as the location analyzed moves

downstream of the heat exchanger.

4.3.2 Step Load

Similar temperature responses to those described above are shown in the branch with a heat load step

response.

147



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Figure 90: Temperature response at four different locations in branch 9 (heat load step response from 59 kW to 0 kW).

Location 1 - immediately before heat exchanger (upper left), location 2 - at heat exchanger (upper right), location 3 - a few

meters downstream from the heat exchanger (lower left), location 4 - near the end of the branch (lower right)

In the above figures, the heat load step response from 59 kW to 0 kW results in a decreasing

temperature from approximately 11.250C to 6.70C as expected.

4.3.3 Temperature Distribution

The temperature distribution can also be found using the CSDT. Figures 74-75 show the temperature
distribution along the supply header at 10 seconds and 120 seconds after the event, respectively.

Figures 76-77 show the temperature distribution along the return header at 10 seconds and 120
seconds after the event, respectively.

148



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Ii Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Figure 91: Temperature distribution along the supply header at 10 seconds

Figure 92: Temperature distribution along the supply header at 120 seconds

Figure 93: Temperature distribution along the supply header at 10 seconds

tigure vq: i emperature aistrImution aong tne suppiy neaaer at 1Lu seconas

149



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Figure 95: Temperature distribution along branch 9 at 10 seconds

Figure 96: Temperature distribution along branch 9 at 120 seconds

The combined effects of the loss of a chiller and the heat load step response do add to the complexity of
the temperature response. An example of this can be seen in Figure 97 below which shows the
temperature response at the junction for riser 1 within the return header.

Figure 97: Temperature response within the return header at riser 1 junction

150



Center for Ocean Engineering II Massachusetts Institute of Technology
Naval Construction & Engineering Program * 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

5.0 Chapter 5: Conclusions

5.1 General Conclusions

The intent of this thesis was to rapidly model and explore the design of the chilled water system using a

mathematically rigorous approach. In this respect, the CSDT is a success. With relatively few inputs, the

CSDT provides 2-D and 3-D visual representations of the chilled water and auxiliary seawater systems. In

addition, the incorporation of FNA is essential in modeling the chilled water system. Without FNA, it is

not possible to accurately determine the pressure and fluid velocity distribution within the system and

without knowing these, it is impossible to determine the true temperature distribution within the

system.

Other successes of the program include the analyses of the chilled water system. The three analyses

available with the CSDT are the weight analysis, the static temperature analysis, and the transient

temperature analysis.

The CSDT weight analysis not only captures the weight of the chilled water system, but also provides an

accurate center of gravity of the chilled water system along with the weight and center of gravity of the

auxiliary seawater system.

The static temperature analysis outputs the temperature at every junction and at the heat exchanger.

With the properties of the secondary side known, the steady-state temperature of the exiting secondary

fluid can also be known. This fluid may be the air blowing in a space, or the fluid surrounding a solid-
state semiconductor chip. This brings the user one step closer in determining the average temperature
within a space cooled by chilled water, or the surface temperature of electronic equipment.

The transient analysis is even more powerful. It provides the user with temperature fluctuations in time

or space during transient states. The method employed within the CSDT to perform transient analyses

has also been verified with two different analytical methods. The transient temperatures also reach
steady-state values after sufficient time has elapsed. This gives greater confidence in the accuracy of the
transient analysis.

The CSDT provides the naval architect with a tool to rapidly and accurately model the chilled water
system under several operating conditions. Furthermore, the associated analyses also provide the naval
architect with a means to easily determine the feasibility of their design.

5.2 Areas of Future Study

There are two broad categories for areas of future study. The first category involves improving the
current version of the CSDT by offering more analyses, eliminating the few assumptions still remaining
within the program, and improving the user interface. The second category involves incorporation of

151



Center for Ocean Engineering * 3 Massachusetts Institute of Technology
Naval Construction & Engineering Program 111177-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

extensions beyond the chilled water system including the HVAC system, the SW system and the ship as a

whole.

5.2.1 CSDT v3.0

There are a few areas the CSDT program could be improved, many involving the removal of the
remaining assumptions and providing more capability to analyze the CW system, but the area that
would have the most profound impact would be the user interface.

Currently, the user interacts through the program via the Excel spreadsheet which contains the library of

heat exchangers and A/C units and through the command window. It would be beneficial if the interface

between the user and the program was through the use of a Graphical User Interface (GUI). A well laid
out GUI could provide all of the functionality of the program, but in a more user friendly way through

the use of tabs, lists, graphs, charts and buttons which execute certain functions. More enhanced
graphics could also provide a better means of displaying the 2-D and 3-D model of the CW system.
Currently, valves, heat exchangers, and pumps are all displayed as a box. Better graphics could provide a

means to display each of these components distinctly. Drag and drop ability would enhance the ability

to place equipment accurately. Piping could be captured as a vector of nodes, with the ability to drag
nodes to alter the shape of the piping. This ability would allow the user to easily route piping around

equipment and to connect piping to each other while avoiding the need to manually describe each
branch as a vector of points. For greater visualization, a program other than Matlab should be utilized.

Some suggestions include: Python, Qt, GTK+, or C#.

Using one of the programming languages above will also allow for a better structuring of the program.
The Matlab program uses some functions and is broken up into a few very large blocks of code, but the
program was written in a brute-force fashion, with the focus more on correctness and less on efficiency

or readability of the code.

Other than visual representation, the program could be improved by refining the FNA and removing

assumptions made. FNA is used by the program, but could be structured to be more generic than it
currently is. A CSDT v3.0 should include a generic node structure of the pipe network, with the ability to
have any combination of branches in parallel and series. The FNA should then be able to solve the
generic network, as opposed to assuming the branches are all in parallel. This can be done through the

use of a flow solver. Flow solvers exist for solving current within electrical networks (the power flow

problem), but could be modified to solve for fluid flow within a piping network. The incorporation of a
flow solver would eliminate the need to solve for stagnation points and would remove all of the
assumptions made in finding those stagnation points.

Other assumptions that still exist within the CSDT include: neglecting the inertia of the fluid, simplifying

the temperature distribution to allow variation in only one dimension, simplifications in the modeling of
the temperature distribution within the heat exchangers, simplifying the heat exchange process within

152



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering U U Cambridge, Massachusetts 02139-4307

the A/C units, and assuming constant properties of the CW and other fluids (density, specific heat

capacity, etc.). Greater complexity of the CSDT program could overcome all of these assumptions.

The CSDT currently can perform weight analyses, static temperature analyses, and transient

temperature analyses. An area of future study would be the inclusion of survivability analysis capability.

This could be done by specifying a blast center and radius (assuming a spherical blast). All heat loads

within the blast could be easily determined and would be considered damaged. The pipe branches are

vectors. To see if the pipe is ruptured, the pipe would be discretized by where there is a bend. If any

bend is located within the blast radius, then the pipe is damaged. If the line perpendicular to the pipe

corners which passes through the blast center is between the pipe corners and has a length less than

the blast radius, then that segment of pipe is damaged. The same procedure can be used to determine

which segments of the header piping are damaged. Also, the chillers and pumps would be checked to

see if they also fall within the blast radius (or if they are damaged due to flooding if the blast causes
damage below the waterline). With the piping network redefined by damaged sections, the valves which

would isolate those damaged sections would be assumed shut. This would further reduce the piping
network. Once this is complete, undamaged heat loads would be checked for connectivity to a

chiller/pump. Lastly, a priority queue would be used to determine which loads would get flow and which

loads would have to be secured due to a lack of chilled water available.

Coupling of the survivability analysis and the transient analysis would be one step further. The transient

analysis is performed on a select few scenarios, but is not general enough to be performed during

casualties. The coupling of these two analyses would be beneficial in determining the transient

temperatures, velocities, and pressures during a casualty.

Lastly, the CSDT provides three default layouts of the header mains. Providing more default layouts

would be beneficial, especially when designing chilled water systems on other types of ships, such as an

amphibious assault ship which has a large well-deck aft. The pipe bends are also created artificially. If
the hullform were known beforehand, the header mains could be laid out according to the curvature of

the hull.

5.2.2 System Extensions

The three areas in which extension of the chilled water system is most vital include the HVAC system,

the SW system and the ship environment.

As stated earlier in the report, nearly % of the heat load serviced by chilled water is related to the HVAC

system. The CSDT currently needs to be provided the heat loads at the various spaces within the ship

where the chilled water system interfaces with the HVAC system. It would be greatly beneficial to model

the HVAC system by compartments with air flow modeled to determine the actual heat load produced

based on environmental temperature, number of personnel in a room, heat dissipated by machinery,
etc. With this information, the secondary side (air side) of the heat exchanger could be better modeled,

and better yet, dynamically modeled, and then tied into the CSDT.

153



Center for Ocean Engineering a EE Massachusetts Institute of Technology
Naval Construction & Engineering Program 111177-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

The SW system was modeled generically within the CSDT, but more time could be taken to more

completely model the SW system. The most important aspect of modeling the SW system would be to

accurately model the A/C units, including the closed loop of the refrigerant. This may prove to be

difficult since there are several types of A/C units available, but it may be possible to model the most
pertinent types, most notably a centrifugal A/C unit with R134a refrigerant. Several sizes of the A/C units

could be modeled as well. With the interface between the CW system and the SW system defined, the
interdependency between seawater temperature and the chilled water outlet temperature of the A/C
unit could be determined. Other facets of the SW system could also be modeled, such as loads cooled
directly with SW or loads that are cooled using a SW/FW heat exchanger (a cheaper alternative to a

SW/CW heat exchanger). FNA would still have to be incorporated into this model since there is a strong

relationship between parallel branch pressures and flow rates of the SW system.

A third area of future study could be modeling the ship as a whole. This would include a more

macroscopic temperature profile of the ship, focusing on how air flows within the ship and how hot

spots develop within the ship due to machinery, personnel, and other heat sources, and the effects of
stagnant or forced air on those spaces. The macroscopic temperature distribution of the ship could be

tied into the HVAC system, which could then be tied into the CW system. In addition, the ship

temperature distribution and air flow could be directly tied into the CW system by accounting for the
heat loss across the pipe walls and lagging. This loss should be negligible, but will eliminate an
assumption of constant and quiescent air external to the CW piping within the CSDT.

Lastly, the reason the CSDT was first considered involved the increasing importance of the CW system
based on projected heat loads of all electric ships, and the increasing heat fluxes associated with
smaller, more dense equipment operating at increasing switching frequencies. The challenge then
becomes removal of heat through less surface area. Focus should be spent on researching and
developing methods and models of exotic heat removal techniques which can achieve these higher heat
fluxes needed. With models developed, they can be experimentally verified and modeled using the

CSDT. With more heat exchanger options available to the naval architect, greater flexibility is afforded in
designing the CW system to meet the cooling demands of the future Navy.

154



Center for Ocean Engineering r U Massachusetts Institute of Technology
Naval Construction & Engineering Program I I 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

References

(n.d.). Retrieved from enggcyclopedia: http://www.enggcyclopedia.com/wp-

content/uploads/2012/01/refrigeration-cycle.png

(2007). Retrieved from Alpha Novatech: http://www.alphanovatech.com/almult.html

(2008). Retrieved from R134a - TetraFlouroEthane Properties:

http://www.ohio.edu/mechanical/thermo/propertytables/R134a/R134aTempSatl.html

(2013). Retrieved from ThomasNet: http://www.thomasnet.com/articles/image/centrifugal-pump.jpg

Adam, D. N. (2004). Module 4: Heat Exchanger. Retrieved from Dr. Nor Mariah Adam's Homepage:

http:/eng.upm.edu.my/~mariah/KMP3203/module4.htm

AST M International. (2008). Standard Practicefor Design and installation of Rigid Pipe Hangars.

Bell & Gossett. (1998). Series 1510 Base Mounted Centrifugal Pump Performance cURVES - 60 Hz.

Morton Grove: Xylem Inc.

Bonney Forge. (2012). Retrieved from www.bonneyforge.com:

http://www.bonneyforge.com/images/products/csvalves/gate/Gate%20Vave%2ODiagram.gif

Cloutier, M. (n.d.). Refrigeration Cycles.

Conversion Factor of Weld Joint. (n.d.). Retrieved from AutoDesk Inventor:

http://wikihelp.autodesk.com/inventor/enu/2012/Help/0073-Autodesk73/0742-

Engineer742/0743-Joints743/0744-FixedJo744/0773-WeldJoi773/0800-Conversi800

Copper Development Association, Inc. (2012). Information about Copper Nickels and their Properties.

Retrieved from Copper.org: Copper Nickel: Alloys, Properties and Fabrication:

http://www.copper.org/applications/cuni/txt-properties.html

Cross-Flooding area. (2004, November). Retrieved from Rules for Classification of Steel Ships:

http://www1.veristar.com/Veristar/bvrules/E_11_a1_1_1.htm

DRS Technologies. (2011). Retrieved from 2011 lntgrated Marine Systems Catalog:

www.drs.com/Products/PESG/PDF/IMScatalog.pdf

Energy-Film. (n.d.). Retrieved from http://www.energy-film.com/wordpress/wp-

content/uploads/2010/05/xchanger.jpg

Engineering Toolbox. (n.d.). Retrieved from

http://docs.engineeringtoolbox.com/documents/436/logarithmicmean-temperaturedifferenc

e.png

155



Center for Ocean Engineering E E Massachusetts Institute of Technology
Naval Construction & Engineering Program 111177-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering EEE Cambridge, Massachusetts 02139-4307

Fang, R., Jiang, W., Khan, J., & Dougal, R. (n.d.). Thermal Modeling and Simulation of the Chilled Water

Systemfor Future All Electric Ship. Columbia: University of South Carolina.

Fiedel, E. (2011). Cooling System Early Stage Design Toolfor Naval Applications. Cambridge: MIT.

Foltz, D. F. (1990). The Design of Air Conditioning and Ventilating Systems for nuclear Submarines Since

the Nautilus. New England: The Society of naval Architects and Marine Engineers.

Frank, M. V., & Helmick, D. (2007). 21st Century HVAC System for Future Naval Surface Combatants -

Concept Development Report. West Bethseda: Naval Surface Warfare Center Carderock

Division.

Incropera, F. R., & DeWitt, D. P. (2002). Fundamentals of Heat and Mass Transfer, 5th Edition. New York:

John Wiley & Sons.

Johnson, A., West, E., Miller, B., & Zouridakis, F. (2004). DD(X) Rail-Gun Conversion Feasibilty Study.

Cambridge: MIT.

McGillan, J., Perotti, T., McCunney, E., & McGovern, M. (n.d.). Shipboard Thermal Management Systems.

Naval Surface Warfeare Center, Carderock Division (NSWCCD).

MIL-C-2939E(SH). (1984). Cooling Coils, Air, Duct Type and Gravity Type; Cooler Units, Air, Naval

Shipboard Environmental Control Systems.

MIL-C-2939F(SH). (1990). Cooling Coils, Airr, Duct Type, and Gravity Type, Naval Shipboard

Environmental Control Systems.

Mills, A. F. (1999). Basic Heat & Mass Transfer Second Edition. Upper Saddle River: Prentice Hall.

MIL-PRF-2939G. (2001). Cooling Coils, Air, Duct Type, and Gravity Type, naval Shipboard Environmental

Control Systems.

MIL-STD-1627B(SH). (1981). Military Standard Bending of Pipe or Tube for Ship Piping System.

Washington, DC: NAVSEA.

M i L-T-16420K-1. (1978, April 24). Military Specification, Tube Copper Alloy, Seamless and Welded.

Washington, DC: NAVSEA.

NAVSEA. (1987). NAVSEA Design Practices and Criteria manualfor Surface Ship Freshwater Systems,

Chapter 532. Washington, DC: NAVSEA.

Norsok Standard Fifth Edition. (2006, September).

Pruske, M. A., & Kiehne, T. M. (n.d.). Thermal-Electric Co-Simulation of Power Conversion Systems

aboard an All-Electric Ship.

Rennels, D. C., & Hudson, H. M. (2012). Pipe Flow. Hoboken: John Wiley & Sons.

156



Center for Ocean Engineering * U Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

Sellens. (n.d.). Retrieved from http://me.queensu.ca/People/Sellens/images/Profiles.jpg

Solvay Fluor. (n.d.). Solkane 404A Thermodynamics. Hannover, Germany. Retrieved from

www.n8fan.net/item/table-r404a-superheat-proerties-pressure/

Storage Tank Thickness Determination. (2013). Retrieved from Science and Engineers Guide:

http://inclusive-science-engineering.com/storage-tank-thickness-determination/

Sunden, B. (2011). Tubes, Crossflow over. Retrieved from thermopedia:

http://www.thermopedia.com/content/5637/TUBESCROSSFLOWOVERFIG2.gif

System Curve and Pump Performance Curve. (n.d.). Retrieved from The Engineering Toolbox:

http://www.engineeringtoolbox.com/pump-system-curves-d_635.html

Travkin, V. (2001). Thermal Physics. Retrieved from www.travkin-hspt.com: http://travkin-

hspt.com/thermph/pic/fig7_01.gif

157



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering I MM

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Appendix A: Simulated Heat Loads

Load Name Cooling Load Cooling Load Cooling Load Cooling Load x-loc. y-loc. z-loc.
Shore Cond. Design Cond. Cruise Cond. Battle Cond. (m) (m) (m)

(KW) (KW) (KW) (KW)
RS01 9.56 7.91325 6.92849 7.91325 32.81 0.00 25.20
RS02 3.56 20.22275 20.22275 20.22275 33.14 0.00 22.83
RSO2_1 3.56 1.96952 1.96952 1.96952 26.45 0.00 3.29
RS04 3.56 11.1492417 10.9030517 11.1492417 33.81 6.70 19.69
RSO405 0.24 13.54045 12.52052 13.54045 33.81 0.00 19.69
RS0405 1 45 5.31067 4.99414 5.31067 29.12 -5.52 19.69
RSO4_1 20 6.50645 6.26026 6.50645 23.77 6.70 19.69
RS0405_2 9.7 3.79836 3.48183 3.79836 29.12 5.52 19.69
RSO40505C 9.7 45.721 41.81713 45.721 29.12 0.00 19.69
RSO5 0.9 10.30481 10.09379 10.30481 33.81 -6.70 19.69
RSO5_1 1.74 6.64713 6.40094 6.64713 23.77 -6.70 19.69
RSO7 - 5.41618 4.9238 5.41618 -14.39 0.00 22.83
RS07_1 - 3.62251 3.13013 3.62251 -17.74 0.00 19.69
RS07_2 - 8.01876 7.06917 8.01876 -15.06 -3.85 14.05
RSO8 - 3.628617 3.628617 3.628617 39.17 0.00 16.59
RS12 - 6.71747 6.71747 6.71747 33.14 0.00 14.05
RS12_1 - 1.54748 1.54748 1.54748 34.48 -8.54 8.51
RS12_2 - 1.12544 1.12544 1.12544 23.77 -8.54 8.51
RS12_3 - 5.31067 5.31067 5.31067 33.14 0.00 14.05
RS12_4 - 1.37163 1.37163 1.37163 22.09 -5.86 8.51
RS12_5 - 3.02462 3.02462 3.02462 35.82 0.00 14.05
RS12_6 - 1.26612 1.26612 1.26612 39.84 -11.72 14.05
RS12_7 - 0.91442 0.91442 0.91442 23.77 -3.35 14.05
RS13 - 40.6913383 40.6913383 40.6913383 34.48 0.00 8.51
RS13_1 - 1.0551 1.0551 1.0551 34.48 0.00 8.51
RS14 - 61.09029 61.09029 61.09029 34.48 -5.02 5.80
RS14_1 - 56.72921 56.72921 56.72921 24.10 -3.35 5.80
RS17 - 9.17937 9.17937 9.17937 -36.49 1.67 14.05
RS17_1 - 3.1128967 3.1128967 3.1128967 -23.77 0.00 14.05
RS1819 - 7.31536 7.31536 7.31536 68.63 0.00 8.51
RS1819_1 - 7.63189 7.63189 7.63189 68.63 0.00 5.80
RS19 - 1.7585 1.7585 1.7585 69.29 0.00 2.95
RS20 - 33.23565 33.23565 33.23565 61.26 0.00 8.51
RS21 - 4.71278 4.71278 4.71278 62.60 1.34 11.33
RS21_1 - 1.1138339 1.1138339 1.1138339 57.24 4.69 8.51
RS21_2 - 0.87925 0.87925 0.87925 58.58 -3.35 8.51
RS21_3 - 0.77374 0.77374 0.77374 59.92 -3.35 11.33
RS21 4 - 4.85346 4.85346 4.85346 62.60 -3.35 8.51
RS21 5 - 0.63306 0.63306 0.63306 62.60 1.17 8.51

158



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering i'i~r Massachusetts Institute of Technology

77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

RS21_6 - 0.14068 0.14068 0.14068 58.58 4.35 8.51
RS23 - 1.310129 1.310129 1.310129 50.88 -5.52 5.80
RS2324 - 22.36812 22.36812 22.36812 50.55 0.00 5.80
RS24 - 1.30129 1.30129 1.30129 50.21 2.51 5.80
RS26 - 0.56272 0.56272 0.56272 39.84 -6.86 8.51
RS28 - 9.70692 9.70692 9.70692 23.77 4.85 8.51
RS28_1 - 1.33646 1.33646 1.33646 23.77 9.54 8.51
RS28_2 - 1.68816 1.68816 1.68816 34.48 8.54 8.51
RS28 3 - 0.94959 0.94959 0.94959 23.77 7.20 8.51
RS30 - 3.76319 3.76319 3.76319 3.01 -7.20 8.51
RS30_1 - 0.56272 0.56272 0.56272 3.01 -4.69 8.51
RS32 - 8.33529 8.33529 8.33529 -8.37 0.00 8.51
RS32_1 - 4.5721 4.5721 4.5721 -8.37 4.52 8.51
RS32_2 - 0.73857 0.73857 0.73857 -8.37 7.70 8.51
RS32 3 - 6.50645 6.50645 6.50645 -8.37 9.88 8.51
RS36 - 19.48418 19.48418 19.48418 -13.06 0.00 8.51
RS37 - 16.56507 16.56507 16.56507 -23.77 0.00 8.51
RS37_1 - 4.15006 4.15006 4.15006 -28.45 0.00 8.51
RS42 - 49.13249 49.13249 49.13249 -36.49 0.00 5.80
RS43 - 9.4959 9.4959 9.4959 59.92 3.18 5.80
RS43_1 - 16.10786 16.10786 16.10786 58.92 -3.18 5.80
RS43_2 - 0.94959 0.94959 0.94959 62.60 -2.51 5.80
RS46 - 8.26495 8.26495 8.26495 3.01 -3.19 5.80
RS46_1 - 3.58734 3.58734 3.58734 0.33 0.00 5.80
RS46_2 - 14.3676484 14.3676484 14.3676484 -3.68 0.00 5.80
RS46_3 - 7.63189 7.63189 7.63189 3.01 -3.18 5.80
RS47 - 1.12544 1.12544 1.12544 -3.68 -2.51 5.80
RS51 - 6.4892167 5.9968367 6.4892167 -47.20 -1.67 3.29
RS51_1 - 5.0472467 5.0472467 5.0472467 -47.20 1.67 3.29
RS53 - 3.09496 3.09496 3.09496 -63.27 -6.86 5.80
RS53_1 - 6.8113739 6.8113739 6.8113739 -60.59 0.00 5.80
RS53_2 - 1.19578 1.19578 1.19578 -60.59 -6.86 5.80
RS53_3 - 2.95428 2.95428 2.95428 -73.98 -5.35 5.80
RS55 - 1.7940217 1.7940217 1.7940217 -71.30 6.36 5.80
RS57 - 2.2336467 2.2336467 2.2336467 70.63 0.00 3.29
RS58 - 56.06098 53.84527 56.06098 34.48 3.85 3.29
RS60 - 34.3966117 34.3966117 33.4118517 34.48 5.02 5.80
RS61 - 14.49004 14.49004 14.49004 25.44 3.85 5.80
RS61_1 - 8.68699 8.61665 8.68699 -23.77 0.00 3.29
RS63 - 53.14187 52.33296 53.14187 -30.13 0.00 3.29
RS6674 - 13.7166517 13.7166517 13.7166517 -71.30 0.00 2.95
RS69 - 4.0097317 4.0097317 4.0097317 62.60 0.00 2.95
RS70 - 9.70692 9.63658 9.70692 45.19 0.00 2.95
RS71 - 12.06331 12.06331 12.06331 -23.77 -1.34 2.95
RS72 - 2.6381017 2.6381017 2.6381017 -48.87 -1.67 3.29

159



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

RS74 - 4.18523 4.18523 4.18523 -71.30 -6.86 5.80
RS75 - 16.8816 16.8816 16.8816 33.14 3.35 14.05
RS78 - 4.39625 4.39625 4.39625 39.17 2.18 16.59
RS8688 - 2.1102 2.1102 2.1102 14.39 2.01 16.59
RS102104 - 2.1102 2.1102 2.1102 11.72 -2.01 16.59
RS103105 - 1.58265 1.58265 1.58265 -7.30 1.84 14.05
RS5C - 2.1102 2.1102 2.1102 -53.56 -2.01 14.05
RS8C - 1.58265 1.58265 1.58265 62.60 0.00 3.29
RS6E - 0.14068 0.14068 0.14068 53.90 -1.84 3.29
RS1G - 0.14068 0.14068 0.14068 53.90 1.84 3.29
RS2G - 1.09027 1.09027 1.09027 62.60 0.00 3.29
RS3G - 4.67761 4.67761 4.67761 -28.45 -4.85 14.05
RS5G - 1.0551 1.0551 1.0551 -23.77 4.35 11.33
RS6G - 1.0551 1.0551 1.0551 9.71 -8.20 11.33
RS7G - 9.1445517 9.1445517 9.1445517 18.41 4.18 5.80
RSO3 - 1.89918 1.89918 0.17585 23.77 1.51 22.83
RSO6 - 17.6908617 17.6908617 0.4575617 23.77 3.01 16.59
RSO9 - 9.9935555 9.9935555 5.4917955 34.48 7.53 16.59
RS10 - 5.83822 5.83822 - 25.11 -4.69 16.59
RS10_1 - 1.33646 1.33646 - 25.11 4.69 16.59
RS10_2 - 1.09027 1.09027 0.3517 23.77 -7.70 16.59
RS10 3 - 2.74326 2.74326 1.58265 27.78 -8.03 16.59
RS10 4 - 0.7034 0.7034 0.3517 28.12 -3.18 16.59
RS10 5 - 0.56272 0.56272 0.3517 28.12 2.18 16.59
RS10 6 - 1.4068 1.4068 0.3517 31.13 -8.03 16.59
RS10_7 - 0.24619 0.24619 - 31.13 -3.18 16.59
RS10_8 - 0.56272 0.56272 0.3517 31.13 2.18 16.59
RS10_9 - 0.14068 0.14068 0.3517 32.14 -0.50 16.59
RS10 10 - 1.33646 1.33646 0.3517 34.48 -3.85 16.59
RS10 11 - 0.91442 0.91442 0.3517 34.48 2.68 16.59
RS10 12 - 8.37046 8.37046 - -4.35 4.02 5.80
RS11 - 0.9323567 0.9323567 0.2289567 18.41 4.85 14.05
RS15 - 3.8518184 3.8518184 0.6865184 18.41 1.85 14.05
RS15_1 - 1.33646 1.33646 - 13.72 1.85 14.05
RS15_2 - 4.1152417 4.1152417 0.4575617 12.72 0.00 8.51
RS16 - 59.4745802 59.4745802 2.2881602 50.55 6.86 8.51
RS25 - 8.12427 8.12427 0.87925 44.52 5.69 8.51
RS25_1 - 1.37163 1.37163 - 50.55 -4.69 8.51
RS2527 - 9.00352 9.00352 - 39.84 -2.51 8.51
RS27 - 5.13482 5.13482 0.52755 38.16 -4.52 8.51
RS27_1 - 0.56272 0.56272 0.17585 48.54 -4.85 8.51
RS27_2 - 1.30129 1.30129 0.3517 43.18 0.84 8.51
RS27_3 - 1.01993 1.01993 0.3517 39.84 0.00 8.51
RS27_4 - 2.32122 2.32122 1.4068 7.70 -3.68 8.51
RS29 - 13.4073972 13.4073972 5.9493572 18.41 0.00 8.51

160



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

RS29_1 - 8.0891 8.0891 0.3517 18.41 -9.54 8.51
RS29_2 - 13.68113 13.68113 - 3.01 1.51 8.51
RS31 - 8.37046 8.37046 - 3.01 -9.71 8.51
RS31_1 - 22.7222819 22.7222819 20.8231019 3.01 -4.69 8.51
RS31_2 - 13.57562 13.57562 - -77.33 0.00 5.80
RS34 - 4.7669418 4.7669418 1.6016418 -9.71 -7.87 8.51
RS35 - 8.19461 8.19461 1.23095 -9.71 -4.85 8.51
RS35_1 - 0.66823 0.66823 - -8.37 -9.88 8.51
RS35_2 - 4.4141867 4.4141867 0.2289567 -23.77 -7.70 8.51
RS38 - 10.09379 10.09379 0.17585 -33.81 1.67 14.05
RS38_1 - 1.16061 1.16061 0.52755 -28.45 -2.01 14.05
RS38_2 - 1.82884 1.82884 - -30.46 -2.01 14.05
RS38_3 - 3.23564 3.23564 - -28.79 -2.01 14.05
RS38_4 - 1.0551 1.0551 - -3.01 2.18 5.80
RS3973 - 0.01 0.01 0.01 -36.49 7.87 5.80
RS39 - 2.42673 2.42673 0.3517 -39.17 1.34 3.29
RS40 - 2.0409151 2.0409151 0.9154751 50.55 -4.35 5.80
RS44 - 20.67996 20.67996 10.1993 -23.77 7.03 5.80
RS45 - 6.5247384 6.5247384 0.6865184 15.40 8.37 5.80
RS45_1 - 0.87925 0.87925 - 9.71 6.19 5.80
RS45_2 - 8.6880451 8.6880451 0.9154751 -23.77 2.01 5.80
RS48 - 17.47949 17.47949 12.3095 -23.77 -2.85 5.80
RS48_1 - 8.4408 8.4408 0.87925 -30.13 1.67 14.05
RS49 - 7.20985 7.20985 0.3517 -23.77 4.18 14.05
RS49_1 - 1.68816 1.68816 0.17585 -23.77 -7.70 8.51
RS49_2 - 10.3093821 10.3093821 4.5766721 -26.78 1.67 14.05
RS49_3 - 1.23095 1.23095 - -28.45 1.67 14.05
RS49_4 - 0.80891 0.80891 - -39.50 -7.87 5.80
RS50 - 8.26495 8.26495 2.1102 -36.49 -4.35 5.80
RS50_1 - 4.64244 4.64244 1.0551 -36.49 -5.36 3.29
RS50_2 - 2.56741 2.56741 - -55.57 -7.53 5.80
RSS2 - 5.6978917 5.6978917 0.4575617 -47.20 -8.70 5.80
RS52 1 - 1.5478317 1.5478317 0.4575617 -50.88 -6.36 5.80
RS52_2 - 2.39156 2.39156 - -47.20 -7.53 5.80
RS52_3 - 2.32122 2.32122 - -61.93 0.00 5.80
RS54 - 51.2437451 51.2437451 0.9154751 -71.30 4.52 5.80
RS56 - 1.0730367 1.0730367 0.2289567 -76.66 5.69 5.80
RS56_1 - 1.65299 1.65299 - 44.19 3.18 3.29
RS59 - 14.7714 14.7714 5.6272 3.01 5.36 3.29
RS62 - 4.71278 4.71278 - 3.01 -5.36 3.29
RS62_1 - 4.15006 4.15006 1.23095 -27.11 5.36 3.29
RS64 - 5.80305 5.80305 2.4619 -23.77 -5.36 3.29
RS65 - 8.19461 8.19461 3.1653 -40.50 1.67 3.29
RS68 - 5.87339 5.87339 2.1102 -43.18 7.53 5.80
RS73 - 2.42673 2.42673 0.52755 -50.88 0.00 8.51

161



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

RS76 - 3.0073867 3.0073867 0.2289567 -47.20 4.35 5.80
RS77 - 5.16999 5.16999 - -49.54 -2.01 14.05
RS79 - 1.79367 1.79367 0.3517 23.77 4.85 14.05
RS1D - 2.00469 2.00469 0.3517 -49.88 0.00 8.51
RS8D - 3.1653 3.1653 - 18.08 1.84 14.05
RS7E - 2.5505284 2.5505284 0.6865184 -23.77 7.03 5.80

162



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Appendix B: Refrigerant Characteristics

R134a Refrigerant - Saturated

T(*) P(kPa) ht(kJ/kg) hg(kJ/kg)

-36

-28

-24

-20

-16

-12

-8

-4

0

4

8

16
U
24

28

32

36

40

U
U
U
U

62.9

92.7

111.3

132.7

157.3

185.2

216.9

252.7

292.8

337.7

387.6

504.3

645.8

726.9

815.4

911.9

1016.6

U
U

5.04

15.2

20.33

25.49

30.69

35.92

41.19

46.5

51.86

57.25

62.69

73.73

84.98

90.7

96.48

102.33

108.27

I
I

163

228.39

233.43

235.93

238.41

240.87

243.31

245.72

248.11

250.46

252.78

255.05

259.47

263.68

265.69

267.64

269.5

271.28
rv-

I
I



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

44 1130.1 114.28 272.97

52 1385.4 126.6 276.01

60 1681.8 139.36 278.49

80 2633.2 174.25 280.67

100 3972.4 225.15 259.54

Table 15: R134a Saturated table (R134a - TetraFlouroEthane Properties, 2008)

164



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

R134a Refrigerant - Superheated Vapor

T(*C)\P(MPa) 0.06 0.1 0.14 0.18 0.2 0.24 0.28 0.32 0.4 0.5

-10

10

30

50

70

90

110

248.6

264.7

281.4

298.7

316.8

335.4

247.5

263.8

280.7

298.2

316.3

335

246.4

262.9

280

297.6

315.8

334.6

245.2

262

279.3

297

315.3

334.1

261.6

278.9

296.7

315

333.9

260.7

278.2

296.1

314.5

333.5

259.7

277.4

295.5

314

333.1

352.7

258.7

276.7

294.9

313.5

332.6

352.3

256.6

275.1

293.6

312.4

331.7

351.5

130

273

292

311.1

330.6

350.6

371

150

170

Table 16: R134a - Superheated vapor table (Ppressure 0.06MPa-0.5MPa) (R134a - TetraFlouroEthane Properties, 2008)

165

.lw
''7- T"

A-M iA



Center for Ocean Engineering * Massachusetts Institute of Technology
Naval Construction & Engineering Program I E 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering EH E Cambridge, Massachusetts 02139-4307

T('C)\P(MPa) 0.6 0.7 0.8 0.9 1 1,2 1.4 1.6 1.8 2

-10

10

30 270.8 268.45

50 290.3 288.53 286.7 284.8 282.7 278.3

70 309.7 308.33 306.9 305.4 303.9 300.6 297.1 283.3 288.9 283.9

90 329.5 328.3 327.1 325.9 324.7 322.1 319.4 316.5 313.5 310.2

110 349.6 348.6 347.6 346.6 345.5 343.4 341.2 338.9 336.5 334.1

130 370.2 369.32 368.5 367.6 366.7 364.9 363 361.1 359.2 357.2

150 389.8 389 388.2 386.7 385.1 383.5 381.6 380.1

170 408.8 407.4 406 404.6 403.1

Table 17: R134a Superheated vapor table (pressure 0.6MPa-2.OMPa) (R134a -TetraFlouroEthane Properties, 2008)

166



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

R404a Refrigerant - Saturated

T(C) P(MPa)

-59

-57

-55

-53

-51

-49

-47

-45

-43

-41

-39

-37

-35

-33

-31

-29

-27

-25

P,(MPa) hi(kJ/kg) h,(kJ/kg)

0.0537

0.0598

0.0665

0.0737

0.0815

0.09

0.0992

0.1091

0.1198

0.1312

0.1435

0.1567

0.1708

0.1858

0.2019

0.219

0.2372

0.2566

U
U

U

U
U
U
U
I

0.0512

0.0571

0.0636

0.0706

0.0782

0.0865

0.0955

0.1051

0.1155

0.1268

0.1388

0.1517

0.1656

0.1803

0.1961

0.213

0.2309

0.25

U
U

U
U
U
U
U
U
U
U

124.29

126.68

129.08

131.48

133.9

136.33

138.77

141.22

143.69

146.16

148.66

151.16

153.69

156.22

158.77

161.34

163.92

166.51

U

U

U

U
U
U
U
U

-23 0.2771 0.2702 169.12 352.9

167

Ap

331.54

332.76

333.98

335.2

336.41

337.62

338.83

340.03

341.23

342.43

343.62

344.8

345.98

347.15

348.31

349.47

350.62

351.77

I
I
I



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Ut

-21

-19

-17

-15

-13

-11

-9

-7

-5

-3

-1

1

3

5

7

9

11

13

15

17

U
U
U
U
U
U
U
U
U
U
U
U
U
U
U

U
U

I'Iir

0.2989

0.322

0.3464

0.3721

0.3994

0.428

0.4583

0.4901

0.5235

0.5586

0.5955

0.6342

0.6747

0.7171

0.7615

0.808

0.8565

0.9071

0.96

1.015

U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U

0.2917

0.3145

0.3386

0.364

0.3909

0.4193

0.4492

0.4807

0.5138

0.5486

0.5852

0.6235

0.6637

0.7059

0.75

0.7961

0.8443

0.8946

0.9472

1.002

U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U

171.74

174.38

177.03

179.69

182.37

185.06

187.76

190.48

193.21

195.95

198.7

201.47

204.25

207.05

209.86

212.69

215.54

218.4

221.28

224.19

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U
U

354.03

355.15

356.25

357.35

358.44

359.52

360.58

361.64

362.68

363.7

364.72

365.71

366.7

367.66

368.61

369.54

370.45

371.34

372.21

373.05

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

168

77:



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

1.073

1.132

1.195

1.26

1.327

1.397

1.47

1.546

1.624

1.706

1.79

1.878

1.969

2.063

2.16

2.262

2.366

2.475

2.587

2.703

U

U
U
U

1.059

1.119

1.181

1.245

1.313

1.383

1.455

1.531

1.609

1.69

1.775

1.862

1.953

2.047

2.145

2.246

2.351

2.459

2.572

2.688

59 2.824 2.809

169

U
U
U

U
U
U

227.11

230.06

233.04

236.05

239.08

242.16

245.26

248.41

251.6

254.85

258.14

261.49

264.9

268.37

271.92

275.55

279.26

283.06

286.96

290.97

295.08

U
U
U

U

U
U
U
U

373.87

374.66

375.42

376.15

376.85

377.51

378.14

378.72

379.25

379.74

380.17

380.54

380.85

381.08

381.23

381.29

381.24

381.07

380.76

380.27

379.58

I



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

61 2.949 2.934 299.32 378.62

63 3.078 3.064 303.69 377.32

65 3.212 3.199 308.19 375.53

67 3.352 3.34 312.85 372.99

Table 18: R404a Saturated table (Solvay Fluor)

170



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

R404a Refrigerant - Superheated Vapor

T(*C)\P(MPa) 0.082 0.091 0.100 0.110 0.121 0.133 0.145 0.159 0.173 0.188 0.204

340.20

347.99 347.69 347.36

355.90 355.64 355.35

363.96 363.73 363.48

347.00

355.05

363.21

346.62

354.71

362.91

346.20

354.35

362.60

353.96

362.25

353.53 353.07

361.88 361.49

-5 372.54 372.36 372.17 371.97 371.74 371.50 371.24 370.96 370.66 370.34 369.99

Q 7488 $65% MR$ 91%M 31$$ "1191$$ $1 0, 4., 401 $1
5 380.86 380.71 380.54 380.35 380.16 379.94 379.71 379.46 379.19 378.91 378.60

15 389.36 389.22 389.06 388.90 388.72 388.53 388.32 388.10 387.86 387.60 387.32

25 398.01 397.89 397.75 397.60 397.44 397.27 397.08 396.88 396.66 396.43 396.18

35 406.84 406.73 406.60 406.47 406.32 406.16 405.99 405.81 405.62 405.41 405.18

45 415.21 415.06 414.89 414.72 414.53 414.32

55 423.61

65

75

Table 19: R404 Superheated vapor table (pressure 0.082MPa-0.204MPa) (Solvay Fluor)

171

-45

-35

-25

-15

340.82

348.52

356.37

364.37

340.52

348.27

356.15

364.18

low

"Was.,



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

T(*C)\P(MPa) 0.222 0.240 0.260 0.281 0.303 0.326 0.351 0.377 0.405 0.434 0.465

-45

-35

-25 356.81 356.32 355.78 355.21 354.59

-15 365.32 364.89 364.43 363.93 363.40 362.82 362.20 361.54 360.82 360.05

-5 373.92 373.54 373.14 372.70 372.23 371.73 371.20 370.62 370.00 369.34 368.63

5 382.63 382.29 381.93 381.55 381.14 380.39 380.22 379.72 379.18 378.60 377.99

15 391.46 391.16 390.83 390.49 390.12 389.73 389.31 388.87 388.39 387.88 387.34

25 400.41 400.14 399.85 399.54 399.21 398.86 398.49 398.09 397.66 397.21 396.73

35 409.50 409.26 409.00 408.72 408.42 408.10 407.76 407.41 407.02 406.62 406.19

45 418.74 418.51 418.27 418.02 417.75 417.46 417.16 416.83 416.48 416.12 415.73

55 427.69 427.46 427.21 426.95 426.67 426.37 426.05 425.72 425.36

65 436.03 435.74 435.44 435.11

75

Table 20: R404 Superheated vapor table (pressure 0.222MPa-0.465MPa) (Solvay Fluor)

172



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

T(*C)\P(MPa) 0.497 0.531 0.567 0.604 0.643 0.685 0.728 0.773 0.820 0.869 0.921

0 367.87 367.05 366.17 365.22

10 377.33 376.62 375.87 375.06 374.19 373.26 372.25 371.17 370.00

20 386.76 386.15 385.49 384.79 384.04 383.24 382.38 381.46 380.48 379.42 378.28

30 396.22 395.67 395.09 394.48 393.82 393.12 392.38 391.58 390.74 389.83 388.87

40 405.73 405.24 404.72 404.18 403.59 402.98 402.32 401.62 400.88 400.09 399.26

50 415.31 414.87 414.41 413.92 413.40 412.84 412.26 411.64 410.98 410.28 409.55

60 424.99 424.59 424.17 423.72 423.25 422.75 422.23 421.67 421.08 420.46 419.80

70 434.77 434.41 434.02 433.62 433.19 432.73 432.25 431.75 431.22 430.65 430.06

80 444.33 443.98 443.60 443.21 442.79 442.36 441.89 441.41 440.90 440.36

90 452.55 452.12 451.68 451.21 450.71

100

110

120

130

140

Table 21: R404a Superheated vapor table (pressure 0.497MPa-0.921MPa) (Solvay Fluor)

173



Center for Ocean Engineering
Naval Construction & Engineering Program
Departnent of Mechanical Engineering

Massachusetts institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

T(*C)\P(MPa) 0.974 1.030 1.089 1.150 1.213 1.279 1.347 1.419 1.493 1.569 1.649

0

10

20 377.05 375.72 374.27

30 387.83 386.72 385.53 384.24 382.84 381.32 379.66 377.83

40 398.36 397.41 396.40 395.31 394.14 392.89 391.54 390.08 388.50 386.77 384.86

50 408.76 407.93 407.05 406.11 405.11 404.04 402.90 401.68 400.38 398.97 397.45

60 419.10 418.37 417.58 416.76 415.88 414.95 413.97 412.92 411.80 410.61 409.34

70 429.43 428.77 428.07 427.34 426.56 425.73 424.86 423.94 422.49 421.93 420.84

80 439.79 439.19 438.56 437.89 437.19 436.45 435.68 434.86 433.99 433.08 432.11

90 450.19 449.65 449.07 448.47 447.83 447.16 446.46 445.72 444.94 444.12 443.26

100 460.67 460.16 459.63 459.08 458.50 457.89 457.24 456.57 455.86 455.12 454.34

I"40

110 468.66 468.07 467.45 466.80 466.12 465.41

120 476.49

130

140

Table 22: R404a Superheated vapor table (pressure 0.974MPa-1.649MPa) (Solvay Fluor)

174



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

T('C)\P(MPa) 1.732 1.818 1.907 2.000 2.096 2.195 2.298 2.404 2.515 2.630 2.748 2.871

0

10

20

30

40 382.75 380.37

50 395.80 394.00 392.03 389.84 387.38 384.57 381.28

60 407.97 406.51 404.93 403.22 401.36 399.32 397.06 394.54 391.68 388.35 384.33 379.14

70 419.67 418.43 417.10 415.68 414.16 412.52 410.75 408.83 406.73 404.42 401.85 398.95

80 431.09 430.01 248.86 427.64 426.35 424.97 423.50 421.92 420.23 418.40 416.42 414.27

90 442.35 441.39 440.38 439.31 438.18 436.98 435.71 434.37 432.94 431.41 429.78 428.03

100 453.52 452.66 451.75 450.80 449.79 448.74 447.62 446.44 445.20 443.88 442.48 441.00

110 464.66 463.88 463.06 462.19 461.29 460.34 459.34 458.29 457.19 456.02 454.80 453.50

120 475.80 475.09 474.33 473.55 472.72 471.86 470.96 470.01 469.02 467.97 466.87 465.72

130 484.14 483.35 482.52 481.66 480.75 479.80 478.81 477.77

140 491.57 490,66 489.71

Table 23: R404a Superheated vapor table (pressure 1.732MPa-2.871MPa) (Solvay Fluor)

175



Center for Ocean Engineering * f Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

Appendix C: Matlab Code

geometry.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Cooling System Design Tool %
% Author: Ben Sanfiorenzo %
% Geometry module: Reads in excel data and user input %
% and creates the structure of the chilled water %
% system. Provides 2D and 3D layout of CW structure. %
% Last Modified: 5-8-13 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
close all
clc
clear all

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Step 1: Determine layout and geometry of the CW system
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Conversions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ft per m = 3.2808399;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Constants
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

g_mps2 = 9.807; %m/s^2
nu = 1.45*10^-6; %m^2/s - based on temp - assumed constant
rho 1000; %kg/m^3 - based on temp - assumed constant
k_cw 0.568; %W/m^2-K - based on temp - assumed constant
cp = 4203; %J/kg-K - based on temp - assumed constant

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Ship's data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

LOA 143.561; %m (default)
beam = 20.39; %m (default)
eng_deck htabovekeel = 1.397; %m (default)
useable_ht_eng_rm = 3.098; %m (default)
shipdata =
struct ( 'LOA' ,LOA, 'Beam' ,beam, 'Engineeringdeck_heightabovekeel',

engdeckhtabovekeel,'Useable height inengineroom',useable ht eng_rm);
fprintf('Note: ALL VALUES ARE IN METRIC\n\n')
fprintf('The default ship data is: \n')
shipdata
%reply =n';

reply = input('Would you like to modify it? [y/n]: ','s');
if isempty(reply)

reply = 'y';
end
if strcmp(reply,'y') I strcmp(reply,'Y') || strcmp(reply,'yes')

176



Center for Ocean Engineering U - Massachusetts Institute of Technology
Navel Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

proceed = false;
while -proceed

iserror = true;
while iserror

iserror = false;
LOA = input('LOA [m]: ');
if LOA <=0

iserror = true;
fprintf('Error!!! Please enter a positive number.\n')

elseif LOA == 88888 %reset to default
LOA = 143.561;

end
end
is error = true;
while iserror

iserror = false;
beam = input('Beam [m): ');
if beam <=0 || -isnumeric(beam)

iserror = true;
fprintf('Error!!! Please enter a positive number.\n')

elseif beam == 88888 %reset to default
beam = 20.39;

end
end
is error = true;
while iserror

iserror = false;
eng_deckhtabove keel =

input ('Engineering deck heightabovekeel [m]:
if engdeckhtabove keel <=0 II

-isnumeric(engdeckhtabovekeel)
is-error = true;
fprintf('Error!!! Please enter a positive number.\n')

elseif eng_deckhtabovekeel == 88888 %reset to default
eng deckhtabovekeel = 1.397;

end
end
iserror = true;
while is-error

iserror = false;
useableht_eng_rm = input('Useable height in engine room [m]: ');
if useableht eng_rm <=0 I1 isnumeric(useablehteng_rm)

is-error = true;
fprintf('Error!!! Please enter a positive number.\n')

elseif useableht_eng_rm == 88888 %reset to default
useable ht eng rm = 3.098;

end
end
fprintf('\nThe new ship data is: \n')
ship data =

struct('LOA',LOA,'Beam',beam,'Enginedeckheight above keel',

eng_deckhtabovekeel,'Useable heightin engineroom',useable-hteng rm)
satisfactory = input('Satisfactory? [y/n]: ','s');

177



Center for Ocean Engineering * f Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

if strcmp(satisfactory,'y') | strcmp(satisfactory,'Y') ||
strcmp(satisfactory,'yes')

proceed = true;
else

proceed = false;
end

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Transverse bulkhead locations
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%The length, beam, transverse bulkhead locations would be known at this
%point. To create the CSDT independently, the code is written which asks
%for this information, but when working in conjunction with Damien's code,
%this will not be necessary
bulkheadloc = [100 90 82.5 67.5 52.5 37.5 20 5 -10 -27.5 -43.5 -50 -80 -
100]*LOA/200; % (default)
fprintf('\nNote: Along the longitudinal axis, midships is defined as 0, the
forward\n')
fprintf('perpendicular is defined as LOA/2 and the aft perpendicular is
defined as -LOA/2.\n')
fprintf('The bulkhead loc array also includes the FP in the first cell array
and the AP\n')
fprintf('in the last cell array.\n\n')
fprintf('The default transverse bulkhead locations are: \n')
bulkhead loc
%reply =n';
reply = input('Would you like to change it? [y/n]: ','s');
if isempty (reply)

reply = 'y';
end
if strcmp(reply,'y') || strcmp(reply,'Y') I strcmp(reply,'yes')

proceed = false;
while -proceed

iserror = true;
while is-error == true

iserror = false;
fprintf('Please enter the bulkhead locations from the bow to the

stern.\n')
fprintf('Example: [75 60 40 20 5 -5 -15 -35 -50 -65 -75]\n')
bulkheadloc = input('Transverse bulkhead locations [m]: ');
if length(bulkheadloc)<2

fprintf('Error!!! Not enough bulkhead locations.\n')
elseif bulkhead loc == 88888 %reset to default

bulkheadloc = [100 90 82.5 67.5 52.5 37.5 20 5 -10 -27.5 -
43.5 -50 -80 -100]*LOA/200;

else
flag = false;
for i=2:length(bulkheadloc)

if bulkheadloc(i)>bulkheadloc(i-1)
flag = true;

end
end
if flag == true

178



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'IiF Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

iserror = true;
fprintf('Error!!! Bulkhead

to stern.\n')
end
if abs(bulkheadloc(1) - LOA/2)

abs(bulkheadloc(length(bulkhead_loc)) + LOA/2)
%is-error = true;
fprintf('Error!!! Bulkhead

length of the ship.\n')
end

end
bulkheadloc(l) = LOA/2;
bulkheadloc(length(bulkheadloc))

locations not entered from bow

>0. 01*LOA
>0. 01*LOA

II

locations do not span the

= -LOA/2;
end
fprintf('The modified transverse bulkhead locations are: \n')
bulkheadloc
satisfactory = input('Satisfactory? [y/n]: ','s');
if strcmp(satisfactory,'y') || strcmp(satisfactory,'Y') |1

strcmp(satisfactory,'yes')
proceed = true;

else
proceed = false;

end
end

end

Design CW system

fprintf('\nTo properly size and locate the piping and chiller
load locations,\n')
fprintf('magnitude and priority (vital/non-vital) is necessary
data can be \n')

fprintf('inputted into the excel spreadsheet CSDTinputs.xlsx.
required data has not\n')
fprintf('been entered, please enter data now before proceeding
CSDT program.\n')

units, the hea

The required

If the

through the

0 Input File

filename = 'CSDT input.xlsx';

% Read Load Data

[num, txt] = xlsread(filename, 'LoadData');
NumLoads = num(1);

Condition Labels = txt(l1,4:7);
LoadName = txt(13:12+NumLoads,1);
Priority num(6:5+NumLoads,1); % vital loads priority 1-2; non-vital all
else
Load Value kW = num(6:5+Num Loads,3:6);
LoadValuekW(isnan(LoadValuekW)) = 0;
LoadLoc m = num(6:5+NumLoads,7:9);

179

t



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

Hxchgr_Type = txt(13:12+NumLoads, 11);
size num = size(num);
if size num(2) > 9

HxchgrNum = num(6:5+Num_Loads,11);
else

HxchgrNum = nan*ones(1,NumLoads);
end
clear num txt

%%%~0%%%%%% %%%%%%%%%%%%%%%%%%%00

% Read Hxchgr DB
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[num,txt] = xlsread(filename,'HXCHGR DB');
NumCC_Types = num (1, 1) ;
Num_50_SeriesTypes = num(2,1);
Num_60_SeriesTypes = num(3,1);
NumUnitCoolerTypes = num(4,1);
NumnOther_CC_Types = num(5,1);
NumFP Types = num(6,1);
NumST Types = num(7,1);

Num_CP_Types = num(8,1);

NumOtherHxchgr_Types = num(9,1);
NumHxchgr_Types = num(10,1);

if NumCCTypes > 0
CCCapacitykW = num(16:15+NumCC Types,4);
CC_hlm = num(16:15+NumCCTypes,5);
CCArea_Pricm2 = num(16:15+NumCCTypes,10);
CC U = num(16:15+Num _CC_Types,12);
CCTube k = num(16:15+Num CC Types,13);
CCTube _Diam cm = num(16:15+NumCC_Types, 14);
CCTubeThickcm = num(16:15+NumCCTypes,15);
CCAreaSeccm2 = num(16:15+NumCCTypes,16);
CCFluid hc = num(16:15+NumCCTypes,17);
CCFluid_TempIn C = num(16:15+NumCC_Types,18);

CCFluidMfr_kgps num(16:15+NumCC_ Types,21);
CCDim-m = [num(16:15+NumCCTypes,22) num(16:15+Num CCTypes,23)

num(16:15+NumCC_Types,24)];
CC WeightDrykg = num(16: 15+Num CC Types, 25);
CCWeightWet_kg = num(16:15+NumCCTypes,26);

end

if NumFPTypes > 0
FPCapacit y_kW = num(16:15+NumFP Types,33);
FP_hlm = num(16:15+NumFPTypes,34);
FP _Areacm2 = num(16:15+NumFP_Types,39);
FP U = num(16:15+NumFPTypes,41);
FPPlate k = num(16:15+NumFP_Types,42);
FPPlateThick _cm = num(16:15+NumFP_Types,43);
FPNum__Gaps = num(16:15+NumFPTypes,44);
FPAreaSeccm2 = num(16:15+NumFPTypes,45);
FPFluidType = txt(17:16+NumFPTypes,48);
FP Fluidcp = num(16:15+NumFPTypes,47);
FPFluidhc = num(16:15+NumCCTypes,48);
FP FluidTempInC = num(16:15+NumFPTypes,49);

180



Center for Ocean Engineering * U Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

FP_FluidMfr kgps = num(16:15+Num FPTypes,52);
FP Dim m = [num(16:15+Num FP Types,53) num(16:15+NumFPTypes,54)

num(16:15+Num FP_Types,55)1;
FP_WeightDrykg = num(16:15+NumFP_Types,56);
FP_WeightWet kg = num(16:15+NumFPTypes,57);

end

if Num_STTypes > 0
ST CapacitykW = num(16:15+NumSTTypes,64);
ST hl m = num(16:15+NumST_Types,65);
STAreacm2 = num(16:15+NumSTTypes,70);
STU = num(16:15+NumST_Types,72);
STTubek = num(16:15+NumSTTypes,73);
STTubeDiam cm = num(16:15+NumSTTypes,74);
STTubeThickcm = num(16:15+NumSTTypes,75);
ST Area Sec cm2 = num(16:15+NumSTTypes,76);
ST Fluid Type = txt(17:16+NumST_Types,79);
STFluid hc = num(16:15+NumCCTypes,78);
STFluidcp = num(16:15+NumSTTypes,79);
STFluidTempInC = num(16:15+NumST_Types,80);
STFluidMfrkgps = num(16:15+NumSTTypes,83);
STDimm [num(16:15+Num STTypes,84) num(16:15+NumSTTypes,85)

num(16:15+Num ST Types,86)];
STWeightDrykg = num(16:15+NumST_Types,87);
STWeight_Wetkg = num(16:15+NumSTTypes,88);

end

if Num CPTypes > 0
CP CapacitykW = num(16:15+NumCPTypes,95);
CP hlm = num(16:15+NumCPTypes,96);
CP Areacm2 = num(16:15+NumCP_Types,101);
CP U = num(16:15+NumCP_Types,103);
CP Tubek = num(16:15+NumCPTypes,104);
CPTubeDiam cm = num(16:15+NumCP_Types,105);
CPTubeThickcm = num(16:15+NumCP_Types,106);
CPPlate k = num(16:15+NumCPTypes,107);
CP Plate Thick cm = num(16:15+NumCPTypes,108);
CP Dim m = [num(16:15+NumCPTypes,109) num(16:15+NumCPTypes,110)

num(16:15+NumCPTypes,111)1;
CPWeightDrykg = num(16:15+NumCPTypes,112);
CPWeight_Wetkg = num(16:15+NumCPTypes,113);

end

if NumOtherHxchgrTypes > 0
O_Capacity_kW = num(16:15+NumOtherHxchgrTypes,120);
O hl m = num(16:15+NumOtherHxchgrTypes,121);
O Area cm2 = num(16:15+NumOtherHxchgrTypes,126);
O U = num(16:15+Num OtherHxchgr_Types,128);
O Tube k = num(16:15+NumOtherHxchgrTypes, 129);
O Tube Diam cm = num(16:15+NumOtherHxchgrTypes,130);
O Tube Thick cm = num(16:15+NumOtherHxchgrTypes,131);
O Area Seccm2 = num(16:15+NumOther_Hxchgr Types,132);
O Fluid Type = txt(17:16+NumOtherHxchgrTypes,135);
O Fluid hc = num(16:15+NumCCTypes,134);
O Fluid cp = num(16:15+NumOtherHxchgr_Types,135);

181



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

O FluidTemp_InC = num(16:15+Num_OtherHxchgrTypes, 136);
0 Fluid Mfrkgps = num(16:15+Num_ OtherHxchgr_Types,139);
O Dim m = [num(16:15+NumOtherHxchgrTypes,140)

num(16:15+NumOther_Hxchgr_Types,141) num(16:15+NumOtherHxchgrTypes,142)];
O_Weight_Dry_kg = num(16:15+NumOtherHxchgrTypes, 143);
O_WeightWetkg = num(16:15+NumOtherHxchgrTypes,144);

end
clear num txt

%%%%%%%%%%%%%%%%%%%0%%%%%%%%%%

% Chiller DB
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

(num,txt] = xlsread(filename,'Chiller DB');
Num C ChillerTypes = num(1,1); %centrifugal
NumRChiller_Types = num(2,1); %reciprocating
Num S ChillerTypes = num(3,1); %screw
Num O ChillerTypes = num(4,1); %other
NumChiller_Types = num(5,1);

if Num_C_ChillerTypes > 0
C ChillerCapacitykW = num (ll:10+Num_C_ChillerTypes,4);
C ChillerWeightkg = num(11:10+Num_C_Chiller_Types,5);
C Chiller Dim m = [num(11:10+Num C Chiller Types, 6)

num(11:10+Num_CChillerTypes,7) num(11:10+Num_C_ChillerTypes,8)1;
C ChillerType = txt(13:12+Num_C_ChillerTypes,11);
C_Chiller P MPa = [num(11:10+Num_C_Chiller Types,10)

num(11:10+Num_CChillerTypes,12) num(11:10+Num_C_Chiller_Types,14)];
C_Chille r_T_C = [num(11:10+Num_C_Chiller_Types,11)

num(11:10+Num C Chiller_Types,13) num(11:10+Num_C_Chiller_Types, 15)1;
C ChillerOutTempC = num(11:10+NumCChiller_Types, 16);

end

if Num_R_ChillerTypes > 0
RChillerCapacit y_kW = num(11:10+NumR_Chiller_Types,23);
RChillerWeightkg = num(11:10+Num_R_Chiller_Types,24);
RChillerDimm = [num(11:10+Num_R_Chiller Types,25)

num(11:10+Num R Chiller Types,26) num(11:10+Num R ChillerTypes,27)];
R Chiller Type txt(13:12+Num_R_ChillerTypes,30);
RChiller P MPa = [num(11:10+Num_R_ChillerTypes,29)

num(11:10+Num_R_Chiller Types,31) num(11:10+Num_R_Chiller_Types,33)];
R_Chiller T C = [num(11:10+Num_R_ChillerTypes,30)

num(11:10+Num_R_Chiller Types,32) num(11:10+Num_R_Chiller_Types,34)1;
R_ChillerOut_TempC = num(11:10+NumRChiller _Types,35);

end

if Num S ChillerTypes > 0
S ChillerCapacity_kW = num(11:10+Num_S_Chiller_Types,42);
S Chiller_Weightkg = num(11:10+Num S ChillerTypes,43);
S_ChillerDimm = [num(11:10+Num_S_Chiller_Types, 44)

num(11:10+Num_S_ChillerTypes,45) num(11:10+Num_S_Chiller_Types,46)];
S_Chiller Type = txt(13:12+Num S Chiller Types,49);
S_Chiller P MPa = [num(11:10+Num_S_Chiller Types,48)

num(11:10+Num S Chiller_Types,50) num(11:10+Num S ChillerTypes,52)1;
S_Chiller T C = [num(11:10+Num_S_ChillerTypes,49)

num(11:10+INum SChillerTypes,51) num(11:10+NumSChillerTypes,53)];

182



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

S_ChillerOutTempC = num(11:10+Num_S_Chiller_Types,54);
end

if Num 0 ChillerTypes > 0
O_ChillerCapacity_kW = num(11:10+Num_0_Chiller_Types,61);
OChiller Weight kg = num(11:10+Num 0_ChillerTypes,62);
O_Chiller Dim m = [num(11:10+Num_0_ChIllerTypes, 63)

num(11:10+Num_0_ChillerTypes,64) num(11:10+Num 0ChillerTypes,65)];
O_ChillerType txt(13:12+Num_0_ChillerTypes,68);
O_Chiller_P_MPa = [num(11:10+Num_0_ChillerTypes,67)

num(11:10+Num_0_ChillerTypes,69) num(11:10+Num_0_ChillerTypes,71)];
O_Chiller T C = [num(11:10+Num_0_ChillerTypes,68)

num(l:10+NumOChillerTypes,70) num(11:10+Num 0 ChillerTypes,72)1;
O_ChillerOutTemp_C = num(11:10+Num_0_Chiller_Types,73);

end
clear num txt

%% %%% %% %% % 0%%

R134a Superheated Vapor DB

num = xlsread(filename,'Rl34a-superheated vapor');
R134aSHV_T_C = num(2:22); %SHV temps
R134aSHV_P_MPa = [num(1,2) num(1,3) num(1,4) num(1,5) num(1,6) num(1,7)
num(l,8) num(1,9) num(1,10)...

num(1,11) num(1,12) num(1,13) num(1,14) num(1,15) num(1,16) num(1,17)
num(1,18) num(1,19) num(1,20) num(1,21)]; %SHV pressures
R134aSHVh = [num(2:22,2) num(2:22,3) num(2:22,4) num(2:22,5) num(2:22,6)
num(2:22,7) num(2:22,8) num(2:22,9) num(2:22,10)...

num(2:22,11) num(2:22,12) num(2:22,13) num(2:22,14) num(2:22,15)
num(2:22,16) num(2:22,17) num(2:22,18) num(2:22,19) num(2:22,20)
num(2:22,21)]; %SHV enthalpies

% R134a Saturated DB

num = xlsread(filename,'Rl34a-saturated');
R134aSat_T_C = num(1:45); %Saturated temps
R134aSat_P_MPa = num(46:90); %Saturated pressures
R134a Sat hf = num(91:135); %Saturated enthalpies-fluid
R134aSat-hg = num(136:180); %Saturated enthalpies-gas

% R404a Superheated Vapor DB

num = xlsread(filename,'R404a-superheated vapor');
R404a SHV T C = num(3:42); %SHV temps
R404aSHVPMPa = [num(2,2) num(2,3) num(2,4) num(2,5) num(2,6)
num(2,8) num(2,9) num(2,10)...

num(2,11) num(2,12) num(2,13) num(2,14) num(2,15) num(2,16)
num(2,18) num(2,19) num(2,20)...

num(2,21) num(2,22) num(2,23) num(2,24) num(2,25) num(2,26)
num(2,28) num(2,29) num(2,30)...

num(2,31) num(2,32) num(2,33) num(2,34) num(2,35) num(2,36)
num(2,38) num(2,39) num(2,40)...

num(2, 7)

num(2, 17)

num(2,27)

num(2, 37)

183



Center for Ocean Engineering
Naval Construction & Engineering Program
Departnent of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

num(2, 41) num(2, 42)
num (2, 48) num (2, 4 9) num,

num(2,51) num(2,52)
%SHV pressures

num(2, 43) num(2, 44) num(2, 45) num(2, 46) num(2, 47)
(2,50) ...
num(2,53) num(2,54) num(2,55) num(2,56) num(2,57)];

R404a SHVh = [num(3:42,2) num(3:42,3) num(3:42,4) num(3:42,5) num(3:42,6)
num(3:42,7) num(3:42,8) num(3:42,9) num(3:42,10)...

num(3:42,11) num(3:42,12) num(3:42,13) num(3:42,14) num(3:42,15)
num(3:42,16) num(3:42,17) num(3:42,18) num(3:42,19) num(3:42,20)...

num(3:42,21) num(3:42,22) num(3:42,23) num(3:42,24) num(3:42,25)
num(3:42,26) num(3:42,27) num(3:42,28) num(3:42,29) num(3:42,30)...

num(3:42,31) num(3:42,32) num(3:42,33) num(3:42,34) num(3:42,35)
num(3:42,36) num(3:42,37) num(3:42,38) num(3:42, 39) num(3:42,40) ...

num(3:42,41) num(3:42,42) num(3:42,43) num(3:42,44) num(3:42,45)
num(3:42,46) num(3:42,47) num(3:42,48) num(3:42,49) num(3:42,50) ...

num(3:42,51) num(3:42,52) num(3:42,53) num(3:42,54) num(3:42,55)
num(3:42,56) num(3:42,57)]; %SHV enthalpies

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% R404a Saturated DB
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

num = xlsread(filename,'R404a-saturated');
R404aSat_T_C = num(1:129); %Saturated temps
R404aSat_Pf_MPa = num(130:258); %Saturated pressures
R404aSatPgMPa = num(259:387); %Saturated pressures
R404aSathf = num(388:516); %Saturated enthalpies-fluid
R404aSat hg = num(517:645); %Saturated enthalpies-gas

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Read in pump curves
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

num = xlsread(filename,'PumpData');
NumPumps = num(l); %number of different pump curves in pump series 1510
Bell&Gosset
Pump_Mfr = zeros(NumPumps,4);
PumpHead = zeros(NumPumps,4);
for i=1:Num Pumps

PumpMfr(i,:) num(7+NumPumps*16+i*4:7+NumPumps*16+i*4+3);
PumpHead(i,:) = num(9+NumPumps*20+i*4:9+Num Pumps*20+i*4+3);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% main piping configuration
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fprintf('\nThe chilled water system can be configured either using a single
main piping\n')
fprintf('system or a double main piping system. The single main piping system
will often\n')
fprintf('be cheaper, but offers less in terms of survivability. Single main
piping systems\n')
fprintf('are typically used for auxiliary ships or small combatants. Double
main piping\n')
fprintf('systems are generally used for large combatants. In addition, for
double main\n')
fprintf('piping systems, the loop could be simple, with few bends, or more
complex, with many\n')

184



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering I'Iir Massachusetts Institute of Technology

77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

fprintf('bends. A few generic examples are provided through the use of the

pop-up menu.\n')
%piping config 2;
pipingconfig = menu('Select the main piping configuration','Single
main' ,'Double main');

% Define location of header piping for single main CW system

if piping config == 1
header-deckht = 5.2; %m (default)
fprintf('\nThe default main piping height is: %4.2f m\n', headerdeckht)
reply = input('Would you like to change it? [y/n): ','s');
if isempty(reply)

reply = 'y';
end
if reply == 'y' |1 reply == 'Y

proceed = false;
while -proceed

headerdeckht = input
satisfactory = input('
if strcmp(satisfactory

strcmp(satisfactory,'yes')
proceed = true;

('Main piping height [m]: ');
Satisfactory? [y/n): ','s');

,'Iy') | strcmp(satisfactory,'Y') II

else
proceed = false;

end
end

end
end

% Define location of port and starboard header piping for double main CW
system

if pipingconfig == 2
%piping double config = 1;
piping double config = menu('Select a simple double main piping loop or a

double main with multiple bends',...
'Simple loop','Multiple bends');

portheaderdeck ht = 5.2; %m (default)
stbd_headerdeckht = 10.2; %m (default)
fprintf('\nFor a double main system, proper separation of the main piping

is essential\n')
fprintf('for survivability. Vertical separation of 1-2 decks is

recommended with one\n')
fprintf('of the main piping systems on the damage control deck.\n')

fprintf('The port and starboard main piping heights are %4.2f m and %4.2f

m, respectively\n', ...
port header deck ht,stbdheaderdeckht)

%reply =n';
reply input('Would you like to change them? [y/n]: ','s');

if isempty(reply)
reply = 'y';

end

185



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

if reply == 'y' 11 reply == 'Y'
proceed = false;
while -proceed

port_headerdeckht = input ( 'Port main height [m]:
stbdheaderdeckht = input('Starboard main height [m]:
satisfactory = input('Satisfactory? [y/n]: ','s');

if strcmp(satisfactory,'y') I strcmp(satisfactory,'Y')
strcmp (satisfactory, 'yes')

proceed = true;
else

proceed = false;
end

end
end

% Define where bends occur for double main configuration wit
% multiple bends

if pipingdouble config == 2
fprintf('\nThe main piping should be within 3 feet of th

except for curved sections\n')
fprintf('of the hull which allows a maximum distance of

exemptions granted for\n')
fprintf('situations in which freezing of the pipes could
headerbends = [LOA/2-3 beam/2-0.7*beam/2;

LOA/2-0O.075*LOA beam/2-0.5*beam/2;
LOA/2-0.1*LOA beam/2-0.3*beam/2;
LOA/2-0.2*LOA beam/2-0.25*beam/2;
LOA/2-0.3*LOA beam/2-0.2*beam/2;
LOA/2-0.35*LOA beam/2-3/ft per m;
-(LOA/2-0.05*LOA) beam/2-0.15*beam/2;
LOA/2-3 -beam/2+0.7*beam/2;
LOA/2-0O.075*LOA -beam/2+0.5*beam/2;
LOA/2-0.1*LOA -beam/2+0.3*beam/2;
LOA/2-0.2*LOA -beam/2+0.25*beam/2;
LOA/2-0.3*LOA -beam/2+0.2*beam/2;
LOA/2-0.35*LOA -beam/2+3/ftperm;
-(LOA/2-0.05*LOA) -beam/2+0.15*beam/2];

fprintf('The default main piping bend locations are:\n')
headerbends
%reply ='n';

reply = input('\nWould you like to change them? [y/n]: '
if isempty(reply)

reply = 'y';

h

e hull,

8 feet (with

occur).\n')

end
if

starboard?

reply == 'y' I1 reply == 'Y
reply = input('Are the bend
[y/n] ', 's');

if isempty(reply)
reply =y';

end
if reply == 'y' 1| reply ==

proceed = false;
while ~proceed

locations symmetric port and

186

I I

Is,s ) ;



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

is error=true;

while is error
is error = false;
fprintf('Please enter the bend locations starting

from centerline forward and continuing counter-clockwise until centerline
aft.\n')

fprintf('Example: [20 5;19 6; 14 10; 8 12; -17 10; -

19 7; -20 4]\n')
test1 = input('Bend locations: ');
tempvar = max(abs(testl));
tempvar_2 = size(testl);
if tempvar(1)>LOA/2

fprintf('Error!!! Bend location exceeds ship
length\n')

iserror = true;
end
if temp_var(2)>beam/2

fprintf('Error!!! Bend location exceeds ship

beam\n')

iserror = true;
end
if tempvar_2(1)<2

fprintf('Error!!! Not enough bends\n')

is error = true;
elseif tempvar_2(2)>2

fprintf('Error!!! Only include x and y bend
locations\n')

iserror = true;
end

end
header bends = test1; %passes error check
for i=length(testl)+1:length(testl)*2

headerbends(i,1) = testl(i-length(testl),l);
headerbends(i,2) = -testl(i-length(testl),2);

end
fprintf('The new main piping bend locations are:\n')
headerbends
satisfactory = input('Satisfactory? [y/n]: ','s');
if strcmp(satisfactory,'y') 1| strcmp(satisfactory,'Y')

|| strcmp(satisfactory,'yes')
proceed = true;

else
proceed = false;

end
end

else
proceed = false;
while -proceed

is error=true;
while iserror

iserror = false;
fprintf('Please enter the bend locations starting

from centerline forward and continuing counter-clockwise until centerline
forward. \n')

187



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'IiT Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

beam\n')

locations\n')

fprintf('Example: [20 5;15 6; 10 8
-14 -7.2; 8 -7; 15 -4.8; 20 -4.2]\n')

test1 = input('Bend locations: ');
tempvar = max(abs(testl));
temp_var_2 = size(testl);
if tempvar(1)>LOA/2

fprintf('Error!!! Bend locatio

iserror = true;
end
if tempvar(2)>beam/2

fprintf('Error!!! Bend location

; 8 10; -15 9;-20

n exceeds ship

exceeds ship

iserror = true;
end
if tempvar_2(1)<2

fprintf('Error!!! Not enough bends\n')
iserror = true;

elseif tempvar_2(2)>2
fprintf('Error!!! Only include x and y bend

iserror = true;
end

end
headerbends = test1; %passes error check
fprintf('The new main piping bend locations are:\n')
headerbends
satisfactory = input('Satisfactory? [y/n]: ','s');
if strcmp(satisfactory, 'y') II strcmp(satisfactory, 'Y')

|| strcmp(satisfactory,'yes')
proceed = true;

else
proceed = false;

end
end

end
end

end
end

% Define piping offsets

offseth = 0.5; %offset between supply and return header i
direction (default)
fprintf('\nThe default offset distance between the supply
is: %4.2f m\n', offseth)
%reply =n';

reply = input('Would you like to change it? [y/n): ','s');
if reply == 'y' II reply == 'Y'

proceed = false;
while -proceed

offseth = input('Supply and return header offset
satisfactory = input('Satisfactory? [y/n]: ', ' s');

n the x,y,z

and return header

distance [m]: ');

188

5;-19 -5;-17 -6;

length\n')



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

if strcmp(satisfactory,'y') |1 strcmp(satisfactory,'Y')
strcmp(satisfactory,'yes')

proceed = true;
else

proceed = false;
end

end
end
offset b = 0.1; %offset between branch inlet and outlet in the x,y,z
direction (default)

fprintf('\nThe default offset distance between the branch inlet and outlet
is: %4.2f m\n', offsetb)
%reply 'n';

reply = input('Would you like to change it? [y/n]: ','s');
if reply == 'y' I1 reply == 'Y'

proceed = false;
while -proceed

offset b = input('Branch inlet and outlet offset distance [m]: ');
satisfactory = input('Satisfactory? [y/n): ','s');

if strcmp(satisfactory,'y') Il strcmp(satisfactory,'Y') ||
strcmp(satisfactory,'yes')

proceed = true;

else
proceed = false;

end
end

end

% Determine zonal configuration

zones = 3; %(default)
fprintf('\nThe cooling loads are broken up into zones along the length of
ship, \n')
fprintf('with the ability of a.zone to be isolated from the rest of the
cooling system.\n')
fprintf('The greater the number of zones, the more survivable the ship is,
but cost, \n')

fprintf('weight and space required go up. The minimum number of zones is 2
The number of\n')
fprintf('zones also should not exceed the number of compartments (but
generally is much fewer).\n\n')

%% %% %%% %%%%% %% %%%%%%6M%%%%%%%%
% Define total heat load within each compartment

LoadValue_1 = zeros(1,length(bulkheadloc)-1);
LoadLoc 1 = zeros(1,length(bulkheadloc)-1);
for i=l:length(bulkheadloc)-1

for j=l:Num Loads
if LoadLocm(j,1) <= bulkheadloc(i) && LoadLoc m(j,1) >

bulkheadloc(i+l)
LoadValue_1(i) = LoadValue_1 (i)+LoadValuekW(j,2);

elseif Load Locm(j,1) > bulkheadloc(1) && i==1
LoadValue_1(i) = LoadValue_1 (i)+LoadValue_kW(j,2);

189

the

.



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

elseif Load Loc m(j,1) < bulkheadloc(length(bulkheadloc)) &&
i==length (bulkheadloc) -1

LoadValue_1(i) = LoadValue_1(i)+LoadValuekW(j,2);
end

end
LoadLoc_1(i) = (bulkheadloc(i+1)-bulkhead loc(i))/2+bulkhead loc(i);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define zonal boundaries (default # of zones and default zonal
% boundaries)

zonalboundaries = .zeros (length(zones));
zonal length = LOA/zones; %m space zones equidistant (default)
for i=1:zones

zonalboundaries(i) = LOA/2 - i*zonallength;
end
aft bkhd 1 = zeros(1,length(zones));
for i=1:zones

%find aft most bulkhead in zone
for j=2:length(bulkheadloc)

if bulkhead loc (j) >=zonalboundaries (i)
aft_bkhd_1(i) = bulkheadloc(j);

end
end

end
zonalboundaries = aftbkhd_1;
for i=length(zonalboundaries) +1:-1:2

zonalboundaries (i)=zonalboundaries (i-1);
end
zonalboundaries(1)=LOA/2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Define total heat load within each zone (default # of zones
% and default zonal boundaries)
%%%%%%%%%%%%%%%%%%%%%%%%%O-%%%%

LoadValue_2 = zeros(1,length(zonalboundaries)-1);
LoadLoc_2 = zeros(1,length(zonalboundaries)-1);
for i=1:length(zonalboundaries)-1

for j=1:NumLoads
if LoadLoc_m(j,1) <= zonalboundaries(i) && LoadLoc m(j,1) >

zonalboundaries (i+1)
Load_ Value_2 (i) = LoadValue_2(i)+LoadValue_kW(j,2);

elseif LoadLocm(j,1) > zonalboundaries(1) && i==1
Load Value_ 2(i) = Load Value_2(i)+LoadValue kW(j,2);

elseif LoadLoc_m(j,1) < zonalboundaries(length(zonalboundaries))
&& i==length(zonalboundaries)-1

LoadValue_2(i) = LoadValue_2(i)+LoadValue kW(j,2);
end

end
Load Loc_2 (i) = (zonalboundaries(i+1)-

zonal boundaries (i) ) /2+zonalboundaries(i);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

190



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

% Plot total heat load within each compartment and each zone

% (default # of zones and default zonal boundaries)

fprintf('Figure 1 shows the transverse bulkheads (blue lines), zonal

boundaries (red dotted lines)\n')
fprintf('and the total heat load within each compartment and within each

zone.\n\n')

ship_vec = [LOA/2*[1 1 -1 -1 1];beam/2*[l -1 -1 1

1];eng_deckhtabovekeel*[1 1 1 1 1]];
figure(1)
subplot(3,1,1)
plot(ship_vec(1,:),shipvec(2,:))
hold on
for i=2:(length(bulkhead loc)-1)

plot(bulkheadloc(i)*[1 1],beam/2*[1 -1])
end
zonalboundaries = aftbkhd_1;
plot(zonalboundaries(1)*[1 1 0 0
1], 'r: )
for i=2:zones

plot(zonalboundaries(i)*[0 1
1],beam/2*[l 1 -1 -1],'r:')
end
axis equal
axis ([-LOA/2-5 LOA/2+5 -beam/2-5
xlabel('Longitudinal Axis')
ylabel('Transverse Axis')
title ('2D layout')
subplot (3,1,2)
bar(LoadLoc_1,LoadValue_1)
xlabel('Longitudinal Axis')
ylabel('Heat Load (kW)')
title('Heat load per compartment')
subplot (3,1,3)
bar(LoadLoc_2,LoadValue_2)
xlabel('Longitudinal Axis')
ylabel('Heat Load (kW)')
title('Heat load per zone')

1]+LOA/2*[O 0 1 1 0],beam/2*[1 -1 -1 1

1 0]+zonalboundaries(i-1)*[1 0 0

beam/2+51)

% Check to see if # of zones is sufficient

fprintf('There are currently %1.0f zones and %1.0f

compartments.\n',zones,length(bulkheadloc)-1)
%reply = 'n';
reply = input('Would you like to change the number of zones? [y/n]: ','s');

if isempty(reply)
reply = 'y';

end

% # of zones not sufficient

if reply == 'y' || reply == 'Y'
proceed = false;

191



Center for Ocean Engineering mim Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

while -proceed
is error = true;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Get new number of zones
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

while iserror
iserror = false;
zones = input('Number of zones: ');
if zones < 2

is error = true;
fprintf('Error!!! The minimum number of zones is 2.\n')

end
if (zones-floor(zones))-=0

iserror = true;
fprintf('Error!!! Only integers are allowed for the number of

zones.\n')
end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Modify zonal boundaries
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

zonalboundaries = zeros(length(zones));
zonallength = LOA/zones; %m space zones equidistant (default)
for i=1:zones

zonalboundaries(i) = LOA/2 - i*zonallength;
end
aftbkhd_1 = zeros(1, zones);
for i=1:zones

%find aft most bulkhead in zone
for j=2:length(bulkhead loc)

if bulkhead loc(j ) >=zonalboundaries (i)
aft bkhd_1(i) = bulkhead loc(j);

end
end

end
zonalboundaries = aftbkhd_1;
for i=length(zonalboundaries) +1:-1:2

zonalboundaries (i)=zonalboundaries (i-1);
end
zonalboundaries (1)=LOA/2;

fprintf('\nIt is ideal to space the zones equally along the length of
the ship for\n')

fprintf('survivability considerations or by heat load per zone for
comparably sized\n')

fprintf('chillers in each zone. Also, zones should terminate at a
transverse\n')

fprintf('bulkhead.\n')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define total heat load within each zone (user defined # of zones
% and default zonal boundaries)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

LoadValue_2 = zeros (1,length (zonal-boundaries ) -1);

192



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Load Loc 2 = zeros(1,length(zonal boundaries)-1);
for i=1: length (zonalboundaries) -1

for j=l:NumLoads
if LoadLoc__m(j,1) <= zonal boundaries(i) && LoadLoc m(j,1)

> zonalboundaries(i+1)
Load _Value_ 2(i) = Load Value_ 2(i)+LoadValue kW(j,2);

elseif Load_ Locm(j,1) > zonal boundaries(l) && i==1
LoadValue_2 (i) = LoadValue_2(i)+LoadValue_kW(j,2);

elseif LoadLoc_m(j,1) <
zonal boundaries(length(zonalboundaries)) && i==length(zonalboundaries)-1

LoadValue_2(i) = LoadValue_2(i)+LoadValuekW(j,2);
end

end
Load Loc 2(i) = (zonal boundaries (i+1)-

zonalboundaries(i) )/2+zonalboundaries (i);
end

plot total heat load within each compartment and each zone (user
defined # of zones and default zonal boundaries)

fprintf('\nFigure 1 shows the transverse bulkheads, zonal boundaries
and the\n')

fprintf('total heat load within each compartment and within each
zone.\n')

shipvec = [LOA/2*[1 1 -1 -1 1];beam/2*[1 -1 -1 1
1];eng_deckhtabovekeel*[1 1 1 1 1]];

figure(1)
subplot(3,1,1)
plot(ship_vec(1,:),ship_vec(2,:))
hold on
for i=2:(length(bulkheadloc)-1)

plot(bulkheadloc(i)*[1 1],beam/2*[1 -1])
end
zonal boundaries = aft bkhd 1;
plot(zonalboundaries(1)*[1 1 0 0

1 1 1],'r:')
for i=2:zones

plot(zonal boundaries(i)*[0 1
1],beam/2*[1 1-1 -1],'r:')

end
axis equal
axis ([-LOA/2-5 LOA/2+5 -beam/2-5
xlabel ('Longitudinal Axis')
ylabel('Transverse Axis')
title('2D layout')
subplot (3, 1, 2)
bar(Load Loc_1,LoadValue_1)
xlabel('Longitudinal Axis')
ylabel('Heat Load (kW)')
title('Heat load per compartment')
subplot (3, 1,3)
bar(Load Loc_2,LoadValue 2)
xlabel('Longitudinal Axis')
ylabel('Heat Load (kW)')

1]+LOA/2*[0 0 1 1 01,beam/2*[1 -1 -

1 0]+zonalboundaries(i-1)*[1 0 0

beam/2+5])

193



Center for Ocean Engineering * fUMassachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

title('Heat load per zone')

satisfactory = input('Is the number of zones satisfactory? [y/n):

if strcmp(satisfactory,'y') strcmp(satisfactory,'Y')
strcmp (satisfactory, 'yes')

proceed = true;
else

proceed = false;
end

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Check to see if the zonal boundaries are sufficient
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fprintf('.\nThe bulkhead locations are:\n')
bulkheadloc
fprintf('\nThe default aft most locations for each zone are:\n')
zonalboundaries
%reply 'n';
reply = input('Would you like to change them? [y/n]: ','s');
if isempty(reply)

reply = 'y';
end

% Zonal boundaries are not sufficient. Redefine zonal boundaries
%%%%%%%%%%%%%%%%%0%%%%%%%%%%%%

if reply == 'y' || reply == 'Y'
proceed = false;
while -proceed

is error = true;
while iserror

iserror = false;

fprintf('\nNote: Each zone must include at least one compartment
large enough to fit a chiller.\n')

fprintf('Please enter the aft most location in each zone starting
from the bow to the stern.\n')

fprintf('Example: [20 -25 -75]\n')
zonalboundaries = input('Zonal boundary locations: ');
if zones>length(zonalboundaries)

iserror = true;
fprintf('Error!!! Not enough zonal boundaries.\n')

end
if zones<length(zonalboundaries)

is error = true;
fprintf('Error!!! Too many zonal boundaries.\n')

end
flag = false;
for i=2:length(zonalboundaries)

if zonalboundaries (i) >zonalboundaries (i-1)
flag = true;

end
end

194



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

if flag == true
is-error = true;
fprintf('Error!!! Zonal bondaries not ordered from bow to

stern.\n')

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Define zonal boundaries (user defined # of zones and user

% defined zonal boundaries)

aft bkhd 1 = zonal-boundaries;
for i=length(zonalboundaries)+1:-1:2

zonalboundaries (i)=zonal boundaries (i-i);
end
zonalboundaries(1)=LOA/2;

Define total heat load within each zone (user defined # of

zones and user defined zonal boundaries)

Load Value 2 = zeros(1,length(zonal boundaries)-l);
Load Loc 2 = zeros(1,length(zonal boundaries)-l);
for i=1:length(zonalboundaries) -l

for j=l:Num Loads
if Load Locm(j,l) <= zonalboundaries(i) && LoadLocm(j,l)

> zonal boundaries(i+l)
LoadValue_2(i) = LoadValue_2(i)+LoadValuekW(j,2);

elseif LoadLocm(j,1) > zonalboundaries(1) && i==1
Load Value_ 2(i) = Load Value_2(i)+LoadValue kW(j,2);

elseif LoadLoc m(j,1) <
zonalboundaries(length(zonalboundaries)) && i==length(zonalboundaries)-l

LoadValue_2(i) = LoadValue_2(i)+LoadValuekW(j,2);
end

end
LoadLoc 2(i) = (zonalboundaries(i+l)-

zonal boundaries (i) ) /2+zonal boundaries (i);
end

% Plot total heat load within each compartment and each zone

% (user defined # of zones and user defined zonal boundaries)

fprintf('Figure 1 shows the transverse bulkheads, zonal boundaries
and the\n')

fprintf('total heat load within each compartment and within each
zone.\n')

shipvec = [LOA/2*[1 1 -1 -1 1];beam/2*[1 -1 -1 1

1];engdeckhtabovekeel*[1 1 1 1 1]];
figure (1)
subplot (3,1,1)
plot(ship vec(1,:),shipvec(2,:))
hold on
for i=2:(length(bulkheadloc)-1)

plot(bulkheadloc(i)*[1 1],beam/2*[1 -1])

195



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering i'i~r Massachusetts Institute of Technology

77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

end
zonalboundaries = aftbkhd 1;
plot(zonalboundaries(1)*[1 1 0 0

1 1 1],'r:')
for i=2:zones

plot(zonalboundaries(i)*[0 1
1],beam/2*[1 1-1 -1],'r:')

end
axis equal
axis ([-LOA/2-5 LOA/2+5 -beam/2-5
xlabel('Longitudinal Axis')
ylabel('Transverse Axis')
title('2D layout')
subplot(3,1,2)
bar (LoadLoc_1,LoadValue 1)
xlabel('Longitudinal Axis')
ylabel('Heat Load (kW)')
title('Heat load per compartment')
subplot (3,1, 3)
bar (LoadLoc_2,LoadValue_2)
xlabel('Longitudinal Axis')
ylabel('IHeat Load (kW)')
title('Heat load per zone')

1]+LOA/2*[0 0 1 1 01,beam/2*[1 -1 -

1 0]+zonalboundaries (i-1)*[1 0 0

beam/2+5])

satisfactory = input('Are the zonal boundaries satisfactory? [y/n]:

if strcmp(satisfactory, 'y') 11 strcmp(satisfactory, 'Y') |
strcmp(satisfactory,'yes')

proceed = true;
else

proceed = false;
fprintf('\nThe bulkhead locations are:\n')
bulkheadloc
fprintf('\nThe current aft most locations for each zone are:\n')
zonalboundaries

end
end

end

% chiller configuration inputs

fprintf('\nEach zone must have the capability of operating independently.
This\n')
fprintf('corresponds to having at least one chiller in each zone.\n')
if pipingconfig == 1 %single main

chillers = ones(1,zones); %number of chillers per zone fwd->aft (default)
fprintf('The default is one chiller per zone for the single main piping

system.\n')
reply = ;
%reply = input('Would you like to change this? [y/n]: ','s');
if isempty(reply)

reply = 'y';
end
if strcmp(reply, 'y') 1 strcmp(reply,'Y') | strcmp(reply, 'yes')

196



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'IiF Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

starting

zone. \n'

zone.\n'

proceed = false;
while -proceed

iserror = true;
while is error

is error = false;
fprintf('Please enter the number of chillers per z

from the bow and progressing towards the stern.\n')
fprintf('Example for 3 zones: [1 2 21\n')
chillers = input('Number of chillers per zone: ');

if (min(chillers)<=O) II length(chillers)<zones
iserror = true;
fprintf('Error!!! Please enter at least one ch

one

iller per

end
flag = false;
for i=l:length(chillers)

if (chillers(i)-floor(chillers(i)))-=O
flag = true;

end
end
if flag == true;

iserror = true;
fprintf('Error!!! Please enter at least one chiller per

end
end
satisfactory = input('Satisfactory? [y/n]: ','s')';

if strcmp(satisfactory,'y') I1 strcmp(satisfactory,'Y')
strcmp(satisfactory,'yes')

proceed = true;
else

proceed = false;
end

end
end

elseif piping_config == 2 %double main
chillers = 2*ones(1,zones); %number of chillers per zone fwd->aft

(default)
fprintf('The default is two chillers per zone for the double main piping

system (one per main per zone).\n')
reply 'n';
%reply input('Would you like to change this? [y/n]: ','s');
if isempty(reply)

reply = 'y';
end
if strcmp(reply,'y') | strcmp(reply,'Y') I| strcmp(reply,'yes')

proceed = false;
while -proceed

iserror = true;
while is error

iserror = false;
fprintf('Please enter the number of chillers per zone

starting from the bow and progressing towards the stern.\n')
fprintf('Example for 3 zones: [1 2 2]\n')
chillers = input('Number of chillers per zone: ');

197

I i



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

if (min(chillers)<=1) I length(chillers)<zones
iserror = true;
fprintf('Error!!! Please enter at least two chillers per

zone.\n')
end
flag = false;
for i=1:length(chillers)

if (chillers(i)-floor(chillers(i)))-=O
flag = true;

end
end
if flag == true;

is-error = true;
fprintf('Error!!! Please enter at least two chillers per

zone. \n')
end

end
satisfactory = input('Satisfactory? [y/n]: ','s')';
if strcmp(satisfactory,'y') || strcmp(satisfactory,'Y')

strcmp(satisfactory, 'yes')
proceed = true;

else
proceed = false;

end
end

end
end

% define 2D and 3D vectors used for plotting squares and cubes

two D x = [1 1 -1 -1 1];
twoD y = [1 -1 -1 1 11;
three D x = [1 1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 -1 -1];
threeD y = [1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1];
threeD z = [-1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 1 1 -1];

%%%%%%%%%%%%%%%%%%%%%%%%%%0%%
% Determine what type of chiller is
00%00900000000000000%%0000000

fprintf('Currently, the chiller (AC
if Num_C_ChillerTypes > 0

fprintf(' Centrifugal\n')
end
if Num R_ ChillerTypes > 0

fprintf(' Reciprocating\n')
end
if Num_S_ChillerTypes > 0

fprintf(' Screw\n')
end
if Num_0_ChillerTypes > 0

fprintf(' Other\n')
end

to be used

unit) types available are:\n')

chillertype = 'd'; %default - considers all chillers, independent of type

198

I I



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

%reply 'n';

reply = input('Would you like to select which specific type of chiller is

used in the Chilled Water system? [y/n]: ','s');
if strcmp(reply, 'y') |1 strcmp(reply, 'Y') 11 strcmp(reply, 'yes')

fprintf('Please select the chiller type from the pop-up menu\n')

if Num C Chiller_Types > 0 && Num_R_Chiller Types > 0 &&
Num_S_ChillerTypes > 0 && Num_0_ChillerTypes > 0

reply = menu('Select a chiller
type','Centrifugal','Reiprocating','Screw','Other');

if reply == 1

chillertype = 'c';
elseif reply == 2

chilertype = 'r';
elseif reply == 3

chillertype = 's';
else

chiller-type = 'o';
end

elseif Num_C_ChillerTypes > 0 && Num_R_Chiller_Types > 0 &&
Num_S_ChillerTypes > 0 && Num_0_ChillerTypes == 0

reply = menu('Select a chiller
type', 'Centrifugal', 'Reiprocating', 'Screw');

if reply == 1

chiller type = 'c';
elseif reply == 2

chilertype ='r';

else
chillertype = 's';

end
elseif Num C Chiller Types > 0 && Num R ChillerTypes > 0 &&

Num_SChillerTypes == 0 && Num_0_ChillerTypes > 0
reply = menu('Select a chiller

type','Centrifugal','Reiprocating','Other');
if reply == 1

chillertype = 'c';
elseif reply == 2

chilertype = 'r';
else

chiller-type = 'o';
end

elseif Num C_ChillerTypes > 0 && Num R_Chiller_Types == 0 &&
NumSChillerTypes > 0 && Num_0_ChillerTypes > 0

reply = menu('Select a chiller type','Centrifugal','Screw','Other');
if reply == 1

chillertype = 'c';
elseif reply == 2

chiler type = 's';

else
chiller_type = 'o';

end
elseif Num_C_ChillerTypes == 0 && Num_R_ChillerTypes > 0 &&

Num S_ChillerTypes > 0 && Num_0_Chiller Types > 0
reply = menu('Select a chiller type','Reiprocating','Screw','Other');
if reply == 1

chiller-type =

199



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 111177-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

elseif reply == 2
chilertype = 's';

else
chillertype 'o';

end
elseif Num_C_ChillerTypes > 0 && Num_RChillerTypes > 0 &&

Num_S_Chiller_Types == 0 && Num_0_Chiller_Types == 0
reply = menu('Select a chiller type','Centrifugal','Reiprocating');
if reply == 1

chiller-type = 'c';
else

chilertype ='r';

end
elseif Num_C_ChillerTypes > 0 && Num_R_Chiller_Types == 0 &&

Num_S_ChillerTypes > 0 && Num_0_Chiller_Types == 0
reply = menu('Select a chiller type','Centrifugal','Screw');
if reply == 1

chiller-type 'c';
else

chiler_type 's';
end

elseif Num_C_ChillerTypes > 0 && Num_R ChillerTypes == 0 &&
Num_S_ChillerTypes == 0 && Num_0_ChillerTypes > 0

reply = menu('Select a chiller type','Centrifugal','Other');
if reply == 1

chillertype =c';

else
chiler_type =o';

end
elseif Num_C_ChillerTypes == 0 && Num_R_ChillerTypes > 0 &&

NumSChillerTypes > 0 && Num 0 ChillerTypes == 0
reply = menu('Select a chiller type','Reiprocating','Screw');
if reply == 1

chiller-type 'r';
else

chilertype = 's';
end

elseif Num_C_Chiller Types == 0 && NumRChillerTypes > 0 &&
Num_S_ChillerTypes == 0 && Num_0_ChillerTypes > 0

reply = menu('Select a chiller type','Reiprocating','Other');
if reply == 1

chiller-type 'r';
else

chilertype = 'o';

end
elseif Num_C_Chiller Types == 0 && NumRChillerTypes == 0 &&

Num_S_ChillerTypes > 0 && Num_0_ChillerTypes > 0
reply = menu('Select a chiller type','Screw','Other');
if reply == 1

chillertype = 's';
else

chiler_type = 'o';

end
elseif Num_C Chiller Types > 0 && NumRChiller_Types == 0 &&

NumSChillerTypes == 0 && Num_0_Chiller Types == 0

200



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

reply = menu('Select a chiller type','Centrifugal');
chiller _type = 'c';

elseif Num_C_Chiller Types == 0 && Num_ R ChillerTypes > 0 &&
Num_S_ChillerTypes == 0 && Num_0_Chiller_Types == 0

reply = menu('Select a chiller type','Reciprocating');
chillertype = 'r';

elseif Num_C_ChillerTypes == 0 && Num_R_ChillerTypes == 0 &&

NumS_ChillerTypes > 0 && Num_0_ChillerTypes == 0
reply = menu('Select a chiller type','Screw');
chillertype = 's';

elseif Num_C_ChillerTypes == 0 && Num_R_ChillerTypes 0 &&
Num_S_ChillerTypes == 0 && NumOChillerTypes > 0

reply = menu('Select a chiller type','Other');
chillertype = 'o';

else
fprintf('Error!!! No chillers in the database!!!\n')

end
end

Guess at chiller dimensions

Chiller min capacityguess = max(sum(LoadValue kW)/sum(chillers));
Chiller capacityguess = 1000000000;
if chillertype == 'c'

for i=1:Num C Chiller Types
if C ChillerCapacitykW(i) >= Chiller_mincapacity_guess &&

CChillerCapacity_kW(i) < Chillercapacity_guess
Chillercapacityguess = CChillerCapacity kW(i);
chillerdim = CChillerDim_m(i,:);

end
end

elseif chillertype == 'r'
for i=1:Num_R_Chiller_Types

if RChiller_Capacity_kW(i) >= Chiller min_capacityguess &&
RChillerCapacity_kW(i) < Chiller_capacity_guess

Chiller capacity_guess = R ChillerCapacity kW(i);
chillerdim = RChillerDim_m(i,:);

end
end

elseif chiller_type == 's'
for i=l:Num_S_Chiller_Types

if S Chiller_Capacity_kW(i) >= Chiller min_capacity guess &&
SChiller Capacity_kW(i) < Chiller capacity_guess

Chillercapacityguess = S_ChillerCapacitykW(i);
chillerdim = SChillerDim_m(i,:);

end
end

elseif chillertype == 'o'
for i=l:Num_0_ChillerTypes

if 0 Chiller CapacitykW(i) >= Chiller mincapacityguess &&
O ChillerCapacity_kW(i) < Chillercapacity_guess

Chiller capacity_guess = 0 Chiller_Capacity_kW(i);
chiller dim = OChillerDim m(i,:);

end

201



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iii Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

end
elseif chiller_type == 'd'

if Num_ CChillerTypes > 0
for i=1:Num_C_Chiller Types

if CChiller_CapacitykW(i) >= Chiller mincapacityguess &&
C_ChillerCapacity_kW(i) < Chillercapacity_guess

Chillercapacit y_guess = CChillerCapacity_kW(i);
chillerdim = CChiller Dim_m(i,:);

end
end

end
if Num_R__Chiller_Types > 0

for i=l:Num_R_ChillerTypes
if RChillerCapacity kW(i) >= Chiller_mincapacityguess &&

R_ChillerCapacity_kW(i) < Chiller_capacit y_guess
Chiller capacity_guess = RChiller_CapacitykW(i);
chillerdim = RChillerDim m(i,:);

end
end

end
if Num_ SChiller_Types > 0

for i=1:Num_S_Chiller_Types
if SChillerCapacity_kW(i) >= Chiller mincapacity_guess &&

S. ChillerCapacity_kW(i) < Chiller_capacit y_guess
Chillercapacityguess = SChillerCapacity_kW(i);
chillerdim = SChillerDimm r(i,:);

end
end

end
if Num 0 Chiller_Types > 0

for i=l:Num_0_ChillerTypes
if 0_Chiller Capacity_kW(i) >= Chiller mincapacityguess &&

O_ChillerCapacity_kW(i) < Chillercapacity_guess
Chiller capacit y guess = 0_ ChillerCapacity_kW(i);
chillerdim = OChillerDim m(i,:);

end
end

end
end
pumpdim = [1 1 1]; %m guess (default)
mindist = chillerdim(1) + 3;

% Determine chiller location longitudinally
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

compartments = zeros(1,zones);
aft bkhd = zeros(1,zones);
aftbkhd sec = zeros(1,zones);
for i=1:zones

count = 0;
%find aft most bulkhead in zone
for j=2:length(bulkheadloc)

if (bulkhead loc(j-1)-bulkheadloc(j)) >= mindist %minimum distance
between bulkheads that would fit chiller

if bulkhead loc(j)>=zonal boundaries(i)-0.0001

202



Center for Ocean Engineering I - Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

aftbkhd(i) = bulkheadloc(j);
compartments(i) = compartments(i)+1;
if count > 0

aft bkhdsec(i) = bulkheadloc(count);
count = j;

else
aftbkhdsec(i) = 12345;
count = j;

end
end

end
end

end
for i=zones:-1:2

compartments(i)=compartments(i)-compartments(i-1);
end
chiller loc = zeros(sum(chillers),3);
pumploc = zeros(sum(chillers),3);
chillerindex = 1;

Determine chiller and pump location for the case of 1-6
% chillers per zone. Need to change this section to incorporate
%chiller-pump combinations. Assume only 1-1 for now.

for i=1:zones
if chillers(i) == 1

if i==zones
chillerloc(chillerindex,:)=[aft bkhd(i)+3+chiller dim(1)/2 0

chillerdim(3)/2+engdeck htabovekeel];
else

chillerloc(chillerindex,: )=[aft bkhd(i)+1+chiller dim(l) /2 0
chillerdim(3)/2+engdeckhtabovekeel];

end

pump loc(chiller index,:)=chiller loc(chiller index,:)+[chiller dim(1)/2 0

0]+[1 0 0];
chiller index=chiller index+l;

elseif chillers(i) == 2
if i==zones

chiller loc(chillerindex, :)=[aftbkhd(i)+3+chiller dim(1)/2
beam/4 chillerdim(3)/2+engdeckhtabovekeel];

chiller loc(chiller index+1, :)=[aft bkhd(i)+3+chiller dim(1)/2 -

beam/4 chillerdim(3)/2+engdeckhtabovekeel];
else

chillerloc(chillerindex,: )=[aft_bkhd(i)+l+chillerdim(1) /2
beam/4 chillerdim(3) /2+eng-deck_ht_abovekeel];

chillerloc(chillerindex+1, :)=[aftbkhd(i)+1+chillerdim(1)/2 -

beam/4 chillerdim(3)/2+engdeckhtabovekeel];
end

pump__loc(chiller index,:)=chillerloc(chiller index,:)+[chiller dim(1)/2 0

0]+[1 0 0];

203



Center for Ocean Engineering * E Massachusetts Institute of Technology
Naval Construction & Engineering Program I I 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

pumploc(chiller index+l,:)=chillerloc(chiller index+1,:)+[chillerdim(l)/2
0 0]+[1 0 0];

chillerindex=chillerindex+2;
elseif chillers(i) == 3

chillerloc(chillerindex, :)=[aftbkhd(i)+1+chillerdim(l)/2 beam/4
chillerdim(3) /2+eng_deck_ht_abovekeel];

pumploc(chiller index,:)=chiller loc(chiller index,:)+[chiller dim(l)/2 0
0]+[1 0 0];

chillerloc(chiller index+1,:)=[aft bkhd(i)+l+chiller dim(1)/2 0
chillerdim(3)/2+eng_deckhtabovekeel];

pump_loc(chillerindex+l, :)=chillerloc(chiller index+1, : )+[chillerdim(l)/2
0 0]+[1 0 0];

chillerloc(chiller index+2, :)=[aft bkhd(i)+l+chiller dim(l) /2 -
beam/4 chillerdim(3)/2+engdeckhtabovekeel];

pump_loc(chiller index+2, :)=chillerloc(chiller index+2,: )+[chillerdim(l)/2
0 0]+[1 0 0];

chillerindex=chillerindex+3;
elseif chillers(i) == 4

chiller loc(chiller index+2, :)=[aft bkhd(i)+1+chiller dim(1)/2 beam/4
chillerdim(3)/2+eng_deckhtabovekeel];

pumploc(chiller index+2,:)=chillerloc(chiller index+2,:)+[chillerdim(l)/2
0 0]+[1 0 0];

chiller loc(chiller index+3,:)=[aft bkhd(i)+1+chiller dim(l)/2 -
beam/4 chillerdim(3)/2+engdeckhtabovekeel];

pumploc(chiller index+3, :)=chillerloc(chiller index+3,: )+[chillerdim(l)/2
0 0]+[1 0 0];

if aft bkhdsec(i)-=12345;
chillerloc(chillerindex, :)=[aftbkhdsec(i)+l+chillerdim(1)/2

beam/4 chiller dim(3)/2+engdeck_htabovekeel];

pump loc(chiller index,:)=chillerloc(chillerindex,:)+[chiller dim(l)/2 0
0]+[1 0 0];

chiller_loc(chiller index+1,:)=[aft bkhd sec(i)+1+chiller dim(1)/2 -beam/4
chillerdim(3)/2+eng_deckhtabovekeel];

pumploc(chiller index+1,:)=chillerloc(chillerindex+1,:)+[chillerdim(1)/2
0 0]+[1 0 0];

else
chillerloc(chiller index,: )=[aftbkhd(i)+1+chiller dim(l)/2

beam/4 chiller dim(3)/2+eng deck ht above keel];

pumploc(chiller index, :)=chillerloc(chiller index, :)+[chiller dim(1)/2 0
0]+[1 0 0];

chillerloc(chiller index+1,:)=[aft bkhd(i)+1+chiller dim(1)/2 -
beam/4 chillerdim(3)/2+engdeckhtabovekeel];

pumploc(chiller index+1,:)=chiller loc(chiller index+l,:)+[chiller dim(l)/2
0 0]+[l 0 0];

204



Center for Ocean Engineering E U Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

end
chiller index=chiller index+4;

elseif chillers(i) == 5
chillerloc(chiller index+2,:)=[aftbkhd(i)+1+chillerdim(1)/2 beam/4

chillerdim(3)/2+engdeck_htabovekeel];

pumploc(chillerindex+2,:)=chillerloc(chillerindex+2,:)+[chillerdim(l)/2
0 0]+[1 0 0];

chiller loc(chiller index+3, :)=[aft bkhd(i)+l+chiller dim(l) /2 0
chillerdim (3) /2+eng_deck_ht_abovekeel] ;

pumploc(chillerindex+3, :)=chiller loc(chillerindex+3, :)+[chiller dim(1)/2
0 0]+[1 0 0];

chiller loc(chiller index+4, :)=[aft bkhd(i)+1+chiller dim(l)/2 -
beam/4 chiller_dim(3) /2+engdeck_ht above_keel];

pump loc(chiller index+4, :)=chiller loc(chiller index+4,: )+[chiller dim(1)/2
0 0]+[l 0 0];

if aftbkhdsec(i)-~=12345;
chillerloc(chillerindex, :)=[Iaft bkhdsec(i)+l+chiller dim(l)/2

beam/4 chillerdim(3)/2+engdeck_htabovekeel];

pump loc(chiller index,:)=chillerloc(chiller index,:)+[chiller dim(l)/2 0

0]+[1 0 0];

chillerloc(chiller index+1,:)=[aftbkhdsec(i)+l+chiller dim(l)/2 -beam/4
chillerdim(3)/2+eng_deckhtabove keel];

pump loc(chillerindex+l,:)=chillerloc(chillerindex+l,:)+[chillerdim(l)/2
0 0]+[1 0 0];

else
chillerloc(chillerindex, :)=[aftbkhd(i)+l+chillerdim(l)/2

beam/4 chillerdim(3)/2+engdeck_htabovekeel];

pumploc(chillerindex,:)=chillerloc(chillerindex,:)+[chillerdim(1)/2 0

0]+[1 0 0];
chiller loc(chillerindex+1, :)=[aftbkhd(i)+1+chiller dim(1) /2 -

beam/4 chillerdim(3)/2+engdeck_htabovekeel];

pump loc(chiller index+l,:)=chiller loc(chiller index+1,:)+[chiller dim(1)/2
0 0]+[1 0 0];

end
chiller index=chillerindex+5;

elseif chillers(i) == 6
chiller loc(chiller index+3,:)=[aftbkhd(i)+l+chillerdim(1)/2 beam/4

chillerdim(3)/2+eng_deck_htabovekeel];

pump loc(chiller index+3,:)=chiller loc(chiller index+3,:)+[chiller dim(1)/2
0 0]+[1 0 0];

chiller loc(chiller index+4,:)=[aft bkhd(i)+1+chiller dim(1)/2 0
chillerdim(3) /2+eng_deckhtabovekeel] ;

pump loc(chiller index+4,:)=chiller loc(chiller index+4,:)+[chiller dim(l)/2
0 0]+[1 0 0];

205



Center for Ocean Engineering Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

chiller loc(chiller index+5, :)=[aft bkhd(i)+1+chiller dim(l)/2 -
beam/4 chillerdim(3)/2+engdeckhtabove keel];

pumploc(chillerindex+5, :)=chiller loc(chillerindex+5,: )+[chillerdim(1)/2
0 0]+[1 0 0];

if aftbkhdsec(i)-=12345;
chillerloc(chillerindex, : )=[aft_bkhdsec (i) +1+chillerdim (1) /2

beam/4 chillerdim(3)/2+engdeckhtabovekeel];

pumploc(chiller index,:)=chiller loc(chiller index,:)+[chiller dim(l)/2 0
0]+[1 0 0];

chillerloc(chillerindex+1,:)=[aftbkhdsec(i)++chillerdim(l)/2 0
chillerdim(3)/2+eng_deckhtabovekeel];

pumploc(chiller index+1,:)=chillerloc(chillerindex+1,:)+[chillerdim(1)/2
0 0]+[1 0 0];

chiller loc(chiller index+2,:)=[aft bkhd sec(i)+1+chiller dim(l)/2 -beam/4
chillerdim(3)/2+engdeck_htabovekeel;

pump_loc(chiller index+2,:)=chillerloc(chillerindex+2,:)+[chillerdim(l)/2
0 0]+[1 0 0];

else
chiller loc(chillerindex, :)=[aftbkhd(i)+1+chiller dim(l)/2

beam/4 chiller dim(3)/2+eng-deck ht above keel];

pump_loc(chiller index,:)=chillerloc(chillerindex,:)+[chillerdim(l)/2 0
0]+[1 0 0];

chillerloc (chillerindex+1, :)=[aft bkhd (i)+1+chillerdim (1) /2 0
chillerdim(3)/2+eng_deckhtabovekeel];

pump_loc(chiller index+1, :)=chiller loc(chiller index+l, :)+[chillerdim(l)/2
0 0]+[1 0 0];

chiller loc(chiller index+2,:)=[aft bkhd(i)+l+chiller dim(1)/2 -
beam/4 chillerdim(3)/2+engdeckht above keel];

pump_loc(chiller index+2,:)=chillerloc(chiller index+2,:)+[chillerdim(l)/2
0 0]+[l 0 0];

end
chiller index=chiller index+6;

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Plot 2D layout

fprintf('The zones, transverse bulkheads and the default chiller\n')
fprintf('locations are shown in figure 2\n\n')
shipvec = [LOA/2*[l 1 -1 -1 l;beam/2*[1 -1 -1 1
l];eng_deckhtabovekeel*[l 1 1 1 1]];
chiller vec = [chiller dim(l)/2*[1 1 -1 -1 1]; chiller dim(2)/2*[1 -1 -1 1
1]];
figure (2)
plot(shipvec(l,:),shipvec(2,:))

206



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

hold on
for i=l:sum(chillers)

plot(chillervec(l,:)+chillerloc(i,1),chillervec(2,:)+chillerloc(i,2),'g')
end
for i=2:(length(bulkheadloc)-1)

plot(bulkheadloc(i)*[1 l],beam/2*[1l -1])

end
plot(zonalboundaries(1)*[1 1 0 0 1]+LOA/2*[0 0 1 1 0l,beam/2*[1l -1 -1 1

1],'r:')
for i=2:zones

plot(zonalboundaries(i)*[0 1 1 0]+zonal boundaries(i-1)*[1 0 0

1],beam/2*[l 1 -1 -1],'r:')
end
scatter(pumploc(:,1),pumploc(:,2),'ch')
axis equal
axis ([-LOA/2-5 LOA/2+5 -beam/2-5 beam/2+5])
xlabel('Longitudinal Axis')
ylabel('Transverse Axis')
title('2D Chiller Layout')

%% % %%% % %%%% %C%% %%%%%%%%
% Determine if chiller locations are to be modified

%reply = ;

reply = input('Would you like to change the chiller
if isempty(reply)

reply = 'y';

locations?

end
if strcmp(reply,'y') I| strcmp(reply,'Y') I strcmp(reply,'yes')

fprintf('\nThe chiller locations are listed from forward to aft and from

port to starboard.\n')
fprintf('The current chiller locations are: \n')
chillerloc
fprintf('The transverse bulkhead locations are: \n')

bulkheadloc
fprintf('Please enter the revised chiller locations from forward to aft

with the location\n')
fprintf('corresponding to the center of the chiller.\n')
fprintf('Example: [40 3 2;40 -3 2;5 0 2;-30 0 2;-68.5 0 21\n')

iserror = true;
while is error

iserror = false;
chiller loc = input('Chiller locations [m]: ');
if length(chillerloc)-=sum(chillers)

iserror = true;
fprintf('Error!!! Please enter the locations for each

chiller.\n')
end
templ = max(chiller loc);
temp2 = min(chiller loc);
if templ(l)>LOA/2 IT temp2(1)<-LOA/2 1| templ(2)>beam/2 11 temp2(2)<-

beam/2
is-error = true;

207

[y/n]: ','s');



Center for Ocean Engineering Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

fprintf('Error!!! Please enter chiller locations within the
boundary of the hull.\n')

end
end
%%%%%%%%%%%%%%%%%%%%%%0%%%%
% Update pump locations
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:length(chiller loc)
pump_loc(i,:)=chiller loc(i,:)+[chiller dim(1)/2 0 0]+[1 0 0];

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%plot revised 2D layout
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

close
fprintf('\nThe layout of the zones, transverse bulkheads and the revised

chiller\n')
fprintf('locations is shown in figure 1\n\n')
shipvec = [LOA/2*[l 1 -1 -1 1];beam/2*[1 -1 -1 1

1];eng_deckhtabovekeel*[1 1 1 1 1]];
chiller vec = [chiller dim(1)/2*[1 1 -1 -1 11; chillerdim(2)/2*[1 -1 -1

1 1]];
figure (2)
plot(shipvec(1,:),ship_vec(2,:))
hold on
for i=l:sum(chillers)

plot(chiller-vec(1,:)+chiller-loc(i,1),chiller-vec(2,:)+chiller loc(i,2),'g'1)
end
for i=2:(length(bulkheadloc)-1)

plot(bulkheadloc(i) * [1 1],beam/2*[l -11)
end
plot(zonalboundaries(1)*[1 1 0 0 1]+LOA/2*[O 0 1 1 01,beam/2*[1 -1 -1 1

1], 'r:')

for i=2:zones
plot(zonalboundaries(i)*[0 1 1 0]+zonalboundaries(i-1)*[1 0 0

1],beam/2*[1 1-1 -1],'r:')
end
scatter(pumploc(:,1),pumploc(:,2),'ch')
axis equal
axis ([-LOA/2-5 LOA/2+5 -beam/2-5 beam/2+5])
xlabel('Longitudinal Axis')

ylabel('Transverse Axis')
title('2D Chiller Layout')

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Create supply and return piping structure
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if piping_config == 1
%define headerloc_start and headerlocend for single main with X

chillers in Y zones
headerloc_start = zeros(sum(chillers),3);

headerloc_end = zeros(sum(chillers),3);
for i=1:sum(chillers)

208



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

headerloc_start(i,:) = [chiller loc(i)+chiller dim(l)/2

chiller loc(i+length(chillerloc)) ...
eng_deckhtabovekeel+chillerdim(3)/2];

headerloc_end(i,:) = [chillerloc(i)-chiller dim(l)/2
chillerloc(i+length(chillerloc)) ...

eng_deck htabovekeel+chillerdim(3)/2];
end
segvalve index = 1;
%create points for bends in header zone by zone
for i=l:zones

if chillers(i)==1
%define supply header
x_1_s = headerloc_start(i,l);
x_2_s = pumploc(il);
x 3 s = headerloc_end(i,1);
if i==l

x 4a s = LOA/2-3;
x la r = LOA/2-3;
x_4bs = zonal boundaries(i);
x_lb_r = zonal boundaries(i);

elseif i==zones
x_4as = zonalboundaries(i-1);
x_lar = zonalboundaries(i-1);
x 4b s = -LOA/2+0.5;
x lb r = -LOA/2+0.5;

else
x_4as = zonalboundaries(i-1);
x_lar = zonalboundaries(i-1);

x 4bs = zonalboundaries(i);
x lbr = zonalboundaries(i);

end
y_1 s = header loc start(i,2);
y 2 s = headerlocstart(i,2)-3;
y_3_s = 0+offseth/2;
z 1 s = headerloc_start(i,3);
z 2 s = headerdeck ht;
headerloc_s(i,:,:) = [x_is yls zls;

x_2_s y ls z_1 s;
x 2 s y 2 s z 1 s;
x_3_s y_2_s z_1 s;
x 3 s y 2 s z 2 s;
x 3 s y 3 s z 2 s;
x 4as y 3 s z 2 s];

header loc s alt(i,:,:) = [x_3_s y_3_s z 2 s;
x_4bs y_3_s z_2_s);

%define return header
x_2_r = header loc end(i,l);
y_1_r = 0-offset h/2;
y 2 r = headerloc_end(i,2)+offset h-3;
y_3_r = headerloc_end(i,2);
z 1 r = headerdeckht-offseth;
z 2 r = headerloc_end(i,3);
header loc r(i,:,:) = [x la r y_1 r z 1 r;

x 2 r y 1 r z 1 r;
x_2_r y_2_r z_1_r;

209



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

x_2_r y_2_r z_2_r;
x 2_r y 3 r z 2 r];

headerloc_r_alt(i,:,:) = [x_lb_r y_1_r z_1_r;
x 2_r y_1_r z_1_r];

%define recirc line
x_1_rc = pumploc(i,1)-0.75;
y_1_rc = pump_loc(i,2);
y_2_rc = headerloc_start(i,2)-3;
z_1_rc = headerloc_start(i,3);
recircline(i,:,:) [x_1_rc y_1_rc z_1_rc;x_1_rc y_2_rc z_1_rcl;
%define isolation valves
segvalveloc(segvalve index,:) = [x_3_s+1/ftper-m y_3_s

z_2_s];
seg_valveloc(seg_valveindex+1,:) = [x_3_s-1/ft_per_m y_3_s

z_2_s];

segvalveloc(segvalve index+2,:) = [x_3_s y_3_s-2/ft_per_m
z_2_s];

seg_valveloc(seg_valveindex+3,:) = [x_2_r+l/ft_perm y_1_r
z_1_r];

segvalveloc(segvalveindex+4,:) = [x_2_r-1/ftperm y_1_r
z_1_r];

seg_valveloc(segvalveindex+5,:) = [x_2 r y_1_r-2/ft_per_m
z_1_r];

segvalve index = segvalve index+6;
elseif chillers(i)==2
elseif chillers (i)==3
elseif chillers(i)==4
elseif chillers(i)==5
elseif chillers(i)==6
end

end
%define cross-connect valve locations
for j=1:zones-1

for k=1:2
if k==1

segvalveloc(4*j-4+seg_valveindex,:) =
[zonalboundaries(j)+0.25 0+offseth/2 headerdeckht];

segvalveloc(4*j-3+segvalveindex,:) =
[zonal boundaries(j)+0.25 0-offseth/2 headerdeckht-offseth];

else
seg valve loc(4*j-2+seg_valve index,:) =

[zonalboundaries(j)-0.25 0+offseth/2 headerdeckht];
segvalveloc(4*j-1+segvalveindex,:) =

[zonalboundaries(j)-0.25 0-offset h/2 header deck ht-offset_hi;
end

end
end

end
if pipingconfig == 2

if pipingdouble config == 1
%define headerlocstart and header loc_end for single main with X

chillers in Y zones
headerloc_start = zeros(sum(chillers),3);

210



Center for Ocean Engineering E 3 Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering U Cambridge, Massachusetts 02139-4307

headerloc_end = zeros(sum(chillers),3);
for i=l:sum(chillers)

headerloc_start(i,:) = [chillerloc(i)+chillerdim(l)/2
chillerloc(i+length(chillerloc)) ...

engdeckhtabovekeel+chillerdim(3)/2];
headerloc_end(i,:) = [chillerloc(i)-chiller dim(l)/2

chillerloc(i+length(chillerloc))
engdeckhtabovekeel+chiller dim(3)/2];

end
segvalve index = 1;
%create points for bends in header zone by zone

index = 0;

for i=l:zones
if chillers(i)==2

for j=1:2
index = index+l;
%define supply and return headers

x 1 s = headerloc start(index,l);
x_2_s = pump_loc(index,1);
x_3_s = headerloc end(index,l);
x 2 r = headerloc end(index,l);
if i==1

x 4a s = LOA/2-3;
x lar = LOA/2-3-offset h;
x_4bs = zonalboundaries(i);
x_lb_r = zonalboundaries(i);

elseif i==zones
x_4as = zonalboundaries(i-1);
x_lar = zonalboundaries(i-1);
x 4b s = -LOA/2+0.5;
x_lb_r = -LOA/2+0.5+offseth;

else
x_4as = zonal boundaries(i-1);
x_lar = zonal boundaries(i-1);
x_4bs = zonal boundaries(i);
x_lb_r = zonal boundaries(i);

end
if j==lport side

yls = headerloc_start(index,2);
y 2 s = header loc start(index,2)-3;
y_3_s = beam/2-3/ftperm;
y_4 s = 0+offseth/2;
y_1_r = 0-offseth/2;
y_2 r = beam/2-3/ftperm-offseth;
y_3_r = headerloc_end(index,2)+offset h-3;
y_4 r = headerloc_end(index,2);
z 2 s = port header deck ht;
z 1 r = port headerdeckht-offseth;

elseif j==2 %starboard side
y1 s = headerloc start(index,2);
y_2 s = headerloc_start(index,2)+3;
y 3 s = -beam/2+3/ft_perm;
y_4_s = 0+offseth/2;
y_1_r = 0-offseth/2;
y_2_r = -beam/2+3/ftperm+offset h;

211



Center for Ocean Engineering * f Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

y_3_r = headerloc_end(index,2)-offset h+3;
y_4 r = headerloc end(index,2);
z 2_s = stbdheaderdeckht;
z 1 r = stbdheaderdeckht-offseth;

end
z_1_s = headerloc_start(index,3);
z_2_r = headerloc_end(index,3);
if i == 1

header loc s(index,:,:) = [x 1 s y 1 s z 1 s;
x 2 s y_1_s z_1_s;
x_2_s y_2_s z_1_s;
x_3_s y_2_s z_1_s;
x_3_s y_2_s z_2_s;
x 3 s y_3_s z_2_s;
x 4a s y 3 s z 2 s;
x_4a s y_4_s z_2_s];

headerloc_s-alt(index,:,:) = [x_3_s y_3_s z_2_s;
x_4bs y_3_s z_2_s;
x_4bs y_3_s z_2_s];

headerloc_r(index,:,:) = [x_la_r y_1_r z_1 r;
x lar y_2_r z_1_r;
x_2_r y_2_r z__r;
x 2 r y 3 r z 1 r;
x 2 r y 3 r z 2 r;
x 2 r y 4 r z_2 r];

headerloc_r_alt(index,:,:) = [x lbr y_2_r z_1_r;
x 2 r y_2_r z 1 r;
x 2 r y_2_r z_1_r];

elseif i == zones
header locs(index,:,:) = [x_1_s y_1_s z 1 s;

x 2 s y 1 s z I s;
x_2_s y_2_s z_1_s;
x 3 s y 2 s z 1 s;
x 3 s y 2 s z 2 s;
x 3 s y_3_s z_2_s;

x 4a s y_3_s z 2 s;
x 4a s y 3 s z 2 s];

headerloc_s-alt(index,:,:) = [x_3_s y_3_s z_2_s;
x_4bs y_3_s z_2_s;
x_4bs y_4_s z_2_s];

headerloc_r(index,:,:) = [xlar y_2_r z_1_r;
x_2_r y_2_r z_1_r;
x 2 r y 3 r z 1 r;
x 2 r y 3 r z 2 r;
x 2 r y 4 r z 2 r;
x 2 r y 4 r z 2 r];

header locr alt(index,:,:) = [xlbr y_1_r z_1_r
x lb r y_2_r z_1_r;
x_2_r y_2_r z_1_r];

else
header locs(index,:,:) = [x_1_s y_1_s z 1_s;

x 2 s y 1 s z 1 s;
x 2 s y_2_s z_1_s;
x 3 s y 2 s z 1 s;
x_3_s y_2_s z_2 s;

212



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

x_3_s y_3_s z_2_s;
x 4a s y 3 s z 2 s;
x 4a s y_3_s z 2 s];

header loc s alt(index,:,:) = [x_3_s y_3 s z 2 s;

x_4b_s y_3_s z_2 s;
x_4bs y_3_s z_2_s];

headerloc_r(index,:,:) = [x_lar y_2_r z_1_r;
x_2_r y_2_r z 1_r;
x 2 r y 3 r z 1 r;
x_2_r y_3_r z_2_r;
x_2_r y_4_r z_2_r;
x_2_r y_4_r z 2 r];

headerloc_r_alt(index,:,:) = [xlb r y 2_r z_1 r;
x_2_r y 2_r z_1_r;
x_2_r y_2_r z_1_r];

end
%define recirc line
if j==1

x_1_rc = pump_loc(index,l)-0.75;
y_1_rc = pump_loc(index,2);
y_2_rc = headerloc_start(index,2)-3;
z_1_rc = headerlocstart(index,3);

elseif j==2
x 1 rc = pump loc(index,l)-0.75;
y_1_rc = pump_loc(index,2);
y_2 rc = headerloc_start(index,2)+3;
z 1 rc = headerlocstart(index,3);

end
recirc line(index,:,:) = [x_1_rc y_1_rc z_1_rc;x 1 rc

y_2_rc z_1_rc];
%define athwartship cross-connect points and

%athwartship cross-connect valve locations

if i==1 && j==1
x_11_cc s = x_4as;
y_11_cc s = y_4_s;
z_11_cc s = z_2_s;

x_11_cc r = x_lar;
y_11 cc r = y 1_r;
z 11_cc r = z_1 r;

elseif i==1 && j==2
x_12_cc s = x_4as;
y_12_cc s = y_4_s;
z 12_cc s = z_2 s;
x_12_cc r = xlar;
y 12 cc r = y_1_r;
z 12_cc r = z_1_r;

elseif i==zones && j==1
x_21_cc s = x_4bs;
y_21_ccs = y_4_s;
z_21 cc s = z 2 s;
x_21_cc r = xlb_r;
y 21 cc r = y 1 r;
z_21_cc r = z_1_r;

elseif i==zones && j==2
x_22_cc s = x_4b s;

213



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

y_22_ccs = y_4_s;
z_22_ccs = z_2_s;
x_22_ccr = x_1b_r;
y_22_ccr = y_1_r;
z_22 ccr = z_1_r;

end
%define cross-connects
%define isolation valves
if j==1

sign = 1;
else

sign = -1;
end
seg valveloc(segvalveindex,:) = [x_3_s+1/ft_perm

y_3_s z_2_s];
segvalveloc(segvalve index+l,:) = [x_3_s-1/ft_per_m

y_3_s z_2_s];
segvalveloc(segvalveindex+2,:) = [x_3_s y_3_s-

sign*2/ftper__m z_2_s];
segvalveloc(segvalveindex+3,:) = [x_2_r+1/ft_per_m

y_2_r z_1_r];
segvalveloc(segvalve index+4,:) = [x_2_r-1/ft_ per_m

y_2_r z_1_r];
seg_valveloc(seg_valve index+5,:) = [x_2_r y_2_r-

sign*2/ft-perm z_1_r];
segvalveindex = seg_valve index+6;

end
end

end
%define athwartship cross-connect
cc1 _loc_s = [x_11_ccs y_11_ccs z_11_ccs; x_12_ccs y_12_cc_s

z_12_cc s];
cc2 _loc s = (x_21_cc s y_21_ccs z_21_ccs; x_22_ccs y_22_cc s

z_22_cc s];
cclloc_r = [x_11_ccr y_11_cc r z_11_cc r; x_12_cc r y_12 cc r

z_12_ccr];
cc2_loc_r = [x_21_cc r y_21_cc r z_21_cc r; x_22_ccr y_22_cc r

z_22_cc_r];
segvalveloc(seg_valveindex,:) = [(x_11_cc_s+x_12_cc_s)/2

(y_11_cc_s+y_12_cc_s)/2 (z_11_cc_s+z_12_ccs)/2];
seg_valveloc(segvalveindex+1,:) = [(x_21_cc_s+x_22_cc_s)/2

(y_2 1_ccs+y_22_cc_s)/2 (z_21_cc_s+z_22_cc_s)/2];
seg_valveloc(segvalveindex+2,:) = [(x_11_ccr+x 12 ccr)/2

(y_11_cc r+y_12_cc r)/2 (z_11_ccr+z_12_ccr)/2];
seg valveloc(segvalveindex+3,:) = [ (x_21_cc_r+x_22_cc_r)/2

(y_21_cc_r+y_22_ccr)/2 (z_21_ccr+z_22_cc_r)/2];
%define cross-connect valves across zones
for j=l:zones-1

for k=1:2
if k==1

segvalveloc(8*j-8+segvalve index+4,:) =

[zonal boundaries(j)+0.25 beam/2-3/ft_perm portheaderdeck ht];%supply fwd
port

214



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

seg_valve loc(8*j-7+seg-valve index+4,:) =

[zonalboundaries(j)+0.25 beam/2-3/ft_perm-offseth port header deckht-
offset_h}; %return fwd port

segvalve loc(8*j-6+seg_valveindex+4,:)
[zonalboundaries(j)+0.25 -beam/2+3/ftperm stbdheaderdeckht];%supply fwd
stbd

seg_valve loc(8*j-5+segvalveindex+4,:)
(zonalboundaries(j)+0.25 -beam/2+3/ftperm+offseth stbdheaderdeck ht-
offset h]; %return fwd stbd

else
segvalve loc(8*j-4+segvalveindex+4,:)

[zonal boundaries(j)-0.25 beam/2-3/ft_per m port headerdeckht]; %supply aft
port

segvalve loc(8*j-3+seg_valve index+4,:)
[zonalboundaries(j)-0.25 beam/2-3/ft per m-offseth portheaderdeck ht-
offset h]; %return aft port

seg_valveloc(8*j-2+segvalveindex+4,:)
[zonal boundaries(j)-0.25 -beam/2+3/ftperm stbdheaderdeckht]; %supply
aft stbd

seg_valveloc(8*j-1+segvalve index+4,:) =

[zonal boundaries(j)-0.25 -beam/2+3/ftperm+offset h stbdheader deck ht-
offseth]; %return aft stbd

end
end

end

elseif pipingdoubleconfig == 2
%define headerloc for double main loop w/ ext with 2 zones
%define header loc start and headerloc end for single main with X

chillers in Y zones
headerloc_start = zeros(sum(chillers),3);
headerloc_end = zeros(sum(chillers),3);
for i=1:sum(chillers)

header loc start(i,:) = [chiller loc(i)+chiller dim(1)/2
chillerloc(i+length(chillerloc)) ...

eng deck ht above keel+chiller dim(3)/2];
header loc_eend(i,:) = [chiller loc(i)-chiller dim(1)/2

chillerloc(i+length(chillerloc)) ...
engdeckhtabovekeel+chiller dim (3)/21;

end
%create points for bends in header zone by zone
temp_zonalboundaries=zeros (1, length(zonalboundaries) +1);
for m=l:length(zonalboundaries)

temp_zonalboundaries(m+1)=zonalboundaries (m);
end
tempzonalboundaries(1)=LOA/2;
%find number of bends in each zone and maximum number
%of bends in any zone
index hb = zeros(l,zones*2);
for m=1:zones

for k=l:length(headerbends)
if headerbends(k)>temp-zonalboundaries(m+l) &&

headerbends (k) <temp zonalboundaries (m)

if header_.bends (k+length (headerbends) ) >=O
index hb(m)=indexhb(m)+1;

215



Center for Ocean Engineering EEEUMassachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

else

indexhb(m+zones)=index hb(m+zones)+1;
end

end
end

end
indexhbmax=max(indexhb);
if indexhbmax < 1

index hb max = 1;
end
headerloc_s = zeros((zones)*2,indexhbmax*2+7,3);
headerloc_r = zeros((zones)*2,indexhbmax*2+5,3);
index 0;
y_3_s_port = 0;
y_3_s_stbd = 0;
segvalve index = 1;
for i=l:zones

if chillers(i)==2
for j=1:2

index=index+l;
%define supply and return headers
x_1_s = headerloc_start(index,l);
x 2 s = pump loc(index,l);
x_3_s = headerloc_end(index,l);
x_3_r = headerloc_end(index,l);
x_4a_s=ones(1,indexhbmax);
x_4bs=ones(1,indexhb max);
x_2ar=ones(l,indexhb max);
x_2br=ones(1,indexhb-max);
y_4a s=ones(l,index hb-max);
y_4b-s=ones(1,indexhbmax);
y_2ar=ones(l,indexhbmax);
y_2b r=ones(l,indexhbmax);
%define bend locations in supply header
if i == 1 %first zone

if j == 1 %port side
count = 0;
for k=1:length(headerbends)

if headerbends (k) <=temp zonalboundaries (i)
&& headerbends (k) >temp-zonal boundaries (i+1)

if headerbends(k+length(headerbends))>0
x_4a_s(indexhbmax-count) =

headerbends(k);
x_la_r(count+l) = headerbends(k)-

offseth;
y_4a_s(indexhbmax-count) =

headerbends(k+length(headerbends));
y_2a_r(count+l)

headerbends (k+length(header bends) ) -offseth;
y_3_s_port =

header bends (k+length (header bends));
count = count+l;

end
end

end

216



Center for Ocean Engineering U - Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering U U Cambridge, Massachusetts 02139-4307

if (indexhbmax-count)>O
for k=1: (indexhbmax-count)

x 4as(k) = x 3 s;
xla_r(indexhb-max-k+1) = x_3_s;
y_4a_s(k) = y_3_s_port;

y_2a_r(index hb max-k+1) = y_3_s_port-
offseteh;

end
end

else %starboard side

count = 0;
for k=1:length(headerbends)

if header bends(k)<=temp-zonalboundaries(i)
&& headerbends(k)>temp_zonalboundaries(i+1)

if header bends(k+length(headerbends))<0

x_4a_s(index hb max-count) =
header_bends(k);

x_lar(count+l) = headerbends(k)-
offset_h;

y_4a_s (index_hb_max-count ) =
headerbends (k+length(headerbends));

y_2a_r (count+1) =

headerbends (k+length(headerbends) )+offseth;
y_3_s stbd =

headerbends(k+length(headerbends));
count = count+1;

end
end

end
if (indexhbmax-count)>0

for k=1: (indexhbmax-count)
x_4as(k) = x 3 s;
x_lar(index_hb_max-k+1) = x_3_s;
y_4a_s(k) = y_3_s_stbd;

y_2ar(index_hb_max-k+1) =

y3_s_stbd+offset_h;
end

end
end

elseif i == zones %last zone

if j == 1 %port side

count = 0;
y_5_s_temp = y_3_s_port;
y_1_r_temp = y_3_s_port - offseth;
for k=l:length(headerbends)

if headerbends(k)<=tempzonalboundaries(i)

&& header bends(k)>tempzonal boundaries(i+1)
if header bends(k+length(headerbends))>0

x_4a_s(indexhbmax-count) =
header_bends (k) ;

x_la_r(count+1) =

headerbends(k)+offseth;

y_4a_s(index hb max-count) =
header_bends (k+length (header_bends ) );

217



Center for Ocean Engineering * o Massachusetts Institute of Technology
Naval Construction & Engineering Program 1 1177-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

y 2a r(count+1)

header bends (k+length(header bends)) -offset h;
y_3_s port

header bends(k+length(headerbends));
count = count+1;

end
end

end
if (index hb max-count)>O

for k=1:~(indexhbmax-count)
x_4as(k) = x 3_s;
x_la_r(index_hb_max-k+1) = x_3_s;
y_4a_s(k) = y_3_s_port;
y_2a_r(indexhb max-k+1) = y_3_s_port-

offset h;
end

end
else %starboard side

count = 0;
y_5_s_temp = y_3_sstbd;
y_1_r_temp = y_3_sstbd + offseth;
for k=l:length(headerbends)

if header__bends (k) <=tempzonal boundaries (i)
&& headerbends(k)>tempzonalboundaries(i+1)

if header bends (k+length(header bends) )<0
x 4a s(indexhbmax-count) =

headerbends(k);
x la r(count+1) =

header bends(k)+offset h;
y_4a_s(index-hb-max-count) -

headerbends (k+length(header bends));

y 2a r(count+1)
headerbends (k+length (headerbends) ) +offseth;

y_3_s_stbd =

header bends (k+length(headerbends));

count count+1;
end

end
end
if (index hb max-count)>0

for k=l: (indexhbmax-count)
x_4as(k) = x_3_s;

x_la_r(index_hb_max-k+1) = x_3_s;
y_4a_s(k) = y_3_s stbd;
y_2a_r(indexhbmax-k+1) =

y_3_s stbd+offseth;
end

end
end

else %middle zones
if j == 1 %port side

count = 0;
y_5_s_temp = y_3_s port;
y_1_r_temp = y_3_s_port - offset h;
for k=1:length(headerbends)

218



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

if header bends(k)<=tempzonal boundaries(i)

&& header bends(k)>temp zonal boundaries(i+1)
if header_ bends(k+length(headerbends))>O

x_4a_s(indexhbmax-count) =

headerbends(k);
x_lar(count+1) = headerbends(k)-

offseth;
y_4as (index hb max-count) =

header bends (k+length (header bends));
y_2a_r(count+1) =

headerbends(k+length(headerbends))-offseth;
y_3_s_port =

headerbends (k+length (headerbends));
count = count+1;

end
end

end
if (index hb max-count)>O

for k=1: (indexhb_ max-count)
x 4as(k) = x 3_s;
x_la_r(index_hbmax-k+1) = x_3_s;
y_4a_s(k) = y_3_s port;
y_2a_r(index hb max-k+1) = y_3_s__port-

offset h;
end

end
else %starboard side

count = 0;
y_5_stemp = y_3_s_stbd;
y_1_r_temp = y_3_s_stbd + offseth;
for k=1:length(header bends)

if header bends(k)<=temp_zonalboundaries(i)
&& headerbends (k) >tempzonalboundaries (i+1)

if header bends(k+length(header bends))<0
x_4a_s(indexhbmax-count) =

header bends(k);
x_lar(count+1) = header bends(k)-

offset h;
y_4a s(index hb max-count) =

header bends(k+length(header bends));
y 2a r(count+1) =

header bends(k+length(headerbends))+offseth;
y_3_s stbd =

headerbends (k+length (headerbends));
count = count+1;

end
end

end
if (index_ hb _max-count)>0

for k=1: (indexhbmax-count)
x_4as(k) = x_3_s;
x_la_r(index_hbmax-k+1) = x_3_s;
y_4a_s(k) = y_3_s_stbd;
y_ 2a_r(indexhb max-k+1) =

y_3_s stbd+offset h;

219



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

end
end

end
end

if i==1
x 4bs = zonalboundaries(i);
x_lbr = zonalboundaries(i);

elseif i==zones
x_5a_s = zonalboundaries(i-1);
x 4b s = -LOA/2+0.5;
x lb r = -LOA/2+0.5+offseth;

else
x 5as = zonalboundaries(i-1);
x 4bs = zonalboundaries(i);
x lb_r = zonalboundaries(i);

end
if j==lport side

y_1_s = headerloc_start(index,2);
y_2_s = headerloc start(index,2)-3;
y_3_s = y_3_s port;
y_5_s = 0+offseth/2;
y_1_r = 0-offseth/2;
y_2_r = beam/2-3/ft_perIm-offseth;
y_3_r = headerloc_end(index,2)+offseth-3;
y_4_r = headerloc_end(index,2);
z_2_s = portheaderdeckht;
z 1 r = port header deck ht-offset h;

elseif j==2 %starboard side
y_1_s = headerloc_start(index,2);
y_2_s = headerloc_start(index,2)+3;
y_3_s = y_3_sstbd;
y_5_s = 0+offseth/2;
y_1_r = 0-offseth/2;
y_2 r = -beam/2+3/ft per m+offset h;
y_3_r = header loc_ end(index,2)-offset_h+3;
y_4_r = headerloc_end(index,2);
z 2_s = stbd _headerdeckht;
z 1_r = stbdheaderdeckht-offset h;

end
z_1_s = headerloc_start(index,3);
z 2 r = header loc end(index,3);
if i == 1

header_loc_s (index,l,:) = [ x_1_s y_1_s z_1_s];
header loc _s(index,2,:) = [x_2_s y_1_s z_1_s];
headerloc_s(index,3,:) = [x_2_s y_2_s z_1_s];
headerloc_s (index,4,:) = [x_3_s y_2_s z_1_s];
header loc_s (index,5,:) = [x__3_s y_2_s z_2_s];
header loc s(index,6,:) = [x_3_s y_3_s z_2_s];
for k=l:indexhbmax-1

headerloc_s(index,5+2*k,:) = [x_4as(k)
y_4a_s(k) z_2_s];

header loc s(index,6+2*k,:) = [x_4as(k)
y_4as(k+1) z_2_s];

end

220



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

y_4a-s(k) z_2_s];

[x_4as(index hbmax)

[x_4a s(indexhbmax)

y_2ar (k)

y_2a r(k)

y_2a_r(k)

z_1_r]

z_1_r];

z_1_r];

y_2ar(indexhbmax)

z_1_r];

z_2_r];

z_2_r];

y_2a-r(indexhbmax)

e

y_4a s(k) z_2_s];

y_4a_s(k+1) z_2_s];

y_4as(k) z_2_s];

[x_4a s(indexhb-max)

for k=index hbmax
headerloc_s(index,5+2*k,:) = [x_4as(k)

end
headerloc s(index,indexhbmax*2+6,:) =

y_5_s z_2_s];
headerloc_s(index,indexhbmax*2+7,:) =

y_5_s z_2_s];
headerboc_s_alt(index,:,:) = [x_3_s y_3_s z_2_s;

x 4bs y_3_s z_2_s;
x_4bs y_3_s z_2_s];

headerloc_r(index,1,:) = [x_lar(1) y_1_r z 1_r];
headerloc_r(index,2,:) = [xlar(1) y_1_r z_1_r);
for k=1:indexhbmax-1

headerloc_r(index,2*k+1,:) = [xlar(k)

headerloc_r(index,2*k+2,:) = [x_lar(k+1)

end
for k=indexhbmax

header bocr(index,2*k+1,:) = [xlar(k)

end
header loc_r(index,indexhbmax*2+2,:)

z_1_r];
headerloc_r(index,indexhbmax*2+3,:)

= [x_3_r

[x_3 r y_3_r

headerloc_r(index,indexhbmax*2+4,:) = [x_3_r y_3_r

headerloc_r(index,index hb max*2+5,:) = [x_3_r y_4_r

headerloc_r_alt(index,:,:) = [xlb_r
z_1_r;

x_3_r y_2a r(index hb max) z_1_r;
x_3_r y_2a_r(indexhbmax) z_1_r];

lseif i == zones
headerloc_s(index,1,:) = [x_1_s y_1_s z_1_s
header loc s(index,2,:) = [x 2 s y_1_s z 1 s
headerloc_s(index,3,:) = [x 2 s y_2_s z_1_s
headerloc_s(index,4,:) = [x_3 s y_2_s z_1_s
headerloc_s(index,5,:) = [x_3_s y_2_s z_2_s
headerloc_s(index,6,:) = [x_3_s y_3_s z_2_s
for k=l:index hbmax-1

headerloc_s(index,5+2*k,:) = [x_4as(k)

headerloc_s(index,6+2*k,:) = [x4as(k)

end
for k=indexhbmax

headerloc_s(index,5+2*k,:) = [x_4as(k)

end
headerloc_s(index,.indexhbmax*2+6,:)

y_5_s_temp z_2_s];

]I;
]1;
~];
]I;
]1;

221



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Ii Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

y_5_s_temp z_2_s];

y_1_r_temp z_1_r];

z 1 r];

y_2a r(k) z_1_r];

y_2a r(k) z_1_r];

y_2a r (k) z_1 r];

y_2a r(index hb max) z_1

z_1_r];

z_2 r];

z_2_r];

elSE

y_4 a-s (k) z_2_s];

y_4a_s(k+l) z_2_s];

y_4a_s(k) z_2_s];

[x_4a s(index hb max) y_

y_5_s_temp z_2_s];

headerloc_s (index, indexhbmax*2+7,:) = [x_5a_s

header_loc_s_alt(index,:,:) = [x_3_s y_3_s z_2_s;
x 4b s y_3_s z 2 s;
x 4b s y 5 s z 2 s];

headerloc_r(index,1,:) = [zonalboundaries(i-1)

headerloc_r(index,2,:) = [xla_r(l) y_1_r_temp

for k=l:indexhbmax-1
header_locr(index,2*k+1,:) = [xlar(k)

headerloc_r(index,2*k+2,:) = [x_lar(k+l)

end
for k=index hb max

header loc r(index,2*k+1,:) = [xlar(k)

end
header loc r (index, index hb-max*2+2,:) =x3_r

_r] ;
headerloc_r(index,index hb max*2+3,:) = [x_3_r y_3_r

headerloc r (index, index hb max*2+4,:) [x_3_r y_3_r

header_loc_r (index, index hb max*2+5,:) = [x_3_r y_4 r

header locr alt(index,:,:) = [x lb r y 1 r z 1 r;
x_lb_r y_2a_r(indexhbmax) z_1_r;
x_3_r y_2a_r(index hb max) z_1_r];

header_loc_s(index,1,:)
headerlocs(index,2,:)
header_locs(index,3,:)
header loc_s(index,4,:)
headerloc_s(index,5,:)
headerloc s(index,6,:)
for k=l:indexhbmax-1

header loc s(index,

= Lx_1_
= [x_2_s

[x_2_s
=Lx_3_s

= [x_3_s
= [x_3_s

y_1_S
y_1_s
y_2_s
y_2_s
y_2_s
y_3_s

z_1_s];

z_1_s];
z_1_s] ;
z_2_s];

z_2_s];

5+2*k,:) = [x_4a s(k)

header_locs(index,6+2*k,:) = [x_4a s(k)

end
for k=indexhbmax

header_locs(index,5+2*k,:) = [x_4as(k)

end
header_loc_s(index,indexhbmax*2+6,:) =
5_s_temp z_2_s];
header loc s(index,index hb max*2+7,:) = [x_5a s

header_loc_s alt(index,:,:) = [x_3_s y_3_s z_2_s;
x 4b s y 3 s z 2 s;
x_4bs y_3_s z_2_s];

222



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

y_1_r_temp

z_1_r];

y_2a_r(k)

y_2a-r (k)

y_2a_r (k)

z_1_r] ;

z_1_r ;

z_ 1 r] ;

z_1_r] ;

y_2a_r(index hbmax)

z_1_r);

z_2_r];

z 2 r];

y_2a_r(indexhb max)

y_2_rc z_1 rc];

headerloc_r(index,1,:) = [zonalboundaries(i-1)

headerloc_r(index,2,:) = [xlar(1) y1 r temp

for k=1:indexhbmax-1
header_loc_r(index,2*k+1,:) = [xlar(k)

headerloc_r(index,2*k+2,:) = [xla_r(k+1)

end
for k=index hbmax

header_ioc_r(index,2*k+1,:) = [xlar(k)

end
headerloc_r(index,index_hbmax*2+2,:) = [x3_r

z1 1r] ;
headerloc_r(index,index hb max*2+3,:) = [x_3_r y

header loc_r(index,index hb max*2+4,:) = [x3 r y

headerloc_r(index,indexhb max*2+5,:) = [x_3_r y

headerloc_r_alt(index,:,:) = [x_lb_r
z_1_r;

x_3_r y_2a r(indexhbmax) z_1_r;
x_3_r y_2a_r(index hbmax) z_1_r];

end
%define recirc line
if j==1

x 1_rc = pump loc(index,1)-0.75;
y lrc = pumploc(index,2);
y_2 rc = header loc_start(index,2)-3;
z 1_rc = headerloc_start(index,3);

elseif j==2
x_1_rc = pump_loc(index,1)-O.75;
y_1_rc = pumploc(index,2);
y 2 rc = header loc start(index,2)+3;
z_1_rc = headerloc_start(index,3);

end
recirc_line(index,:,:) = [x_1_rc ylrc z_1_rc;x_1_rc

%define athwartship cross-connect points
if i==1 && j==1

x_11_cc s = x_4a_s(indexhbmax);
y_11_ccs = y_5_s;
z_11_cc s = z_2_s;
x_11_cc r = xla_r(l);
y_11_ccr = y_1_r;
z_11_cc r = z_1_r;

elseif i==1 && j==2
x_12_cc s = x_4a_s(index hb max);
y_12_cc s = y_5_s;
z_12_cc s = z_2_s;
x_12_cc r = x_lar(1);
y_12ccor = y_1_r;

223

_3_r

_3_r

_4_r



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

z_12_ccr =
elseif i==zones

x_21_ccs =
y_21_ccs =
z_21_cc_s =
x_21_cc_r =
y_21_cc r =
z_21_ccr =

elseif i==zones
x_22_ccs =
y_22_ccs =
z_22_ccs =
x_22_ccr =
y_22_cc r =
z_22 cc r =

end

z_1_r;
&& j==1
x_4bs;
y_5_s;
z_2_s;
x_1b_r;
y_1_r;
z_1_r;
&& j==2
x_4bs;

y_5_s;
z_2_s;
x_lb_r;
y_1_r;
z_1_r;

%define cross-connects
%define isolation valves
if j==1

sign = 1;

else
sign = -1;

end
segvalveloc(seg valve index+0,:) = [x3_s y_3_s

z_2_s]+[1/ftper_m 0 0];
segvalveloc(segvalve index+1,:) = [x_3_s y_3_s

z_2_s]+[-1/ft_per_m 0 01;
segvalveloc(segvalveindex+2,:)

z_2_s]+[0 -sign*2/ftper m 0];
seg_valveloc(segvalveindex+3,:)

z_2_s]+[1/ft_perm 0 0]+offseth*[0 -sign -1];
seg_valveloc(seg_valveindex+4,:)

z_2_s]+[-l/ftperim 0 0]+offset h*[0 -sign -1];
segvalve loc(segvalve index+5,:)

z_2_s]+[0 -sign*2/ft_perm 0]+offset h*[0 -sign -1];
if i<zones

[zonalboundaries (i)

[zonalboundaries (i)

[zonalboundaries(i)

[zonalboundaries (i)

end

end
end

= [x_3_s y_3_s

= [x 3 s y_3_s

= [x_3_s y_3_s

= [x_3_s y_3_s

%define cross-connect valves across zones
segvalveloc(segvalveindex+6,:) =

y_3_s z_2_s]+[0.25 0 0];
seg_valveloc(segvalveindex+7,:) =

y_3_s z_2_s]+[-0.25 0 0];
segvalveloc(segvalveindex+8,:) =

y_3_s z_2_s]+[0.25 0 0]+offset h*[0 -sign -1];
seg_valve loc(segvalveindex+9,:) =

y_3_s z_2_s]+[-0.25 0 0]+offseth*[0 -sign -1];
segvalve index = seg_valveindex+10;

else
seg valve index = seg valve index+6;

end

%define athwartship cross-connect

224



Center for Ocean Engineering 1 U Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

ccllocs = [x_11_cc_s y_11_ccs z_11cc s; x_12_cc_s y_12_cc s
z 12_cc s];

cc2_loc_s = [x_21_ccs y_21_ccs z_21_ccs; x_22_cc_s y_22_cc_s
z_22_cc_s];

cclloc_r = [x_11_cc_r y_11_ccr z_11_ccr; x_12_ccr y_12_cc_r
z_12_ccr];

cc2_loc_r = [x_21_cc_r y_21_ccr z_21_ccr; x_22_cc_r y_22_cc-r
z 22_cc_r];

segvalve loc(seg valve index,:) = [(x 11 cc s+x_12_cc s)/2
(yllccs+y_12_cc s)/2 (z_11_ccs+z_12_ccs)/2];

segvalveloc(seg_valveindex+1,:) = [(x_21_cc_s+x_22_ccs)/2
(y_21_ccs+y_22_cc_s)/2 (z_21_ccs+z_22_cc-s)/2];

segvalveloc(seg_valveindex+2,:) = [(x_11_cc_r+x_12_ccr)/2
(y_ll_cc_r+y_12_cc_r)/2 ( z_11_ccr+z_12_cc-r)/2];

segvalve_loc(seg valveindex+3,:) = [(x_21_cc r+x_22_ccr)/2
(y 21 cc r+y_22_cc r)/2 (z 21_cc r+z_22_cc r)/21;

end
end

Define segregation valve dimensions

segvalve dim = [1/ft per m 1/ftper m 1/ft per ml;
seg valvevec = [segvalve dim(1)/2*[1 1 -1 -1 1];seg_valvedim(2)/2*[1 -1 -1
1 1];seg-valvedim(3)/2*[1 1 1 1 1]];

% Plot 2D layout w/ mains

ship vec = [LOA/2*[1 1 -1 -1 1];beam/2*[1 -1 -1 1
1];engdeck ht above keel*[l 1 1 1 1]];
figure (3)
plot(ship_vec(1,:),,ship_vec(2,:))
hold on
for i=1:length(seg valveloc)

plot(segvalve vec(1,:)+seg valve loc(i,1),segvalve vec(2,:)+segvalve loc(i
,2),'k')

end
for i=l:sum(chillers)

plot(chillervec(1,:)+chillerloc(i,1),chillervec(2,:)+chiller loc(i,2),'k')
end
for i=2:(length(bulkheadloc)-1)

plot(bulkheadloc(i)*[1 1],beam/2*[1 -1],'g')
end
plot(zonalboundaries(1)*[1 1 0 0 1]+LOA/2*[0 0 1 1 0],beam/2*[1 -1 -1 1
1], 'r: ')

for i=2:zones
plot(zonal boundaries(i)*[0 1 1 0]+zonal boundaries(i-1)*[1 0 0

1],beam/2*[1 1-1 -1],'r:')
end
scatter(chiller loc(:,l),chillerloc(:,2),'ks')
scatter(pumploc(:,1),pump loc(:,2), 'kh')
axis equal

225



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Ii Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

axis ([-LOA/2-5 LOA/2+5 -beam/2-5 beam/2+5])
for i=l:sum(chillers)

plot(headerloc_s(i,:,1),headerloc s(i,:,2),'b')
plot(headerloc_r(i,:,1),headerloc_r(i,:,2),'r')
plot(headerloc_s_alt(i,:,1),header loc_s_alt(i,:,2),'b')
plot(header loc r alt(i,:,1),headerlocr alt(i,:,2),'r')

end
for i=l:sum(chillers)

plot(recirc line(i,:,1),recircline(i,:,2),'b')
end
xlabel
ylabel
title(

('Longitudinal Axis')
('Transverse Axis')
'2D Mains Layout')

% Plot 3D layout w/ mains

figure (4)
hold on
for i=l:sum(chillers) %plot mains

plot3(header loc s(i,:,1),header loc s(i,:,2)
plot3(headerloc_r(i,:,1),header loc_r(i,:,2)

plot3(headerloc_s_alt(i,:,l),header loc_s_alt(i,

,'b')

plot3(headerloc_r_alt(i,:,l),headerloc_r_alt(i,

, 'r')
end
for i=l:sum(chillers) %plot recirc line

,headerloc_s(i,:,3),'b')
,headerloc_r(i,:,3),'r')

:,2),header-loc_s_alt(i,:,3)

:,2),headerloc_r_alt(i,:,3)

plot3(recirc line(i,:,1),recirc line(i,:,2),recirc line(i,:,3),'b')
end
if piping_config == 2

plot3(cclloc_s(:,
plot3(cc2_loc_s(:,
plot3(-cclloc_r (:,
plot3(cc2_loc_r(:,

%plot athwartship cc piping
1),cc1_loc_s(:,2),cc1_loc_s
1),cc2_loc_s(:,2),cc2_loc_s
1),cclloc_r (:,2),cclloc_r
1),cc2_loc_r(:,2),cc2_loc_r

for
(:,3)
(:,3)
(:,3)
(:,3)

double mains

,'b')
,'b')
'r')
'r')

end
plot3([LOA/2 LOA/2 -LOA/2 -LOA/2 LOA/2], [beam/2 -beam/2 -beam/2 beam/2
beam/2], [0 0 0 0 0]) %plot ship boundaries
chillervec_3D = [chiller dim(1)/2*[1 1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 -1 -1];

chillerdim(2)/2*[1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1];
chillerdim(3)/3*[-1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 1 1 -1]];

pump_vec_3D = [pump_dim(1)/2*[1 1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 -1 -1];
pump_dim(2)/2*[1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1];
pumpdim(3)/3*[-1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 1 1 -1]];

segvalve vec_3D = [segvalve dim(1)/2*[1 1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 -1
-1];

seg-valve dim(2)/2*[1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1];
seg_valvedim(3)/3*[-1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 1 1 -1]];

for i=1:sum(chillers)

plot3(chillervec_3D(1, :)+chillerloc(i,1),chiller vec_3D(2, :)+chillerloc(i,
2),chiller vec_3D(3,:)+chillerloc(i,3),'k')

226



Center for Ocean Engineering * i u Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

plot3(pumpve c_3D(1,:)+pumploc(i,1),pump_vec_3D(2,:)+pump_loc(i,2),pumpvec
3D(3,:)+pump_loc(i,3),'k')
end
for i=1:length(segvalve loc)

plot3(segvalvevec_3D(1,:)+segvalveloc(i,1),segvalve vec_3D(2,:)+segvalv
e_loc(i,2),seg_valve_vec_3D(3,:)+seg_valveloc(i,3),'k')
end
axis equal
xlabel('Longitudinal Axis')
ylabel('Transverse Axis')
title('3D Mains Layout')

% Determine if a branch is vital or non-vital

inputs = length(Load Loc m);
vital false(1,inputs);
for i=l:inputs

if Priority(i) < 3
vital(i) = true;

else
vital(i) = false;

end
end

(%%%%%0 %%%%%%% % % %
Define branch location by defining an array of 10 points for the

% start, bends and end of the branch piping starting at the supply
header junction and ending at the return header junction

branchloc = zeros(10,2,3,inputs); %10 points describing branch location - 2
branches per vital load - 1 branch per non-vital load
branch loc vital = zeros(10,3,inputs); %delete
branchgateloc = zeros(2,2,3,inputs); %2 points describing gate valve
locations - 2 sets per vital load - 1 set per non-vital load
branchglobeloc = zeros(1,2,3,inputs); %l point describing globe valve
locations - 2 sets per vital load - 1 set per non-vital load
gate valveb = zeros(2,inputs);
globevalveb = zeros(2,inputs);
if pipingconfig == 1 %single main with n zones

lengthb = zeros(2,inputs);
for i=1:inputs

if LoadLocm(i,1)> headerloc_s(1,7,1)
%fwd of header
x_1 = headerlocs(1,7,1)-0.1;
y_1 = offseth/2;
z_1 = headerloc_s(1,6,3);
if LoadLoc m(i,3)>z 1

sign = -1;
else

sign = 1;

end
branchloc(:,1,:,i) = [x_1 y_1 z_1;

227



Center for Ocean Englneerlng
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

x 1 y_1 LoadLocm(i,3)+sign*offsetb/2;
LoadLocm(i,1) y_1 LoadLocm(i,3)+sign*offsetb/2;
LoadLocm(i,1) LoadLocm(i,2)

LoadLocm(i,3)+sign*offsetb/2;
Load_Locm(i,1) LoadLocm(i,2)

LoadLoc m(i,3)+sign*offset b/2;
LoadLocm(i,1) LoadLocm(i,2) LoadLocm(i,3)-

sign*offsetb/2;
LoadLocm(i,1) LoadLocm(i,2) LoadLocm(i,3)-

sign*offsetb/2;
LoadLocm(i,l) y-l-offseth LoadLocm(i,3)-sign*offsetb/2;
x_1 y_1-offset h LoadLocm(i,3)-sign*offsetb/2;
x 1 y_1-offseth z_1-offseth];

if LoadLocIm(i,3) > z_1
sign = 1;

else
sign = -1;

end
branch_gateloc(1,1,:,i) = [branchloc(1,1,1,i)

branch loc(1,1,2,i) branch loc(1,1,3,i)]+[O 0 sign*0.15];
branch_gateloc(2,1,:,i) = [branchloc(10,1,1,i)

branchloc(10,1,2,i) branch loc(10,1,3,i)]+[0 0 sign*0.15];

gate_valveb(1,i) = gate_valveb(1,i)+2;
branchglobe_loc(1,1,:,i) = [branchloc(10,1,1,i)

branchloc(10,1,2,i) branchloc(10,1,3,i)]+[0 0 sign*0.31;

globe valveb(1,i) = globevalveb(1,i)+1;
elseif LoadLocm(i,1)<headerloc s alt(zones,2,1)

%aft of header
x_1 = headerloc s_alt(zones,2,1)+0.1;
y_1 = offseth/2;
z_1 = headerloc_s(1,6,3);
if LoadLocm(i,3)>z_1

sign = 1;
else

sign = -1;
end
branch loc(:,1,:,i) = [x_1 y_1 z_1;

x_1 y_1 LoadLocm(i,3)+sign*offsetb/2;
LoadLocm(i,1) y_1 LoadLocm(i,3)+sign*offsetb/2;
LoadLocm(i,1) LoadLocm(i,2)

LoadLocm(i,3)+sign*offsetb/2;
LoadLocm(i,1) LoadLocm(i,2)

LoadLocm(i,3)+sign*offsetb/2;
LoadLocm(i,1) LoadLocm(i,2) LoadLocm(i,3)-

sign*offsetb/2;
LoadLocm(i,1) LoadLoc m(i,2) LoadLocm(i,3)-

sign*offsetb/2;
LoadLocm(i,1) yl-offseth LoadLocm(i,3)-sign*offsetb/2;
x_1 y_1-offseth LoadLocm(i,3)-sign*offsetb/2;
x_1 y_1-offseth z_1-offset_h];

if Load Loc m(i,3) > z_1
sign = 1;

else
sign = -1;

end

228

MNIM

1111



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Ii Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

branchgateloc(1,1,:,i) = [branchloc(1,1,1,i)
branchloc(1,1,2,i) branchloc(1,1,3,i)]+[O 0 sign*0.15];

branch gate_loc(2,1,:,i) = [branchloc(10,1,1,i)
branchloc(10,1,2,i) branchloc(10,1,3,i)]+[0 0 sign*0.15];

gatevalveb(1,i) = gatevalveb(1,i)+2;
branchglobeloc(1,1,:,i) = [branchloc(10,1,1,i)

branchloc(10,1,2,i) branchloc(10,1,3,i)]+[0 0 sign*0.3];
globe valveb(1,i) = globevalveb(1,i)+1;

else
%within header boundaries
y_1 = offset h/2;
z_1 = headerloc_s(1,6,3);
if (y_l-Load Loc_m(i,2))*(Load_Loc_m(i,

sign = 1;
else

sign = -1;

LoadLocm(i

LoadLoc-m(i

LoadLocm(i

sign*offset_

sign*offset_

sign*offset_

end
branchloc(:,1,:,i) = [LoadLocm(i

LoadLocm(i,1) y_1 Load_Locm(
LoadLoc_m(i,1) LoadLocm(i,2)

,3)+sign*offsetb/2;
LoadLocm(i,l) LoadLoc m(i,2)

,3)+sign*offset-b/2;
LoadLocm(i,1) LoadLocm(i,2)

,3)+sign*offsetb/2;
LoadLocm(i,1) Load Loc m(i,2)

b/2;

11)
i,3)

3)-z_1)>0

y_1 z_1;
+sign*offsetb/2;

LoadLocm(i,3)-

LoadLocm(i,1) LoadLocm(i,2) LoadLocm(i,3)-
b/2;

LoadLocm(i,1) LoadLoc m(i,2) LoadLocm(i,3)-
b/2;

Load Locm(i,1) y_l-offseth LoadLocm(i,3)-sign*offset b/2;
Load Locm(i,l) y_1-offseth z 1-offset_h];

if LoadLocm(i,3) > z_1
sign = 1;

else
sign = -1;

end
branch gateloc(1,1,:,i) = [branchloc(1,1,1,i)

branchloc(1,1,2,i) branchloc(1,1,3,i)]+[0 0 sign*0.15];
branch gateloc(2,1,:,i) = [branchloc(10,1,1,i)

branchloc(10,1,2,i) branchloc(10,1,3,i)]+[0 0 sign*0.15];
gate_valveb(1,i) = gate valveb(1,i)+2;
branch globeloc(1,1,:,i) = [branchloc(10,1,1,i)

branchloc(10,1,2,i) branchloc(10,1,3,i)]+[0 0 sign*0.3];
globevalveb(1,i) = globe valveb(l,i)+l;

end
end

elseif piping config == 2 %double main with n zones
if piping double config == 1 %double main simple loop with n zones

lengthb = zeros(2,inputs);
for i=1:inputs

%connect each load to the supply and return header
%regardless of vital or non-vital
if LoadLocm(i,1) > headerloc_s(1,8,1) && ...

229

_ _



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

((LoadLocm(i,2) >= offseth/2 && LoadLoc m(i,2) <=
headerloc_s(1,7,2))II...

(LoadLocm(i,2) <= -offseth/2 && LoadLoc m(i,2) >=
headerloc_s(2,7,2)))

%port & stbd fwd of header loop
x_1 = headerloc_s(1,8,1);
%set z_1 depending on port or stbd side
if LoadLocm(i,2) > 0

z_1 = headerloc_s(1,8,3);
else

z_1 = headerloc_s(2,8,3);
end
%set sign depending on z-location
if LoadLocm(i,3) >= z_1

sign = 1;
else

sign = -1;
end
branch loc(:,1,:,i) = [x 1 Load Loc m(i,2) z 1;

x_1 LoadLoc_m(i,2) LoadLoc_m(i,3)-sign*offsetb/2;
LoadLocm(i,1) LoadLocm(i,2) LoadLocm(i,3)-

sign*offsetb/2;
LoadLocm(i,1) LoadLocm(i,2) LoadLocm(i,3)-

sign*offsetb/2;
LoadLocm(i,1) LoadLocm(i,2) LoadLoc m(i,3)-

sign*offsetb/2;
LoadLocm(i,1) LoadLocm(i,2)

LoadLocm(i,3)+sign*offsetb/2;
Load Locm(i,1) LoadLocm(i,2)

LoadLoc_m(i,3)+sign*offsetb/2;
LoadLoc_ m(iL) LoadLocm(i,2)

LoadLoc_m(i,3)+sign*offset b/2;
x_-1-offset-h LoadLoc-m(i,2)

LoadLoc-m(i,3)+sign*offset-b/2;
x_1-offseth LoadLocm(i,2) z_1-offset h];

branchgate_loc(1,1,:,i) = [branchloc(1,1,1,i)
branchloc(1,1,2,i) branchloc(1,1,3,i)]+[0 0 sign*0.15];

branch_gateloc(2,1,:,i) = [branchloc(10,1,1,i)
branchloc(10,1,2,i) branchloc(10,1,3,i)]+[0 0 sign*0.15];

gate valve b(1,i) = gate valve b(1,i)+2;
branchglobeloc(1,1,:,i) = [branchloc(10,1,1,i)

branchloc(10,1,2,i) branchloc(10,1,3,i)]+[0 0 sign*0.3];
globevalve b(1,i) = globe valveb(1,i)+1;

elseif LoadLoc_m (i,1) > headerloc_s(1,8,1) && LoadLoc_m(i,2) >
-offseth/2 && LoadLocm(i,2) < offseth/2

%port fwd of header loop within x-conn section
x_1 = header loc s(1,8.,1);
z_1 = headerloc_s(1,8,3);
%set sign depending on z-location
if LoadLocm(i,3) >= z 1

sign = 1;
else

sign = -1;
end
branchloc(:,1,:,i) = [x_1 offseth/2+0.1 z_1;

230



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

x_1 offseth/2+0.1 LoadLocm(i,3)-sign*offsetb/2;
LoadLoc_m(i,1) offset h/2+0.1 Load_Loc_m(i,3)-

sign*offsetb/2;

Load_Loc_m(i,1) Load_Loc_m(i,2) Load_Loc m(i,3)-
sign*offsetb/2;

Load_Locm(i,1) Load_Locm(i,2) Load_Loc m(i,3)-
sign*offsetb/2;

Load_ Locm(i,1) LoadLoc m(i,2)
Load Loc_m(i,3)+sign*offset b/2;

Load_Loc_m (i, 1) Load_Loc_m (i, 2)
LoadLoc_m(i,3)+sign*offsetb/2;

Load_Locm(i,l) offseth/2+0.1
LoadLoc_m(i,3)+sign*offset_ b/2;

x_1-offseth offseth/2+0.1
LoadLoc_m(i,3) +sign*offsetb/2;

x 1-offseth offseth/2+0.1 z_1-offset_hi;
branch_gateloc(1,1,:,i) = [branch_loc(1,1,1,i)

branch_loc(1,1,2,i) branch_loc(1,1,3,i)]+[0 0 sign*0.15];
branchgate_loc(2,1,:,i) = [branch_loc(10,1,1,i)

branch_loc(10,1,2,i) branch_loc(10,1,3,i)]+[0 0 sign*0.151;
gatevalveb(1,i) = gatevalveb(1,i)+2;
branch_globeloc(1,1,:,i) = [branch_loc(10,1,1,i)

branch_loc(10,1,2,i) branch loc(10,1,3,i)]+[0 0 sign*0.3];
globevalveb(1,i) = globevalveb(1,i)+1;

elseif Load_Loc m(i,1) > header_loc_s alt(zones*2,3,1) &&
Load_Loc_m(i,l) < header_loc_s(1,8,1) && Load_Loc m(i,2) > 0

%port mid-zones
y_1 = header_loc_s(1,6,2);
z 1 = header_locs(1,8,3);
if (y_1-Load Loc_m(i,2))*(LoadLoc_m(i,3)-zl)>0

sign = 1;
else

sign = -1;
end
deck = 12.5;
if Load_Loc m(i,3) < deck

branch_loc(:,1,:,i) = [Load Locom(i,1) y_1 z_1;
Load_Loc m(i,1) y_1 Load_Loc_m(i,3)+sign*offsetb/2;
LoadLocm(i,1) Load_Locm(i,2)

LoadLoc_m(i,3)+sign*offsetb/2;

Load_Loc_m (i,1) LoadLoc_m(i,2)
Load_Loc_m(i,3)+sign*offsetb/2;

Load_Locm(i,1) LoadLocm(i,2)
LoadLoc m(i,3)+sign*offset b/2;

Load_Loc m(i,1) LoadLocm(i,2) LoadLocm(i,3)-
sign*offsetb/2;

Load_Loc_m(i,1) Load_Loc_m(i,2) Load_Loc_m(i,3)-
sign*offsetb/2;

Load_Loc m(i,1) Load_Loc_m(i,2) Load_Loc_m(i,3)-
sign*offsetb/2;

LoadLoc m(i,1) y_1-offset h Load Loc m(i,3)-
sign*offsetb/2;

Load_Locm(i,1) yl-offseth z_1-offset_h];
else

branch loc(:,1,:,i) = [LoadLoc_m(i,1) y_1 z 1;

231



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering i'i~r Massachusetts Institute of Technology

77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Load_Locm(i,1) y_1 deck;
LoadLoc_m(i,1) y_1/2 deck;
Load Loc m(i, 1) y_1/2

Load_Locm(i,3)+sign*offset_b/2;
Load_Loc_m (i,1) Load_Loc_m(i,2)

LoadLoc m(i,3)+sign*offset b/2;
Load_Loc_m(i,1) Load_Loc_m(i,2) Load_Loc_m(i,3)-

sign*offsetb/2;
Load_Loc_m(i,1) y_1/2-offsetb Load_Loc__m(i,3)-

sign*offsetb/2;
Load_Locm(i,1) y_1/2-offsetb deck-sign*offsetb;
Load_Loc_m(i,1) y_1-offseth deck-sign*offset b;
Load_Loc_m(i,1) y_1-offset h z 1-offset h];

end
%set sign depending on z-location
if Load_Loc_m(i,3) >= z_1

signz = 1;
else

sign_z = -1;
end
branch_gate loc(1,1,:,i) = [branch loc(1,1,1,i)

branchloc(1,1,2,i) branchloc(1,1,3,i)]+[O 0 signz*0.15];
branchgateloc(2,1,:,i) = [branchloc(10,1,1,i)

branchloc(10,1,2,i) branchloc(10,1,3,i)]+[0 0 signz*0.151;
gatevalveb(1,i) = gate valveb(1,i)+2;
branch_globeloc(1,1,:,i) = [branch loc(10,1,1,i)

branchloc(10,1,2,i) branchloc(10,1,3,i)]+[O 0 sign_z*0.3];
globe valve b(1,i) = globe valve b(1,i)+l;
if vital(i) %vital load

y_1 = header_locs(zones*2,6,2);
z 1 = header_locs(zones*2,8,3);
sign = sign*-1;
deck = 12.5;
if Load_Locm(i,-3) < deck

branch_loc(:,2,:,i) = [LoadLoc-m(i,1) y_1 z_1;
Load_Locrm(i,1)

Load_Loc_m(i,3)+sign*offsetb/2;
Load_Loc_m(i,1)

LoadLoc m(i,3)+sign*offset b/2;
Load_Lo_m (i,1)

Load_Locm(i,3)+sign*offsetb/2;
Load Loc m(i,1)

Load_Loc_m(i,3)+sign*offsetb/2;
Load_Locm (i, 1)

sign*offsetb/2;
Load_Loc_m (i, 1)

sign*offsetb/2;
LoadLoc_m(i,1)

sign*offset b/2;
Load_Locm(i,1)

sign*offsetb/2;
Load_Locm(i,1)

else
branch_ loc(:,2,:,i)

LoadLocm(i,1)

y_1

Load_Loc_m (i, 2)

Load_Loc_m (i, 2)

Load_Locm(i,2)

Load_Locm(i,2) Load_Loc_m(i,3)-

Load_Loc_m(i,2) LoadLoc_m(i,3)-

Load_Loc_m(i,2) Load_Loc_m(i,3)-

y_l+offset h LoadLoc m(i,3)-

y_l+offseth z_1-offset_h];

= [LoadLoc m(i,l) y_1 z 1;
y_1 deck;

232



Center for Ocean Engineering * U Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

LoadLoc_m (i,1) y_1/2 deck;
Load Loc m(i,1) y_1/2

LoadLoc_m(i,3)+sign*offsetb/2;
LoadLoc_m(i, 1) LoadLoc_m(i,2)

LoadLocm(i,3)+sign*offsetb/2;
LoadLoc_m(i,1) LoadLoc_m(i,2) LoadLoc_m(i,3)-

sign*offsetb/2;
LoadLoc m(i,1) y_1/2-offsetb LoadLoc m(i,3)-

sign*offsetb/2;
LoadLoc_m(i,1) y_1/2-offsetb deck-

sign*offsetb;
LoadLocm(i,1) y_1+offseth deck-sign*offsetb;
LoadLocm(i,1) y_1+offseth z_1-offset h];

end
%set sign depending on z-location
if LoadLoc m(i,3) >= z_1

sign_z = 1;
else

sign_z = -1;
end
branch gate_loc(1,2,:,i) = [branchloc(1,1,1,i)

branchloc(1,1,2,i) branch_loc(1,1,3,i)]+[0 0 signz*0.15];
branch gateloc(2,2,:,i) = [branch loc(10,1,1,i)

branchloc(10,1,2,i) branch_loc(10,1,3,i)]+[0 0 signz*0.15];
gatevalve_b(2,i) = gatevalve_b(1,i)+2;
branchglobe_loc(1,2,:,i) = [branchloc(10,1,1,i)

branchloc(10,1,2,i) branch_loc(10,1,3,i)]+[0 0 sign_z*0.3];
globe_valve_b(2,i) = globevalve_b(1,i)+1;

end
elseif Load Loc m(i,1) > headerloc s alt(zones*2,3,1) &&

LoadLocm(i,1) < headerloc_s(1,8,1) && LoadLoc-m(i,2) <= 0
%stbd mid-zones
y_1 = headerloc_s (zones*2,6,2);
z 1 = headerloc_s(zones*2,8,3);
if (y_l-LoadLoc m(i,2))*(LoadLoc_m(i,3)-z_1)>0

sign = -1;
else

sign = 1;
end
deck = 12.5;
if Load Loc m(i,3) < deck

branchloc(:,l,:,i) = [LoadLoc_m(i,1) y_1 z_1;
Load Locm(i,1) y_1 LoadLocm(i,3)+sign*offset b/2;
LoadLoc_m (i,1) LoadLoc_m(i,2)

LoadLoc_m(i,3)+sign*offset b/2;
LoadLoc m(i,1) LoadLoc_m(i,2)

LoadLoc m(i,3)+sign*offset b/2;
LoadLoc m(i,1) LoadLocm(i,2)

LoadLoc_m(i,3)+sign*offset b/2;
LoadLoc m(i,1) LoadLoc_m(i,2) LoadLoc_m(i,3)-

sign*offsetb/2;
LoadLoc m(i,1) LoadLocm(i,2) LoadLocm(i,3)-

sign*offsetb/2;
LoadLoc m(i,1) Load_-Loc m(i,2) Load Loc m(i,3)-

sign*offsetb/2;

233



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

LoadLoc m(i,1) y_1+offseth LoadLocm(i,3)-
sign*offsetb/2;

LoadLocm(i,1) y_1+offseth z_1-offset_h);
else

branch loc(:,1,:,i) = [LoadLocm(i,l) y_1 z_1;
LoadLoc m(i,1) y 1 deck;
LoadLocm(i,1) y_1/2 deck;
LoadLocm(i,1) y_1/2

LoadLocm(i,3)+sign*offset_b/2;
LoadLocr m(i,1) LoadLocm(i,2)

LoadLocm(i,3)+sign*offsetb/2;
LoadLocm(i,1) LoadLocm(i,2) LoadLocm(i,3)-

sign*offset b/2;
LoadLocm(i,l) y_1/2+offsetb LoadLocm(i,3)-

sign*offsetb/2;

LoadLocm(i,1) y_1/2+offsetb deck-sign*offsetb;
LoadLoc_m(i,1) y_1+offset h deck-sign*offset b;
LoadLocm(i,1) y_1+offset h z 1-offset_h];

end
%set sign depending on z-location
if LoadLocm(i,3) >= z_1

signz = 1;
else

signz = -1;
end
branch_gateloc(1,1,:,i) = [branch loc(1,1,1,i)

branchloc(1,1,2,i) branchloc(1,1,3,i)]+[O 0 sign_z*0.15];
branch_gateloc(2,1,:,i) = [branchloc(10,1,1,i)

branchloc(10,1,2,i) branchloc(10,1,3,i)]+[0 0 signz*0.151;
gate valveb(l,i) = gatevalveb(1,i)+2;
branchglobeloc('1,1,:,i) = [branchloc(10,1,1,i)

branchloc(10,1,2,i) branchloc(10,1,3,i)]+[0 0 signz*0.3];
globevalveb(l,i) = globevalveb(1,i)+1;
if vital(i) %vital load

y_1 = headerloc s(1,6,2);
z_1 = headerloc s(1,8,3);
sign = sign*-1;
deck = 12.5;
if LoadLocm(i,3) < deck

branchloc(:,2,:,i) = [LoadLoc-m(i,1) yl z 1;
LoadLocm(i,1) y_1

LoadLocm(i,3)+sign*offsetb/2;
LoadLocm(i,1) LoadLoc m(i,2)

LoadLocm(i,3)+sign*offsetb/2;

Load Loc m(i,1) LoadLoc m(i,2)
LoadLocm(i,3)+sign*offsetb/2;

Load Loc m(i,1) LoadLoc m(i,2)
LoadLoc m(i,3)+sign*offset b/2;

LoadLocm(i,1) LoadLocm(i,2) LoadLoc m(i,3)-
sign*offsetb/2;

LoadLocm(i,1) LoadLocm(i,2) LoadLoc m(i,3)-
sign*offsetb/2;

LoadLocm(i,1) LoadLocm(i,2) LoadLoc m(i,3)-
sign*offsetb/2;

234



Center for Ocean Engineering
Naval Construction & Engineering Program
Departnent of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

sign*offsetb/2;
LoadLocm(i,1) y_l-offset h LoadLocm(i,3)-

LoadLocm(i,1) yl-offset h z 1-offseth];
else

branchloc(:,2,:
LoadLocm(i
LoadLocm(i
LoadLoc m(i

LoadLocm(i,3)+sign*offsetb/2;
Load Loc m(i

LoadLocm(i,3)+sign*offsetb/2;
LoadLoc_m(i

sign*offsetb/2;

sign*offsetb/2;

sign*offsetb;

LoadLocm(i

LoadLocm(i

LoadLocm(i
LoadLocm(i

end
%set sign depending

,i) = [LoadLocm(i,1) y_1 z_1;

,1) y_1 deck;
,1) y_1/2 deck;
,1) y_1/2

,1) LoadLocm(i,2)

,1) LoadLoc m(i,2) LoadLoc m(i,3)-

,1) y_1/2-offsetb LoadLocm(i,3)-

,1) y_1/2-offset b deck-

,1) y_l-offseth deck-sign*offset b;
,1) y_l-offset h z 1-offset h];

on z-location
if LoadLocm(i,3) >= z_1

signz = 1;
else

signz = -1;
end
branch gate_loc(1,2,:,i) = [branchloc(1,1,1,i)

branch loc(1,1,2,i) branch loc(1,1,3,i)]+[O 0 signz*0.151;
branchgateloc(2,2,:,i) = [branchloc(10,1,1,i)

branchloc(10,1,2,i) branchloc(10,1,3,i)]+[0 0 signz*0.15];
gatevalveb(2,i) = gatevalveb(1,i)+2;
branchglobeloc(1,2,:,i) = [branchloc(10,1,1,i)

branchloc(10,1,2,i) branchloc(10,1,3,i)]+[0 0 sign_z*0.3];
globe_valveb(2,i) = globevalveb(1,i)+l;

end
elseif LoadLocm(i,1) < headerloc s_alt(zones*2,3,1) &&

LoadLoc m(i,2) > -offseth/2 && LoadLocm(i,2) < offset h/2
%port aft of header loop within x-conn section
x 1 = headerloc_s alt(zones*2-1,3,1);
z 1 = headerloc_s_alt(zones*2-1,3,3);
if (LoadLocm(i,3)-z_1)<0

sign = -1;
else

sign = 1;
end
branch loc(:,1,:,i) = [x 1 offset h/2+0.1 z 1;

x_1 offseth/2+0.1 LoadLocm(i,3)-sign*offsetb/2;
LoadLocm(i,l) offseth/2+0.1 LoadLoc m(i,3)-

sign*offsetb/2;
LoadLocm(i,1) LoadLoc m(i,2) LoadLocm(i,3)-

sign*offsetb/2;
LoadLocm(i,1) LoadLoc m(i,2) LoadLocm(i,3)-

sign*offsetb/2;
LoadLocm(i,l) LoadLocm(i,2)

LoadLocm(i,3)+sign*offsetb/2;

235



Center for Ocean Engineering B Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

LoadLoc m(i,1) LoadLocm(i,2)
LoadLoc m(i,3)+sign*offset b/2;

Load Loc m(i,1) offseth/2+0.1
LoadLocm(i,3)+sign*offset b/2;

x_1+offseth offseth/2+0.1
LoadLocm(i,3)+sign*offsetb/2;

x_l+offseth offseth/2+0.1 z_1-offset_h];
branchgateloc(1,1,:,i) = [branchloc(1,1,1,i)

branchloc(1,1,2,i) branch loc(1,1,3,i)]+[O 0 sign*0.15];
branch_gateloc(2,1,:,i) = [branchloc(10,1,1,i)

branchloc(10,1,2,i) branchloc(10,1,3,i)]+[0 0 sign*0.151;
gatevalveb(1,i) = gatevalveb(l,i)+2;
branchglobe_loc(1,1,:,i) = [branchloc(10,1,1,i)

branchloc(10,1,2,i) branchloc(10,1,3,i)]+[O 0 sign*0.3];
globevalveb(1,i) = globevalveb(l,i)+l;

elseif LoadLocm(i,l) < headerloc_s_alt(zones*2,3,1) &&
(LoadLocm(i,2) >= offset_h/21|LoadLocm(i,2) <= -offset h/2)

%port & stbd aft of header loop
x_1 = headerloc_s_alt(zones*2-1,3,1);
%set z_1 depending on port or stbd side
if LoadLocm(i,2) > 0

z_1 = headerloc_s_alt(zones*2-1,3,3);
else

z 1 = header loc s alt(zones*2,3,3);
end
if (LoadLocm(i,3)-zl)<0

sign = -1;
else

sign = 1;
end
branch loc(:,1,:,i) = [x 1 Load Loc m(i,2) z 1;

x 1 LoadLocm(i,2) LoadLocm(i,3)-sign*offsetb/2;
LoadLocm(i,1) LoadLocm(i,2) LoadLocm(i,3)-

sign*offsetb/2;
LoadLocm(i,l) LoadLocm(i,2) LoadLocm(i,3)-

sign*offsetb/2;
LoadLocm(i,l) LoadLocm(i,2) LoadLocm(i,3)-

sign*offsetb/2;
LoadLocm(i,1) LoadLocm(i,2)

LoadLocm(i,3)+sign*offsetb/2;
LoadLocm(i,l) LoadLocm(i,2)

LoadLocm(i,3)+sign*offsetb/2;
LoadLocm(i,1) LoadLoc_m(i,2)

LoadLocm(i,3)+sign*offsetb/2;
x 1+offset h LoadLoc m(i,2)

LoadLocm(i,3)+sign*offsetb/2;
x_1+offseth Load Locm(i,2) z_1-offseth];

branch gateloc(1,1,:,i) = [branchloc(1,1,1,i)
branchloc(1,1,2,i) branchloc(1,1,3,i)]+[0 0 sign*0.15];

branchgateloc(2,1,:,i) = [branchloc(10,1,1,i)
branchloc(10,1,2,i) branchloc(10,1,3,i)]+[0 0 sign*0.15];

gatevalveb(l,i) = gatevalveb(l,i)+2;
branchglobeloc(1,1,:,i) = [branchloc(10,1,1,i)

branchloc(10,1,2,i) branchloc(10,1,3,i)]+[0 0 sign*0.31;
globevalveb(l,i) = globe valveb(1,i)+1;

236



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

i'iMr Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

end
end

elseif pipingdoubleconfig == 2 %double main complex loop with n zones
lengthb = zeros(2,inputs);
for i=1:inputs

flag = 1;
for j=1:length(header_bends)-1 %find y location of junction

if headerbends(j,2)<0 %stbd side
if flag == 1; %first time through loop catches transition

from port to stbd
flag = 0;
y_temp = headerbends(j,2);

end
end

end
%connect each load to the supply and return header
%regardless of vital or non-vital
if LoadLocm(i,1)>header_bends(1,1) && LoadLocm(i,2)>-

offseth/2 && Load_Loc_m(i,2)<offset_h/2
%fwd of header loop between x-conn
x 1 = headerbends(1,1);
z 1 = headerloc_s(1,8,3);
branchloc(:,1,:,i) = [x_1 offseth/2+0.1 z_1;

x_1 offseth/2+0.1 Load_Loc_m(i,3)-offset_b/2;
LoadLocm(i,1) offseth/2+0.1 LoadLocm(i,3)-

offsetb/2;
LoadLocm(i,l) LoadLocm(i,2) LoadLocm(i,3)-

offsetb/2;
LoadLocm(i,l) LoadLocm(i,2) LoadLoc m(i,3)-

offsetb/2;
Load Loc m(i,l)

Load_Loc_m(i,3)+offset_b/2;
LoadLocm(i,l)

LoadLoc_m(i,3)+offset_b/2;

LoadLoc m(i,2)

LoadLoc m(i,2)

LoadLocm(i,l) offset h/2+0.1
Load_Locm(i,3)+offset_b/2;

x_1-offseth offseth/2+0.1 LoadLocm(i,3)+offsetb/2;
x_1-offseth offseth/2+0.1 z_1-offseth];

branchgateloc(1,1,:,i) = [branchloc(1,1,1,i)
branchloc(1,1,2,i) branch_loc(1,1,3,i)]+[0 0 sign*0.15];

branch gate loc(2,1,:,i) = [branch loc(10,1,1,i)
branch loc(10,1,2,i) branch_loc(10,1,3,i)]+[0 0 sign*0.15];

gatevalveb(1,i) = gate_valveb(1,i)+2;
branchglobeloc(1,1,:,i) = [branch loc(10,1,1,i)

branchloc(10,1,2,i) branch_loc(10,1,3,i)]+[0 0 sign*0.3];
globevalveb(1,i) = globevalve b(l,i)+1;

elseif LoadLocm(i,1)>header_bends(1,1) &&
((Load Loc m(i,2)>=offseth/2 &&

LoadLoc_m(i,2)<=headerbends(1,2))II...
(Load_Loc_m(i,2) <= -offseth/2 && LoadLocm(i,2) >=

y_temp))
%port & stbd fwd of header loop
x 1 = headerbends(l,1);
%set z_1 depending on port or stbd side
if LoadLoc m(i,2) > 0

237



Center for Ocean Engineering *EEEMassachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

z_1 = headerloc_s(1,8,3);
else

z 1 = header loc s(2,8,3);
end
branch loc(:,1,:,i) = [x _1 LoadLoc m(i,2) z 1;

x 1 LoadLocm(i,2) LoadLoc_m(i,3)-offset_b/2;
LoadLocm(i,l) LoadLocm(i,2) LoadLocm(i,3)-

offset-b/2;
LoadLoc_m(i,1) LoadLoc_m(i,2) LoadLoc_m(i,3)-

offsetb/2;
Load Loc m(i,1) LoadLoc m(i,2) LoadLoc m(i,3)-

offsetb/2;
LoadLoc_m (i,l) LoadLoc_m(i,2)

LoadLoc_m(i,3)+offsetb/2;
LoadLoc m(i,1) LoadLoc_m(i,2)

Load_Loc_m(i,3)+offsetb/2;
LoadLocm(i,l) LoadLoc m(i,2)

Load_Loc_m(i,3)+offsetb/2;
x_l-offseth LoadLoc m(i,2) LoadLoc_m(i,3)+offsetb/2;
x_1-offseth LoadLocm(i,2) z_1-offset h];

branchgateloc(1,1,:,i) = [branchloc(1,1,1,i)
branchloc(1,1,2,i) branchloc(1,1,3,i)]+[O 0 sign*0.15];

branch_gateloc(2,1,:,i) = [branchloc(10,1,1,i)
branchloc(10,1,2,i) branchloc(10,1,3,i)]+[0 0 sign*0.15];

gate valve b(1,i) = gatevalve_b(1,i)+2;
branchglobeloc(1,1,:,i) = [branchloc(10,1,1,i)

branchloc(10,1,2,i) branchloc(10,1,3,i)]+[0 0 sign*0.3];
globevalveb(1,i) = globevalveb(l,i)+l;

elseif LoadLoc m(i,l)<headerbends(length(header bends),1) &&
Load_Loc_m(i,2)>-offset_h/2 && Load_Loc_m(i,2)<offset_h/2

%aft of header loop between x-conn
x_1 = -LOA/2+0.5;
z_1 = headerloc_s alt(zones*2-1,3,3);
if (LoadLocm(i,3)-z_1)<0

sign = -1;
else

sign = 1;
end
branch loc(:,1,:,i) = [x 1 offset h/2+0.1 z_1;

x_1 offseth/2+0.1 LoadLoc m(i,3)-sign*offsetb/2;
LoadLocm(i,1) offseth/2+0.1 LoadLocm(i,3)-

sign*offset-b/2;
LoadLocm(i,1) LoadLoc m(i,2) LoadLocm(i,3)-

sign*offsetb/2;
LoadLocm(i,1) LoadLocm(i,2) LoadLocm(i,3)-

sign*offsetb/2;
LoadLoc_m (i,1) LoadLoc_m(i,2)

LoadLocm(i,3)+sign*offsetb/2;

LoadLoc_m (i,1) LoadLoc_m(i,2)
LoadLoc_m(i,3)+sign*offsetb/2;

LoadLocm(i,1) offseth/2+0.1
LoadLocIm(i,3)+sign*offsetb/2;

x 1+offset h offset h/2+0.1
LoadLoc_m.(i,3)+sign*offsetb/2;

x_1+offseth offseth/2+0.1 z 1-offset h];

238



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

branchgate loc(1,1,:,i) = [branchloc(1,1,1,i)

branch loc(1,1,2,i) branchloc(l,1,3,i)]+[0 0 sign*0.15];
branch_gateloc(2,1,:,i) = [branchloc(10,1,1,i)

branchloc(10,1,2,i) branchloc(10,1,3,i)]+[0 0 sign*0.15];
gate valve_b(l,i) = gatevalve_b(l,i)+2;
branch globe loc(1,1,:,i) = [branch loc(10,1,1,i)

branch loc(10,1,2,i) branchloc(10,1,3,i)]+[0 0 sign*0.3];
globevalveb(l,i) = globevalveb(l,i)+l;

elseif LoadLoc_m (i,1)<headerbends (length(headerbends),l) &&
(LoadLoc m(i,2)>=offseth/2 11 LoadLoc_m(i,2)<offseth/2)

%aft of header loop
x 1 = -LOA/2+0.5;
%set z 1 depending on port or stbd side
if LoadLocm(i,2) > 0

z 1 = headerloc_s_alt(zones*2-1,3,3);
else

z_1 = headerloc_s_alt(zones*2,3,3);
end
if (LoadLocm(i,3)-z_1)<0

sign = -1;
else

sign = 1;
end
branch loc(:,l,:,i)

x_1 Load Loc_m(
LoadLoc m(i,l)

sign*offsetb/2;

sign*offset b/2;

= [x_1 LoadLoc m(i,2) z_1;
i,2) Load Locm(i,3) -sign*offsetb/2;
Load Loc m(i,2) LoadLoc_m(i,3)-

LoadLoc m(i,l) LoadLoc m(i,2) LoadLocm(i,3)-

LoadLoc_m(i,l) LoadLoc m(i,2) LoadLoc_m(i,3)-

sign*offsetb/2;
LoadLocm(i,l) Load Loc m(i,2)

LoadLoc_m(i,3)+sign*offsetb/2;
LoadLocm(i,l) LoadLoc m(i,2)

LoadLoc_m(i,3)+sign*offset b/2;
LoadLocm(i,l) Load Loc m(i,2)

LoadLoc m(i,3)+sign*offset b/2;
x_1+offseth LoadLoc_m(i,2)

LoadLoc_m(i,3)+sign*offsetb/2;
x_1+offseth LoadLocm(i,2) z_1-offset_h];

branchgateloc(1,1,:,i) = [branchloc(1,1,1,i)
branchloc(1,1,2,i) branchloc(1,1,3,i)]+[0 0 sign*0.15];

branch_gateloc(2,1,:,i) = [branchloc(10,1,1,i)
branch loc(10,1,2,i) branch loc(10,1,3,i)]+[0 0 sign*0.15];

gatevalve_b(l,i) = gatevalve_b(l,i)+2;
branchglobe loc(1,1,:,i) = [branchloc(10,1,1,i)

branchloc(10,1,2,i) branchloc(10,1,3,i)]+[0 0 sign*0.3];
globevalve_ b(l,i) = globe valveb(l,i)+l;

elseif LoadLocm(i,2)>0
%port
flag = 1;
for j=1:length(headerbends)-l %find y location of junction

if headerbends(j,2)>0 %port side
if LoadLoc_m(i,l)<headerbends(j,1) &&

LoadLocm r(i,l)>headerbends(j+1,l)

239



Center for Ocean Engineering Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

y_1 = header bends(j,2);
end

elseif flag 1; %first time through loop catches
transition from port to stbd

flag = 0;
if LoadLoc_m(i,1)<headerbends(j,1) &&

Load_Loc_m(i,1)>-LOA/2+0.5

% y_1 = header bends(j,2)
end

end
end
%port mid-zones
z_1 = headerloc_s(1,8,3);
if (y_1-LoadLoc_m(i,2))*(LoadLoc_m(i,3)-z_1)>0

sign = 1;
else

sign = -1;
end
deck = 12.5;
if Load Loc m(i,3) < deck

branchloc(:,1,:,i) = [LoadLocm(i,1) y_1 z_1;
LoadLoc_m (i,1) y_1 LoadLoc_m(i,3)+sign*offsetb/2;
LoadLocm(i,1) LoadLocm(i,2)

LoadLocm(i,3)+sign*offset_b/2;

LoadLoc_m (i,1) LoadLoc_m(i,2)
LoadLoc_m(i,3)+sign*offsetb/2;

Load_Loc m(i,1) LoadLocm(i,2)
LoadLoc_m(i,3)+sign*offsetb/2;

LoadLoc m(i,1) LoadLocm(i,2) LoadLocm(i,3)-
sign*offsetb/2;

LoadLoc m(i,1) LoadLocm(i,2) LoadLocm(i,3)-
sign*offsetb/2;

Load Loc m(i,1) LoadLoc m(i,2) LoadLoc m(i,3)-
sign*offsetb/2;

LoadLoc m(i,1) y_1-offset h LoadLocm(i,3)-
sign*offsetb/2;

LoadLoc m(i,1) y l-offset h z_1-offset h];
else

branchloc(:,1,:,i) [LoadLoc_m (i,1) y_1 z_1;
Load_ Loc_m(i,1) y_1 deck;
LoadLoc_m(i,1) y_1/ 2 deck;
LoadLoc_m (i,1) y_1/2

LoadLoc_m(i,3)+sign*offsetb/2;

LoadLocm(i,1) LoadLocm(i,2)
LoadLoc_m(i,3)+sign*offsetb/2;

LoadLoc_m(i,1) LoadLoc_m(i,2) Load_Loc_m(i,3)-
sign*offsetb/2;

LoadLoc_m(i,1) y_1/2-offsetb LoadLoc_m(i,3)-
sign*offsetb/2;

LoadLocm(i,1) y_1/2-offsetb deck-sign*offset_b;
Load_ Loc_m(i,1) y_1-offseth deck-sign*offset b;
LoadLocm(i,1) y_1-offseth z_1-offset_h];

end
branch_gateloc(1,1,:,i) = [branchloc(1,1,1,i)

branchloc(1,1,2,i) branch loc(1,1,3,i)]+[0 0 sign*0.15];

240



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering I'i Massachusetts Institute of Technology

77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

branch_gateloc(2,1,:,i) = [branchloc(10,1,1,i)
branchloc(10,1,2,i) branchloc(10,1,3,i)]+[O 0 sign*0.15];

gate valve_b(l,i) = gate_valveb(l,i)+2;
branch_globeloc(1,1,:,i) = [branchloc(10,1,1,i)

branchloc(10,1,2,i) branchloc(10,1,3,i)]+[0 0 sign*0.3];
globe valve b(1,i) = globe valve b(l,i)+l;
if vital(i) %vital load

flag = 1;
for j=l:length(headerbends)-l %find y location of

junction
if header bends(j,2)<=0 %stbd side

if LoadLoc m(i,1)<headerbends(j,1) &&
LoadLocm(i,l)>headerbends(j+1,1)

y_1 = headerbends(j,2);
end

elseif flag == 1; %first time through loop catches
transition from port to stbd

flag = 0;
if Load Loc m(i,l)<header bends(j,l) &&

LoadLoc _m(i,l)>-LOA/2+0.5
% y_1 = header bends(j,2)

end
end

end
z_1 = headerloc_s(zones*2,8,3);
sign = sign*-l;
deck = 12.5;
if LoadLocm(i,3) < deck

branch loc(:,2,:,i) = [LoadLoc m(i,l) yl zl1;
LoadLoc_m(i,l1)

LoadLoc_m(i,3)+sign*offset b/2;
Load Loc_m(i,l)

LoadLoc_m(i,3)+sign*offset b/2;
Load Loc m(i,1)

LoadLoc_m(i,3)+sign*offset b/2;
Load Loc m(i,l)

LoadLoc_m(i,3)+sign*offsetb/2;
LoadLocm(i,l)

sign*offsetb/2;
LoadLoc_m(i,1)

sign*offsetb/2;
LoadLoc m(i,l)

sign*offsetb/2;
LoadLoc m(i,l)

sign*offsetb/2;
LoadLoc m(i,l)

else
branchloc(:,2,:,i)

LoadLocm(i,1)
Load Loc m(i,l)
LoadLoc m(i,l)

LoadLocm(i,3)+sign*offset b/2;
LoadLoc_m(i,l)

LoadLoc_m(i,3)+sign*offset b/2;

y_1

LoadLoc_m(i,2)

LoadLoc m(i,2)

Load Loc m(i,2)

LoadLocm(i,2) LoadLocm(i,3)-

LoadLocm(i,2) LoadLocm(i,3)-

LoadLocm(i,2) LoadLocm(i,3)-

y l+offset h Load Loc m(i,3)-

y l+offset h z_1-offset h];

= [LoadLocm(i,l) y_1 'z_1;
y_1 deck;
y_1/2 deck;
y_1/2

LoadLoc_m(i,2)

241



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering -

I'Iir Massachusetts institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

sign*offsetb/2;

sign*offsetb/2;

sign*offset b;

LoadLoc m(i, 1) LoadLoc m (i, 2) LoadLocm (i, 3) -

Load_Loc_ m (i, 1) y_1/2-of fsetb LoadLoc_m (i, 3) -

Load_Locm(i,1) y_1/2-offsetb deck-

Load_Loc m(i,1)
Load Locm(i,1)

y_1+offseth deck-sign*offsetb;
y_l+offseth z_1-offseth];

end
branch_gate_loc(1,2,:,i) = [branchloc(1,1,1,i)

branch loc(1,1,2,i) branch loc(1,1,3,i)]+[O 0 sign*0.15];
branch_gate_loc(2,2,:,i) = [branchloc(10,1,1,i)

branchloc(10,1,2,i) branchloc(10,1,3,i)]+[O 0 sign*0.15];
gate_valveb(2,i) = gate_valveb(1,i)+2;
branchglobe loc(1,2,:,i) = [branch loc(10,1,1,i)

branchloc(10,1,2,i) branchloc(10,1,3,i)]+[O 0 sign*0.3];
globevalve_b(2,i) = globevalve_b(1,i)+1;

end
elseif Load__Loc m(i,2)<=0

%stbd
flag = 1;
for .j=1:length(headerbends)-1 %find y location of junction

if headerbends(j,2)<=O %stbd side
if Load_Loc_m(i,1)<headerbends(j,1) &&

LoadLocm(i,1)>header bends(j+1,1)
y1 = headerbends(j,2);

end
elseif flag == 1; %first time through loop catches

transition from port to stbd
flag = 0;
if LoadLoc m(i,1)<header bends(j,1) &&

Load_Loc m(i,1)>-LOA/2+0.5
% y_1 = header bends(j,2)

end
end

end
%stbd mid-zones
z 1 = header_locs(zones*2,8,3);
if (y_1-Load_Locm(i,2))*(Load_Locm(i,3)-z_1)>0

sign = -1;
else

sign = 1;

LoadLoc_m(i,

Load_Loc_m(i,

Load_Loc_m(i,

sign*offset_b

end
deck = 12.5;
if Load Loc m(i,3) < deck

branchloc(:,1,:,i) =
Load_Loc_m(i,1) y
Load_Loc_m(i,1) L

3) +sign*offset b/2;
Load_Loc_ m(i,l) L

3) +sign*offsetb/2;
Load_Loc_m(i,l) L

3) +sign*offsetb/2;

[LoadLoc_m(i,1) y_1 z_1;

_1 Load_Loc_m (i,3)+sign*offsetb/2;
oad_Loc_m(i,2)

oad_Loc_m(i,2)

oad_Loc_m(i,2)

Load_Loc_m(i,1) Load_Loc_m(i,2) LoadLoc_m(i,3)-
/2;

242



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

i'nr Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

LoadLocm(i,1)
sign*offsetb/2;

LoadLocm(i,1)
sign*offsetb/2;

LoadLocm(i,1)
sign*offsetb/2;

LoadLoc m(i,1)
else

branchloc(:,1,:,i)
LoadLocm(i,1)
LoadLocm(i,1)
LoadLocm(i,1)

LoadLocm(i,3)+sign*offset_b/2;
Load Loc m(i,1)

LoadLocm(i,3)+sign*offset b/2;
LoadLocm(i,1)

sign*offsetb/2;
LoadLocm(i,1)

sign*offsetb/2;
LoadLocm(i,1)
LoadLocm(i,1)
LoadLocm(i,1)

end
branchgateloc(1,1,:,i

branchloc(1,1,2,i) branchloc(1,1,3,i)
branch_gateloc(2,1,:,i

LoadLocm(i,2) LoadLocm(i,3)-

LoadLocm(i,2) LoadLocm(i,3)-

y_1+offseth LoadLocm(i,3)-

y_1+offset h z 1-offset h];

= [LoadLocm(i,1) y_1 z_1;

y_1 deck;
y_1/ 2 deck;
y_1/2

LoadLocm(i,2)

LoadLocm(i,2) LoadLocm(i,3)-

y_1/2+offsetb LoadLocm(i,3)-

yl1/2+offsetb deck-sign*offsetb;
y 1+offset h deck-sign*offset b;
y_1+offseth z_1-offset_h);

= [branchloc(1,1,1,i)
]+[0 0 sign*0.151;
) = [branch loc(10,1,1,i)

branchloc(10,1,2,i) branchloc(10,1,3,i)]+[0 0 sign*0.15];
gatevalveb(1,i) = gatevalveb(1,i)+2;
branchglobeloc(1,1,:,i) = [branchloc(10,1,1,i)

branchloc(10,1,2,i) branch_loc(10,1,3,i)]+[O 0 sign*0.31;
globevalveb(1,i) = globe valveb(1,i)+1;
if vital(i) %vital load

flag = 1;
for j=1:length(headerbends)-1 %find y location of

junction
if headerbends(j,2)>0 %port side

if LoadLocm(i,1)<headerbends(j,1) &&
LoadLocm(i,1)>headerbends(j+1,1)

y_1 headerbends(j,2);
end

elseif flag == 1; %first time through loop catches
transition from port to stbd

flag = 0;
if LoadLoc m(i,1)<header bends(j,1) &&

LoadLoc m(i,1)>-LOA/2+0.5
% y_1 = headerbends(j,2)

end
end

end
z_1 = header loc s(1,8,3);
sign = sign*-1;
deck = 12.5;
if LoadLocm(i,3) < deck

branch_loc(:,2,:,i) = [LoadLocm(i,l) y_1 zl;

243



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering I'Iir Massachusetts Institute of Technology

77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

LoadLoc_m(i,1)
LoadLoc_m(i,3)+sign*offsetb/2;

LoadLocm(i,1)
LoadLoc m(i,3)+sign*offsetb/2;

LoadLocxm(i,1)
LoadLoc m(i, 3)+sign*offsetb/2;

LoadLoc_m(i,1)
LoadLocm(i,3)+sign*offset_b/2;

LoadLocm(i,1)
sign*offsetb/2;

LoadLoc_m(i,1)
sign*offsetb/2;

LoadLoc_m (i, 1)
sign*offsetb/2;

LoadLocm(i,1)
sign*offsetb/2;

LoadLoc_m(i,1)
else

branchloc(:,2,:,i)
LoadLocm(i,1)
LoadLocm(i,1)
LoadLoc_m(i,1)

LoadLoc_m(i,3)+sign*offsetb/2;
LoadLocm(i,1)

LoadLoc_m(i,3)+sign*offsetb/2;
LoadLoc-m(i,1)

sign*offsetb/2;
Load Loc m(i, 1)

sign*offsetb/2;
LoadLoc_m(i,1)

sign*offsetb;
Load Locm(i,1)
LoadLocm(i,1)

end
branchgate_loc(1,2,:,i)

branchloc(1,1,2,i) branch loc(1,1,3,i)]+[O

y_1

LoadLoc_m (i, 2)

LoadLoc_m(i,2)

LoadLoc m(i,2)

LoadLoc_m(i,2) LoadLoc_m(i,3)-

LoadLoc m(i,2) LoadLoc_m(i,3)-

LoadLocim(i,2) LoadLoc_m(i,3)-

y 1-offset h LoadLoc m(i,3)-

y_l-offseth z_1-offset_h);

= [LoadLocrm(i,1) y_1 z_1;
y_1 deck;
y_1/2 deck;
y_1/2

LoadLocm n(i,2)

LoadLocm(i,2) LoadLocm(i,3)-

y_1/2-offsetb LoadLoc_m(i,3)-

y_1/2-offsetb deck-

y_1-offseth deck-sign*offset b;
y_1-offseth z_1-offset_h];

= [branchloc(1, 1, 1,i)
0 sign*0.15];

branch_gate_loc(2,2,:,i) = [branchloc(10,1,1,i)
branchloc(10,1,2,i) branchloc(10,1,3,i)]+[0 0 sign*0.15];

gatevalveb(2,i) = gate_valveb(1,i)+2;
branch_globeloc(1,2,:,i) = [branchloc(10,1,1,i)

branchloc(10,1,2,i) branchloc(10,1,3,i)]+[0 0 sign*0.3];
globe valveb(2,i) = globe valveb(1,i)+1;

end
end

end
end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Determine length of branch piping
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=l:inputs
for j=1:9

for k=1:2
distance = sqrt((branch loc(j,k,1,i)-branch_loc(j+1,k,1,i))^2+...

244



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Ii Massachusetts institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

(branch_1
(branch_1

length_b(k,i)

oc(j,k,2,i)-branch_loc(j+1,k,2,i))^2+...
oc(j,k,3,i)-branch_loc(j+1,k,3,i))A2);

= lengthb(k,i)+distance;

% Define hxchgr associated with each heat load

hxchgrU = zeros(l,inputs);
hxchgr_fluidmfr = zeros(1,inputs);
hxchgr_fluidtempin = zeros(1,inputs);
hxchgrweight wet = zeros(1,inputs);
hxchgrweight_dry = zeros(1,inputs);
hxchgrhl = zeros(l,inputs);
hxchgrcp = zeros(1,inputs);
hxchgr dim = zeros(inputs,3);
hxchgr areapri = zeros(1,inputs);
hxchgrarea sec = zeros(1,inputs);
hxchgr hc = zeros(1,inputs);
hxchgr tube k = zeros(1,inputs);
hxchgr tube diam = zeros(1,inputs);
hxchgr tube thick = zeros(1,inputs);
hxchgrplatek = zeros(1,inputs);
hxchgrplatethick = zeros (1, inputs);
hxchgrnumgaps = zeros(1,inputs);
for i=1:inputs

if strcmp(HxchgrType(i), 'cc')
if isnan(HxchgrNum(i))

%find closest hxchgr
hxchgr_capacity = 100000000000000;
for j=l:NumCCTypes

if max(LoadValuekW(i,:)) < CCCapacity_kW(j) &&
hxchgrcapacity > CCCapacitykW(j)

hxchgrcapacity = CC_Capacity_kW(j);
hxchgr_index =

end
end
hxchgrU(i) = CC U(hxchgr_index);
hxchgr_fluidmfr(i) = CCFluidMfr_kgps(hxchgrindex);
hxchgrfluid temp in(i) CC Fluid TempIn_C(hxchgr index);
hxchgrweightwet(i) = CCWeightWet kg(hxchgrindex);
hxchgr_weight dry(i) = CCWeightDry kg(hxchgr_index);
hxchgrhl(i) = CC_hl_m(hxchgrindex);
hxchgrcp(i) = 1500; %J/kg-K
hxchgr-dim(i,:) = CCDim_m (hxchgr_index,:);
hxchgr_areapri(i) = CCArea Pricm2(hxchgrindex);
hxchgrarea sec(i) = CCAreaSec cm2(hxchgr index);
hxchgrhc(i) = CCFluidhc(hxchgr_index);
hxchgrtubek(i) = CCTube k(hxchgr_index);
hxchgrtubediam(i) = CC TubeDiamcm(hxchgrindex);
hxchgrtubethick(i) CCTubeThick cm(hxchgrindex);

else
hxchgr_U(i) = CCU(Hxchgr_Num(i));

245

end
end

end



Center for Ocean Engineering M l Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

hxchgrfluidmfr = CCFluidMfr kgps(HxchgrNum(i));
hxchgrfluid tempin(i) = CCFluidTemp_InC(Hxchgr_Num(i));
hxchgr_weight wet(i) = CCWeight Wetkg(Hxchgr_Num(i));
hxchgr_weightdry(i) = CCWeightDry_kg(HxchgrNum(i));
hxchgrhl(i) = CChlm(HxchgrNum(i));
hxchgr_cp(i) = 1500; %J/kg-K
hxchgrdim(i,:) = CCDimm(Hxchgr_Num(i),:);
hxchgr_area_pri(i) = CCAreaPricm2(Hxchgr_Num(i));
hxchgrarea sec(i) = CCAreaSeccm2(HxchgrNum(i));
hxchgrhc(i) = CCFluidhc(Hxchgr_Num(i));
hxchgr tubek(i) CCTubek(HxchgrNum(i));
hxchgr tubediam(i) = CCTubeDiamcm(Hxchgr Num(i));
hxchgrtubethick(i) = CCTubeThick cm(Hxchgr_Num(i));

end
elseif strcmp(Hxchgr_Type(i),'50cc')

if isnan(Hxchgr_Num(i))
%find closest hxchgr
hxchgr_capacity = 100000000000000;
for j=1:Num_50_SeriesTypes

if max(LoadValuekW(i,:)) < CCCapacitykW(j) &&
hxchgr_capacity > CCCapacity kW(j)

hxchgrcapacity = CCCapacity_kW(j);
hxchgrindex = j;

end
end
hxchgrU(i) = CCU(hxchgrindex);
hxchgrfluidmfr(i) = CCFluidMfr kgps(hxchgr_index);
hxchgr fluid temp_in(i) = CCFluidTemp_In_C(hxchgrindex);
hxchgr_weightwet(i) = CCWeightWetkg(hxchgr_index);
hxchgrweightdry(i) = CCWeight_Dry_kg(hxchgr_index);
hxchgrhl(i) = CChlm(hxchgrindex);
hxchgr_cp(i) = 1500; %J/kg-K
hxchgrdim(i,:) = CC Dimm(hxchgrindex,:);
hxchgrarea_pri(i) = CCAreaPricm2(hxchgrindex);
hxchgrareasec(i) = CCAreaSeccm2(hxchgrindex);
hxchgr-hc(i) = CCFluidhc(hxchgrindex);
hxchgrtube k(i) = CC Tubek(hxchgr index);
hxchgrtubediam(i) = CCTubeDiamcm(hxchgrindex);
hxchgrtubethick(i) = CCTubeThick cm(hxchgrindex);

else
hxchgrU(i) = CCU(HxchgrNum(i));
hxchgrfluid mfr = CCFluidMfrkgps(Hxchgr_Num(i));
hxchgrfluidtemp_in(i) = CCFluidTempInC(HxchgrNum(i));
hxchgrweightwet(i) = CCWeightWetkg(HxchgrNum(i));
hxchgrweightdry(i) = CCWeightDrykg(Hxchgr_Num(i));
hxchgr hl(i) = CChlm(HxchgrNum(i));
hxchgr_cp(i) = 1500; %J/kg-K
hxchgr dim(i,:) = CC Dimm(HxchgrNum(i),:);
hxchgrarea_pri(i) = CCAreaPricm2(HxchgrNum(i));
hxchgrareasec(i) = CCAreaSeccm2(HxchgrNum(i));
hxchgrhc(i) = CCFluidhc(HxchgrNum(i));
hxchgrtubek(i) = CCTubek(HxchgrNum(i));
hxchgrtubediam(i) = CCTubeDiamcm(HxchgrNum(i));
hxchgr tube thick(i) = CCTubeThick cm(HxchgrNum(i));

end

246



Center for Ocean Engineering i u Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

elseif strcmp(HxchgrType(i), '60cc')
if isnan(HxchgrNum(i))

%find closest hxchgr

hxchgrcapacity = 100000000000000;
for

j=Num_50_Series_Types+1:Num_50_Series_Types+Num_60_SeriesTypes
if max(LoadValuekW(i,:)) < CCCapacitykW(j) &&

hxchgr capacity > CCCapacitykW(j)
hxchgrcapacity = CCCapacity kW(j);
hxchgrindex = j;

end
end
hxchgrU(i) = CC U(hxchgrindex);
hxchgrfluidmfr(i) = CCFluidMfrkgps(hxchgr index);
hxchgrfluid_t emp in(i) = CCFluidTemp_In_C(hxchgrindex);
hxchgrweightwet(i) = CC Weight Wet kg(hxchgr index);
hxchgrweight dry(i) = CCWeightDrykg(hxchgr index);
hxchgr-hl(i) = CC_hl_m (hxchgrindex);
hxchgr cp(i) = 1500; %J/kg-K

hxchgrdim(i,:) = CCDim_m(hxchgrindex,:);
hxchgrarea pri(i) = CCAreaPricm2 (hxchgr index);
hxchgrareasec(i) = CCAreaSeccm2 (hxchgr index);
hxchgr hc(i) = CCFluid hc(hxchgr index);
hxchgr tubek(i) = CCTubek(hxchgrindex);
hxchgr tubediam(i) = CCTubeDiamcm(hxchgr index);
hxchgr tubethick(i) = CCTubeThickcm(hxchgrindex);

else
hxchgrU(i) = CC_U(HxchgrNum(i));
hxchgr fluidmfr = CCFluidMfrkgps(HxchgrNum(i));
hxchgr fluid temp in(i) = CCFluidTempIn_C(HxchgrNum(i));
hxchgr weight wet (i) = CCWeightWetkg(HxchgrNum(i));
hxchgrweightdry(i) = CCWeight_Drykg(HxchgrNum(i));
hxchgr hl(i) = CC_hlm(HxchgrNum(i));
hxchgrcp(i) = 1500; %J/kg-K
hxchgr-dim(i,:) = CCDim_m (HxchgrNum(i),:);
hxchgr area_pri(i) = CCAreaPricm2(HxchgrNum(i));
hxchgr area sec(i) = CCAreaSec cm2(HxchgrNum(i));
hxchgrhc(i) = CCFluid_ hc(Hxchgr_Num(i));
hxchgrtubek(i) = CCTubek(HxchgrNum(i));
hxchgrtubediam(i) = CCTubeDiamcm(HxchgrNum(i));
hxchgrtubethick(i) = CCTubeThick-cm(HxchgrNum(i));

end
elseif strcmp(Hxchgr_Type(i),'uc')

if isnan(HxchgrNum(i))
%find closest hxchgr
hxchgrcapacity = 100000000000000;
for

j=Num 50 Series Types+Num 60_SeriesTypes+l:Num50_SeriesTypes+Num_60_Series

_Types+Num_UnitCoolerTypes
if max(LoadValuekW(i,:)) < CCCapacity_kW(j) &&

hxchgr_ capacity > CCCapacitykW(j)
hxchgrcapacity = CCCapacity_kW(j);
hxchgrindex = j;

end
end

247



Center for Ocean Engineering * fUMassachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

hxchgrU(i) = CCU(hxchgrindex);
hxchgrfluid mfr(i) = CCFluidMfr kgps(hxchgr index);
hxchgrfluidtempin(i) = CCFluidTempInC(hxchgrindex);
hxchgrweightwet(i) = CCWeightWetkg(hxchgr_index);
hxchgrweightdry(i) = CCWeight_Dry_kg(hxchgrindex);
hxchgrhl(i) = CC_hlm(hxchgrindex);
hxchgr-cp(i) = 1500; %J/kg-K
hxchgrdim(i,:) = CCDimm(hxchgr_index,:);
hxchgrareapri(i) = CC Area Pri cm2(hxchgr_index);
hxchgrareasec(i) = CCAreaSeccm2(hxchgrindex);
hxchgrhc(i) = CCFluidhc(hxchgrindex);
hxchgrtubek(i) = CC_Tubek(hxchgrindex);
hxchgrtubediam(i) = CCTubeDiamcm(hxchgrindex);
hxchgrtubethick(i) = CCTubeThick cm(hxchgr index);

else
hxchgrU(i) = CCU(HxchgrNum(i));
hxchgr fluidmfr = CCFluidMfr kgps(HxchgrNum(i));
hxchgr fluidtempin(i) = CCFluid TempInC(HxchgrNum(i));
hxchgrweightwet(i) = CCWeightWet_kg(HxchgrNum(i));
hxchgr_weightdry(i) = CCWeight_Drykg(HxchgrNum(i));
hxchgrhl(i) = CC_hlm(HxchgrNum(i));
hxchgrcp(i) = 1500; %J/kg-K
hxchgrdim(i,:) = CCDimm(HxchgrNum(i),:);
hxchgrarea_pri(i) = CCAreaPricm2(HxchgrNum(i));
hxchgr areasec(i) = CCAreaSeccm2(HxchgrNum(i));
hxchgrhc(i) = CCFluidhc(Hxchgr_Num(i));
hxchgrtubek(i) = CCTubek(HxchgrNum(i));
hxchgrtubediam(i) = CCTubeDiamcm(HxchgrNum(i));
hxchgrtubethick(i) = CCTubeThick cm(HxchgrNum(i));

end
elseif strcmp(HxchgrType(i),'oc')

if isnan(HxchgrNum(i))
%find closest hxchgr
hxchgrcapacity = 100000000000000;
for

j=Num_50_SeriesTypes+Num_60_SeriesTypes+NumUnitCoolerTypes+l:NumCCType
S

if max(Load Value kW(i,:)) < CCCapacity_kW(j) &&
hxchgr_capacity > CC_CapacitykW(j)

hxchgr_capacity = CCCapacity_kW(j);
hxchgr index = j;

end
end
hxchgrU(i) = CCU(hxchgr index);
hxchgrfluid mfr(i) = CCFluidMfrkgps(hxchgrindex);
hxchgr fluidtempin(i) = CCFluidTempInC(hxchgr index);
hxchgr_weightwet(i) = CCWeightWetkg(hxchgr_index);
hxchgr_weight_dry(i) = CCWeightDrykg(hxchgrindex);
hxchgr hl(i) = CChlm(hxchgrindex);
hxchgr_cp(i) = 1500; %J/kg-K
hxchgrdim(i,:) = CC Dimm(hxchgr index,:);
hxchgrarea pri(i) = CC Area Pri cm2(hxchgrindex);
hxchgrareasec(i) = CCAreaSeccm2(hxchgr index);
hxchgrhc(i) = CCFluidhc(hxchgr index);
hxchgrtube k(i) = CCTubek(hxchgrindex);

248



Center for Ocean Engineering E U Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

hxchgrtubediam(i) = CC TubeDiam cm(hxchgrindex);
hxchgrtube thick(i) = CC TubeThick cm(hxchgr index);

else
hxchgrU(i) = CCU(HxchgrNum(i));
hxchgr_fluidmfr = CCFluidMfrkgps(HxchgrNum(i));
hxchgrfluid temp_in(i) = CCFluidTemp_In_C(HxchgrNum(i));
hxchgr_weight.wet(i) = CCWeightWet_kg(HxchgrNum(i));
hxchgrweight dry(i) = CCWeight_Dry_kg(HxchgrNum(i));
hxchgr hl(i) = CC hlm(HxchgrNum(i));
hxchgr_cp(i) = 1500; %J/kg-K
hxchgr_dim(i,:) = CCDimm(HxchgrNum(i),:);
hxchgrareapri(i) = CCAreaPricm2(HxchgrNum(i));
hxchgrareasec(i) = CCAreaSeccm2(HxchgrNum(i));
hxchgrhc(i) = CCFluidhc(HxchgrNum(i));
hxchgrtubek(i) = CCTubek(HxchgrNum(i));
hxchgr tube diam(i) = CC Tube Diam cm(HxchgrNum(i));
hxchgrtube thick(i) CCTubeThick cm(HxchgrNum(i));

end
elseif strcmp(HxchgrType(i), 'fp')

if isnan(Hxchgr_Num(i))
%find closest hxchgr
hxchgrcapacity = 100000000000000;
for j=l:NumFPTypes

if max(LoadValuekW(i,:)) < FPCapacitykW(j) &&
hxchgr_capacity > FPCapacitykW(j)

hxchgr capacity = FPCapacity_kW(j);
hxchgrindex = j;

end
end
hxchgrU(i) = FP U(hxchgr index);
hxchgr_fluidmfr(i) = FP FluidMfr_kgps(hxchgr index);
hxchgrfluidtemp in(i) = FPFluid_Temp_ln_C(hxchgrindex);
hxchgrweight wet(i) = FPWeightWetkg(hxchgrindex);
hxchgrweight dry(i) = FP_WeightDrykg(hxchgrindex);
hxchgr_hl(i) = FP_hlm(hxchgrindex);
hxchgrcp(i) = FP_Fluidcp(hxchgr_index);
hxchgr-dim(i,:) = FP Dim m(hxchgrindex,:);
hxchgrarea_pri(i) = FPAreacm2(hxchgr_index);
hxchgrareasec(i) = FPAreaSeccm2(hxchgrindex);
hxchgrhc(i) = FP_Fluidhc(hxchgrindex);
hxchgrplatek(i) = FP_Platek(hxchgrindex);
hxchgrplate_thick(i) = FP PlateThickcm(hxchgr_index);
hxchgr_num-gaps(i) = FP_Num_Gaps(hxchgr index);

else
hxchgrU(i) = FPU(HxchgrNum(i));
hxchgr_fluidmfr = FP_FluidMfrkgps(HxchgrNum(i));
hxchgrfluidtempin(i) = FP_FluidTemp_In_C(HxchgrNum(i));
hxchgrweight wet(i) = FPWeightWetkg(HxchgrNum(i));
hxchgr_weight dry(i) = FPWeightDrykg(Hxchgr_Num(i));
hxchgr_hl(i) = FP_hlm(Hxchgr_Num(i));
hxchgrcp(i) = FP Fluid cp(Hxchgr_Num(i));
hxchgr-dim(i,:) = FP Dim m(HxchgrNum(i),:);
hxchgrareapri(i) = FP_Areacm2(HxchgrNum(i));
hxchgr_areasec(i) = FP_AreaSeccm2(HxchgrNum(i));
hxchgr_hc(i) = FP Fluid hc(HxchgrNum(i));

249



Center for Ocean Engineering * f Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

hxchgrjplate k(i) = FP Platek(HxchgrNum(i));
hxchgr plate thick(i) = FPPlateThick cm(HxchgrNum(i));
hxchgrnum gaps(i) = FPNumGaps(Hxchgr Num(i));

end
elseif strcmp(HxchgrType(i),'st')

if isnan(HxchgrNum(i))
%find closest hxchgr
hxchgrcapacity = 100000000000000;
for j=l:Num STTypes

if max(LoadValuekW(i,:)) < STCapacity_kW(j) &&
hxchgr_capacity > STCapacity_kW(j)

hxchgr_capacity = ST_Capacity_kW(j);
hxchgrindex = j;

end
end
hxchgrU(i) = STU(hxchgrindex);
hxchgrfluidmfr(i) = STFluidMfr kgps(hxchgr_index);
hxchgrfluidtempin(i) = STFluidTempInC(hxchgr index);
hxchgrweightwet(i) = STWeightWetkg(hxchgr_index);
hxchgr_weightdry(i) = STWeight_Dry_kg(hxchgr index);
hxchgrhl(i) = SThlm(hxchgrindex);
hxchgr_cp(i) STFluidcp(hxchgrindex);
hxchgrdim(i,:) = STDimm(hxchgr index,:);
hxchgr_areapri(i) = STAreacm2(hxchgr_index);
hxchgrareasec(i) = STAreaSeccm2(hxchgrindex);
hxchgrhc(i) = STFluidhc(hxchgrindex);
hxchgrtubek(i) = STTubek(hxchgrindex);
hxchgrtubediam(i) = STTubeDiamcm(hxchgrindex);
hxchgrtubethick(i) STTubeThickcm(hxchgrindex);

else
hxchgr U(i) = ST U(HxchgrNum(i));
hxchgrfluidmfr = STFluidMfr kgps(HxchgrNum(i));
hxchgrfluidtempin(i) = STFluidTemp_InC(HxchgrNum(i));
hxchgrweight_wet(i) = STWeightWet_kg(HxchgrNum(i));
hxchgr_weight_dry(i) = STWeightDrykg(HxchgrNum(i));
hxchgrhl(i) = SThlm(HxchgrNum(i));
hxchgr_cp(i) = STFluidcp(HxchgrNum(i));
hxchgr-dim(i,:) = STDimm(HxchgrNum(i),:);
hxchgr_areapri(i) = ST Areacm2(HxchgrNum(i));
hxchgrareasec(i) = STAreaSeccm2(HxchgrNum(i));
hxchgr hc(i) = STFluidhc(Hxchgr_Num(i));
hxchgr tubek(i) STTubek(HxchgrNum(i));
hxchgr tubediam(i) = ST TubeDiamcm(HxchgrNum(i));
hxchgr tubethick(i) = STTubeThick cm(HxchgrNum(i));

end
elseif strcmp(HxchgrType(i),'cp')

if isnan(HxchgrNum(i))
%find closest hxchgr
hxchgr_capacity = 100000000000000;
for j=l:Num CP_Types

if max(LoadValuekW(i,:)) < CPCapacity_kW(j) &&
hxchgrcapacity > CPCapacity kW(j)

hxchgrcapacity = CPCapacitykW(j);
hxchgrindex = j;

end

250



Center for Ocean Engineering E * Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

end
hxchgrU(i) = CP U(hxchgr index);
hxchgrfluidmfr(i) = CP MfrFluid kgps(hxchgr_index);
hxchgrfluid tempin(i) CPAir_TempInC(hxchgr_index);
hxchgr weight wet(i) = CPWeightWet_kg(hxchgrindex);
hxchgr weight dry(i) = CPWeightDry_kg(hxchgrindex);
hxchgr_hl(i) = CP_hlm(hxchgrindex);
hxchgr_cp(i) = CPFluidcp(hxchgr_index);
hxchgr-dim(i,:) = CP Dim m(hxchgrindex,:);
hxchgr_areapri(i) = CP_Areacm2(hxchgr_index);
hxchgr_areasec(i) = CP AreaSeccm2(hxchgrindex);
hxchgrhc(i) = CPAir_hc(hxchgr_index);
hxchgrtubek(i) = CPTube k(hxchgrindex);
hxchgr tube diam(i) = CP Tube Diamcm(hxchgrindex);
hxchgr tubethick(i) = CP_TubeThickcm(hxchgrindex);
hxchgr plate k(i) = CPPlate k(hxchgr index);
hxchgr platethick(i) = CPPlateThickcm(hxchgrindex);

else
hxchgrU(i) = CPU(Hxchgr_Num(i));
hxchgr fluidmfr = CP Fluid Mfrkgps(HxchgrNum(i));
hxchgrfluid tempin(i) = CPFluidTemp_In_C(HxchgrNum(i));
hxchgr weight wet(i) = CPWeightWetkg(HxchgrNum(i));
hxchgr weight dry(i) = CPWeightDry kg(HxchgrNum(i));
hxchgr hl(i) = CP_hlm(HxchgrNum(i));
hxchgrcp(i) = CPFluidcp(HxchgrNum(i));
hxchgrdim(i,:) = CPDimm(Hxchgr_Num(i),:);
hxchgrarea_pri(i) = CPAreacm2(HxchgrNum(i));
hxchgrareasec(i) = CPAreaSeccm2(Hxchgr_Num(i));
hxchgrhc(i) = CPAirhc(HxchgrNum(i));
hxchgr tube k(i) = CP Tube k(Hxchgr Num(i));
hxchgrtubediam(i) CPTube Diamcm(HxchgrNum(i));
hxchgrtubethick(i) = CPTubeThickcm(Hxchgr_Num(i));
hxchgrplate k(i) = CPPlatek(hxchgr index);
hxchgr plate thick(i) = CPPlateThick cm(hxchgrindex);

end
elseif strcmp(HxchgrType(i),'o')

if isnan(HxchgrNum(i))
%find closest hxchgr
hxchgr capacity = 100000000000000;
for j=l:NumOther HxchgrTypes

if max(LoadValuekW(i,:)) < OCapacitykW(j) &&
hxchgrcapacity > OCapacitykW(j)

hxchgr_capacity = O_Capacity kW(j);
hxchgrindex = j;

end
end
hxchgrU(i) = 0_U(hxchgrindex);
hxchgrfluidmfr(i) = 0 Air Mfr_kgps(hxchgrindex);
hxchgr_fluidtempin(i) = OAirTempInC(hxchgr_index);
hxchgr weight wet(i) = OWeightWet_kg(hxchgrindex);
hxchgr weight dry(i) = OWeightDrykg(hxchgrindex);
hxchgrhl(i) = 0_hlm(hxchgrindex);
hxchgr cp(i) = OFluidcp(hxchgr_index);
hxchgr-dim(i,:) = ODimm(hxchgrindex,:);
hxchgrareapri(i) = OAreacm2(hxchgrindex);

251



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 1 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

hxchgrareasec(i) = 0_AreaSeccm2(hxchgr index);
hxchgr hc(i) = 0 Fluid hc(hxchgr index);
hxchgr tube_k(i) = 0_Tube_k(hxchgr_index);
hxchgr tubediam(i) 0_TubeDiamcm(hxchgr_index);
hxchgr tubethick(i) = 0_TubeThickcm(hxchgrindex);

else
hxchgr_U (i) = 0_U(HxchgrNum(i));
hxchgr fluid mfr = OAirMfrkgps(HxchgrNum(i));
hxchgr_f luid tempin(i) = OAir_Temp_In_C(HxchgrNum(i));
hxchgrweight wet(i) = OWeightWet_kg(HxchgrNum(i));
hxchgr_weight_dry(i) = OWeightDrykg(HxhcgrNum(i));
hxchgr hl(i) = 0_hl_m (HxchgrNum(i));
hxchgr_cp(i) = 0_Fluid cp(Hxchgr_Num(i));
hxchgrdim(i,:) = 0 Dim_m(HxchgrNum(i),:);
hxchgr_area_pri(i) = 0_Area cm2(Hxchgr_Num(i));
hxchgrarea sec(i) = OAreaSeccm2(HxchgrNum(i));
hxchgrhc(i) = 0_Fluidhc(HxchgrNum(i));
hxchgrtubek(i) = 0_Tubek(Hxchgr_Num(i));
hxchgrtubediam(i) 0 _TubeDiamcm(Hxchgr_Num(i));
hxchgrtubethick(i) = 0_TubeThick cm(HxchgrNum(i));

end
end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Design SW aux system
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fprintf('A notional SW auxiliary system is provided, which provides the SW
needed for heat rejection of the AC units.\n')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define SW pumps
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

SW_pumpdim = [1 1 1)];
SW pumploc = [0.3*LOA 0.8*beam/2 eng_deckht abovekeel+SW_pumpdim(3)/2;

0.3*LOA -0.8*beam/2 eng_deck_htabovekeel+SW pumpdim(3)/2;
-0.3*LOA 0.8*beam/2 eng_deckhtabovekeel+SWpump_dim(3)/2;
-0.3*LOA -0.8*beam/2 eng_deckhtabove keel+SWpump_dim(3)/2];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define SW valves
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

SW valve loc = zeros(4, 2,3);
for i=1:4

SWvalveloc(i,:,:) = [SWpump_loc(i,1)-2 SW_pump loc(i,2)
SW pumploc(i,3);

SWpumploc(i,1)-1 SW_pumploc(i,2) SW_pump_loc(i,3)];
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define geometry of SW aux risers
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if piping_config == 1
port_headerdeckht = 5.2;
stbdheaderdeck ht = 10.2;

252



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

end
SWrisers = zeros(4,6,3);
for i=1:4

if i==1 11 i==3
sign=1;
riserht = portheader deck ht - 1;

else
sign = -1;
riserht = stbdheaderdeckht - 1;

end
SW risers(i,:,:) = [SW_pump_loc(i,l)-3 SWpumploc(i,2) 0;

SW_pump_loc(i,l)-3 SWpump loc(i,2) SWpump_loc(i,3);
SW pumploc(i,l) SW pump loc(i,2) SWpump loc(i,3);
SWpump_loc (i, 1) SW_pump_loc (i,2) SW_pump loc(i, 3) +3;
SWpumploc(i,l) SW pump_loc(i,2)+sign*0.15*beam/2

SWpump_loc (i, 3) +3;
SWpump_loc(i,1) SW_pumploc(i,2)+sign*0.15*beam/2 riserht];

end

Define SW cross connect valves
%%W%%%%%%%%%%%%%%%%%% %% % %
SW ccvalvel.25*LOA 0 (SW risers +SWrisers(1,6,3)+SWrisers(2,6,3))/2;

-0 .25*LOA 0 (SW risers (1, 6, 3)+SW-risers (2, 6,3) )/2] ;

0 Define geometry of SW cross-connects

SW cross connects = zeros(2,4,3);

SWcrossconnects(l,:,:) = [0.25*LOA SWrisers(1,6,2)
0.25*LOA 0 SWrisers(1,6,3);
0.25*LOA 0 SW risers(2,6,3);
0.25*LOA SW_risers(2,6,2) SWrisers(2,6,3)];

SW_cross_connects(2,:,:) = [-0.25*LOA SW risers(1,6,2)
-0.25*LOA 0 SWrisers(1,6,3);
-0.25*LOA 0 SW risers(2,6,3);
-0.25*LOA SW risers(2,6,2) SW risers(2,6,3)];

SWrisers(1,6,3);

SW risers(1,6,3);

Define geometry of SW mains

%%%%%%%%%%%%%%%%%,%%%%%%%%%%%

SW-mains = zeros (2, 2,3) ;

SW-mains (1, : , : ) = [ 0. 35*LOA SWrisers (1, 6, 2)
-0.475*LOA SWrisers(1,6,2) SWrisers(l,

SWmains(2,:,:) = [0.35*LOA SWrisers(2,6,2)
-0.475*LOA SW risers(2,6,2) SW risers (2,

SWrisers (1, 6, 3) ;
6, 3) 1 ;
SWrisers (2, 6, 3) ;

6, 3) 1 ;

figure (5)
hold on
for i=1:4

plot3(SW risers(i,:,1),SWrisers(i,:,2),SW risers(i,:,3),'b','Linewidth',2)
end

253



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

for i=1:2

plot3(SW cross connects (i, :,1),SW cross connects(i, :,2),SW cross connects(i,:
,3),'b','Linewidth',2)
end
for i=1:2

plot3(SW-mains(i,:,1),SW-mains(i,:,2),SW mains(i,:,3),'b','Linewidth',2)
end
axis equal
xlabel('Longitudinal Axis [m]')
ylabel('Transverse Axis [m]')
zlabel('Vertical Axis [m]')

title('3D AUX SW Mains Layout')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Determine other connections to SW system
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
shaft bearing = 0;
reply = input('Do you want to account for the shaft bearing? [y/nl: ','s');
if isempty(reply)

reply = 'y';
end
if strcmp(reply, 'y') strcmp(reply, 'Y') | strcmp(reply, 'yes')

shaftbearing = 1;
shaft bearing loc = [-0.4*LOA 0 1+eng deck ht above keel);
shaftbearinggpm = 2;
reply = input('The default gmp flow rate through the shaft bearing is 2

gpm. Do you want to change it? [y/n]: ','s');
if strcmp(reply,'y') I strcmp(reply,'Y') | strcmp(reply, 'yes')

shaftbearinggpm = input('Please enter the shaft bearing flow rate
in gpm. ');

end
fprintf('The default shaft bearing location is:\n')
shaftbearingloc
reply = input('Do you want to change it? [y/n]: ','s');
if strcmp(reply, 'y') I1 strcmp(reply,'Y') |1 strcmp(reply, 'yes')

fprintf('Please enter the shaft bearing location.\n');
fprintf('Example: [-45 0 3]\n')
shaftbearingloc = input('Shaft bearing location: ');

end
end

SWhxchgrs = 0;
reply = input('Do you want to account for other connections to the SW system?
[y/n]: ','s');

if strcmp(reply,'y') || strcmp(reply,'Y') || strcmp(reply,'yes')
SW hxchgrs = input('How many other connections? ');
SWhxchgr_loc = zeros(SWhxchgrs,3);
SWhxchgr_gpm = zeros(SW hxchgrs, 3);
for i=1:SW hxchgrs

fprintf('Please enter location %d\n',i)
fprintf('Example: [20 3 10]\n')
input_loc = input('Location: ');
fprintf('Please enter flow rate %d in gpm\n',i)
input_flow = input('Flow rate: ');

254



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering [a"ir

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

SWhxchgr_loc(i,:) = input loc;
SWhxchgrgpm(i) = inputflow;

end
end

% Design SW piping system
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

SW_piping = zeros(sum(chillers)+shaftbearing+SWhxchgrs,6,3);

for i=l:sum(chillers)
if chillerloc(i,2)>O %chiller on port side

SWpiping(i,:,:) = [chillerloc(i,l)+chillerdim(l)/2
SW risers(1,6,2) SWrisers(1,6,3);

chiller loc(i,l)+chiller dim(l)/2 SW risers(1,6,2)
chillerloc(i,3)-chillerdim(3)*0.25;

chillerloc(i,l)+chillerdim(l)/2 chiller loc(i,2)
chillerloc(i,3)-chillerdim(3)*0.25;

chillerloc(i,l)-chillerdim(l)/2 chiller loc(i,2)
chillerloc(i,3)-chillerdim(3)*0.25;

chillerloc(i,l)-chillerdim(l)/2
chiller loc(i,2)+chiller dim(2)/2+1.5 chiller loc(i,3)-chiller dim(3)*0.25;

chiller loc(i,l)-chillerdim(l)/2
chillerloc(i,2)+chillerdim(2)/2+1.5 0];

else %chiller on stbd side
SWpiping(i,:,:) = [chillerloc(i,l)+chiller dim(l)/2

SWrisers(2,6,2) SWrisers(2,6,3);
chillerloc(i,l)+chillerdim(l)/2 SW risers(2,6,2)

chiller loc(i,3)-chiller dim(3)*0.25;
chillerloc(i,l)+chillerdim(l)/2 chillerloc(i,2)

chillerloc(i,3)-chillerdim(3)*0.25;
chillerloc(i,l)-chillerdim(l)/2 chillerloc(i,2)

chillerloc(i,3)-chillerdim(3)*0.25;
chillerloc(i,l)-chillerdim(l)/2 chillerloc(i,2)-

chillerdim(2)/2-1.5 chillerloc(i,3)-chillerdim(3)*0.25;
chiller loc(i,l)-chiller dim(l)/2 chiller loc(i,2)-

chillerdim(2)/2-1.5 0];
end

end

if shaftbearing == 1

SWpiping( (sum(chillers)+l),
SW risers(1,6,3);

shaftbearingloc(l)
shaftbearing_loc(l)
shaftbearingloc(l)
shaft bearing loc(l)
shaft_bearingloc (1)

end

:,:) = [shaftbearingloc(l). SWrisers(1,6,2)

SWrisers(1,6,2) shaftbearingloc(3);
shaftbearingloc(2) shaftbearingloc(3);
shaftbearingloc(2) shaftbearing_loc(3);
shaftbearingloc(2) shaftbearing_loc(3);
shaft bearing_loc(2) shaft bearingloc(3)];

if SWhxchgrs>=0
for i=l:sum(SWhxchgrs)

if SW hxchgr loc(i,2)>0 %SW hxchgr on port side
SW _piping(i+shaftbearing+sum(chillers),:,:) =

[SWhxchgr loc(i,l)+l SW risers(1,6,2) SW risers(1,6,3);

255



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

SWhxchgrloc(i,1)+1 SW risers(1,6,2) SWhxchgrloc(i,3);
SWhxchgrloc(i,1)+1 SWhxchgr_loc(i,2) SWhxchgrloc(i,3);
SWhxchgrloc(i,1)-1 SWhxchgrloc(i,2) SWhxchgr_loc(i,3);
SWhxchgrloc(i,1)-1 SWhxchgrloc(i,2)+1 SWhxchgrloc(i,3);
SW hxchgr loc(i,1)-1 SW hxchgr loc(i,2)+1 0];

else %chiller on stbd side
SWpiping(i+shaftbearing+sum(chillers),:,:)

[SW hxchgr_loc(i,1)+1 SWrisers(2,6,2) SWrisers(2,6,3);
SWhxchgrloc(i,1)+1 SW risers(2,6,2) SWhxchgrloc(i,3);
SWhxchgr-loc(i,1)+1 SW-hxchgrloc(i,2) SWhxchgrloc(i,3);
SWhxchgr-loc(i,1)-1 SW hxchgrloc(i,2) SWhxchgrloc(i,3);
SWhxchgrloc(i,1)-1 SW hxchgrloc(i,2)-l SW hxchgrloc(i,3);
SWhxchgr-loc(i,l)-l SW hxchgrloc(i,2)-1 0];

end
end

end

% Locate SW segregation valves

SWsegvalveloc = zeros (sum(chillers),3,3);

for i=l:sum(chillers)
if chillerloc(i,2)>0 %chiller on port side

SWsegvalveloc(i,1,:) = [chillerloc(i,1)+chillerdim(l)/2
(SWrisers(1,6,2)+chiller loc(i,2))/2 chillerloc(i,3)-chiller dim(3)*0.25];

SWseg valveloc(i,2, :) = [chillerloc(i,1)-chillerdim(1)/2
chillerloc(i,2)+chiller dim(2)/2+0.5 chillerloc(i,3)-chillerdim(3)*0.25];

SWseg_valveloc(i,3,:) = [chillerloc(i,l)-chillerdim(1)/2
chillerloc(i,2)+chiller dim(2)/2+1 chillerloc(i,3)-chiller dim(3)*0.25];

else
SWseg valveloc(i,l,:)

(SWrisers(2,6,2)+chillerloc(i
SWseg valveloc(i,2,:)

chillerloc(i,2)-chiller dim(2)
SWsegvalveloc (i, 3,:)

chillerloc(i,2)-chiller dim(2)
end

end

= [chiller loc(i,1)+chillerdim(l)/2
,2))/2 chillerloc(i,3)-chiller dim(3)*0.25];

= [chillerloc(i,l)-chillerdim(l)/2
/2-0.5 chillerloc(i,3)-chillerdim(3)*0.25];

= [chillerloc(i,l)-chillerdim(l)/2
/2-1 chillerloc(i,3)-chiller dim(3)*0.25];

for i=l:sum(SWhxchgrs)
if SW hxchgrloc(i,2)>0 %SW hxchgr on port side

SWseg_valveloc(i,l,:) = [SW hxchgrloc(i,l)+l
SWhxchgr_loc(i,3)];

SWsegvalveloc(i,2,:) = [SWhxchgrloc(i,l)-l
1];

SWrisers (1, 6,2) -1

SWhxchgrloc(i,2)+l

SW segvalveloc(i,3,:) = [SW hxchgrloc(i,1)-i SWhxchgrloc(i,2)+l
0.5] ;

else %SW hxchgr on stbd side
SWseg_valveloc(i,1,:) = [SW hxchgrloc(i,1)+1

SWhxchgr_loc(i,3)];
SW segvalveloc(i,2,:) = [SW hxchgrloc(i,1)-l

1];

SWrisers (2,6,2)+1

SWhxchgrloc(i,2)-l

SW seg valveloc(i,3,:) = [SW hxchgrloc(i,l)-l SWhxchgrloc(i,2)-l
0.5] ;

256



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

end
end

figure (6)
hold on
for i=1:4

plot3(SW risers(i,:,1),SWrisers(i,:,2),SW risers(i,
end
for i=1:2

plot3(SWcrossconnects(i,:,1),SWcross connects(i,:
,3),'b','Linewidth',2)
end
for i=1:2

:,3), 'b', 'Linewidth',2)

,2),SWcross connects(i,:

plot3(SWmains(i,:,1),SW mains(i,:,2),SW mains(i,:,3),'b','Linewidth ',2)

end
for i=1: (sum(chillers)+sum(SWhxchgrs)+shaft bearing)

plot3(SW_piping(i,:,1),SWpiping(i,:,2),SW_piping(i,
0.5], 'Linewidth',1.5)
end
axis equal
xlabel('Longitudinal Axis [im]')
ylabel('Transverse Axis [m]')
zlabel('Vertical Axis [m]i')
title('3D AUX SW Mains Layout')

% Plot 3D layout w/ mains, branches, loads and valves

figure(7)
hold on
for i=1:4 %plot SW risers

plot3(SWrisers(i,:,1),SW risers(i,:,2),SWrisers(i,:
end
for i=1:2 %plot SW cross connects

plot3(SWcrossconnects(i, :,1),SWcross connects (i, :,
,3),'c','Linewidth',2)
end
for i=1:2 %plot SW mains

plot3(SWmains(i,:,1),SWmains(i,:,2),SWmains(i,
end
for i=l:(sum(chillers)+sum(SWhxchgrs)+shaftbearing)

:, 3) , 'Color', [0 0

,3),'c','Linewidth',2)

2),SWcross_connects(i,:

:, 3) , ' c', 'Linewidth', 2)

%plot SW piping

plot3(SW_piping(i,:,1),SWpiping(i,:,2),SW piping(i,:,3),'Color',[0 0

0.9], 'Linewidth',1.5)
end
for i=1:sum(chillers) %plot mains

plot3(headerloc_s(i,:,1),headerloc_s(i,:,2),header loc s(i,:,3),'b','Linewi
dth',1.5)

plot3(headerloc_r(i,:,1),headerloc_r(i,:,2),headerloc r(i,:,3),'r','Linewi

dth',1.5)

257



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineerig I'iT Massachusetts Institute of Technology

77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

plot3(header loc_s_alt(i,:,1),header loc s alt(i,:,2),header loc s alt(i,:,3)

,'b','Linewidth',1.5)

plot3(headerloc_r_alt(i,:,l),headerloc r alt(i,:,2),headerlocr alt(i,:,3)

, ' r','Linewidth', 1.5)
end
for i=1:sum(chillers) %plot recirc line

plot3(recirc line(i,:,l),recirc line(i,:,2),recirc line(i,:,3),'b')
end
if piping_config

plot3(cclloc_s
plot3(cc2_loc_s
plot3(ccl_loc_r
plot3(cc2_loc r

2 %plot athwartship
(:,l),ccllocs(:,2),
(:,l),cc2_loc s(:,2),
(:,1),cclloc r(:,2),
(:,1),cc2_loc-r(:,2),

cc piping
cclloc_s
cc2_loc_s
ccl_loc_r
cc2_locr

for double mains
(:,3),'b','Linewidth',1.

(:,3),'b','Linewidth',1.
(:,3),'r','Linewidth',1.
(:,3),'r','Linewidth',1.

5)
5)
5)
5)

end
plot3 ( [LOA/2 LOA/2 -LOA/2 -LOA/2 LOA/2], [beam/2 -beam/2 -beam/2 beam/2
beam/2),[0 0 0 0 01) %plot ship boundaries
chillervec_3D = [chillerdim(l)/2*[l 1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 -1 -1];

chillerdim(2)/2*[l -1 -1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1];
chillerdim(3)/2*[-1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 1 1 -1]];

pumpvec_3D = [pump_dim(1)/2*[l 1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 -1 -1];
pumpdim(2)/2*[1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1];
pump_dim(3)/2*[-1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 1 1 -1]];

seg_valvevec_3D = [segvalve dim(l)/2*[l 1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 -1
-1];

seg_valvedim(2)/2*[1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 11
segvalvedim(3)/2*[-1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 1 1 -1]

loadvec_3D(i,:,:) = [1/ft_perm/2*[1 1 -1 -1 1 1 1 -1 -1 1 1 1
1/ftperm/2*[1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1];
1/ftperm/2*[-1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 1 1 -1]];

for i=l:sum(chillers) %plot chillers and pumps

;
-1 -1 -1 -1];

plot3(chillervec_3D(1, :)+chillerloc(i,1),chillervec_3D(2, :)+chillerloc(i,
2) , chillervec_3D (3, : ) +chillerloc (i, 3), 'k', 'Linewidth', 2)

plot3(pumpvec_3D(1,:)+pumploc(i,1),pumpvec_3D(2,:)+pump_loc(i,2),pumpvec_
3D(3, : )+pump_loc (i,3), 'k')
end
for i=1:4 %plot FM pumps

plot3 (pump_vec_3D (1, :) +SWpumploc (i, 1), pumpvec_3D (2, :) +SW_pump_loc (i, 2) , pum
p-vec_3D(3,:)+SW_pumploc(i,3),'k')
end
for i=1:sum(chillers)

for j=1:3 %plot sw seg valves

plot3(segvalvevec_3D(1,:)+SWseg_valveloc(i,j,1),seg_valve vec 3D(2,:)+SW_
seg_valveloc(ij,2),segvalve vec_3D(3,:)+SWsegvalveloc(i,j,3),'k')

end
end
for i=1:4

for j=1:2

258



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program E 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

plot3(segvalve vec_3D(1,:)+SW valve loc(i,j,1),segvalve vec_3D(2,:)+SWvalv

e_loc (i, j, 2) , seg_valvevec_3D (3, :)+SWvalve loc (i, j , 3) , 'k')
end

end
for i=1:2

plot3(seg valve vec_3D(1,:)+SWccvalveloc(i,1),seg_valvevec_3D(2,:)+SWcc
valveloc(i,2),segvalvevec_3D(3,:)+SWccvalveloc(i,3),'k')
end
for i=l:length(seg valve loc) %plot header isolation valves

plot3(segvalvevec_3D(1,:)+segvalveloc(i,1),seg_valve vec_3D(2,:)+segvalv

e loc(i,2),seg_valvevec_3D(3,:)+seg_valveloc(i,3),'k')
end
for i=1:inputs %plot branch piping

plot3(branch loc(:,1,1,i), branchloc(:,1,2,i), branchloc(:,1,3,i),'g')

plot3(branch-loc(:,2,1,i), branchloc(:,2,2,i), branchloc(:,2,3,i),'r')
end
for i=1:inputs %plot heat load/hxchgr

plot3(LoadLocm(i,1)+hxchgr_dim(i,1)/2*[1 1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -
1 -1 -1], ...

LoadLocm(i,2)+hxchgr_dim(i,2)/2*[1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 -1 -
1 1 1], ...

LoadLoc m(i,3)+hxchgrdim(i,3)/2*[-1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 1

1 -1],'k')
end
for i=1:inputs %plot branch gate & globe valves

plot3(loadvec_3D(1,:)+branch_gateloc(1,1,1,i),loadvec_3D(2,:)+branch_gate
loc(1,1,2,i),loadvec_3D(3,:)+branch_gate loc(1,1,3,i),'m')

plot3(loadvec_3D(1,:)+branch_gateloc(2,1,1,i),loadvec_3D(2,:)+branch_gate
loc (2, 1, 2, i) , loadvec_3D (3, : ) +branch_gate loc (2, 1, 3, i) , 'm' )

plot3(loadvec_3D(1,:)+branch_globeloc(1,1,1,i),load vec_3D(2,:)+branchglob

e_loc(1,1,2,i),loadvec_3D(3,:)+branchglobeloc(1,1,3,i),'c')

plot3(load vec_3D(1,:)+branchgate_loc(1,2,1,i),loadvec_3D(2,:)+branch_gate
loc (1, 2, 2, i) , load vec_3D (3, :) +branchgate loc (1, 2, 3, i) , 'm' )

plot3(load vec_3D(1,:)+branch-gate loc(2,2,1,i),loadvec_3D(2,:)+branch_gate_
loc (2, 2, 2, i) , loadvec_3D (3, : ) +branch_gateloc (2, 2, 3, i) , 'm' )

plot3(loadvec_3D(1,:)+branch_globe loc(1,2,1,i),loadvec_3D(2,:)+branchglob
e_loc(1,2,2,i),load vec_3D(3,:)+branchglobe_loc(1,2,3,i),'c')
end
axis equal
xlabel('Longitudinal Axis [m]')
ylabel('Transverse Axis [m)')
zlabel('Vertical Axis [m]')
title('3D CW System and AUX SW System Layout')

%% Output geometry to .mat file

save geometry

259



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

260



Center for Ocean Engineering Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

analysism

% Cooling System Design Tool %
% Author: Ben Sanfiorenzo %
% Analysis module: Reads in excel data and user input %
% and creates the structure of the chilled water %
% system. Provides 2D and 3D layout of CW structure. %
% Last Modified: 5-13-13 %

close all
clC
clear all

Step 1: Load geometry data and plot CW structure

reply = input('Were modifications made to the geometry.mat file? [y/nl:
I' 's');

if strcmp(reply, 'y') 1 strcmp(reply, 'Y') I1 strcmp(reply, 'yes')
load analysisinterface

else
load geometry

end

% Plot 3D layout w/ mains, branches, loads and valves

figure (7)
hold on
for i=1:4 %plot SW risers

plot3(SWrisers(i,:,1),SWrisers(i,:,2),SWrisers(i,:,3),'c','Linewidth',2)
end
for i=1:2 %plot SW cross connects

plot3(SWcross connects(i,:,1),SWcrossconnects(i,:,2),SW crossconnects(i,:
,3),'c','Linewidth',2)

end
for i=1:2 %plot SW mains

plot3(SW mains(i,:,1),SW mains(i,:,2),SW mains(i,:,3),'c','Linewidth',2)
end
for i=1: (sum(chillers)+sum(SW hxchgrs)+shaft bearing) %plot SW piping

plot3(SWpiping(i,:,1),SWpiping(i,:,2),SW-piping(i,:,3),'Color',[0 0
0.9],'Linewidth',1.5)
end
for i=l:sum(chillers) %plot mains

plot3(headerloc_s(i,:,1),headerloc_s(i,:,2),headerloc_s(i,:,3),'b','Linewi
dth',1.5)

plot3(headerlocr(i,:,1),header loc r(i,:,2),header loc r(i,:,3),'r','Linewi

dth',1.5)

261



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

plot3(header loc s alt(i,:,1),header loc s alt(i,:,2),header loc s alt(i,:,3)

'b', 'Linewidth',1.5)

plot3(headerloc r alt(i,:,1),header_loc_r_alt(i,:,2),headerloc_r alt(i,:,3)
,'r','Linewidth',1.5)
end
for i=l:sum(chillers) %plot recirc line

plot3(recircline(i,:,1),recircline(i,:,2),recircline(i,:,3),'b')
end
if piping_config

plot3(ccl_loc_s
plot3(cc2_loc_s
plot3(ccl_loc_r
plot3(cc2_loc_r

2 %plot athwartship
(:,1),ccl loc s(:,2),
(:,1),cc2_loc s(:,2),
(:,1),cc1lloc r(:,2),
(:,1),cc2_locr(:,2),

cc piping
ccl loc_s
cc2_loc_s
ccl loc_r
cc2_loc_r

for double mains
(:,3),'b','Linewidth
(:,3),'b','Linewidth
(:,3), 'r', 'Linewidth
(:,3),'r','Linewidth

1.5)
1.5)
1.5)
1.5)

end
plot3([LOA/2 LOA/2 -LOA/2 -LOA/2 LOA/2], [beam/2 -beam/2 -beam/2 beam/2
beam/2], [0 0 0 0 0]) %plot ship boundaries
chillervec_3D = [chiller dim(1)/2*[1 1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 -1 -1];

chillerdim(2)/2*[1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1];
chillerdim(3)/2*[-1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 1 1 -13];

pumpvec_3D = [pumpdim(1)/2*[1 1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 -1 -1];
pump_dim(2)/2*[1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1];
pumpdim(3)/2*[-1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 1 1 -1]];

seg valve vec 3D = [segvalve dim(1)/2*[1 1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -1 -1
-1];

seg-valvedim(2)/2*[1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1]
seg_valvedim(3)/2*[-1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 1 1 -1]

loadvec_3D(i,:,:) = [1/ft_perm/2*[1 1 -1 -1 1 1 1 -1 -1 1 1 1
1/ft per m/2*[1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1];
1/ftperm/2*[-1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 1 1 -1]];

for i=1:sum(chillers) %plot chillers and pumps

I;
-1 -1 -1 -1];

plot3(chillervec_3D(1,:)+chillerloc(i,1),chillervec_3D(2,:)+chillerloc(i,
2),chillervec_3D(3,:)+chillerloc(i,3),'k','Linewidth',2)

plot3(pump vec_3D(1,:)+pump_loc(i,1),pumpvec_3D(2,:)+pump_loc(i,2),pumpvec
3D(3,:)+pumplaoc(i,3),'k')
end
for i=1:4 %plot FM pumps

plot3(pump_vec_3D(1,:)+SWpump_loc(i,1),pumpvec_3D(2,:)+SW_pumploc(i,2),pum
p_vec_3D(3,:)+SW pump_loc(i,3),'k')
end
for i=l:sum(chillers)

for j=1:3 %plot sw seg valves

plot3(segvalvevec_3D(1,: )+SWsegvalve loc(i,j,1),seg_valvevec_3D(2,:)+SW
segvalve_loc(i,j,2),segvalvevec_3D(3,:)+SWseg_valve_loc(i,j,3),'k')

end
end
for i=1:4

for j=1:2

262

,
,
,
,



Center for Ocean Engineering N - Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering II Cambridge, Massachusetts 02139-4307

plot3(seg_valvevec_3D(1,:)+SWvalveloc(i,j,1),segvalvevec_3D(2,:)+SWvalv
e_loc(i,j,2),seg-valve-vec_3D(3,:)+SWvalveloc(i,j,3),'k')

end
end
for i=1:2

plot3(segvalvevec_3D(1,:)+SWccvalveloc(i,1),seg valve vec_3D(2,:)+SWcc_
valve loc(i,2),seg valve vec_3D(3,:)+SW cc valve loc(i,3),'k')

end
for i=l:length(segvalveloc) %plot header isolation valves

plot3(seg__valvevec_3D(1,:)+seg valveloc(i,1),seg valvevec_3D(2, :)+seg valv

e_loc(i,2),segvalve-vec_3D(3,:)+seg_valveloc(i,3),'k')
end
for i=1:inputs %plot branch piping

plot3(branch loc(:,1,1,i), branchloc(:,1,2,i), branchloc(:,1,3,i),'g')

plot3(branch-loc(:,2,1,i), branchloc(:,2,2,i), branchloc(:,2,3,i),'r')
end
for i=1:inputs %plot heat load/hxchgr

plot3(LoadLocm(i,1)+hxchgrdim(i,1)/2*[1 1 -1 -1 1 1 1 -1 -1 1 1 1 -1 -
1 -1 -1], ...

Load Loc m(i,2)+hxchgr dim(i,2)/2*[1 -1 -1 1 1 1 -1 -1 1 1 -1 -1 -1 -
1 1 1], ...

LoadLocm(i,3)+hxchgrdim(i,3)/2*[-1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 1

1 -1],'k')
end
for i=l:inputs %plot branch gate & globe valves

plot3(loadvec_3D(1,:)+branchgateloc(1,1,1,i),loadvec_3D(2,:)+branchgate_
loc(1,1,2,i),loadvec_3D(3,:)+branch_gate_loc(1,1,3,i),'m')

plot3(loadvec_3D(1,:)+branchgateloc(2,1,1,i),load vec_3D(2,:)+branchgate_
loc (2, 1, 2, i) , loadvec_3D (3, :) +branch_gate loc (2, 1, 3, i) , 'm')

plot3(loadvec_3D(1,:)+branchglobeloc(1,1,1,i),loadvec_3D(2,:)+branch_glob
e loc(1,1,2,i),load vec_3D(3,:)+branch globe loc(1,1,3,i),'c')

plot3(loadvec_3D(1,:)+branchgateloc(1,2,1,i),load-vec_3D(2,:)+branchgate_
loc(1,2,2,i),loadvec_3D(3,:)+branchgate loc(1,2,3,i),'m')

plot3(loadvec_3D(1,:)+branch_gateloc(2,2,1,i),loadvec_3D(2,:)+branch_gate_
loc(2,2,2,i),load vec_3D(3,:)+branch gate loc(2,2,3,i),'m')

plot3(loadvec_3D(1,:)+branchglobeloc(1,2,1,i),loadvec_3D(2,:)+branchglob
e_loc(1,2,2,i),loadvec_3D(3,:)+branchglobeloc(1,2,3,i),'c')
end
axis equal
xlabel('Longitudinal Axis')
ylabel('Transverse Axis')
title('3D Mains Layout')

%% Step 2: Initial guess at branch diameters, branch velocities, and branch

mass flow rates based on Q

263



Center for Ocean Engineering 1 1UMassachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

% Define thickness and diameter of copper alloy pipe
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Class 200 Type I
Outerdiamsclass_200 = [.25 .5 .54 .675 .84 1.050 1.315 1.66 1.9 2.375

2.875 3.5 4 4.5 5 5.563 6.625 7.625 8.625 9.625 10.75 12.75]; %inches
Thicknessclass_200 = [0.035 0.035 0.065 0.065 0.065 0.065 0.065 0.072 0.072

0.083 0.083 0.095 0.095 0.109 0.120 0.125 0.134 0.134 0.148 0.187 0.187

0.250]; %inches
Innerdiamsclass_200 = Outerdiamsclass_200 - Thicknessclass_200; %inches
Innerdiamsclass_200_SI = Innerdiamsclass_200*2.54/100; % meters
Thicknessclass_200_SI = Thickness class_200*2.54/100; % meters

%Class 200 Type II
Outerdiamsclass_200_II = [.25 .5 .54 .675 .84 1.05 1.315 1.66 1.9 2.375 ...

2.875 3.5 4 4.5 5 5.563 6.625 7.625 8.625 9.625 10.75 12.75]; %inches
Thicknessclass_200_II = [.092 .198 .376 .483 .613 .779 .989 1.39 1.6 2.32

2.82 3.94 4.51 5.83 7.12 8.28 10.6 12.2 15.3 21.5 24 38]; %inches
Innerdiamsclass_200_II = Outerdiamsclass_200_II - Thicknessclass_200_II;
%inches
Innerdiams class_200_IISI = Innerdiamsclass_200_II*2.54/100; % meters
Thickness class_200_IISI = Thicknessclass_200_II*2.54/100; % meters

%Class 700
Outerdiams class_700 = [.5 .54 .675 .84 1.050 1.315 1.66 1.9 2.375 ...

2..875 3.5 4 4.5 5 5.563 6.625 7.625 8.625 9.625 10.75 12.75 14 15 16];
%inches
Thickness class_700 = [.065 .065 .072 .072 .083 .095 .095 .109 .12 .134 .165

.18 .203 .203 .22 .259 .284 .34 .34 .38 .454 .473 .503 .534]; %inches
Innerdiamsclass_700 = Outerdiamsclass_700 - Thicknessclass_700; %inches
Innerdiamsclass_700_SI = Innerdiamsclass_700*2.54/100; % meters
Thicknessclass_700_SI = Thickness class_700*2.54/100; % meters

%Class 1650
Outer diams class_1650 = [.5 .54 .675 .75 .84 1 1.050 1.25 1.315 1.5 1.66 1.9
2 2.375

2.5 2.875 3.5 4 4.5 5 5.563 6.625 7.625 8.625 9.625 10.75 12.75]; %inches
Thicknessclass1650 = [.035 .042 .049 .058 .058 .072 .083 .095 .095 .109 .12

.134 .148 .165 .18 .203 .25 .284 .34 .38 .425 .457 .526 .595 .664 .741
.879]; %inches
Innerdiamsclass_1650 = Outerdiamsclass_1650 - Thicknessclass_1650;
%inches
Innerdiamsclass_1650 SI = Innerdiams_class_1650*2.54/100; % meters
Thicknessclass_1650_SI = Thicknessclass_1650*2.54/100; % meters

%Class 3300
Outer diamsclass_3300 = [.125 .25 .375 .405 .5 .54 .675 .75 .84 1 1.050 1.25

264



Center for Ocean Engineering . Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

1.315 1.5 1.66 1.9 2 2.375 2.5 2.875 3.5]; %inches
Thickness class_3300 = [.028 .035 .049 .058 .072 .072 .095 .109 .12 .134 .148

.165 .18 .203 .22 .25 .284 .34 .34 .38 .458]; %inches
Inner diams class_3300 = Outer diams class_3300 - Thickness class_3300;
%inches
Inner diams class 3300 SI = Inner diams class_3300*2.54/100; % meters
Thickness class_3300_SI Thicknessclass_3300*2.54/100; % meters

%Class 6000
Outer diams class 6000 = [.125 .25 .375 .405 .5 .54 .675 .75 .84 1 1.050 1.25

1.315 1.5 1.66 1.9 2 2.375 2.5 2.875 3.5]; %inches
Thicknessclass_6000 = [.028 .058 .083 .095 .12 -.12 .148 .165 .203 .22 .238

.284 .3 .34 .38 .425 .454 .52 .547 .63 .76]; %inches
Inner diams class_6000 = Outer diams class 6000 - Thickness class_6000;
%inches

Innerdiamsclass_6000_SI = Innerdiamsclass_6000*2.54/100; % meters
Thicknessclass_6000_SI = Thicknessclass_6000*2.54/100; % meters

.Telecb = 100*ones(1,inputs); %Celcius - initial iteration assumed 100C

helec = 80*ones(1,inputs);%240*ones(1,inputs); %???
Tcold = 6.6; %Celsius = 43.88F could be as high as 47F (8.3C)
Copper_type = 1; %Choices: 1:=90-10, 2:=70-30, 3:=pure
Classtype = 2; %Choices: 1:=200, 2:=700, 3:=1650, 4:=3300,. 5:=6000
%90-10 only in 200, 700; 70-30 in the rest

%%%%% % % %%%%%%%%%%%)%% %%

%Determine thermal conductivity of copper alloy

if (Coppertype == 1)
kcopper = 50; %90-10 copper-nickel alloy

elseif (Copper_type == 2)
kcopper = 10; %70-30 copper-nickel alloy

elseif (Copper_type == 3)
kcopper = 386; % pure copper

else
kcopper = 30; %80-20 copper-nickel alloy

end

%Preallocate variables

D b = zeros(1,inputs);
D SI b = zeros(1,inputs);
V b = zeros(1,inputs);
V SI b = zeros(1,inputs);
A b = zeros(1,inputs);
V flowrateb = zeros(1,inputs);
mass flowrateb = zeros(1,inputs);

thicknessb = zeros(1,inputs);
hc b = zeros(1,inputs);
Thot b = zeros(1,inputs)-;

265



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'IiF Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

Taveb = zeros(1,inputs);
T1_b = zeros (1, inputs);
T2_b = zeros(1,inputs);
Telecb = zeros(l,inputs);
Q-per-m = zeros(1,inputs);
Q_per_1 = zeros(l,inputs);
Telec_b_ave = zeros(1,inputs);
delta_T_sec = zeros(1,inputs);
Telec b_in = zeros(l,inputs);
length = zeros(l,inputs);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Determine approximate velocity, mass flow rate, branch thickness,
% Reynolds number, convective heat transfer coefficient and
% approximate temperatures for branches independent of network
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

K = 4.5;

C = 4;

Q max(LoadValue kW')'*1000;
for i=l:inputs

D b(i) = ((4*K*Q(i)/C/pi()*0.133680556/60/.2931/12000/1
%in inches

D_SI b(i) = D b(i) /12/ft_perm; %diameter in meters
if (D SIb(i)<0.015)

D SI b(i) = 0.015; %assumed minimum diameter of 15m
end

% Determine branch thickness and actual diameter

if (Classtype == 1 && Coppertype == 1)
if DSI b(i) < Innerdiamsclass_200_SI(1)

D_SI_b (i) = Innerdiamsclass_200_SI(1);
end
for j = 2:max(size(Inner diams class 200 SI))

if ((DSI b(i) < Innerdiamsclass_200_SI(j)) &
Inner diamsclass_200_SI(j-1)))

D_SIb(i) = Innerdiams class_200_SI(j);
thickness b(i) = Thickness class_200_SI(j);

end

2^0.5)^0.4)*12;

M

& (DSI b(i) >

end
if DSIb(i) >

Inner diamsclass_200_SI(max(size(Inner diamsclass_200_SI)))
D_SIb(i) =

Innerdiamsclass_200_SI(max(size(Innerdiamsclass_200_SI)));
thicknessb(i) =

Thickness class 200_SI(max(size(Inner diams class_200_SI)));
end

elseif (Classtype == 1 && Copper type == 2)
if DSIb(i) < Innerdiamsclass_200_IISI(1)

D_SI b(i) = Innerdiamsclass_200_IISI(1);
end
for j = 2:max(size(Innerdiamsclass_200_II_SI))

if ( (D_ SI_b (i) < Innerdiams class_200_IISI (j) ) && (DSI_b (i) >
Inner diamsclass_200_IISI(j-1)))

266



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

D_SI_b (i) = Innerdiamsclass_200_IISI(j);
thicknessb(i) = Thicknessclass_200_II_SI(j);

end
end
if D SI b(i) >

Inner diams class 200 II SI(max(size(Inner diamsclass_200_IISI)))
D_SI_b(i) =

Innerdiams_class_200 IISI(max(size(Inner diamsclass_200IISI)));
thickness b(i) =

Thicknessclass_200_IISI(max(size(Innerdiamsclass_200_IISI)));
end

elseif (Class type == 2 && Coppertype == 1)
if DSI b(i) < Innerdiams class_700_SI(1)

D SI b(i) = Inner diams class_700SI (1);
end
for j = 2:max(size(Innerdiamsclass_700_SI))

if ((D SIb(i) < Innerdiamsclass_700_SI(j)) && (DSIb(i) >
Innerdiamsclass_700_SI(j-1)))

D_S I_b(i) = Innerdiamsclass_700_SI(j);
thickness b(i) = Thicknessclass_700_SI(j);

end
end
if D SIb(i) >

Innerdiamsclass_700_SI(max(size(Innerdiams_class_700_SI)))
D_SIb(i) =

Innerdiamsclass_700_SI(max(size(Innerdiamsclass700_SI)));
thickness b(i) =

Thicknessclass_700_SI(max(size(Innerdiamsclass_700_SI)));
end

elseif (Classtype == 3 && Coppertype == 1)

if DSI_b (i) < Inner diamsclass_1650_SI(1)
D_SI_b(i) = Inner diamsclass_1650_SI(1);

end
for j = 2:max(size(Innerdiamsclass_1650_SI))

if ((D_SI b(i) < Innerdiamsclass_1650_SI(j)) && (DSI_b(i) >
Inner diams class_1650_SI(j-1)))

D SI b(i) = Inner diams class_1650_SI(j);

thicknessb(i) = Thicknessclass_1650_SI(j);
end

end
if D SIb(i) >

Innerdiamsclass_1650_SI(max(size(Innerdiamsclass_1650_SI)))
D SI b(i) =

Inner diams class_1650 SI(max(size(Inner diams class_1650 SI)));

thicknessb(i) =
Thicknessclass_1650_SI(max(size(Innerdiamsclass_1650_SI)));

end
elseif (Classtype == 4 && Coppertype == 1)

if D SI b(i) < Innerdiamsclass_3300_SI(1)
D SI b(i) = Inner diams class_3300_SI(1);

end
for j = 2:max(size(Innerdiamsclass 3300_SI))

if ((D_SI b(i) < Innerdiamsclass_3300_SI(j))
Inner diams class_3300_SI(j-1)))

DSI b(i) = Inner diams_class_3300_SI(j);

&& (DSI_b(i)

267



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

thickness_b(i) = Thicknessclass_3300_SI (j);
end

end
if D SI b(i) >

Innerdiamsclass_3300_SI(max(size(Innerdiamsclass_3300_SI)))
D SIb(i) =

Innerdiamsclass_3300_SI(max(size(Innerdiamsclass_3300_SI)));
thicknessb(i) =

Thicknessclass_3300_SI(max(size(Innerdiamsclass_3300_SI)));
end

elseif (Classtype == 5 && Coppertype == 1)
if DSIb(i) < Inner diamsclass_6000_SI(1)

D_SI_b (i) = Innerdiamsclass_6000_SI(1);
end
for j = 2:max(size(Innerdiamsclass_6000_SI))

if ((DSI_b(i) < Inner diamsclass_6000_SI(j)) && (DSI b(i) >
Inner diamsclass_6000_SI(j-1)))

D SI b(i) = Innerdiams class_6000_SI(j) ;
thicknessb(i) = Thicknessclass_6000_SI(j);

end
end
if DSIb(i) >

Innerdiamsclass_6000_SI(max(size(Inner diamsclass_6000_SI)))
D_SI_b(i) =

Inner diamsclass_6000_SI(max(size(Inner diams class_6000_SI)));
thicknessb(i) =

Thicknessclass_6000_SI(max(size(Innerdiamsclass_6000_SI)));
end

end
D_b(i) = D_S I_b (i)*12*ft_per_m;
V_b(i) = (C*Db(i)^0.5); %in ft/sec
V_SI_b(i) = Vb (i) /ft per m; %in m/s
A_b(i) = (pi()*DSI_b(i)^2)/4; %cross-sectional area
V_flowrateb(i) = A_b(i)*VSI b(i);
massflowrate_b(i) = rho*Vflowrate_b(i); %mass flow rate kg/m^3

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate temperatures
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

hc b(i) = calc hc(DSI b(i),VSI b(i),k,nu,rho,cp);
Thot_b(i) = Q(i)/(massflowrate_b (i)*cp)+Tcold; %Celsius
Taveb(i) = (Tcold+Thotb(i))/2;
T1_b(i) = Tave b(i) + Q(i)*(hxchgrareapri(i)*0.0001*hc_b(i))^-l; %Inner

wall temp
if strcmp(HxchgrType(i),'fp')

T2 b(i) = T1 b(i) +
Q(i)*hxchgr_platethick(i)/100*(hxchgrareapri(i)*0.0001*hxchgr_platek(i))^
-1; %Outer wall temp

else
Q_per_l(i) =

Q(i)*hxchgrtubediam (i)*pi(/100/(hxchgrarea_pri(i)*0.0001);
T2_b(i) = T1_b(i) +

Qper_ l(i)*log((hxchgr_tubediam(i)/2+hxchgr_tubethick(i))/(hxchgrtubediam
(i)/2))/(2*pi()*kcopper); %Outer wall temp

end

268



Center for Ocean Engineering * * Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering H Cambridge, Massachusetts 02139-4307

Telec_b_ave(i) = (T2_b(i) +
Q(i)/(hxchgr area sec(i)*0.0001*hxchgrhc(i))); %Secondary fluid average temp

delt a_T_sec(i) = Q(i) /hxchgrfluidmfr(i) /hxchgrcp(i);
Telec_b_in(i) = Telec_b_ave(i)+delta_T_sec(i)/2;
Telec_b(i) = Telec_b_ave(i)-delta_T_sec(i)/2;

end

% Plot temperatures as a function of branch index (unordered)

Tcoldb = Tcold*ones(l,inputs);
plot(Tcoldb,'b')
hold on
plot(Taveb,'g')
plot(Thotb,'r')
plot(T1 b,'c')
plot (T2 b, 'm' )
plot(Telec_b_ave,'y')
plot(Telec_b_in,'k')
plot(Telecb,'b:')
legend('T-c o l d c w', 'T a v e c w','Th-o-t_

_c w', 'T_11','T_2','T a_v_e_ _s-e-c','Tin_ _s e c', 'To-ut se c'f)
xlabel('Branch index (unordered)')

ylabel ('T (C) I )
title('Initial Static Temperatures as a Function of Branch Index
(unordered) ')

% Display pipe characteristics
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fprintf('Pipe Characteristics Estimation\n')

for i=1:inputs
fprintf('Load: %3.Of Q(W): %10.4f Diameter(m): %6.5f Velocity(m/sec):

%6.4f Mass flow rate(kg/s): %6.4f Thot(C): %7.4f Telec(C): %8.4f\n'
,i, Q(i), DSI_b(i) ,VSI-b(i) ,massflowrate_b(i), Thot b(i),

Telec_b(i))
end

% Determine bends in branches

%%%%%%%%%%%0~%%%%%%%%%%%%%%%

bends 90_b = zeros(2,inputs);
for i=l:inputs

for j=1:9
for k=1:2

if branchloc(j,k,1,i)~=branch_loc(j+l,k,l,i) |1

branch loc(j,k,2,i)~=branch loc(j+1,k,2,i) I
branchloc(j,k,3,i)~=branchloc(j+1,k,3,i)

bends_90_b (k, i) = bends_90_b (k, i) +1;
end

end
end
for j=1:2

if bends_90b(j,i) > 0

269



Center for Ocean Engineering * Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

bends_90_b(j,i) = bends_90_b(j,i)-1;
end

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Determine number of gate valves per branch
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

gatevalveb = zeros(l, inputs);
globe valve b = zeros(1,inputs);
for i=l:inputs

for j=1:2
if branch gateloc(j,1,i)-=0 11 branch gateloc(j,2,i)-= 01

branchgate_loc(j,3,i)-=0
gatevalve_b(i) = gate valveb(i)+1;

end
end
if branch_globeloc(1,1,i)-=0 || branchglobeloc(1,2,i)-=0 ||

branchglobeloc(1,3,i)-=0
globe valve b(i) = globe valve b(i)+1;

end
end

% Determine darcy friction factor for each branch

epsilon = 0.00005;
f_b = zeros(1,inputs);
for i=1:inputs

f_b (i) = frictionfactor(DSI_b(i),V_SI_b(i),k,nu,epsilon,rho,cp);
end

%% Step 3: Determine network segments

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define variables

count 5=0;
sizeheader = size(headerloc_s); %number of header risers
sizeseg_valveloc = size(segvalveloc); %number of seg valves in header
curr header_pt = [0 0 0]; %keeps track of current location in header
nextheader_pt = [0 0 0]; %keeps track of next bend in header
Pressure = 50*ones(size header(1),2,1); %Pressure stored as a vector for each
header riser [riser#, 1=cw 2=ccw, pressure vector]
Locationx = zeros (sizeheader(1),2,1); %Location as stored as a vector for
each point pressure is calculated [riser#, 1=cw 2=ccw, location vector]
branchorder = zeros(size header(1),2,inputs); %,[riser#, cw/ccw, branch#]
header 1 = [0 0 0];
header 2 = [0 0 0];
length h = zeros(sizeheader(1),2,inputs);
bends_90_h = zeros(sizeheader(1),2,inputs);
gatevalveh = zeros(sizeheader(1),2,inputs);
dPdX = zeros(size header(1),2,1);

270



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

00999909909909000000009 
00000

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Determine corners in header
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if piping config == 1

%%%%%%%%%%%%%%%%%%%%%%%%
% Note:Only includes fwd most point
% header

header corner = [headerloc s(1,6,1)
headerloc_s(1,6,3);

headerloc_s(sizeheader(1),6,1)
headerloc_s(size header(1),6,3)1;
else

in header and aft most point in

headerloc s(1,6,2)

header loc s(size header(1),6,2)

if piping double config == 1

% Note: Includes four corners of header as well as corners associated
% with cross connects connecting the port and starboard supply
% headers

size header loc s alt = size(headerloc s alt);
headercorner = [headerloc s(1,7,1) headerloc_s(1,7,2)

header_locs(1,7,3);
headerloc_s(1,8,1) headerloc s(1,8,2) headerloc_s(1,8,3);
headerloc_s(2,8,1) headerloc s(2,8,2) headerloc_s (2,8,3);
headerloc_s(2,7,1) headerloc s(2,7,2) headerloc_s(2,7,3);
headerloc_s_alt(sizeheaderloc s_alt(),2,1)

header loc s alt(size header loc s alt(1),2,2)
header_loc_s_alt(sizeheaderloc_s alt(1),2,3);

headerloc s_alt(sizeheader loc_s_alt(1),3,1)
headerloc_s_alt(sizeheader loc_s alt(1),3,2)
header_loc_s_alt(sizeheaderlocs alt(b),3,3);

headerloc_s alt(sizeheader loc_s_alt()-1,3,1)
headerloc_s_alt(sizeheaderloc s alt(1)-l,3,2)
headerloc_s_alt(sizeheaderloc s alt(1)-1,3,3);

header_loc_s_alt(sizeheaderloc_s_alt(1)-1,2,1)
header_loc_s_alt(sizeheaderloc s alt(b)-1,2,2)
header_loc_s_alt(sizeheaderloc_s_alt(1)-1,2,3)]; %in cw order

else

% Note: Icludes the header bends specified by the user as well as the
% corners associated with the cross connects connecting the port
% and starboard supply headers

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end
end
sizeheadercorner = size(header corner); %determines how many corners are in
the header
header loc s x = zeros(1,size header(1));
header_loc s_x_order = zeros(1,sizeheader(1));
headerloc_s_x_index = 1;
dPdXheaderloc_s index = zeros(1,size header(1));

% Determine pressure drop as a function of distance
% Order and determine branch lengths and header segment lengths

271



Center for Ocean Engineering * f Massachusetts institute of Technology
Naval Construction & Engineering Program I E 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering IEEECambridge, Massachusetts 02139-4307

% This section of code only works for double piping simple layout.
% Need to add code to account for other two layouts. Requires too much time
% at the moment. Will come back if time remains, but need to prove rest of
% analysis program with at least one layout beforehand.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=l:size header(1) %each riser section
for n=1:2 %1=cw, 2=ccw

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define variables - reset for each riser section and for cw/ccw
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

dPdX index = 2; %keeps track of next index for Pressure, Location x,
and Location vectors

length h index = 1;
bends 90_h index = 1;
gatevalve_h_index = 1;
headerloc_s_direction_queue rm = 0;
headerloc_s_directionindex = 1;
branch queue rm = 0; %vector used to store index of branches which

are accounted for
branchqueueindex = 1; %integer which increments to keep track of

branch queue rm length
valvequeuerm = 0; %vector used to store index of seg valves in

header which are accounted for
valvequeue index = 1; %integer which increments to keep track of

valvequeue rm length
branchorderindex = 1; %integer which keeps track of index of branch

order matrix
currheader_pt(1) = header loc s(i,6,1); %initialize curr header pt x
currheaderpt(2) = headerloc_s(i,6,2); %initialize curr header-pt y
currheader_pt(3) = headerloc_s(i,6,3); %initialize curr-header-pt z
header_1 = currheader_pt;
for j=1:sizeheadercorner(1)+1 %compute for each segnemt from

current point to next corner for each corner
count = 1; %count number of loops - delete
if n==1 %going cw

% Refine next headerpt depending on which header is
% considered

if j==size header corner(1)+l
nextheaderpt(1)=headerloc_s(i,6,1);
next headerpt(2)=headerloc_s(i,6,2);
nextheaderpt(3)=headerloc_s(i,6,3);

else
if mod(i,2)==1

header cornerindex=j;
else

if j<=4
header corner-index=j+4;

else
header corner-index=j-4;

end
end

272



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

nextheader_pt(l) = header corner(headercornerindex,l);
%initialize nextheaderpt x

nextheaderpt(2) = headercorner(headercornerindex,2);
%initialize nextheaderpt y

nextheaderpt(3) = header corner(headercorner index,3);
%initialize next header pt z

end
else %going ccw

% Refine next header _pt depending on which header is
considered

if j==size header corner(1)+l
nextheaderpt(l)=headerloc_s(i,6,1);
nextheaderpt(2)=headerloc_s (i,6,2);
nextheader pt(3)=headerloc_s(i,6,3);

else
if mod(i,2)==l

header corner index=size header corner(l)+l-j;
%change index from 1->8 to 8->1

else
if j<=4

header corner index=size header corner(l)-j-3;
%change index from 5,6-,7,8,1,2,3,4 to 4,3,2,1,8,7,6,5

else
header corner index=size header corner(l)-j+5;

end
end
nextheaderpt(l) = headercorner(headercorner index,l);

%initialize next header-pt x
next headerpt(2) = headercorner(header cornerindex,2);

%initialize next header-pt y
next header_pt(3) = header corner(headercorner index,3);

%initialize next header pt z
end

end
header-direction = next header pt-curr headerpt; %determine

direction moving in header
flag = true;

% Find next branch or valve between header corners until header
% corner is reached
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

while flag == true %header corner not reached yet
headerdirection(1) = nextheader.pt(l)-curr headerpt(1);

%curr header pt is initially riser location, then updated to current point of
valve or branch

headerdirection(2) = nextheaderpt(2)-curr header_pt(2);
headerdirection(3) = next headerpt(3)-currheader_pt(3);
count = count+1;
if headerdirection(l)>O

direction = 1; %+x
sign=1;

elseif header direction(l)<O

273



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

direction = 2; %-x
sign=-1;

elseif header direction(2)>O
direction = 3; %+y
sign=1;

elseif header direction(2)<0
direction 4; %-y
sign=-1;

elseif header direction(3)>0
direction = 5; %+z
sign=1;

elseif header direction(3)<0
direction = 6; %-z
sign=-1;

else
direction = 7; %no change

end

% Determine which is the closest header
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
closestheaderloc s direction.= sign*[1000 1000 1000];
if i==l && n==1 %determine headerloc_s x values

for q=1:size header(l)
headerloc s direction-flag = 1;
for r=l:max(size(headerloc_s_directionqueuerm))

if q==header loc_s_directionqueue rm(r)
headerloc_s_direction flag = 0; %not in

queue

end
end
header loc s direction = [0 0 0];
headerloc_s_direction(1) = headerloc_s(q,6,1)-

currheader_pt(1);
headerloc_s_direction(2) = headerlocs(q,6,2)-

currheaderpt(2);
headerloc_s_direction(3) = header loc_s(q,6,3)-

currheaderpt (3);
if direction == 1

if headerloc_s_direction(2)==0 &&
headerloc_s_direction(3)==0 && ...

(headerdirection(1)-
headerloc_s_direction(1))>=0 && headerloc s direction(1)>=0 &&
headerloc_s_directionflag==1

if (header direction(1)-
headerloc_s direction(1))>=(header direction(1)-
closest headerloc s_direction(1))

closest headerloc s direction =
headerloc_s direction;

closestheaderloc-s-index = q;
end

end
elseif direction == 2

if headerloc_s direction(2)==0 &&
headerloc_s direction(3)==0 && ...

274



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

(header direction(1) -

header loc s direction(l))<=O && header loc s direction(1)<=O &&
headerlocs direction flag == 1

if (headerdirection(1)-
headerloc s direction(l))<=(headerdirection(1)-
closestheaderloc_s_direction(1))

closestheaderloc_s_direction =

headerloc s direction;
closest headerloc s index = q;

end
end

elseif direction == 3

if headerloc_s_direction(l)==O &&
headerloc s direction(3)==O && ...

(headerdirection(2)-

header loc s direction(2))>=O && header loc s direction(2)>=O &&
headerloc s directionflag == 1

if (headerdirection(2)-
header loc s direction(2))>=(headerdirection(2)-
closestheaderloc_s_direction(2))

closestheaderloc_s_direction =

header loc s direction;
closest header loc s index = q;

end
end

elseif direction == 4
if header loc s direction(l)==O &&

headerloc s direction(3)==O && ...
(headerdirection(2)-

headerloc s direction(2))<=O && headerloc_s direction(2)<=O &&
headerloc s direction flag == 1

if (headerdirection(2)-
headerloc s direction(2))<=(headerdirection(2)-
closestheaderloc_s_direction(2))

closestheaderloc_s_direction =

headerloc s direction;
closest headerloc s index = q;

end
end

elseif direction == 5
if headerlocs direction(l)==O &&

headerloc_s_direction(2)==O && ...
(header direction(3)-

header loc_s_direction(3))>=O && headerloc_s_direction(3)>=O &&
headerloc s direction flag == 1

if (headerdirection(3)-

headerloc_s_direction(3) ) >=(headerdirection(3) -

closestheaderloc_s_direction(3))
closestheaderloc_s_direction =

headerlocs_direction;
closest headerlocs index.= q;

end
end

elseif direction == 6

275



Center for Ocean Engineering * Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

if headerloc_s direction(1)==0 &&
headerloc_s_direction(2)==0 && ...

(headerdirection(3)-
header loc_s_direction(3))<=0 && headerloc_s_direction(3)<=0 &&
headerloc_s_directionflag == 1

if (header direction(3)-
headerloc_s_direction(3))<=(headerdirection(3)-
closest headerloc s direction(3))

closest headerlocs direction =

headerloc_s_direction;

closestheader loc s index q;
end

end
end

end
end

% Determine which is the closest branch

closest branch direction = sign*[1000 1000 1000];
for k=1:inputs

branchflag = 1;
for m=l:max(size(branch queue rm))

if k==branch queue rm(m)
branch_flag 0; %not in queue

end
end
branchdirection = [0 0 01;
branchdirection(1) = branch loc(1,1,1,k)-

currheader_pt(1);
branch direction(2) = branchloc(1,1,2,k)-

currheader pt (2);
branch direction(3) = branch loc(1,1,3,k)-

curr-header_pt(3);
if direction == 1

if branch direction(2)==0 && branchdirection(3)==0
&& (header direction(1)-branch direction(1))>=0 && branch direction(1)>=0 &&
branchflag == 1

if (headerdirection(1)-
branch direction(1))>=(headerdirection(1)-closestbranchdirection(1))

closestbranchdirection = branch-direction;
closestbranch index = k;

end
end

elseif direction == 2
if branchdirection(2)==0 && branchdirection(3)==0

&& (headerdirection(1)-branchdirection(1))<=0 && branchdirection(1)<=0 &&
branch-flag == 1

if (headerdirection(1)-
branch direction(1) ) <=(headerdirection (1)-closestbranch direction(1))

closestbranchdirection = branchdirection;
closest branch index = k;

end
end

276



Center for Ocean Engineering * o Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

elseif direction 3
if branch direction(l)==0 && branch direction(3)==0

&& (headerdirection(2)-branchdirection(2))>=0 && branchdirection(2)>=0 &&

branchflag == 1
if (headerdirection(2)-

branch direction(2) ) >= (header direction(2) -closestbranch direction(2))
closestbranchdirection = branch-direction;
closestbranch index = k;

end
end

elseif direction == 4
if branchdirection(l)==0 && branchdirection(3)==0

&& (headerdirection(2)-branchdirection(2))<=0 && branchdirection(2)<=0 &&
branchflag == 1

if (headerdirection(2)-

branch direction(2))<=(header direction(2)-closestbranchdirection(2))
closestbranchdirection = branch-direction;
closest branch index = k;

end
end

elseif direction == 5
if branchdirection(l)==0 && branchdirection(2)==0

&& (headerdirection(3)-branchdirection(3))>=0 && branch direction(3)>=0 &&
branch-flag == 1

if (header direction(3)-

branch direction(3))>=(header direction(3)-closestbranch direction(3))
closestbranch direction = branchdirection;
closestbranchindex = k;

end
end

elseif direction == 6
if branchdirection(l)==0 && branchdirection(2)==0

&& (headerdirection(3)-branchdirection(3))<=0 && branchdirection(3)<=0 &&
branchflag == 1

if (header direction(3)-

branch direction(3))<=(header direction(3)-closestbranchdirection(3))
closest branchdirection = branch-direction;
closest branch index =k;

end
end

else
end

end

% Determine which is the closest valve

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

closest valve direction = sign*[1000 1000 1000];
valvedirection = [0 0 0];

for k=l:sizeseg_valveloc(l)
valveflag = 1;
for m=1:max(size(valve queue rm))

if k==valve_queuerm(m)
valveflag = 0; %not in queue

end

277



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

end
valvedirection(1) = segvalveloc(k,1)-

curr headerpt (1);
valvedirection(2) = seg_valve loc(k,2)-

currheader_pt(2);
valve direction(3) = seg_valveloc(k,3)-

curr header_pt(3);
if direction == 1

if valve direction(2)==0 && valve direction(3)==0 &&
(headerdirection(1)-valvedirection(l))>=0 && valvedirection(1)>=0 &&
valve fla'g == 1

if (header direction'(1)-
valve direction(1))>=(headerdirection(1)-closestvalve direction(1))

closestvalvedirection = valve direction;
closestvalve index = k;

end
end

elseif direction == 2
if valvedirection(2)==O && valvedirection(3)==0 &&

(headerdirection(l)-valvedirection(1))<=0 && valvedirection(1)<=0 &&
valveflag == 1

if (headerdirection (1) -
valve direction(1))<=(headerdirection(1)-closestvalvedirection(1))

closestvalvedirection = valve-direction;
closestvalve index = k;

end
end

elseif direction == 3
if valvedirection(1)==0 && valvedirection(3)==0 &&

(headerdirection(2)-valvedirection(2))>=0 && valve direction(2)>=0 &&
valve-flag == 1

if (header direction(2)-
valve direction(2))>=(headerdirection(2)-closestvalvedirection(2))

closestvalve direction = valvedirection;
closest valve index = k;

end
end

elseif direction == 4
if valve direction(1)==0 && valve direction(3)==0 &&

(headerdirection(2)-valvedirection(2))<=0 && valve-direction(2)<=0 &&
valveflag == 1

if (headerdirection(2)-
valve direction(2))<=(headerdirection(2)-closestvalvedirection(2))

closestvalvedirection = valve-direction;
closestvalve index = k;

end
end

elseif direction == 5
if valve direction(1)==0 && valvedirection(2)==0 &&

(headerdirection(3)-valvedirection(3))>=0 && valvedirection(3)>=0 &&
valveflag == 1

if (header direction(3),-
valve direction(3))>=(headerdirection(3)-closestvalvedirection(3))

closestvalvedirection = valve-direction;
closestvalve index = k;

278



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Departnent of Mechanical Engineering Cambridge, Massachusetts 02139-4307

end
end

elseif direction == 6
if valvedirection(1)==O && valvedirection(2)==O &&

(headerdirection(3)-valvedirection(3))<=O && valvedirection(3)<=O &&

valveflag == 1
if (header direction(3)-

valvedirection(3))<=(headerdirection(3)-closestvalvedirection(3))
closestvalvedirection = valve direction;
closest valve index = k;

end
end

else
fprintf('Error with pipe geometry!!!\n') %Something

went wrong - Points not orthogonal???

end
end

% Is there a branch or a valve within the remaining segment

of
% header?

if (closest valve direction(l) == sign*1000 &&
closestvalve direction(2) == sign*1000 && closestvalvedirection(3)
sign*1000 ...

&& closest branch direction(1) == sign*1000 &&
closestbranchdirection(2) == sign*1000 && closestbranchdirection(3)
sign*1000) %account for riser later

currheaderpt = nextheaderpt;
flag = false;
count_5 = count_5+1;

% Add location x right before bend, increment
% dPdX index, define dPdX attributed to friction
% add locationx right at bend, increment
% dPdX index, define dPdX attributed to bend friction

if n==1 %going cw location x propogates positively
Location_x (i,n,dPdXindex) =

Locationx(i,n,dPdXindex-1)+sum(abs(headerdirection)); %Point right before
bend

else %going ccw locationx propogates negatively
Location_x (i,n,dPdXindex)

Locationx(i,n,dPdXindex-1)-sum(abs(headerdirection)); %Point right before
bend

end
dPdX(i,n,dPdX index) = 1;%friction
dPdXindex = dPdXindex+1;
Location_x (i,n,dPdXindex) = Location x(i,n,dPdX index-

1)+0; %Point right after bend
dPdX(i,n,dPdX index) = 4; %bend friction
dPdX index = dPdX index+1;

279



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Account for pressure due to changes in height
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Pressureheight_h(i,n,dPdXindex-2) -

62.31/144*headerdirection(3) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Determine bends in branches
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if bends 90 h index<=inputs
bends_90_h(i,n,bends_90_h_index) =

bends_90_h(i,bends_90_h_index)+l;

end
else

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Determine if next object is a branch or a bend or
% a riser
0%%%%%%%%%%%%%%%%%%%%~%%%%%%%
if ((direction == 1 && (closestbranch direction(l) <

closestvalvedirection(l)) && (closestbranch direction(l) <
closestheaderloc s direction(1))) II ...

(direction == 2 && (closest branch direction(1) >
closestvalvedirection(1)) && (closest branchdirection(1) >
closestheaderloc_s_direction(1)))II...

(direction == 3 && (closestbranchdirection(2) <
closestvalvedirection(2)) && (closestbranchdirection(2) <
closestheaderloc_s_direction(2)))|H...

(direction == 4 && (closestbranchdirection(2) >
closest valve direction(2)) && (closestbranch direction(2) >
closestheaderloc_s_direction(2))) ...

(direction == 5 && (closestbranchdirection(3) <
closestvalvedirection(3)) && (closest branchdirection(3) <
closest headerloc_s_direction(3)))II...

(direction == 6 && (closestbranchdirection(3) >
closest valve direction(3)) && (closest branch direction(3) >
closestheaderloc_s_direction(3)))) %branch is next closest object

%%%%%%%%%%%%% %C%%%%%%%%%%

% Keep track of branch order by index
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
branch order(i,n,branch order index) =

closestbranchindex; %matrix which keeps track of branch order in cw
direction for each header

branch order-index = branch order index + 1;
%increment branch orderindex

% Add locationx right before branch, increment
% dPdX index, define dPdX attributed to friction
% add locationx right at branch, increment
% dPdX index, define dPdX attributed to entrance
% effects
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%C~

280



Center for Ocean Engineering M U Massachusetts Institute of Technology
Naval Construction & Engineering Program * * 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

if n==l %going cw
Location x(i,n,dPdX index) =

Locationx(i,n,dPdXindex-1)+sum(abs(closestbranch direction)); %Point right

before branch
else %going ccw

Location x(i,n,dPdX index)

Locationx(i,n,dPdXindex-)-sum(abs(closestbranchdirection)); %Point right

before branch
end
dPdX(i,n,dPdX index) = 1;%friction
dPdXindex = dPdXindex+1;
Location_x (i,n,dPdX index) =

Location_x(i,n,dPdXindex-1)+0; %Point right after branch
dPdX(i,n,dPdX index) = 2;%entrance effect
dPdXindex = dPdXindex+l;

% Account for pressure due to changes in height

Pressureheighth(i,n,dPdXindex) = -

62.31/144*closestbranchdirection(3);

% Redefine variable values

closest direction = closest branch direction;
currheaderpt =

branchloc(1,1, :,closestbranchindex);
branchqueuerm(branchqueue index) =

closestbranch index;
test (closestbranchindex) = 0;
branchqueueindex = branch queue index+l;

% Get header length

header 2 = curr header pt;
if flag == true

length_h(i,n,length_h index) = sqrt((header_2(1)-

header_1(1))^2+(header_2(2)-header_1(2))^2+(header_2(3)-header_1(3))A2);
else

flag = true;
length_h index=length_h_index-1;
lengthh(i,n,length_hindex) =

lengthh(i,n,length h index)+sqrt((header_2(l)-header_1(1))^2+(header_2(2)-
header_1(2) ) ^2+(header_2(3)-header1(3))^2);

end
length_hindex=length_hindex+l;
header 1=header 2;
bends 90 h index = bends 90 h index+l;
gate valve_h_index = gate valve_h_index+l;

elseif ((direction == 1 && closest valve direction(l) <
closestheader loc s direction(l)) If...

281



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

(direction = 2 && closest valve direction(1) >
closest header loc s direction(1))| ...

(direction 3 && closestvalve direction(2) <
closestheaderloc s direction(2)) I1...

(direction 4 && closest.valve direction(2) >
closestheaderloc s direction(2)) I...

(direction == 5 && closestvalve direction(3) <
closestheaderloc s direction(3))1|...

(direction 6 && closestvalvedirection(3) >
closestheaderloc s direction(3))) %branch is next closest object

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Add locationx right before valve, increment
% dPdX index, define dPdX attributed to friction
% add locationx right at valve, increment
% dPdXindex, define dPdX attributed to valve

friction

%%%%%%%%%%%%%%%%%%%%%,I%%%%%%%%

if n==1 %cw
Locationx(i,n,dPdXindex)

Location_x(i,n,dPdXindex-1)+sum(abs(closestvalvedirection)); %Point right
before valve

else %ccw
Location x(i,n,dPdX index) =

Location_x (i, n, dPdXindex-1) -sum (abs (closest valvedirection)); %Point right
before valve

end
dPdX(i,n,dPdX index) = 1;%friction
dPdXindex = dPdX index+1;
Locationx(i,n,dPdXindex) =

Location_x(i,n,dPdXindex-1)+0; %Point right after valve
dPdX(i,n,dPdX index) = 3; %valve friction
dPdXindex = cPdX index+1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Account for pressure due to changes in height
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Pressureheight h(i,n,dPdX index-2) = -
62.31/144*closest valvedirection(3);

% Redefine variable values

closest direction = closest valve direction;
currheaderpt =

segvalveloc(closestvalveindex,:);

valve_queuerm(valvequeueindex)
closest valve index;

valvequeueindex = valve_queue index+l;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Determine index of valve locations in header
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if gate_valve-h-index<=inputs

282

... ....... ...... ...



Center for Ocean Engineering u Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

gate valve h(in,bends_90 h index) =

gate valve h(i,n,gate valve h index)+l;
end

elseif i==1 %header riser next object
header loc s_x(header loc_s_x_index)

Location_x(1,1,dPdXindex-1)+sum(abs(closest_headerloc_s_direction));
headerlocs_x_order(headerloc_s_x_index) =

closest headerloc s index;
header loc sdirection queue rm(header loc_ s xindex)

= closestheaderloc_s_index;
dPdX headerloc s index(header loc s x index) =

dPdXindex-1;
headerloc_s_x index = headerloc_s x index+1;

end
end
if count > 190

flag = false;
forceescape = true;

end
end %while

end %for j=l:sizeheader-corner(1)
end %for n=1:2

end %for i=l:size header(l)

Step 4: Refining branch velocities and mass flow rates using network

analysis accounting for bends, friction, and valves

Calculate mfr total

mfr total = 0;
for i=1:inputs

mfrtotal = mfrtotal + massflowrateb(i);
end
V SI h = 0;

% Calculate area b unordered, Q total

area b unordered = zeros(1,inputs);
D_SI_ b_unordered = DSI b;
Q_total = 0;
for i=1:inputs

area_b_unordered(i) = pi()/4*DSI_b_unordered(i) A2;
Q_total = Q_total + Q(i);

-end

% Calculate D h, D SI h

D h = 1.1*((4*K*Q total/C/pi()*0.133680556/60/.2931/12000/12^0.5)A0.4)*12;
%in inches

DSI h = D h/12/ftper m; %diameter in meters

283



Center for Ocean Engineering * l Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

% Determine header thickness (thickness h) and actual diameter (DSI h)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if (Class type == 1 && Copper type == 1)
if DSI h < Innerdiamsclass_200_SI(1)

DSIh = Innerdiams_class_200_SI(l);
end
for j = 2:max(size(Innerdiamsclass_200_SI))

if ( (D SI h < Inner diams class_200_SI(j)) && (DSI h >
Inner diamsclass_200_SI(j-1))) -

D_SIh = Innerdiamsclass_200_SI(j);
thickness h = Thickness class_200_SI(j);

end
end
if D SIh > Innerdiamsclass_200_SI(max(size(Innerdiamsclass_200_SI)))

_ SI h =
Innerdiamsclass_200_SI(max(size(Innerdiamsclass_200_SI)));

thickness h -

Thicknessclass_200_SI(max(size(Innerdiamsclass_200_SI)));
end

elseif (Class-type == 1 && Coppertype == 2)
if DSIh < Innerdiamsclass_200_IISI(1)

DSI h = Innerdiams_class_200_IISI(1);
end
for j = 2:max(size(Innerdiamsclass_200_II_SI))

if ((D SI h < Inner diams class_200_IISI(j)) && (DSI h >
Innerdiamsclass_200_II_SI(j-1)))

D_SIh = Innerdiams class_200_IISI(j);
thickness h = Thicknessclass_200_II_SI(j);

end
end
if D SI h >

Inner diams class 200 II SI(max(size(Inner diams class 200 II SI)))
D SI h =

Innerdiamsclass_200_II_SI(max(size(Innerdiamsclass_200_IISI)));
thicknessh -

Thicknessclass_200_IISI(max(size(Innerdiams class_200_IISI)));
end

elseif (Classtype == 2 && Copper_type == 1)
if D SIh < Innerdiamsclass_700_SI(1)

D SI h = Inner diams class_700_SI(1);
end
for j = 2:max(size(Innerdiamsclass_700_SI))

if ((DSIh < Innerdiams_class_700_SI(j)) && (DSIh >
Innerdiamsclass_700_SI(j-1)))

DSIh = Innerdiams_class_700_SI(j);
thickness h = Thicknessclass_700_SI(j);

end
end
if DSI h > Inner diamsclass_700_SI(max(size(Inner diamsclass_700_SI)))

D SI h =
Innerdiams_class_700_SI(max(size(Innerdiamsclass_700_SI)));

thicknessh -

Thicknessclass_700_SI(max(size(Innerdiams class_700_SI)));
end

elseif (Classtype == 3 && Copper_type == 1)

284



Center for Ocean Engineering * u Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering U Cambridge, Massachusetts 02139-4307

if DSIh < Innerdiamsclass_1650_SI(1)
D_SIh = Innerdiams_class_1650_SI(1);

end
for j = 2:max(size(Innerdiamsclass_1650 SI))

if ((DSIh < Innerdiamsclass_1650_SI(j)) && (DSI h >
Innerdiamsclass_1650_SI(j-1)))

D SI h = Inner diamsclass_1650_SI(j);
thickness h = Thickness class_1650 SI(j);

end
end
if D SI h >

Inner diams class 1650_SI(max(size(Inner diams class1650SI)))
D SI h =

Inner diams class_1650_SI(max(size(Innerdiams class_1650_SI)));
thicknessh =

Thicknessclass_1650_SI(max(size(Innerdiamsclass_1650_SI)));
end

elseif (Classtype == 4 && Coppertype == 1)
if DSIh < Innerdiamsclass_3300_SI(1)

D_SIh = Innerdiams class_3300_SI(1);
end
for j = 2:max(size(Innerdiamsclass_3300_SI))

if ((DSIh < Innerdiams_class_3300_SI(j)) && (DSI h >
Innerdiams class_3300_SI(j-1)))

D_SIh = Innerdiams_class_3300_SI(j);
thickness h = Thickness class 3300_SI(j);

end
end
if D SI h >

Inner diams class 3300_SI(max(size(Inner diams class3300SI)))
D SI h =

Innerdiamsclass_3300 SI(max(size(Inner diamsclass_3300_SI)));
thickness h =

Thicknessclass_3300_SI(max(size(Innerdiamsclass_3300_SI)));
end

elseif (Classtype == 5 && Coppertype == 1)
if DSIh < Innerdiamsclass_6000_SI(1)

D_SIh = Innerdiamsclass_6000_SI(1);
end
for j = 2:max(size(Inner diams class 6000 SI))

if ((DSI h < Innerdiams_class_6000_SI(j)) && (D_SIh >
Innerdiamsclass_6000_SI(j-1)))

D SI h = Innerdiamsclass_6000_SI(j);
thickness h = Thicknessclass 6000_SI(j);

end
end
if D SI h >

Inner diams class 6000_SI(max(size(Inner diams class6000SI)))
D SI h =

innerdiamsclass_6000_SI(max(size(Innerdiamsclass_6000_SI)));
thickness h =

Thicknessclass_6000_SI(max(size(Inner diams class_6000_SI)));
end

end

285



Center for Ocean Engineering HE oUMassachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Resize V SI b
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

VSI b tempunordered = zeros(l,inputs);
V_SI_b_unordered = V_SIb;
for i=1:inputs

V_SI_b_t empunordered(i) = VSI b unordered(i);
end
clear V SI b unordered;
V_SI_b_unordered = zeros(sizeheader(1),2,inputs);
for m=1:sizeheader(1)

for n=1:2
for i=l:inputs

V_SI_b_unordered(m,n,i) = VSIb-temp unordered(i);
end

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Order Q, length b, D SI b, and area b ordered
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Q ordered = zeros(size header(1),2,inputs);
length_b_ordered = zeros(2,sizeheader(1),2,inputs);
D_SI_b_ordered = zeros(sizeheader(l),2,inputs);
area_b_ordered = zeros(sizeheader(1),2,inputs);
for m=1:sizeheader(l)

for n=1:2
for i=l:inputs

Q_ordered(m,n,i) = Q(branchorder(m,n,i));
D_ST _b_ordered(m,n,i) = D_SI_b(branch order(m,n,i));
for j=1:2

length_b_ordered (j, m, n, i) = length b (j, branchorder (m, n, i));
%double check mode 2

end
area b ordered(m,n,i) = area b unordered(branch order(m,n,i));

end
end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Recalculate area h with new DSI h
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

areah = pi(*(DSIh/2)^2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Initialize variables
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
velocitydelta = 10*ones(size header(1),2);
velocityold = zeros(sizeheader(l),2);
r_d = 3*ones(sizeheader(l),2,inputs); %assume r/d=3

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Initialize unordered variables
0%0%%%%%%%00%%%%00%0% 00%0%%%%%%%%%%% 9.9

286



Center for Ocean Engineering Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

length_b_unordered = length b;
K loss hx b unordered = zeros(size header(1),2,inputs);
f_b_unordered = zeros(sizeheader(l),2,inputs);
K_loss_b_unordered = zeros (sizeheader(l),2,inputs);
K_loss friction_b_unordered = zeros(sizeheader(1),2,inputs);
K_lossbend_90_b_unordered zeros(sizeheader(l),2,inputs);
K_loss_gate_b_unordered = zeros (sizeheader(l),2,inputs);
K_lossglobe_b_unordered = zeros(sizeheader(l),2,inputs);

%%% %% %% %%%% % %% % % % % %%,%%%%% %

% Initialize ordered variables

length_h_ordered = length_h;
V_SI_h_ordered = 1.5*ones(size header(l),2,inputs); %initial guess at header
velocities

K loss h ordered = zeros(sizeheader(1),2,inputs);
K_loss friction_h_ordered = zeros(sizeheader(1),2,inputs);
K loss bend_90_h ordered = zeros(size header(1),2,inputs);
K_lossgateh_ordered = zeros(sizeheader(l),2,inputs);
K_lossglobe-h_ordered = zeros(size header(l),2,inputs);
K_losscheck_h_ordered zeros(sizeheader(l),2,inputs);
f_h_ordered = zeros(sizeheader(l),2,inputs);
K loss rhordered = zeros(sizeheader(l),2,inputs);
K'loss frictionrhordered = zeros(sizeheader(l),2,inputs);
K loss bend 90 rh ordered = zeros(size header(1),2,inputs);
K lossgaterhordered zeros(sizeheader(l),2,inputs);
K lossgloberhordered = zeros(sizeheader(l),2,inputs);
K h_A h_2 = zeros (sizeheader (1), 2, inputs) ;
K b_A b_2 = zeros (sizeheader (1), 2, inputs) ;
KA_eq = zeros (sizeheader (1) ,2, inputs) ;
VSI_b_ordered = zeros(sizeheader(l),2,inputs);
K loss b ordered = zeros(size header (1) ,2, inputs);
mfr_h_ordered = zeros(sizeheader(1),2,inputs);
mfr_b_ordered = zeros(sizeheader(l),2,inputs);
V_b_ordered = zeros(sizeheader (1),2,inputs);
V_h_ordered = zeros(sizeheader(l),2,inputs);
hc_b ordered = zeros(sizeheader(l),2,inputs);
Thot b_ordered = zeros (sizeheader (1) ,2, inputs);
Tave b ordered = zeros(size header(l),2,inputs);
Ti_b_ordered = zeros (sizeheader (1) ,2,,inputs) ;
Q_per _1ordered = zeros(size header(1),2,inputs);
T2_b_ordered = zeros(sizeheader(1),2,inputs);
Telec_b_aveordered = zeros(sizeheader (1) ,2, inputs);
delta_T_secordered = zeros(sizeheader(1),2,inputs);
Telec b inordered = zeros(sizeheader(1),2,inputs);
Telec b ordered = zeros (size header(1),2,inputs);

for m=1:size header(1)
for n=1:2

velocity_old(m,n) = VSI b unordered(m,n,branch order(m,n,i));
end

end

for m=1:size header(1)

287



Center for Ocean Engineering * U Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering U Cambridge, Massachusetts 02139-4307

for n=l:2

% Perform loop until difference in previously and current velocity is
% negligible, i.e., the velocity converges
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

while velocitydelta(m,n) > 10^-8

% Determine K loss hx b unordered
%%%%%%%%%%%%%%0%%%%%%%%%%%%%%
for i=1:inputs

velocity_fraction = 0; %determine velocity within hxchgr and
scale accordingly

K_loss_hx_b_unordered(m,n,i) =

hxchgrhl(i)*2*gmps2/1.3716^2; %guess headloss of 0.06m per lkW, velocity of
4.5ft/s=1.3716m/s and subsequent K loss hx b

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate K loss b due to friction, bends, valves

for i=1:inputs
f_b_unordered(m,n,i) =

friction factor(D_SI b_unordered(i),V_SI_b_unordered(m,n,i),k,nu,epsilon,rho,
cp);

K_lossfriction_b_unordered(m,n,i)=f_b_unordered(m,n,i)*length b unordered(l,
i)/DSI_b_unordered(i); %due to pipe length

K_loss_bend_90 b_ unordered(m,n,i)
bends_90_b (1,i)*(f b_unordered(m,n,i)*pi()/2*r d(i)+(0.10+2.4*f b unordered(m
,n,i))*sin(pi()/4) ...

+6.6*f_b_unordered(m,n,i)*((sin(pi(/4))^0.5+sin(pi(/4))/r_d(i)^(4*pi()/2/pi
())); %due to 90 bends

K_loss_gate_b_unordered (m, n, i) = gatevalve_b (i) *0. 2; %due to
gate valves

K lossglobe_b_unordered(m,n,i) = globevalve b(i)*3.5; %due
to globe valves

K_loss_b_unordered(m,n,i) =

K_lossfriction_b_unordered(m,n,i)+K_lossbend_90_b_unordered(m,n,i)+...

K_loss_gate_b_unordered(m,n,i)+Kloss_globe_b unordered(m,n,i)+K loss hx b un
ordered(i);

end

% Calculate K loss h due to friction, bends, valves

for i=l:inputs

f_h_ordered(m,n,i)=frictionfactor(DSI h,VSI h ordered(m,n,i),k,nu,epsilon,
rho, cp);

288



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering I'Iir Massachusetts Institute of Technology

77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

K_loss_ friction _h_ordered(m,n, i)=f_h_ordered(m,n, i) *length_h_ordered(m,n, i) /D

_SI h; %due to pipe length based on first branch Darcy friction factor
K_lossbend_90_ h ordered(m,n,i) =

bends_90_h(m,n,i)*(f_h ordered(m,n,i)*pi(/2*rd(i)+(0.10+2.4*f h ordered(m,n

, i)) *Sin (pi () /4) ...

+6.6*f_h_ordered(m,n,i)*((sin(pi(/4))^0.5+sin(pi(/4))/rd(m,n,i)^(4*pi()/2/

pi())); %due to 90 bends
K_los s_gate_h_ordered(m,-n,i) = gatevalve h(m,n,i)*0.2;

% K loss globe h(i) = globe valve h(i)*3.5; %no globe valves
considered

considered
K loss check h(i) check valve h(i)*2; %no check valves

K_loss_h_ordered(m,n,i) =
K_loss friction_h_ordered(m,n,i)+Kloss bend_90_h ordered(m,n,i)+Kloss_gate
h ordered(m,n,i);%+ ...

K_loss_ globeh (i)+K loss check h(i);
end

pipe length

bends 90 rh

Calculate K loss rh due to friction, bends, valves

for i=l:inputs
% K _ loss friction rh (i)=f b(1)l*length rh(i)/DSI h;

based on first branch Darcy friction factor
% K loss bend 90 rh(i) =

(i) * (f b (1) * io()/2*r d (i) +(0 .10+2. 4*f _b (1))*sin (pio()/4 )

+6.6*f b(l)*((sin(pio/4))^0.5+sin(pi()/4))/r d(i)^(4*pi()/2/pi()
90 bends

); %due to

% K loss gate rh(i) gate valve rh(i)*0.2;

% K loss globe rh(i) globe valve rh(i)*3.5;

% K loss rh(i) =
K loss friction rh(i)+K loss bend 90 rh(i)+K loss gate rh(i)+K loss globe rh(

i);

K_los s_rhordered(m,n,i) = K_loss_h_ordered(m,n,i); % assume same
loss coefficient for supply and return header segments

end

% Calculate K b/A b^2 and K h/A h^2 for branches

for i=l:inputs
order = branch order(m,n,i);
K h A h 2(m,n,i) =

(Kloss_h_ordered(m,n,i)+Klossrhordered(m,n,i))/areah^2;
K_loss_b_ordered(m,n,i) = Kloss_b_unordered(m,n,order);
K_ b _A_b_2(m,n,i) -

K loss_b_ordered(m,n,i)/(area_b_ordered(m,n,i) )^2;
end

% Calculate K A eq

289

%due to



Center for Ocean Engineering Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

%%%%%%%%%%%%%%l%~%%%%%%%%%%
for i=inputs:-1:1

if i==inputs
K_A _eq(m,n,i)=K bA b_2(m,n,i);

else
K_A_eq(m,n,i) =

(1/(1/K_bA b_2(m,n,i)A^0.5+1/(K_A_eq(m,n,i+1)+K_h_A_h_2(m,n,i+1)) AO.5) )A 2;
end

end

% Initialize variables
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mfr left = mfr total;

% Determine branch and header velocities
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:inputs
order = branchorder(m,n,i);
mfr_h_ordered(m,n,i) = mfrleft;
mfr_b_ordered (m, n, i) =

mfr left*(KA-eq(m,n, i)/K b_A_b_2(m,n,i) )A0 .5;
mfr left = mfr left - mfr bordered(m,n,i);
if i == inputs

velocity_old(m,n) = VSI_b_ordered(m,n,i);
end
V_SI_b_ordered(m,n,i) =

mfr_b_ordered(m,n,i)/rho/area_b_ordered(m,n,i);
V b_ordered(mn,i) = V SI b_ordered(m,n,i)*ft per_ m;
VSI_h_ordered(m,n,i) =mfr h ordered(m, n,i)/rho/area h;
V_h_ordered(m,n,i) = VSI h_ordered(m,n,i)*ftperm;
if i == inputs

velocity_delta(m,n) = abs(VSI_b_ordered(m,n,i)-
velocityold(m,n));

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate temperatures

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:inputs
order = branchorder(m,n,i);
hcb_ordered (m, n, i) =

calchc(D_SI_b_ordered(m,n,i),V_SI b_ordered(m,n,i),k,nu,rho,cp);
Thot_b_ordered(m,n,i) =

Q_ordered(m,n,i)/(mfr_b_ordered(m,n,i)*cp)+Tcold; %Celsius
Tave_b_ordered(m,n,i) = (Tcold+Thot b_ordered(m,n,i))/2;
Ti_b_ordered(m,n,i) = Tave_b_ordered(m,n,i) +

Q_ordered(m,n,i)*(hxchgrareapri(order)*0.0001*hc_b_ordered(m,n,i))^-1;
%Inner wall temp

if strcmp(Hxchgr_Type(order),'fp')

290



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

T2_b_ordered(m,n,i) = Tib ordered(m,n,i) +
Q_ordered(m,n,i)*hxchgrplatethick(order)/100*(hxchgrareapri(order)*0.0001
*hxchgr platek(order))^A-1; %Inner wall temp

else
Q_per_l__ordered(m,n,i) =

Q_ordered(m,n,i) *hxchgr_tubediam(order)*pi()/100/(hxchgrarea_pri(order)*0.0
001);

T2_b_ordered(m,n,i) = Ti b_ordered(m,n,i) +
Q_per_1_ordered(m,n,i)*log((hxchgr tubediam(order)/2+hxchgrtubethick(order
)/(hxchgrtubediam (order) /2) )/(2*pi () *kcopper) ; %Outer wall temp

end
Telec b aveordered(m,n,i) = (T2_b_ordered(m,n,i) +

Q ordered(m,n,i)/(hxchgr area sec(order)*0.0001*hxchgr-hc(order)));
%Electrical component temp

delta_T secordered(m,n,i) =

Q_ordered(m, n,i) /hxchgrfluidmfr (order) /hxchgrcp(order);
Telec_b_inordered(m,n,i) =

Telec b_ave ordered(m,n,i)+delta_T secordered(m,n,i)/2;
Telec_b_ordered(m,n,i) = Telec b ave ordered(m,n,i)-

delta T sec ordered(m,n,i)/2;
end

end

Display refined velocities, etc.

fprintf('Second Step: Refined Velocities\n')
for i=l:inputs

fprintf('Load: %2.Of %2.Of %3.Of Q(W): %10.4f
%6.5f Velocity(m/sec): %6.4f Mass flow rate(kg/s): %6.4f
Telec(C): %8.4f\n' ...

,m, n, i, Qordered(m,n,i), DSI_b_ordered
, V_SI_b_ordered(m,n,i) ,mfr_b_ordered(m,n,i), Thot b_order
Telec_b_ordered(m,n,i))

end
end

end

% Determine least and greatest branch velo

lowest vel = 10000*ones(size header(1),2);
greatestvel = zeros(size header(1),2);
for m=l:size header(l)

for n=1:2
for

Diameter(m):

Thot(C): %7.4f

(m,n, i)
ed (m, n, i),

cities

i=1: inputs
%lowest index = 1;

%greatest index = 1;
if VSI_b ordered(m,n,i)<lowestvel(m,n)

lowestvel(m,n) = V_SI_b_ordered(m,n,i);
%lowest index = i;

elseif V SI b ordered(m,n,i)>greatest vel(m,n)
greatestvel(m,n) = VSI b_ordered(m,n,i);
%greatest-index = i;

end

291



Center for Ocean Engineering 11 Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

end
end

end
lowestvel
greatestvel

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define V SI b 2 and VSI h_1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
VSI b 2 = zeros(1,inputs);
V SI h 1 = zeros(1,inputs);
for i=l:inputs

V_SI_b_2 (i) = VSI_b ordered(1,1,i);
V_SI_h_1 (i) = VSI_h ordered(1,1,i);

end

%% Step 5: Account for entrance, exit effects with refined velocities,
K loss, f b, f h for each riser going cw and ccw

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Initialize variables
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

K_lossentrance b ordered = zeros(size header(1),2,inputs);
K_lossexit_b_ordered = zeros(sizeheader(l),2,inputs);
K loss b inordered = zeros (size header(1),2,inputs);
r_d3 = 0.1;
K_lossentrance_h_ordered = zeros(sizeheader(1),2,inputs);
K_lossexit_h_ordered = zeros(sizeheader(l),2,inputs);
K_lossentrancerhordered = zeros(sizeheader(1),2,inputs);
K lossexit_ rhordered = zeros(sizeheader(1),2,inputs);
f_b_ordered = zeros(sizeheader(1),2,inputs);
K_loss friction b ordered = zeros(size header(1),2,inputs);
K lossbend_90_b_ordered zeros(sizeheader(1),2,inputs);
K loss gate b ordered = zeros(size header(1),2,inputs);
K lossglobe_b_ordered = zeros (sizeheader (1) ,2, inputs);
K loss_b_ordered = zeros(sizeheader(1),2,inputs);

for m=1:size header(1)
for n=1:2

velocity delta(m,n) = 10;
velocity old(m,n) = V_SI_b_ordered(m,n,inputs);
counter = 0;

% Refine velocities

while counter<10% (velocity delta(m,n) > 0.000001)
counter = counter+1;

% Calculate loss coefficient for branches due to friction, bends,
% valves, entrance and exit effects (in order wrt header)

for i=1:inputs

292



Center for Ocean Engineering * Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

order = branchorder(m,n,i);
f b ordered(m,n,i) =

friction_factor(DSI_b_ordered(m,n,i),V_SI_b_ordered(m,n,i) ,k,nu,epsilon,rho,

cp);

K_lossfriction_b_ordered(m,n,i)=f_b_ordered(m,n,i)*length_b ordered(l,m,n,i)

/D_SI_ bordered(m,n,i); %due to pipe length
K loss bend 90 b ordered(m,n,i)

bends_90_b(l,order)*(f-b_ordered(m,n,i)*pi()/2*rd(m,n,i)+(0.10+2.4*f_b-order

ed (m, n, i) )*sin (pi () /4) ...

+6.6*f_b_ordered(m,n,i)*((sin(pi()/4))^0.5+sin(pi()/4))/r_d(m,n, i)A (4*pi()/2/

pi()); %due to 90 bends

K_lossgate-b_ordered(m,n,i) = gate_valveb(order)*0.2; %due
to gate valves

K loss globe b ordered(m,n,i) = globevalve b(order)*3.5;
%due to globe valves

K_loss_b _ordered(m,n,i)
K_loss friction_b_ordered(m,n,i)+Klossbend_90_b_ordered(m,n,i)+K loss gate_
b_ordered(m,n,i)+...

K lossglobe-b_ordered(m,n,i)+Klosshx_b_unordered(order);

% Calculate entrance and exit effects for branch

Keq = 0.57-1.07*r d3A0.5-2.13*r d3+8.24*r d3l.5-
8.48*rd3A2+2.9*r d3^2.5;

K_lossentrance_b_ordered(m,n,i) = (0.81-
1.13*mfr_h_ordered(m,n,i)/mfr_b_ordered(m,n,i) + ...

mfr h_ordered(m,n,i)^2/mfr b_ordered(m,n,i)^2)*DSI b_ordered(m,n,i)^4/DSI h
^4 + ...

1.12*DSI_b_ordered(m,n,i)/DSIh-
1.08*DSI b_ordered(m,n,i)^3/DSI h^3 + Keq;%due to entrance; assume r/d3
0.1

Cyc = 1-0.25*(DSI_b_ordered(m,n,i)/DSI_h)^1.3-(0.11*r d3-
0.65*r d3A2+0.83*rd3A3)*DSI_b_ordered(m,n, i)V 2/DSI h^2;

Cxc 0.08+0.56*r d3-1.75*r d3A2+1.83*r d3^3;
Cm 0.23+1.46*rd3-2.75*rd3A2+1.65*r d3^3;
K_loss exit b_ordered(m,n,i) = 2*Cyc-

1+DSI_b_ordered(m,n,i) A4/D SI_hA4*(2*(Cxc-l)+...
2* (2-Cxc-Cm) *mfr_h_ordered(m,n, i) /mfr_b_ordered(m,n, i) -

0.92*mfr_h_ordered(m,n,i)^2/mfr_b_ordered(m,n,i)^2); %due to exit; assume r/d3
0.1

% Calculate K loss b and K loss b in
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

K loss b ordered(m,n,i) =
K_loss friction_b_ordered(m,n,i)+Klossbend_90_b_ordered(m,n,i)+Kloss_gate_
b_ordered(m,n,i) ...

+K lossglobe b ordered(m,n,i)+Klosshx_b_unordered(order)±+Klossentrance b
_ordered(m,n,i)+K loss exit b_ordered(m,n,i);

293



Center for Ocean Engineering 0 Massachusetts Institute of Technology
Naval Construction & Engineering Program j I 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering 11 E1Cambridge, Massachusetts 02139-4307

K_loss_b_inordered(m,n,i) =

K_lossfriction_b ordered(m,n,i)/2+K_loss bend_90_b_ordered(m,n,i)/2+Kloss_g
ate_b_ordered(m,n,i)/2 ...

+Kloss_globe_b_ordered(m,n,i)*0+Klosshx_b_unordered(order)*0+K loss_entran
ce b ordered(m,n,i)+K loss exit b ordered(m,n,i)*0;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate loss coefficient for supply header due to friction,
bends,

% valves, entrance and exit effects
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:inputs

f h ordered(m,n,i) =

frictionfactor(D_SIh,V_SI_h_ordered(m,n,i),k,nu,epsilon,rho,cp);

K_lossfriction_h_ordered(m,n,i)=f_h_ordered(m,n,i)*length_h_ordered(m,n,i)/D

_SI h; %due to pipe length based on revised Darcy friction factor
K_loss bend_90_h_ordered(m,n,i) =

bends_90_h(m,n,i)*(f_h_ordered(m,n,i)*pi()/2*r_d(m,n,i)+(0.10+2.4*f_h_ordered

(m,n,i))*sin(pi()/4) ...

+6.6*f h ordered(m,n,i)*((sin(pi(/4))^0.5+sin(pi()/4))/rd(m,n,i)^(4*pi(/2/
pi())); %due to 90 bends

K_loss_gate_h ordered(m,n,i) = gate_valve_h (m,n,i)*0.2;
%K lossglobe h ordered(i) = globevalveh(i)*3.5;
%K losscheck h_ordered(i) = checkvalve_h(i)*2;

%%%%%%%%%%0-%%%%%%%%%%%%%%%%%%%

% Calculate entrance effects for header segments
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if i==inputs
K_lossentrance_h ordered(m,n,i) = 0;

else
K_los s_entrance_h_ordered(m,n,i) = 0.62-

0.98*mfr_h_ordered(m,n,i)/mfr_h_ordered(m,n,i+1)+ ...

0.36*(mfr_h_ordered(m,n,i)/mfr h ordered(m,n,i+l))^2+0.03*(mfr_h_ordered(m,n,
i+1)/mfr_h_ordered(m,n,i))^6;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate K loss h
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
K loss h ordered(m,n,i) =

K_lossfriction_h ordered(m,n,i)+Klossbend_90_h_ordered(m,n,i)+

K lossgate_h_ordered(m,n,i)+Kloss entrance_h_ordered(m,n,i);
%K lossglobe_h(i)+Kloss_check h(i);

end

% Calculate K loss rh due to friction, bends, valves

294



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

pipe length

bends_90 rh

0 00 00 909 0 0 000 '00 0 0 0

for i=l:inputs
%Klossfriction rh(i)=f h(i)*length rh(i)/DSIh; %due to

based on first branch Darcy friction factor
%K lossbend_90_rh(i) =

(i)*(f-h(i)*pi()/2*r d(i)+(0.10+2.4*f h(i))*sin(pi()/4) ...

+6. 6*f- h(i)* ((sin(pi()/4))^0.5+sin(pi()/4))/r d(i)^(4*pi()/2/pi()
90 bends

)); %due to

%K loss bend 180_rh(i) =
rh(i)* (f-h(i)*pi()*r-d(i)+(0.10+2.4*f-h(i))*sin(pi()/2) ...bends_180

))); %due to+6. 6*f h (i)* ((sin (pi () /2) )^0.5S+sin (pi () /2) )/r-d (i)^",(4*pi () /pi(
180 bends

%K loss gate rh(i) gate valve rh(i)*0.2;
%K-loss globe rh(i) globe valve_ rh(i)*3.5;

%%%%%%%%%%%% %%%
% Calculate exit effects for header segments

if i==inputs
K_loss_entrance rhordered(m,n,i) = 0;

else
K_los s_entrancerhordered(m,n,i) = 0.62-

0.98*mfr_h_ordered(m,n,i)/mfr_h_ordered(m,ni+1)+...

0.36*(mf r_h_ordered(m,n,i)/mfr_h_ordered(m,n,i+1) )^2+0.03*(mfr h ordered(m,n,

i+1)/mfr_h_ordered(m,n,i))^6; %exit
end

%Calculate K loss h

K_lossrhordered(m,n,i) = K loss h ordered(m,n,i)-
K_lossentrance_h_ordered(m,n,i)+K_loss_entrancerh ordered(m,n,i);

%K_loss rh(i) =
K loss friction rh(i)+K loss bend_90_rh(i)+K loss bend_180_rh(i)+K
rh(i)+ ...

% K loss globe rh(i)+K loss entrance rh(i);
end

loss gate

% Calculate K b/A b^2 and K h/A h^2 for branches

for i=l:inputs
K_h_A_h_2(m,n,i) =

(Kloss h ordered(m,n,i)+Klossrhordered(m,n,i))/area h^2;
K_b A_b_2 (m,n,i) =

K_loss_b_ordered(m,n,i)/area_b_ordered(m,n,i)^2;
end

% Calculate K A eq
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

295



Center for Ocean Engineering Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

for i=inputs:-1:1
if i==inputs

K_A_eq(m,n,i)=K bA b_2(m,n,i);
else

K_A_eq(m,n,i) =

(1 (1/K b_A_b_2 (m, n, i) ^10. 5+1 / (K_A_e q (m, n, i+1) +K_h_A_h_2 (m, n, i+1) )0 .5) )2;
end

end

% Initialize variables
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mfr left = mfr total;

% Determine branch and header velocities
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:inputs
order = branch order(m,n,i);
mfr_h_ordered(m,n,i) = mfrleft;
mfr_b_ordered (m, n, i) =

mfr left*(K_A_eq(m,n,i)/K_b_A_b_2(m,n,i) )A0 .5;
mfr left = mfrleft - rffr b_ordered(m,n,i);
if i == inputs

velocityold(m,n) = V_SITb ordered(m,n,i);
end
V_SI_b_ordered (m, n, i) =

mfr b_ordered(m,n,i)/rho/area_b_ordered(m,n,i);
V_b_ordered(m,n,i) = VSI_b_ordered(m,n,i)*ftperm;
VSI_h_ordered(m,n,i) = mfr h ordered(m,n,i)/rho/area h;
V_h_ordered(m,n,i) = VSI h_ordered(m,n,i)*ftper_ m;
if i == inputs

velocity delta(m,n) = abs(VSI_b ordered(m,n,i)-
velocityold (m, n) ) ;

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate temperatures

for i=1:inputs
order = branchorder(m,n,i);
hc_b_ordered (m, n,i) =

calchc(DSI_b_ordered(m,n,i),V SI b ordered(m,n,i),k,nu,rho,cp);
Thot_b_ordered(m,n,i) =

Q_ordered(m,n,i)/(mfr_b_ordered(m,n,i)*cp)+Tcold; %Celsius
Tave_b_ordered(m,n,i) = (Tcold+Thot_b_ordered(m,n,i))/2;
Ti_b_ordered(m,n,i) = Tave_b_ordered(m,n,i) +

Q_ordered(m,n,i)*(hxchgrarea-pri (order) *0.0001*hc_b_ordered(m,n,i) ) ̂-1;
%Inner wall temp

if strcmp(Hxchgr_Type(order),'fp')
T2_b_ordered(m,n,i) = T1_b_ordered(m,n,i) +

Q_ordered(m,n,i)*hxchgr_platethick(order)/100*(hxchgrarea_pri(order)*0.0001
*hxchgr_platek(order))^-1; %Inner wall temp

296



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

else
Q_per_1_ordered(m,n,i) =

Q ordered(m,n,i)*hxchgr_tubediam(order)*pi()/100/(hxchgrareapri(order)*0.0
001);

T2_b_ordered(m,n,i) = Tl_b_ordered(m,n,i) +
Q_per_1_ordered(m,n,i)*log((hxchgr tube diam(order)/2+hxchgrtubethick(order
))/(hxchgrtubediam(order)/2) )/(2*pi()*kcopper); %Outer wall temp

end
Telec_b_aveordered(m,n,i) = (T2_b_ordered(m,n,i) +

Q_ordered(m,n,i)/(hxchgrareasec(order)*0.0001*hxchgr_hc(order)));
%Electrical component temp

delta_T_secordered(m,n,i) =

Q_ordered(m,n, i) /hxchgrfluidmfr (order) /hxchgr cp (order);
Telec_b_inordered(m,n,i) =

Telec_b_aveordered(m, n,i)+delta_T_secordered(m,n,i)/2;
Telec_b_ordered(m,n,i) = Telec_b_aveordered(m,n,i)-

delta_T_secordered(m,n,i)/2;
end

end

C % C 0 CC Q-%0'%.,

Display refined velocities, etc.

fprintf('Third Step: Entrance and exit effects\n')
for i=1:inputs

fprintf('Load: %2.Of %2.Of %3.Of Q(W): %10.4f
%6.5f Velocity(m/sec): %6.4f Mass flow rate(kg/s): %6.4f
Telec(C): %8.4f\n' ...

,m, n, i, Qordered(m,n,i), D_SI_b_ordered
, V_SI_b_ordered(m,n,i) ,mfr_b_ordered(m,n,i), Thot_b_order
Telec_b_ordered(m,n,i))

end
end

end

% Define V SI b 1, V SI b 2, V SI b 3

VSI b 1 = V SI b;

% Define V SI b 3 and V SI h 2

V SI b 3 = zeros(1,inputs);
V_SI h 2 = zeros(l,inputs);
for i=l:inputs

V_SI_b_3(i) = V SI_b_ordered(1,1,i);
V_SI_h_2 (i) = VSI h_ordered(1,1,i);

end

Diameter(m):

Thot(C): %7.4f

(m, n, i)
ed (m, n, i)

% Show changes in temperature for each step in the program with flow
% initialted from the riser going cw

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

297



Center for Ocean Engineering * 3 Massachusetts Institute of Technology
Naval Construction & Engineering Program 1111- 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

input_vec = 1:inputs;
branch limit = 9/3.28084*ones(1,inputs);
header limit = 12/3.28084*ones(l,inputs);
figure(7)
subplot (2, 1, 1)
plot(inputvec,V_SI_b_l,'r')
hold on
plot(inputvec,V _SIb 2, 'g')
plot(input vec,V SI b 3,' k')
plot(inputvec,branch limit,'m')
title('Chilled Water Velocity in Branch Piping as a Function of Branch
Junction Index')
xlabel('Branch Index')
ylabel('Branch Velocity (m/s)')
legend ('Initial', 'Intermediate', 'Final', 'Limit')
subplot (2, 1, 2)
plot(inputvec,V_SI_h_1,'r')
hold on
plot(inputvec,V_SI_h_2,'k')
plot(inputvec,header limit,'m')
title('Chilled Water Velocity in Supply Header as a Function of Branch
Junction Index')
xlabel('Branch Index')
ylabel('Header Velocity (m/s)')
legend('Intermediate','Final','Limit')

%% Step 6: Determine pressure drop as a function of distance for each riser
going cw and ccw

rho w = 62.421; %[lb/ft^3]
g_fps2 = 32.1740; %[ft/sec^2]
lbmperkg = 2.20462;
lbp in2 topa = 6894.76;
dPdXmfrh = zeros(size _header(l),2,max(size(dPdX)));
dPdXmfr_h_2 = zeros(sizeheader(l),2,max(size(dPdX)));
dPdX_K_lossfriction h = zeros(sizeheader(l),2,max(size(dPdX)));
dPdX K loss bend 90 h = zeros(size header(1),2,max(size(dPdX)));
dPdX_K_lossvalveh = zeros(sizeheader(l),2,max(size(dPdX)));
dPdXfrich = zeros(size header(1),2,max(size(dPdX)));
dPdXbendh = zeros(sizeheader(l),2,max(size(dPdX)));
dPdXvalveh = zeros(sizeheader(l),2,max(size(dPdX)));
for m=1:sizeheader(1)

for n=1:2
mfr h index = 1;
fric h index 1;
bend_ h index = 1;
for i=1:max(size (dPdX))

if dPdX(m,n,i)==2 %branch
mfr_h_index = mfr_h_index+1;
dPdX_K_lossfriction_h(m,n,i) = 0;
dPdX K loss bend 90 h(m,n,i) = 0;
dPdX_K_lossvalve_h(m,n,i) = 0;

elseif dPdX(m,n,i)==l %friction
if mfr h index <= inputs

298



Center for Ocean Engineering U Massachusetts Institute of Technology
Naval Construction & Engineering Program I 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

dPdX_K_lossfrictionh(m,n,i) =
friction factor(DSI h,VSI h ordered(m,n,mfr h index),k,nu,epsilon,rho,cp)*.

abs(Location x(m,n,i)-Location x(m,n,i-1))/DSI h;

%due to pipe length based on revised Darcy friction factor;
else

dPdX_K_lossfrictionh(m,n,i) = 0;
end
dPdX K loss bend 90 h(m,n,i) = 0;
dPdX_K_lossvalve h(m,n,i) = 0;

elseif dPdX(m,n,i)==3 %valve
if mfr h index <= inputs

dPdX K_lossvalve_h(m,n,i) = 0.2;
else

dPdXK loss friction_h(m,n,i) = 0;
end
dPdX K loss friction h(m,n,i) = 0;
dPdX_K_lossbend_90_h (m,n,i) = 0;

elseif dPdX(m,n, i)==4 %bend
dPdX_K_loss_frictionh(m,n,i) = 0;
dPdX_r d = 3;
if mfr h index <= inputs

dPdX f_h =
friction factor(DSI h,VSI h ordered(m,n,mfr h index),k,nu,epsilon,rho,cp);

dPdXK_loss_bend 90_h(m,n,i) =
1*(dPdXf_h*pi(/2*dPdX r d+(0.10+2.4*dPdX_f_h)*sin(pi()/4) ...

+6.6*dPdX_f h*((sin(pi()/4))^0.5+sin(pi(/4))/dPdX_r_d^(4*pi()/2/pi())); %due

to 90 bends;
else

dPdXK loss bend_90 h(m,n,i) = 0;
end
dPdX_K_loss_friction h(m,n,i) = 0;
dPdX_K_loss_valve_h(m,n,i) = 0;

else
dPdX_K lossfriction h(m,n,i) = 0;
dPdX_K_lossbend_90_h(m,n,i) = 0;
dPdX_K_lossvalve_h(m,n,i) = 0;

end
if mfr_h_index <= inputs-1

dPdXmfr_h(m,n,i) = mfr_h_ordered(m,n,imfr_h_index);
dPdXrmfr_h_2 (m,n,i) = mfr_h_ordered(m,n, mfr h_index+1);

elseif mfr_h_index == inputs
dPdX_mf r_h(m,n,i) = mf r_h_ordered(m,n,mfr_h_index);
dPdX mfr h_2(m,n,i) = 0;

else
dPdXmfr h(m,n,i) = 0;
dPdXmfr_h_2(m,n,i) = 0;

end
end

end
end

% Convert mfr h to wfr h

299



Center for Ocean Engineering EEEEMassachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

%%%%%%%%%%%%%%%%%%%%%%%%%

for m=l:sizeheader(l)
for n=1:2

for i=l:max(size(dPdX_mfr h))
dPdXwfr_h (m,n,i) = dPdXmfr_h(m,n,i)*lbm_per_kg;
dPdX_wfr_h_2(m,n,i) = dPdX_mf r h_2(m,n,i) *lbmperkg;

end
end

end

PressureSI = zeros(size header(l),2,max(size(Pressure)));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Determine pressures at locations along Location x
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for m=1:size header(l)
for n=1:2

for i=l:max(size(Locationx))
dPdX fric_h(m,n,i) =

(dPdX_K_lossfriction_h(m,n,i)*dPdXwfr_h(m,n,i) ̂2)/(288*(areah*3.28084^2)^2
*rho-w*gfps2);

dPdXbend_h(m,n,i) =

(dPdX_K_lossbend_90_h(m,n,i)*dPdXwfr_h(m,n,i)^2)/(288*(areah*3.28084A2)A 2*
rho_w*g_fps2);

dPdX valve_h(m,n,i) =

(dPdXK loss valveh(m,n,i)*dPdX wfr_h(m,n,i)^2)/(288* (area h*3.28084A2 )A 2*rh
o_w*g fps2);

if dPdX(m,n,i)==2 %branch
dPdXentrance h(m,n,i) =

(dPdX wfr_h_2(m,n,i)^2)/(288*(areah*3.28084A2)^2*rho w*g_fps2)*...
(1.62-0.98*dPdXwfr_h(m,n,i)/dPdXwfr_h_2(m,n,i)-

0. 64*dPdXwfr_h (m, n, i) A2/dPdXwfr_h_2(m,n,i)^2+0.03*dPdX wfr_h_2(m,n, i) A6/dPd
X wfr_h(m,n,i)A6);

if isnan(dPdX entrance h(m,n,i))
dPdX entranceh(m,n,i) = 0;

end
else

dPdXentrance_h(m,n,i) = 0;
end
dPdXtotal_h(m,n,i)

dPdX fric h(m,n,i)+dPdXbend_h(m,n,i)+dPdX valve_h(m,n,i)+dPdXentrance_h(m, n
, i) ;

if i<max(size(Location_x))
Pressure(m,n,i+1) = Pressure(m,n,i)-dPdX totalh(m,n,i);

end
end
%temppressure = 0;
%for i=1:max(size(Pressure))-l
% temp pressure = temp_pressure+Pressureheight h(m,n,i);
% Pressure(m,n,i) = Pressure(m,n,i)+temp_pressure;
%end

for i=l:max(size(Pressure))
PressureSI(m,n,i) = Pressure(m,n,i)*lb_p in2_to_pa;

end
%figure (8)

300



Center for Ocean Engineering - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

%plot(Locationx(m,n,:),PressureSI(m,n,:),'r')

%hold on

end
end

% Preallocate variables

Location 1 = zeros(,max(size(dPdX)));

dPdX 1 = zeros(1,max(size(dPdX)));
Pressure height hl = zeros(1,max(size(dPdX)));
dPdX mfr hii zeros(l,max(size(dPdX)));
dPdX mfr_h12 = zeros(1,max(size(dPdX)));

dPdX K_loss-friction hl = zeros(1,max(size(dPdX)));
dPdX K_lossbend_90_hl zeros(l,max(size(dPdX)));
dPdX K lossvalve_hl = zeros(1,max(size(dPdX)));
dPdXentrance_hl = zeros(1,max(size(dPdX)));
dPdXtotal_hl = zeros(1,max(size(dPdX)));
for i=l:max(size(dPdX))

Location 1(i) = Locationx(1,1,i);
dPdX 1(i) = dPdX(1,1,i);

dPdXmfr_h11(i) = dPdXmfr_h(1,1,i);
dPdX_mfr_hl2(i) = dPdX_mfr_h_2(1,1,i);
dPdX_K_ lossfriction hl(i) = dPdX_K_lossfriction_h(1,1,i);
dPdX_K_lossbend_90_hl (i) dPdXK_loss_bend_90_h(1,1,i);
dPdXK -lossvalve_h I(i) = dPdX_K_loss_valve_h(1,1,i);
dPdXentrance_h(i) = dPdXentranceh(1,1,i);
dPdX total hl(i) = dPdX total h(1,1,i);

end
for i=l:(max(size(dPdX))-1)

Pressure height hl(i) = Pressure heighth(1,1,i);
end

% Preallocate variables

Location_2 = zeros(1,max(size(dPdX)));
dPdX_2 = zeros(1,max(size(dPdX)));
Pressure heighth2 = zeros(1,max(size(dPdX)));
dPdXmfr h21 = zeros(1,max(size(dPdX)));
dPdX_mfrh22 = zeros(1,max(size(dPdX)));
dPdX K loss friction h2 = zeros(1,max(size(dPdX)));
dPdXK lossbend_90_h2 zeros(1,max(size(dPdX)));
dPdX_K_loss _valveh2 = zeros(1,max(size(dPdX)));
dPdXentrance h2 = zeros(l,max(size(dPdX)));
dPdXtotalh2 = zeros(1,max(size(dPdX)));
for i=l:max(size(dPdX))

Location 2(i) = Bocationx(1,2,i);
dPdX 2(i) = dPdX(1,2,i);
dPdXmfrh21(i) = dPdX_ mfr_h(1,2,i);
dPdX mfr h22(i) = dPdX_mfr_h_2(1,2,i);
dPdX_K_loss_ friction h2(i) = dPdX_K_lossfriction_h(1,2,i);
dPdX_K_lossbend_90_h2(i) = dPdXK_lossbend_90_h(1,2,i);
dPdX_K_los s_valveh2(i) = dPdX_K_loss_valve_h(1,2,i);
dPdX entranceh2(i) = dPdX entrance_h(1,2,i);

301



Center for Ocean Engineering 1 1 Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

dPdXtotal h2(i) = dPdX_total_h(1,2,i);
end
for i=1:(max(size(dPdX))-1)

Pressure_heighth2(i) = Pressureheighth(1,2,i);
end
%% Step 7: Find stagnation points

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Preallocate variables
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sizePressure_SI = size(PressureSI);
sizedPdXheader loc_s_index = size(dPdXheaderloc_s index);
mindifferencepressure = 1000000000000*ones(1,sizeheader(1));
min_pressure = zeros(1,sizeheader(1));
min _location = zeros(1,size header(l));
indexdiff = zeros(1,sizeheader(l));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Determine index, location and minimum pressures between risers
% (stagnation points)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=l:size PressureSI(3)
for j=l:sizedPdXheaderloc_s_index(2);

if j==1 %j==1
if i<=dPdX header loc s index(2)

differencepressure = abs(PressureSI(1,1,i)-
Pressure_SI(2,2,dPdXheaderloc_s_index(2)-i+1));

if min differencepressure (1) >differencepressure
mindifferencepressure (1) = difference_pressure;
minpressure(1) = PressureSI(1,1,i);
min _location(1) = Locationx(1,1,i);
indexdiff (1) = i;

end
end

elseif j>=2 && (j<=size dPdX headerloc s index(2)/2) %j=2:4
if (dPdXheaderloc s index(j)<i) &&

(i<=dPdXheaderloc_s_index(j+1))
differencepressure = abs(Pressure SI( (j-1)*2,1,i-

dPdXheaderloc_s_index(j))-PressureSI(j*2,2,dPdXheaderloc_s_index(j+l)-
i+1) ) ;

if min difference_pressure(j)>differencepressure
mindifference_pressure(j) = difference_pressure;
minpressure(j) = PressureSI((j-l)*2,1,i-

dPdXheaderloc_s_index(j)+1);
min _location(j) = Locationx(1,1,i);
indexdiff(j) = i;

end
end

elseif (size dPdX header loc s index(2)/2<j) &&
(j<=size dPdXheaderloc_s_index(2)/2+1) %j=5

. if (dPdXheaderloc_s_index(j)<i) &&
(i<=dPdXheaderloc_s index(j+))

difference_pressure =
abs(PressureSI((size dPdX headerloc s index(2)-j)*2+2,1,i-

302



Center for Ocean Engineering * * Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

dPdXheader loc_s_index(j))-PressureSI((size dPdX header loc s index(2) -j-

1)*2+3,2,dPdXheader lc _s index(j+1)-i+1));
if min _difference_pressure(j)>differencepressure

mindifferencepressure(j) = differencepressure;
minpressure(j) =

PressureSI((sizedPdXheaderloc_s_index(2)~j)*2+2,1,i-
dPdXheaderloc_s_index(j)+1);

minlocation(j) = Locationx(1,1,i);
index diff(j) = i;

end
end

elseif (size_dPdX_headerlc %sindex(2)/2<j) &&
(j<=sizeidPdXfheaderclociindex(2)-nL) %j))6:7

if (dPdXdsheaderbc s index(j)<i) &&
(i<=dPdX headerifcsindex(j+1)

difference__pressure=
abs(PressureSI((sizedPdXheaderloc s index(2)-j)*2+3,1,i-
dPdXheaderloc_s index(j))-PressureSI((sizedPdXheaderloc_s_index(2)-j-
1)*2+3,2,dPdXheaderloc_s_index(j+1)-i+1));

if min _dif ference_pressure (j ) >differencepressure
mindifference pressure(j) = difference_pressure;
min pressure(j) =

Pressure _SI((size dPdX header loc s index(2)-j)*2+3,1,i-
dPdX headerloc_s_index(j)+1); -

min _location(j) = Locationx(1,1,i);
indexdiff(j) = i;

end
end

elseif j==sizedPdXheaderloc_s_index(2) %j==8
if dPdX header loc s index(j)<i

differencepressure = abs (PressureSI (3, 1,i-

dPdXheader loc_s_index(j))-PressureSI(1,2,sizePressureSI(3)-i+1));
if min difference_pressure (j ) >differencepressure

mindifference_pressure (j) = differencepressure;
minpressure(j) = Pressure_SI (3, 1,i-

dPdXheader loc_s_index(j)+1);
min location(j) = Location x(1,1,i);
indexdiff(j) = i;

end
end

end
end

end

Pressure SI temp 11 = zeros(,max(size(Pressure SI)));
Pressure SI temp 12 = zeros(1,max(size(Pressure SI)));
Pressure SItemp_21 = zeros(1,max(size(PressureSI)));
PressureSItemp 22 = zeros(1,max(size(PressureSI)));
PressureSItemp 31 = zeros(1,max(size(PressureSI)));
PressureSItemp 32 = zeros(1,max(size(PressureSI)));

PressureSItemp 41 = zeros(1,max(size(PressureSI)));
Pressure SI temp 42 = zeros(1,max(size(Pressure SI)));

PressureSItemp 51 = zeros(1,max(size(PressureSI)));
PressureSItemp 52 = zeros(1,max(size(PressureSI)));
PressureSI temp_61 = zeros(1,max(size(PressureSI)));

303



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'IirMassachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

PressureSItemp 62
PressureSI_temp_71
PressureSI_temp_72
PressureSI_temp_81
PressureSI_temp_82
Locationx_temp 11
Location x_temp 12
Locationx_temp 21
Locationx_temp 22 =

Locationx_temp 31
Locationx_temp 32
Locationx_temp_41
Locationx_temp_42
Location x_temp_51
Location xtemp_52
Location x temp_61
Location xtemp_62
Location xtemp_71
Location_xtemp_72
Location x_temp_81 =

Location x_temp_82

= zeros(1,max
= zeros(1,max
= zeros(1,max
= zeros(1,max
= zeros(1,max
zeros
zeros
zeros
zeros
zeros
zeros
zeros
zeros
zeros
zeros
zeros
zeros
zeros
zeros
zeros
zeros

for i=1:max(size(dPdX))
if sum(chillers)>=2

PressureSI temp_11
PressureSI temp_12
PressureSItemp_21
PressureSItemp_22

end
if

end
if

end
if

end
if

end

sum(chillers)>=3
PressureSI temp 31
PressureSI temp_32

sum(chillers)>=4
Pressure SI temp_41
PressureSI temp_42

sum(chillers)>=5
PressureSI temp_51
PressureSItemp_52

sum(chillers)>=6
PressureSI temp_61
PressureSItemp_62

(size(PressureSI)
(size(Pressure SI)
(size(Pressure SI)
(size(PressureSI)
(size(PressureSI)

(1,max(size(PressureSI)
(1,max(size(PressureSI)
(1,max(size(PressureSI)
(1,max(size(PressureSI)
(1,max(size(PressureSI)

(1,max(size(PressureSI)
(1,max(size(PressureSI)
(1,max(size(PressureSI)
(1,max(size(Pressure SI)
(1,max(size(PressureSI)
(1,max(size(PressureSI)
(1,max(size(PressureSI)
(1,max(size(PressureSI)
(1,max(size(PressureSI)
(1,max(size(PressureSI)
(1,max(size(PressureSI)

(i)
(i)
(i)
(i)

(i)
(i)

(i)
(i)

(i)
(i)

(i)
(i)

if sum(chillers)>=7
PressureSI temp_71(i)
PressureSI temp_72(i)

end
if sum(chillers)>=8

PressureSI_temp 81(i)
PressureSI_temp_82(i)

PressureSI
PressureSI
PressureSI
Pressure SI

(1,
(1,
(2,
(2,

1, i)
2, i)
1, i)
2, i)

= PressureSI(3,1,i);
= PressureSI(3,2,i);

= PressureSI(4,1,i);
PressureSI(4,2,i);

= PressureSI(5,1,i);
= PressureSI(5,2,i);

= PressureSI(6,1,i);
= PressureSI(6,2,i);

= PressureSI(7,1,i);
= PressureSI(7,2,i);

= PressureSI(8,1,i);
= PressureSI(8,2,i);

end
for j=l:size header(1)

if headerloc_s_x_order(j)==1
Location_x_temp11(i) = Locationx(1,1,i)+header loc 5sx(j);

304

;
;
;
;
;

;
;
;
;



Center for Ocean Engineering U - Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering U Cambridge, Massachusetts 02139-4307

Location_x_temp 12(i) = Location x(1,2,i)+headerloc_s_x(j);
elseif header loc s x order(j)==2

Locationx_temp_21(i) = Location x(2,1,i)+headerloc_s_x(j);
Location_x_temp 22(i) = Location x(2,2,i)+headerloc_s_x(j);

elseif headeroc_s x order(j)==3
Location_x-temp_3(i) = Location x(3,1,i)+headerloc_sx(j);
Location_xtemp_32(i)-= Location x(3,2,i)+headerloc_s_x(j);

elseif header loc s x order(j)==4
Location_x_temp_41(i) = Location x(4,1,i)+headerloc_s_x(j);
Location_x_temp_42(i) = Location x(4,2,i)+headerloc_s_x(j);

elseif headerloc_s_x-order(j)==5
Location_x_temp_51(i) = Location x(5,1,i)+header loc_s_x(j);
Location_x_temp_52(i) = Location x(5,2,i)+headerloc_s_x(j);

elseif headerloc_s_x-order(j)==6
Location x temp 61(i) = Location x(6,1,i)+header loc sx(j);
Location x_temp_62(i) = Location x(6,2,i)+headerloc_s_x(j);

elseif headerloc_s_x_order(j)==7
Locationx_temp_71(i) = Location x(7,1,i)+header _loc_ s_x(j);
Locationx_temp_72(i) = Location x(7,2,i)+headerloc_s_x(j);

elseif headerloc_s_x-order(j)==8
Locationx_temp_81(i) = Location x(8,1,i)+header -loc -s_x(j);
Location x_temp_82(i) = Location x(8,2,i)+header loc_s_x(j);

end
end

end
figure(8)

plot(Location_x_temp_11,PressureSItemp_ll,'r')
hold on

plot(Location_x_t emp_12,PressureSI_temp_12,'r')
plot(Location_x_temp_21,PressureSI temp_21, 'b')

plot(Location_x_temp_22,PressureSItemp_22,'b')
if sum(chillers)>=3

plot(Location_x_temp_31,PressureSItemp_31,'g')
plot(Location_x_temp_32,PressureSItemp_32,'g')

end
if sum(chillers)>=4

plot(Location_x_temp_41,PressureSItemp_41,'c')
plot (Location x_temp_42, PressureSI temp_42, 'c')

end
if sum(chillers)>=5

plot(Location_x_temp_51,Pressure_SI temp_51,'k')
plot(Location_x_temp_52,PressureSItemp_52,'k')

end
if sum(chillers)>=6

plot(Location_x_temp_61,PressureSI temp_61,'y')
plot(Location_x_temp_62,PressureSI temp_62,'y')

end
if sum(chillers)>=7

plot (Location_x_temp_71, PressureSI temp_71, 'im')

plot(Location_x_temp_72,PressureSI temp_72,'m')

end
if sum(chillers)>=8

plot(Location_x_temp_81,PressureSI temp_81,'k:')

plot(Location x temp_82,PressureSItemp_82,'k:')
end

305



Center for Ocean Engineering * 3 Massachusetts Institute of Technology
Naval Construction & Engineering Program 111177-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

xlabel('Distance along Supply Header [ml')
ylabel('Pressure [Pa]')
title('Pressure as a Function of Location in Supply Header')

figure (9)
plot(Location_x_temp_11,PressureSI temp_1l,'r')
xlabel('Distance along Supply Header [m]')
ylabel('Pressure [Pa]')
title('Pressure as a Function of Location in Supply Header')
hold on
Location_x_temp_12
Locationx_temp_12+abs(Location_x_temp_12(max(size(Location_x_temp_12))));
plot(Location x temp_12,PressureSI temp_12,'b')
axis tight
legend('Clockwise flow','Counterclockwise flow')

%% Step 8: Final calculation of velocities and mass flow rates using network
analysis with system split up into sections at stagnation points

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Convert dPdX header loc s index to branch index
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

count = 0;
riser count-index = 1;
stagcount index = 1;
for i=1:max(size(dPdX))

if dPdX(1,1,i)==2 %branch
count = count+1;
if risercount-index <= max(size(dPdX headerloc_s index))

if i>=dPdXheaderloc_s_index(risercountindex)
riserbranchindex(risercountindex) = count;
risercountindex = riser countindex+l;

end
end
if stag_countindex <= max(size(indexdiff))

if i>=index diff(stagcountindex)
stag_branchindex(stag countindex) = count;
stagcount index = stagcount index+l;

end
end

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Initialize variables
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
velocitydeltaseg = 10*ones(l,sizeheader(l));
velocityold seg = zeros(1,size header(1));
V_SI_h_seg = 1.5*ones(l,inputs+l); %initial guess at header velocities
f_bseg = zeros(1,inputs);
K_loss b_seg = zeros(1,inputs);
K_lossfrictionb_seg = zeros(1,inputs);
K loss bend_90_bseg = zeros(1,inputs);

306



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering i'i~r Massachusetts Institute of Technology

77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

K_loss_gateb_seg = zeros(l,inputs);
K_lossglobe_b_seg = zeros(l,inputs);
r _d_seg = 3*ones(l,inputs+l); %assume r/d=3
K_loss h_seg = zeros(1,inputs+l);
K loss friction_h_seg = zeros(1,inputs+l);
K loss bend_90_h seg = zeros (1, inputs+l);
K lossgate_hseg = zeros(1,inputs+l);
K_loss globe_hseg = zeros(1,inputs+l);
K loss check_h_seg zeros(1,inputs+l);
f_h_seg = zeros(l,inputs+l);
K_loss rh__seg = zeros(1,inputs+1);
K_loss frictionrh = zeros(sizeheader(l),2,inputs);
K loss bend_90_rh zeros(size header(1),2,inputs);
K_loss gate rh = zeros (sizeheader(l) ,2,inputs);
K_lossgloberh = zeros(sizeheader(l),2,inputs);
K hA h_2_seg = zeros(l,inputs+1);
K_b_A_b_2_seg = zeros(l,inputs);
K_A_eqseg = zeros (sizeheader(1),3,inputs);
mfrh = zeros(sizeheader(l),2,inputs);
mfr b = zeros(size header(l),2,inputs);
V b = zeros (sizeheader (1) ,2, inputs) ;
V h = zeros (sizeheader (1) ,2, inputs) ;
mfrtotalseg = zeros(3,size header(l));

% Calculate total mfr's for each segment going cw and ccw

for i=1:size header(1)
if i==l

% Calculate mfr total seg cw

for j=1:stag branch index(l)%j=1: (stag branch index(l)-1)
mfrtotalseg(1,i) = mfrtotal_seg(1,i) +

mass-flow rate b(branch order(1,1,j)); % branches 1-15
end
%mfr total _seg(l,i) = mfr total seg(l,i) +

mass flow rate b (branch order (1, 1, (stag branch index (1) )))/2; %half of branch
15

% Calculate mfr total seg ccw
%%%%%%%%%%%%%%%%%%

for j=(stagbranchindex(max(size(stag_branchindex)) )+1) :inputs
mfrtotalseg(2,i) = mfr totalseg(2,i) +

massflowrate b(branchorder(1,1,j)); % branches 164:180
end
%mfrtotal seg(2,i) = mfrtotal seg(2,i) +

mass flow rate b(branch order(1,1, (stag branch index(max(size(stag_branch ind
ex))))))/2; %half of branch 163

elseif 1<i && i<size header(l)

% Calculate mfr total seg cw

307



Center for Ocean Engineering - 1 Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for
j=riser branch index (i) : st agbranch index (i) % j=riser branch index (i) :st ag bra
nch index(i)-l

mfrtotal seg(l,i) = mfrtotal_seg(1,i) +
massflowrate_b(branch order(1,1,j)); %branches 38:60

end
%mfrtotalseg(l,i) = mfr total seg(l,i) +

mass flow rate b(branch-order(1,1, (stag branch index(i))))/2; %half of branch
60

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate mfr total seg ccw

for j=stagbranch index(i-1)+1:riser branch index(i)-l
mfrtotal seg(2,i) = mfrtotal_seg(2,i) +

massflowrate_b(branchorder(1,1,j)); %branches 16:37
end
%mfr total seg(2,i) = mfr total seg(2,i) +

mass flow rate_b(branch_order(1,1, (stag branch index(i-1))))/2; %half of
branch 15

elseif i== size header(1)
%%%%%%%%%%% %%%%%%%%%%%%%%%%%%

% Calculate mfr total seg cw

for
j=riser branchindex (max (size (riserbranchindex) )):stag_branchindex (max (siz
e(stagbranchindex)))
%j=riser branchindex(max(size(riser branch index))): (stag branch index(max(s
ize(stag branch index)))-l)

mfrtotal seg(1,i) = mfrtotal_seg(1,i) +
mass flow rateb(branch order(1,1,j)); %branches 154:163

end
%mfr total seg(l,i) = mfr total seg(l,i) +

massflow rateb(branchorder(1,1, (stag branch index(max(size(stag branch ind
ex))))))/2; %half of branch 163

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate mfr total seg ccw
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for j=stagbranchindex (max (size (stagbranchindex) ) -

1)+1:riser branchindex(max(size(riserbranchindex)))-l
mfr total seg(2,i) = mfrtotal_seg(2,i) +

massflowrate_b(branchorder(1,1,j)); %branches 148:153
end
%mfr total seg(2,i) = mfr total seg(2,i) +

massflow_rate_b(branch order(l,l, (stagbranchindex(max(size(stag branchind
ex))-1))))/2; %half of branch 147

end
end

% Sum up mass.flow rate going cw and ccw to give mass flow rate exiting

308



Center for Ocean Engineering HU* Massachusetts Institute of Technology
Naval Construction & Engineering Program I 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering E U Cambridge, Massachusetts 02139-4307

each riser

for i=l:size header(l)
mfrtotalseg(3,i) = mfrtotalseg(1,i)+mfrtotalseg(2,i);

end

o%%%%%%%%%%%%%%%%%%%%%%%%%

Resize and re-order V SI b and store in VSI b seg

V SI b seg = zeros(1,inputs);
for m=1:inputs

V_SI b seg(m) = V_SI_b_1(branchorder(1,1,m));
end

% Iterate through loop a predetermined number of times, modifying the

% branch diameters to satisfy the velocity limits set forth by NAVSEA

count = 0;

while count<10
count=count+1;

if count == 1 %use estimated V SI b seg to begin iterative process and

only consider friction bends and valves

% Calculate K loss b seg due to friction, bends, valves for branches

for i=1:inputs
f_b_seg(i) =

frictionfactor(DSIb(branchorder(1,1,i)),VSIb_seg(i),k,nu,epsilon,rho,cp
); %ordered

K loss friction b seg(i)=f b seg(i)*length b(branch order(1,1,i))/DSI b(bran
chorder(1,1,i)); %due to pipe length

K_lossbend_90_b_seg(i) =
bends_90_b(1,branchorder(1,1,i))*(f_bseg(i)*pi(/2*r-d-seg(i)+(0.10+2.4*f_b

_seg(i))*sin(pi()/4)

+6.6*f_b_seg(i)*((sin(pi()/4))^0.5+sin(pi()/4))/r_d_seg(i)^(4*pi(/2/pi()));
%due to 90 bends

K loss gate b seg(i) = gate valve b(branch order(1,1,i))*0.2;
%due to gate valves

K_lossglobe_b_seg(i) globevalveb(branchorder(1,1,i))*3.5;
%due to globe valves

K_loss_b_seg(i)
K_loss friction_b_seg(i)+Klossbend_90_b_seg(i)+Klossgate_b seg(i)+Kloss_
globe_b-seg(i)+Klosshx_b_unordered(branchorder(1,1,i));

end

% 00 0 05 %9 %9 (009 %( %9

% Calculate K loss h seg due to friction, bends, valves for supply

header

for i=1:inputs

309



Center for Ocean Engineering * I Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering =KE Cambridge, Massachusetts 02139-4307

f_h_seg(i)=friction factor(DSIh,V_SI_h seg(i),k,nu,epsilon,rho,cp);
K_loss friction_h_seg(i)=f_h_seg(i)*length_h(1,1,i)/DSIh; %due

to pipe length based on first branch Darcy friction factor
K_loss bend_90_h_seg(i) =

bends 90 h(1,1,i)*(f-h_seg(i)*pio/2*r-d-seg(i)+(0.10+2.4*f-h_seg(i))*sin(pi(

)/4) ..

+6. 6*f -h seg (i) * ((sin (pi ()/4 ) )^0 .5+sin (pi ()/4 ) )/r-d-seg (i)^ (4*pio()/2/pi ())) ;
%due to 90 bends

K_lossgate hseg(i) = gatevalve_h (1,1,i)*0.2;
% Kloss globe h(i) = globe valve h(i)*3.5; %no globe valves

considered
% Kloss check h(i) = check valve h(i)*2; %no check valves

considered
K loss h seg(i) =

K_loss_friction h seg(i)+K lossbend_90_h seg(i)+Kloss_gate_h_seg(i);%+
% K_loss_globe_h(i)+Klosscheck h(i);
end
for i=inputs+1

f h seg(i)=frictionfactor(DSIh,V_SIh_seg(i),k,nu,epsilon,rho,cp);
K loss friction h seg(i)=f h seg(i)*length h(1,2,1)/DSI h; %due

to pipe length based on first branch Darcy friction factor
K_lossbend_90_hseg(i) =

bends 90 h(1,2,1)*(f h seg(i)*pi()/2*r d seg(i)+(0.10+2.4*f h seg(i))*sin(pi(

)/4) ...

+6.6*f_h seg(i)*((sin(pi(/4))^0.5+sin(pi()/4))/r d-seg(i)^(4*pi()/2/pi());
%due to 90 bends

K loss_gateh seg(i) = gate valve h(1,2,1)*0.2;
% K loss globe h(i) = globe valveh(i)*3.5; %no globe valves

considered
% K loss check h(i) = checkvalve_h(i)*2; %no check valves

considered

K_loss_h_seg(i) =
K lossfriction-h-seg(i)+K lossbend_90_h_seg(i)+Klossgate-h-seg(i);%+

% K loss globe h(i)+K loss check h(i);
end

% Calculate K loss rh seg due to friction, bends, valves

for i=1:inputs+l
% K loss friction rh(i)=f b(l)*length rh(i)/DSI h; %due to pipe

length based on first branch Darcy friction factor
% Kloss bend 90 rh(i) =

bends_90_rh(i)*(f b(1)*pi(/2*r d(i)+(0.10+2.4*f b(1))*sin(pi()/4) ...

+6.6*f b(l)*((sin(pi()/4))^0.5+sin(pi()/4))/r _d(i)^(4*pi(/2/pi())); %due to
90 bends

% K loss gate rh(i) = gate valve rh(i)*0.2;
% K loss globerh(i) globe valve rh(i)*3.5;

310



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'IIT Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

% K loss _rh(i) =

K loss friction rh(i)+K loss bend_90_rh(i)+K loss gate rh(i)+K lossglobe rh(

i);
K_lossrhseg(i) = Kloss_h_seg(i); %assume same loss coefficient

for supply and return header segments

end

% Calculate K b/A b^2 and K h/A h^2 for branches and header segments

% respectively

for i=1:inputs
K b A b 2_seg(i) =

K loss_b_seg(i)/area_b_unordered(branchorder(1,1,i))^2;
end
for i=l:inputs+1

K h A h 2_seg(i)
end

= (K loss_h_seg(i)+K lossrhseg(i))/area h^2;

Calculate K A_2

K A 2 = zeros(1,inputs);
for i=l:size header(1)

if i==1
for j=stag branch index(max(size(stag branch index)))+1

K_A_2(j) = K_b_Ab_2_seg(j);% + K h A h 2 seg(j);

end
for

j=stagbranch-i

1) ̂ 0.5)) ^2;%+K

ndex (max (size
K_A _2 (j)

hA h 2_seg(j
end

164

(stag_branchindex)))+2:inputs %165:180
= (1/(1/K_b_A_b_2_seg(j )^0. 5+1/KA 2(j-

for j=stag_branchindex(i) %15
K_A_2(j) = K-bA b_2_seg(j);% + K h_ A_h_2_seg (j);

end
for j=stagbranchindex(i)-l:-1:riser branch index(i)

K_A_2(j) =
(1/(1/K_b_A_b_2_seg(j)^0.5+1/KA_2(j+1)^O.5))^2;%+Kh A h 2 seg(j);

end
else

for j=stag branch index(i-1)+1 %16
K A_2(j) = K_b_A b_2_seg(j);% + K hA h 2_seg(j);

end

%1:14

for j=stagbranchindex(i-1)+2:riserbranch index(i)-1 %17:37

K_A_2(j) = (1/(1/Kb A_ b_2_seg(j )A0 .5+1/K A_2(j-

1) ̂0 .5) ) ^2;%+K hA_h 2_ e seg(j);
end
for j=stagbranchindex(i) %60

K_A_2 (j) = K bA b_2_seg (j) ; % + K_h_A_h 2_seg (j);

end
for

(1/(1/K_b_A_b_2_seg
end

j=stag branchindex(i)-1:-1:riserbranchindex(i)
K_A_2(j) =
(j)^0 .5+1/KA_2 (j+1)O .5) )A 2;%+K _h_A_h_2_ seg(j);

%59: 38

311



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

end
end

% Calculate K A 2 oa
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

K _A_2oa = zeros(1,size header(1));
for i=l:sizeheader(1)

if i==1
K A 2 oa(i) =

(1/(1/KA_2(inputs)^0.5+1/K_A_2(riserbranch index(i))^0.5))^2;
else

K A 2 oa(i) = (1/(1/K_A_2(riser branch index(i)-
l)^0.5+1/K_A_2(riserbranch index(i))^0.5) )A 2;

end
end

% Calculate mfr seg oa
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%0

mfr-seg oa = zeros(2,size header(1));
for i=1:sizeheader(1)

if i==1
mfr_segoa(1,i) =

mfrtotalseg(3,i)*(K_A_2_oa(i)/K

mfrsegoa(2,i) =
mfrtotalseg(3,i)*(K_A_2_oa(i)/K

else
mfrsegoa(1,i) =

mfr total seg(3,i)*(KA_2_oa(i)/K
mfr_seg_oa(2,i) =

mfr_totalseg(3,i)*(K_A_2_oa(i)/K
end

end

%cw=1, ccw=2

_A_2(riser branch index (i)) ) ^0. 5;

_A_2 (inputs) ) ^0. 5;

_A_2(riserbranchindex(i)))^0.5;

_A_2(riser branch index(i)-1))^0.5;

9%%%%%%% %%%%%%%%%%%%%%%%%%

% Calculate mfr seg temp

mfr_segb = zeros (1,inputs);
mfrsegtemp = zeros(1,inputs);
for i=1:sizeheader(1)

if i==1
for j=riser branch index(i):stagbranch index(i)

mfrseg temp(j) =
mfr_seg_oa(1,i)*(K_A_ 2(riserbranch index(i))/K_A_2(j))^0.5;

end

%1: 15

for
j=stagbranchindex(max(s ize(stagbranchindex)) )+1:inputs %164:180

mfr seg_temp(j) =
mfrseg_oa(2,i)*(KA 2(inputs)/KA_2(j))^0.5;

end
else

for j=riser branch index(i):stag_branch index(i) %38:60

312



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

mfrseg_oa(1,i)

mfrsegoa(2,i)

end

mfr_seg_temp(j) =
*(KA_2(riser branchindex(i))/K_A_2(j))^0.5;
end
for j=stag branchindex(i-1)+1:riser branchindex(i)-1 %16:37

mfr_seg_temp(j) =
*(K_A_2(riser branch index(i)-1)/K_A_2(j))^0.5;
end

end

% Calculate mfr seg b

for i=1.:size header(1)
if i==1

for j=stagbranchindex(max(size(stag_branch index)))+1 %164
mfr seg_b(j) = mfr seg_temp(j);

end
for

j=stag_branch index(max(size(stagbranchindex)) )+2:inputs %165:180
mfr_seg_b(j) = mfrsegtemp(j)-mfr seg_temp(j-1);

end
for

end
for

end

j=stagbranchindex(i) %15
mfr segb(j) = mfrseg_temp(j);

j=stagbranchindex(i)-1:-1:riserbranch index(i) %14:1
mfr_seg b(j) = mfr_seg_temp(j ) -mfr seg_temp(j+1);

else
for j=stag_branchindex(i-1)+1 %16

mfrsegb(j) = mfr_seg_temp(j);
end
for

end
for

end
for

end

j=stag_branchindex(i-1)+2:riserbranchindex(i)-1 %17:37
mfr_seg_b(j) = mfr_seg_temp(j)-mfr_seg_temp(j-1) ;

j=stagbranchindex(i) %60
mfrsegb(j) = mfr seg temp(j);

j=stag_branchindex(i)-1:-1:riserbranch index(i) %59;38
mfr_seg_b(j) = mfr_seg_temp(j)-mfrse g_temp(j+1);

end
end

% Calculate mfr seg h
%%0%%%%%% %%%%%00 1090 9%9C 0

mfr segh = zeros(1,inputs);
for i=1:sizeheader(1)

if i==1
for j=stagbranch-index(i) %15

mfr_seg_h(j) = mfrseg_b(j);
end
for j=stag_branchindex(i)-1:-1:riserbranchindex(i) %14;1

mfrsegh(j) = mfrsegb(j)+mfr_seg h(j+1);

313



Center for Ocean Engineering 1 1EMassachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

end
for j=stagbranch index (max (size (stag_branch index))) +1 %164

mfrseg_h(j) mfr segb(j);
end
for

j=stagbranchindex(max(size (stag_branchindex)) )+2:inputs %165: 180
mfr-seg_h(j) = mfr_seg_b(j)+mfrseg_h(j-1);

end
else

for j=stagbranch index(i) %60
mfr-segh(j) = mfr segb(j);

end
for j=stag_branch index (i) -1:-1:riserbranchindex (i) %59:38

mfrseg_h(j) = mfr_segb(j)+mfrseg_h(j+1);
end
for j=stag_branchindex(i-1)+1 %16

mfr-segh(j) = mfrsegb(j);
end
for j=stag_branchindex (i-1) +2:riserbranch index (i) -1 %17:37

mfr-segh(j) = mfrsegb(j)+mfrseg_h(j-1);
end

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate V SI b seg
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:inputs

V_SI_b_seg(i) =

mfr_seg_b (i) /area_b_unordered (branch-order (1, 1, i) )/rho;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate V SI h seg
%%%%%%%%%%%%%%%%666%%%o%%%%%
for i=1:inputs

V SI h seg(i) = mfr seg_h (i)/areah/rho;
end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate loss coefficient for branches due to friction, bends,
% valves, entrance and exit effects (in order wrt header)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

K_loss entrance b seg = zeros(l,inputs);
K loss exit_b seg = zeros(1,inputs);
for i=1:inputs

f_b_seg(i) =

frictionfactor(DSI_b(branchorder(1,1,i)),V_SIb_seg(i),k,nu,epsilon,rho,cp

); %ordered

K_lossfriction_bseg (i)=f_b-seg (i) *length_b (branchorder (1, 1, i) ) /DSI_b (bran
ch order(1,1,i)); %due to pipe length

314



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'IiF Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

K loss bend_90_b_ seg(i) =
bends_90_b (1,branchorder(1,1,i))*(f_bseg(i)*pi()/2*r_d_seg(i)+(0.10+2.4*f_b

seg(i))*sin(pi()/4)

+6.6*f_b_seg(i)*( (sin(pi()/4))^O.5+sin(pi()/4))/r_d_seg(i)^(4*pi()/2/pi() ));

%due to 90 bends
K_loss_gate_bseg(i) = gate valve_b(branchorder(1,1,i))*0.2; %due to

gate valves
K_loss_globe_bseg(i)

to globe valves
= globe valve b(branchorder(1,1,i))*3.5; ',due

K_loss b_seg(i) =
K_lossfriction_b_seg(i)+Klossbend_90_b_seg(i)+Kloss gate_b_seg(i)+Kloss
globe_b_seg(i)+K losshx_b_unordered(branchorder(1,1,i));

Cyc(i) = 1-0.25*(DSIb(branchorder(1,1,i))/DSIh)^1.3-(0.11*r d3-
0.65*r d3^2+0.83*rd3^3)*D_SIb(branchorder(1,1,i))^2/DSI h^2;

end

Calculate entrance and exit effects for branch

Keq = 0.57-1.07*r d3A0.5-2.13*r d3+8.24*r d3A1.5-
8.48*rd3^2+2.9*r_d3^2.5;

Cxc = 0.08+0.56*r d3-1.75*r d3A2+1..83*r d3^3;
Cm = 0.23+1.46*r d3-2.75*rd3^2+1.65*r_d3^3;
for j=1:sizeheader(1)

if j==1
for i=riser branch index(j):stagbranch index(j) %cw 1:15

K_lossentrance_b_seg(i) = (0.81-
1.13*mfrsegh(i)/mfrsegb(i)+mfrsegh(i)^2/mfrseg_b(i)A2)*DSI b(brancho
rder(1,1,i))A4/DSI hA4 ...

+1.12*D SI b(branchorder(1,1,i))/DSIh-
1.08*D SI b(branch order(1,1,i))A3/DSI hA3 + Keq;%due to entrance; assume
r/d3 = 0.1

K loss exit b seg(i) = 2*Cyc(i)-
1+DSIb(branch_order(1,1,i))^4/D_SI_h^4*(2*(Cxc-1)+2*(2-Cxc-
Cm) *mfr_seg_h(i)/mfr_seg_b(i)-0.92* ...

mfrseg_h(i)A2/mfrseg_b(i)A2);%due to exit; assume r/d3
= 0.1

end
for i=inputs:-1:stagbranchindex(max(size(stagbranch index)))+1

%ccw 180:164
K loss entrance b seg(i) = (0.81-

1.13*mfr_seg_h(i)/mfr_seg_b(i)+mfr_seg_h (i)A 2/mfr_seg_b(i)^2)*DSI b(branch_o
rder(1,1,i))^4/DSI_hA4 ...

+1.12*DSIb(branch_order(1,1,i))/D_SI_h-
1.08*D SI b(branch order(1,1,i))^3/DSI hA3 + Keq;%due to entrance; assume
r/d3 = 0.1

K_lossexit b_seg(i) = 2*Cyc(i)-
1+D SI b(branch order(1,1,i))A4/DSI h^4*(2*(Cxc-1)+2*(2-Cxc-
Cm) *mfr segh (i) /mfr_segb (i) -0.92* ...

mfrseg_h(i)^2/mfr_seg_b(i)^2);%due to exit; assume r/d3
= 0.1

end
else

315



Center for Ocean Engineering EEE Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering ME Cambridge, Massachusetts 02139-4307

for i=riserbranchindex(j):stag_branch index(j) %cw 38:60
K loss entrance b seg(i) = (0.81-

1.13*mfrseg-h(i)/mfrseg b(i)+mfr_seg_h(i)^2/mfrseg b(i)^2)*DSI b(branch o
rder(1,1,i))A4/DSI hA4 ...

+1.12*DSI_b(branchorder(1,1,i))/DSI h-
1.08*DSI b(branchorder(1,1,i))^3/DSI h^3 + Keq;%due to entrance; assume
r/d3 = 0.1

K_lossexit b seg(i) = 2*Cyc(i)-
1+D_SI_b (branchorder(1,1,i))^4/D SI hA4*(2*(Cxc-1)+2*(2-Cxc-
Cm)*mfrsegh(i)/mfrsegb(i)-0.92* ...

mfrsegh(i)^2/mfrsegb(i)^2);%due to exit; assume r/d3
= 0.1

end
for i=riser branchindex(j)-1:-1:stagbranchindex(j-1)+1 %ccw

37:16

K loss entrance bseg(i) = (0.81-
1.13*mfr_s eg_h(i)/mf r_seg_b(i)+mfr_seg_h(i)^2/mfr_seg_b(i) ̂2)*D_SI b(branch_o
rder(1,1,i))^4/DSI hA4 ...

+1.12*DSI b(branchorder(1,1,i))/D_ SI h-
1.08*DSI b(branchorder(1,1,i))^3/DSIh^3 + Keq;%due to entrance; assume
r/d3 = 0.1

K_loss exit b seg(i) = 2*Cyc(i)-
1+DSI b(branch order(1,1,i)) A4/DSI hA4*(2*(Cxc-1)+2*(2-Cxc-
Cm)*mfr segh(i)/mfr_segb(i)-0.92* ...

mfrsegh(i)^2/mfrsegb(i)^2);%due to exit; assume r/d3
= 0.1

end
end

end

% Calculate Kloss b_seg and Kloss b in-seg

K_loss_b in seg = zeros(1,inputs);
for i=l:inputs

K_loss_b_seg(i) =

K_lossfriction_b_seg(i)+K lossbend_90_b_seg(i)+Kloss gate-b-seg(i)+..

K lossglobe b seg (i)+K loss hx b unordered (branchorder (1, 1, i) ) +K loss entra
nce_b_seg(i)+K_loss exitb_seg(i);

K loss_b_inseg(i) =
K_lossfriction b_seg(i)+Klossbend_90_bseg(i)+K_lossgate-b-seg(i)+

K_lossglobe_b_seg(i)+K_losshx_b_unordered(branchorder(1,1,i))+Kloss entra
nce-b_seg(i)+0*K_loss exit-bseg(i);

end

% To avoid getting imaginary velocities, ensure Kloss is positive

for i=1:inputs
if Klossb_seg(i) <= 0

K lossb_seg(i) = 0.01; %negligible loss coefficient
end
if Kloss_b-in seg(i) <= 0

316



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering I'Iii~ Massachusetts institute of Technology

77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

K_loss_b_inseg(i) = 0.01; %negligible loss coefficient

end
end

% Calculate loss coefficient for supply header due to friction, bends,
% valves, entrance and exit effects

K loss entrance h seg = zeros(1,inputs);
for i=1:inputs

f_h_seg(i)=friction factor(DSIh,VSI_h_seg(i),k,nu,epsilon,rho,cp);
K_loss friction_h_seg(i)=f_h_seg(i)*length h(1,2,1)/DSI h; 9due to

pipe length based on first branch Darcy friction factor
K_lossbend_90_h_seg(i) =

bends 90_h(1,2,1)*(f_h-seg(i)*pi()/2*r_d_seg(i)+(0.10+2.4*f h seg(i))*sin(pi(

)/4) ...

+6.6*f h seg(i)*((sin(pi()/4))^0.5+sin(pi()/4))/r-d-seg(i)^(4*pi()/2/pi()));
%due to 90 bends

K_lossgate_h_seg(i) = gatevalveh(1,2,1)*0.2;
K loss globe h(i) = globe valve h(i)*3.5; %no globe valves

considere

end

d
K loss-check h (i) = check valve-h (i-)*2; % ,no check valves considered

%%%%%%%%%%%%%%%%%%

Calculate entrance effects for header segments

for j=1:sizeheader(1)
if j==1

for i=stagbranchindex(j) %cw 15
K loss entrance h seg(i) = 0;

end
for i=riser branch index(j):stag branch index(j)-1 %cw 1:14

K lossentrance-h-seg(i) = 0.62-
0.98*mfrsegh(i)/mfrsegh(i+1)+0.36*(mfrsegh(i)/mfrsegh(i+l))^2+

0.03*(mfr-seg-h(i+1)/mfrseg-h(i))^6; %revisit mfr seg h
indices

end
for i=stag branch indexn(max(size(stag branch index)))+1 %ccw 164

K_lossentrance-h-seg(i) = 0;
end
for i=inputs:-1:stagbranchindex (max(size(stagbranchindex)) )+2

%ccw 180:165
K_lossentrance_h_seg(i) = 0.62-

0.98*mfrsegh(i)/mfr_seg_h(i-1)+0.36*(mfr_seg_h(i)/mfrsegh(i-1))^2+
0.03*(mfr seg h(i-1)/mfr seg h(i))^6; %revisit mfr seg h

indices
end

else
for i=stag branchindex(j) %cw 60

K_loss entrance_h_seg(i) = 0;
end

317



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering i'i~r Massachusetts Institute of Technology

77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

for i=riserbranchindex(j):stagbranch index(j)-l %cw 38:59
K_lossentranceh_seg(i) = 0.62-

0.98*mfrsegh(i)/mfr_seg_h(i+l)+0.36*(mfr_segh(i)/mfr_seg_h(i+1))^2+
0.03*(mfr_seg_h(i+1)/mfrseg_h(i))^6; %revisit mfr_ seg h

indices
end
for i=stagbranch index(j-1)+1 %ccw 16

K lossentranceh_seg(i) = 0;
end
for i=riser branchindex(j)-1:-1:stag branch index(j-1)+2 %ccw

37: 17
K_lossentrance hseg(i) = 0.62-

0.98*mfr seg_h(i)/mfrseg_h(i-1)+0.36*(mfr_seg h(i)/mfrsegh(i-1))^2+..
0.03*(mfr_seg_h(i-1)/mfr segh(i))^6; %revisit mfr seg h

indices

end
end

end
for i=1:inputs

K_loss_h_seg(i) =

K loss friction h seg(i)+K loss bend_90_h_seg(i)+K lossgate_h_seg(i)+K loss_
entrance h_seg(i);%+ ...

% K lossglobe _h(i)+Kloss check h(i);
end

% To avoid getting imaginary velocities, ensure K loss is positive

for i=l:inputs
if Kloss_hseg(i) <= 0

K_loss_hseg(i) = 0.01; %negligible loss coefficient
end

end

%Calculate K loss rh due to friction, bends, valves

K_lossentrance-rh seg = zeros(1,inputs);
for i=1:inputs

%K loss frictionrh(i)=f_h (i)*length rh(i)/DSI h; %due to pipe
length based on first branch Darcy friction factor

%K lossbend_90 rh(i) =
bends_90_rh(i)*(f h(i)*pi(/2*r d(i)+(0.10+2.4*ft h(i))*sin(pi(/4) ...

+6.6*f h(i)*((sin(pi()/4))^O.5+sin(pi()/4))/r d(i)^(4*pi()/2/pi()
90 bends

)); %due to

%K lossbend 180 rh(i) =
bends_180 rh(i)*(f h(i)*pi()*rd(i)+(0.10+2.4*f h(i))*sin(pi()/2) ...

+6.6*f h(i)*((sin(pi()/2))^0.5+sin(pi()/2))/r d(i)^(4*pi()/pi())); %due to
180 bends

%K loss gate rh(i) = gate valve rh(i)*0.2;
%K loss globe rh(i) = globe valve rh(i)*3.5;

end

318



Center for Ocean Engineering * Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

% Calculate entrance effects for header segments

%%%%%%%%%%(%%%%%%%%%%%

for j=1:sizeheader(1)
if j==1

for i=stag_branchindex(j) %cw 15
K_lossentrancerhseg(i) = 0;

end
for i=riser branch index(j):stag branch index(j)-1 %cw 1:14

K_lossentrancerhseg(i) = 0.62-
0.98*mfr segh(i)/mfrsegh(i+1)+...

0.36*(mfr seg h(i)/mfr segh(i+1))^2+0.03*(mfr segh(i+1)/mfr segh(i))^6;

%exit

end
for i=stag branch index(max(size(stag_branch index)))+1 %ccw 164

K lossentrancerhseg(i) = 0;
end
for i=inputs:-1:stagbranchindex(max(size(stagbranchindex)))+2

%ccw 180:165
K_lossentrancerh_seg(i) = 0.62-

0.98*mfrsegh(i)/mfrseg_h(i-1)+...
0.36*(mfr seg-h(i)/mfrseg_h(i-1))^2+0.03*(mfrsegh(i-

1)/mfr_seg_h(i))^6; %exit

end
else

for i=stag branch index(j) %cw 60
K_lossentrance rhseg(i) = 0;

end
for i=riser branch index(j):stagbranch index(j)-1 %cw 38:59

K_lossentrancerhseg(i) = 0.62-
0.98*mfr_seg h(i)/mfrseg_h(i+1)+...

0.36*(mfrsegh(i)/mfr_seg_h(i+1))^2+0.03*(mfrsegh(i+1)/mfrseg_h(i))^6;
"exit

end
for i=stagbranch index(j-1)+1 %ccw 16

K_lossentrancerhseg(i) = 0;
end
for i=riserbranchindex(j)-1:-1:stagbranchindex(j-1)+2 %ccw

37:17
K_lossentrancerh_seg(i) = 0.62-

0.98*mfrsegh(i)/mfrsegh(i-1)+...
0.36*(mfrsegh(i)/mfr_seg_h(i-1))^2+0.03*(mfr_segh(i-

1)/mfrsegh(i))^6; %exit

end
end

end
for i=1:inputs

K loss rh seg(i) = K loss h_seg(i)-
K_lossentrance_h_seg(i)+Klossentrancerhseg(i);

%K lossrhseg(i) =
K loss friction rh(i)+K loss bend 90_rh(i)+K loss bend_180_rh(i)+K loss gate
rh(i)+ . ..

319



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

% Klossglobe rh(i)+K_lossentrancerh(i);
end

% To avoid getting imaginary velocities, ensure K loss is positive
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:inputs
if Klossrhseg(i) <= 0

K_lossrhseg(i) = 0.01; %negligible loss coefficient
end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate K b/A b^2 and K h/A h^2 for branches
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:inputs
K_bA b_2_seg(i)

K loss_b_seg(i)/area_b_unordered(branchorder(1,1,i))^2;
end
for i=1:inputs+l

K_h A h 2 seg(i) = (K loss_hseg(i)+K-loss rh-seg(i))/area h^2;
end

% Calculate K A 2

K A 2 = zeros(1,inputs);
for i=1:sizeheader(1)

if i==1
for j=stagbranch index(max(size(stag branch__index) ) ) +1 %164

K_A_2 (j) = K_ bAb_2_seg(j);% + K_hA h 2_ seg(j);
end
for j=stagbranch index(max(size(stag branch index)))+2:inputs

%165: 180
K_A_ 2(j) = (1/(1/K_bA b_2_seg(j)^0.5+1/KA_2(j-

1)^0.5))^2;%+K hA h 2 seg(j);
end
for j=stag_branch index(i) %15

K A 2(j) = K bA b_2_seg(j);% + K
end

h A h 2 seg(j);

for j=stag_branchindex(i)-1:-1:riserbranchindex(i) %1:14
K A 2(j) =

(1/(1/K_b_A b 2_seg(j)^0.5+1/K_A_2(j+1)AO.5))A2;%+K h A h 2_seg(j);
end

else

1)A0 .5) )^2;

for j=stag_branch index(i-1)+1 %16
K_A _ 2(j) = K bA b_2_seg(j);% + K hA h 2 seg(j);

end
for j=stagbranch index(i-1)+2:riserbranch index(i)-1 %17:37

K_A 2(j) = (1/(1/K_bA b 2 seg (j)A0 .5+1/KA2(j-
%+K h A h 2 seg(j);
end
for j=stag branch index(i) %60

K A 2(j) = K bA b_2_seg(j);% + K hA h 2 seg(j);

320



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

end
for j=stagbranchindex(i)-1:-1:riserbranchindex(i) %59:38

K_A_2(j) =
(1/(1/K_b_A_b_2_seg(j)A0.5+1/K_A_2 (j+1)AO.5) )A2;%+K h A h 2 seg(j);

end
end

end

%0%%% %%%%%% % %%%%%%%%%%%% %%%

% Calculate K A 2 oa

K A 2 oa = zeros(l,size header(1));
for i=1:sizeheader(l)

if i==1
K A 2 oa(i) =

(1/(1/K_A_2 (inputs)^0.5+1/KA_2(riserbranch index(i))^0.5))^2;

else
K A 2 oa(i) = (1/(l/K_A_2(riserbranch index(i)-

1)A0. 5+1/K_A_2 (riser branch index(i) )A0 .5) )A 2;
end

end

%%%%%%%%%% % % % %
% Calculate mfr seg oa

mfr_segoa = zeros(2,sizeheader(1)); %cw=1,
for i=1:sizeheader(1)

if i==1
mfr_segoa(1,i) =

mfrtotalseg(3,i)*(K_A_2_oa(i)
mfrsegoa(2,i) =

mfrtotal_seg(3,i)*(K_A2_oa(i)
else

mfrsegoa(1,i) =

mfr total seg(3,i)*(K A 2_oa(i)
mfr_segoa(2,i) =

mfr totalseg(3,i)*(K_A2_oa(i)
end

ccw=2

/K_A_2(riserbranchindex(i)))^0.5;

/K_A_2(inputs))^0.5;

/K_A_2(riser branchindex(i)))^0.5;

/K_A_2(riser branch index(i)-l))^0.5;

end

% Calculate mfrsegtemp

mfr seg b = zeros(1,inputs);
mfr seg temp = zeros(l,inputs);
for i=l:sizeheader(1)

if i==1
for j=riserbranchindex(i) :stagbranchindex(i)

mfrseg temp(j) =
mfrsegoa(1,i)*(K_A_2(riser branch index(i))/K_A_2(j))^0. 5;

end

1:15

for j=stagbranch index(max (size (stagbranch index)) ) +1:inputs
%164 : 180

321



Center for Ocean Engineering *EE Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

mfr_segtemp(j) =
mfrsegoa(2,i)*(KA_2(inputs)/KA2(j))^0.5;

end
else

for j=riser branch_index(i):stag_branchindex(i) %38:60
mfr_segtemp(j) 

mfr-seg-oa(1,i)*(K_A_2(riserbranchindex(i))/K_A_2(j))^0.5;
end
for j=stag branch index(i-1)+l:riser branch index(i)-1 %16:37

mfrseg_temp(j)
mfr_seg_oa(2,i)*(KA_2(riser branch index(i)-l)/K_A 2(j))^O.5;

end
end

end

% Calculate mfrseg
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:sizeheader(l)

if i==l
for j=stag_branchindex(max(size(stag_branch index)))+l %164

mfrseg_b(j) = mfrseg_temp(j);
end
for j=stag_branchindex (max (size (stagbranchindex) ))+2: inputs

%165:180
mfr_seg_b(j) = mfr_seg_temp(j)-mfr seg_temp(j-1);

end
for j=stag_branchindex(i) %15

mfrseg_b(j) = mfrsegtemp(j);
end
for j=stagbranchindex(i)-1:-1:riserbranchindex(i) %14:1

mfr_seg_b(j) = mfr_seg_temp(j)-mfr_seg temp(j+l);
end

else
for j=stag_branchindex(i-1)+l %16

mfr_seg_b(j) mfrseg_temp(j);
end
for j=stagbranchindex(i-1)+2:riser branchindex(i)-l %17:37

mfr_seg_b (j) = mfr_seg_temp(j)-mfr_seg temp(j-1);
end
for j=stag branch index(i) %60

mfrseqb(j) = mfrsegtemp(j);
end
for j=stag_branch index(i)-1:-1:riser branch index(i) %59;38

mfr_seg_b(j) = mfr_seg temp(j)-mfr seg_temp(j+l);
end

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate mfr seg h
%%%%%l%%%%%%%%%%%%%%% %%%%%

mfrseg_h = zeros(l,inputs);
for i=l:sizeheader(l)

if i==1

322



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program * * 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering U U Cambridge, Massachusetts 02139-4307

for j=stagbranchindex(i) %15
mfr segh(j) = mfr seg b(j);

end
for j=stagbranchindex(i)-1:-l:riserbranchindex(i) %14;1

mfr_seg_h(j) = mfr_seg_ (b(j)+mfr_seg_h(j+l);
end
for j=stag_branchindex(max(size(stagbranchindex)))+1 %164

mfrseg_h(j) mfrsegb(j);
end
for j=stag branch index(max(size(stagbranch index)))+2:inputs

%165:180
mfrsegh(j) = mfrseg-b(j)+mfr-segh(j-1);

end
else

for j=stagbranchindex(i) %60
mfr_seg_h(j) = mfrsegb(j);

end
for j=stag branch index(i)-l:-l:riser branch index(i) %59:38

mfr_seg_h(j) = mfr_seg_b(j)+mfr_seg_h(j+l);
end
for j=stag_branchindex(i-1)+l %16

mfr_seg_h(j) = mfr_seg_b(j);
end
for j=stag_branchindex(i-l)+2:riserbranchindex(i)-1 %17:37

mfr segh(j) mfr segb(j)+mfr segh(j-1);
end

end
end

% Calculate V SI b seg

for i=1:inputs
V_SI_b_seg(i) =

mfrseg_b(i)/area_b_unordered(branchorder(1,1,i))/rho;
end

% Calculate V SI h seg

for i=l:inputs
V_SI_h_seg(i) = mfrseg_h(i)/areah/rho;

end

% Code for simple network example
%%%%%%%9-%%%%%%%%%%%%%%%%%%%%%%

%temp = zeros(3,size header(l));
%for i=l:size _header(1)
% if i==1
% for j=stagbranch index(i):-1:riserbranch index(i) %15:1
% temp(li) temp(l,i)+l/(K b_A b 2_seg(j))^0.5;
% temp(3,i) = temp(3,i)+1/(K b_A_b_2_seg(j))^0.5;
% end

323



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

for j=stagbranch index(max(size(stag branch index)))+1:inputs

temp (2, i)
temp (3,i)

= temp(2,i)+1/(K b A b 2 seg(j))^0.5;
= temp(3,i)+1/(K b A b 2seg(j))^0.5;

for j=stag branch index(i):-1:riser branch index(i)

% temp(1,i) = temp(1,i)+1/(K b A b
% temp(3,i) = temp(3,i)+1/(K bA b_
% %temp(l) =

temp(l)+1/(K b A b 2_seg(j)+K h A h 2 seg(j))^0.5;
% %temp(3) =

2 seg(j))^0.5;
2_seg(j))^O.5;

temp(3)+1/(K b A b_2_seg(j)+K hA h_2_seg(j))^0.5;
% end
% for j=stag_branchindex(i-1)+1:riser branch index(i)-l %16:37
% temp(2,i) = temp(2,i)+1/(K bA b 2_seg(j) )A0 .5;
% temp(3,i) = temp(3,i)+/(K-b A b 2_seg(j))^0.5;
% %temp(2) =

temp(2)+1/(K b A b 2_seg (j)+K h A h_2_seg(j))^0.5;
% %temp(3) = temp(3)+1/(K_bA b_2_seg(j)+K h A h 2 seg(j) )A0.5;
% end
% end
%end
% %K A 2 oa = zeros(3,size header(1));

% KA_2_oa = (1./temp) .^2;

% Calculate mfr

%mfr b seg = zeros(1,inputs);
%mfr b seg temp = zeros(2,size header(l));
%for i=1:size header(1)
% mfr b_seg_temp(1,i)

(mfr totalseg(l,i)+mfr total seg(2,i))*(KA2oa(3,
% mfr_b_segtemp(2,i) =

(mfrtotal seg(l,i)+mfr total seg(2,i))*(K A_2_oa(3,
%end
%for i=l:size header(l)
% if 1=-i

i)/K A 2 oa(1,i))^0.5;

i)/KA 2 oa(2,i))^0.5;

for j=stag branch index(i):-l:riser branch index(i)
% mfr-b seg(j) =

mfr_b seg temp (1, i)* (K A 2 oa (1, i) /K bA b_2_seg (j) )^0.5;
end
for j=stag branch index (max (size (stagbranch index)) )+1: inputs

%164: 180
% mfr b seg(j)

mfr_b seg temp(2,i)*(K A_2_oa(2,i)/K b A b_2 seg(j))^0.5;
% end
% else
% for j=stagbranchindex(i):-1:riser branch _index(i)
% .mfr b seg(j) =

mfr b seg temp(1,i)*(KA 2_oa(1,i)/K bA b 2_seg(j))^0.5;
% end

% 60: 38

for j=stagbranch index(i-1)+1:riser branch index(i)-1 %16:37

324

%164:180

%

%60: 38

end
else

% 60: 39

%15: 1

%



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

% mfr b seg(j)
mfrb b seg temp(2,i)*(KA_2_oa(2,i)/K bA b_2_seg(j))^0.5;

% end

% end

%end

end

% Determine least and greatest branch velocities

min vel b = min(VSI b seg)
max velb = max(VSI_bseg)
min vel h = min(VSI_h_seg)
V_SI_h_seg(181) = 0;

max vel h = max(VSI_h-seg)

Step 9: Calculate branch inlet temperatures

Tcolddelta = zeros(1,inputs);
Tcolddeltacum = zeros(1,inputs);
Tcolddelta b = zeros(1,inputs);
Tcold = (44-32)*5/9;

g_mps2 9.81*ftper-m;

for i=1:inputs
H_l_h(i) = Kloss h seg(i)*V_SI_h_seg(i)^2/2/gmps2;
Tcolddelta(i) = (H_1_h(i)/778.169/1.0025)*10/18;
for j=i:inputs

Tcolddeltacum(j) = Tcold deltacum(j)+Tcold delta(i);
end

end

Thot delta b = zeros(1,inputs);
for i=l:inputs

H 1 b in(i) = Kloss_b_inseg(i)*VSI_b_seg(i)^2/2/gmps2;
H-l-b(i) = Kloss_b seg(i)*VSI_b_seg(i)^2/2/g-mps2;
Tcolddelta_b (i) = H lb -in(i)/778.169262/1.0025*10/18;
Thotdelta_b(i) = H_1_b(i)/778.169262/1.0025*10/18;

end

Tcold h = zeros(1,inputs);
Tcoldb = zeros(1,inputs);
Thoth = zeros(1,inputs);
Thotb = zeros(l,inputs);
for i=1:(inputs)

Tcold_h(i) = Tcold + Tcolddelta cum(i);
Tcold b(i) = Tcold h(i) + Tcold delta b(i);
Thotb(i) = Tcold_h(i) + Thotdelta b(i);

end

% Calculate temperatures

325



Center for Ocean Engineering 1 1EMassachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

for i=1:inputs
order = branchorder(1i,,i);
hc_b_s eg(i) = calc_hc(D_SI_b_ordered(1,1,i) ,V_SIbseg(i) , k,nu, rho, cp)
Thot b seg(i) =.Q_ordered(1,1,i)/(mfr_seg_b(i)*cp)+Tcold_b(i); %Celsius
Tave_b_seg(i) = (Tcold b(i)+Thot_b_seg(i))/2;
T1_b seg(i) = Tave_b_seg(i) +

Q_ordered(1,1,i)*(hxchgrarea_pri(order)*0.0001*hc b ordered(1,1,i))^-1;
%Inner wall temp

if strcmp(Hxchgr_Type(order), 'fp')
T2_bseg(i) = Ti b seg(i) +

Q_ordered(1,1,i)*hxchgrplate_thick(order)/100*(hxchgrareapri(order)*0.0001
*hxchgrplatek(order))^-1; %Inner wall temp

else
Q_per_1_seg(i) =

Q_ordered(1, 1,i) *hxchgrtube diam(order) *pi (/100/ (hxchgrarea pri (order) *.0
001);

T2_bseg(i) = T1_b seg(i) +
Q-per_1_seg(i) *log( (hxchgrtubediam(order) /2+hxchgrtubethick(order) )/(hxch
gr tubediam(order)/2))/(2*pi()*kcopper); %Outer wall temp

end
Telec_b_aveseg(i) = (T2_b_seg(i) +

Q_ordered(1,1,i)/(hxchgrareasec(order)*0.0001*hxchgrhc(order)));
%Electrical component temp

delta_T_secseg(i) =

Q_ordered(l, 1,i) /hxchgrfluidmfr (order) /hxchgrcp(order);
Telec_b_inseg(i) = Telec_b_ave seg(i)+delta_T_sec-seg(i)/2;
Telec_b_seg(i) = Telec_b_aveseg(i)-deltaT_secseg(i)/2;

end

fprintf('Fifth Step: Refined Inlet Temperatures\n')
for i=l:inputs

fprintf('Load: %3.Of Q(W): %10.4f Diameter(m): %6.5f Velocity(m/sec):
%6.4f Mass flow rate(kg/s): %6.4f Thot(C): %7.4f Telec(C): %8.4f\n' ...

,i,Q(branchorder(l,i)), DSI b(branchorder(1,i)) ,V_SIb-seg(i)

,mfrseg_b(i), Thot_b_seg(i), Telec-b-seg(i))
end

%% Step 10: Determine chiller capacity needed and select chillers

Thot h = Thot_h+273.15
Thot b = Thotb+273.15
for i=inputs-1:-1:1

%Thoth(i) = (Thot h(i+l)*mfr

%Thot h(i) =
(Thot h(i+1)*mfr h(i+l)+Thot b(i)*mfr b seg(i))/(mfr h(i+1)+mfr b seg(i))+...

% K lossrh(i)*Vb(i+l)^2/2/g mps2/778.169/1.0025*10/18;
end
tempmfr = zeros(1,180);
for j=1:sizeheader(1)

if j==1
for i=stag branchindex(j) %15

temp mfr(i) = Thot b seg(i)*mfr_seg_b(i);
end

326



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

164:

for i=(stagbranchindex(j)-1):-1:riser branch index(j) %ccwl4:1
temp mfr(i) = temp_mfr(i+1)+Thot_b_seg(i)*mfr_seg_b(i);

end
for i=(stag branchindex(max(size (stag branch index) ) )+1) %164

tempmfr(i) = Thot b seg(i)*mfrseg b(i);
end
for i=(stagbranchindex(max(size(stagbranch index)))+2):inputs %cw

180
temp mfr(i) = Thot_b_seg(i)*mfr_seg_b(i)+temp-mfr(i-1);

end
else

for i=stag_branchindex(j) % 64
tempmfr(i) = Thot b_seg(i)*mfr_segb(i);

end
for i=(stag branchindex(j)-1):-1:riser branchindex(j) %ccw 59:38

temp mfr(i) = tempmfr(i+1)+Thot_b_seg(i)*mfr_seg_b(i);
end
for i=stagbranchindex(j-1)+1

tempmfr(i) = Thot_b seg(i)*mfr seg_b(i);

end
for

end

i=(stagbranchindex(j-1)+2): (riserbranchindex(j)-1)
temp mfr(i) = Thot_b_seg(i)*mfrsegb(i)+temp_mfr(i-1);

%cw 16:37

end
end
temp mfrriser = zeros(1,sizeheader(1));
Tchillerhot = zeros(1,size_header(1));
Tchillermfr = zeros(1,size header(1));
for i=1:size header(1)

if i==1
temp mfrriser(i)
Tchillerhot(i) =
Tchillermfr(i) =

else

= temp mfr(1)+temp mfr(inputs);
tempmfrriser(i)/(mfrseg_h(1)+mfrseg_h(inputs));
mfrseg_h(1)+mfrseg_h(inputs);

tempmfrriser(i) =
temp mfr(riserbranchindex(i) )+temp-mfr(riserbranh_index(i) -1);

Tchillerhot(i) =
temp mfrriser(i)/(mfr_segh(riser branchindex(i))+mfrseg_h(riserbranch in
dex(i)-1));

Tchillermfr(i) =

mfr segh(riser branch index(i))+mfr segh(riser branch index(i)-1);
end

end
Tchillerhot
Tchiller mfr

Tchiller delta = zeros(1,sizeheader(1));
Tchiller cap kW = zeros(1,size header(1));
for i=1:size header(1)

Tchiller delta(i) Tchillerhot(i)-Tcold;
Tchiller capkW(i) = Tchillermfr(i)*Tchillerdelta(i)*cp/1000; %kg-K/sec

end

Tchillercap tons = Tchiller capkW*0.284345136; %in tons

327



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 1 1I77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

fprintf ( '\n\n----------------------------------------------------------------
-------------------- \n')
fprintf('Report 1: Minimum Chiller Capacity\n')
fprintf('--------------------------------------------------------------------

---------------- \n')
for i=l:size header(l)

fprintf('Chiller %d Chiller Capacity(tons): %10.4f Chiller
Capacity(kW): %10.4f\n', i, Tchillercaptons(i),Tchillercap_kW(i))
end
fprintf(' ----------------------------------------------------------------
---------------- \n')
fprintf('Total Chiller Capacity(tons): %10.4f Chiller Capacity(kW):
%10.4f\n', sum(Tchiller cap_tons),sum(Tchiller_cap_kW))

% average chiller capacity must be greater than max chiller capacity above
and
% satisfy N-1 criterion, i.e., N-1 chillers have adequate capacity to meet
all
% cooling needs and must be greater than max chiller capacity above
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Determine minimum chiller size
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Min chillers_operational = size header(i)-l;
Min _chiller_cap_kW =
max(max(TchillercapkW),sum(Tchiller capkW)/Minchillers operational);

% Select chillers

chiller capacity = 10*10^20;
chiller index = 1;
chiller dim = zeros(1,3);
chillerout_temp = 0;
chiller P = zeros(1,3);
chillerT = zeros(1,3);
chillerweight = 0;
flag = false;
if strcmp(chiller type,'d') %default

if Num C_ChillerTypes > 0
for j=l:NumCChillerTypes

if Min chillercap_kW < C _Chiller Capacity_kW(j) &&
chillercapacity > CChillerCapacity kW(j)

chillercapacity = CChiller_Capacity_kW (j);
chiller index
flag = true;

end
end
if flag == true

chiller dim = CChillerDim_m (chiller index,:);
chillerouttemp = CChillerOut_TempC(chiller index);
chiller P = C Chiller P MPa(chiller index,:);
chillerT = CChillerTC(chillerindex,:);
chillerweight = CChillerWeight kg (chiller index);

328



Center for Ocean Engineering I - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

chillerrefrig_type = CChiller Type(chiller index);
flag = false;

end
end
if Num_R_Chiller_Types > 0

for j=l:Num R_ChillerTypes
if Min _chillercapkW < RChiller Capacity kW(j) &&

chiller_capacity > R Chiller_Capacity_kW(j)
chillercapacity = R ChillerCapacitykW(j);
chillerindex = j;
flag = true;

end
end
if flag == true

chillerdim = R ChillerDimm(chillerindex,:);
chiller out temp =R Chiller OutTempC(chiller index);
chiller P = R Chiller P_MPa(chillerindex,:);
chillerT = RChiller_T_C(chiller index,:);
chillerweight = R_ChillerWeightkg(chillerindex);
chillerrefrigtype = RChillerType(chiller index);
flag = false;

end
end
if Num S ChillerTypes > 0

for j=l:Num S_ChillerTypes
if Min chillercapkW < SChillerCapacity kW(j) &&

chillercapacity > S_Chiller_Capacity_kW(j)
chillercapacity = SChillerCapacity_kW(j);
chillerindex = j;
flag = true;

end
end
if flag == true

chillerdim = S ChillerDim m(chillerindex,:);
chiller out temp = S Chiller OutTemp_C(chillerindex);
chillerP = S Chiller_P_MPa(chillerindex,:);
chillerT = SChiller_T_C(chiller index,:);
chillerweight = SChillerWeightkg(chillerindex);
chillerrefrigtype = SChillerType(chiller index);
flag = false;

end
end
if Num_0 Chiller_Types > 0

for j=lNum_0_Chiller_Types
if Min _chillercapkW < 0_ChillerCapacitykW(j) &&

chillercapacity > 0_Chiller_Capacity kW(j)
chillercapacity = 0 ChillerCapacity kW(j);
chillerindex = j;
flag = true;

end
end
if flag == true

chillerdim = 0 ChillerDimm(chillerindex,:);
chillerouttemp = 0 ChillerOut_TempC(chillerindex);
chillerP = OChiller P MPa(chiller index,:);

329



Center for Ocean Engineering * oUMassachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

chillerT = OChillerTC(chillerindex,:);
chillerweight = 0 Chiller Weightkg(chiller index);
chiller refrigtype = OChiller_Type(chiller index);
flag = false;

end
end

elseif strcmp(chillertype, 'c') %centrifugal
for j=l:Num_C_ChillerTypes

if Minchillercap < C ChillerCapacity_kW(j) && chiller capacity >
C_ChillerCapacity_kW(j)

chiller_capacity = C_Chiller_Capacity_kW(j);
chiller-index =

end
end

elseif strcmp(chiller_type,'s') %screw
if Num_ SChiller Types > 0

for j=l:Num S Chiller_Types
if Min chiller cap_kW < SChiller Capacity_kW(j) &&

chillercapacity > SChillerCapacitykW(j)
chillercapacity = S_ChillerCapacity kW(j);
chillerindex = j;
flag = true;

end
end
if flag == true

chiller dim = SChillerDim_m(chiller index,:);
chillerouttemp = S ChillerOutTemp_C(chillerindex);
chiller P = S Chiller P_MPa(chillerindex,:);
chiller T = S ChillerT_C(chillerindex,:);
chiller_weight = S Chiller Weightkg(chiller index);
chillerrefrig_type = SChillerType(chiller index);
flag = false;

end
end

elseif strcmp(chiller_type,'r') %reciprocating
if Num_ RChiller Types > 0

for j=l:NumRChiller Types
if Min chillercapkW < R_ ChillerCapacitykW(j) &&

chiller capacity > RChiller_CapacitykW(j)
chiller capacity = RChillerCapacitykW(j);
chillerindex =

flag = true;
end

end
if flag == true

chiller dim = RChillerDim_m (chiller index,:);
chillerout_temp = RChillerOut_Temp_C(chiller index);
chiller P = R Chiller_P_MPa(chillerindex,:);
chillerT = RChillerTC(chiller index,:);
chiller weight = RChiller Weight_kg(chiller index);
chiller refrig_type = RChiller_Type(chiller index);
flag = false;

end
end

else %other

330



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

if Num_0_Chiller Types > 0
for j=lNum_ 0 ChillerTypes

if Min _chillercapkW < OChillerCapacity_kW(j) &&
chillercapacity > OChiller_CapacitykW(j)

chiller_capacity = OChillerCapacitykW(j);
chillerindex = j;
flag true;

end
end
if flag == true

chillerdim = OChillerDim_m(chillerindex,:);
chillerout_t emp = 0 ChillerOut_TempC(chillerindex);
chillerP = 0 Chiller_P_MPa(chiller index,:);
chillerT = 0 Chiller T_C(chillerindex,:);
chillerweight = OChillerWeightkg(chillerindex);
chillerrefrig_type = OChillerType(chiller index);
flag = false;

end
end

end

fprintf('\n\n----------------------------------------------------------------
-------------------- \n')
fprintf('Report 2: Default Chillers Selected\n')
fprintf ('--------------------------------------------------------------------
---------------- \n')

for i=1:size header(l)
fprintf('Chiller %d Chiller Capacity(tons): %10.4f Chiller

Capacity(kW) : %10.4f\n', i, chiller_capacity*0.284345136, chillercapacity)

end
fprintf ('--------------------------------------------------------------------
---------------- \n')

fprintf('Total Chiller Capacity(tons): %10.4f Chiller Capacity(kW):
%10.4f\n',
chillercapacity*sum(chillers)*0.284345136,chiller_capacity*sum(chillers))
fprintf('Capacity Installed/Minimum Capacity Required:

%4.2f\n',chillercapacity*sum(chillers) /sum(TchillercapkW))

chillers reqd = ceil(sum(Tchiller cap kW)/chiller capacity);

fprintf('Minimum number of chillers needed to meet maximum heat load demands:

%d \n',chillers reqd)

%% Step 11: Expansion tank sizing

temp = 1; %0=false 1=true
if temp==l

pump_time = 30; %seconds

else
pump_time = 10; %seconds

end
Q_cw = mfrtotal/1000*262.4*60; %capacity of the pump (gal/min]

V o = pumptime/60*Q cw; %operating water capacity of tank [gal]

H t = 15*ftper m; %max vertical distance [ft] - change: find highest point

in system
P c = 5+0.433527*H t; %expansion tank charging pressure [lbs/in^2]

331



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

V_t_1 = 1.1*(15*Vo/Pc + V_0); %total expansion tank capacity method 1 [gal]
V_t_1 = V t_1/262.4; % [m^3]

rho cold = 1000; %T=273.15K=OC=32FT=6.6C 999.41
rhohot = 988.31; %T=322.0389K=48.8889C=120.0OOOF
watervolcold 0;
water_vol hot 0;
for i=l:inputs

watervolcold = water volcold +
length b_ordered(1,1,i)*DSI_b_ordered(i)^2*pi()/4;

water vol cold water vol cold + lengthh(1,1,i)*D SI hA2*pi()/4;
water_volhot = water_volhot +

length_b_ordered(1,1,i)*DSI_b_ordered (i)A 2*pi(/4*rhocold/rhohot;
water vol hot = water vol hot +

lengthh(1,1,i)*DSI_h^2*pi(/4*rhocold/rhohot;
end
watervoldelta = watervolhot - watervolcold;

V e = 1.1*water_voldelta+(rho cold/rhohot-l)*V o/262.4; %total expanded
water volume [m^3]
V_t_2 = 1.1*(Ve+Vo/262.4); %[m^3]

V_t max([V_t_1 V_t_2]); %total expansion tank volume [m^3]

tank thickness = 0.004; %assume tank thickness=4mm
tank radius = (V t/2/pi())^(1/3); %[m]
tank-height = 2*tankradius;
tankdensity = 7860; %kg/m^3
tank weight =
0.004*(2*pi()*tankradius^2+tank_height*pi(*2*tankradius)*tankdensity;
% [kg]

tankinstrweight = 50; %estimate[kg]
cw-tank weight = pi()*tankradius^2*tankheight*rho; %assume tank 100% full

fprintf('\n\n-----------------------------------------------------------
--------------------- \n')
fprintf('Report 3: Expansion Tank Sizing\n')
fprintf ('----------------------------------------------------------
----------------- \n')
fprintf('Expansion Tank Height(m): %6.6f \nExpansion Tank Radius(m):
%6.6f \nExpansion Tank Thickness(mm): %6.6f\n', ...

tankheight, tank-radius, tankthickness*1000)
fprintf('-----------------------------------------------
----------------- \n')

%% Step 12: Model SW System
size sw mains = size(SW mains);
numswmains = size sw mains(l);
size sw risers = size(SWrisers);
numsw risers = sizesw risers(l);
size sw cc = size(SWcrossconnects);
numsw cc = sizeswcc(l);
size_sw_piping = size(SWpiping);
numsw piping = sizeswpiping(l);

332



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Budding 5-317

Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

D SI sw piping = zeros(l,numswpiping);
thickness sw piping = zeros(1,num sw piping);

if strcmp(chiller refrigtype,'R134a')
%%%%%%%%%%OC%%e%%%%%%%%%%%%%%%%%

% Set inlet and outlet seawater temperautres
%0%%%%%%%~0%%%%%%%%%%%%%%%%

sw temp in (95-32)*5/9;
sw tempout (105-32)*5/9;

% Verify outlet condenser temperature of the refrigerant is greater
% than the inlet seawater temperature into the condenser

if swtempin>chiller_T(3)
fprintf('SW inlet temperature is greater than refrigerant outlet

temperature\n')
fprintf('Verify the SW inlet temperature\n')
swtemp_in = input('SW inlet temperaure (C): ');
fprintf('Verify the condenser outlet temperature of the

refrigerant\n')
chiller_T (3) = input('Condenser oultet temperautre of the

refrigerant: ');
end

%% % %%%%%% 0 % %% %%

% Find enthalpies of pressures and temperatures

hi = calc h sat(chillerT(1),R134aSatTC,R134aSat hg);
h2 =

calc_h_SHV(chillerT(2),chillerP(2),R134aSHV_T_C,R134aSHVP_MPa,R134a SHV

h) ;
h3 = calc_h_sat(chillerT(3),R134aSat_T_C,R134aSathf);

% Find mfr refrig

mfr refrig = chiller capacity*1000/abs(hl-h3);

% Find compressor power

Q_comp = mfrrefrig*abs(h2-h1);

% Find heat rejected to sw
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Q cond = mfr refrig*abs(h3-h2);

%%%%%%%%~oo%%%%%%%%%%%%%%

% Use LMTD to find sw out temp assume sw in temp=95F and LMTD=10C

LMTDassumption = 10; %C
LMTDtemp = LMTD(chillerT(2),swtemp_out,chiller_T(3),sw tempin)

333



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

while abs(LMTD_temp-LMTD assumption)>0.01
if LMTDtemp>LMTDassumption

swtempout = swtemp_out + 0.01;
else

sw_tempout = swtempout - 0.01;
end
LMTDtemp = LMTD(chiller T(2),swtempout,chillerT(3),swtemp in);

end
swoutF = sw tempout*9/5+32;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Determine mfr of the seawater

cp-sw = 3993;
swchillersmfr = Qcond/(cpsw*abs(swtemp_out-swtemp in))

elseif strcmp(chillerrefrig type, 'R404a')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Set inlet and outlet seawater temperautres
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sw-tempin = (95-32)*5/9;
sw-tempout = (105-32)*5/9;

% Verify outlet condenser temperature of the refrigerant is greater
% than the inlet seawater temperature into the condenser
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if sw temp in>chiller_ T(3)

fprintf('SW inlet temperature is greater than refrigerant outlet
temperature\n')

fprintf('Verify the SW inlet temperature\n')
sw tempin = input('SW inlet temperaure (C): ');
fprintf('Verify the condenser outlet temperature of the

refrigerant\n')
chillerT(3) = input('Condenser oultet temperautre of the

refrigerant: ');
end

% Find enthalpies of pressures and temperatures

hl = calc_h_sat(chillerT(l),R404aSatT_C,R404aSathg);
h2 =

calc_h_SHV(chiller_T(2),chiller_P(2),R404aSHV_T_C,R404a_SHV_P_MPa,R404a SHV_
h) ;

h3 = calc h sat(chiller_T(3),R404aSat TC,R404aSat hf);

% Find mfr refrig

mfrrefrig = chiller capacity*1000/abs(hl-h3);

% Find compressor power
00%%%%%%%%%%%%%%%%%%%%%%%%%%%%

334



Center for Ocean Engineering U - Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

Q_comp = mfrrefrig*abs(h2-hl);

% Find heat rejected to sw

Q cond = mfr refrig*abs(h3-h2);

Use LMTD to find sw out temp assume sw in temp=95F and LMTD=1OC

LMTD assumption = 10; %C
LMTD temp = LMTD(chillerT(2),swtempout,chillerT(3),swtempin);
while abs(LMTDtemp-LMTD assumption)>0.01

if LMTD temp>LMTD_assumption
swtempout = swtempout + 0.01;

else
sw temp out = sw tempout - 0.01;

end

LMTDtemp = LMTD(chillerT(2),sw temp_out,chillerT(3),sw tempin);
end
swoutF = sw temp_out*9/5+32;

% Determine mfr of the seawater

cpsw = 3993; %cp for sw temp of 95F - could modify this to call a
function which determines cp based on sw temp

swchillersmfr = Qcond/(cpsw*abs(sw tempout-swtemp_in));
else

fprintf('The refrigerant type is not within the CSDT database. Please
input the \n')

fprintf('mass flow rate of the seawater across the chiller\n')
sw chillers mfr = input('SW mass flow rate [kg/s]: ');

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Determine expected mfr limits for a given cross-sectional area and
% velocity limit

for i=1:sum(chillers) %sw connection to chillers
if sw chillersmfr <= 0.3276 %kg/s

D _SIswpiping(i) = 0.5/12/3.28084;
thickness sw_piping(i) = 0.035/12/3.28084;

elseif (0.3276 < swchillersmfr) && (swchillers mfr <= 0.6237) %kg/s
D SI swpiping(i) = 0.75/12/3.28084;
thicknesssw_piping(i) = 0.065/12/3.28084;

elseif (0.6237 < sw chillers mfr) && (sw chillers mfr <= 1.1718) %kg/s
D_SIsw piping(i) = 1/12/3.28084;
thicknesssw_piping(i) = 0.065/12/3.28084;

elseif (1.1718 < swchillersmfr) && (swchillersmfr <= 2.1987) %kg/s
DSIsw piping(i) = 1.25/12/3.28084;
thicknessswpiping(i) = 0.065/12/3.28084;

elseif (2.1987 < swchillersmfr) && (swchillers mfr <= 3.1374) %kg/s
DSI swpiping(i) = 1.5/12/3.28084;

335



Center for Ocean Engineering a 111W Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

thicknesssw_piping(i) = 0.065/12/3.28084;
elseif (3.1374 < sw chillersmfr) && (sw chillers mfr <= 5.5692) %kg/s

D_SI_sw_piping(i) = 2/12/3.28084;
thicknesssw_piping(i) = 0.072/12/3.28084;

elseif (5.5692 < swchillersmfr) && (swchillersmfr -<= 9.261) %kg/s
D_SI_sw_piping(i) = 2.5/12/3.28084;
thicknessswpiping(i) = 0.083/12/3.28084;

elseif (9.261 < swchillersmfr) && (swchillers mfr <= 15.372) %kg/s
D SI_sw_piping(i) = 3/12/3.28084;
thickness sw_piping(i) = 0.083/12/3.28084;

elseif (15.372 < swchillersmfr) && (swchillersmfr <= 21.924) %kg/s
D_SI_sw_piping(i) = 3.5/12/3.28084;
thicknessswpiping(i) = 0.095/12/3.28084;

elseif (21.924 < swchillersmfr) && (swchillersmfr <= 29.106) %kg/s
D_SI_sw_piping(i) = 4/12/3.28084;
thicknessswpiping(i) = 0.095/12/3.28084;

elseif (29.106 < sw chillers mfr) && (sw chillers mfr <= 50.022) %kg/s
D SI_swpiping(i) = 5/12/3.28084;
thicknesssw-piping(i) = 0.120/12/3.28084;

else
D_SI_sw_piping(i) = 12.0/12/3.28084;
thicknesssw_piping(i) = 0.134/12/3.28084;

end
end

sw shaft bearing mfr = 0;
if shaftbearing == 1 %sw connection to shaft bearing

swshaftbearingmfr = shaftbearinggpm*0.063; %kg/s
i = sum(chillers)+1;
if sw shaftbearingmfr <= 0.3276 %kg/s

DSI_sw piping(i) = 0.5/12/3.28084;
thickness_swpiping(i) = 0.035/12/3.28084;

elseif (0.3276 < sw shaft bearingmfr) && (swshaft bearing_mfr <=
0.6237) %kg/s

D_SI_swpiping(i) = 0.75/12/3.28084;
thicknessswpiping(i) = 0.065/12/3.28084;

elseif (0.6237 < swshaftbearing_mfr) && (swshaft bearing mfr <=
1.1718) %kg/s

D_SIswpiping(i) = 1/12/3.28084;
thickness swpiping(i) = 0.065/12/3.28084;

elseif (1.1718 < swshaftbearingmfr) && (swshaftbearingmfr <=
2.1987) %kg/s

D_SI_swpiping(i) = 1.25/12/3.28084;
thicknessswpiping(i) = 0.065/12/3.28084;

elseif (2.1987 < sw shaftbearingmfr) && (swshaft bearing mfr <=
3.1374) %kg/s

D_SI_sw piping(i) = 1.5/12/3.28084;
thicknesssw-piping(i) = 0.065/12/3.28084;

elseif (3.1374 < sw shaftbearingmfr) (swshaftbearing mfr <= 5.5692)
%kg/s

D_SI swpiping(i) = 2/12/3.28084;
thicknessswpiping(i) = 0.072/12/3.28084;

elseif (5.5692 < swshaftbearing_mfr) && (sw shaft-bearing-mfr <= 9.261)
%kg/s

DSI_swpiping(i) = 2.5/12/3.28084;

336



Center for Ocean Engineering U - Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

thicknessswpiping(i) = 0.083/12/3.28084;
elseif (9.261 < sw shaft bearing mfr) && (sw shaft bearing mfr <= 15.372)

%kg/s
D_SIsW_piping(i) = 3/12/3.28084;
thicknesssw_piping(i) = 0.083/12/3.28084;

elseif (15.372 < swshaftbearingmfr) && (swshaft-bearing mfr <=
21.924) %kg/s

D SIswpiping(i) = 3.5/12/3.28084;
thickness swpiping(i) = 0.095/12/3.28084;

elseif (21.924 < swshaft bearing_mfr) && (swshaft bearingmfr <=
29.106) %kg/s

D SI sw piping(i) = 4/12/3.28084;
thicknessswpiping(i) = 0.095/12/3.28084;

elseif (29.106 < swshaftbearing mfr) && (sw shaft bearingmfr <=
50.022) %kg/s

D SI sw piping(i) = 5/12/3.28084;
thicknessswpiping(i) = 0.120/12/3.28084;

else
D_SIswpiping(i) = 12.0/12/3.28084;
thicknessswpiping(i) = 0.134/12/3.28084;

end
end

sw hxchgr mfr = 0;
if SWhxchgrs > 0 %sw connection to SW/XX hxchgrs

swhxchgrmfr = zeros(1,SW-hxchgrs);
for i=1 SW hxchgrs

swhxchgrmfr(i) = SW-hxchgrgpm(i)*0.063; %kg/s
if swhxchgrmfr(i) <= 0.3276 %kg/s

D_SIsw_piping(i+sum(chillers)+shaftbearing) 0.5/12/3.28084;
thicknessswpiping(i+sum(chillers)+shaft bearing) =

0.035/12/3.28084;
elseif (0.3276 < sw hxchgrmfr(i)) && (sw hxchgr mfr(i) <= 0.6237)

% kg/s
DSI sw piping(i+sum(chillers)+shaftbearing) = 0.75/12/3.28084;
thicknessswpiping(i+sum(chillers)+shaft_bearing)

0.065/12/3.28084;
elseif (0.6237 < swhxchgr mfr(i)) && (swhxchgr mfr(i) <= 1.1718)

%kg /s

D_SIswpiping(i+sum(chillers)+shaftbearing) = 1/12/3.28084;
thickness_sw_piping(i+sum(chillers)+shaftbearing)

0.065/12/3.28084;
elseif (1.1718 < swhxchgrmfr(i)) && (swhxchgr mfr(i) <= 2.1987)

%kg/s
DSI sw piping(i+sum(chillers)+shaft bearing) = 1.25/12/3.28084;
thickness_sw_piping(i+sum(chillers)+shaft bearing)

0.065/12/3.28084;
elseif (2.1987 < swhxchgr-mfr(i)) && (swhxchgrmfr(i) <= 3.1374)

%kg/s
D SI sw piping(i+sum(chillers)+shaft bearing) = 1.5/12/3.28084;
thickness sw piping(i+sum(chillers)+shaft bearing) =

0.065/12/3.28084;
elseif (3.1374 < sw hxchgr mfr(i)) && ( sw hxchgr mfr(i) <= 5.5692)

%kg/s

D_SIswpiping(i+sum(chillers)+shaftbearing) = 2/12/3.28084;

337



Center for Ocean Engineering * o Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

thickness sw piping (i+sum(chillers )+shaftbearing) =
0.072/12/3.28084;

elseif (5.5692 < sw_hxchgrmfr(i)) && (swhxchgr mfr(i) <= 9.261)
%kg/s

D_SI sw piping(i+sum(chillers)+shaft bearing) = 2.5/12/3.28084;
thicknesssw_piping(i+sum(chillers)+shaftbearing) =

0.083/12/3.28084;
elseif (9.261 < sw_hxchgr mfr(i)) && (sw hxchgr mfr(i) <= 15.372)

%kg/s
DSI swpiping(i+sum(chillers)+shaft bearing) = 3/12/3.28084;
thickness sw piping (i+sum (chillers)+shaftbearing) =

0.083/12/3.28084;
elseif (15.372 < swhxchgrmfr(i)) && (sw_hxchgrmfr(i) <= 21.924)

%kg/s
D_SIsw piping(i+sum(chillers)+shaftbearing) = 3.5/12/3.28084;
thicknessswpiping (i+sum(chillers)+shaftbearing) =

0.095/12/3.28084;
elseif (21.924 < sw hxchgr mfr(i)) && (sw hxchgrmfr(i) <= 29.106)

%kg/s
D_SIsw-piping(i+sum(chillers)+shaftbearing) = 4/12/3.28084;
thicknessswpiping(i+sum(chillers)+shaftbearing) =

0.095/12/3.28084;
elseif (29.106 < swhxchgrmfr(i)) && (swhxchgrmfr(i) <= 50.022)

%kg/s
DSI_swpiping(i+sum(chillers)+shaftbearing) = 5/12/3.28084;
thicknessswpiping(i+sum(chillers)+shaft bearing) =

0.120/12/3.28084;
else

elSIsw piping(i+sum(chillers)+shaftbearing) = 12.0/12/3.28084;
thickness sw piping(i+sum(chillers)+shaft bearing) =

0.134/12/3.28084;
end

end
end

sw mains mfr =

0. 5*(sum (chillers)*swchillersmfr+sum(swhxchgr-mfr)+swshaft bearingmfr);
if swmains mfr <= 0.3276 %kg/s

D_SIsw mains = 0.5/12/3.28084;
D SIswrisers = 0.5/12/3.28084;
D SI sw cc = 0.5/12/3.28084;
thicknessswmains 0.035/12/3.28084;
thickness sw risers = 0.035/12/3.28084;
thickness sw cc = 0.035/12/3.28084;

elseif (0.3276 < swmainsmfr) && (sw mains mfr <= 0.6237) %kg/s
D SI sw mains = 0.75/12/3.28084;
D_SIswrisers = 0.75/12/3.28084;
D SI sw cc = 0.75/12/3.28084;
thicknessswmains = 0.065/12/3.28084;
thickness sw risers = 0.065/12/3.28084;
thicknessswcc = 0.065/12/3.28084;

elseif (0.6237 < swmainsmfr) && (sw mains mfr <= 1.1718) %kg/s
D_SIsw mains = 1/12/3.28084;
D_SIswrisers = 1/12/3.28084;
D SI sw cc = 1/12/3.28084;

338



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

thicknessswmains = 0.065/12/3.28084;
thickness sw risers = 0.065/12/3.28084;
thickness sw cc = 0.065/12/3.28084;

elseif (1.1718 < swmainsmfr) && (swmainsmfr <= 2.1987) %kg/s
D SI-sw mains = 1.25/12/3.28084;
D SI sw risers = 1.25/12/3.28084;
D SI sw cc = 1.25/12/3.28084;
thicknessswmains = 0.065/12/3.28084;
thickness sw risers = 0.065/12/3.28084;
thickness sw cc = 0.065/12/3.28084;

elseif (2.1987 < swmainsmfr) && (swmainsmfr <= 3.1374) %kg/s
D SI sw mains = 1.5/12/3.28084;
D_SIswrisers = 1.5/12/3.28084;
D SI sw cc = 1.5/12/3.28084;
thicknessswmains = 0.065/12/3.28084;
thickness sw risers = 0.065/12/3.28084;
thickness sw cc = 0.065/12/3.28084;

elseif (3.1374 < sw mains mfr) && (sw mains mfr <= 5.5692) %kg/s
D SI sw mains = 2/12/3.28084;
D_SIswrisers 2/12/3.28084;
D SI sw cc = 2/12/3.28084;
thickness sw mains 0.072/12/3.28084;
thickness sw risers = 0.072/12/3.28084;
thickness sw cc = 0.072/12/3.28084;

elseif (5.5692 < sw mains mfr) && (sw mains mfr <= 9.261) %kg/s

D SI sw mains = 2.5/12/3.28084;
D_SIswrisers = 2.5/12/3.28084;
D SI sw cc = 2.5/12/3.28084;
thickness sw mains = 0.083/12/3.28084;
thickness sw risers = 0.083/12/3.28084;
thickness sw cc = 0.083/12/3.28084;

elseif (9.261 < swmainsmfr) && (swmainsmfr <= 15.372) %kg/s
D SI sw mains = 3/12/3.28084;
D_SIswrisers = 3/12/3.28084;
D_SI sw cc = 3/12/3.28084;

thicknessswmains 0.083/12/3.28084;
thickness sw risers = 0.083/12/3.28084;
thickness sw cc = 0.083/12/3.28084;

elseif (15.372 < swmainsmfr) && (sw mains mfr <= 21.924) %kg/s

D_SIswmains = 3.5/12/3.28084;
D_SIswrisers 3.5/12/3.28084;
D SI sw cc = 3.5/12/3.28084;

thicknessswmains = 0.095/12/3.28084;
thickness sw risers = 0.095/12/3.28084;
thickness sw cc = 0.095/12/3.28084;

elseif (21.924 < sw mains mfr) && (sw mains mfr <= 29.106) %kg/s

DSI sw mains 4/12/3.28084;
D_SIswrisers = 4/12/3.28084;
D SI sw cc = 4/12/3.28084;

thicknessswmains = 0.095/12/3.28084;
thickness sw risers = 0.095/12/3.28084;
thickness sw cc = 0.095/12/3.28084;

elseif (29.106 < swmainsmfr) && (sw mains mfr <= 50.022) %kg/s

DSI sw mains = 5/12/3.28084;
DSI sw risers = 5/12/3.28084;

339



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

D SI sw cc = 5/12/3.28084;
thickness sw mains 0.12/12/3.28084;
thicknessswrisers 0.12/12/3.28084;
thicknesssw cc = 0.12/12/3.28084;

else
D_SIsw mains = 6/12/3.28084;
D_SIsw risers = 6/12/3.28084;
D SI sw cc = 6/12/3.28084;

thickness sw mains = 0.134/12/3.28084;
thicknessswrisers 0.134/12/3.28084;
thicknessswcc = 0.134/12/3.28084;

end

%% Step 12: Weight analysis - Calculate total weight and center of gravity
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Determine weights for piping and lagging for branches and headers
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

pipe density = 1000*0.323/2204.62262*(12*ftperm)^3; %kg/m^3
pipe b weight = 0;

pipe b CG = [0 0 0]; %[LCG VCG TCG]

laggingdensity = 1000*5/2204.62262*ftper_m^3; %kg/m^3
lagging thickness = 0.75/12/ft per m; %3/4 inches
lagging b_weight = 0;

lagging h weight = 0;

cw b weight = 0;
cw h weight = 0;

for i=l:inputs
pipe_bweight = pipe_b_weight +

(length_b (1,i)+length_b (2,i))*((DSI_b(i)+thickness_b(i))^2*pi()/4-
D_SI_b(i)^2*pi()/4)*pipedensity;

cw b_weight = cw b weight + length b(i)*D_SI_b(i)^2*pi(/4*rho;
lagging b weight = lagging b weight +

(length_b(1,i)+length_b(2,i) )*((DSI_b(i)+thickness_b(i)+lagging thickness )A 2
*pi()/4-...

(DSI_b(i)+thickness b(i))^2*pi(/4)*lagging density;
end

sizeheaderlocs = size(headerloc_s);
length_ h__s = zeros(sizeheader loc s(1),sizeheaderloc_s(2)-l);
pipe h CG [0 0 0];
pipe h weight = 0;

for i=1:size header loc s(1)
for j=1:(sizeheader_loc_s(2)-1)

length_h_s(i,j) = sqrt((headerloc_s(i,j,1)-
headerloc_s(i,j+1,1))A2+(hEaderloc s(i,j,2)-headerloc_s(i,j+1,2))^2+...

(headerlocs(i,j,3)-headerloc-s(i,j+1,3))A2);
pipe_h_weight = pipe h weight +

length_h_s(ij)*((DSI h+thicknessh)A2*pi()/4-D_SI hA2*pi()/4)*pipedensity;
cwh Iweight = cw h weight + length_ h_s(i,j)*DSI h^2*pi(/4*rho;
lagging_hweight = lagging_h weight +

length_h_s(i,j)*( (DSI h+thickness h+laggingthickness)^ 2*pi(/4-...

340



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

(D SI_h+thickness h)A2*pi()/4)*laggingdensity;
pipe h CG(1) =

pipe-h_CG(1)+(header_lc_s(i,j,1)+header_loc s(i,j+1,1))/2*length_h_s(i,j)*..

((D_SIh+thickness_h)A2*pi()/4-DSI h^2*pi(/4)*pipe density;
pipe h CG(2) =

pipe-h_CG(2)+(headerloc_s(i,j,2)+headerloc s(i,j+1,2))/2*length-h-s(i,j)*..

((D SI h+thickness h)A2*pi()/4-D SI hA2*pi()/4)*pipe density;

pipe h CG (3) =
pipe_hCG (3) + (headerloc_s (i, j, 3)+headerloc_s (i, j+1, 3) ) /2*length-h-s (i, j)*..

((DSI_h+thickness-h)^2*pi()/4-D_SI_hA2*pi()/4)*pipe density;

end
end
sizeheaderloc_s_alt = size(headerloc_s_alt);
length_h_s_alt = zeros(sizeheaderloc_s_alt(l),sizeheaderloc_s alt(2)-1);

for i=l:size headerloc_s_alt(l)
for j=l:(size headerboc s_alt(2)-1)

length_h_s alt(i, j) = sqrt((headerloc_s alt(i,j,l)-
headerloc_s_alt(i,j+1,1))^2+(headerloc_s_alt(i,j,2)-
headerloc_s_alt(i,j+1,2))A2+...

(header loc s alt(i,j,3)-headerloc s alt(i,j+1,3))^2);
pipe_h_weight = pipeh_weight +

length_h_s_alt(i,j)*((DSIh+thicknessh)^2*pi()/4-
DSI_h^2*pi(/4)*pipe_density;

cw_h_weight = cw_h_weight + length_h_s_alt(i,j)*DSI_h^2*pi()/4*rho;
laggingh_weight = lagging_h_weight +

length_h_s_alt(i,j)*((DSIh+thicknessh+laggingthickness)^2*pi()/4-...
(DSI h+thickness h)^2*pi(/4 )*lagging-density;

pipe h CG(1) =
pipe h CG(1)+(headerloc s alt(i,j,1)+headerloc_s_alt(i,j+1,1))/2*length h s

_alt(i,j)* ...
((D SI h+thickness h)^2*pi()/4-DSI_h^2*pi()/4)*pipe density;

pipe h_CG(2) =
pipe h_CG(2)+(headerloc s alt(i,j,2)+headerloc s alt(i,j+1,2))/2*length h s

_alt(ij)*...
((D SI h+thickness h)^2*pi(/4-D SI h^2*pi(/4)*pipe density;

pipe h_CG(3) =

pipe_h_CG(3)+(headerloc_s alt(i,j,3)+headerloc s alt(i,j+1,3))/2*length h s

_alt(i,j)*...
((DSIh+thicknessh)^2*pi()/4-D_SI h^2*pi(/4)*pipedensity;

end
end
sizeheaderloc r = size(headerloc_r);
length h r = zeros(sizeheaderloc_r(1),sizeheaderloc_r(2)-l);
for i=1:size headerlocr(1)

for j=l:(sizeheaderloc r(2)-l)
length_h r(i,j) = sqrt((header locr(i,j,1)-

headerlocr(i,j+1,1))^2+(headerlocr(i,j,2)-headerloc_r(i,j+1,2))^2+...
(headerlocr(i,j,3)-headerloc_r(i,j+1,3))A2);

pipe h_weight = pipe_hweight +
length_h_r(i,j)*((DSIh+thickness h)A2*pi()/4-DSI_hA2*pi()/4)*pipe_density;

cw_h_weight = cw_h_weight + length-h-r(i,j)*DSI hA2*pi()/4*rho;

341



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

lagging_h weight = lagging_h weight +
length_h_r(i,j)*((D SI h+thickness h+lagging thickness)^2*pi()/4-...

(DSI h+thicknessh)^2*pi()/4)*lagging density;
pipe_h_CG(l) =

pipe_h_CG(1)+(headerloc_r(i,j,l)+header_loc r(i,j+1,1))/2*length_hr(i,j)*..

((D SIh+thickness_h)A 2*pi()/4-DSIh^2*pi()/4)*pipedensity;
pipe_h_ CG(2) =

pipe_hCG(2)+(headerloc_r(i,j,2)+header-loc r(i,j+1,2))/2*length_h_r(i,j)*..

((DSIh+thicknessh)^2*pio/4-DSI_hA2*pi(/4)*pipedensity;
pipeh CG(3) =

pipe_h_CG(3)+(header_locr(i,j,3)+headerloc r(i,j+1,3))/2*length-h-r(i,j)*..

((DSIh+thicknessh)^2*pi()/4-D_SI_h^2*pi(/4)*pipedensity;
end

end
size header loc r alt = size(header loc r alt);
length h_r_alt = zeros(sizeheaderloc_r_alt(l),sizeheaderloc_r_alt(2)-1);
for i=1:sizeheaderloc_r_alt(l)

for j=l:(size headerlocr_alt(2)-1)
length_h_ralt(i,j) = sqrt((headerloc_r_alt(i,j,l)-

headerloc_r_alt(i,j+1,1))A2+(headerloc_r_alt(i,j,2)-
headerlocr_alt(i,j+1,2))^2+...

(header loc-rIalt(i,j,3)-headerlocr alt(i,j+1,3))^2);
pipe_h weight = pipe_h_weight +

length_h_r_alt(i,j)*((DSIh+thicknessh)^2*pi()/4-
D_SI_hA2*pi(/4)*pipedensity;

cw h_weight = cw hweight + lengthh_r_alt (i,j)*DSI h^2*pi()/4*rho;
lagging_h weight = lagging h weight +

length_h_r_alt(i,j)*((DSIh+thickness_h+lagging thickness)^2*pi()/4-...
(DSI h+thickness h)A 2*pi()/4)*lagging_density;

pipe_h_CG(l) =
pipe_h_CG(1)+(headerloc_r_alt(i,j,l)+headerloc_r_alt(i,j+1,1))/2*length_h_r

_alt(i,j)*...
((D_SIh+thicknessh)^2*pi()/4-DSI_h^2*pi(/4)*pipedensity;

pipe h CG(2) =

pipe_h_CG(2)+(headerloc_r_alt(i,j,2)+headerlocr alt(i,j+1,2))/2*length h r
alt(i,j)*...

((DSIh+thicknessh)^2*pi()/4-D SI hA2*pio/4)*pipedensity;
pipeh CG(3) =

pipe_h_CG(3)+(headerloc_r_alt(i,j,3)+headerlocr alt(i,j+1,3))/2*length_h r
_alt(i,j)*...

((DSIh+thicknessh)^2*pi()/4-DSI_hA2*pi()/4)*pipe density;
end

end

length h ccl-s = sqrt((cclloc_ (1s(l,l)-cc1_locs(2,1))^2+(cc1 locs(1,2)-
cc1loc_s(2,2))A2+(cclloc_s(1,3)-cc1 loc_s(2,3))^2);
length_h_cc2_s = sqrt((cc2_loc_s(l,1)-cc2loc s(2,1))A2+(cc2locs(1,2)-
cc2_loc_s(2,2))^2+(cc2_loc_s (1,3)-cc2 loc s(2,3))^2);
length_h_ccl r = sqrt((cclloc_r(l,l)-cc1 loc r(2,1))^2+(cc1 locr(1,2)-
cclloc_r(2,2))^2+(cclloc_r(1,3)-cc1 locr(2,3))A2);
length_h_cc2_r = sqrt((cc2_locr(l,l)-cc2_locr(2,1))^2+(cc2locr (1,2)-
cc2_loc_r(2,2))A2+(cc2_loc_r(1,3)-cc2locr(2,3))^2);

342



Center for Ocean Engineering f UmMassachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusets 02139-4307

length_h cc = length_h_ccls+length_h_cc2s+length-h cclr+length-h cc2_r;
pipe h weight = pipe_h_weight + length_h cc*((DSI h+thickness h)^2*pi()/4-
D SI hA2*pi()/4)*pipe density;
cw h weight = cw_h weight + length h_cc*DSI_h^2*pi(/4*rho;
lagging_h_weight = lagging h weight +
length_h_cc*(( D_SIh+thickness h+lagging_thickness)^2*pi(/4-...

(DSI h+thicknessh)^ 2*pi()/4)*lagging density;
pipe_h_CG(l) =
pipe hCG(1)+(ccl1locs(1,1)+ccl1locs(2,1)+cc2_locs(1,1)+cc2_locs(2,1)+...

cc1loc_r(1,1)+cc2_loc_r(2,1)+cc2_loc_r(1,1)+cc2_loc_r(2,1))/8*length_h_ccls

((DSIh+thickness-h)A2*pi()/4-D_SI_h^2*pi(/4)*pipe density;
pipe_h_CG(2) =
pipe-hCG(2)+(cclloc_s(1,2)+cclloc_s(2,2)+cc2_loc_s(1,2)+cc2_loc_s(2,2)+...

cc1_locr(1,2)+cc2_locr(2,2)+cc2_locr(1,2)+cc2_loc r(2,2))/8*length_h ccls

((DSI h+thickness_h)A2*pi()/4-D_SI hA2*pi()/4)*pipe density;
pipe h_CG(3) =
pipe_h_CG(3)+(ccllocs(1,3)+cc1loc_s(2,3)+cc2_loc_s(1,3)+cc2_loc_s(2,3)+...

ccl_loc_r(1,3)+cc2_loc_r(2,3)+cc2_loc_r(1,3)+cc2_loc_r(2,3))/8*length-h_ccl_s

((D_SIh+thicknes s_h)A2*pi()/4-DSI h^2*pi()/4)*pipe density;
pipe_h_CG = pipe_h_CG/pipe_h_weight;
cw_h_CG = pipe_h_CG;
laggingh_CG = pipe_h_CG;

% Determine CG for piping and lagging
%%%%%%%%%~0%%%%%%%%%%%%%

lengthbranchseg = zeros(inputs,2,10);
weightbranch = zeros(inputs,2,10);
CGbranch = zeros (inputs,2, 9,3);

for i=l:inputs
for j=1:2

for k=1:9
length branch seg(i,j,k)=sqrt((branch loc(k,j,l,i)-

branchloc(k+l,j,l,i))^2+...
(branchloc(k,j,2,i)-branchloc(k+l,j,2,i))^2+...
(branchloc(k,j,3,i)-branch_loc(k+l,j,3,i))^2);

weightbranch(i,j,k)=length branch_seg(i,j,k)*((DSI b(i)+thickness b(i))A2*p
i(/4-DSIb(i)^2*pi()/4)*pipedensity;

CG branch(i,j,k,l)
(branchloc(k,j,1,i)+branchloc(k+l,j,1,i))/2;

CGbranch (i, j, k,2) =

(branchloc(k,j,2,i)+branch_loc(k+1,j,2,i))/2;
CGbranch(i,j,k,3) =

(branchloc(k,j,3,i)+branchloc(k+l,j,3,i))/2;
end

end
end

343



Center for Ocean Engineering Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

for i=l:inputs
for j=1:2

for k=1:9

pipe b CG(1) =

CGbranch(i,j,k,l1) *weightbranch(i,j,k)+pipe_b_CG(1);
pipe b CG(2) =

CGbranch(i,j,k, 2)*weight branch(i,j,k)+pipe_b_CG(2);
pipe b_CG(3) =

CGbranch(i, j,k, 3) *weight branch(i,j,k)+pipe_b_CG(3);
end

end
end
pipe bCG = pipe b_CG/pipe b weight;
laggingb_CG = pipe bCG;
cw bCG = pipe b_CG;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Determine pipe weight, LCG, VCG, and TCG
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

pipe weight = pipe b weight+pipeh weight;
pipeCG = [0 0 0]; %[LCG VCG TCG]
pipe_CG(1) =
(pipeb_CG(1)*pipe_b-weight+pipe_hCG(1)*pipe_h_weight)/pipeweight;
pipeCG(2) =
(pipe_b_CG(2)*pipe-b weight+pipe_hCG(2)*pipe_h_weight)/pipe_weight;
pipe CG(3) =
(pipe_b_CG(3)*pipe_b_weight+pipe_hCG(3)*pipe_h_weight) /pipeweight;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Determine lagging weight, LCG, VCG, and TCG
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

laggingweight = lagging_bweight+lagging_h_weight;
laggingCG = [0 0 0]; %[LCG VCG TCG]
laggingCG(1) =
(lagging bCG(1)*lagging_b_weight+lagging_hCG(1)*lagging_h_weight) /lagging_w
eight;
laggingCG(2)
(lagging_b CG(2)*lagging_b_weight+lagging_h_CG(2)*lagging_h_weight)/lagging w
eight;
laggingCG(3) =

(lagging_b_CG(3)*lagging_b_weight+lagging_hCG(3)*lagging_h-weight)/lagging_w
eight;

% Define gate valve and globe valve weights for various sizes
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

gatevalve b_weight = 0;
gate valve-h-weight = 0;
globevalve_b_weight = 0;
globevalve_h_weight = 0;
check-valve bweight = 0;
checkvalve_h_weight = 0;
checkvalve_b_CG = [0 0 0]; %[LCG VCG TCG]
check valve hCG = [0 0 0]; %[LCG VCG TCG]

344



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

globevalve_b_CG = [0 0 0]; %[LCG VCG TCG]
globevalve_h_CG = [0 0 0]; %[LCG VCG TCG]
gate valve_b_CG = [0 0 01; %[LCG VCG TCG]
gate valve_h_CG = [0 0 0]; %[LCG VCG TCG]
Valvediamsclass_150 = [0.5 0.75 1 1.5 2 3 4 5 6 8 10 12 14 16 18 20

24];%inches
Gatevalveweight class 150 = [3.2 4.2 5.8 11 15.4 35 50 70 80 135 185 ...

280 395 530 670 775 1150]; %kg
Globe valve weight class 150 = [3.1 4 5.7 10.6 15.4 35 55 80 98 165 305 ...

425 590 830 1040 1260 1700]; %kg

% Define check valve weights for various sizes
%%%%%%2%%%%%%%%%%%%%%%

Check valve diams class 150 = [2 2.5 3 4 5 6 8
Checkvalveweight class_150 = [13 17 24 36 57
1150]; %kg

% Determine gate valve and globe valve weights,
branches
%%%%%%%%%%%%%%f
for i=1:inputs

10 12 14 16 18 20 24];%inches
62 96 158 238 324 483 548 782

LCG, VCG, and TCG for

if vital == 1
if DSI_b (i)<Valvediamsclass_150(1)/12/ft per_m

gate_valve_b_weight =
gatevalve_b_weight+gatevalveb(i)*Gatevalveweightclass_150(1)*2;

globevalve_b_weight =
globe valve b_weight+globevalveb(i)*Globevalveweight class_150(1)*2;

gatevalve b CG(1) = gatevalve bCG(1) +
(branchgateloc(1,1,1,i)+branchgateloc(1,2,1,i)+...

branchgateloc(2,1,1,i)+branchgateloc(2,1,1,i))*Gatevalve_weight_class_15
0(1);

gatevalve b CG(2) = gate valve bCG(2) +
(branch gate loc(1,1,3,i)+branch gate loc(1,2,3,i)+...

branch_gateloc(2,1,3,i)+branchgateloc(2,1,3,i))*Gate_valveweight_class_15
0(1);

gate_valve_b_CG(3) = gate_valve_b_CG(3) +
(branch_gateloc(1,1,2,i)+branchgate loc(1,2,2,i)+...

branchgateloc(2,1,2,i)+branch_gateloc(2,1,2,i))*Gatevalveweight class 15
0(1);

globevalve b CG(1) = globe valve b CG(1) +
(branchglobeloc(1,1,1,i)+branch_globeloc(1,2,1,i))*Globevalveweightclas
s_150(1);

globe_valve_b CG(2) = globe_valve bCG(2) +
(branch globe loc(1, 1,3, i)+branch globe_loc (1,2,3, i) ) *Globe valve weightclas
s_150(1);

globe valve b CG(3) = globe valve b CG(3) +
(branch_globeloc(1,1,2,i)+branch globe_loc(1,2,2,i))*Globe valveweight_clas
s_150(1);

else
for j=1:max(size(Valve diamsclass_150))-1

345



Center for Ocean Engineering UEU Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

if (Valvediamsclass 150(j)/12/ftperm < DSI_b(i)) &&
(DSI b(i) <= Valve diams class_150(j+1) /12/ft per m)

gatevalve_b_weight =
gatevalve_b_weight+gatevalve_b(i)*Gate valveweightclass_150(j+1)*2;

globe valve_b_weight =
globevalve b_weight+globevalve_b(i)*Globevalveweight class_150(j+1)*2;

gate_valve_b_CG(1) = gate_valve_b_CG(1) +
(branchgateloc(1,1,1,i)+branch_gate_loc(1,2,1,i)+...

branchgateloc(2,1,1,i)+branch gate_loc(2,1,1,i) )*Gatevalve weightclass_15
0 (j+1);

gatevalve_b_CG(2) = gatevalve_b_CG(2) +
(branchgateloc(1,1,3,i)+branchgateloc(1,2,3,i)+...

branchgate loc (2, 1, 3, i)+branchgateloc (2, 1, 3, i) ) *Gatevalveweight class_15
0 (j+1);

gatevalve b CG(3) = gatevalve_b_CG(3) +
(branchgateloc(1,1,2,i)+branchgateloc(1,2,2,i)+...

branch_gateloc(2,1,2,i)+branch gateloc(2,1,2,i))*Gate valve weight class_15
0(j+1);

globe valve b CG(l) = globe valve bCG(1) +
(branchglobeloc(1,1,1,i)+branchglobeloc(1,2,1,i))*Globevalve weight clas
s_150(j+1)f;

globe valve b CG(2) = globe valve bCG(2) +
(branchglobeloc(1,1,3,i)+branch globeloc(1,2,3,i))*Globevalveweight clas
s_150(j+1);

globevalve_b CG(3) = globevalve_b_CG(3) +
(branch_globeloc(1,1,2,i)+branch globeloc(1,2,2,i))*Globe valve weight clas
s_150(j+1);

end
end

end
else

if D_SI_b(i)<Valvediamsclass_150(1)/12/ft per m
gatevalve_b_weight =

gatevalve_b_weight+gatevalve b(i)*Gatevalveweightclass_150(1);
globevalve_b_weight =

globevalve_b_weight+globe valve_b (i)*Globevalveweightclass150(1);
gat e_valve_b_CG(1) = gate_valve_b_CG(1) +

(branch_gateloc(1,1,1,i)+branchgate_loc(2,1,1,i))*Gate valve weightclass_1
50(1);

gate valve b CG(2) = gate valve b CG(2) +
(branch_gateloc(1,1,3,i)+branch gate loc(2,1,3,i))*Gate valve weight_class_1
50(1);

gatevalve_b_CG(3) = gatevalve b_CG(3) +
(branchgateloc(1,1,2,i)+branch gateloc(2,1,2,i))*Gate valve weightclass_1
50(1);

globevalve_b_CG(1) = globevalve_b_CG(1) +
branchglobeloc(1,1,1,i)*Globe valve weightclass 150(1);

globevalve b_CG(2) = globevalve_b_CG(2) +
branchglobeloc(1,1,3,i)*Globevalveweightclass_150(1);

globevalve_b_CG(3) = globevalve_b_CG(3) +
branchglobeloc(1,1,2,i)*Globe valve weightclass_150(1);

else

346



Center for Ocean Engineering Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

for j=l:max(size(Valve _diams_ class_150))-l

if (Valve diams class 150(j)/12/ft per m < DSI b(i)) &&
(DSI_b(i) <= Valvediamsclass_150(j+l)/12/ftper-m)

gate_valve b weight =
gate valve_b weight+gate_valve_b(i)*Gatevalveweight_class_150(j+1);

globevalve_b_weight =
globe valve_b_weight+globe valve b(i)*Globevalveweightclass_150(j+l);

gatevalve_b CG(l) = gate_valve_b_CG(1) +
(branchgate loc(1,1,1,i)+branchgateloc(2,1,1,i))*Gatevalve weight class 1

50 (j+1) ;
gate_valve_b_CG(2) = gate_valve_b_CG(2) +

(branch gate loc(1,1,2,i)+branchgateloc(2,1,2,i))*Gatevalveweightclass_1
50(j+1);

gate_valve_b_CG(3) = gate_valve_b_CG(3) +
(branchgate loc(1,1,3,i)+branchgateloc(2,1,3,i))*Gatevalveweight class 1

50(j+l);
globevalve b CG(1) = globe valvebCG (1) +

branchglobe loc(1,1,1,i)*Globevalveweightclass_150(j+l);
globe_valve_b_CG(2) = globevalve_b_CG(2) +

branchglobe loc(1,1,2,i)*Globevalveweightclass_150(j+1);
globe_valve_b_CG(3) = globevalve_b_CG(3) +

branch globe loc(1,1,3,i)*Globe valve weightclass_150(j+1);
end

end
end

end
end
gate valve_b_CG = gate_valve_b_CG/gate_valve_b_weight;
globevalve bCG = globevalve_b_CG/globevalve_b weight;

%% %% % % % %%%%%% %%%%%%%%%%%

% Determine gate valve and globe valve weights for header

if D SI h<Valve diams -class 150(1)/12/ft per m
for i=l:max(size(seg valve loc))

gate valve_h_weight =
gate-valve_h_weight+Gatevalveweight_class_150(1);

gate valve_h_CG(1) = gatevalve_h_CG(1) +
segvalveloc(i,l)*Gatevalve weightclass_150(1);

gatevalve_h_CG(2) = gatevalve_h_CG(2) +
seg_ valveloc(i,2)*Gatevalveweightclass_150.(1);

gate valve h CG(3) = gatevalve hCG(3) +
segvalveloc(i,3)*Gatevalveweight_class_150(1);

end
else

for j=l:max(size(Valvediamsclass_150))-l
if (Valvediamsclass_150(j)/12/ft_per m < DSIh) && (DSI h <=

Valvediamsclass_150 ( j+1) /12/ft_perm)
for i=l:max(size(segvalve loc))

gatevalve h weight =
gate_valve_h_weight+Gatevalveweightclass_150(j+l);

gate valve_h_CG(1) = gate valve_h_CG(l) +
segvalve loc(i,l)*Gatevalveweightclass_150(j+l);

gate valve_h_CG(2) = gate valve_h_CG(2) +
segvalve loc(i,2)*Gatevalveweightclass_150(j+l);

347



Center for Ocean Engineering m omMassachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

gatevalve_ h_CG(3) = gatevalve_h_CG(3) +
seg valve loc(i,3)*Gatevalve weightclass_150(j+1);

end
end

end
end
gate valve-hCG = gate valve_h_CG/gatevalve h_weight;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%.

% Determine check valve weights for header
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if DSI_ h<Checkvalvediamsclass_ 150(1)/12/ft_per m

for i=l:max(size(chillerloc))
checkvalve h weight =

check-valve h weight+size header(1)*Check valveIweight class_150(1);
check_valve_h_CG(1) = checkvalve_h_CG(1) +

chiller loc(i, 1)*Checkvalve weightclass_150(1);
checkvalve_h_CG(2) = checkvalve_h_CG(2) +

chillerloc(i,2)*Checkvalve weightclass_150(1);
checkvalve_h_CG(3) = checkvalve_h_CG(3) +

chillerloc(i,3)*Checkvalve weightclass_150(1);
end

else
for j=1:max(size(Check valve diams class 150))-1

if (Checkvalvediamsclass_ 150(j)/12/ft perm < DSI h) && (DSIh
<= Checkvalvediamsclass_150(j+1)/12/ftper m)

for i=l:sum(chillers)
checkvalve h weight =

check_valve h-weight+sizeheader(1)*Checkvalveweightclass_150(j+1);
checkvalve_h_CG(l) = check valve_h_CG(l) +

chiller loc(i,1)*Check valveweightclass_150(j+1);
checkvalve_h_CG(2) = checkvalve_h_CG(2) +

chillerloc(i,2) *Checkvalveweight class_150(j+1);
checkvalve_h_CG(3) = checkvalve_h_CG(3) +

chillerloc(i,3)*Check valve weightclass_150(j+1);
end

end
end

end
checkvalve hCG = check valve hCG/checkvalve h weight;

% Determine valve weight, LCG, VCG, and TCG

globevalveweight = globevalve_b weight+globe valve h weight;
globevalveCG = [0 0 0]; %[LCG VCG TCG]
globe valve CG(1) =
(globevalve_b_CG(1)*globe valve_bweight+globevalve_hCG(1)*globevalve_h_w
eight)/globevalveweight;
globe valveCG(2) =
(globe_ valve_b_CG(2)*globe_ valve_b weight+globevalvehCG(2)*globevalveh_w
eight)/globevalve_weight;
globevalveCG(3) =
(globevalve_b_CG(3)*globe valve b weight+globe valve hCG(3)*globe valve h w
eight)/globe valveweight;

348



Center for Ocean Engineering * omMassachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

gatevalveweight = gatevalve b weight+gate valve h weight;
gatevalveCG = [0 0 0]; %[LCG VCG TCGI
gatevalveCG(l) =
(gatevalve_b_CG(1)*gatevalve b weight+gate valve hCG(l)*gate valve_h_weigh

t)/gate valveweight;
gate valveCG(2) =
(gatevalve b CG(2)*gate valve_b weight+gatevalve hCG(2)*gate valve_h_weigh
t)/gate valve weight;
gatevalveCG(3) =
(gatevalve b CG(3)*gate-valve_b weight+gatevalve hCG(3)*gate valve_h_weigh
t)/gatevalve_weight;

checkvalveweight = checkvalve b_weight+checkvalve_h_weight;
checkvalveCG = [0 0 0]; %[LCG VCG TCG)
check valve CG(l)
(checkvalve_b_CG(1)*checkvalve_b_weight+check valve_h_CG(l)*checkvalve h w

eight)/checkvalveweight;
checkvalveCG(2) =
(checkvalve b CG(2)*checkvalve_b_weight+checkvalve hCG(2)*check valve h w
eight)/checkvalveweight;
check valveCG(3) =
(checkvalve_b_CG(3)*checkvalve_b_weight+check valve_h_CG(3)*checkvalve h w

eight)/checkvalveweight;

valveweight = globe valveweight+gate_valveweight+checkvalveweight;
valveCG = [0 0 0]; %[LCG VCG TCG]
valveCG(l) =
(globevalveCG(1)*globe_valve weight+gatevalveCG(1)*gate_valveweight+chec
k valve CG (l) *check valve weight) /valve-weight;
valve_CG(2) =

(globevalveCG(2)*globevalve weight+gate valveCG(2)*gatevalveweight+chec
k_valveCG(2)*checkvalveweight)/valveweight;
valveCG(3) =
(globevalveCG (3) *globevalve weight+gat e valveCG (3) *gatevalveweight+chec
k_valveCG (3) *checkvalveweight) /valve weight;

% Determine chiller weight, LCG, VCG, and TCG
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

chillerCG = [0 0 0]; %[LCG VCG TCG]
num chillers = sum(chillers);
chiller weighttotal = 0;
for i=l:numchillers

chillerweight_total = chiller weight_total + chillerweight;
chillerCG(l) = chillerCG(l) + chillerweight*chillerloc(i,1);
chillerCG(2) = chillerCG(2) + chillerweight*chillerloc(i,2);
chillerCG(3) = chillerCG(3) + chillerweight*chiller loc(i,3);

end
chillerCG = chillerCG/chillerweighttotal;

%%%%%%%%%%%%,0%%%%%%%%%%%%%%%%%

% Determine hxchgr weight, LCG, VCG, and TCG
%%%%%%%%%%%%%%%%%%%%%%%%%

349



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

hxchgrweight = 0;
hxchgrCG = [0 0 0];
cw_hxchgr_weight = 0;
cw_hxchgr_CG = [0 0 0];
for i=l:inputs

hxchgrweight = hxchgr_weight + hxchgr_weight_dry(i);
hxchgr_CG(1) = hxchgr_CG(1) + hxchgrweightdry(i)*LoadLocm(i,1);
hxchgrCG(2) = hxchgr_CG(2) + hxchgrweightdry(i)*LoadLoc m(i,2);
hxchgrCG(3) = hxchgr_CG(3) + hxchgrweightdry(i)*LoadLoc m(i,3);
cwhxchgr_weight = cw_hxchgr_weight + hxchgr_weight_wet(i) -

hxchgrweight_dry(i);
cw_hxchgrCG(1) = cw hxchgr_CG(1) + (hxchgr_weightwet(i) -

hxchgrweightdry(i) ) *Load_Loc_m(i, 1);
cw_hxchgrCG(2) = cw hxchgr_CG(2) + (hxchgr_weight_wet(i) -

hxchgrweightdry(i) ) *LoadLoc_m(i,2);
cw hxchgr_CG(3) = cw hxchgr_CG(3) + (hxchgr_weight_wet(i) -

hxchgr_weight dry(i) )*Load_Loc_m(i,3);
end
hxchgr_CG = hxchgr _C/CG/hxchgr_weight;
ow hxohgr_CG = ow hxohgr CG/ow-hxohgr_weight;

% Determine tank weight, LCG, VCG, and TCG
(%%%%%%%%%%%%%%%%%%%%%%%%

tank CG = chillerCG;
totaltankweight = tankweight*numchillers;

% Determine tank instr weight, LCG, VCG, and TCG
0%%%%%%%%%%%%%%%%%%%%%%%%%%%

tank instr CG = tank CG;
totaltank instrweight = tankinstrweight*num chillers;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Determine pump weight, LCG, VCG, and TCG
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
pumpcwCG = [0 0 0];
pump_cw weight = 1200; %revise
pumpcw_weight_total = 0;
for i=l:numchillers

pump_cw_weighttotal = pumpcw_weighttotal + pump_cw_weight;
pump_cw_CG(1) = pump_cwCG(1)+pump_cw_weight*pump_loc(i,1);
pump_cw_CG(2) = pump_cwCG(2)+pump_cwweight*pump_loc(i,2);
pump_cw_CG(3) = pump_cwCG(3)+pump_cw_weight*pump_loc(i,3);

end
pump cw_CG = pump_cw_CG/pump_cwweighttotal;

% Determine bracket weight, LCG, VCG, and TCG

hangar_b_lb_perft = zeros(1,inputs);
for i=1:inputs

if DSI_b(i) <= 0.25/12/3.28084
hangarb_lb_per_ft(i) = 0.1161;

350



Center for Ocean Engineering mm m Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

elseif 0.25/12/3.28084 < DSI b(i) <= 0.375/12/3.28084
hangar b lb per ft(i) = 0.1182;

elseif 0.375/12/3.28084 < D SI b(i) <= 0.5/12/3.28084
hangar_b_lbperft(i) = 0.1213;

elseif 0.5/12/3.28084 < DSIb(i) <= 0.75/12/3.28084
hangar_b_lb_per ft(i) = 0.1677;

elseif 0.75/12/3.28084 < DSIb(i) <= 1/12/3.28084
hangar_b_lbper ft(i) = 0.1444;

elseif 1/12/3.28084 < DSI b(i) <= 1.25/12/3.28084
hangar_b_lb_perft(i) = 0.1514;

elseif 1.25/12/3.28084 < D SI b(i) <= 1.5/12/3.28084
hangar b_lb_per ft(i) = 0.1584;

elseif 1.5/12/3.28084 < D SIb(i) <= 2/12/3.28084

hangar b lb_per ft(i) = 0.1231;
elseif 2/12/3.28084 < DSIb(i) <= 2.5/12/3.28084

hangar b lb perft(i) = 0.2624;
elseif 2.5/12/3.28084 < DSIb(i) <= 3/12/3.28084

hangar b lbperft(i) = 0.2798;
elseif 3/12/3.28084 < DSI b(i) <= 3.5/12/3.28084

hangar_b_lb perft(i) = 0.2938;

elseif 3.5/12/3.28084 < D SIb(i) <= 4/12/3.28084
hangar_b_lb_per ft(i) = 0.3902;

elseif 4/12/3.28084 < DSIb(i) <= 5/12/3.28084
hangar_b_lb_perft(i) = 0.2848;

elseif 5/12/3.28084 < DSIb(i) <= 6/12/3.28084
hangar b lb per ft(i) = 0.4952;

elseif 6/12/3.28084 < DSI b(i) <= 8/12/3.28084

hangar b lb perft(i) = 0.5784;
elseif 8/12/3.28084 < DSI b(i) <= 10/12/3.28084

hangar b lb per ft(i) = 0.8453;

elseif 10/12/3.28084 < DSIb(i) <= 12/12/3.28084
hangar_b_lb_per ft(i) =-0.8233;

elseif 12/12/3.28084 < DSIb(i) <= 14/12/3.28084
hangar_b_lb_per ft(i) = 1.0456;

elseif 14/12/3.28084 < DSIb(i) <= 16/12/3.28084
hangar b lb per ft(i) = 1.0302;

elseif 16/12/3.28084 < DSIb(i) <= 18/12/3.28084

hangar_b_lb_per ft(i) = 1.2802;
elseif 18/12/3.28084 < DSIb(i) <= 20/12/3.28084

hangar_b_lb per ft(i) = 1.2664;

elseif 20/12/3.28084 < DSI b(i) <= 22/12/3.28084
hangar_b_lb per ft(i) = 1.5139;

else
hangarb_lbperft(i) = 1.5014;

end
end

bracket b weight = zeros(2,inputs);
for i=1:inputs

for j=1:2
bracket_b_weight(j,i) =

hangar_b_lb_perft(i)*length b(j,i)/2.20462*3.28084;%kg
end

end
bracket b weight_total = sum(sum(bracketb_weight));

351



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 1 1177-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

bracket b_CG = pipe_b_CG;

if DSI h <= 0.25/12/3.28084
hangar_hlb_per_ft = 0.1161;

elseif 0.25/12/3.28084 < DSI h <= 0.375/12/3.28084
hangar h lb_per_ft = 0.1182;

elseif 0.375/12/3.28084 < DSIh <= 0.5/12/3.28084
hangar_h_lb_per_ft = 0.1213;

elseif 0.5/12/3.28084 < D SI h <= 0.75/12/3.28084
hangar_h_lbperft = 0.1677;

elseif 0.75/12/3.28084 < D SI h <= 1/12/3.28084
hangar_h_lb_per_ft = 0.1444;

elseif 1/12/3.28084 < DSIh <= 1.25/12/3.28084
hangar_hlb_per_ft = 0.1514;

elseif 1.25/12/3.28084 < D SI h <= 1.5/12/3.28084
hangar_h_lb_per_ft = 0.1584;

elseif 1.5/12/3.28084 < D SI h <= 2/12/3.28084
hangar_h_lb_per_ft = 0.1231;

elseif 2/12/3.28084 < DSIh <= 2.5/12/3.28084
hangar_hlb_perft = 0.2624;

elseif 2.5/12/3.28084 < D SI h <= 3/12/3.28084
hangar_h_lb_per_ft = 0.2798;

elseif 3/12/3.28084 < DSIh <= 3.5/12/3.28084
hangar_h_lb_per_ft = 0.2938;

elseif 3.5/12/3.28084 < DSIh <= 4/12/3.28084
hangar_h_lb_per_ft = 0.3902;

elseif 4/12/3.28084 < DSI h <= 5/12/3.28084
hangar_h_lbper_ft = 0.2848;

elseif 5/12/3.28084 < DSI h <= 6/12/3.28084
hangar_h lb_per_ft 0.4952;

elseif 6/12/3.28084 < DSIh <= 8/12/3.28084
hangar_h_lb_perft = 0.5784;

elseif 8/12/3.28084 < DSI h <= 10/12/3.28084
hangar_h_lb_perft = 0.8453;

elseif 10/12/3.28084 < DSI h <= 12/12/3.28084
hangar h lb_per_ft = 0.8233;

elseif 12/12/3.28084 < D SI h <= 14/12/3.28084
hangar_h_lbper_ft = 1.0456;

elseif 14/12/3.28084 < D SI h <= 16/12/3.28084
hangar_h_lbper_ft = 1.0302;

elseif 16/12/3.28084 < DSIh <= 18/12/3.28084
hangar_h_lbper_ft = 1.2802;

elseif 18/12/3.28084 < D SI h <= 20/12/3.28084
hangar_h_lb_per_ft = 1.2664;

elseif 20/12/3.28084 < D SI h <= 22/12/3.28084
hangar h lbper ft = 1.5139;

else
hangar_h_lb_per_ft = 1.5014;

end
length_h_total =
sum(sum(length_h_s))+sum(sum(length_h s_alt))+sum(sum(length_h_r))+sum(sum(le
ngth h_r_alt))+length h_cc;
bracket_h_weight = hangar_h_lb_per_ft/2.20462*3.28084*length h total;
bracket_h_CG = pipe_h_CG;

352



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

bracket weight = bracket_b_weighttotal + bracket h weight;
bracket CG = [0 0 0];
bracket CG(1) =
(bracketbCG(1)*bracket_b_weighttotal+bracket_hCG(1)*bracket_h_weight)/bra
cket weight;
bracket CG(2) =

(bracket bCG(2)*bracket b weight total+bracket hCG(2)*bracket_h weight)/bra

cketweight;
bracketCG(3) =

(bracket b CG(3)*bracket-b weight total+bracket hCG(3)*bracket h weight)/bra

cketweight;

% Determine chilled water weight, LCG, VCG, and TCG

cwCG = [0 0 0];

cw weight cw b weight+cw h weight+cwhxchgrweight+cwtankweight;
cw CG(1)
(cw_b_weight*cw bCG(1)+cw h-weight*cw_h_CG(1)+cwhxchgrweight*cwhxchgrCG(
1)+cwtankweight*tank_CG(l))/cw weight;

cw CG(2) =
(cw_b_weight*cw bCG(2)+cw_h_weight*cw_h_CG(2)+cwhxchgrweight*cwhxchgr_CG(
2)+cw_t ankweight*tankCG(2))/cwweight;
cw CG(3) =
(cw b weight*cw bCG(3)+cw_h_weight*cw_h_CG(3)+cwhxchgrweight*cw hxchgr_CG(

3)+cwtankweight*tankCG(3))/cwweight;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Determine pump weight, LCG, VCG, and TCG

pump sw weight = 1500; %revise

pump sw weighttotal = 0;

pump swCG = [0 0 0];

size sw-pumps = size(SW_pumploc);
numsw_pumps = size sw-pumps(1);

for i=l:num sw_pumps
pump_swweighttotal = pump_sw weight total + pump_sw weight;
pumpswCG(l) = pumpswCG(1)+pump_sw weight*SW_pump_loc(i,1);
pump_swCG(2) = pumpswCG (2) +pumpsw weight*SWpump_loc (i,2);
pumpswCG(3) = pump_swCG(3)+pump_sw weight*SWpump_loc(i,3);

end
pump swCG = pump_sw_CG/pump sw weight_total;

% Determine sea water pipe weight, LCG, VCG, and TCG

%%%%%%%%%%%%%%%%%%%%%%%%0%%%%%

pipe swCG = [0 0 0];

pipesw weight = 0;
length_swpiping = zeros (numsw_piping, size_swpiping (2) -1);
for i=l:numswpiping

for j=1: (sizesw_piping(2)-1)
length_sw_piping(i,j) = sqrt((SW_piping(i,j,1)-

SW piping(i,j+1,1))^2+(SW_piping(i,j,2)-SW_piping(i,j+1,2) )A 2+...

(SW piping(i,j,3)-SWpiping(i,j+1,3))^2);

353



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

pipe_sw weight = pipe_sw weight +
lengthswpiping (i, j) *pipedensity* ( (D_SIswpiping (i) +thickness sw_piping (i)
)^2-...

D_SIsw piping(i)^2)*pi()/4;
pipe swCG(l) = pipe_swCG(1) +

(SW_piping(ij,1)+SWpiping(i,j+1,1) )/2*length_sw_piping(i,j)*pipedensity*..

((DSI_swpiping(i)+thicknessswpiping(i) )A 2-
DSIsw_piping(i)^2)*pi(/4;

pipe_swCG(2) = pipeswCG(2) +
(SWpiping(i,j,2)+SW_piping(i,j+1,2))/2*length_sw_piping(i,j)*pipedensity*..

((DSI_swpiping(i)+thickness_swpiping(i) )^2-
D_SIsw_piping(i)^2)*pi()/4;

pipe_swCG(3) = pipe_swCG(3) +
(SWpiping (i, j, 3) +SW_piping (i, j+1, 3) ) /2*length swpiping (i, j) *pipedensity*. .

((DSI_sw_piping(i)+thickness_sw_piping(i))^2-
D_SI swpiping(i)^2)*pi(/4;

end
end

lengthsw _mains = zeros(l,num sw mains);
for i=l:numswmains

for j=1: (sizeswmains(2)-l)
length_swmains(i,j) = sqrt((SWmains(i,j,l)-

SWmains(i,j+1,1))^2+(SWmains(i,j,2)-SWmains(i,j+1,2))^2+...
(SWmains(i,j,3)-SWmains(i,j+1,3))^2);

pipeswweight = pipe_swweight +
length_sw-mains(i,j)*pipe__density*((DSIsw mains+thickness sw mains)^2-...

D_SIsw_mains A2)*pi()/4;
pipe swCG(l) = pipesw CG(l) +

(SWmains(i,j,1)+SWmains(i,j+1,1))/2*length_swmains(i,j)*pipe_density* ...
((D_SIswmains+thicknesssw mains)^2-DSIswmainsA 2)*pi(/4;

pipeswCG(2) = pipe_swCG(2) +
(SW mains(i,j,2)+SWmains(i,j+1,2))/2*lengthswmains(i,j)*pipedensity*...

((DSIsw mains+thickness sw mains) ̂ 2-DSI sw mainsA2)*pi()/4;
pipesw CG(3) = pipeswCG(3) +

(SWmains(i,j,3)+SWmains(i,j+1,3))/2*lengthsw mains(i,j)*pipedensity* ...
((DSIswmains+thicknessswmains) ̂2-D SI sw mainsA2)*pio/4;

end
end

lengthsw risers = zeros(l,numsw risers);
for i=l:numswrisers

for j=1: (sizeswrisers(2)-1)
lengthswrisers(i,j) = sqrt((SWrisers(i,j,l)-

SWrisers(i,j+1,1))^2+(SW risers(i,j,2)-SW risers(i,j+1,2) )A 2+...
(SW risers(i,j,3)-SW risers(i,j+1,3) )A 2);

pipesw weight = pipeswweight +
lengthsw risers(i,j)*pipe density*((DSI sw risers+thickness sw risers)^2-

DSI sw risers^2)*pi(/4;

354



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

pipe sw CG(1) = pipeswCG(1) +
(SW risers(i,j,1)+SW risers(i,j+1,1))/2*lengthsw risers(i,j)*pipedensity*..

((D SIsw risers+thicknesssw risers )A 2-D_SIsw_risers^2)*pi()/4;
pipe sw CG(2) = pipe_swCG(2) +

(SW risers (i, j,2)+SW risers(i,j+1,2))/2*length_swrisers(i,j)*pipedensity*..

((D SIsw risers+thickness sw risers)^ 2-D SI sw risers^2)*pi(/4;

pipe sw CG(3) = pipesw CG(3) +
(SW risers(i,j,3)+SWrisers(i,j+1,3))/2*length_swrisers(i,j)*pipe_density*..

((DSIswrisers+thickness sw risers)^2-D SI swrisers^2)*pi(/4;

end
end

length sw cc = zeros(1,num sw cc);

for i=l:num sw cc
for j=1: (sizeswcc(2)-1)

length _sw cc(i,j) = sqrt((SWcross__connects(i,j,1)-
SWcrossconnects(i,j+1,1))^2+(SWcross connects(i,j,2)-

SW crossconnects(i,j+1,2))^2+...
(SW cross connects(i,j,3)-SW cross connects(i,j+1,3))^2);

pipe swweight = pipe_sw-weight +
lengthswcc(i,j)*pipe_density*((DSIswcc+thicknessSW_cc) ̂2-...

D SI sw cc^2)*pi()/4;
pipe sw CG(l) = pipe swCG(1) +

(SWcrossconnects(i,j,1)+SW crossconnects(i,j+1,1))/2*lengthswcc(i,j)*pip
e_density* ...

((DSIswcc+thicknesssw cc) ^2-DSI sw cc^2)*pi()/4;
pipe sw CG(2) = pipe swCG(2) +

(SWcrossconnects(i,j,2)+SW crossconnects (i, j+1,2))/2*lengthswcc(i,j)*pip

e_density*....
((D_SIswcc+thickness_ SWcc) ̂2-D_SI_swcc^2)*pi()/4;

pipeswCG(3) = pipe sw_CG(3) +
(SWcrossconnects (i,j,3)+SW cross connects(i,j+1,3) )/2*lengthswcc(i,j)*pip

e density* ...
((DSIsw cc+thicknesssw cc)^2-DSIsw cc^2)*pi(/4;

end
end
pipe sw CG = pipe_swCG/pipe_sw weight;

%%%%%%%%%%%%%%%%%%%%%%%%%%

% Determine sea water valve weight, LCG, VCG, and TCG

gate valvesw mainsCG = [0 0 01;

gatevalveswcc_CG = [0 0 0];
gate valve sw mains weight = 0;
gatevalvesw-ccweight = 0;
sizeswmains_gate_valves = size(SW valveloc);
sizesw ccgatevalves = size(SWcc _valve_ loc);
if DSI_ sw _mains<Valvediamsclass_150(1) /12/ft per m

for i=1:sizeswmains_gatevalves(1)
for j=1:size swmainsgatevalves(2)

gate_valveswmainsweight =

gate valve sw mains weight+Gate valveweight_class_150(1);

355



Center for Ocean Engineering i o Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

gatevalvesw_ mainsCG(1) = gate_valvesw mainsCG(1) +
SW valve loc(i,j,l)*Gate valve weightclass 150(1);

gate_valveswmainsCG(2) = gatevalvesw mainsCG(2) +
SWvalveloc(i,j,2)*Gate valve weightclass_150(1);

gatevalveswmainsCG(3) = gate_valvesw mainsCG(3) +
SW valveloc(i,j,3)*Gate valve weightclass_150(1);

end
end
for i=1:size sw ccgatevalves(1)

gatevalve swccweight =
gatevalveswccweight+Gatevalve_weightclass_150(1);

gatevalve swccCG(1) = gatevalveswccCG(l) +
SWccvalve loc(i,1)*Gatevalveweightclass_150(1);

gatevalve swcc_ CG(2) gate_valveswccCG(2) +
SW ccvalve loc(i,2)*Gatevalveweightclass_150(1);

gate valvesw ccCG(3) gate valve sw ccCG(3) +
SWccvalveloc(i,3)*Gatevalve_weightclass_150(1);

end
else

for j=1:max(size(Valvediamsclass_150))-1
if (Valvediamsclass_150(j)/12/ftperm < DSI swmains) &&

(DSIsw mains <= Valvediamsclass_150(j+1) /12/ftper m)
for i=1:size swmains_gate valves(1)

for k=l:sizeswmains_gatevalves(2)
gatevalveswmainsweight =

gatevalveswmains weight+Gate valve weight_class_150(j+1); %j or j+1
gatevalveswmainsCG(1) = gate valve sw mains CG(1) +

SWvalveloc(i,k,l)*Gatevalveweightclass_150(j+1);
gatevalvesw mainsCG(2) = gatevalve sw mainsCG(2) +

SW-valve-loc(i,k,2)*Gate-valve-weight-class 150(j+1);
gatevalveswmainsCG(3) = gatevalve sw mainsCG(3) +

SWvalveloc(i,k,3)*Gatevalve weightclass_150(j+1);
end

end
for i=1:size sw ccgatevalves(1)

gate valveswccweight =
gate valve sw-cc-weight+Gate valve-weight-class_150(j+1);

gate valveswccCG(l) = gatevalveswccCG(1) +
SWcc valveloc(i,1)*Gatevalve weightclass_150(j+1);

gate _valvesw_cc__CG(2) = gate_valveswccCG(2) +
SWccvalveloc(i,2)*Gatevalveweightclass 150(j+1);

gatevalveswccCG(3) = gatevalveswccCG(3) +
SWccvalveloc(i,3)*Gate valveweightclass_150(j+1);

end
end

end
end

gate valve sw_pipingweight = 0;
gatevalvesw piping_CG = [0 0 0];
sizeswpiping_gatevalves = size(SW seg valveloc);
for i=1:sizesw pipinggatevalves (1)

for j=1:size sw_pipinggatevalves(2)
if DSIsw_piping(i)<Valvediams class_150(1)/12/ftper_m

356



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

gate_valveswpipingweight =

gate valveswpiping weight+Gate valveweightclass_150(1);
gate_valve_sw_pipingCG(1) = gatevalveswpipingCG(1) +

SWseg_valve_loc(i,j,1)*Gatevalveweightclass_150(1);
gatevalve_sw_pipingCG(2) = gate_valveswpipingCG(2) +

SW-seg_valveloc(i,j,2)*Gatevalveweightclass_150(1);
gate_valve_sw_pipingCG(3) = gatevalvesw_piping_CG(3) +

SWsegvalveloc(i,j,3)*Gatevalveweight class_150(1);
end
for k=1:max(size(Valvediamsclass_150))-1

if (Valvediamsclass_150(k) /12/ftperm < DSIsw_piping(i)) &&
(DSIsw-piping(i) <= Valvediamsclass_150(j+1)/12/ftperm)

gatevalveswpipingweight =
gate valveswpiping weight+Gate valveweightclass_150(j+1); %j or j+1

gatevalve sw_pipingCG(1) = gate_valveswpiping_CG(1) +

SW seg valve loc(i,j,1)*Gate valve weight class_150(j+1);
gate valvesw_pipingCG(2) = gatevalveswpipingCG(2) +

SWsegvalveloc(i,j,2)*Gatevalveweightclass_150(j+1);
gatevalveswpiping CG(3) = gatevalve sw_pipingCG(3) +

SWsegvalve loc(i,j,3)*Gate valve weight_class_150(j+1);
end

end
end

end

valve sw weight =

gatevalvesw cc weight+gatevalvesw mainsweight+gatevalvesw piping weigh

t ;
valvesw CG =

(gatevalveswccCG+gatevalveswmainsCG+gatevalvesw_pipingCG)/valvesw

_weight;

% Determine sea water bracket weight, LCG, VCG, and TCG

bracket weight = 0;

hangarsw_b_lbperft = zeros(1,inputs);
for i=l:numsw_ piping

if DSIsw_piping(i) <= 0.25/12/3.28084
hangarsw_b_lbperft(i) = 0.1161;

elseif 0.25/12/3.28084 < DSIswpiping(i) <= 0.375/12/3.28084
hangarsw_b_lb_per_ft(i) = 0.1182;

elseif 0.375/12/3.28084 < DSIswpiping(i) <= 0.5/12/3.28084
hangar sw b lb per ft(i) = 0.1213;

elseif 0.5/12/3.28084 < DSI sw piping(i) <= 0.75/12/3.28084
hangar sw b lb per ft(i) = 0.1677;

elseif 0.75/12/3.28084 < DSI_sw_piping(i) <= 1/12/3.28084
hangar sw b lbper_ ft(i) = 0.1444;

elseif 1/12/3.28084 < DSIswpiping(i) <= 1.25/12/3.28084
hangarsw_b_lb_per_ft(i) = 0.1514;

elseif 1.25/12/3.28084 < DSIswpiping(i) <= 1.5/12/3.28084
hangarsw_b_lbperft(i) = 0.1584;

elseif 1.5/12/3.28084 < DSIswpiping(i) <= 2/12/3.28084
hangarsw b_lbper'_ft(i) = 0.1231;

elseif 2/12/3.28084 < D SIsw piping(i) <= 2.5/12/3.28084

357



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

hangarsw_b lbperft(i) = 0.2624;
elseif 2.5/12/3.28084 < DSI_swpiping(i) <= 3/12/3.28084

hangarswb_lbperft(i) = 0.2798;
elseif 3/12/3.28084 < DSI sw piping(i) <= 3.5/12/3.28084

hangarsw_b_lb_perft(i) = 0.2938;
elseif 3.5/12/3.28084 < DSI swpiping(i) <= 4/12/3.28084

hangarswb_lb_perft(i) = 0.3902;
elseif 4/12/3.28084 < DSIIswpiping(i) <= 5/12/3.28084

hangar_swb_lbperft(i) = 0.2848;
elseif 5/12/3.28084 < DSIsw_piping(i) <= 6/12/3.28084

hangar_sw_blbper-ft(i) = 0.4952;
elseif 6/12/3.28084 < ID_SI_swpiping(i) <= 8/12/3.28084

hangarsw b lb per ft(i) = 0.5784;
elseif 8/12/3.28084 < DSIsw piping(i) <= 10/12/3.28084

hangarsw_b lbper ft(i) = 0.8453;
elseif 10/12/3.28084 < DSIsw_piping(i) <= 12/12/3.28084

hangarsw_blbper ft(i) = 0.8233;
elseif 12/12/3.28084 < DSI_swpiping(i) <= 14/12/3.28084

hangarswb_lb_per ft(i) = 1.0456;
elseif 14/12/3.28084 < D SI swpiping(i) <= 16/12/3.28084

hangarsw b_lbperft(i) = 1.0302;
elseif 16/12/3.28084 < DSI_sw_piping(i) <= 18/12/3.28084

hangar_sw_blbper-ft(i) = 1.2802;
elseif 18/12/3.28084 < D_SIsw_piping(i) <= 20/12/3.28084

hangar_sw_ b_lbperft(i) = 1.2664;
elseif 20/12/3.28084 < DSI_sw_piping(i) <= 22/12/3.28084

hangar sw b lb per ft(i) = 1.5139;
else

hangar_swb_lbperft(i) = 1.5014;
end

end

bracketswweight = 0;
for i=l:num sw piping

bracketswweight = bracketswweight +
hangarsw_b_lbperft(i)*lengthsw piping(i)/2.20462*3.28084;%kg
end

if DSIswmains <= 0.25/12/3.28084
hangarswh_lbperft = 0.1161;

elseif 0.25/12/3.28084 < DSIswmains <= 0.375/12/3.28084
hangarswh_lbperft = 0.1182;

elseif 0.375/12/3.28084 < D_SIsw mains <= 0.5/12/3.28084

,hangarswh_lbperft = 0.1213;
elseif 0.5/12/3.28084 < DSI sw mains <= 0.75/12/3.28084

hangarsw_hlbper ft = 0.1677;
elseif 0.75/12/3.28084 < DSIsw mains <= 1/12/3.28084

hangarsw_h_lbperft = 0.1444;
elseif 1/12/3.28084 < DSIswmains <= 1.25/12/3.28084

hangar_sw_h_lbperft = 0.1514;
elseif 1.25/12/3.28084 < D_SIswmains <= 1.5/12/3.28084

hangar sw h_lbper ft = 0.1584;
elseif 1.5/12/3.28084 < DSIswmains <= 2/12/3.28084

hangarsw_h_lbperft = 0.1231;
elseif 2/12/3.28084 < DSIsw-mains <= 2.5/12/3.28084

358



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

hangarsw_h_lbperft = 0.2624;
elseif 2.5/12/3.28084 < D SIswmains <=

hangarsw_h_lbperft = 0.2798;

elseif 3/12/3.28084 < DSIswmains <= 3.
hangarsw_h_lbperft = 0.2938;

elseif 3.5/12/3.28084 < D SI sw mains <=

3/12/3.28084

5/12/3.28084

4/12/3.28084
hangar sw h lb per ft = 0.3902;

elseif 4/12/3.28084 < D_SIswmains <= 5/12/3.28084
hangarsw_h_lb per_ft = 0.2848;

elseif 5/12/3.28084 < DSIswmains <= 6/12/3.28084
hangar sw h lb perft = 0.4952;

elseif 6/12/3.28084 < DSIswmains <= 8/12/3.28084
hangarsw_h_lbperft = 0.5784;

elseif 8/12/3.28084 < DSIswmains <= 10/12/3.28084
hangar sw h lb per ft = 0.8453;

elseif 10/12/3.28084 < D SIsw mains <= 12/12/3.28084
hangar sw h lb per ft = 0.8233;

elseif 12/12/3.28084 < D SIswmains <= 14/12/3.28084
hangarsw_h lb_perft = 1.0456;

elseif 14/12/3.28084 < D SI sw mains <= 16/12/3.28084
hangarsw h lb_perft = 1.0302;

elseif 16/12/3.28084 < D SIsw mains <= 18/12/3.28084
hangarsw h lb_per_ft = 1.2802;

elseif 18/12/3.28084 < DSIswmains <= 20/12/3.28084
hangarsw h lbperft = 1.2664;

elseif 20/12/3.28084 < DSIswmains <= 22/12/3.28084
hangar sw-h lbperft = 1.5139;

else
hangar sw_h_lbper_ft = 1.5014;

end
bracketswweight =
bracket swweight+hangar_swh_lbper ft/2.20462*3.28084* ...

(sum(sum(length sw mains) )+sum(sum(length sw risers) )+sum(sum(lengthsw cc)))

bracket swCG = pipe sw_CG;

% Determine sea water weight, LCG, VCG, and TCG

swdensity = 1029; %kg/m^3
swweight = 0;
for i=1:num sw piping

for j=1: (size_sw_piping(2)-1)
swweight = swweight +

lengthswpiping(i,j)*sw density*DSIsw_piping(i)^2*pi()/4;
end

end
for i=1:num sw mains

for j=1: (sizesw mains (2)-1)
swweight = sw weight +

lengthsw mains(i,j)*sw density*D_SI sw mains^2*pi()/4;

end
end
for i=l:num sw risers

359



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 111177-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

for j=l: (sizeswrisers (2)-i)

sw weight = sw weight +
lengthswrisers(i,j)*swdensity*DSI_sw risers^2*pi()/4;

end
end
for i=l:num swcc

for j=l: (sizesw cc(2)-l)
swweight = swweight +

length_sw cc(i,j)*sw density*DSIsw cc^2*pi()/4;
end

end
swCG = pipesw_CG;

% Determine total weight, LCG, VCG, and TCG

0%%%%%%%%%%%0%%%%%%%%%%0%%%%%%%%

CW weight total
pipeweight+lagging weight+valveweight+chillerweight total+total tankweigh
t+pump_cwweighttotal ...

+bracketweight+total tankinstr weight+cw_weight+hxchgr weight;
CWCGtotal = [0 0 0];
CWCG_total(1) =
(pipe_CG(1)*pipeweight+laggingCG(l)*laggingweight+valveCG(1)*valveweight

chillerCG(1)*chillerweighttotal+tankCG(1)*total_tank weight+pump_cwCG(l)
*pump_cwweighttotal+bracketCG(1)*bracketweight+

tankinstrCG (1) *total_tankinstr weight+cwCG (1) *cw-weight+hxchgrCG (1) *hxch
grweight)/CW weighttotal;
CWCGtotal(2) =
(pipe_CG(2)*pipeweight+laggingCG(2)*laggingweight+valveCG(2)*valveweight

chiller _CG (2) *chillerweighttotal+tankCG(2)*total tank weight+pump_cwCG(2)
*pumpcw weighttotal+bracketCG(2)*bracket_weight+ ...

tankinstrCG (2) *total tankinstr weight+cwCG (2) *cwweight+hxchgrCG (2) *hxch
grweight) /CW weight_total;
CWCG_total(3) =
(pipeCG (3) *pipe_weight+laggingCG (3) *lagging-weight+valveCG (3) *valveweight

chillerCG (3) *chiller weight_total+tankCG (3) *total tank weight+pumpcwCG (3)
*pump_cwweighttotal+bracketCG(3)*bracket_weight+

tankinstr CG(3)*total_tankinstrweight+cwCG(3)*cw weight+hxchgr_CG(3)*hxch
grweight)/CW weight_total;

SWweight_ total =

pipe sw weight+valve sw weight+pump sw-weight_total+bracket sw weight+swweig
ht;
SW CG total = [0 0 0];

360



Center for Ocean Engineering * Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering U Cambridge, Massachusetts 02139-4307

SWCG total(l) =

(pipe sw weight*pipe swCG(1)+valvesw weight*valve swCG(1)+pump_sw weight_t

otal*pump_swCG(1)+....
bracketswweight*bracketswCG(1)+swweight*swCG(l))/SWweighttotal;

SWCG total(2) =
(pipe swweight*pipe swCG(2)+valveswweight*valveswCG(2)+pumpsw weight-t

otal*pumpswCG(2)+...
bracketswweight*bracketswCG(2)+sw_weight*swCG(2))/SWweighttotal;

SWCG total(3) =
(pipe~_swweight*pipe swCG(3)+valveswweight*valveswCG(3)+pumpsw weight_t

otal*pumpswCG (3) +...
bracketswweight*bracketswCG(3)+swweight*swCG(3))/SWweighttotal;

total weight = CWweight_total + SWweighttotal;
total CG(1) =

(CWweight_total*CWCGtotal(l)+SW weighttotal*SWCGtotal(1))/total weight;

total CG(2) =

(CW_weighttotal*CWCGtotal(2)+SW weighttotal*SWCG_total(2))/total weight;

total CG(3) =
(CW_weighttotal*CWCGtotal(3)+SW weighttotal*SWCGtotal(3))/total weight;

% Margin

fprintf('Please enter the weight margin for the CW and SW systems (enter as a

decimal) .\n')
margin = input('Weight margin: ');

% Print weight report

fprintf('\n\n----------------------------------------------------------------
--------- \n')
fprintf('Report 4: CW/SW Weight Summary\n')

fprintf ('----------------------------------------------------------------~~~
----- \n' )
fprintf('Item Weight (MT) LCG (m) TCG (m) VCG
(m)\n')
fprintf('CW System: %10.4f %10.4f %10.4f %10.4f\n',

CWweight_total/1000, CWCG total(l), CWCG total(2), CWCG total(3))

fprintf(' Pipe: %10.4f %10.4f %10.4f %10.4f\n',

pipe weight/1000, pipeCG(1), pipeCG(2), pipe_CG(3))

fprintf(' Main: %10.4f %10.4f %10.4f %10.4f\n',

pipeh weight/1000, pipe_hCG(l), pipe_h_CG(2), pipe_h_CG(3))

fprintf(' Branch: %10.4f %10.4f %10.4f %10.4f\n',

pipe b_weight/1000, pipe-b CG(l), pipe_b_CG(2), pipe bCG(3))

fprintf(' Lagging: %10.4f %10.4f %10.4f %10.4f\n',

laggingweight/1000, lagging CG(1), laggingCG(2), laggingCG(3))

fprintf(' Main: %10.4f %l.4f %10.4f %10.4f\n',

laggingh weight/1000, laggingh_CG(l), lagging_h CG(2), lagging_h_CG(3))

fprintf(' Branch: %10.4f %10.4f %10.4f %10.4f\n',

lagging_b_weight/1000, lagging_b_CG(l), lagging_b CG(2), lagging_b_CG(3))

fprintf(' Valves: %10.4f %10.4f %10.4f %10.4f\n',

valveweight/1000, valveCG(l), valveCG(2), valve CG(3))

361



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Buiding 5-317
Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

fprintf(' Globe: %10.4f %10.4f %10.4f %10.4f\n',
globevalveweight/1000, globevalveCG(l), globe valve CG(2),
globe_ValveCG(3))
fprintf(' Main: %10.4f %10.4f %10.4f %10.4f\n',
globe valve h weight/1000, globevalve_h_CG(1), globe valve hCG(2),
globe valve hCG(3))
fprintf(' Branch: %10.4f %10.4f %10.4f %10.4f\n',
globevalve b weight/1000, globevalve b_CG(b), globevalve bCG(2),
globevalve b CG(3))
fprintf(' Gate: %10.4f %10.4f %10.4f %10.4f\n',
gate valveweight/1000, gatevalveCG(b), gate valveCG(2), gatevalveCG(3))
fprintf(' Main: %10.4f %10.4f %10.4f %10.4f\n',
gatevalve_h weight/1000, gatevalve_h_CG(1), gatevalve_h_CG(2),
gatevalve_hCG(3))
fprintf(' Branch: %10.4f %10.4f %10.4f %10.4f\n',
gatevalveb weight/1000, gatevalve b_CG(1), gatevalve bCG(2),
gatevalve_bCG(3))
fprintf(' Check: %10.4f %10.4f %10.4f %10.4f\n',
checkvalveweight/1000, checkvalveCG(1), check valveCG(2),
check valve CG(3))
fprintf(' Main: %10.4f %10.4f %10.4f %10.4f\n',
checkvalve h-weight/1000, checkvalve hCG(1), check valve hCG(2),
checkvalve_h_CG(3))
fprintf(' Branch: %10.4f %10.4f %10.4f %10.4f\n',
checkvalve_b_weight/1000, checkvalve b CG(1), check valve bCG(2),
checkvalve_b_CG(3))
fprintf(' Chillers: %10.4f %10.4f %10.4f %10.4f\n',
chiller weighttotal/1000, chillerCG(1), chillerCG(2), chiller CG(3))
fprintf(' Expansion tanks: %10.4f %10.4f %10.4f %10.4fin',
totaltank_weight/1000, tankCG(1), tankCG(2), tank CG(3))
fprintf(' Pumps: %10.4f %10.4f %10.4f %10.4f\n',
pumpcw weighttotal/1000, pump_cwCG(1), pump_cwCG(2), pumpcwCG(3))
fprintf(' Brackets: %10.4f %10.4f %10.4f %10.4f\n',
bracketweight/1000, bracket CG(1), bracketCG(2), bracketCG(3))
fprintf(' Instrumentation: %10.4f %10.4f %10.4f %10.4f\n',
totaltankinstr weight/1000, tank instrCG(1), tank instrCG(2),
tankinstrCG(3))
fprintf(' Chilled water: %10.4f %10.4f %10.4f %10.4f\n',
cw weight/1000, cwCG(1), cw CG(2), cw CG(3))
fprintf(' Heat Exchangers: %10.4f %10.4f %10.4f %10.4f\n',
hxchgr weight/1000, hxchgr_CG(1), hxchgr_CG(2), hxchgrCG(3))
fprintf('SW System: %10.4f %10.4f %10.4f %10.4f\n',
SWweighttotal/1000, SWCGtotal(1), SWCGtotal(2), SWCG total(3))
fprintf(' Pipe: %10.4f %10.4f %10.4f %10.4f\n',
pipe_swweight/1000, pipe_swCG(l), pipe_swCG(2), pipeswCG(3))
fprintf(' Valves: %10.4f %10.4f %10.4f %10.4f\n',
valveswweight/1000, valveswCG(l), valveswCG(2), valve sw CG(3))
fprintf(' Pumps: %10.4f %10.4f %10.4f %1O.4f\n',
pump_swweighttotal/1000, pump_swCG(1), pumpswCG(2), pump_swCG(3))
fprintf(' Brackets: %10.4f %10.4f %10.4f %10.4f\n',
bracketswweight/1000, bracketswCG(l), bracket swCG(2), bracket swCG(3))
fprintf(' Salt water: %10.4f %10.4f %10.4f %10.4f\n',
sw weight/1000, swCG(l), swCG(2), sw CG(3))
fprintf('--------------------------------------------------------------------

--- \n'I)

362



Center for Ocean Engineering * * Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering I II Cambridge, Massachusetts 02139-4307

fprintf('Total: %10.4f %10.4f %10.4f %10.4f\n',
total weight/1000, total CG(1), total CG(2), total CG(3))
fprintf('Margin: %10.4f %10.4f %10.4f %10.4f\n',

total weight*margin/1000, totalCG(1), totalCG(2), totalCG(3))
fprintf(' -----------------------------------------------------------------
----- \n ')
fprintf('Total with margin: %10.4f %10.4f %10.4f %10.4f\n',

totalweight*(1+margin)/1000, totalCG(1), totalCG(2), totalCG(3))
fprintf (' \n' )

save analysis

% Step 13 Static temperature analysis
fprintf('The static analysis module provides a means to determine the
temperature\n')
fprintf('at certain locations over the entire system for a single chiller
line-up\n')
fprintf('which is specified by the user through the use of an excel

spreadsheet.\n\n')

fprintf('The possible load conditions are: \n')
Condition Labels
fprintf('Of the above load conditions, which do you want to analyze when

performing\n')
fprintf('the static analysis?\n')
loadcondition = menu('Select the load
condition','Shore','Design','Cruise','Battle');

% Input File

filename = 'SteadyState.xlsx';

% Clear input file
%%%%%%%%%%%%%%%%%%%%%%%%%%%

clearvars = NaN(1000,12);
xlswrite(filename,clearvars,1, 'B11');

% Order Load Name, Q, Load Value kW

Load Name Ordered = LoadName;
Q_Ordered = zeros(size(Q));
LoadValuekWOrdered = zeros(size(LoadValue_kW));
for i=1:inputs

Load NameOrdered(i) = LoadName(branchorder(1,1,i));
Q Ordered(i) = Q(branch order(1,1,i));
LoadValue kWOrdered(i,:) = LoadValuekW(branchorder(1,1,i),:);

end

% Set initial conditions in Excel Sheet
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%99

363



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

loadnumber = [1:inputs]';
xlswrite(filename, loadnumber, 1, 'Bli');
xlswrite (filename,LoadNameOrdered, 1, 'Cli');
xlswrite(filename,Q_Ordered/l000,1, 'Dii');
if loadcondition == 1

xlswrite(filename,LoadValuekW_Ordered(:,l) ,l, 'Eli');
elseif loadcondition == 2

xlswrite(filename,LoadValuekW_Ordered(:,2),1, 'El');
elseif load condition == 3

xlswrite(filename,Load Value kWOrdered(:,3),l,'Ell');
elseif load condition == 4

xlswrite(filename,LoadValue kWOrdered(:,4),l,'Eli');
else

fprintf('Error selecting load condition\n')
end

chiller number = [1:num chillers]';
xlswrite(filename, chillernumber,l, 'Gl');
xlswrite(filename,chillerloc,i,'H1l');

fprintf('Please open up the Excel file SteadyState.xlsx and provide the heat
load values before\n')
fprintf('and after the transient and the chiller configuration before and
after the transient\n')
fprintf('before proceeding through the analysis module.\n')

% Read in values from Excel Sheet

[num,txt] = xlsread(filename, 'SteadyState');
static Q = num(l:inputs,4);
staticchillerstatus = txt(10:numchillers+9, 10);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Convert static riser branch index from riser branch index and determine
% number of chillers in operation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

static num chillers = 0;
staticrisercountindex = 1;
staticriserbranch index = 0;
for i=l:numchillers

if strcmp(staticchillerstatus(i),'on')
staticnumchillers = staticnumchillers+l;
staticriserbranch_index(static risercountindex) =

riserbranchindex(i);
static riser count index = static riser count index+l;

end
end

% Determine total mass flow rates between risers of operational
chillers/pumps

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

364



Center for Ocean Engineering * Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

static_ mfrtotal = zeros(1,static num chillers);
for i=1:staticnumchillers-1

for j=staticriserbranchindex(i):staticriserbranchindex(i+l)-l
staticmfrtotal(i) = staticmfrtotal(i)+mfr b ordered(1,1,j);

end
end
for i=staticriser branchindex(staticnumchillers):inputs

staticMfrtotal(staticnumchillers) =

staticmfrtotal(staticnumchillers)+mfr b ordered(1,1,i);
end
if static riserbranchindex(l)-=1

for i=1:staticriserbranchindex(1)-l
staticmfrtotal(staticnumchillers) =

static_ mfrtotal(staticnumchillers)+mfr_b ordered(1,1,i);
end

end

Find branch index corresponding to half-flow between segments (these are

initial guesses at stagnation points)

static mfr temp = zeros(l,static num chillers);
staticmfrtempindex = staticriserbranchindex;
for i=l:staticnumchillers-1

for j=staticriser branch index(i):staticriserbranch index(i+l)-l
if static mfr temp(i)*2 < static mfr total(i)

staticmfrtemp(i) = staticmfrtemp(i)+mfr_b_ordered(1,1,j);
static_mfr_tempindex(i) = static_mfr_temp_index(i)+l;

end
end

end
for i=staticriserbranchindex(staticnumchillers):inputs

if static mfr temp(static num chillers)*2 <
staticmfrtotal (staticnumchillers)

staticmfr-temp(staticnumchillers) =

staticmfrtemp(static numchillers)+mfr b_ordered(1,1,i);
staticmfrtempindex(staticnumchillers) =

staticmfr_ tempindex(staticnumchillers)+i;
end

end
if static riser branch index(1)-=l

if staticmfrtotal(staticnumchillers)*2 <
staticmfrtotal(staticnumchillers)

staticmfrtempindex(staticnumchillers)=l;
end
for i=1:static riser branchindex(1)-l

if static_mfrtotal(staticnum chillers)*2 <
static mfr total(static num chillers)

staticmfrtotal(staticnumchillers) =

staticmfrtotal(staticnum chillers)+mfr_b_ordered(1,1,i);
static mfr temp index(static num chillers) =

staticmf r_tempindex (static num chillers) +1;
end

end
end

365



Center for Ocean Engineering * f Massachusetts Institute of Technology
Naval Construction & Engineering Program I1I 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

staticstagbranchindex = staticmfrtempindex;

mfr total seg = zeros(3,static num chillers);
for i=1:staticnumchillers

mfrtotal_seg(l,i) = static mfrtemp(i);
if i~=staticnumchillers

mfrtotalseg(2,i+l) = static mfr total(i)-static mfrtemp(i);
else

mfr_totalseg(2,1) = staticmfr_total(static num chillers)-
static mfr temp(static num chillers) ;

end
end
mfrtotalseg(3,:) = mfrtotalseg(l,:)+mfrtotal_seg(2,:);

% Resize and re-order V SI b and store in V SI b seg

V SI b seg = zeros(l,inputs);
for m=1:inputs

V_SI_b_seg(m) = VSI_b_1(branchorder(1,1,m));
end

% Iterate through loop a predetermined number of times, modifying the
% branch diameters to satisfy the velocity limits set forth by NAVSEA
%%%%%%%%%%%%%%00%%%%%%%%%%%%%%
count = 0;
while count<10

count=count+l;

if count == 1 %use estimated VSI_b_seg to begin iterative process and
only consider friction bends and valves

% Calculate K loss b seg due to friction, bends, valves for branches

for i=l:inputs
f b seg(i) =

friction_factor(D_SI_b(branchorder(1,1,i)),V_SIb_seg(i),k,nu,epsilon,rho,cp
); %ordered

K loss friction b_seg(i)=ftb_seg(i)*length-b(branchorder(1,1,i))/DSI_b(bran
chorder(1,1,i)); %due to pipe length

K_lossbend 90_b_seg(i) =
bends_90__b (l,branchorder(1,1,i))*(f_b_seg(i)*pi(/2*r d_seg(i)+(0.10+2.4*f b

-seg (i) )*sin (pi () /4) ...

+6.6*f_b_seg(i)*( (sin(pi(/4) )^0.5+sin(pi(/4) )/r_d seg(i)^(4*pi()/2/pi() );
%due to 90 bends

K loss_gate b seg(i) = gate valve b(branch order(1,1,i))*0.2;
%due to gate valves

K_lossglobeb_seg(i) = globevalve_b(branchorder(1,1,i))*3.5;
%due to globe valves

366



Center for Ocean Engineering . * Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering U E Cambridge, Massachusetts 02139-4307

K_lossb_seg(i) =

K loss friction b seg(i)+K loss bend 90 b seg(i)+K loss gate b seg(i)+Kloss_
globe_b_seg(i)+Klosshx b_unordered(branchorder(1,1,i));

end

%%%%%%%%%%%%%%%c%% %%%%%%%

% Calculate K loss h seg due to friction, bends, valves for supply
header

for i=l:inputs

f_h_seg(i)=friction_factor(D_SIh,V_SI_h_seg(i),k,nu,epsilon,rho,cp);
K_lossfriction-h_seg(i)=f h seg(i)*lengthh(1,1,i)/DSIh; %due

to pipe length based on first branch Darcy friction factor
K_lossbend_90_h_seg(i) =

bends 90 h(1,1,i)*(f h seg(i)*pi()/2*r d seg(i)+(0.10+2.4*f h seg(i))*sin(pi(

)/4) ...

+6.6*f-h-seg(i)*((sin(pi()/4))^0.5+sin(pi()/4))/rd seg(i)A(4*pi()/2/pi()));
%due to 90 bends

K_lossgate_h_seg(i) = gate_valve_h (1,1,i)*0.2;
% K loss globe h(i) = globe valveh(i)*3.5; %no globe valves

considered
% K loss check h(i) = check valve h(i)*2; %no check valves

considered

K loss h seg(i)
K_loss friction_h_seg(i)+Klossbend_90_h_seg(i)+Kloss gate_h_seg(i); %+

% Kloss globe h(i) +K loss check h(i);
end
for i=inputs+1

f -hseg(i)=friction factor(DSIh,V_SI_h_seg(i),k,nu,epsilon,rho,cp);
K loss friction h seg(i)=f h seg(i)*length_h(1,2,1)/DSI h; %due

to pipe length based on first branch Darcy friction factor
K_los s_bend_90_h_seg(i) =

bends 90 h(1,2,1)*(fh_seg(i)*pi()/2*r_d_seg(i)+(0.10+2.4*f_h-seg(i))*sin(pi(
)/4) ...

+6.6*f_h_seg(i)*((sin(pi(/4))^0.5+sin(pi(/4))/r_d_seg(i)^(4*pi()/2/pi()));
%due to 90 bends

K loss gate_h_seg(i) = gate valve h(1,2,1)*0.2;
%r, K lossglobeh(i) = globe valveh(i)*3.5; %no globe valves

considered
% K losscheckh(i) = checkvalve h(i)*2; %no check valves

considered
K_lossh_seg(i)

K loss friction_h_seg(i)+Klossbend_90_h_seg(i)+Klossgateh_seg(i);%+
% K loss globe h(i)+K loss check h(i);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate K loss rh seg due to friction, bends, valves
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:inputs+1

367



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

% Kloss f rictionrh (i) =fb (1) *lengthrh (i) /D SI h; %due to pipe
length based on first branch Darcy friction factor

% K_loss bend_90_rh(i) =
bends 90 rh(i)*(f b(l)*pi()/2*r d(i)+(0.10+2.4*f b(l))*sin(pi()/4) ...

%

+6.6*fb(l)*( (sin(pi()/4) )^0.5+sin(pi()/4) )/rd(i)^(4*pi()/2/pi())); %due to
90 bends

% K loss gaterh(i) = gatevalverh(i)*0.2;
% K loss globe rh(i) globe valve rh(i)*3.5;
% Kloss rh(i) =

K_loss_friction rh (i)+K_lossbend_90_rh (i) +K_lossgaterh (i) +Klossgloberh(
i) ;

K_loss_ rh seg (i) = K_loss_h_seg (i) ; %assume same loss coefficient
for supply and return header segments

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate Kb/A b^2 and K h/A h^2 for branches and header segments
% respectively
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:inputs
K_b_A_b_2_seg(i) =

K loss_b_seg(i)/area_b_unordered(branchorder(1,1,i))^2;
end
for i=1:inputs+l

K_h_A_h_2_seg (i) = (Kloss_h_seg (i) +Kloss rh seg (i) )/area h^2;
end

% Calculate K A 2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
K A 2 = zeros (1, inputs);
for i=1:static num chillers

if i==1
for

j=staticstagbranchindex(max(size(static stag branch index)))+1 %164
KA_ 2(j) = K_b_A_b_2_seg(j);% + K_h_A_h_2_seg(j);

end
for

j=static stag_branch index(max(size(static stag branch index)))+2:inputs
%165:180

K_A_2(j) = (1/(l/K_b_A_b_2_seg(j)^0.5+1/K_A_2(j-
1)^0.5))^2;%+K h A h 2_seg(j);

end
for j=staticstagbranch index(i) %15

K A _2(j) = K_b_A_b_2_seg(j);% + K hA h 2_seg(j);
end
for j=static stagbranch index(i)-1:-

1:staticriser branch index(i) %1:14
K A 2(j) =

(1/(l/K_b_A_b_2_seg(j) A0.5+1/K_A_2(j+l)^ O. 5))A2;%+K h A h 2 seg(j);
end

else
for j=staticstagbranchindex(i-1)+l %16

K A_2(j) = K bA_b_2_seg(j);% + K hA h_2_seg(j);

368



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering i'i~r Massachusetts Institute of Technology

77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

end
for j=staticstag _branchindex(i-

1)+2:staticriserbranch index(i)-1 %17:37
K_A_2(j) = (1/(l/Kb A b_2_seg(j)^0.5+1/KA 2(j-

1)AO .5) )A 2; %+KhA h _2 seg(j);
end
for j=static_stagbranchindex(i) %60

K_A 2_2(j) = K bA b_2_seg(j);% + K h_ A
end
for j=static_stag_branchindex(i)-1:-

1:static riserbranchindex(i) %59:38
K_A_2(j) =

(1/(l/K_bA b_2_seg(j)0.5+1/K_A_2(j+1)^O.5) )A2;%+K h
end

end
end

% Calculate K A 2 oa

K A 2 oa = zeros(1,static num chillers);
for i=1:staticnumchillers

h_2 _seg (j) ;

A h 2 seg (j);

if i==1
K_A_2 oa(i) =

(1/(1/K_A_2(inputs)^0.5+1/K_A_2(staticriserbranchindex(i))^0.5) )A 2;
else

K_A_2_oa(i) = (11(1/K_A_2 (staticriserbranch index(i)-
1)^0.5+1/KA__2(static riser branch index(i))AO.5))A2;

end
end

% Calculate mfr seg oa

mfrsegoa = zeros(2,staticnum chillers);
for i=1:static num chillers

if i==1
mfr seg oa(1,i) =

mfr_total seg (3, i) * (K_A_2_oa (i) /K_A_2
mfrsegoa(2,i) =

mfr totalseg(3,i)*(K_A_2_oa(i)/K_A_2
else

mfrsegoa(1,i)
mfrtotalseg(3,i)*(K_A_2_oa(i)/KA_2

mfrsegoa(2,i) =
mfr_totalseg (3, i) * (K_A_2_oa (i) /K A 2

end

%cw=l, ccw=2

(static riser branch index(i)))^O.5;

(inputs) )^0.5;

(staticriser branchindex(i)))^0.5;

(staticriser branch index(i)-1))^0.5;

end

C%%%%C%%%C%%%%%%%%%%%%)%%%%%%%%%C

% Calculate mfr seg temp

mfrsegb = zeros(linputs);
mfr seg temp = zeros(1,inputs);

369



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Departnent of Mechanical Engineering Cambridge, Massachusetts 02139-4307

for i=1:static num chillers
if i==1

for
j=static riser branch index(i):static stag branch index(i) %1:15

mfrsegtemp(j) =
mfr_seg_oa(1,i)*(K_A_2 (staticriserbranchindex(i))/K_A_2(j))^0.5;

end
for

j=staticstagbranchindex(max(size(static stag_branch index)))+1:inputs
%164 :180

mfr seg_temp(j) -

mfr_segoa(2,i)*(K_A 2(inputs)/K_A_2(j) )A0 .5;
end

else
for

j=staticriserbranchindex(i):static stag branchindex(i) %38:60
mfr-seg_temp(j) =

mfr_seg_oa(1,i)*(K A_2 (staticriserbranchindex(i))/K_A_2(j) )A0 .5;
end
for j=static stagbranch index(i-

1)+1:staticriser branchindex(i)-1 %16:37
mfrseg_temp(j) =

mfrsegoa(2,i)*(K_A_2 (static riserbranchindex(i)-1)/K_A_2(j) )A0 .5;
end

end
end

% Calculate mfr seg b
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:static num chillers

if i==1
for

j=static stagbranch index(max(size(static stag_branch index)))+1 %164
mfr-segb(j) = mfr_segtemp(j);

end
for

j=static stag_branch index(max(size(static stag_branch index)))+2:inputs
%165: 180

mfr-segb(j) = mfrsegtemp(j)-mfrsegtemp(j-1);
end
for j=static_ stagbranch index(i) %15

mfr segb(j) = mfr seg_temp(j);
end
for j=static stagbranchindex (i) -1:-

1:static riserbranch index(i) %14:1
mfr-seg b(j) = mfr-seg_temp (j) -mfr_seg_temp(j+1);

end
else

for j=static stag branch index(i-1)+1 %16
mfr-seg-b(j) = mfr_seg_temp(j);

end
for j=static stag branchindex(i-

1)+2:static riser branch index(i)-1 %17:37
mfrseg_b(j) = mfr_seg_temp(j )-mfr_seg_temp(j-1);

370



Center for Ocean Engineering U Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

end
for j=static_stag_branch index(i) %60

mfr-seg-b(j) = mfr seg_temp(j);
end
for j=static_stagbranchindex(i)-1:-

1:staticriserbranchindex(i) %59; 38
mfr_seg_b(j) = mfr_seg_temp(j)-mfr_seg_temp(j+1);

end
end

end

% Calculate mfr seg h

mfr segh = zeros(1,inputs);
for i=1:staticnum_chillers

if i==1
for j=static stag branchindex(i) %15

mfrsegh(j) = mfr segb(j);
end
for j=static stag branch index(i)-1:-

1:staticriserbranchindex(i) %14;1
mfrsegh(j) = mfrsegb(j)+mfr segh(j+1);

end
for

j=staticstag_branch index (max (size (staticstag branchindex) ))+1 %164
mfr_seg_h(j) = mfrseg-b(j);

end
for

j=staticstag_branch index(max(size(static stagbranch index)))+2:inputs

%165:180
mfr_seg_h(j) = mfr_seg_b(j)+mfrseg_h(j-1);

end
else

for j=static_stag branch index(i) %60
mfr seg h(j) = mfr segb(j);

end
for j=staticstagbranch index(i)-1:-

1:static riserbranchindex(i) %59:38
mfrsegh(j) = mfrsegb(j)+mfrsegh(j+1);

end
for j=staticstagbranchindex(i-1)+1 %16

mfrseg_h(j) = mfrsegb(j);
end
for j=static stag branch index(i-

1)+2:staticriserbranchindex(i)-1 %17:37
mfr_seg_h(j) = mfrsegb(j)+mfrseg h(j-1);

end
end

end

% Calculate V SI b seg
%%%% %%%i%%%%%%%%%%%%%%%%%

for i=1:inputs

371



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mchanlical Engineering Cambridge, Massachusetts 02139-4307

V_SI_b_seg(i) =

mfr segb(i)/area b unordered(branch order(1,1,i))/rho;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate V_ SI hseg
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f or i=l:inputs
V SI h seg(i) = mfr seg_h(i)/area h/rho;

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate loss coefficient for branches due to friction, bends,
% valves, entrance and exit effects (in order wrt header)

K_lossentrance b seg = zeros(1,inputs);
K loss exit_b_seg = zeros(l,inputs);
for i=1:inputs

f_bseg(i) =

frictionfactor(D_SI_b(branchorder(1,1,i)),V_SI b seg(i),k,nu,epsilon,rho,cp
); %ordered

K_loss friction b_seg(i)=f b seg(i)*length_b(branchorder(1,1,i))/DSI_b(bran
chorder(1,1,i)); %due to pipe length

K_loss bend_90 b_seg(i) =
bends_90_ b(l,branchorder(ll,i))*(f_bseg(i)*pi(/2*r_d_seg(i)+(0.10+2.4*f_b

-seg(i))*sin(pi()/4) ...

+6. 6*f -b -seg (i) * ((sin (pi ()/4) )^0. .5+sin (pi ()/4) )/r d seg (i)^ (4*pi ()/2/pi ())) ;
%due to 90 bends

K loss_gate_b_seg(i) = gatevalveb(branchorder(1,1,i))*0.2; %due to
gate valves

K_loss__globe_b_seg(i) = globevalve b(branchorder(1,1,i))*3.5; %due
to globe valves

K_loss_b_seg(i) =

K lossfriction_b_seg(i)+Klossbend_90_b_seg(i)+Klossgate-b-seg(i)+K_loss_

globe_ b_seg(i)+Klosshx b unordered(branchorder(1,1,i));

Cyc(i) = 1-0.25*(D SI b(branch order (1, 1, i) ) /D SI h)^1.3-(0.11*r d3-
0.65*r d3^2+0.83*rd3^3)*D_SI b(branch-order(1,1,i)) ̂ 2/DSI h^2;

end

% Calculate entrance and exit effects for branch
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Keq = 0.57-1.07*r d3A0.5-2.13*r d3+8.24*r d3Al.5-

8.48*r d3A2+2.9*rd3A2.5;
Cxc 0.08+0.56*r d3-1.75*r d3A2+1.83*rd3A3;
Cm = 0.23+1.46*rd3-2.75*rd3A2+1.65*rd3^3;
for j=1:static num chillers

if j==l
for i=static riserbranch index(j):static stagbranch index(j)

%cw 1:15

372



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

K loss entrance b seg(i) = (0.81-
1.13*mfr-seg h(i)/mfr _seg_b(i)±+mfr seg_h(i)^2/mfr segb(i)^2)*DSI_b(brancho
rder(l,1,i))^4/DSI hA4 ...

+1.12*D_ SI_b (branchorder(1,1,i))/DSIh-
1.08*D SI b(branch order(1,1,i))^3/DSI h^3 + Keq;%due to entrance; assume
r/d3 = 0.1

K_lossexit_b_seg(i) = 2*Cyc(i)-
1+D SI_b(branchorder(1,1,i))^4/DSI_h^4*(2*(Cxc-1)+2*(2-Cxc-
Cm) *mfr segh(i)/mfr_segb(i)-0.92*

mfr seg h(i)A2/mfr segb(i)^2);%due to exit; assume r/d3

0.1

end
for i=inputs:-

1:staticstagbranchindex(max(size(staticstagbranch index)))+1 %ccw
180:164

K loss entrance b seg(i) = (0.81-
1.13*mfrsegh(i)/mfrsegb(i)+mfrsegh(i)A2/mfr seg_b(i)^2)*DSIb(branch o
rder(1,1,i))A4/DSI hA4 ...

+1.12*DSI_b (branchorder(1,1,i))/DSIh-

1.08*D SI b(branch order(1,1,i))A3/DSI h^3 + Keq;%due to entrance; assume
r/d3 = 0.1

K loss exit b seg(i) = 2*Cyc(i)-
1+D SI b(branch order(1,1,i)) A4/DSI hA4*(2*(Cxc-1)+2*(2-Cxc-
Cm) *mfr_seg_h(i)/mfr_seg_b(i)-0.92*

mfr-segh(i)A2/mfrsegb(i)^2);%due to exit; assume r/d3

0.1
end

else
for i=static riser branch index(j):static stag branch index(j)

%cw 38:60
K loss entrance b seg(i) = (0.81-

1.13*mfrseg_h (i)/mfrseg_b(i)+mfrseg_h(i)^2/mfr segb(i)^2)*DSIb(branch o
rder(1,1,i))A4/DSI hA4 ...

+1.12*DSI_b (branch order(1,1,i))/DSIh-
1.08*D SI b(branch order(1,1,i))^3/DSI hA3 + Keq;%due to entrance; assume
r/d3 = 0.1

K_lossexit_b_seg(i) = 2*Cyc(i)-
1+D SI b(branch order(1,1,i))A4/DSI hA4*(2*(Cxc-1)+2*(2-Cxc-
Cm) *mf r_seg_h (i) /mf r_seg_b (i) -0. 92* ...

mfrsegh(i)^2/mfrseg_b(i)A2);%due to exit; assume r/d3
0.1

end
for i=static riserbranchindex(j)-1:-

1:static stagbranchindex(j-1)+1 %ccw 37:16
K loss entrance b seg(i) = (0.81-

1.13*mfr_segh(i)/mfrsegb(i)+mfrsegh(i)^2/mfrseg_b(i)A2)*DSI b(branch o
rder(1,1,i))^4/DSI h^4 ...

+1.12*DSI_b (branchorder(1,1,i))/DSIh-
1.08*D SI b(branch order(1,1,i))A3/DSI h^3 + Keq;%due to entrance; assume
r/d3 = 0.1

K_lossexit_bseg(i) = 2*Cyc(i)-
1+DSIb(branchorder(1,1,i))^4/DSI_hA4*(2*(Cxc-1)+2*(2-Cxc-

Cm)*mfr-segh(i)/mfr_seg_b (i)-0.92* ...
mfrsegh(i)^2/mfrsegb(i)A2);%due to exit; assume r/d3

0.1

373



Center for Ocean Engineering * i Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

end
end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate Kloss_b_seg and K loss b in seg
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

K_loss b in seg = zeros(l,inputs);
for i=l;inputs

K_loss_b_seg(i) =

K loss friction b seg(i)+Kloss bend_90_b_seg(i)+Klossgate-b seg(i)+

K_loss_globe_b_seg (i) +K_losshx_b_unordered (branch-order (1, 1, i) ) +Klossentra
nceb_seg(i)+Klossexit_bseg(i);

K_loss_b_inseg(i) =
K lossfriction_b_seg(i)+Klossbend_90b_seg(i)+K_lossgate-b-seg(i)+

K-loss-globe-b-seg(i)+K losshx b unordered(branchorder(1,1,i))+Klossentra
nce-b_seg(i)+0*Klossexit_bseg(i);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% To avoid getting imaginary velocities, ensure K loss is positive
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=l:inputs
if Kloss_ b _seg(i) <= 0

K_ loss_bseg(i) = 0.01; %negligible loss coefficient
end
if Kloss_b_inseg(i) <= 0

K_loss_bin-seg(i) = 0.01; %negligible loss coefficient
end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate loss coefficient for supply header due to friction, bends,
% valves, entrance and exit effects

K_lossentrance_h_seg = zeros(l,inputs);
for i=l:inputs

f_hseg(i)=frictionfactor(DSIh,V_SIh_seg(i),k,nu,epsilon,rho,cp);
K_loss friction_h_seg(i)=f_h-seg(i)*length h(1,2,1)/DSI h; %due to

pipe length based on first branch Darcy friction factor
K_loss _bend_90_h_seg(i) =

bends 90_h(1,2,1)*(f_h_seg(i)*pi(/2*r_d_seg(i)+(0.10+2.4*f_h_seg(i))*sin(pi(
)/4) ...

+6.6*f h seg(i)*((sin(pi()/4))^0.5+sin(pi()/4))/r-d-seg(i)^(4*pi()/2/pi()));
%due to 90 bends

K loss_gate-h-seg(i) = gatevalve_h(1,2,1)*0.2;
% K lossglobeh(i) = globe valveh(i)*3.5; %no globe valves

considered
% K loss check h(i) = check valve_h(i)*2; %no check valves considered
end

374



Center for Ocean Engineering Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

% Calculate entrance effects for header segments

for j=1:static num chillers
if j==l

for i=staticstagbranchindex(j) %cw 15
K_lossentrance-h-seg(i) = 0;

end
for i=static riser branch index(j):static stagbranch index(j)-1

%cw 1:14
K_lossentrance-h-seg(i) = 0.62-

0.98*mfrsegh(i)/mfrsegh(i+1)+0.36*(mfr seg-h(i)/mfrsegh(i+l))A2+
0.03*(mfrseg_h(i+l)/mfrsegh(i))^6; %revisit mfrseg_h

indices
end
for

i=static stag branch index(max(size(static stag branch index)))+1 %ccw 164
K_lossentrance_h_seg(i) = 0;

end
for i=inputs:-

1:staticstagbranchindex(max(size(static_stag branchindex)))+2 %ccw
180:165

K_lossentrance_h seg(i) = 0.62-
0.98*mfr seg h(i)/mfr-segh(i-1)+0.36*(mfr seg h(i)/mfr segh(i-1))^2+

0.03*(mfrsegh(i-1)/mfrseg_h(i))^6; "revisit mfr seg h
indices

end
else

for i=static stagbranch index(j) %cw 60
K loss entrance h seg(i) = 0;

end
for i=static riser branch index(j):static stagbranch index(j)-1

%cw 38:59
K_lossentrance_h_seg(i) = 0.62-

0.98*mfrsegh(i)/mfrsegh(i+1)+0.36*(mfrsegh(i)/mfrsegh(i+1))^2+
0.03* (mfr-segh(i+l)/mfrseg-h(i))^6; %revisit infr _seg h

indices
end
for i=static stagbranch index(j-1)+1 %cew 16

K_lossentrance h_seg(i) = 0;
end
for i=staticriser branchindex(j)-1:-

1:staticstag_branchindex(j-1)+2 %ccw 37:17
K_lossentrance_h_seg(i) = 0.62-

0.98*mfrsegh(i)/mfrsegh(i-1)+0.36*(mfrsegh(i)/mfr segh(i-1))^2+

0.03*(mfr seg-h(i-l)/mfr-seg h(i))^6; %revisit mfr seg h

indices
end

end
end
for i=1:inputs

K_loss h seg(i) =

K_loss friction-h-seg(i)+K_lossbend_90_h_seg(i)+K lossgate_h_seg(i)+K loss_
entrance_h_seg(i);%+

375



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

% K loss globe h(i)+K loss check_h(i);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% To avoid getting imaginary velocities, ensure K loss is positive
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:inputs
if Klossh_seg(i) <= 0

K_loss_h_seg(i) = 0.01; %negligible loss coefficient
end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Calculate K loss rh due to friction, bends, valves
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

K_lossentrancerhseg = zeros(1,inputs);
for i=1:inputs

%K lossfrictionrh(i)=f_h(i)*lengthrh(i)/DSI h; %due to pipe
length based on first branch Darcy friction factor

%K lossbend 90 rh(i) =
bends_90_rh(i)*(f_h(i)*pi(/2*r d(i)+(0.10+2.4*f h(i))*sin(pi(/4)

)); %due to+6. 6*f h(i)*((sin(pi()/4))^0.5+sin(pi()/4))/rd(i)^(4*pi()/2/pi(
90 bends

%K loss_bend 180 rh(i) =
bends 180rh(i)*(f h(i)*pi()*r_ d(i)+(0.10+2.4*f h(i))*sin(pi(/2) ...

+6.6*f h(i)* (sin(pi()/2) )^0. 5+sin(pi()/2) )/r_d(i)^(4*pi()/pi())); %due to
180 bends

%K loss_gaterh(i) = gatevalverh(i)*0.2;
%K loss globe rh(i) globe valve rh(i)*3.5;

end

% Calculate entrance effects for header segments

for j=1:static num chillers
if j==1

for i=static stagbranch index(j) %cw 15
K_loss entrancerhseg(i) = 0;

end
for i=static riserbranchindex(j):static stag-branchindex(j)-1

%cw 1:14
K loss entrance rh seg(i) = 0.62-

0.98*mfr seg-h(i)/mfr seg-h(i+1)+...

0.36*(mfrsegh(i)/mfrseg_h(i+1))^2+0.03*(mfr segh(i+l)/mfr seg h(i))^6;
%exit

end
for

i=static stag branchindex(max(size (static stagbranch index)))+1 %ccw 164
K_lossentrance rh-seg(i) = 0;

end

376



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

for i=inputs:-
1:staticstagbranch index(max(size(static stag_branch index)))+2 %ccw

180:165
K_lossentrance rhseg(i) = 0.62-

0.98*mfrsegh(i)/mfr seg-h(i-l)+...
0.36*(mfrseg_h(i)/mfrseg-h(i-i) )A2+0.03*(mfr_seg_h(i-

1)/mfr-seg-h(i))^6; %exit
end

else
for i=static stagbranch index(j) %cw 60

K_lossentrancerhseg(i) = 0;
end
for i=staticriserbranchindex(j):staticstag_branch index(j)-1

%cw 38:59
K_lossentrancerhseg(i) = 0.62-

0.98*mfr_seg_h(i)/mfrsegh(i+1)+...

0.36*(mfrsegh(i)/mfr_segh(i+l))^2+0.03*(mfrseg_h(i+1)/mfrsegh(i))^6;
%exit

end
for i=staticstag_branchindex(j-l)+l %ccw 16

K_lossentrancerhseg(i) = 0;
end
for i=staticriser branchindex(j)-l:-

1:static stag branch index(j-l)+2 %ccw 37:17
K lossentrancerhseg(i) = 0.62-

0.98*mfr-seg h(i)/mfrsegh(i-1)+...
0.36*(mfrsegh(i)/mfr-segh(i-1))^2+0.03*(mfrseg-h(i-

1)/mfr_seg_h(i))^6; %exit
end

end
end
for i=l:inputs

K_lossrhseg(i) = K lossh_seg(i)-
K loss entrance_h_seg(i)+Klossentrancerhseg(i);

%K lossrh seg(i) =

K loss friction rh(i)+K_ lossbend_90_rh(i)+Kloss bend_180_rh(i)+K loss gate
rh(i)+ ...

% Kloss_globerh(i)+K_loss entrancerh(i);

end

% To avoid getting imaginary velocities, ensure K loss is positive

for i=l:inputs
if K lossrhseg(i) <= 0

K loss rhseg(i) = 0.01; %negligible loss coefficient

end
end

% Calculate K b/A b^2 and K h/A hA2 for branches

for i=1:inputs

377



Center for Ocean Engineering * Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

K_bA b_2 seg(i) =

K_loss_b_seg(i)/area_b_unordered(branch order(1,1,i) )A 2;
end
for i=1:inputs+1

K_hA h_2_seg(i) = (Klossh_seg(i)+Klossrhseg(i))/area hA2;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate K A 2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

K A 2 = zeros(1,inputs);
for i=1:staticnumchillers

if i==1
for

j=static stagbranchindex(max(size(static stag_branch index)))+1 %164
K_A_ 2(j) = K b A b_2_seg(j);% + K hA h_2_se g(j);

end
for

j=staticstagbranchindex(max(size(staticstag_branchindex)))+2:inputs
%165: 180

K_A_2 (j) = (1/(1/K_bA b 2_seg(j )A0 .5+1/KA_2(j-
1)^0.5))^2;%+K_h_A h 2_seg(j);

end
for j=static stag branch index(i) %15

K_A 2(j) = K b A b_2_seg(j);% + K_hA h 2 seg(j);
end
for j=staticstag_branchindex(i)-1:-

1:static riserbranch index(i) %1:14
K_A 2(j) =

(1/(1/K_b_A-b_2_seg(j)^0.5+1/K_A2(j+l)^O0.5))A2;%+K h A h 2 seg(j);
end

else
for j=static stag branch index(i-1)+1 %16

K_A_2(j) = K bA b_2_seg(j);% + K h A h 2 seg(j);
end
for j=staticstag_branchindex(i-

1)+2:staticriser branchindex(i)-1 %17:37
K_A 2(j) = (1/(1/K_bA b_2_seg(j )A0 .5+1/KA 2(j-

1)A0 .5) )A 2;%+K h A h 2_seg(j);
end
for j=static stag branch index(i) %60

K_A_2(j) = K bA b_2_seg(j);% + K_h A h 2 seg(j);
end
for j=static_stag branch index(i)-1:-

1:static riserbranch index(i) %59:38
K_A_2(j) =

(1/(1/K_b_A-b_2_seg(j)^0.5+1/K_A_2 (j+1)O .5) )A 2;%+K hA h 2_seg(j);
end

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate K A 2 oa
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

KA_2_oa = zeros (1,static num chillers) ;

378

... .. .... .. ...



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

for i=1:staticnumchillers
if i==1

K_A_2_oa(i) =

(1/(1/K_A_2(inputs)^0.5+1/K_A_2(staticriser_branchindex(i))^0.5))^2;
else

K A 2 oa(i) = (1/(1/KA 2(static riser branch index(i)-

1)^0.5+1/K_A_2 (static riser branch index(i))^0.5))^2;
end

end

% Calculate mfr seg oa
% %% %% %%%%% %%% % %%%%%%%%

mfrsegoa = zeros (2,static num chillers);
for i=1:static num chillers

if i==1
mfr_segoa(1,i) =

mfr_total seg(3,i)*(K_A_2_oa(i)
mfrsegoa(2,i) =

mfrtotalseq(3,i)*(KA2oa(i)
else

mfr-seg oa(l,i) =

mfr total seg(3,i)*(KA_2 oa(i)
mfrsegoa(2,i) =

mfrtotalseg(3,i)*(K_A_2_oa(i)
end

end

%cw=l, ccw=2

/KA 2(static riser branchindex(i)))^0.5;

/K_A_2(inputs))^0.5;

/KA_2(staticriser branchindex(i)))^0.5;

/K_A_2(static riser branch index(i)-1))^0.5;

Calculate mfr seg temp

mfrseg b = zeros(1,inputs);
mfr_segtemp = zeros(1,inputs);
for i=1:staticnumchillers

if i==1
for j=static riserbranchindex(i):static stagbranchindex(i)

1: 15
mfrseg_temp(j) =

mfrsegoa(1,i)*(K_A_2(staticriserbranchindex(i))/K_A_2(j))^O.5;
end
for

j=static stagbranchindex(max(size (static stagbranch index) ) ) +1:inputs
%164:180

mfr seg temp(j)
mfr_segoa(2,i)*(K_A_2(inputs)/K_A_2(j))^0.5;

end
else

for j=static riserbranchindex(i):staticstag_branch index(i)

%38:60
mfr_segtemp(j) =

mfr_segoa(1,i)*(K_A_2(static riser branch index(i))/KA_2(j))^0.5;

end
for j=static_stagbranchindex(i-

1)+1:static riser branch index(i)-1 %16:37

379



Center for Ocean Engineering *l Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

mfr_seg_temp(j) =

mfr segoa(2,i)*(KA2(staticriser branch index(i)-1)/K_A_2(j))AO.5;
end

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate mfrseg
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:static num chillers
if i==1

for
j=static stag_branchindex(max(size(staticstagbranch index)))+1 %164

mfrsegb(j) = mfr_seg_temp(j);
end
for

j=static stag_branchindex(max(size(static stagbranch index)))+2:inputs
%165:180

mfr_seg_b(j) = mfr_segtemp(j)-mfr_seg_temp(j-1);
end
for j=staticstagbranchindex(i) %15

mfr_seg-b(j) = mfr_segtemp(j);
end
for j=static stag branch index(i)-1:-

1:static riser branchindex(i) %14:1
mfr_segb(j) = mfr_segtemp(j)-mfrsegtemp(j+1);

end
else

for j=staticstag branchindex(i-1)+1 %16
mfr_seg b(j) = mfrsegtemp(j);

end
for j=static stag branch index(i-

1)+2:staticriserbranchindex(i)-1 %17:37
mfr segb(j) = mfrsegtemp(j)-mfr_seg temp(j-1);

end
for j=staticstag_branchindex(i) %60

mfr segb(j) = mfr_seg_temp(j);
end
for j=static stag branch index(i)-1:-

1:static riserbranch index(i) %59;38
mfr_seg_b(j) = mfr seg_temp(j)-mfrseg temp(j+1);

end
end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate mfrseg_h
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mfrseq_h = zeros(1,inputs);
for i=1:staticnumchillers

if i==1
for j=static stag_branch index(i) %15

mfr_seg_h(j) = mfrsegb(j);
end

380



Center for Ocean Engineering * E Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering U Cambridge, Massachusetts 02139-4307

for j=static stagbranchindex(i)-1:-
1:static riser branch index(i) %14;1

mfr_seg_h(j) = mfrseg-b(j)+mfrseg_h(j+1);
end
for

j=staticstagbranchindex(max(size(static_stagbranch index)))+1 %164

mfrseg-h(j) = mfrsegb(j);
end
for

j=static stagbranch index(max(size(static stag branch index)))+2:inputs

%165:180
mfrseg-h(j) = mfr segb(j)+mfrsegh(j-1);

end
else

for j=staticstagbranchindex(i) %60
mfr_segh(j) = mfr segb(j);

end
for j=static stag branch index(i)-1:-

1:static riserbranchindex(i) %59:38
mfrsegh(j) = mfrseg-b(j)+mfr segh(j+1);

end
for j=staticstagbranchindex(i-1)+1 %16

mfrseg_h(j) = mfrsegb(j);
end
for j=static stag branch index(i-

1)+2:static riserbranchindex(i)-1 %17:37
mfrsegh(j) = mfrsegb(j)+mfr segh(j-1);

end
end

end

% Calculate V SI b seg

for i=1:inputs
V_SI_b_seg(i) =

mfrseg-b(i)/area_b unordered(branchorder(1, 1,i) ) /rho;
end

% Calculate V SI h seg

for i=1:inputs
V_SI h_seg(i) = mfrseg-h(i)/areah/rho;

end
end

%%%%%%%%%%%%%%%%%%0%%%%%%%%%%
% Determine least and greatest branch velocities

%%%%%%%%%%%%%%%%%%%%%%%%%%%%

min vel b = min(VSI b seg)
maxvel b = max(VSIb_seg)
min _vel h = min(VSI_h_seg)
V_SI_h_seg(181) = 0;

381



Center for Ocean Engineering EEI Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

max vel h = max(V SI h seg)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Determine total head loss across pump
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

headloss seg = zeros(l,static num chillers);
for i=l:static numchillers

headloss_seg(i) =
((K_A_2_oa(i)/144/3.28084^4*(mfrtotal seg(3,i)*lbm_perkg).^2/(2*rhow*gfps
2))+30)*2.3069;
end

% Select pump based off of pump head and mass flow rate
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%-

phop = max(headlossseg);
for i=1:staticnumchillers

if phop==headlossseg(i)
mfrop = mfrtotalseg(3,i);

end
end
mfrtotalseg
ratiocwtotalmfr = zeros(l,static num chillers);
for i=l:static num chillers

ratiocwtotalmfr(i) = mfrtotalseg(3,i)/mfr total_seg(l,i);
end

pumpcurve = pumpcurves(PumpHead,PumpMfr,phop/3.28084,mfrop);
mfrtotalseg(3,:) = polyval(pumpcurve(2,:),headloss seg/3.28084); %revised
mass flow rates based off of pump curve

% If stagnation points stay the same scale up/down mass flow rates

for i=1:static num chillers
mfrtotalseg(1,i) = ratiocwtotalmfr(i)*mfrtotal_seg(3,i);
mfrtotalseg(2,i) = mfrtotal_seg(3,i)-mfrtotal seg(2,i);

end

%This block of code needs refinement. The mass flow rates jump too wildly
%based off of the pump curves. Need to determine pressure distribution
%based on refined mass flow rates and check pressure on either side of the
%guessed stagnation point. If one side is dominating, readjust stagnation
%point to allow for pressures to equal. This should be done iteratively
%with the entire process repeated several times to solve floating boundary
%condition (i.e. stagnation point). Not enough time to complete. Recommend
%for future work. Could also consider flow entering from both directions
%into a single branch and calculate loss coefficients from each
%contribution (cw flow and ccw flow into branch).

382



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering U E Cambridge, Massachusetts 02139-4307

analysis2.m
%% Step 13 part a: Transient analysis - user input

load analysis
fprintf('The transient analysis module provides a means to determine the

temperature\n')
fprintf('at either a single location over a timespan specified by the user,

or of the\n')
fprintf('entire system at a time specified by the user.\n')
fprintf('The program requires the status of the system before and after the

transient\n')

fprintf('which is specified by the user through the use of an excel
spreadsheet.\n\n')

fprintf('The possible load conditions are: \n')
Condition Labels
fprintf('Of the above load conditions, which do you want to analyze when
performing\n')

fprintf('the transient analysis?\n')
loadcondition = menu('Select the load
condition', 'Shore', 'Design', 'Cruise', 'Battle');

% Input File

filename = 'Transient.xlsx';

% Clear input file

clearvars = NaN(1000,12);
xlswrite(filename,clearvars,1, 'B12');

Order Load Name, Q, LoadValue kW

Load Name Ordered = Load Name;
Q_Ordered = zeros(size(Q));
LoadValuekWOrdered = zeros(size(Load Value_kW));
for i=1:inputs

LoadNameOrdered(i) = LoadName(branchorder(1,1,i));

Q Ordered(i) = Q(branch order(1,1,i));
LoadValuekWOrdered(i,:) = LoadValuekW(branchorder(1,1,i),:);

end

% Set initial conditions in Excel Sheet
(%% %%%%%%%%%%%%%%%%%%

loadnumber = [1:inputs]';
xlswrite(filename, load number,1, 'B12');
xlswrite(filename,LoadNameOrdered, 1, 'C12');

xlswrite(filename,QOrdered/1000,1, 'D12');

if load-condition == 1

383



Center for Ocean Engineering IIIM Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

xlswrite(filename,LoadValuekWOrdered(:,1),1, 'E12');
elseif load condition == 2

xlswrite(filename,LoadValuekW_Ordered(:,2),1, 'E12');
elseif load condition == 3

xlswrite(filename,LoadValuekWOrdered( :,3),1, 'E12');
elseif loadcondition == 4

xlswrite(filename,LoadValue kWOrdered(:,4) ,l, 'E12');
else

fprintf('Error selecting load condition\n')
end

chillernumber = [1:num chillers]';
xlswrite(filename,chillernumber, 1, 'H12');
xlswrite(filename,chillerloc,1,'112');

fprintf('Please open up the Excel file Transient.xlsx and provide the heat
load values before\n')
fprintf('and after the transient and the chiller configuration before and
after the transient\n')
fprintf('before proceeding through the analysis module.\n')

%% Step 13 part b: Transient analysis - initial pressures

% Read in values from Excel Sheet

[num,txt] = xlsread(filename, 'Transient');
transient_Q init = num(l:inputs,4);
transient_Q final num(l:inputs,5);
transientchiller statusinit = txt(11:numchillers+10,11);
transientchillerstatus_final = txt(11:numchillers+10, 12);

% Determine number of chillers in operation before and after transient

transient num chillers init = 0;
transientnumchillersfinal = 0;
for i=l:numchillers

if strcmp(transient chillerstatus init(i),'on')
transientnumchillersinit = transientnum chillers init+1;

end
if strcmp(transient chiller status final(i),'on')

transientnum _chillers final = transient num chillers final+1;
end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Preallocate variables
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

sizePressure SI = size(Pressure SI);
size dPdXheaderloc_s_index = size(dPdXheaderloc_s_index);
transient min _differencepressure =

1000000 000000*ones(1,transientnumchillersinit);
transient minpressure = zeros(1,transient num chillers init);

384



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

transient_min _location = zeros(1,transientnumchillersinit);
transient index diff = zeros(1,transient num chillersinit);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Determine Pressure as a function of length along header for initial
% chiller configuration

transientPressureSI sum = zeros(1,size PressureSI(3));
pressure riser index = 1;
riser_pressure = 0;
riserlocation = 0;
for j=l:sizedPdXheaderloc_s_index(2)

if strcmp(transientchiller_statusinit(j),'on')
for k=1:size PressureSI(3)

if k>=dPdXheader loc_s_index(j)
transient PressureSI sum(k) =

transientPressureSI sum(k)+...
Pressure_SI(j,l,k-dPdXheaderloc s_index(j)+l)+...
Pressure_SI(j,2,sizePressureSI(3)-(k-

dPdXheaderloc_s_index(j)));
else

transientPressureSIsum(k) = transientPressureSIsum(k) +

PressureSI(j,1, (sizePressure SI(3)+k-
dPdXheaderloc_s_index(j)+l))+...

Pressure_SI(j,2,size PressureSI(3)-
(sizePressureSI(3)+k-dPdXheaderloc s index(j)));

end
end

end
end
transientPressureSI sum =

transientPressureSIsum/transient numchillersinit;

% Determine the pressure and location of risers for chillers operational

for j=l:size dPdX header loc s index (2)
if strcmp(transientchillerstatus init(j),'on')

for k=1:sizePressureSI(3)
if k==dPdXheaderloc_s_index(j)

riserpressure(pressure riserindex) =
transientPressureSIsum(k);

riser location(pressure riserindex) = k;
pressureriser index = pressure riser index+1;

end
end

end
end

% Convert transient riser branch-index from riser branch index
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
transient riser count index = 1;

385



Center for Ocean Engineering * Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

transientriser branchindex = 0;
for i=1:size header(l)

if strcmp(transient chillerstatusinit(i),'on')
transientriser branchindex(transientriser count index)

riserbranchindex(i);
transient riser count index = transient riser count index+l;

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Set stag branch index
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
size riserpressure = size(riserpressure);
index min pressure temp = 10000000000000000*ones(l,sizeriserpressure(2)+1);
index_min loc temp = ones(l,sizeriserpressure(2)+l);
index riserlocation = 1;
riser location temp=riser location;
riserlocationtemp(size riserpressure(2)+l)=sizePressureSI (3);
for i=l:sizePressure SI(3)

if i < riserlocationtemp(index riserlocation)
if index min _pressuretemp(indexriserlocation) >

transientPressure_SI_sum(i)
index_min_pressure temp(indexriserlocation) =

transientPressureSI sum(i);
index minloc temp(index riser location) = i;

end
else

index riser location = index riser location+l;
end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Determine transient riser branch index
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

index min loc = ones(l,size riserpressure(2));
index_minpressure = ones(1,sizeriser_pressure(2));
if
index_min pressure temp(l)<index mi pressuretemp (max (size (index min pressur
e_temp)))

for i=1:size riser_pressure(2)
index_min _pressure(i)=index_min pressure_temp(i);
index_minloc(i)=index_minloc_temp(i);

end
else

for i=l:size riser_pressure(2)
index_minpressure(i)=index_minpressuretemp(i+l);
index_minloc(i)=index_minloc-temp(i+l);

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Plot pressure as a function of distanche along header with riser
% locations corresponding to operational chillers highlighted in red and
% stagnation points highlighted in green

386



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering = Cambridge, Massachusetts 02139-4307

plot(transientPressureSI sum)

hold on
scatter(riser location,riserpressure, 'r')

scatter(index_min _loc,index_min_pressure,'g')
xlabel('Index')
ylabel('Pressure')
title('Pressure Distribution')

legend('Pressure Distribution', 'Riser Location', 'Stagnation Point')

% Convert index min loc to transient stag branch index

count = 0;
transient stag count index = 1;

for i=1:size PressureSI(3)
if dPdX(1,1,i) == 2 %branch

count=count+1;
if transientstagcountindex <= max(size(index_minloc))

if i>=index_minloc(transientstag_countindex)

transient stag_branch index(transientstag_countindex)=count;
transient stagcount index=transientstag_count index+1;

end
end

end
end
for i=l:max(size(transient_stag_branchindex))

if transientstag_branchindex(i)==inputs
transient stagbranch index(i)=inputs-1;

end
end

%% Step 13 part c: Transient analysis - initial velocities and static
temperatures

% Initialize variables

velocity_delt a_seg = 10*ones(1,transientnumchillersinit);
velocity_old seg = zeros(1,transientnumchillersinit);
V_SI h_seg = 1.5*ones(1,inputs+1); %initial guess at header velocities

f_b_seg = zeros(1,inputs);
K_loss_b_seg = zeros(1,inputs);
K loss friction b seg zeros(1,inputs);
K_lossbend_90_b seg = zeros (1, inputs);
K_loss_gate_bseg = zeros (1, inputs) ;
K_loss_globe bseg = zeros(1,inputs);

r_d_seg = 3*ones(l,inputs+1); %assume r/d=3
K_loss h_seg = zeros(l,inputs+l);
K_loss friction_h_seg zeros(1,inputs+l);
K_loss bend_90_h_seg zeros(1,inputs+1);
K loss_gate_h_seg = zeros(1,inputs+1);
K_loss_globe_h seg = zeros (1,inputs+1);

387



Center for Ocean Engineering a lUMassachusetts Institute of Technology
Naval Construction & Engineering Program I E 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering I E Cambridge, Massachusetts 02139-4307

K_losscheck h seg = zeros(1,inputs+1);
f-h-seg = zeros(1,inputs+1);
K loss rhseg = zeros(1,inputs+1);
K lossfrictionrh = zeros(transientnumchillersinit,2,inputs);
K loss bend 90_rh = zeros(transient num chillersinit,2,inputs);
K7lossgaterh = zeros(transientnumchillersinit,2,inputs);
K lossglobe_rh = zeros(transient_num chillers init,2,inputs);
K h A h 2 seg = zeros(1,inputs+1) ;
K bA b_2_seg = zeros(linputs) ;
K_A_eqseg = zeros (transient numchillers init,3,inputs);
mfrh = zeros(transientnumchillersinit,2,inputs);
mfrb = zeros(transientnumchillersinit,2,inputs);
V_b = zeros (transientnumchillersinit,2,inputs);
V h = zeros (transientnumchillersinit,2,inputs);
mfrtotalseg = zeros (3,transientnum chillersinit);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate total mfr's for each segment going cw and ccw
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=l:transient numchillers init

if i==1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate mfr total seg cw
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for j=l:transientstag branch index(1)%j=1: (stag branch index(l)-1)
mfrtotalseg(1,i) = mfrtotal_seg(1,i) +

massflowrate_b(branchorder(1,1,j)); % branches 1-15
end
%mfrtotalseg(l,i) = mfr total seg(1,i) +

mass flow rateb(branch order(1,1, (stagbranch index(1))))/2; %half of branch
15

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate mfr total seg ccw
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for

j=(transient_stag branchindex(max(size (transientstagbranch index))) +1) :inp
uts

mfrtotalseg(2,i) = mfr totalseg(2,i) +
massflowrate_b(branch order(1,1,j)); % branches 164:180

end
%mfrtotal_seg(2,i) = mfrtotal seg(2,i) +

mas s_flowrate_b (branchorder(l,1, (stagbranchindex(max(size(stagbranch ind
ex))))))/2; %half of branch 163

elseif 1<i && i<transient num chillers init
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate mfr total seg cw
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for

j=transient riserbranch index(i):transient_stagbranchindex(i)%j=riser bran
ch index(i) :stagbranchindex(i)-l

mfrtotal seg(1,i) = mfrtotal_seg(1,i) +
massflowrate_b(branchorder(1,1,j)); %branches 38:60

388



Center for Ocean Engineering U Massachusetts institute of Technology
Naval Construction & Engineering Program I I 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

end
%mfr total seg(1,i) = mfr total seg(l,i) +

mass flow rate b(branch order(1,1, (stag branch index(i))))/2; %half of branch
60

00%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate mfr total seg ccw
%%%%%%%%%%%%%%%%%%%%%%%%0%%%%%

for j=transient stag branch index(i-
1)+l:transientriserbranch index(i)-l

mfrtotal_seg(2,i) = mfrtotal_seg(2,i) +
mass-flowrate b(branchorder(1,1,j)); 'branches 16:37

end
%mfrtotalseg(2,i) = mfr total seg(2,i) +

mass flow_rate b (branch order (1, , (stag branch index (i-) )) )/2; half of

branch 15

elseif i==transient num chillers init

% Calculate mfr total seg cw

for
j=transientriserbranchindex(max(size(transient riserbranchindex))):trans
ientstagbranchindex(max(size(transientstag branchindex)))
%j=riser branch index (max(size(riser branch index))): (stag branch index(max(s

ize(stag branch_index)))-1)

mfrtotal_seg(1,i) = mfrtotalseg(l,i) +
massflowrate_b(branchorder(1,1,j)); %branches 154:163

end
%mfr total seg(l,i) = mfr total seg(l,i) +

mass flow rate b(branch order(1,1, (stag branch index(max(size(stag_branch ind
ex))))))/2; %half of branch 163

% Calculate mfr total seg ccw

for
j=transientstag_branchindex (max (size (transient stag_branchindex) ) -
1) +1:transient riser branch index(max(size (transient riser branch index)) )-l

mfrtotal_seg(2,i) = mfrtotal seg(2,i) +
massflow rate_b(branchorder(1,1,j)); %branches 148:153

end
%mfr totalseg(2,i) = mfrtotal seg(2,i) +

mass flow _rate_b (branchorder(1,1, (stagbranch index(max(size(stag branch ind
ex))-l))))/2; %half of branch 147

end
end

% Sum up mass flow rate going cw and ccw to give mass flow rate exiting
% each riser

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:transient num chillers init
mfr totalseg(3,i) = mfr totalseg(l,i)+mfrtotalseg(2,i);

389



Center for Ocean Engineering 3 M Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Resize and re-order V SIb and store in V_SIb_seg
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

V SI b seg = zeros(1,inputs);
for m=1:inputs

V SI b seg(m) = VSI b_1(branch order(1,1,m));
end

% Iterate through loop.a predetermined number of times, modifying the
% branch diameters to satisfy the velocity limits set forth by NAVSEA
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

count = 0;
while count<10

count=count+1;

if count == 1 %use estimated V SI b seg to begin iterative process and
only consider friction bends and valves

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate K loss b seg due to friction, bends, valves for branches

for i=1:inputs
f_b_seg(i) =

friction factor(DSI b(branch order(ll,i)),VSI b seg(i),k,nu,epsilon,rho,cp
); %ordered

K_lossfriction_b_seg(i)=fb_seg(i)*length_b(branchorder(1,1,i))/DSI_b(bran
chorder.(1,1,i)); %due to pipe length

K_lossbend 90_b_seg(i) =
bends_90_b (1,branchorder(1,1,i))*(f_b_seg(i)*pi()/2*r_d_seg(i)+(0.10+2.4*f_b

seg(i))*sin(pio/4) ...

+6.6*f_b_seg(i)*( (sin(pi(/4) )^0.5+sin(pi()/4) )/r_d_seg(i)^(4*pi()/2/pi());
%due to 90 bends

K_loss_gate_b_seg(i) = gatevalve_b(branchorder(1,1,i))*0.2;
%due to gate valves

K_lossglobe_b_seg(i) = globe valveb(branch order(1,1,i))*3.5;
%due to globe valves

K_loss_b_seg(i) =
K_lossfriction-b seg(i)+K loss bend_90_b_seg(i)+Kloss_gate b seg(i)+K_loss_
globe_b_seg(i)+Klosshx b unordered(branchorder(1,1,i));

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate K loss h seg due to friction, bends, valves for supply
header

%%%%%%%%%%%%%%%%%%%%%%%%%o%%%
for i=1:inputs

f h_seg(i)=frictionfactor(DSI h,VSI h_seg(i),k,nu,epsilon,rho,cp);
K_lossfriction-h-seg(i)=fh_seg(i)*length h(1,1,i)/DSI h; %due

to pipe length based on first branch Darcy friction factor

390



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

K lossbend_90_h_seg(i) =
bends 90_ h(1,1,i)*(f h seg(i)*pi()/2*r d seg(i)+(0.10+2.4*f_h-seg(i))*sin(pi(
)/4) ...

+6.6*f h seg(i)*((sin(pi()/4))^0.5+sin(pi()/4))/r_d_seg(i)^(4*pi()/2/pi()));
%due to 90 bends

K_los s_gate_h_seg(i) = gate_valve_h (1,1,i)*0.2;
% K lossglobe_h(i) = globe valve_h(i)*3.5; %no globe valves

considered
% K loss check h(i) = check valve__h(i)*2; %no check valves

considered
K loss_h seg(i)

K_loss frictionh_seg(i)+Klossbend_90_h_seg(i)+K_lossgate_h_seg(i); %+
% K-loss globe h(i)+K loss check h(i);
end
for i=inputs+l

f h seg(i)=friction factor(DSI h,VSI h seg(i),k,nu,epsilon,rho,cp);
K_loss _friction h seg(i)=f hseg(i)*length_h(1,2,1)/DSIh; %due

to pipe length based on first branch Darcy friction factor
K_lossbend_90_ h_seg(i) =

bends 90 h(1,2,1)*(f h seg(i)*pi()/2*r d seg(i)+(0.10+2.4*f h seg(i))*sin(pi(

)/4) ... .

+6.6*f-h-seg(i)*((sin(pi()/4))^0.5+sin(pi()/4))/r d seg(i)^(4*pi()/2/pi()));
%due to 90 bends

K lossgate_h_seg(i) = gatevalve_h(1,2,1)*0.2;
% Kloss globe h(i) = globe valve h(i)*3.5; %no globe valves

considered
% K loss check h(i) = check valve h(i)*2; %no check valves

considered
K loss h seg(i) =

K_loss friction_h_seg(i)+K_lossbend_90_h-seg(i)+K_lossgate_hseg(i); %+
% K loss globeh (i) +K loss check h (i);
end

% Calculate K loss rh seg due to friction, bends, valves

for i=l:inputs+1
% K loss frictionrh(i)=f_b(l)*lengthrh(i)/D SI h; %due to pipe

length based on first branch Darcy friction factor
% K loss bend_90 rh(i) =

bends_90_rh(i )*(f b(l)*pi()/2*rd(i)+(0.10+2.4*f-b(l))*sin(pi()/4) ...

+6.6*f b(l)*((sin(pi(/4))^0.5+sin(pi()/4))/rd(i)^(4*pi(/2/pi())); %due to
90 bends

% K loss gate rh(i) = gate valve rh(i)*0.2;
% Klossglobe rh(i) = globevalverh(i)*3.5;
% Kloss rh(i) =

K loss f riction rh (i) +K loss bend_90 rh (i) +K loss gate rh (i)+K loss globe rh (
i);

K_lossrhseg(i) = Kloss h-seg(i); %assume same loss coefficient
for supply and return header segments

end

391



Center for Ocean Engineering * E Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering I Cambridge, Massachusetts 02139-4307

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate K b/A b^2 and K h/A h^2 for branches and header segments
% respectively
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:inputs
K_b_A_b_2_seg(i) =

K_loss_b_seg(i)/area_b_unordered(branchorder(1,1,i))^2;
end
for i=l:inputs+1

K h_A_h_2_seg(i) = (K lossh_seg(i)+K loss rh seg(i))/area h^2;
end

% Calculate K A 2

K A 2 = zeros(1,inputs);
for i=l:transient num chillers init

if i==1
for

j=transient_stagbranch index(max(size(transientstag branchindex)))+l %164
KA_2 (j) = K_bA_ b_2seg (j);% 4 K hA h_2_seg (j);

end
for

j=transientstagbranch index(max(size(transientstag-branch index)))+2:input
s %165:180

K A 2(j) = (1/(l/K bA b_2_seg(j)^0.5+1/KA_2(j-
1)^0.5))^2;%+K h A h 2 seg(j);

end
for j=transientstag branchindex(i) %15

K_A_2 (j) = K_bA b_2_seg(j);% + K_h_A_h_2 seg(j);
end
for j=transient stag branch index(i)-1:-

1:transientriserbranchindex(i) %1:14
K A 2(j) =

(1/(1/K_b_A-b_2 seg(j)^0.5+1/K_A_2(j+1)^0.5))^2;%+K hA h2_seg(j);
end

else
for j=transientstagbranchindex(i-l)+l %16

KA 2(j) = KbA b_2_seg(j);% + K h A h_2_seg(j);
end
for j=transientstagbranch index(i-

1)+2:transientriserbranchindex(i)-1 %17:37
K_A_2 (j) = (1/(l/K_b_A_b_2_seg(j)^0.5±1/K_A_2(j-

1)A0.5))^2;%+K h A h_2_seg(j);
end
for j=transient stag branch index(i) %60

KA 2(j) = K_b_A_b_2_seg(j);% + K h_A h_2_seg(j);
end
for j=transientstag branch index (i) -1:-

1:transientriserbranchindex(i) %59:38
K A 2(j) =

(1/(l/K b_A-b_2seg(j)^0.5+1/K_A_2(j+1)^0.5))^2;%+K h A h 2_seg(j);
end

end

392



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

end

% Calculate K A 2 oa

K A 2 oa = zeros(1,transient num chillers init);
for i=1:transient num chillers init

if i==1
K_A_2_oa(i) =

(1/(1/K_A_2(inputs)^0.5+1/K_A_2(transient riserbranchindex(i))^0.5))^2;
else

K A 2 oa(i) = (1/(1/KA_2(transient riser branch index(i)-
1)^0.5+1/K_A_2(transient riserbranch index(i) )^0.5))A 2;

end
end

Calculate mfr seg oa

mfrseg_oa = zeros(2,transientnumchillersinit);
for i=1:transient num chillers init

if i==1
mfr seg-oa(1,i) =

mfrtotal seg(3,i)*(K_A_2_oa(i)/K_A_2
mfrseg-oa(2,i) =

mfrtotalseg(3,i)*(K_A_2_oa(i)/KA_2
else

mfrseg_oa(1,i) =

mfr total seg(3,i)*(KA 2 oa(i)/KA_2
mfrsegoa(2,i) =

mfrtotalseg(3,i)*(K_A_2_oa(i)/K_A_2
1) )^0.5;

end
end

% cw=l, ccw=2

(transientriser branchindex(i) ) )^0.5;

(inputs) ) ̂ 0. 5;

(transientriserbranchindex(i)))^0.5;

(transient riserbranch index(i)-

% Calculate mfr seg temp

mfr seg b = zeros(1,inputs);
mfrseg temp = zeros(1,inputs);
for i=1:transientnum chillersinit

if i==1
for

j=trans ientriserbranchindex (i) :transient_stagbranchindex(i) %1:15
mfrsegtemp(j) =

mfrsegoa(1,i)*(KA_2(transient riserbranchindex(i))/K_A_2(j))^O.5;
end
for

j=transient stagbranch index(max(size(transient stag branch index)))+1:input
s %164:180

mfr seg temp(j) =

mfr segoa (2, i) * (KA_2 (inputs) /K_A_2 (j) ) ^0. 5;
end

else

393



Center for Ocean Engineering * f Massachusetts Institute of Technology
Naval Construction & Engineering Program I 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

for
j=transientriser branch index(i):transient stagbranch index(i) %38:60

mfr seg_temp(j) =
mfrsegoa(1,i)*(K_A_2 (transientriserbranch index(i))/K_A_2(j))AO.5;

end
for j=transientstagbranch index(i-

1)+1:transientriserbranch index(i)-1 %16:37
mfr seg_temp(j) =

mfr-seg-oa(2,i)*(KA_2(transient riser branch index(i)-1)/KA_2(j) )AO .5;
end

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate mfr seg b

for i=1:transient num chillers init
if i==1

for
j=transient stag branch index(max(size(transient_stagbranchindex)))+1 %164

mfr-segb(j) = mfrseg_temp(j);
end
for

j=transient_stagbranch index(max(size(transient stag branch index)))+2:input
s %165:180

mfrseg_b(j) = mfr_seg_temp(j)-mfr_seg_temp(j-1);
end
for j=transientstag branchindex(i) %15

mfrseg_b(j) = mfrseg_temp(j);
end
for j=transient st ag branch index(i)-1:-

1:transientriserbranchindex(i) %14:1
mfr_seg_b(j) = mfr_seg_temp(j)-mfr_seg_temp(j+1);

end
else

for j=transientstagbranchindex(i-1)+1 %16
mfr_seg_b(j) = mf r_segtemp(j);

end
for j=transient stag branch index(i-

1)+2:transientriser branchindex(i)-1 %17:37
mfr segb(j) = mfr segtemp(j)-mfr_seg_temp(j-1);

end
for j=transientstag branchindex(i) %60

mfrseg b(j) = mfrseg_temp(j);
end
for j=transient stag branch index(i)-1:-

1:transient riser branch index(i) %59;38
mfr segb(j) = mfr_seg_temp(j)-mfrseg_temp(j+1);

end
end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate mfr seg_h
0%%%%%00000000%%%%00%%00%%0000 %

394



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering ICambridge, Massachusetts 02139-4307

mfr segh = zeros(1,inputs);
for i=1:transientnumchillers init

if i==1

for j=transient stagbranch index(i) %15
mfrseg_h(j) = mfrseg_b(j);

end
for j=transientstag_branch index(i)-1:-

1:transientriserbranchindex(i) %14;1
mfr_segh(j) = mfrsegb(j)+mfr_seg_h(j+1);

end
for

j=transient stag branch index(max(size(transient stag branch index)))+1 %164
mfrseg-h(j) = mfrsegb(j);

end
for

j=transient stagbranch index(max(size(transient stag branch index)))+2:input
s %165:180

mfr segh(j) = mfr_seg b(j)+mfr_seg_h(j-1);
end

else
for j=transient stagbranch index(i) %60

mfrsegh(j) = mfr_segb(j);
end
for j=transient_stag_branchindex(i)-1:-

1:transient riserbranchindex(i) %59:38
mfrsegh(j) = mfrsegb(j)+mfr-seg-h(j+1);

end
for j=transient stagbranch index(i-1)+1 %16

mfrsegh(j) = mfr seg-b(j);
end
for j=transientstagbranch index(i-

1)+2:transientriserbranchindex(i)-1 %17:37
mfrseg_h(j) = mfrseg_b(j'j )+mfr_seg_h(j-1);

end
end

end

% Calculate V SI b seg

for i=1:inputs
V_SI_b_seg(i)

mfr seg-b (i) /area b unordered (branch-order (1, 1, i) )/rho;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate V SI h seg
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:inputs

V_SI_h_seg(i) = mfrsegh(i)/areah/rho;
end

end

%%%%%%%%%%%%%%%00%%%%%%%%%%%%%

395



Center for Ocean Engineering * f Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

% Calculate loss coefficient for branches due to friction, bends,

% valves, entrance and exit effects (in order wrt header)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
K_lossentrance_b _seg = zeros(1,inputs);
K_loss_exit_b_seg = zeros(1,inputs);
for i=1:inputs

f_b_seg(i) =

friction_factor (DSI_b (branchorder (1, 1, i) ),V_SI_bseg (i) , k, nu, epsilon, rho, cp
); %ordered

K loss friction b seg(i)=f b seg (i) *length-b (branch-order (1, 1,.i) ) /D SI b (bran
ch_order(1,1,i)); %due to pipe length

K_lossbend_90_b_seg(i) =
bends_90_b(l,branchorder(1,1,i))*(f_b_seg(i)*pi(/2*rd_seg(i)+(0.10+2.4*f_b

_seg (i) )*sin (pi () /4)T.

+6.6*f_b_seg(i)*((sin(pi(/4))^0.5+sin(pi(/4))/r d seg(i)^(4*pi(/2/pio));
%due to 90 bends

K loss_gate b seg (i) gatevalve-b (branch-order (1, 1, i) ) *0. 2; %due to
gate valves

K_loss_globe-b-seg(i) globe_valve_b(branch order(1,1,i))*3.5; %due
to globe valves

K_loss_b seg(i) =

K_lossfriction_b_seg(i)+Kloss bend_90_b_seg(i)+K loss gate-b_seg(i)+K_loss_
globe b seg(i)+K losshx_b_unordered(branchorder(1,1,i));

Cyc(i) = 1-0.25*(D SI b(branch order(1,1,i)) /D SI h)^1.3-(0.11*r d3-
0.65*r d3A2+0.83*rd3 A3)*D_SI b(branch-order(1,1,i))^27D_SI hA2;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate entrance and exit effects for branch
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Keq = 0.57-1.07*r d3^0.5-2.13*r d3+8.24*r d3Al.5-
8.48*rd3A2+2.9*rd3^2.5;

Cxc = 0.08+0.56*r d3-1.75*r d3A2+1.83*rd3^3;
Cm = 0.23+1.46*r_d3-2.75*r_d3^2+1.65*rd3A3;
for j=1:transientnum chillersinit

if j==1
for

i=transient riser branch index(j):transientstag_branch index(j) %cw 1:15
K_lossentranceb_seg(i) = (0.81-

1.13*mf r_seg_h (i) /mfr seg b(i)+mfr_seg_h(i)^2/mfr_seg_b (i)A 2)*DSI_b(branch o
rder(1,1,i))A4/DSI h^4 ...

+1.12*DSI_b (branchorder(1,1,i))/DSI h-
1.08*D_ SIb(branchorder(1,1,i))A3/DSI hA3 + Keq;%due to entrance; assume
r/d3 = 0.1

K _loss exit_b_seg(i) = 2*Cyc(i)-
1+D_SI b(branchorder(1,1, i) )A4/DSI_hA4*(2*(Cxc-l)+2*(2-Cxc-
Cm) *mfrseg_h(i)/mfr_seg_b(i) -0.92*

mfrseg-h(i)^2/mfrseg_b(i)A2);%due to exit; assume r/d3
0.1

end

396



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Departmnt of Mechanical Engineering Cambridge, Massachusetts 02139-4307

for i=inputs:-
1:tr.ansientstagbranchindex(max(size(transientstag_branchindex)))+1 %ccw

180: 164
K_lossentrance_b_seg(i) = (0.81-

1.13*mfr-segh(i)/mfr_seg_b(i)+nfr_seg_h(i) ̂ 2/mfr_seg_b(i)^2)*D_SI_b(branch_o
rder(1,1,i)) ^4/DSI h^4 ...

+1.12*DSI_b(branchorder(1,1,i))/DSIh-

1.08*D SI b(branch order(1,1,i))^3/D SI h^3 + Keq;%due to entrance; assume
r/d3 = 0.1

K loss exit b seg(i) = 2*Cyc(i)-
1+DSIb(branchorder(1,1,i))^4/D SI_h^4*(2*(Cxc-1)+2*(2-Cxc-
Cm)*mfrsegh(i)/mfrsegb(i)-0.92* ...

mfr-segh(i)^2/mfrseg_b(i)A2);%due to exit; assume r/d3

0.1
end

else
for

i=transient riser branch index(j):transientstag branch index(j) %cw 38:60
K_lossentrance_b_seg(i) = (0.81-

1.13*mfr_seg h(i)/mfr seg_b (i)+mfr_seg h(i)^2/mfrseg_b(i)^2)*DSI_b(branch_o
rder (1, 1, i) ) 4 /D SI h^4 ...

+1.12*DSIb(branchorder(1,1,i))/DSIh-
1.08*D SI b(branch order(1,1,i))^3/DSI hA3 + Keq;%due to entrance; assume
r/d3 = 0.1

K loss exit b seg(i) = 2*Cyc(i)-
1+D SI b(branchorder(1,1,i))^4/DSI_hA4*(2*(Cxc-l)+2*(2-Cxc-
Cm)*mfrsegh(i)/mfr segb(i)-0.92* ...

mfrsegh(i)A2/mfrseg_b(i)A2);%due to exit; assume r/d3
0.1

end
for i=transientriserbranchindex(j)-1:-

1:transient stag branch index(j-1)+1 %ccw 37:16
K lossentrance_b_seg(i) = (0..81-

1.13*mfr-seg h(i)/mf r_seg_b(i)+mfr_seg_h (i)A 2/mfr seg_b(i)^2)*D_SI_b(branch_o
rder(1,1,i))^4/DSI hA4 ...

+1.12*DSIb(branchorder(1,1,i))/DSI'h-
1.08*D SI b(branch order(1,1,i))^3/DSI h^3 + Keq;%due to entrance; assume
r/d3 = 0.1

K loss exit b seg(i) = 2*Cyc(i)-
1+DSIb(branchorder(1,1,i))A4/DSI_hA4*(2*(Cxc-1)+2*(2-Cxc-
Cm)*mfrseg_h(i)/mfr_seg_b(i)-0.92* ...

mfr-segh(i)A2/mfrseg_b(i)A2);%due to' exit; assume r/d3
0.1

end
end

end

% Calculate K loss b seg and K loss b in seg

K loss b in seg = zeros(l,inputs);
for i=1:inputs

K_loss b_seg(i) =

K_loss friction b_seg(i)+K lossbend_90_b_seg(i)+K loss gate-b seg(i)+

397



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 1 1177-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

K loss_globe-b-seg (i) +Kloss hx_b_unordered (branchorder (1, 1, i) ) +K loss entra
nceb_seg(i)+Kloss_ exit_b_ seg(i);

K_los s_b_inseg(i) =
K_lossfriction_b_seg(i)+Klossbend_90_b_seg(i)+Klossgate_b_seg(i)+

K_loss_globe-b-seg(i)+Klosshx_b_unordered(branch order(1,1,i))+Klossentra
nce_b_seg(i)+O*Kloss exit-b_seg(i);

end

%%%%%%%%%%%%%%%%%%%%"-%%%%%%%%%

% To avoid getting imaginary velocities, ensure Kloss is positive
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:inputs
if Kloss_b_seg(i) <= 0

K_loss b-seg(i) = 0.01; %negligible loss coefficient
end
if K loss b in seg(i) <= 0

K loss_b_inseg(i) = 0.01; %negligible loss coefficient
end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate loss coefficient for supply header due to friction, bends,
% valves, entrance and exit effects

K_lossentrance h seg = zeros(1,inputs);
for i=1:inputs

f_hseg(i)=frictionfactor(DSIh,VSI_h_seg(i),k,nu,epsilon,rho,cp);
K_lossfriction_h_seg(i)=f-h-seg(i)*length_h(1,2,1)/D_SIh; %due to

pipe length based on first branch Darcy friction factor
K_lossbend_90_h_seg(i) =

bends 90_ h(1,2,1)*(fhseg(i)*pi()/2*r_dseg(i)+(0.10+2.4*fh_seg(i)-)*sin(pi(
)/4) ...

+6.6*f h seg(i)*((sin(pi()/4))^0.5+sin(pi()/4))/r_dseg(i)^(4*pi()/2/pi()));
%due to 90 bends

K_lossgate_h_seg(i) = gatevalve_h (1,2,1)*0.2;
% K loss globeh(i) = globe valveh(i)*3.5; %no globe valves

considered
% K losscheckh(i) = check valveh(i)*2; %no check valves considered
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate entrance effects for header segments
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for j=1:transient num chillers init
if j==1

for i=transientstagbranchindex(j) %cw 15
K_lossentrance hseg(i) = 0;

end
for

i=transient riser branch index(j):transient stag branch index(j)-1 %cw 1:14

398

-- ------------ -



Center for Ocean Engineering * * Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

K_loss entrance_h_seg(i) = 0.62-
0.98*mfr_seg h(i)/mfr segh(i+1)+0.36*(mfr seg h(i)/mfr segh(i+1))^2+

0.03*(mfr-segh(i+l)/mfrsegh(i))A6; %revisit mfr seg h
indices

end
for

i=transient stagbranchindexr(max(size(transientstagbranchindex)))+l.%ccw
164

K loss entrance h seg(i) = 0;
end
for i=inputs:-

1:transientstag branchindex(max(size(transient stagbranchindex)))+2 ?ccw
180: 165

K_lossentrance-h-seg(i) = 0.62-
0.98*mfr seg-h(i)/mfrsegh(i-l)+0.36*(mfrsegh(i)/mfrsegh(i-1))^2+

0.03*(mfr segh(i-l)/mfr segh(i))^6; %revisit mf r segh
indices

end
else

for i=transientstagbranchindex(j) %cw 60
K loss entrance-h-seg(i) = 0;

end
for

i=transient riser branch index(j):transient stag branch index(j)-l %cw 38:59
K lossentrance_h_seg(i) = 0.62-

0.98*mfr segh(i)/mfrsegh(i+l)+0.36*(mfrsegh(i)/mfr seg_h(i+l) )A2+.

0.03*(mfr segh(i+l)/mfrsegh(i))A6; %revisit mfr seg h
indices

end
for i=transientstagbranchindex(j-l)+l %ccw 16

K loss entrance h seg(i) = 0;
end
for i=transientriserbranchindex(j)-l:-

1:transient stagbranchindex(j-l)+2 %ccw 37:17
K_lossentrance_h_seg(i) = 0.62-

0.98*mfr segh(i)/mfr_segh(i-l)+0.36*(mfrsegh(i)/mfrsegh(i-1))^2+.
0.03*(mfrsegh(i-l)/mfr segh(i))A6; %revisit mfr seg_h

indices
end

end
end
for i=l:inputs

K_loss_h_seg(i) =

K_loss-friction-h-seg(i)+Kloss_bend_90_hseg(i)+K_lossgate_h_seg(i)+K loss_
entrance h seg(i);%+ ...

% K loss globe h(i)+K loss check h(i);
end

% To avoid getting imaginary velocities, ensure Kloss is positive
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=l:inputs
if Kloss_h_seg(i) <= 0

K loss h_seg(i) = 0.01; %negligible loss coefficient
end

399



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Calculate K loss rh due to friction, bends, valves
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

K loss entrance rh seg = zeros(1,inputs);
for i=1:inputs

%Klossfrictionrh(i)=f h(i)*lengthrh(i)/DSIh; %due to pipe
length based on first branch Darcy friction factor

%K lossbend_90_rh(i) =
bends_90rh(i)*(f h(i)*pi(/2*r d(i)+(0.10+2.4*f. h(i))*sin(pi(/4) ...

/2/pi())); %due to+ 6.6*f h(i)*((sin(pi(/4))^0.5+sin(pi()/4))/r d(i)^(4*pi(
90 bends

%K loss _bend_180_rh(i) =
bends_180 rh(i)*(f h(i)*pi(*r d(i)+(0.10+2.4*f h(i))*sin(pi()/2) ...

+6.6*f h(i)*((sin(pi(/2))^0.5+sin(pi()/2))/rd(i)^(4*pi()/pi())); %due to
180 bends

%K lossgate rh(i) = gatevalverh(i)*0.2;

%K loss globe rh(i) = globe valve rh(i)*3.5;
end

00000%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate entrance effects for header segments
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for j=1:transient num chillers init
if j==1

for i=transientstagbranchindex(j) %cw 15
K loss entrance rh seg(i) = 0;

end
for

i=transient riser branchindex(j):transientstagbranch index(j)-1
K_lossentrancerh_seg(i) = 0.62-

0.98*mfr segh(i)/mfr seg-h(i+1)+...

%cw 1:14

0.36*(mfrseg-h(i)/mfrsegh(i+1))^2+0.03*(mfrsegh(i+1)/mfrsegh(i))^6;
%exit

end
for

i=transientstag branchindex (max (size (transientstag branch index) ) ) +1 %occw
164

.K loss entrance rhseg(i) = 0;
end
for i=inputs:-

1:transientstag branch index (max (size (transient stagbranch index) ) )+2 %ccw
180:165

K_lossentrancerhseg(i) = 0.62-
0.98*mfrseg-h(i)/mfr-segh(i-1)+...

0.36*(mfrsegh(i)/mfrseg h(i-1))^2+0.
1)/mfr_seg_h(i))^6; %exit

end
else

for i=transient stag branch index(j) %cw 60
K_loss entrance rhseg(i) = 0;

03*(mfrsegh(i-

400



Center for Ocean Engineering * * Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering U Cambridge, Massachusetts 02139-4307

end
f or

i=transient riser branch index(j):transientstag branch index(j)-1 %cw 38:59

K_lossentrance rh_seg(i) = 0.62-
0.98*mfrseg h(i)/mfr_seg_h(i+l)+...

0.36*(mfrsegh(i)/mfr_seg_h(i+1))^2+0.03*(mfrseg_h(i+1)/mfrsegh(i))^6;

%exit

end
for i=transient stag branchindex(j-l)+1 %ccw 16

K_lossentrancerhseg(i) = 0;
end
for i=transient riserbranchindex(j)-l:-

1:transientstagbranchindex(j-1)+2 %ccw 37:17
K lossentrancerh_seg(i) = 0.62-

0.98*mfrsegh(i)/mfrsegh(i-1)+...
0.36*(mfr-seg-h(i)/mfr segh(i-1))^2+0.03*(mfr segh(i-

1)/mfrsegh(i))^6; %exit
end

end
end
for i=l:inputs

K_loss rh seg(i) = K loss_h_seg(i)-
K loss entrance h seg(i)+K loss entrance rh seg(i);

%K loss rh seg(i) =
K loss _friction rh(i)+K_loss bend 90_rh(i)+K lossbend 180_rh(i)+K_loss gate
rh(i)+ ...

% K loss globe rh(i)+K loss entrance rh(i);

end

% To avoid getting imaginary velocities, ensure K loss is positive

for i=l:inputs
if K lossrhseg(i) <= 0

K_lossrh seg(i) = 0.01; %negligible loss coefficient
end

end

% Calculate K b/A b^2 and K h/A h^2 for branches
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:inputs
K_b_A_b_2_seg(i) =

K_loss b_seg(i)/area_b unordered(branchorder(1,1,i))^2;
end
for i=1:inputs+1

K h A h 2 seg(i) = (K loss h seg(i)+K loss rhseg(i))/area_ h2;
end

% Calculate K A 2

K A 2 = zeros(1,inputs);

401



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

for i=1:transientnumchillers init
if i==1

for
j=transient_stagbranchindex(max(size(transient_stag branchindex)))+1 %164

K_A_2 (j) = K_b_A_b_2_seg(j);% + K hA h_2_seg(j);
end
for

j=transientstag branch index(max(size(transient_stagbranch index)))+2:input
s %165:180

1) ^0.5))^2;
K_A_2 (j) = (1/(1/KbA b_2_seg(j)^0.5+1/KA_2(j-

%+K_h_A_h 2_seg(j);
end
for j=transient stag branchindex(i) %15

K A 2(j) = K-bA b_2_seg(j);% + K h A h 2 seg(j);
end
for j=transientstag branchindex(i)-1:-

1:transient riserbranchindex(i) %1:14
KA_2(j) =

(1/(1/K bA b_2seg(j)^0.5+1/K_A_2(j+l)^0.5))^2;%+K hA h-
end

else
for j=transient stagbranch index(i-1)+1 616

KA 2(j) = K-bA-b_2_seg(j);% + K hA h_2
end

2_seg (j) ;

seg (j) ;

for j=transient stag branchindex (i-
1)+2:transientriserbranch index(i)-1 %17:37

K_A_ 2(j) = (1/(1/K bA b 2_seg(j )A0 .5+1/KA2(j-
1)AO.5))^2;%+K hA h_2 seg(j);

end
for j=transientstag_branchindex(i) %60

K_A_2 (j) = K_b_A_b_2_seg(j);% + K h A h 2 seg(j);
end
for j=transient_stagbranchindex(i)-1:-

1:transient riser branch_index(i) %59:38
K A 2(j) =

(1/(1/K bA b_2_seg (j)A0 .5+1/KA_2(j+1)^0.5))^2;%+K h A h 2_seg(j);
end

end
end

% Calculate K_A 2_oa

K_A_2_oa = zeros(1,transient numchillersinit);
for i=1:transient numchillers init

if i==1
KA_2_oa(i) =

(1/(1/K A 2(inputs)AO.5+1/K A 2(transient riser branch index(i) )A0 .5) )A 2;
else

K A 2 oa(i) = (1/(1/K_A_2(transient riserbranch index(i)-
1)A0 .5+1/K A _2(transient riserbranch index(i))^0.5))^2;

end
end

%%%%%% % %%% %%%%% % %%%%%%%% %%

402



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

% Calculate mfr_seg oa
%%%%0%%%%%%%%%%%%%%%%%%%

mfr seg oa = zeros(2,transient num chillers init); %cw=l, ccw=2

for i=1:transientnumchillers init
if i==1

mfr-segoa(1,i)
mfrtotalseg(3,i)*(KA2_oa(i)/KA_2(transientriserbranchindex(i)))^O.5;

mfrsegoa(2,i) =
mfrtotal seg(3,i)*(KA_2_oa(i)/K A_2(inputs))^0.5;

else
mfrsegoa(l,i) =

mfrtotalseg(3,i)*(KA2_oa(i)
mfrsegoa(2,i) =

mfrtotalseg(3,i)*(KA2_oa(i)
1) )A0.5;

/K_A_2(transientriserbranchindex(i)))^0.5;

/K_A_2(transient riser branch index(i)-

end
end

% Calculate mfr seg temp

mfr seg b = zeros(l,inputs);
mfr_seg_temp = zeros(l,inputs);
for i=l:transientnumchillersinit

if i==l
for

j=transient riser branch index(i):transientstag branch index(i) %1:15
mfrsegtemp(j) =

mfr seg_oa(l,i)*(KA_2(transient riser branch index(i))/K A_2(j))^0.5;
end
for

j=transientstag_branchindex(max(size(transientstag_branchindex)))+l:input
s %164:180

mfr seq temp(j) =

mf r_segoa (2, i) * (KA_2 (inputs) /KA_2 (j) ) ^0. 5;
end

else
for

j=transient riser branch index (i) :transientstag branch index (i) %38: 60
mfr seg temp(j) =

mfrseg_oa(l,i)*(K_A_2(transientriserbranchindex(i))/K_A_2(j))^O.5;
end
for j=transient_stagbranchindex(i-

1)+l:transientriserbranchindex(i)-l %16:37
mfrsegtemp(j) =

mfr_segoa(2,i)*(K_A_2(transient riser branch index(i)-l)/K_A_2(j))^0.5;
end

end
end

% Calculate mfrseg
%%%%%0%%%%%%%%%%%%%%%%%%%%%%%%

for i=l:transient num chillers init
if i==1

403



Center for Ocean Engineering Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

for

j=transientstag branch index(max(size(transientstag branch index)))+1 %164
mfr_segb(j) = mfrseg_temp(j);

end
for

j=trans ient_stagbranch index (max (size (trans ientstag branchindex) ) ) +2: input
s %165:180

mfrseg b(j) = mfr seg_temp(j)-mfr seg temp(j-1);
end
for j=transient stagbranch index(i) %15

mfr_segb(j) = mfrseg_temp(j);
end
for j=transient_stag_branchindex(i)-l:-

1:transientriserbranchindex(i) %14:1
mfr_segb(j) = mfrsegtemp(j)-mfrseg_temp(j+1);

end
else

for j=transient stagbranch index(i-1)+l %16
mfr_seg_b(j) = mfr_seg_temp(j);

end
for j=transient_stag_branch index(i-

1)+2:transientriserbranchindex(i)-1 %17:37
mfr_seg_b(j) = mfrseg_temp(j)-mfrseg_temp(j-1);

end
for j=transient stagbranch index(i) %60

mfr_segb(j) = mfrsegtemp(j);
end
for j=transientstagbranchindex(i)-1:-

1:transientriserbranch index(i) %59;38
mfr_seg_b(j) = mfr_seg_temp(j)-mfr_segtemp(j+1);

end
end

end

% Calculate mfr seg h

mfr seg_h = zeros(1,inputs);
for i=1:transientnumchillersinit

if i==1
for j=transient stagbranch index(i) %15

mfrseg_h(j) = mfr_seg_b(j);
end
for j=transient stag_branchindex(i)-l:-

1:transientriserbranchindex(i) %14;1
mfr_seg_h(j) = mfr_seg_b(j)+mfr_seg_h(j+l);

end
for

j=transient_stag branch index (max (size (transientstagbranch index) ) ) +1 %164
mfrseg_h(j) = mfr_seg_b(j);

end
for

j=transient_stagbranchindex (max (size (transient_stagbranch index) ) ) +2: input
s %165:180

mfr_seg_h(j) = mfrseg_b(j)+mfrseg_h(j-1);

404



Center for Ocean Engineering
Naval Construction & Engineering Program
Departennt of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

end
else

for j=transient_stag branchindex(i)
mfr seg_h(j) = mfrsegb(j);

%60

end
for j=transient_stag branchindex(i)-1:-

1:transientriserbranchindex(i) %59:38
mfrsegh(j) = mfr segb(j)+mfr_segh(j+l);

end
for j=transient_stagbranchindex(i-1)+l %16

mfr seg_h(j) = mfr segb(j);
end
for j=transientstag_branchindex(i-

1)+2:transientriserbranch index(i)-l %17:37
mfr seg_h(j) = mfr seg b(j)+mfrsegh(j-1);

end
end

end

Calculate V SI b seg

for i=1:inputs
V_S I_b_seg(i) =

mfr_seg_b(i)/area_b_unordered
end

(branchorder(1,1,i))/rho;

% %%% %%%%% %% % %%
Calculate V SI h seg

%%%%%%%%%% %%% %

for i=l:inputs
V_SI h_seg(i) = mfrseg_h(i)/areah/rho;

end
end

% Rename variable

V SI h seqinit = V SI h seg;

% Determine least and greatest

min vel b = min(VSI b seg)
maxvel b = max(VSI_b_seg)
min _vel h = min(VSI_h_seg)
V_SI_h_seg(181) = 0;
max vel h = max(VSI_h_seg)

branch velocities

%%%%%%%%%%%%%%%%%%%%%%C%%%%%%%

% Determine initial temperatures

Tcold_delta = zeros(l,inputs);
Tcold deltacum = zeros(1,inputs);

405



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program - 177-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

Tcolddelta b = zeros(l,inputs);
Tcold = (44-32)*5/9;
-g-mps2 9.81*ftperm;

for i=l:inputs
H_1_h (i) = Kloss_h_seg(i)*VSI_h_seg(i)^2/2/gmps2;
Tcolddelta(i) = (Hl_h(i)/778.169/1.0025)*10/18;
for j=i:inputs

Tcolddelta cum(j) = Tcold delta_cum(j)+Tcolddelta(i);
end

end

Thot deltab = zeros(l,inputs);
for i=1:inputs

H 1 b in(i) = Kloss_b_inseg(i)*VSI b_seg(i)^2/2/g-mps2;
H l b(i) = K loss_b_seg(i)*VSI_b_seg(i)^2/2/g mps2;
Tcold_delta_b(i) =H_1 b in(i)/778.169262/1.0025*10/18;
Thotdelta_b(i) = H_1_b(i)/778.169262/1.0025*10/18;

end

Tcoldh = zeros(l,inputs);
Tcold b = zeros(l,inputs);
Thot h = zeros(l,inputs);
Thotb = zeros(l,inputs);
for 1=1:(inputs)

Tcoldh(i) = Tcold + Tcolddeltacum(i);
Tcold_b (i) = Tcold h(i) + Tcolddelta_b(i);
Thot_b(i) = Tcold_h(i) + Thotdelta_b(i);

end

% Calculate temperatures

for i=l:inputs
hc_b_seg (i) = calchc (D_SI_b_ordered (1, 1, i) , VSI_b_seg (i) , k, nu, rho, cp);
Thotb_seg(i) = Qordered(1,1,i)/(mfrseg_b(i)*cp)+Tcold_b(i); %Celsius
Taveb_seg(i) = (Tcold_b (i)+Thot_b_seg(i))/2;
T1_b_seg(i) = Tave_b_seg(i) +

Q_ordered(1,1,i)*(hxchgrarea pri(order)*0.0001*hc_b_ordered(1,1,i))^-l;
%Inner wall temp

Q_periseg(i) =

Q_ordered(1,1,i)*DSI_b_ordered(1,1,i)*pi(/(hxchgr_area_pri(order)*0.0001);
T2_b_seg(i) = Tlb-seg(i) +

Q_per_1_seg(i)*log((D_SI_b_ordered(1,1,i)/2+thickness_b (branchorder(1,1,i)))
/((DSI_b_ordered(1,1,i))/2))/(2*pi(*kcopper); %Outer wall temp

Telec b ave-seg(i) = (T2_b_seg(i) +
Q_ordered(1,1,i)/(hxchgrareasec(branchorder(1,1,i))*0.0001*hxchgrhc(branc
h_order(1,1,i)))); %Electrical component temp

delta_T_secseg(i) =
Q (branchorder (1,1, i) ) /hxchgr_fluidmfr (branchorder (1,1, i) ) /hxchgrcp (branch
order (1,1, i) ) ;

Telec_b in seg(i) = Telec_b ave seg(i)+delta_T_secseg(i)/2;
Telec b_seg(i) = Telec b_aveseg(i)-deltaT secseg(i)/2;

end

406



Center for Ocean Engineering N Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering I I Cambridge, Massachusetts 02139-4307

fprintf('Fifth Step: Refined Inlet Temperatures\n')
for i=1:inputs

fprintf('Load: %3.Of Q(W): %10.4f Diameter(m): %6.5f Velocity(m/sec):
%6.4f Mass flow rate(kg/s): %6.4f Thot(C): %7.4f Telec(C): %8.4f\n' ...

,i,Q(branchorder(1,i)), DSI_b (branchorder(1,i)) ,V_SI_b_seg(i)
,mfrseg_b(i), Thot_b_seg(i), Telecb_seg(i))
end
max(Thot_b_seg)
max(Telec b seg)

% Rename variables

transientstag_branch index init = transientstag_branchindex;
transientriserbranchindexinit = transientriserbranchindex;

%% Step 13 part d: Transient analysis - final pressures

% Preallocate variables

transient min difference pressure =

1000000000000*ones(1,transientnumchillersfinal);
transient min_pressure = zeros(1,transient num chillers-final);
transient min _location = zeros(1,transientnumchillersfinal);
transientindexdiff = zeros(1,transientnumchillersfinal);

% Determine Pressure as a function of length along header for initial
% chiller configuration

transientPressureSI sum = zeros(l,sizePressureSI(3));
pressureriser index = 1;
riserpressure = 0;
riserlocation = 0;
for j=l:size dPdX headerloc_s_index(2)

if strcmp(transientchillerstatusfinal(j),'on')
for k=1:sizePressure SI(3)

if k>=dPdX header loc s index(j)
transientPressureSIsum(k) =

transientPressureSIsum (k)+...
Pressure_SI(j,1,k-dPdX headerloc s index(j)+1)+...
Pressure_SI(j,2,sizePressureSI(3)-(k-

dPdXheaderloc_s_index(j)));
else

transient PressureSI sum(k) = transientPressureSI sum(k) +

Pressure_SI(j,1, (sizePressureSI(3)+k-
dPdXheaderloc_s_index(j)+1))+...

Pressure_SI(j,2,sizePressure SI(3)-
(sizePressureSI(3)+k-dPdX header loc s index(j)));

end
end

end

407



Center for Ocean Engineering 1 Massachusetts Institute of Technology
Naval Construction & Engineering Program 111177-massachusetts Avenue, Buiding 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

end
transientPressureSIsum =

transientPressureSI sum/transientnumchillersfinal;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Determine the pressure and location of risers for chillers operational
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for j=1:size dPdX header loc s index(2)
if strcmp(transient chiller_status final(j),'on')

for k=l:sizePressureSI(3)
if k==dPdX_headerloc_s_index(j)

riser_pressure(pressureriserindex) =
transientPressureSIsum(k);

riserlocation(pressure riserindex) = k;
pressure riser index = pressure riser index+l;

end
end

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Convert transient riser branch-index from riser branch index
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

transient riser count index 1;
transientriserbranchindex 0;
for i=l:size header(l)

if strcmp(transientchiller statusfinal(i),'on')
transientriserbranchindex(transientrisercount index) =

riserbranchindex(i);
transient riser count index = transient riser count index+l;

end
end

% Set stag branch index
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sizeriser_pressure = size(riser_pressure);
index_min_pressuretemp = 10000000000000000*ones(l,size riserpressure(2)+1);
index_min _loc_temp = ones(l,size_riserpressure(2)+1);
indexriserlocation = 1;
riserlocation temp=riser location;
riserlocation temp(size riser_pressure(2)+l)=sizePressureSI(3);
for i=l:sizePressureSI(3)

if i < riser locationtemp(indexriserlocation)
if index_min _pressuretemp(indexriserlocation) >

transientPressureSIsum(i)
index_min pressure temp(indexriserlocation) =

transientPressureSI sum(i);
index minloc temp(index riser location) = i;

end
else

index riser location = index riser location+l;
end

end

408



Center for Ocean Engineering * U Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Determine transient riser branch index
%%%%%%%%%%%%%%%%%%%%%%%%%%%
index_min _loc = ones(l,size riser_pressure(2));
index min _pressure = ones(1,size riserpressure(2));
if
index_min _pressure temp(1)<index minpressuretemp (max(size(index min_pressur
e_temp)))

for i=1:sizeriser_pressure(2)
index min_pressure (i)=index-minpressure-temp(i);
index_minloc(i)=index_minloc_temp(i);

end
else

for i=1:size riserpressure(2)
index minpressure(i)=index-minpressuretemp (i+l);

index_minloc(i)=,index_minloc_temp(i+1);
end

end

Plot pressure as a function of distanche along header with riser
locations corresponding to operational chillers highlighted in red and
stagnation points highlighted in green

plot(transientPressureSI sum)
hold on
scatter(riserlocation,riser_pressure,'r')
scatter(index min loc,index min_pressure,'g')
xlabel('Index')
ylabel('Pressure')
title('Pressure Distribution')
legend('Pressure Distribution','Riser Location','Stagnation Point')

% Convert index min loc to transient stag branch index

count = 0;
transient stag_countindex = 1;
transientstagbranch index = 0;
for i=l:size PressureSI(3)

if dPdX(1,l,i) == 2 %branch
count=count+1;
if transient_stag_countindex <= max(size(index_minloc))

if i>=index_minloc(transient stag_countindex)

transient_stag branchindex(transientstag_countindex)=count;
transientstagcount index=transient stagcount index+l;

end
end

end
end
for i=l:max(size(transientstag_branchindex))

if transientstagbranchindex(i)==inputs

409



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering i'i~r Massachusetts Institute of Technology

77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

transient_stag branchindex(i)=inputs-1;
end

end
%% Step 13 part e: Transient analysis - final velocities

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Initialize variables
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

velocitydelta seg = 10*ones(l,transient num chillers-final);
velocity_oldseg = zeros(1,transientnumchillersfinal);
V_SIlh seg = 1.5*ones(1,inputs+1); %initial guess at header velocities
f b seg = zeros(1,inputs);
K_loss_b_seg = zeros(l,inputs);
K_lossfriction b seg = zeros(1,inputs);
K_lossbend_90_b_seg = zeros(1,inputs);
K_loss_gate_b_seg = zeros(1,inputs);
K_lossglobe_b_seg = zeros(1,inputs);
r_d_seg = 3*ones(l,inputs+l); %assume r/d=3
K loss h seg = zeros(1,inputs+1);
K_lossfriction_h seg zeros(l,inputs+l1);
K_lossbend_90_h seg = zeros(1,inputs+1);
K_lossgate_h_seg = zeros(1,inputs+1);
K loss_globe_h_seg = zeros(1,inputs+1);
K losscheck_h_seg = zeros(1,inputs+1);
f h-seg = zeros(1,inputs+l);
K lossrhseg = zeros(1,inputs+1);
K_lossfrictionrh = zeros(transientnum -chillers final,2,inputs);
K_lossbend_90_rh zeros(transientnumchillers final,2,inputs);
K_loss_gaterh = zeros(transientnumchillersfinal,2,inputs);
K_lossglobe rh = zeros(transientnumchillersfinal,2,inputs);
K_hA h_2_seg = zeros(l,inputs+1);
K_bA b_2_seg = zeros(1,inputs);
K A_eqseg = zeros(transientnumchillers final,3,inputs);
mfr h = zeros(transient numchillersfinal,2,inputs);
mfr b = zeros(transientnumchillersfinal,2,inputs);
V b = zeros(transient__numchillersfinal,2,inputs);
V_h = zeros(transientnumchillersfinal,2,inputs);
mfr total seg = zeros(3,transient num chillers final);

% Calculate total mfr's for each segment going cw and ccw

for i=l:transient num chillers final
if i==1

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate mfrtotal seg cw
%%9%%%%%%%%%%%%%%%%%%%%%

for j=l:transientstag branch index(1)%j=l: (stag branch index(l)-l)
mfrtotal seg(1,i) = mfrtotalseg(l,i) +

massflow rateb(branchorder(1,1,j)); % branches 1-15
end
%mfrtotal seg(l,i) = mfrtotal seg(l,i) +

mass flow rateb(branchorder(1,1, (stag branch index(l))))/2; %half of branch
15

410



Center for Ocean Engineering * * Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Departinent of Mechanical Engineering Cambridge, Massachusetts 02139-4307

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate mfr total seg ccw

for
j=(transient_stagbranchindex(max(size(transient stagbranch index)))+1):inp

uts
mfr total seg(2,i) = mfr total seg(2,i) +

massflowrateb(branchorder(1,1,j)); % branches 164:180
end
%mfr total seg(2,i) = mfr total seg(2,i) +

mass flowrate _b(branch order(1,1, (stag branchindex (max(size(stag branch ind

ex))))))/2; %half of branch 163

elseif 1<i && i<transient num chillers final

% Calculate mfr total seg cw

for
j=transient riser branch index(i):transient_stag branch index(i) % j=riser bran
ch index(i) :stag branch index(i)-1

mfr total seg(l,i) = mfr total seg(l,i) +
mass-flowrateb(branchorder(1,1,j)); %branches 38:60

end
%mfr total seg(l,i) = mfr totalseg(l,i) +

mass flow rate b(branch order(1,1, (stag branch index(i))))/2; %half of branch

60

% Calculate mfr total seg ccw

for j=transient stag branch index(i-
1)+1:transientriserbranchindex(i)-l

mfrtotalseg(2,i) = mfrtotalseg(2,i) +
mass-flowrate_b(branchorder(1,1,j)); %branches 16:37

end
%mfr total seg(2,i) = mfr totalseg(2,i) +

mass flow rate b(branch order(1,1, (stag branch index(i-1))))/2; %half of

branch 15

elseif i==transient num chillers final

% Calculate mfr total seg cw

for
j=transient riserbranchindex(max(size(transient riserbranchindex))):trans

ientstag branchindex (max (size (transientstagbranchindex)))
%j=riserbranch _index(max(size(riserbranchindex))): (stagbranch index(max(s

ize(stag branch index)))-l)
mfrtotal seg(l,i) = mfrtotalseg(1,i) +

mass-flowrateb(branch order(1,1,j)); %branches 154:163

end

411



Center for Ocean Engineering i Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

%mfrtotal seg(l,i) = mfr totalseg(1,i) +
mass flow rate_b (branch order(1,l, (stagbranch index(max(size(stag branch ind
ex))))))/2; %half of branch 163

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate mfr total seg ccw
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for

j=transient_stagbranch index(max(size(transientstag branch index))-
1)+1:transientriserbranchindex(max(size(transientriserbranch index)))-l

mfrtotal_seg(2,i) = mfrtotalseg(2,i) +
massflow rate_b(branchorder(1,1,j)); %branches 148:153

end
%mfrtotal seg(2,i) = mfrtotal seg(2,i) +

mass flow_ rate_b(branchorder(1,1, (stag branchindex(max(size(stag branchind
ex))-l))))/2; %half of branch 147

end
end

% Sum up mass flow rate going cw and ccw to give mass flow rate exiting
% each riser

for i=1:transient num chillers-final
mfrtotalseg(3,i) = mfrtotal seg(l,i)+mfrtotal seg(2,i);

end

% Resize and re-order V SI b and store in V SI b seg
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

V_SI b seg = zeros(l,inputs);
for m=1:inputs

V_SIb_seg(m) = VSI_b_1(branchorder(1,1,m));
end

%%%%%%%%%%%%%%%%%%%%%%

% Iterate through loop a predetermined number of times, modifying the
% branch diameters to satisfy the velocity limits set forth by NAVSEA
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
count = 0;
while count<10

count=count+1;

if count == 1 %use estimated VSI_b seg to begin iterative process and
only consider friction bends and valves

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate K loss b seg due to friction, bends, valves for branches
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:inputs
f_b _seg(i) =

frictionfactor(DSI_b(branchorder(1,1,i)),VSI_bseg(i) ,k,nu,epsilon,rho,cp
); %ordered

412



Center for Ocean Engineering B - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering U Cambridge, Massachusetts 02139-4307

K loss friction b seg(i)=f b seg(i)*length b(branch order(1,1,i))/DSI_b(bran
chorder(1,1,i)); %due to pipe length

K_lossbend_90 bseg(i) =
bends_90_b(l,branchorder(l,l,i))*(f_bseg(i)*pi()/2*r_d_seg(i)+(0.10+2.4*f_b

seg(i))*sin(pi()/4) ...

+6. 6*f -b -seg (i) * ((sin (pi ()/4) )^0 .5+sin (pi ()/4 ) )/r-d-seg (i)^ (4*pi ()/2/pi ())) ;
%due to 90 bends

K loss gate_b seg(i) gate valve b(branch order(1,1,i))*0.2;
%due to gate valves

K_lossglobe b_seg(i) = globevalve_b(branchorder(1,1,i))*3.5;
%due to globe valves

K_lossb_seg(i)
K_loss friction_b_seg(i)+Klossbend_90_b_seg(i)+Kloss_gate-b_seg(i)+Kloss
globe b-seg(i)+K loss hx b unordered(branch order(1,1,i));

end

% Calculate K lossh _seg due to friction, bends, valves for supply
header

for i=l:inputs

f_h_seg(i)=friction factor(D_SI_h,VSIh_seg(i),k,nu,epsilon,rho,cp);
K_lossfriction-h_seg(i)=f_h_seg(i)*length_h(1,1,i)/DSI h; %due

to pipe length based on first branch Darcy friction factor
K_loss bend_90_h_seg(i) =

bends 90_ h(1,1,i)*(f_h_seg(i)*pi(/2*r d seg(i)+(0.10+2.4*f h seg(i))*sin(pi(
)/4) ...

+6.6*f_h_seg(i)*((sin(pi(/4))^0.5+sin(pi(/4))/r_d seg(i)^(4*pi()/2/pi());
%due to 90 bends

K loss gate h seg(i) = gate valve h(1,1,i)*0.2;
% K_loss globe h(i) = globe_valveh(i)*3.5; %no globe valves

considered
% K loss check h(i) = check valve h(i)*2; %no check valves

considered
K_lossh_seg(i) =

K_loss friction_h_seg(i)+Klossbend_90_h_seg(i)+Klossgate_h_seg(i);%+
% K loss globe h(i)+K loss check h(i);
end
for i=inputs+1

f_h_seg(i)=frictionfactor(DSIh,V_SI-h-seg(i),k,nu,epsilon,rho,cp);
K_lossfriction h seg(i)=f_h_seg(i)*length_h(1,2,1)/DSI h; %due

to pipe length based on first branch Darcy friction factor
K loss bend 90 hseg(i) =

bends_90_h(l,2,1)*(f_h_seg(i)*pio/2*r_d_seg(i)+(0.10+2.4*f_h_seg(i))*sin(pi(
)/4) ...

+6.6*f_h_seg(i)*( (sin(pi(/4) )^0.5+sin(pi(/4) )/r_d_seg(i)^(4*pio/2/pi() ) ) ;
%due to 90 bends

K_loss_gate_h_seg(i) = gatevalve_h(1,2,1)*0.2;

413



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

% Klossglobe h(i) = globe valve h(i)*3.5; %no globe valves
considered

% Klosscheck_h(i) = check valve h(i)*2; %no check valves
considered

K_loss_h_seg(i) =

K loss friction h seg(i)+K lossbend_90_h_seg(i)+K loss gate h seg(i);%+..
% K lossglobeh(i)+K_losscheck_h(i);
end

% Calculate K loss rh seg due to friction, bends,- valves
%%0%%%%%%%%%%%%%%%%%%%%%

for i=l:inputs+l
% Kloss friction rh(i)=f_b(l)*length rh(i)/DSIh; %due to pipe

length based on first branch Darcy friction factor
% K lossbend_90_rh(i) =

bends_90_rh(i)*(f b(l)*pi()/2*r d(i)+(0.10+2.4*f b(l))*sin (pi()/4) ...

+6.6*fb(l) *((sin(pi ()/4)) ̂ 0.5+sin(pi () /4))/rd(i) ^ (4*pi ()/2/pi())); %due to
90 bends

% K_lossgaterh(i) gatevalverh(i)*0.2;
% Klos s_globerh(i) -globe valve rh(i)*3.5;
% Klossrh(i) =

K loss-friction rh (i) +K loss bend_90 rh (i) +K.loss gate rh (i) +K loss_globe rh(
i);

K_lossrh seg(i) = Klossh_seg(i); %assume same loss coefficient
for supply and return header segments

end

% Calculate K -b/A b2 and K h/A h^2 for branches and header segments
% respectively

for i=l:inputs
K_b_A_b_2_seg(i)

K loss_b_seg(i)/area_b unordered(branch order(1,l1,i))^2;
end
for i=l:inputs+l

K_h_A_h_2 seg(i) = (K lossh_seg(i)+Kloss rh seg(i))/area h^2;
end

% Calculate K A 2
0%%%%%%%%%%%%%%%%%%

K A 2 = zeros(1,inputs);
for i=l:transient num chillers final

if i==1
for

j=transient_stagbranchindex(max(size(transientstag branch index)))+1 %164
KA_2(j) = K_bA b 2_seg(j);% + K hA h_2_seg(j);

end
for

j=transientstag branch index(max(size(transient stagbranch index)))+2:input
s %165:180

414



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering I IUE Cambridge, Massachusetts 02139-4307

K_A _2(j) = (1/(1/K b A b_2_seg(j)^0.5+1/KA_2(j-

1)^0.5) )A 2;%+K hA h _ 2 g seg(j);

end
for j=transient stagbranchindex (i) %15

K_A_2(j) = K-bA b_2_seg(j);% + K h A h_2_seg(j);
end
for j=transientstagbranchindex(i)-1:-

1:transientriserbranch index(i) %1:14
K A 2(j) =

(1/(1/K bA b_2_seg(j)A0.5+1/K A 2(j+1)AO.5) )A2;%+K hA h_2_seg(j);
end

else
for j=transient_stag_branchindex(i-1)+1 %16

K_A_2 (j) = K b_A_b_2_seg(j);% + KhA h_2_seg(j);
end
for j=transient stag branchindex (i-

1)+2:transient riser branch index(i)-1 %17:37
K_A_2(j) = (1/(1/K bA b_2_seg(j)AO.5+1/KA_2(j-

1)^0.5))^2;%+K hA h 2 seg(j);

end
for j=transientstag_branchindex(i) %60

K_A_2(j) = K-b_A_b_2_seg(j);% + K h A h_2 seg(j);
end
for j=transient stagbranch index(i)-1:-

1:transientriserbranchindex(i) %59:38
K_A_2(j) =

(1/(1/K_b_A_b_2_seg(j)^0.5+1/KA_2(j+1)^0.5) )A 2;%+K hA h_2_seg(j);
end

end
end

% Calculate K A 2 oa

K A 2 oa = zeros(1,transient num chillers final);
for i=1:transientnumchillersfinal

if i==1
K_A_2 oa(i)

(1/(1/K_A_2(inputs)^0. 5+1/K_A_2(transient riserbranchindex(i) )AO .5) )A 2;
else

K_A_2_oa(i) = (1/(1/K_A_2(transientriserbranchindex(i)-
1)AO .5+1/K_A_2(transientriserbranch index(i) )AO .5) )A2;

end
end

% Calculate mfr seg oa
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mfr seg oa = zeros(2,transient numchillers final); %cw=1, ccw=2

for i=1:transientnumchillers_final
if i==1

mfrseq oa(1,i) =

mfr_totalseg (3, i) * (K_A_2_oa (i) /K_A_2 (transientriserbranch index (i) ))AO .5;
mfr seqoa(2,i) =

mfr_totalseg(3,i)*(KA_2_oa'(i)/K_A_2(inputs) )AO .5;

415



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

else
mfirseg-oa(1,i) =

mfrtotalseg(3,i)*(K_A_2_oa(i)/K_A_2(transientriserbranchindex(i) ))AO .5;
mfrsegoa(2,i) =

mfrtotalseg(3,i)*(K_A_2_oa(i)/KA2(transient riserbranch index(i)-
1))^0.5;

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate mfrsegtemp
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
mfrsegb = zeros(l,inputs);
mfr_seg_temp = zeros(l,inputs);
for i=l:transientnumchillers_final

if i==l
for

j=transient riser branch index(i):transientstag_branch index(i) %1:15
mfrsegtemp(j) =

mfr_segoa(l,i)*(K_A_2 (transientriserbranchindex(i))/K_A_2(j))^0.5;
end
for

j=transient_stagbranchindex(max(size(transientstag branch index)))+l:input
s %164:180

mfrseg_temp(j) =
mfrsegoa(2,i)*(K_A_2(inputs)/K A_2(j))^0.5;

end
else

for
j=transientriserbranchindex(i):transient_stagbranchindex(i) %38:60

mfr-segtemp(j) =
mfr_seg_oa(l,i)*(K A _2(transient riserbranch index(i))/K_A_2(j))^0.5;

end
for j=transientst ag branchindex(i-

1)+l:transientriser branchindex(i)-l %16: 37
mfr seg_temp(j) =

mfr_seg_oa(2,i)*(KA _2(transient riserbranch index(i)-l)/K A_2(j))^0.5;
end

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate mfr seg b
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=l:transient num chillers final
if i==l

for
j=transient_stagbranch index(max(size(transientstag branch index)))+1 %164

mfr segb(j) = mfr_seg_temp(j);
end
for

j=transient_stag branch index(max (size(transient_stagbranchindex) ) ) +2:input
s %165:180

mfr seg_b(j) = mfrseg_temp(j)-mfrseg_temp(j-1);
end

416



Center for Ocean Engineering U - Massachusetts Institut, of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

for j=transientstag_branchindex(i) %15
mfr segb(j) = mfrseg temp(j);

end
for j=transient stagbranchindex(i)-1:-

1:transientriserbranchindex(i) %14:1
mfr_seg_b(j) = mfrsegtemp(j)-mfrsegtemp(j+1);

end
else

for j=transient stagbranch index(i-1)+1 %16
mfr_seg_b(j) = mfr_seg_temp(j);

end
for j=transient stag_branchindex(i-

1)+2:transientriser branchindex(i)-1 %17:37
mfr_segb(j) = mfrseg-temp(j)-mfr-seg-temp(j-1);

end
for j=transient stagbranch index(i) %6O

mfr_seg_b (j) = mfr_seg_temp(j);
end
for j=transient stag branchindex(i) -1:-

1:transientriserbranch index(i) %59;38
mfr_seg_b(j) mfr_seg_temp(j)-mfr_seg_temp(j+1);

end
end

end

%%%%%%%%%% % % %% %%

% Calculate mfr seg h

mfr segh = zeros(1,inputs);
for i=1:transientnumchillers final

if i==1
for j=transient stag branchindex(i) %15

mfr_seg_h(j) = mfrseg-b(j);
end
for j=transient stag branch index(i)-1:-

1:transientriserbranch index(i) %14;1
mfrseg_h(j) = mfr_segb(j)+mfr_seg_h(j+1);

end
for

j=transient stag branch index(max(size(transient stag branch index)))+1 %164
mfrseg_h(j) = mfr_seg_b(j);

end
for

j=transient stag branch index(max(size(transient stag branch index)))+2:input
s %165:180

mfrseg_h(j) = mfr seg b(j)+mfrseg_h(j-1);
end

else
for j=transientstagbranchindex(i) %60

mfr_seg_h(j) = mfrsegb(j);
end
for j=transient stag branch-index(i)-1:-

1:transient riserbranch index(i) %59:38
mfrseg-h(j) = mfr_seg_b(j)+mfr_seg_h(j+1);

end

417



Center for Ocean Engineering U E Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

for j=transientstag branchindex(i-1)+l %16
mfrseg_h(j) = mfrsegb(j);

end
for j=transient stagbranchindex(i-

1)+2:transient riserbranchindex(i)-1 %17:37
mfrseg_h(j) = mfrseg_b(j)+mfrseg_h(j-1);

end
end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate V SI b seg
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:inputs

V_SI_bseg(i)
mfrseg_b(i)/area_b_unordered(branch order(1,1,i))/rho;

end

% Calculate V SI h seg

for i=l:inputs
V_SIh_seg(i) = mfrseg_h(i)/areah/rho;

end
end

% Calculate loss coefficient for branches due to friction, bends,
% valves, entrance and exit.effects (in order wrt header)

K loss entrance b seg = zeros(1,inputs);
K_lossexit b_seg = zeros(1,inputs);
for i=l:inputs

f_bseg(i) =

friction factor(DSIb(branchorder(1,1,i) ),VSI_b-seg(i),k,nu,epsilon,rho,cp
); %ordered

K_lossfrictionb_seg(i)=f-b-seg(i)*length_b(branchorder(1,1,i))/DSI_b(bran
chorder(1,1,i)); %due to pipe length

K_lossbend_90_b_seg(i) =
bends_90_b (1, branch _order (1, 1, i))* (fb_seg (i) *pi () /2*r_dseg (i) + (0. 10+2. 4*fb

_seg (i) )*sin (pi () /4) ...

+6.6*f_b_seg(i)* ((sin(pi()/4))^0.5+sin(pi()/4))/r_d_seg(i)^(4*pi()/2/pi()));
%due to 90 bends

K_loss_gate_b_seg(i) = gate_valve_b(branchorder(1,1,i))*0.2; %due to
gate valves

K_loss_globe-b-seg(i) = globe_valve_b(branchorder(1,1,i))*3.5; %due
to globe valves

K_loss_b_seg(i) =

K_lossfriction b_seg(i)+K lossbend_90_b_seg(i)+Klossgate_b_seg(i)+K loss
globe_b_seg(i)+Kloss hx_b_unordered(branchorder(1,1,i));

418



Center for Ocean Engineering U Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

Cyc(i) = 1-0.25*(D_SIb(branchorder(1,1,i))/D SI h)A1.3-(0.11*r d3-
0.65*rd3A2+0.83*rd3 A3)*D_SI_b(branchorder(1,1,i) )A 2/DSI h^2;

end

%%%%%%%%%%%%%%%%0 %%% %%%%%%%

% Calculate entrance and exit effects for branch

Keq = 0.57-1.07*r d3^0.5-2.13*r d3+8.24*r d3A.5-
8.48*r d3^2+2.9*r d3^2.5;

Cxc = 0.08+0.56*rd3-1.75*r d3A2+1.83*rd3^3;
Cm 0.23+1.46*rd3-2.75*rd3A2+1.65*rd3A3;
for j=1:transientnumchillersfinal

if j==1
for

i=transient riser branch index(j):transientstag branch index(j) %cw 1:15
K loss entrance b seg(i) = (0.81-

1.13*mfrsegh(i)/mfrsegb(i)+mfrsegh(i)^2/mfr_seg_b(i)A2)*DSIb(branch o
rder(1,1,i))A4/DSI hA4 ...

+1.12*DSIb(branchorder(1,1,i))/DSIh-
1.08*D SI b(branch order(1,1,i))^3/DSI hA3 + Keq;%due to entrance; assume
r/d3 = 0.1

K loss exit b seg(i) = 2*Cyc(i)-
1+D SIb(branch order(1,1,i))^4/DSI_hA4*(2*(Cxc-1)+2*(2-Cxc-
Cm) *mfr_seg_h(i)/mfr_seg_b(i)-0.92* ...

mfr seg h(i)A2/mfrseg b(i)^2);%due to exit; assume r/d3
0.1

end
for i=inputs:-

1:transient stagbranchindex(max(size(transient stag_branchindex)))+1 %ccw
180:164

K loss _entrance b seg(i) = (0.81-
1.13*mfrsegh(i)/mfrsegb(i)+mfrseg_h(i)A2/mfrseg_b(i)A2)*DSIb(branch_o
rder(1,1,i))A4/DSI hA4 ...

+1.12*DSIb(branchorder(1,1,i))/DSIh-
1.08*D SI b(branch order(1,1,i))^3/DSI h^3 + Keq;%due to entrance; assume
r/d3 = 0.1

K_lossexit_bseg(i) = 2*Cyc(i)-
1+DSIb(branchorder(1,1,i))^4/DSI_h^4*(2*(Cxc-1)+2*(2-Cxc-
Cm)*mfr_seg_h(i)//mfr_seg b(i)-0.92* ...

mfrsegh(i)^2/mfr_seg_b(i)A2);%due to exit; assume r/d3
0.1

end
else

for
i=transient riser branch index(j):transient stag branch index(j) %cw 38:60

K loss_entrance-b-seg(i) = (0.81-
1,13*mfr-seg h(i)/mfrseg_b(i)+mfr_seg_h (i)A 2/mfr_seg_b(i)A2)*DSI b(branch_o
rder(1,1,i))A4/D-SI h^4 ...

+1.12*D SI b(branch order(1,1,i))/DSI h-
1.08*DSI b(branchorder(1,1,i))A3/DSI_h^3 + Keq;%due to entrance; assume
r/d3 = 0.1

K loss exit b seg(i) = 2*Cyc(i)-
1+DSIb(branchorder(1,1,i))A4/DSI_hA4*(2*(Cxc-1)+2*(2-Cxc-
Cm)*mfrsegh(i)/mfrseg-b(i)-0.92* ...

419



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

mfrseg_h(i)^2/mfrsegb(i)^2) ;%due to exit; assume r/d3
= 0.1

end
for i=transient riser branch index(j)-1: -

1:transientstag branchindex(j-1) +1 %ccw 37:16
K_loss__entranceb_seg(i) = (0.81-

1.13*mfrseg_h (i)/mfrseg_b (i)+mfrseg_h(i)^2/mfrseg_b (i) ̂ 2)*DSI b(branch o
rder(1,1,i))A4/DSI hA4 ...

+1.12*D SI b(branch order(1,1,i))/D SI h-
1.08*DSI b(branchorder(1,1,i))^3/DSI h^3 + Keq;%due to entrance; assume
r/d3 = 0.1

K loss exit b seg(i) = 2*Cyc(i)-
1+DSI__b(branchorder(1,1,i))^4/DSI_ hA4*(2*(Cxc-1)+2*(2-Cxc-
Cm)*mfrsegh(i)/mfr_seg_b(i)-0.92*

mfrseg-h(i)^2/mfr seg b(i)^2);%due to exit; assume r/d3
0.1

end
end

end

% Calculate Kloss_b_seg and Kloss_b_in-seg

K_loss b in seg = zeros(1,inputs);
for i=l:inputs

K_loss b seg(i) =

K_loss frictionb_seg(i)+Klossbend_90_b_seg(i)+Klossgate-bseg(i)+

K loss globe b seg(i)+K loss hx b unordered(branchorder(1,1,i))+K_lossentra
nce_bseg(i)+K lossexitb_seg(i);

K_loss b_inseg(i) =
K_lossfrictionb_seg(i)+Klossbend_90_b_seg(i)+Klossgateb__seg(i)+

K_lossglobe_b seg(i)+Kloss hxb_unordered(branchorder(1,1,i))+Klossentra
nce b seg(i)+0*Klossexit-b-seg(i);

end

% To avoid getting imaginary velocities, ensure K loss is positive

for i=1:inputs
if Kloss_b_seg(i) <= 0

K loss_bseg(i) = 0.01; %negligible loss coefficient
end
if Kloss_b_inseg(i) <= 0

K loss b in seg(i) = 0.01; %negligible loss coefficient
end

end

% Calculate loss coefficient for supply header due to friction, bends,
% valves, entrance and exit effects
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

K-loss-entrance-h-seg = zeros (1,inputs) ;

420



Center for Ocean Engineering * o Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

for i=1:inputs
f h seg(i)=friction factor(DSI-h,VSI-h_seg(i),k,nu,epsilon,rho,cp);
K_lossfriction_h_seg(i)=f_h_seg(i)*length-h(1,2,1)/DSIh; %due to

pipe length based on first branch Darcy friction factor
K_lossbend_90_h_seg(i) =

bends_90_h(1,2,1)*(f_h_seg(i)*pi(/2*r_d_seg(i)+(0.10+2.4*f_h_seg(i))*sin(pi(
)/4) ...

+6.6*f h seg(i)*((sin(pi()/4))^O.5+sin(pi()/4))/r d seg(i)A(4*pi()/2/pi()));
%due to 90 bends

K_lossgate_h_seg(i) = gatevalveh(1,2,1)*0.2;
% K -loss globe h(i) = globe valve h(i)*3.5; %no globe valves

considered
% K loss check h(i) = check valve h(i)*2; %no check valves considered

end

%%%%% % %% % % 2%%%%%%%%%%
Calculate entrance effects for header segments

for j=1:transient numchillers final
if j==1

for i=transient_stagbranch_index(j) %cw 15
K_lossentrance h_seg(i) = 0;

end
for

i=transient riser branch index(j) :transientstag branch index(j)-l %cw 1:14
K_lossentrance_h seg(i) = 0.62-

0.98*mfrsegh(i)/mfr_segh(i+1)+0.36*(mfr_seg h(i)/mfrsegh(i+1))^2+.
0.03*(mfrseg_h(i+1)/mfrseg_h(i))^6; %revisit mfr seg h

indices
end
for

i=transient stag branch index(max(size(transient stag branch index)))+1 %ccw
164

K_loss_entrance_h_seg(i) = 0;
end
for i=inputs:-

1:transient stag_branchindex(max(size(transientstag branch index)))+2 %ccw
180:165

K loss entrance h seg(i) = 0.62-
0.98*mfrsegh(i)/mfr_segh(i-1)+0.36*(mfr_segh(i)/mfr_seg_h(i-1))A2+

0.03*(mfrseg_h(i-l)/mfrseg_h(i))^6; %revisit mfr seg h
indices

end
else

for i=transient_stagbranchindex(j) %cw 60
K loss entrance h seg(i) = 0;

end
for

i=transient riser branch index(j):transient stag branch index(j)-1 %cw 38:59
K_lossentrance_h_seg(i) = 0.62-

0.98*mfrseg_h(i)/mfr_segh(i+1)+0.36*(mfrsegh(i)/mfr_seg_h(i+1))^2+

0.03*(mfrsegh(i+1)/mfrsegh(i))^6; %revisit mfr seg-h

indices
end

421



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

for i=transient stagbranchindex(j-1)+1 %ccw 16
K_ loss entrance-h-seg(i) = 0;

end
for i=transient riser branchindex(j)-1:-

1:transient_stag_branchindex(j-1)+2 %ccw 37:17
K loss entrance h_seg(i) = 0.62-

0.98*mfrsegh(i)/mfr_seg_h(i-1)+0.36*(mfr_segh(i)/mfr_seg_h(i-1))^2+
0.03*(mfrsegh(i-1)/mfrseg_h(i))^6; %revisit mfr seg h

indices
end

end
end
for i=l:inputs

K loss_h_seg(i) =

K lossfriction_h_seg(i)+Klossbend_90_h_seg(i)+Kloss gateh-seg(i)+K_loss_
entranceh_seg(i);%+ ...

% K loss globe h(i)+K loss check h(i);
end

% To avoid getting imaginary velocities, ensure Kloss is positive
0 0000000 0 9.0 ~99o0 0 0 0 0 0000

000%%00000000000%000%%0%0000

for i=1:inputs
if Kloss_h-seg(i) <= 0

K_loss_hseg(i) = 0.01; %negligible loss coefficient
end

end

%Calculate K loss rh due to friction, bends, valves

K_los s_entrance rh seg = zeros(1,inputs);
for i=l:inputs

%K loss frictionrh(i)=f h(i)*length rh(i)/D SI h; %due to pip
length based on first branch Darcy friction factor

%K loss bend 90 rh(i) =
bends_90_rh(i)*(f_h(i)*pi()/2*r d(i)±+(0.10+2.4*f-h(i))*sin(pi(/4) ...

%0

+6.6*f_h (i)* ((sin(pi()/4))^0.5+sin(pi()/4))/r d(i)^(4*pi()
90 bends

/2/pi( )); %

%K loss bend_180_rh(i) =
bends_180_rh(i)*(f h(i)*pi(*r d(i)+(0.10+2.4*f h(i))*sin(pi()/2) ...

+6.6*f_h(i) ((sin(pi ()/2)) 0.5+sin(pi ()/2)) /r_d(i) ̂ (4*pi () /pi())); due to
180 bends

%K loss gaterh(i) = gatevalverh(i)*0.2;
%K loss globe rh(i) globe valve rh(i)*3.5;

end

%Calculate exit effects for header segments

%% %%%%%%%%%%% %%%% % %% f
1 Calculate entrance effects for header segments

422

e

due to



Center for Ocean Engineering Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

for j=1:transient num chillers final
if j==1

for i=transient_stag_branch index(j) %cw 15

K_lossentrancerhseg(i) = 0;
end
for

i=transient riserbranchindex(j):transient_stagbranch index(j)-1 %cw 1:14

K loss entrance rhseg(i) = 0.62-
0.98*mfrsegh(i)/mfrsegh(i+l)+...

0.36*(mfrsegh(i)/mfr_seg_h(i+1))^2+0.03*(mfrseg_h(i+1)/mfr-segh(i))A6;
%exit

end
for

i=transient stag_branch index(max(size(transientstag_branch index)))+1 %ccw

164
K_lossentrancerhseg(i) = 0;

end
for i=inputs:-

1:transient stag branchindexn(max(size(transient_stag branch index)))+2 %ccw

180:165
K loss entrance rh seg(i) = 0.62-

0.98*mfrsegh(i)/mfr-segh(i-1)+...
0.36*(mfrsegh(i)/mfrsegh(i-1))^2+0.03*(mfr_segh(i-

1)/mfr-segh(i))^6; %exit

end
else

for i=transient_stagbranchindex(j) %cw 60
K loss entrance rh seg(i) = 0;

end
for

i=transient riser branchindex(j):transient_stag branch index(j)-1 %cw 38:59

K lossentrancerhseg(i) = 0.62-

0.98*mfrsegh(i)/mfrseg_h(i+1)+...

0.36*(mfrseg_h(i)/mfr_segh(i+1))^2+0.03*(mfr_seg_h(i+1)/mfrseg_h(i) )A 6;

%exit

end
for i=transient_stag branch index(j-1)+1 %ccw 16

K_lossentrancerhseg(i) = 0;
end
for i=transient_r iserbranchindex(j)-l:-

1:transient stag branch index(j-1)+2 %ccw 37:17
K_lossentrancerhseg(i) = 0.62-

0.98*mfrsegh(i)/mfrsegh(i-1)+...
0.36*(mfr-segh(i)/mfrsegh(i-1))A2+0.03*(mfr_segh(i-

1)/mfr-segh(i))^6; %exit
end

end
end
for i=1:inputs

K_lossrh seg(i) = Klossh_seg(i)-
K_loss entrance h seg(i)+K loss entrancerhseg(i);

423



Center for Ocean Engineering EHEEMassachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

%Klossrhseg(i)

K loss friction rh(i)+Kloss bend_90_rh(i)+K-loss-bend_180_rh(i)+Kloss_gate_
rh(i)+ ...

% Klossgloberh(i)+Kloss entrancerh(i);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% To avoid getting imaginary velocities, ensure Kloss is positive
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=l:inputs
if Klossrhseg(i) <= 0

K_loss rh-seg(i) = 0.01; %negligible loss coefficient
end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate K b/A b^2 and K h/A h^2 for branches
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:inputs
K_b A b 2 seg(i) =

K_loss_b_seg(i)/area b unordered(branch order(1,1,i))^2;
end
for i=1:inputs+1

K_h A h 2 seg(i) = (Klossh_seg(i)+Kloss rh seg(i))/area h^2;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate K A 2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

K A 2 = zeros(l,inputs);
for i=l:transientnumchillersfinal

if i==1
for

j=transient_stagbranch index(max(size(transient stag branch index)))+1 %164
K_A_ 2(j) = K_b_A_b 2_seg(j);% + K_h A h 2 seg(j);

end
for

j=transientstagbranchindex (max (size(transientstag branchindex) ) ) +2:input
s %165:180

K_A_2(j) = (1/(1/K bA b 2_seg(j)^0.5+1/KA_2(j-
1)AO.5) )A 2;%+K h A_h_2_seg(j);

end
for j=transient stag branch index(i) %15

K_A_ 2(j) = K_b_A-b_2_seg(j);% + K h A h 2 seg(j);
end
for j=transient stagbranchindex (i) -1:-

1:transient riser branchindex(i) %1:14
K A 2(j) =

(1/(1/K_bA-b_2_seg(j)^0.5+1/KA_2(j+1)A0.5) )^2;%+K h_A_h 2_seg(j);
end

else
for j=transientstagbranch index(i-l)+1 %16

K_A_ 2(j) = K_b_A_b_2_seg(j);% + K h A_ h2 seg(j);
end

424



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

for j=transientstag_branchindex(i-
1)+2:transientriserbranchindex(i)-1 %17:37

K A _2(j) = (1/(1/K bA b_2_seg(j)^0.5+1/KA_2(j-
1)^0.5))A2;%+K h A h 2 seg(j);

end
for j=transientstagbranch index(i) %60

K_A _ 2(j) = K-bA b_2_seg(j);% + K hA_h_2_seg(j);
end
for j=transient_stagbranchindex(i)-1:-

1:transientriserbranchindex(i) %59:38
K A 2(j) =

(1/(1/K_b_A_b_2_seg(j)A0.5+1/K_A2(j+1)^0.5))^2;%+K h
end

end
end

%%% % % % %%%%%%%%% %%%%%%
Calculate K A 2 oa

K A 2 oa = zeros(1,transient num chillers final);
for i=1:transient num chillersfinal

if i==1
K_A_2 oa(i) =

(1/(1/K_A_2(inputs)^0.5+1/K_A_2(transient riserbranch.
else

A h 2 seg(j);

index(i) )^0.5) )A 2;

K_A 2_oa(i) = (1/(1/K_A_2(transientriserbranchindex(i)-
1)A^0. 5+1/K_A_2 (transient riserbranch index(i) )A0 .5) )A 2;

end
end

% Calculate rfr seg oa

mfr seg oa = zeros(2,transient num chillers final); %cw=1,
for i=1:transient num chillers final

if i==1
mfr-seg-oa(1,i) =

mfr_total seg(3,i)*(KA_2_oa(i)/K_A_2
mfr_segoa(2,i) =

mfrtotalseg(3,i)*(KA_2_oa(i)/K_A_2
else

mfr-seg oa(1,i)
mfr total seg(3,i)*(K A 2 oa(i)/KA_2

mfr-seg oa(2,i) =
mfrtotalseg(3,i)*(KA_2_oa(i)/KA_2
1) )A0.5;

end
end

% Calculate mfr seg temp

mfr seg b = zeros(l,inputs);
mfr_seg_temp = zeros(1,inputs);

ccw=2

(transientriserbranch index(i) ) )^0.5;

(inputs) )^0.5;

(transientriserbranch index(i) ) )^0.5;

(transient riser branch index(i)-

425



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

for i=l:transientnumchillers_final
if i==l

for
j=transient riser branch index(i):transient stag branch index(i) %1:15

mfr_seg_temp(j) =
mfrseg oa(l,i)*(KA_2(transient riser branch index(i))/K A_2 (j))^O.5;

end
for

j=transient_stagbranch index (max (size (transient_stagbranchindex) ) ) +1: input
s %164:180

mfrsegtemp(j) =

mfr_seg_oa(2,i)*(K_A_2(inputs)/K_A_2(j))^0.5;
end

else
for

j=transient riser branch index(i):transient stagbranch index(i) %38:60
mfr_seg_temp(j) =

mfr_seg_oa(l,i)*(K_A_2(transient riser branchindex(i))/KA2(j))^0.5;
end
for j=transientstagbranchindex(i-

1)+1:transientriserbranchindex(i)-1 %16:37
mfr_seg_temp(j) =

mfr-seg-oa(2,i)*(KA_2(transientriser branch index(i)-l)/K A 2(j) )A0 .5;
end

end
end

% Calculate mfr seg
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:transient num chillers final
if i==1

for
j=transient_stag branch index(max(size(transient stag branch index)

mfr segb(j) = mfrsegtemp(j);
end
for

j=transientstag branch index (max (size (transient_stag branchindex)
s %165:180

mfrsegb(j) = mfr_segtemp(j)-mfrseg_temp(j-1);
end
for j=transient stagbranch index(i) %15

mfr_seg_b(j) = mfr_segtemp(j);
end
for j=transient stagbranchindex (i) -1:-

1:transientriserbranchindex(i) %14:1
mfr_seg_b(j) = mfr_seg_temp(j)-mfr_seg_temp(j+l);

end
else

for j=transient stag branch index(i-l)+l %16
mfrsegb(j) = mfr_seg_temp(j);

end
for j=transientstag branch index(i-

1)+2:transientriserbranchindex(i)-l %17:37
mfr_seg_b(j) = mfr_segtemp(j)-mfr-segtemp(j-1);

))+1 %164

) +2: input

426



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Iir Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

end
for j=transientstagbranchindex(i)

mfr segb(j) = mfr-segtemp(j);

1: transient_

end
end

60

end
for j=transientstag_branchindex(i)-1:-
riserbranchindex(i) %59;38

mfrsegb(j) = mfr segtemp(j)-mfr seg temp(j+1);
end

Calculate mfr seg h

mfrseg h zeros(1,inputs);
for i=1:transientnumchillers final

if i==1
for j=transient_stagbranchindex(i)

mfrsegh(j) = mfr-segb(j);
%15

end
for j=transient_stagbranchindex(i)-1:-

1:transient riser branchindex(i) %14;1
mfrsegh(j) = mfr seg_b(j)+mfrseg_h(j+1);

end
for

j=transient-stag branch index(max(size(transient stag branch index)))+1 %164
mfrseg h(j) = mfrsegb(j);

end
for

j=transientstagbranch index(max(size(transient stag_branchindex)
s %165:180

end
else

))+2: input

mfr_seg h(j) = mfr seg_b(j)+mfr_seg_h(j-1);

for j=transientstag branchindex(i)
mfrsegh(j) = mfrsegb(j);

1:transient

%60

end
for j=transientstagbranch index(i)-1:-

_riser branchindex(i) %59:38
mfrseg h(j) = mfr seg_b(j)+mfrseg_h(j+1);

end
for j=transientstagbranch index(i-1)+1 %16

mfr-segh(j) = mfrsegb(j);
end
for j=transientstag_branchindex(i-

1)+2:transientriser branchindex(i)-1 %17:37
mfrsegh(j) = mfr-segb(j)+mfrseg_h(j-1);

end
end

end

% Calculate V ST b seg

for i=1:inputs

427



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

V_SI b seg(i) =
mfr-seg b(i) /area b unordered(branch order(1,1,i))/rho;

end

%%%%%%%%%%%%%%%%%%%%%%%"-%%%%%%

% Calculate V SI h seg
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:inputs
V SI h seg(i) = mfrseg h(i)/areah/rho;

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Determine least and greatest branch velocities
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

min velb = min(V SI bseg)
maxvelb = max(VSI b seg)
min _velh = min(VSI h seg)
V_SI_h_seg(181) = 0;
maxvel h = max(VSIh_seg)

%% Step 13 part f: Transient analysis - transient temperatures

% Define time step and annular segment granularity
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

min _lengthb = min(lengthb(1,:));
mesh__b = floor(min_lengthb/5*10)/10; %calculate mesh size such that there is
at least five segments in the shortest branch
mesh b = min(meshb,1); %set mesh b no larger than 1 meter

min_length h = 10^10;
for i=1:inputs

if min length_h>length h(1,1,i) && length_h(1,1,i)>0
min _length h = length_h(1,1,i);

end
end
min_lengthh;
mesh h = floor(min length h/2*10)/10; %calculate mesh size such that there is
at least 2 segments in the shortest header segment
mesh h = min(meshh,1); %set mesh h no larger than 1 meter

timestepb = mesh b/max(VSI b_seg);
timesteph = meshh/max(V_SI_hseg);

timestep = min(timestepb,timestep_h);
timestep = floor(timestep*10)/10;
if timestep 0

timestep = min(timestepb,timesteph);
timestep = floor (timestep*100) /100; %maximum recommended timestep

end
if timestep == 0

fprintf('Error: The minimum time step is less than a hundredth of a
second.\n')

428



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'IW Massachusetts institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

end

fprintf('\nBased on the geometry of the chilled water system the recommended

mesh size \n')
fprintf('for the branch and header segments are %4.2f and %4.2f,
respectively.\n',mesh b, mesh h)
fprintf('The recommended time-step when analyzing the thermal transients is
%4.2f.\n',timestep)
fprintf('This should be considered an upper bound, else the response will
become unstable. The \n')
fprintf('time-step can be lowered, but will increase the computational time
and memory usage significantly.\n')
reply = 'n';
%reply input ('Do you wish to lower the time-step? [y/n] ','s');

if isempty(reply)
reply = 'y';

end
if strcmp(reply,'y') I1 strcmp(reply,'Y') I1

fprintf('Please enter the time-step.\n')
timestep = input('Time-step [s]: ');

end

strcmp(reply, 'yes')

time = 60; %total time of transient

remainder = mod(60,timestep);
time = time+remainder;
fprintf('The default time of the transient is %4.2f se
%reply 'n';

reply input('Do you wish to change it? [y/n]: ','s')
if isempty(reply)

reply = 'y';
end
if strcmp(reply,'y') 1

fprintf('Please ent
time = input('Time

end

strcmp(reply,'Y') || strcmp
er the time duration.\n')

[s]: ');

(re

conds.\n',time)

ply,'yes')

%%%

% Segment the header pipe structure

header index=1;
length header rev cum = zeros(linputs+1);
length header-rev = zeros(1,inputs+1);
for i=1:max(size(dPdX))

if dPdX(1,1,i) == 2%branch
lengthheaderrevcum(headerindex)
header-index = header index+1;

end

= Location x(l,1,i);

end
lengthheader rev cum(headerindex) = Locationx(1,1,max(size(dPdX)));
lengthheaderrev(1) = lengthheaderrevcum(1);
for i=2:inputs+1

length_headerrev(i) = length_header rev cum(i)-lengthheaderrev cum(i-
1);
end

429



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

node h index = 0;
node h length 0;
node h length_cum = 0;
node h_junctionindex = 0;
transientriserindexindex = 1;
transientstag_indexindex = 1;
node_h_riserindex 0;
node h stag index = 0;
transientriserindexindexinit = 1;
transient stagindexindexinit = 1;
node_h_riserindexinit = 0;
node h stag indexinit = 0;
for i=l:inputs+1

temp_var = floor(lengthheaderrev(i)/meshh);
if temp_var > 0

for j=l:temp_var
node_h_index = node_h_index+1;
node_h_length(node_h_index)=meshh;
if node_h_index==l

node-h lengthcum(node_h_index) = mesh h;
else

node_h lengthcum(node_h_index) =
node h lengthcum(node h index-l)+mesh h;

end
end

end
tempvar rem = lengthheaderrev(i) - temp var*mesh h;
if tempvarrem > 0

if node_h_index==0
node h index=1;

end
node_h_length(node_h_index)=node_h_length(node_h_index)+tempvar rem;
if node_h_index==1

node h length_cum(node_h_index) = tempvar rem;
else

node _hlength cum(node_h_index) =
node-h-length_cum(node h index)+tempvar rem;

end
end
node_h_junctionindex(i) = node_h_index;
if i==transientriser branchindex(transient riserindexindex)

node_h_riserindex(transientriserindex index) = node h index-
temp_var;%-floor(tempvar/2);

if transientriserindexindex <
max(size(transientriserbranchindex));

transientriser index index = transientriserindexindex+l;
end

end
if i==transient_stagbranchindex(transient_stag_indexindex)

node h stag_index(transientstagindex index) = node h index;
if transientstagindexindex <

max(size(transientstagbranch index));
transientstag_index index = transient stagindex index+l;

end

430



Center for Ocean Engineering E m Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering U E Cambridge, Massachusetts 02139-4307

end
if i==transient riser branch index init(transient riser index indexinit)

node_h_riserindexinit(transient riserindex indexinit)
node_h index-temp_var;%-floor(temp_var/2);

if transientriserindexindexinit <
max(size(transient riserbranchindexinit));

transientriserindexindexinit =

transientriserindex index init+l;
end

end
if i==transient-stagbranch index init(transient stagindex indexinit)

node hstag_indexinit(transientstagindex indexinit) =

node_h_index;
if transient_stag indexindexinit <

max(size(transientstag_branch_index_nit));

transient_stagindexindexinit =

transientstagindex indexinit+1-;
end

end
end
if node h riser index(1)==0

node_h_riserindex(l)=l;
end
if node_h_riserindex init(l)==O

node_h_riserindexinit(l)=l;
end

% Segment the branch pipe structure

node b index = zeros(l,inputs);

node b length =zeros(inputs,1);
node_b_length-cum = zeros(inputs,1);
for i=1:inputs

temp_var = floor(lengthibnordered(1,1,1,i)/meshb);
if temp_var > 0

for j=1:temp var
nodeobrindex(i) = nodetbeindex(i)+1;
node_b_length(inode b_index(i))=meshb;
if nodeb index(i)==1

f (i,n_b eodebindex(i)) = meshb;
else

nodeeblength_cum(i,nodesbeindex(i)) =
nodenb_lengthcum (i, noebindex (i)-1) +mbes i)b;

end
end

end
temp_varrem = lengthb-ordered(1,1,1,i) - temp_var*mesh-b;
if tempvarrem > 0

nodeb_length(i,node_b_index(i))=node_b_length(i,node b index(i))+temp var re

m;
if node_b_index(i)==l

node b length_cum(i,node b index(i)) = temp_varrem;
else

431



Center for Ocean Engineering INE Massachusetts Institute of Technology
Naval Construction & Engineering Program 1 1177-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering 1111Cambridge, Massachusetts 02139-4307

node b length cum(i,node_b_index(i)) =
node_b length cum(i,node_b_index(i))+temp_var rem;

end
end

end
sizenodeb = size(node_b_length);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Specify location of heat exchanger - assume in center of branch piping
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

node_b hxchgr = zeros(l,inputs);
node b volhxchgr = zeros(1,inputs);
for i=1:inputs

node_b hxchgr(i) = floor(node_b index(i)/2);
node b volhxchgr(i) = (hxchgrweightwet(i)-hxchgrweight_dry(i))/rho;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Specify initial temp at each node
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

node h-temp = Tcold*ones(l,node_h_index);

nodeIb temp = zeros (size(nodeb_length));
for i=1:inputs

for j=l:node b_hxchgr(i)-1
node-b temp(i,j)=Tcold;

end
for j=node_b_hxchgr(i):node_b_index(i)

node-b temp (i, j ) =Thot-b-seg (i);
end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Specify final velocity at each node in header with positive clockwise
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

node_h_velocity = zeros(1,node_h_index);
node_h_velocity_init = zeros(l,node h index);
node h stagindex index = 1;
node_h_riserindexindex = 1;
node h stag index index init = 1;
node_h riserindexindexinit 1;
if node h riserindex(l)<node_h_stagindex(1)

node_h_riser_index(max(size(node_h_riserindex))+1)=node_h_index;
node_h_stagindex(max(size(node_h_ stagindex))+1)=node_h index+1;

else
node_h_riserindex(max(size(node_h_riserindex))+1)=node h_index+1;
node h stagindex(max(size(node_h_stagindex))+1)=node h index;

end
if node_h_riser indexinit(l)<node h_stagindex init(l)

node_h_riserindexinit(max(size(node_h_riserindexinit))+l)=node_h_index;

node h stagindex init(max(size(node_h_stag index init))+l)=node h index+l;
else

432



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

node h riser index init(max(size(node h riser index init))+1)=node h index+l;
node_h_stagindexinit(max(size(node_h_stag_index init))+l)=node_h index;

end

for i=1:inputs
if i==l %consider first node

for j=1:node_hjunctionindex(i)-1
if node h riser indexindex < max(size(node_h_riserindex))

if j==node_h_riser index (node_h_riser index index)
node_h_riserindexindex = node_h riser indexindex+l;

end
end
if node h_stag_indexindex < max(size(nodeh_stag_index))

if j==node h_stagindex(node h stagindex index)
node_h_stagindex index node_h_stagindexindex+l;

end
end
if

node_h_riserindex(node_h_riserindexindex)>node_h_stagindex(node_h_stagin
dex index) %cw

node_h_velocity(j)=VSI_h_seg(i);
else

node h velocity(j)=-VSI h seg(i);
end

end
else

if
node h riser index(node_h riser__indexindex)>node_h_junctionindex(i-
1)&&node_h_riserindex(node_h riser indexindex)<node_h_junction index(i)

for j=node_h_junction index(i-
1):node_h_riserindex(node_h_riser indexindex)-1

if node_h_riserindexindex < max(size(node_h_riserindex))
if j==node_h_riserindex(node_h_riser indexindex)

node_h_riserindex index =

node h riser index index+l;
end

end
if node h stag index index < max(size(node h stag index))

if j == node_h_stagindex(node_h_stagindexindex)
node_h_stagindexindex = node h_stag_indexindex+l;

end
end
node_h riserindex(node h riser indexindex);
node h stag index(node h stag index index);
if

node h riser index(node h riser index index)>node h stagindex(node h_stagin

dexindex) %cw
node h velocity(j)=VSI_h-seg(i);

else %ccw
node h velocity(j)=-VSI h-seg(i);

end
end
for

j=node h riser index(node h riser index index):node_h junction index(i)-l

433



Center for Ocean Engineering Massachusetts Institute of Technology
NaVal Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

if node_h_riser indexindex < max(size(node_h_riserindex))
if j==node_h_riser index(node_h_riserindexindex)

node h riser index index =

node h riserindexindex+1;
end

end
if nodeh_stagindexindex < max(size(node h_stag_index))

if j == nodeh_stag_irdex(node_h_stagindex index)
node-h stag index index = node h stag_index index+1;

end
end
if

node_h_riserindex(node_h_riserindex-index)>node_h stagindex(node-h-stagin
dex index) %cw

node h velocity(j)=V_SIlh-seg(i);
else %ccw

node h velocity(j)=-VSIhseg(i);
end

end
else

for j=node h junction index(i-1):node_h_junctionindex(i)-l
if node_h_riser index index < max(size(node_h_riserindex))

if j==node_h_riserindex(node_h riser index index)
node h riser index index =

node h riser index index+1;
end

end
if nodeh_stagindexindex < max(size(nodeh_stag_index))

if j == nodeh_stag_index(node h stagindexindex)
node-h-stagindex index = nodeh_stagindexindex+l;

end
end
if

node_ h _riser index(node_h_riser index index)>node_h stagindex(node-h-stag-in
dexindex) %cw

node_h_velocity(j)=V_SIlh-seg(i);
else %ccw

node_h_velocity(j)=-VSIlh-seg(i);
end

end
end

end
end
for j=node_h_junction index(inputs) :node h index

if node_h_velocity(node_h_junctionindex(inputs)-l)<O
node_h_velocity(j)=-VSI_h_seg(inputs);

else
node_h_velocity(j)=VSIh_seg(inputs);

end
end
for i=l:max(size(node h riser index))-1

nodeh_riser index-temp(i) = node h riser index(i);
end
for i=1:max(size(node_h_stagindex))-l

node_h_stag_index temp(i) = node_h_stagindex(i);

434



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering 'UCambridge, Massachusetts 02139-4307

end

for i=l:inputs
if i==l %consider first node

for j=l:node_h_junctionindex(i)-l
if node_h_riserindexindexinit <

max(size(node_h_riser indexinit))
if j==node_h_riser indexinit(node_h_riser index indexinit)

node h riserindex index init =

node h riser index index init+l;
end

end
if node_hstagindexindexinit <

max(size(node h_stagindexinit))
if j==node_h_stagindexinit (node_h_stag index indexinit)

node_h_stag index indexinit =

node h stagindex index init+l;
end

end
if

node h_riserindexinit(node_h_riserindex index init)>node_h_stagindexinit
(node_h_stagindex indexinit) %cw

node_h_velocityinit(j)=VSI_h_seginit(i);
else

node h velocity init(j)=-VSI hseginit(i);
end

end
else

for j=node_h_junctionindex(i-1):node_h_junctionindex(i)-1
if node_h riser indexindexinit <

max(size(node_h_riser index init))
if j==node h riser index init(node h riser index indexinit)

node_h_riserindexindexinit =

node_h_riserindex index init+1;
end

end
if nodeh_stag_index indexinit <

max(size(node_h_stagindexinit))
if j == node h stagindexinit(node h stag index indexinit)

node_h_stagindexindexinit =

node_hstagindexindex init+1;
end

end
if

node_h_riser_index init(node_h_riserindex index init)>node_h_stagindex init
(node h stag index indexinit) %cw

node_h_velocityinit(j)=VSI h_seginit(i);
else %ccw

node_h velocity_init (j )=-V SIh-seg_init (i);
end

end

end
end
for j=node_h_junctionindex(inputs):node_h_index

if nodeh velocityinit(nodeh_junction index(inputs)-l)<O

435



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

node_h_velocity_init(j)=-V_ST_h_seginit(inputs);
else

node-h-velocit y_init(j)=VSIh_seg_init(inputs);
end

end
for i=l:max(size(node_h_riserindexinit))-1

node_h_riserindex tempinit(i) = node_h_riser index init(i);
end
for i=l:max(size(node_h_stag_indexinit))-1

node h_stag_indextemp_init(i) = node h stag index init(i);
end

clear node_h riserindex node_hstag_index node_h_riserindexinit
node h stag indexinit
node_h_riser_ index = node_h_riser index_temp
node_h_stag index = node_h_stag indextemp
node h riserIindex-init = node_h_riser index temp_init
node h stagindexinit = node_h_stagindex_tempinit
node_h_riserindexindex = node_h_riserindexindex-1
node_h_stag index index = node_h_stag_indexindex - 1
noderh velocityinit = node_h velocity_init;
noderhvelocity = node_h_velocity;
noderhindex = node h index;

% Specify final velocity at each node in each branch - only consider
% primary branches

node_b_velocity = zeros(size(node b length));
for i=1:inputs

for j=1:node_b_index(i)
node_b_velocity(i,j) = VSIb-seg(i);

end
end

% Determine initial temperature in return header based on initial
% velocities and branch temperatures

noderhtemp = zeros(size(nodeh_temp));
if node_h_stagindexinit(1) > node_h_riser index init(1)

for k=1:transientstagindexindex init
for i=transient_stagbranch index init(k):-

1:transientriserbranchindexinit(k)
if i==1

for j=node_h_junctionindex(i):-1:node_h_riser index init(k)
if i==transientstagbranchindexinit(k)

noderh_temp (j )=node-b-temp(i,node_b_index(i));
else

if j==node_h_junctionindex(i)

noderhtemp(j)=(node b_t emp(i,node b index(i))*node b velocity(i,node b inde
x(i))*areab_ordered(1,1,i)+...

436



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction. & Engineering Program 77-massachusetts Avenue, Building 5-37
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

noderh_t emp(j+l)*abs(noderhvelocity_init(j))*area_h)/(node_b_velocity(i,no
de b index(i))*area_b_ordered(1,1,i)+...

abs(noderh velocity-init(j))*areah);
else

noderhtemp(j)=noderhtemp(j+1);
end

end
end

else
if node_h_junction index(i)==node_h_junction index(i-1)

j=node_h_junctionindex(i);
if i==transient_stag branchindexinit(k)

noderh-temp(j)=node b_temp(i,node_b_index(i));
else

if j==node_h_junction index(i)
if noderhtemp(j+1)>0

node rh temp(j)=(node b temp(i,node b index(i))*node b velocity(i,node b inde
x(i))*area_b_ordered(l,1,i)+...

node rh_t emp(j+l)*noderhvelocity_init(j)*area_h)/(node_b_velocity(i,node_b_
index(i))*area_b_ordered(1,1,i)+...

noderhvelocityinit(j)*areah);
end

end
end

else
for j=node_h_junction index(i):-

1:node_h_junctionindex(i-l)+l
if i==transientstagbranchindexinit(k)

noderh_temp(j)=node_b_temp(inode_b_index(i));
else

if j==node h junctionindex(i)
if node rhtemp(j+1)>0

node rh_temp((j)=(node b temp(i,node b index(i))*node b velocity(i,node b inde

x(i))*area_b_ordered(ll,i)+...

noderhtemp(j+l)*abs(noderhvelocity_init(j))*area_h)/(node_b velocity(i,no
de b index(i))*area_b_ordered(l,1,i)+...

abs(node rh velocityinit(j))*areah);
end

else
if node rh temp(j+1)>O

node_rh_temp(j)=noderhtemp(j+l);
end

end
end

end
end

end
end
if k<transient riser index index mnit

437



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program ,177-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

for
i=transientstag branch index init(k):transient riser branch index init(k+1)

if node_h_junction index(i)==node_h_junctionindex(i+1)
j=node_h_junction index(i);
if i==transientstagbranchindexinit(k)

noderh temp(j)=node_b_temp(i,node b index(i));
else

if j==node_h_junction index(i)
if noderhtemp(j+l)>O

node_ rh_temp(j)=(node_b_temp(i,node_b_index(i))*node b velocity(i,node_b_inde
x(i))*area_b_ordered(1,1,i)+...

noderh_temp(j+1)*noderhvelocityinit(j)*area h)/(node_b velocity(i,node b_
index(i))*area_b_ordered(1,1,i)+...

node rh velocity init(j)*area h);
end

end
end

else
for

j=node_h_junction index(i):nodeh_junction index(i+1)-1
if i==transient stag branch index init(k)

noderh-temp (j) =node_b_temp (i, node_b_index (i));
else

if j==node_h junction index(i)
if noderh_temp(j-l)>O

noderh_t emp(j)=(node_b_temp(i,node_b_index(i))*node_b_velocity(i,node b inde
x(i))*area_b_ordered(1,1,i)+...

noderh_temp(j-
1)*abs(node_ rhvelocity(j))*areah)/(node_b velocity(i,node_b_index(i))*area_
b_ordered(1,1,i)+...

. abs(noderhvelocity(j))*areah);
end

else
if noderhtemp(j-l)>O

node rh temp(j)=node rhtemp(j-1);
end

end
end

end
end

end
else

for i=transientstagbranch index init(k):inputs
if i==inputs

for j=node h junction index(i):node_h_index
if j==node_h_junctionindex(i)

noderh_temp(j)=(node_b_t emp(i,node b_index(i))*node_b velocity(i,node b inde
x(i))*area_b_ordered(1,1,i)+...

node rh temp(j-
1)*abs(noderhvelocity_init(j))*area_h)/(node_b_velocity(i,node_b index(i))*
area b ordered(1,1,i)+...

438



Center for Ocean Engineering U - Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

abs(node rhvelocity_init(j))*area h);
else

node rhtemp(j)=noderhtemp(j-1);
end

end
else

for
j=node h junction index(i):node_h_junctionindex(i+l)-l

if i==transient stagbranch index init(k)
noderh-temp(j)=node_b_temp(i,node b index(i));

else
if j==node_h_junction index(i)

noderh temp(j)=(node_b_t emp(i,node_b_index(i))*node_b_velocity(i,node b inde
x(i))*area b ordered(1,li)+...

node rh temp(j-
1)*abs(noderhvelocityinit(j))*areah)/(node_b_velocity(i,node b index(i))*

area_b_ordered(1,l,i)+...
abs(noderhvelocity_init(j))*areah);

else
noderh-temp(j)=noderh-temp(j-1);

end
end

end
end

end
end

end
for i=l: (transient riser branch index init(l)-l)

%do something
end

else
%do something

end

% Determine total number of increments in time

iterations = floor(time/timestep);

% Determine volume and surface area of each node in header
%%%%% %% 00 C %%% %%%o%%%%%o%%%%

node h vol = zeros(l,node h index);
node_h_SA = zeros(1,node_h_index);
for x=l:node h_index

node h vol(x) = areah*node_h_length(x);
node hSA(x) = pi(*node_h_length(x)*DSI h;

end
noderh vol = node h vol;
node rhSA node hSA;

% Determine volume of each node in branches
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

439



Center for Ocean Engineering Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

node_b vol = zeros(inputs,sizenode_b (2));
node b SA zeros(inputs,size node b(2));
for i=l:inputs

for x=1:node_b index(i)
if x==node b hxchgr(i)

node b vol(i,x) = node b_vol_hxchgr(i);
else

node b vol(i,x) = area b_ordered(1,1,i)*node b length(i,x)-;
node b_SA(i,x) = pi()*node_b_length(i,x)*DSI b_ordered(i);

end
end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Preallocate/initialize variables
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

radius h = D SI h/2;
radius b = D SI_b_ordered/2;
lagging-thickness = 0.01; % 1 cm lagging
klagging = 0.035; %lagging
T_amb 20;

Qlh = zeros (node_h index,iterations);
Q2_h zeros(node_h_index,iterations);
Qgenh = zeros(node_h_index,iterations);
Qlossh = zeros(node_h_index,iterations);
node_h_hcair zeros(node_h_index,iterations);
node_h_hccw zeros(node_h_index,iterations);
node_h_U = zeros(node_h_index,iterations);
node h T = zeros(node h index,iterations);
dTh zeros(node_h_index,iterations);

Q1_rh = zeros(node_h_index,iterations);
Q2_rh =- zeros (node_h_index,iterations);
Qgenrh = zeros(node_h index,iterations);
Qlossrh = zeros(node_h_index,iterations);
noderhhcair zeros(node h index,iterations);
noderhhccw = zeros(node_h_index,iterations);
noderhU zeros(node_h_index,iterations);
noderhT = zeros (node_h_index,iterations);
dTrh = zeros(node_h index,iterations);

Qlb = zeros(size nodeb(1),sizenodeb(2),iterations);
Q2_b = zeros(size nodeb(l),sizenode_b(2),iterations);
Qlossb = zeros(size nodeb(l),sizenodeb(2),iterations);
Qgenb = zeros (sizenodeb(l),sizenode_b(2),iterations);
node_b_hcair zeros (sizenode_b(1),sizenode_b(2),iterations);
node_b_hccw = zeros(sizenode b(l),sizenodeb(2),iterations);
node_b_U = zeros (sizenode_b(l),sizenode_b(2),iterations);
node_b_T = zeros(sizenodeb(l),sizenode_b(2),iterations);
dT b = zeros(size node_b(l),sizenode_b(2),iterations);

% Determine new temperatures based on new heat loads and new velocities

440



Center for Ocean Engineering * * Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

for t=1:iterations

% Specify Q1 at each node in header

for x=1:node h index
if node h velocity(x)>O

if t == 1

if X = 1
Q1_h(x,t) =

rho*area h*node h velocity(x)*cp*(node h temp(node h index)-node h temp(x));
else

Q1_h(x,t) =

rho*areah*node_h_velocity(x)*cp*(node_h_temp(x-1)-node_h_temp(x));
end

else
if x == 1

Q1_h(x,t)
rho*area h*node h velocity(x)*cp*(node hT(node h index,t-1)-node h T(x,t-
1)) ;

else
Q1_h(x,t) = rho*area h*node_h_velocity(x)*cp*(node_h_T(x-

1,t-1)-node_h_T(x,t-1));
end

end
else

Q1_h(x,t) = 0;
end

end

% Specify Q1 at each node in return header
% 0 %%% 0 %% % 0.0 7 %' 1

for x=l:node rh index
if noderh velocity(x)>0

if t == 1
if x == node rhindex

Q1_rh(x,t) =
rho*area h*noderhvelocity(x)*cp*(noderhtemp(1)-
noderhtemp(noderhindex));

else
Q1_rh(x,t) =

rho*area h*noderhvelocity(x)*cp*(noderhtemp(x+1)-noderhtemp(x));
end

else
if x == noderhindex

Q1_rh(x,t) =
rho*area h*noderhvelocity(x)*cp*(node rhT(1,t-1)-node_h_T(node rhindex,t-

1)) ;
else

Q1_rh(x,t) =

rho*area h*noderhvelocity(x)*cp*(noderhT(x+1,t-1)-node rhT(x,t-1));
end

end
else

441



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

if t == 1
if x == 1

Q1_rh(x,t) =

rho*area _h*node rhvelocity(x) *cp* (node rhtemp(l)-
noderh temp(node rhindex));

else
Q1_rh(x,t) =

rho*area h*noderhvelocity(x)*cp*(node rhtemp(x)-node-rh-temp(x-1));
end

else
if x == 1

Q1_rh(x,t) =

rho*areah*noderhvelocity(x)*cp*(node rhT(1,t-1)-node h_T(noderhindex,t-
1));

else
Q1_rh(x,t) =

rho*areah*noderhvelocity(x)*cp*(node rhT(x,t-1)-noderhT(x-1,t-1));
end

end
end

end

% Specify Q1 at each node in branch

for i=1:inputs
for x=1:node b index(i)

if t == 1

if x == 1

Q1_b(i,x,t) =
rho*area_b_ordered(1,1,i)*node_b_velocity(i,x)*cp*(nodeh_temp(node_h_junctio
n index(i))-node_b_temp(i,x));

else
Q1_b(i,x,t)

rho*area_b_ordered(1,1,i)*node_b_velocity(i,x)*cp*(node b temp(i,x-1)-
node-b-temp (i, x) ) ;

end
else

if x == 1

Q1 b(i,x,t)
rho*area b ordered(1,1,i)*node b velocity(i,x)*cp*(node hT(node h junction i
ndex(i),t-1)-node b T(i,x,t-1));

else
Q1 b(i,x,t) =

rho*area_b_ordered(1,1,i)*node_b_velocity(i,x) *cp* (node_b_T(i,x-1,t-1)-
node_b_T(ix,t-1));

end
end

end
end

% Specify Q2 at each node in header

for x=1:node h index

442



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'IiT Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

if node_h_velocity(x)<O
if t == 1

if x == node h_index
Q2_h(x,t) =

rho*areah*node_h_velocity(x)*cp*(node_h_temp(node h index)-node_h_temp(1));
else

Q2_h(x,t) =

rho*area h*node h velocity(x)*cp*(node h temp(x)-node h temp(x+1));
end

else
if x == node h_index

Q2_h(x,t) =

rho*areah*node_h_velocity(x)*cp*(node_h_T(node_h_index,t-1)-node hT(1,t-
1)) ;

else
Q2_h(x,t) =

rho*area h*node h velocity(x)*cp*(node hT(x,t-1)-node hT(x+1,t-1));
end

end
else

Q2_h(x,t) = 0;

end
end

Specify Q2 at each node in return header

for i=l:inputs
x h=node_h_junction index(i);
x b=node_b_index(i);
if t == 1

Q2_rh(xh,t) =

Q2_rh(xh,t)+rho*area_b_ordered(1,1,x_b)*node_b_velocity
mp(i,xb)-noderhtemp(xh));

else
Q2_rh(x_ h,t) =

Q2_rh(xh,t)+rho*area b ordered(1,1,x b)*node_b_velocity

i, x-b, t-1)-node-rhT (x-h, t-1)) ;
end

end

% Specify Q2 at each node in branch

%for i=1:inputs
% for x=1:node b index(i)

%if t == 1
% if x == 1
% Q2_b(i,x,t) =

0;%rho*area b_ordered(i)*node b velocity

node b temp(i,x));
% else

% Q2 b(i,x,t) =

0;%rho*area_ bordered(i)*node b velocity

node b temp(i,x));

(i,x_b)*cp*(node_b_te

(i, x b) *cp* (node bT (

(i,x) *cp* (node h _tempri(node h index)-

(i,x)*cp*(node b temp(i,x-1)-

443



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

I'Ii Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

% end
%else
% if x == 1
% Q2 b(i,x,t) =

0;%rho*area b ordered(i)*node_b velocity(i,x)
node_b_T(i,x,t-1));

% else
% Q2 b(i,x,t)

0;%rho*area b ordered(i)*node b velocity(i,x)
node_b_T(i,x,t-1));

% end
%end

%end
% end

% Specify Qgen at each node in header

%if t==1

% Qgen h(x,t) = 0;
%else
% Qgen h(x,t)=0;
%end

*cp*(node h_T(node_h_index,t-l)-

*cp*(node b T(i,x-1,t-1)-

% Specify Qgen at each node in branch
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=l:inputs
for x=node_b hxchgr(i)

Qgen_b(i,x,t) = transientQ final(i)*1000;
end

end

% Specify Qloss at each node in header
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for x=1:node h index
node_h_hccw(x,t) = calc_hc(DSI h,node_h_velocity(x),k,nu,rho,cp);
node h hcair(x,t) = 0.1128; %can use other method to determine this

later - Nusselt#?
node_h_U(x,t) =

(1/node_h_hccw(x,t) + (radiush) /klagging*log( (laggingthickness+radius_h+thic
knessh)/radiush)+...

radiush/kcopper*log((thicknessh+radiush)/radius h)+radiush/(radius h+thic
knessh+lagging_thickness)/node h hc air(x,t))^-1;

if t==1

else

end

Qlossh(x,t)=node_h_U(x,t)*node_h_SA(x)*(Tamb-node_h_temp(x));

Qlossh(x,t)=node_hU(x,t)*node_h_SA(x)*(Tamb-node h T(x,t-1));

end

% %% %%%%%%%%% 6%%% % %0%00% ( 0 Y

444



Center for Ocean Engineering * - Massachusetts institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

Specify Qloss at each node in return header

for x=1:node h index
noderh hccw(x,t) calc_hc(DSIh,noderhvelocity(x),k,nurho,cp);
noderh hcair(x,t) = 0.1128; %can use other method to determine this

later - Nusselt#?

noderhU(x,t) =

(1/noderh hccw(x,t)+(radius h)/klagging*log((lagging thickness+radiush+thi

cknessh)/radiush)+...

radius h/kcopper*log((thickness h+radius h)/radius h)+radius h/(radius h+thic
kness h+laggingthickness)/node rh hcair(x,t)))^-1;

if t==1
Qloss -rh(x,t)=node rhU(x,t)*node rhSA(x)*(T amb-

noderhtemp(x));
else

Qloss_rh(x,t)=noderhU(xt)*noderhSA(x)*(T_amb-node rhT(x,t-

1));
end

end

%%%%%% %%%%%%%%%%%%

% Specify Qloss at each node in branch

for i=1:inputs
for x=1:node b_index(i)

node_b_hccw(i,x,t) =

calchc(D_SI_b_ordered(i),node_b_velocity(i,x),k,nu,rho,cp);
node_b_hc air(i,x,t) = 0.1128; %can use other method to determine

this later - Nusselt#?

node_b_U(i,x,t) =

(1/node_b_hccw(i,x,t)+(radiusb(i))/klagging*log((laggingthickness+radius_b
(i)+thickness_b(branch_order(1,1,i)))/radius_b(i))+...

radius_b (i) /kcopper*log( (thickness_b(branchorder(1,1,i) )+radius_b(i) )/radius

_b(i) )+radius_b(i)/(radius_b(i)+thickness_b(branchorder(1,1,i) )+lagging thic

kness) /node_b_hcair(i,x,t))^-1;
if t==1

Qloss_b(i,x,t)=node_b_U(i,x,t)*node_b_SA(i,x)*(T_amb-
node_b_temp(i,x));

else
Qloss b(i,x,t)=node bU(i,x,t)*node bSA(i,x)*(T amb-

node_b_T(i,x,t-1));
end

end
end

% Determine dT at each node
%%%%%%%%%%%%%%%%%%%%%Q%%%%%%%%

for x=1:node h index
dT_h(x,t) =

(Q1_h(x,t)+Q2_h(x,t)+Qgenh(x,t)+Qloss h(x,t))/(rho*node_h vol(x)*cp)*timeste

p; %revise

end

445



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

for i=1:inputs
for x=l:node b index(i)

dT_b(i,x,t) =
(Q1_b (i,x,t)+Q2_b(i,x,t)+Qloss b(i,x,t)+Qgen_b(i,x,t))/(rho*node b vol(i,x)*c
p) *timestep;

end
end
for x=l:node rh index

dT rh(x, t) =
(Q1_rh(x,t)+Q2_rh(x,t)+Qgenrh(x,t)+Qloss rh(x,t))/(rho*node rh vol(x)*cp)*ti
mestep; %revise

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate temperatures after timestep

for x=l:node h index
if t==1

node_h_T(x,t) = node_h_temp(x)+dTh(x,t);
else

node_h_T(x,t) = node_h_T(x,t-l)+dTh(x,t);
end

% Specify boundary conditions

for j=1:max(size(node h riser index))
if x==node_h_riser index(j)

node_h_T(x,t) = Tcold;
end

end
end
for i=l:inputs

for x=l:node b index(i)
if t==1

node_b_T(i,x,t) = nodeb_temp(i,x)+dT_b(i,x,t);
else

node_b_T(i,x,t) = node_b_T(i,x,t-1)+dT_b(i,x,t);
end

end
end
for x=l:node rh index

if t==1
noderhT(x,t) = noderhtemp(x)+dT rh(x,t);

else
noderh_T(x,t) = noderhT(x,t-1)+dTrh(x,t);

end
end

end
%% Step 13 part g: Transient analysis - plots

% Plot temperatures over time at a specified location
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%)

446



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering I Cambridge, Massachusetts 02139-4307

noderhriser index = node_h_riserindex;
node rh stag-index = node h_stag index;
noderhjunction index = nodeh_junctionindex;
timeaxis = zeros(1,iterations);
for i=1:iterations

timeaxis(i)=i*timestep;
end

fprintf('Do you want to analyze the temperature as a function of time at a

specific \n')
reply = input('location within the chilled water system? [y/n]: ','s');

while strcmp(reply, 'y') 11 strcmp(reply, 'Y') I1 strcmp(reply,'yes')
fprintf('Please select the general location you wish to analyze from the

pop-up menu')

pipetype = menu('Choose a location','Supply Header','Return
Header','Branch');

fprintf( '\n')
if pipetype == 1 %Supply Header

fprintf('The Supply Header is broken up into %d annular segments with

node 1 corresponding to the\n',node h index)
fprintf('riser location of the forward-most chiller portside. The

indices are incremented clockwise \n')
fprintf('along the length of the Supply Header.\n')
fprintf('The indices for the riser locations are:\n')

node_h riser index
fprintf('The indices for the stagnation points are:\n')

node_h_stagindex
fprintf('The indices for the branch junctions are:\n')

nodeh_junctionindex
input index = input('Please enter the supply header index you wish to

analyze: ');
plotvar = zeros(1,iterations);
for i=1:iterations

plotvar(i) = node h_T(input-index,i);
end
plot (timeaxis,plot var)
xlabel('Time(sec)')
ylabel('Temperature(C)')
title('Temperature as a Function of Time within Supply Header')

elseif pipe type == 2 %Return Header
fprintf('The Return Header is broken up into %d annular segments with

node 1 corresponding to the\n',noderhindex)
fprintf('riser location of the forward-most chiller portside. The

indices are incremented clockwise\n')
fprintf('along the length of the Return Header.\n')

fprintf('The indices for the riser locations are:\n')

noderhriserindex
fprintf('The indices for the stagnation points are:\n')

noderhstag_index
fprintf('The indices for the branch junctions are:\n')
noderhjunction index
input index = input('Please enter the return header index you wish to

analyze: ');
plotvar = zeros(1,iterations);

447



Center for Ocean Engineering 0 Massachusetts institute of Technology
Naval Construction & Engineering Program 111177-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

for i=1:iterations
plot_var(i) = noderh_T(inputindex,i);

end
plot (timeaxis,plot var)
xlabel('Time(sec) ')
ylabel('Temperature(C)')
title('Temperature as a Function of Time within Return Header')

else %Branch
fprintf('There are %d branches in the chilled water system.

\n' ,inputs)
branch var = input('Please enter the branch number you want to

analyze: ');
fprintf('There are %d indices in branch %d. The indices are

incremented from supply to return.\n',node_b_index(branch var),branchvar)
fprintf('The heat exchanger is located at index

%d.\n',node b hxchgr(branchvar))
inputindex = input('Please enter the branch index you wish to

analyze: ');
plotvar = zeros(1,iterations);
for i=1:iterations

plotvar(i) = node_b_T(branchvar,inputindex,i);
end
plot(time axis,plotvar)
xlabel('Time(sec)')
ylabel('Temperature(C)')
title('Temperature as a Function of Time within Branch')

end
fprintf ('Do you want to analyze the temperature as a function of time at

another \n')

reply = input('location within the chilled water system? [y/n]: ','s');
end

%%% O%%%%%%%%%%%%%%%%%%%%

% Plot temperatures over distance at a specified time

fprintf('Do you want to analyze the temperature as a function of distance at
a specific \n')
reply = input('time within the chilled water system? [y/n]: ','s');

while strcmp(reply,'y') I1 strcmp(reply,'Y') Il strcmp(reply,'yes')
fprintf('Please select the general location you wish to analyze from the

pop-up menu')
pipe_type = menu('Choose a location','Supply Header','Return

Header','Branch');
fprintf('\n')
if pipetype == 1 %Supply Header

fprintf('The total time analyzed is %d seconds with a timestep of
%d.\n',time,timestep)

inputindex = input('Please enter the time you wish to analyze [sec]:

input index = input index/timestep;
plot var = zeros(l,node_hindex);
for i=1:node_h_index

plotvar(i) = node_h_T(i,inputindex);

448



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

end
plot(l:node h index,plotvar)
xlabel('Header Index')
ylabel('Temperature(C)')

title('Temperature as a Function of Distance within Supply Header')
elseif pipetype == 2 %Return Header

fprintf('The total time analyzed is %d seconds with a timestep of

%d.\n',time,timestep)

input-index = input('Please enter the time you wish to analyze [sec]:

');

input index = input index/timestep;
plotvar = zeros(1,noderhindex);
for i=1:noderhindex

plotvar(i) = noderhT(i,input index);
end
plot(1:node rh index,plotvar)
xlabel('Return Header Index')

ylabel('Temperature(C)')
title('Temperature as a Function of Distance within Return Header')

else %Branch

fprintf('There are %d branches in the chilled water system.

\n',inputs)

branch var = input('Please enter the branch number you want to
analyze: ');

fprintf('The total time analyzed is %d seconds with a timestep of

%d.\n',time,timestep)
input-index = input('Please enter the time you wish to analyze [sec]:

input index = input index/timestep;
plot var = zeros(l,node b index(branch var));
for i=1:node_b_index(branchvar)

plot_var(i) = node_b_T(branchvar,i,inputindex);
end
plot(l:node_b_index(branchvar),plot var)

xlabel('Branch Index')
ylabel('Temperature(C)')
title('Temperature as a Function of Distance within Branch')

end
fprintf('Do you want to analyze the temperature as a function of distance

at another \n')

reply = input('time within the chilled water system? [y/nl: ','s');
end

f=2
plot van = zeros(1,node b index(f));
plotvar2 = zeros(1,node_b_index(f));
plotvar3 = zeros(1,node_b_index(f));
plotvar4 = zeros(l,node_b_index(f));
plot var5 = zeros(1,node_b_index(f));
for i=1:node_b_index(f)

plot-varl(i) = node -b -T(f,i,1);
plot_var2(i) = node bT(f,i,1);
plot_var3(i) = node_b_T (f,i,30);
plotvar4(i) = node_b_T(f,i,50);

449



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program I 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering I Cambridge, Massachusetts 02139-4307

plotvar5(i) = node_b_T(f,i,100);
end
plot(1:node b index(f'),plot varl,'r')
hold on
plot(1:node b_index(f),plot var2,'g')
plot(l:node b index(f),plotvar3,'b')
plot(l:node b_index(f),plot_var4,'c')
plot(l:node_b_index(f),plotvar5,'k')

%% Survivbility

% Add survivability code here

% User defined blast location and radius

% Determine heat exchangers located within blast radius

% Determine chillers/pumps located within blast radius

% Segment pipe into a series of line segments and see if either end of
% segment falls within blast radius - if it does the segment is damaged if
% not, calculate line perpendicular to line segment which crosses center of
% blast. If perpendicular line length is less than blast raius and line
% falls within segments, then segment is damaged.

% Determine connectivity of remaining heat exchangers to remaining chillers
% through undamaed piping

% Prioritize flow to vital loads for those with at least 1 flow path
% remaining. Then prioritize flow to non-vital loads.

% Print report of heat exchangerd damaged and heat loads which can not be
% cooled due to no connectivity and heat loads which can not be cooled due
% to lack of cooling

450



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts Institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

analysisinterface.m

% Cooling System Design Tool
% Author: Ben Sanfiorenzo
% Analysis interface module: Loads data from
% geometry.mat and provides the user with the ability
% to modify the contents of the data. User must have

% a detailed understanding of the variables and the
% code. The analysis interface module stores the
% modified data in the file analysis interface.mat.
% Last Modified: 3-2-13

clc
clear
load geometry

who

User inserts code here to modify the geometry.mat f ile
% Ex: To modify the number of zones from 4 to 5
% zones = 5;

zonal boundaries = [40 20 0 -20 -40]
%%%%% %%%%%%%%%%%% k%%%%%%%%%%%%%%%

Insert code

zones = 5;

save analysis-interface

451

%%
%

%
%

%



Center for Ocean Engineering * u Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

calc_h_satim

function outarg = calc_h_sat(T,R_SatT,R_Sathforhg)
% Determines the enthalpy (kJ/kg) of a refrigerant given the pressure (MPa)
and
% temperature (C). The function uses a matrix containing enthalpies at
% temperatures and pressures in the saturated range. The function
% linearly interpolates the enthalpy value.

size-sat T = max(size(RSatT));
for i=1:(sizesatT-1)

if T == RSat_T(i)
index temp = i;

elseif (RSat_T (i) < T) && (T < RSatT(i+1))
index temp = i;

end
end
hl = RSat hf orhg(indextemp);
h2 = RSat hf or hg(index_temp+1);
T1 = R Sat T(index_temp);
T2 = R Sat T(indextemp+1);
outarg = hl+(T-Ti)/(T2-Ti)*(h2-hl);

452



Center for Ocean Engineering
Naval Construction & Engineering Program
Department of Mechanical Engineering

Massachusetts institute of Technology
77-massachusetts Avenue, Building 5-317
Cambridge, Massachusetts 02139-4307

calc-h_SHV.m

function outarg = calc _h_SHV(T,P,RSHV _T,R_SHV _P, R_SHV_h )

% Determines the enthalpy (kJ/kg) of a refrigerant given the pressure (MPa)

and
% temperature (C). The function uses a matrix containing enthalpies at

% temperatures and pressures in the superheated vapor range. The function
% linearly interpolates the enthalpy value.

size_SHVT = max(size(RSHV_T));
sizeSHV P = max(size(R_SHVP));
for i=i:(size SHV T-1)

if T == R SHVT(i)

index temp = i;

flagtemp = 0;

elseif (RSHV_T (i) < T) && (T < RSHVT(i+1))
index temp i;
flagtemp 1;

end
end
for i=l:(size_SHV P-1)

if P == R SHVP(i)

indexpres =i;

flagpres = 0;

elseif (RSHVP(i) <
indexpres =i;

flag_pres = 1;

end

P) && (P < RSHVP(i+i) )

end

hl = R SHV h(index temp,indexpres);
h2 = R SHV_h(index temp,indexpres+1);
h3 = R SHV h(index temp+i,indexpres);
h4 = R SHV h(index temp+,index_pres+i);
T1 = R SHV_T(index temp);
T2 = R SHV'_T(index temp+1);
P1 = R SHV_ P(index pres);
P2 = RSHVP(index-pres+);
outarg = hl+(P-P1)/(P2-P1)*(h2-hl)+(T-T1)/(T2-T1)*(hl+(P-P1)/(P2-P1)*(h2-hl)-
(h3+(T-Ti)/(T2-Ti)*(h4-h3)));
end

453



Center for Ocean Engineering a omMassachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

calc-hc.m

function outarg = calc_hc(diameter,velocity,k,nu,rho,cp)
%Calculate convective heat transfer coefficient

%Determine flow regime in branch/header end
Re = velocity*diameter/nu; %250-laminar 10000-turbulent

%Calculate Darcy friction factor
if(Re < 250)

outarg = 3.66*k/diameter; %laminar flow
else

outarg =
0.0 2 3 *(velocity^0.8)*(k^0.6)*((rho*cp)^0.4)/(diameter^0.2)/(nu^0.4);
%turbulent flow
end

454



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program 77-massachusetts Avenue, Building 5-317

Department of Mechanical Engineering Cambridge, Massachusetts 02139-4307

frictionfactor.m
function outarg = friction factor(diameter,velocity,k,nu,epsilon,rho,cp)
%Calculate Darcy friction factor

%Determine flow regime in branch/header end

Re = velocity*diameter/nu; %250-laminar 10000-turbulent

%Calculate Darcy friction factor

if(Re < 250)
outarg = 64/Re; %Darcy friction factor for laminar flow

else
f_0 = 0.02;
f_1 = (-2*log10(epsilon/(3.7*diameter)+2.51/(Re*f_0^0.5)))^-2;
f_2 = (-2*log10(epsilon/(3.7*diameter)+2.51/(Re*f 1^0.5)))A-2;

f_3 = (-2*log10(epsilon/(3.7*diameter)+2.51/(Re*f_2^0.5)))^-2;
outarg = (-2*log10(epsilon/(3.7*diameter)+2.51/(Re*f_3^0.5)))^-2;

end

455



Center for Ocean Engineering Massachusetts Institute of Technology
Naval Construction & Engineering Program lul.77-massachusetts Avenue, Building 5-317
Department of Mechanical Engineering E Cambridge, Massachusetts 02139-4307

pumpscurves.m

function outarg = pump_curves(pump_matrix,mfrmatrix,pumphead,mfr)
% Selects a pump and provides the pump curve for a given operating condition

sizematrix = size(pumpmatrix);
pump curve zeros (sizematrix(1),3);
for i=1:sizematrix(1)

pump_vector = (pumpmatrix(i,1) pumpmatrix(i,2) pumpmatrix(i,3)
pump_matrix (i, 4)];

mfrvector = [mfr matrix(i,1) mfr matrix(i,2) mfr matrix(i, 3)
mfrmatrix(i,4)1;

pump_curvel(i,:) = polyfit(mfrvector,pump_vector,2);
pump_curve2(i,:) = polyfit(pumpvector,mfr vector,2);

end
selected = 1;
min _dist = 10000000000000;
for i=1:size matrix(1)

if pump_head < polyval(pump_curvel(i,:),mfr)
if mfr < mfrmatrix(i,4)

dist = polyval(pump_curvel(i,:),mfr)-pumphead;
if dist<min dist

min dist=dist;
selected = i;

end
end

end
end
outarg = [pumpcurvel (selected, :) ;pumpcurve2 (selected,:)];

456


