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Abstract

Failure detectors — oracles that provide information about process crashes — are an impor-
tant abstraction for crash tolerance in distributed systems. The generality of failure-detector
theory, while providing great expressiveness, poses significant challenges in developing a robust
hierarchy of failure detectors. We address some of these challenges by proposing (1) a vari-
ant of failure detectors called asynchronous failure detectors and (2) an associated modeling
framework. Unlike the traditional failure-detector framework, our framework eschews real-time
completely. We show that asynchronous failure detectors are sufficiently expressive to include
several popular failure detectors including, but not limited to, the canonical Chandra-Toueg
failure detectors, Σ and other quorum failure detectors, Ω, anti-Ω, Ωk, and Ψk. Additionally,
asynchronous failure detectors satisfy many desirable properties: they are self-implementable,
guarantee that stronger asynchronous failure-detectors solve harder problems, and ensure that
their outputs encode no information other than the set of crashed processes. We introduce the
notion of a failure detector being representative for a problem to capture the idea that some
problems encode the same information about process crashes as their weakest failure detectors
do. We show that a large class of problems, called bounded problems, do not have representa-
tive failure detectors. Finally, we use the asynchronous failure-detector framework to show how
sufficiently strong AFDs circumvent the impossibility of consensus in asynchronous systems.

1 Introduction

Failure detectors [5] are a popular mechanism for designing asynchronous distributed algorithms
for crash-prone systems. Conceptually, they provide (potentially unreliable) information about
process crashes in the system. This information may be leveraged by asynchronous algorithms for
crash tolerance. Technically, failure detectors are specified by constraints on their possible outputs,
called histories, relative to the actual process crashes in the system, called a fault pattern. The
fault pattern is the ‘reality’, and the history is an ‘approximation’ of that reality. A failure detector
is a function that maps every fault pattern (the ‘reality’) to a set of admissible histories (the
‘approximations’). The stronger a failure detector, the better are its admissible ‘approximations’
to the ‘reality’.

We explore the modeling choices made in the traditional failure-detector framework, narrow our
focus to a variant of failure detectors, called asynchronous failure detectors, and offer an alternative
modeling framework that illuminates the properties of asynchronous failure detectors. Briefly,
asynchronous failure detectors are a variant of failure detectors that can be specified without the
use of real-time, are self-implementable, and interact with the asynchronous processes unilaterally ;
in unilateral interaction, the failure detector provides outputs to the processes continually without
any queries from the processes. We show that restricting our investigation to asynchronous failure
detectors offers several advantages while retaining sufficient expressiveness to include many popular
and realistic [7] failure detectors.
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1.1 Background and Motivation

The canonical works [5, 4] pioneered the theory of failure detectors. Results in [5] showed how
sufficient information about process crashes can be encoded in failure detectors to solve various
problems in asynchronous systems. Complementary work in [4] showed that some information
is actually necessary, and the associated failure detector Ω is a “weakest”, to solve the consensus
problem in crash-prone asynchronous systems. The proof technique proposed in [4] is near-universal
for proving that a given failure detector is a weakest for a given problem, and it has been used to
demonstrate weakest failure detectors for many problems in crash-prone asynchronous systems (cf.
[8, 30, 13, 17]). In addition, recent results have demonstrated that a large class of problems are
guaranteed to have a weakest failure detector [20] while yet another class of problems do not have
a weakest failure detector [3].

From a modeling perspective, failure detectors mark a departure from conventional descriptions
of distributed systems. Conventionally, the behavior of all the entities in a distributed system-model
— processes, communication links, and other automata — are either all asynchronous or are all con-
strained by passage of real time. In contrast, in the failure-detector model, only the failure-detector
behavior is constrained by real time, whereas the behavior of all other entities are completely asyn-
chronous. The differences in between the two styles of models has been the subject of recent work
[6, 20] and have brought the theory of failure detectors under additional scrutiny. We discuss five
aspects of failure detector theory that remains unresolved: self-implementability, interaction mech-
anism, kind of information provided by a failure detector, comparing failure-detector strengths,
and the relationship between the weakest failure detectors and partial synchrony.

Self-Implementability. Failure detectors need not be self-implementable. That is, there exist
failure detectors (say) D such that it is not possible for any asynchronous distributed algorithm
to implement an admissible behavior of D despite having access to outputs from D [6]. Since a
failure detector D′ is stronger then a failure detector D iff D′ can implement D, we arrive at an
unexpected result that a failure detector D need not be comparable to itself.

Jayanti et. al. resolve the issue of self-implementability in [20] by separating the notion of a
failure detector from an implementation of a failure detector. A failure detector provides outputs to
each process at each time instant, but a failure-detector implementation provides outputs only upon
being queried. An implementation of a failure-detector D is said to be correct if, for every query,
the output of the implementation is a valid output of D for some time in the interval between the
query and the output. In effect, the definition of “implementing a failure detector” in [20] collapses
multiple classes of distinct failure detectors into a single equivalence class.1 The broader impact of
results from [20] on the landscape of failure-detector theory remains unexplored.

Interaction Mechanism. The mechanism in [20] explicitly requires that failure-detector imple-
mentations interact with processes via a query-based interface. Consider an alternative interface
in which failure-detector implementations provide outputs to processes unilaterally and contin-
ually, without queries. To our knowledge, the motivation for choosing either interface has not
been adequately elucidated despite non-trivial consequences of the choice. For instance, recall that
self-implementability of a failure detector in [20] depends critically on the query-based interface.

1For example, consider the instantaneously perfect failure detector P+ [6] which always outputs the exactly the
set of crashed processes and the perfect failure detector P [5] which never suspects live processes and eventually
and permanently suspects crashed processes. Under the definition of “implementing a failure detector” from [20], an
implementation of P+ is indistinguishable from an implementation of P.
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Also, the so-called ‘lazy’ implementations of failure detectors [10] depend on a query-based inter-
face to ensure communication efficiency; an analogous optimization is not known with a unilateral
interface. Therefore, the significance and consequences of the interaction model merit investigation.

Information About Crashes Alone. Whether or not failure detectors can provide information
about events other than process crashes has a significant impact on the weakest failure detectors for
problems such as Non-Blocking Atomic Commit [17, 18] and Uniform Reliable Broadcast [1, 19]. In
[1], the authors argue for restricting discussions on failure detectors to only the ones that actually
given information about crashes by restricting the universe of failure detectors to ones that are
exclusively a function of the fault pattern. Unfortunately, even in such a universe, it is possible to
specify failure detectors that provide information about events other than process crashes [17]. In
response, [17] restricts the universe of failure detectors to timeless failure detectors which provide
information only about the set of processes that crash, and no information about when they crash.
To our knowledge, the necessary and sufficient conditions for failure detectors to provide information
about crashes alone remains unresolved.

Comparing Failure Detectors. Not all information provided by failure detectors may be useful
in an asynchronous system; for instance, if a failure detector that provides the current real-time
in its outputs (in addition to other information), processes cannot use this information because
passage of real time is simply not modeled in an asynchronous system. Suppose we consider two
failure detectors D and D′ where D is timeless, and D′ provides all the information provided by D;
additionally, let D′ provide the current real-time as well. Clearly, D′ is strictly stronger than D.
However, since the asynchronous system cannot use the information about real time provided by
D′, there exist no problems that can be solved in an asynchronous system with D′, but that cannot
be solved with D. The above illustration leads to a curious conclusion: there exist failure detectors
(say) D and D′ such that D′ is strictly stronger than D, and yet D′ cannot solve a harder problem
than D. This begs the following question: what does the relative strength of failure detectors tell
us about the relative hardness of problems they solve?

Weakest Failure Detectors and Partial Synchrony. Failure detectors are often viewed as
distributed objects that encode information about the synchronism necessary for their implementa-
tion; the popular perception is that many failure detectors are substitutable for partial synchrony
in distributed systems [24, 26, 25]. Therefore, if a failure detector D is a weakest to solve a problem
P , then a natural question follows: is the synchronism encoded in the outputs of D necessary to
solve P in a crash-prone partially synchronous system? Work to date suggests that the answer is
in the affirmative for some problems [24, 27] and in the negative for others [6]. To our knowledge,
there is no characterization of the problems for which the aforementioned question is answered in
the affirmative or the negative.

Summary. Based on our understanding of the state of the art, we see that failure-detector theory
is a very general theory of crash tolerance with important results and novel methods. These results
and methods provide a qualitative understanding about the amount of information about crashes
necessary and sufficient to solve various problems in asynchronous systems. However, the generality
of the theory makes it difficult to develop a robust hierarchy of failure detectors and to determine
the relative hardness of solving problems in crash-prone asynchronous systems.
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1.2 Contribution

In this paper, we propose a new variant of failure detectors called asynchronous failure detectors
(AFDs) and show that they satisfy many desirable properties. We define AFDs through a set of
basic properties that we expect any “reasonable” failure detector to satisfy. We demonstrate the
expressiveness of AFDs by defining many traditional failure detectors as AFDs. Restricting our
focus to AFDs also offers several advantages.

First, AFDs are self-implementable and their specifications do not require real time, and there-
fore, unlike current failure-detector models, the behavior of all the entities in the distributed system
is asynchronous. In order to specify AFDs, we propose a new modeling framework that completely
eschews real-time. The proposed framework allows us to view failure detectors as problems within
the asynchronous model. This allows us to compare failure detectors as we compare problems; it
also allows us to compare problems with failure detectors, and vice versa.

Second, AFDs provide outputs to the processes unilaterally, without queries from the processes.
Since, AFDs are self-implementable, we preserve the advantages offered by the framework in [20]
and simultaneously restrict failure detectors to provide information only about the process crashes.

Third, the hierarchy of AFDs ordered by their relative strength induces an analogous hierarchy
of problems ordered by their relative hardness. In fact, if an AFD D is strictly stronger than
another AFD D′, then we guarantee that the set of problems solvable with D is a strict superset
of the set of problems solvable by D.

Fourth, restriction to AFDs helps clarify the relationship between a weakest failure detector to
solve a problem, and information about process crashes encoded in the specification of that prob-
lem. We introduce the concept of a representative failure detector for a problem. Briefly, an AFD
D is “representative” for a problem P iff D is sufficient to solve P and D can be extracted from a
(blackbox) solution to P . If an AFD D is representative of problem P , then by construction, the
information about crashes provided by D is (in a precise sense) “equivalent” to the information
about crashes encoded in the specification of P . We show that bounded problems (such as consen-
sus, set agreement, and atomic commit) do not have a representative failure detector, but we know
that they do have a weakest failure detector [20].

Finally, we use the new framework to show exactly how sufficiently strong AFDs circumvent
the impossibility result for solving consensus in fault-prone distributed systems [11]. The ideas are
derived from the proof for the weakest failure detector [4].

2 I/O Automata

We use the I/O Automata framework [21] for specifying the system model and failure detectors.
Briefly, an I/O automaton models a component of a distributed system as a state machine that
changes its states and interacts with other components through actions. This section provides an
overview of I/O-Automata-related definitions used in this paper. See [21, Chapter 8] for a thorough
description of the I/O Automata framework.

2.1 Definition

An I/O automaton (or simply, an automaton) is a (possibly infinite) state machine. Formally, an
I/O automaton consists of five components: a signature, a set of states, a set of initial states, a
state-transition relation, and a set of tasks. We describe these components next.
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Actions, Signature, and Tasks. The state transitions in an automaton are associated with
named actions; the set of actions of an automaton A are denoted act(A). Actions are classified
as input, output, or internal, and they constitute the signature of the automaton. The set of
input, output, and internal actions of an automaton A are denoted input(A), output(A), and
internal(A), respectively. Input and output actions are collectively called external actions, denoted
external(A), and output and internal actions are collectively called locally controlled actions. The
locally controlled actions of an automaton are partitioned into tasks. Tasks are used in defining
fairness conditions on executions of an automaton which are discussed later.

Internal actions of an automaton are visible only to the automaton itself whereas external
actions are visible to other automata as well; automata interact with each other through external
actions. Unlike locally controlled actions, input actions arrive from the outside and are assumed
not to be under the automaton’s control.

States. The states of an automaton A are denoted states(A), some non-empty subset init(A) ⊆
states(A) is designated to be the set of initial states.

State-Transition Relation. The state transitions in an automaton A are restricted by a state-
transition relation, denoted trans(A), which is a set of tuples of the form (s, a, s′) where s, s′ ∈
states(A) and a ∈ act(A). Each such tuple (s, a, s′) is a transition, or a step, of A.

For a given state s and an action a, if trans(A) has some step of the form (s, a, s′), then a is
said to be enabled in s. Every input action in A is enabled in all the states of A. Given a task C,
which consists of a set of locally controlled actions, the task C is said to be enabled in a state s iff
some action in C is enabled in state s.

Intuitively, each step of the form (s, a, s′) denotes the following behavior: the automaton A, in
state s, performs action a and changes its state to s′. Since input actions, which arrive from the
outside, can occur in any state, for every input action a and every state s, some step of the form
(s, a, s′) is in trans(A).

2.2 Executions, Traces, and Schedules

Now we describe how an automaton executes. An execution fragment of an automaton A is a finite
sequence s0, a1, s1, a2, . . . , sk−1, ak, sk, or an infinite sequence s0, a1, s1, a2, . . . , sk−1, ak, sk, . . ., of
alternating states and actions of A such that for every k ≥ 0, action ak+1 is enabled in state sk;
note that a sequence containing just a state is also an execution fragment and is called a null
execution fragment. An execution fragment that starts with an initial state (that is, s0 ∈ init(A))
is called an execution. Each occurrence of an action in an execution fragment is said to be an
event. A state s is said to be reachable if there exists a finite execution that ends with state s.
By definition, any initial state is reachable; furthermore, a null execution fragment consisting of an
initial state is called a null execution.

Given any execution α, it is useful to consider only the sequence of events that occurs in that
execution. We capture this information through a schedule. A schedule of an execution α is the
subsequence of α that consists of all the events in α, both internal and external. A trace of an
execution denotes only the externally observable behavior. Formally, the trace t of an execution α
is the subsequence of α consisting of all the external actions. A schedule t of A is said to be a fair
schedule if f is the schedule of a fair execution of A, and similar for fair traces. When referring
to specific events in a schedule or a trace, we use the following convention: if a sequence (which
may be a schedule or a trace) t contains at least x events, then t[x] denotes the xth event in the
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sequence t, and otherwise, t[x] = ⊥. Throughout this article, we assume that no action is named
⊥.

A schedule σ is said to be applicable to an automaton A in state s iff there exists an execution
fragment α of A such that α starts with state s and the schedule of α is σ. Given a schedule σ
that is applicable to automaton A in state s, the result of applying σ to A in state s is some such
execution fragment α; if s is a starting state, then α is an execution of A. Similar, a trace t is
said to be applicable to an automaton A in state s iff there exists an execution fragment α of A
such that α starts with state s and the trace of α is t. Thus, given a trace t that is applicable to
automaton A in state s, the result of applying t to A in state s is some such execution fragment α;
if s is a starting state, then α is an execution of A.

It is often useful to consider subsequences of executions, schedules, and traces that contain only
certain events. We accomplish this through the notion of a projection. Given a sequence t (which
may be an execution fragment, schedule, or trace) and a set of actions B, the projection of t over
B, denoted t|B, is the subsequence of t consisting of exactly the events from B.

It is also useful to consider concatenation of execution fragments, schedules, and traces. We
accomplish this through a concatenation operator ‘·’ that is defined as follows. Let t1 and t2 be two
sequences of actions of some I/O automaton where t1 is finite; t1 · t2 denotes the sequence formed
by concatenating t2 to t1. Let α1 and α2 be two execution fragments of an I/O automaton such
that α1 is finite and the final state of α1 is also the starting state of α2, and let α′2 denote the
sequence obtained by deleting the first state in α2. The expression α1 · α2 denotes an execution
fragment formed by appending α′2 to α1.

2.3 Operations on I/O Automata

Composition. A collection of I/O automata may be composed by matching output actions of
some automata with the same-named input actions of others.2 Specifically, each output of an
automaton may be matched with same-named input of any number of other automata. Upon
composition, all the actions with the same name are performed together.

Let α = s0, a1, s1, a2, . . . be an execution of the composition of automata A1, . . . , AN . The
projection of α on automaton Ai, where i ∈ [1, N ], is denoted α|Ai and defined as follows. The
projection α|Ai is the subsequence of α obtained by deleting each pair ak, sk for which ak is not an
action of Ai and replacing each remaining sk by automaton Ai’s piece of the state sk. Theorem 8.1
in [21] states that if α is an execution of the composition of automata A1, . . . , AN , then for each
i ∈ [1, N ], α|Ai is an execution of Ai. Similarly, if t is a trace of of the composition of automata
A1, . . . , AN , then for each i ∈ [1, N ], t|Ai is an trace of Ai.

Hiding. In an automaton A, an output action may be “hidden” by reclassifying it as an internal
action. A hidden action no longer appears in the traces of the automaton.

2.4 Fairness

When considering executions of a composition of I/O automata, we are interested in the executions
in which all the automata get fair turns to perform steps; such executions are called fair executions.

Recall that in each automaton, the locally controlled actions are partitioned into tasks. An
execution fragment α of an automaton A is said to be a fair execution fragment iff the following
two conditions hold for every task C in A. (1) If α is finite, then no action in C is enabled in the

2Not all collections of I/O automata may be composed. For instance, in order to compose a collection of I/O
automata, we require that each output action in the collection have a unique name. See [21, chapter 8] for details.
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final state of α. (2) If α is infinite, then either (a) α contains infinitely many events from C, or (b)
α contains infinitely many occurrences of states in which C is not enabled.

A schedule σ of A is said to be a fair schedule if σ is the schedule of a fair execution of A.
Similarly, a trace t of A is said to be a fair trace if t is the trace of a fair execution of A.

2.5 Deterministic Automata

The definition of an I/O automaton permits multiple locally controlled actions to be enabled in
any given state. It also allows the resulting state after performing a given action to be chosen
nondeterministically. For our purpose, it is convenient to consider a class of I/O automata whose
behavior is more restricted.

We define an action a (of an automaton A) to be deterministic iff for every state s, there exists
at most one transition of the form (s, a, s′) (where s′ is state of A) in trans(A). We define an
automaton A to be task deterministic iff (1) for every task C and every state s of A, at most one
action in C is enabled in s, and (2) all the actions in A are deterministic. An automaton is said to
be deterministic iff it is task deterministic, has exactly one task, and has a unique start state.

3 Crash Problems

This section provides formal definitions of problems, distributed problems, crashes, crash problems
and asynchronous failure detectors.

3.1 Problems

Within the I/O automata framework, a problem P is a tuple (IP , OP , TP ) where IP and OP are
disjoint sets of actions and TP is a set of (finite or infinite) sequences over these actions such that
there exists an automaton A where input(A) = IP , output(A) = OP , and the set of fair traces of A
is a subset of TP . In this case we state that A solves P . We make the assumption of ‘solvability’
to satisfy a non-triviality property, which is explained in Section 5.

Distributed Problems. Here, we introduce a fixed finite set Π of n location IDs which will be
used in the rest of the paper; we assume that Π does not contain a placeholder element ⊥.

For a problem P we define a mapping loc : IP ∪OP → Π∪ {⊥} which maps actions to location
IDs or ⊥. For an action a, if loc(a) = i and i ∈ Π, then a is said to occur at i. Problem P is said
to be distributed over Π if, for every action a ∈ IP ∪OP , loc(a) ∈ Π. We define loc(⊥) to be ⊥.

For convenience, we often include the location of an action as a subscript in the name of
the action; for instance, ai denotes an action that occurs at i. Also, given a problem P that
is distributed over Π, and a location i ∈ Π, IP,i and OP,i denote the set of actions in IP and
OP , respectively, that occur at location i; that is, IP,i = {a|(a ∈ IP ) ∧ (loc(a) = i)} and OP,i =
{a|(a ∈ OP ) ∧ (loc(a) = i)}.

Crash Problems. We posit the existence of a set of actions {crashi|i ∈ Π}, denoted Î; according
to our conventions loc(crashi) = i. A problem P ≡ (IP , OP , TP ) that is distributed over Π, is said
to be a crash problem iff, for each i ∈ Π, crashi is an action in IP ; that is, Î ⊆ IP .

Given a sequence t ∈ TP (either finite or infinite), faulty(t) denotes the set of locations at
which a crash event occurs in t. Similarly, live(t) denotes the set of locations for which a crash
event does not occur in t. The locations in faulty(t) are said to be faulty in t, and the locations in
live(t) are said to be live in t.
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For convenience, we assume that for any two distinct crash problems P ≡ (IP , OP , TP ) and
P ′ ≡ (IP ′ , OP ′ , TP ′), (IP ∪ OP ) ∩ (IP ′ ∪ OP ′) = Î. The foregoing assumption simplifies the issues
involving composition of automata; we discuss these in Section 5.

3.2 Failure-Detector Problems

Recall that a failure detector is an oracle that provides information about crash failures. In our
modeling framework, we view failure detectors as a special set of crash problems. A necessary
condition for a crash problem P ≡ (IP , OP , TP ) to be an asynchronous failure detector (AFD) is
crash exclusivity, which states that IP = Î; that is, the actions IP are exactly the crash actions.
Crash exclusivity guarantees that the only inputs to a failure detector are the crash events, and
hence, failure detectors provide information only about crashes. In addition, an AFD also satisfies
additional properties, which we describe next.

Let D ≡ (Î , OD, TD) be a crash problem satisfying crash exclusivity. Recall that for each i ∈ Π,
OD,i is the set of actions in OD at i. We begin by defining the following terms which will be used
in the definition of an AFD. Let t be an arbitrary sequence over Î ∪OD.

Valid sequences. The sequence t is said to be valid iff (1) for every i ∈ Π, no event in OD,i

occurs after a crashi event in t, and (2) if no crashi event occurs in t, then t contains infinitely
many events in OD,i.

Valid sequences contain no output events at a location i after a crashi event, and they contain
infinitely many output events at each live location.

Sampling. A sequence t′ is a sampling of t iff (1) t′ is a subsequence of t, (2) for every location
i ∈ Π, (a) if i is live in t, then t′|OD,i

= t|OD,i
, and (b) if i is faulty in t, then t′ contains the first

crashi event in t, and t′|OD,i
is a prefix of t|OD,i

.
A sampling of sequence t retains all events at live locations. For each faulty location i, it may

remove a suffix of the outputs at location i. It may also remove some crash events, but must retain
the first crash event.

Constrained Reordering. Let t′ be a permutation of events in t; t′ is a constrained reordering
of t iff the following is true. For every pair of events e and e′, if (1) e precedes e′ in t and (2) either
loc(e) = loc(e′), or e ∈ Î, then e precedes e′ in t′ as well.

Any constrained reordering of sequence t maintains the relative ordering of events that occur at
the same location and maintains the relative order between any crash event and any other event
that follows that crash event.

Asynchronous Failure Detector. Now we define an asynchronous failure detector. A crash
problem of the form D ≡ (Î , OD, TD) (which satisfies crash exclusivity) is an asynchronous failure
detector (AFD, for short) iff D satisfies the following properties.

1. Validity. Every sequence t ∈ TD is valid.

2. Closure Under Sampling. For every sequence t ∈ TD, every sampling of t is also in TD.

3. Closure Under Constrained Reordering. For every sequence t ∈ TD, every constrained
reordering t is also in TD.
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A brief motivation for the above properties is in order. The validity property ensures that (1)
after a location crashes, no outputs occur at that location, and (2) if a location does not crash,
outputs occur infinitely often at that location. Closure under sampling permits a failure detector
to ‘skip’ or ‘miss’ any suffix of outputs at a faulty location. Finally, closure under constrained
reordering permits ‘delaying’ output events at any location.

3.3 Examples of AFDs

Here, we specify some of the most popular failure detectors that are widely used and cited in
literature, as AFDs.

The Leader Election Oracle. The leader election oracle Ω is a very popular failure detector; it
has been shown in [4] to be a ‘weakest’ to solve crash-tolerant consensus in asynchronous systems,
in a certain sense. Informally, Ω continually outputs a location ID at each location; eventually and
permanently, Ω outputs the ID of a unique live location at all the live locations.

We specify our version of Ω ≡ (Î , OΩ, TΩ) as follows. The action set OΩ = ∪i∈ΠOΩ,i, where, for
each i ∈ Π, Oi

Ω = {FD-Ω(j)i|j ∈ Π}. TΩ is the set of all valid sequences t over Î ∪OΩ that satisfy
the following property: if live(t) 6= ∅, then there exists a location l ∈ live(t) and a suffix tsuff of t
such that, tsuff |OΩ

is a sequence over the set {FD-Ω(l)i|i ∈ live(t)}.

Algorithm 1 Automaton that implements the Ω AFD
The automaton FD-Ω
Signature:

input crashi : Î at each location i
output FD-Ω(j : Π)i : OΩ at each location i

Variables:
crashset: set of locations, initially empty

Actions:
input crashi

effect
crashset := crashset ∪ {i}

output FD-Ω(j)i

precondition
(i /∈ crashset) ∧ (j = min(Π \ crashset))

effect
*none*

Tasks:
One task per location i ∈ Π defined as follows
{FD-Ω(j)i|j ∈ Π}

Algorithm 1 shows an automaton whose set of fair traces is a subset of TΩ. It is easy to see
that Ω ≡ (Î , OΩ, TΩ) satisfies all the properties of an AFD, and the proof is left as an exercise for
the reader.

Perfect and Eventually Perfect Failure Detectors. Eight failure detectors were introduced
in [5], all of which can be specified as AFDs. Here we specify two popular failure detectors among
them: the perfect failure detector P and the eventually perfect failure detector ♦P. Informally, the
perfect failure detector never suspects any location (say) i until event crashi occurs, and it eventu-
ally and permanently suspects crashed locations; the eventually perfect failure detector eventually
and permanently never suspects live locations and eventually and permanently suspects faulty
locations.
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We specify our version of P ≡ (Î , OP , TP) as follows. The action set OP = ∪i∈ΠOP,i, where,
for each i ∈ Π, OP,i = {FD-P(S)i|S ∈ 2Π}. TP is the set of all valid sequences t over Î ∪OP that
satisfy the following two properties. (1) For every prefix tpre of t, every i ∈ live(tpre), every j ∈ Π,
and every event of the form FD-P(S)j in tpre, i /∈ S. (2) There exists a suffix tsuspect of t such
that, for every i ∈ faulty(t), every j ∈ Π, and every event of the form FD-P(S)j in tsuspect, i ∈ S.

Algorithm 2 Automaton that implements the P AFD
The automaton FD-P
Signature:

input crashi : Î at each location i
output FD-P(S : 2Π)i : OP at each location i

Variables:
crashset: set of locations, initially empty

Actions:
input crashi

effect
crashset := crashset ∪ {i}

output FD-P(S)i

precondition
S = crashset

effect
*none*

Tasks:
One task per location i ∈ Π defined as follows{

FD-P(S)i|S ∈ 2Π
}

We specify our version ♦P ≡ (Î , O♦P , T♦P) as follows. The action set O♦P = ∪i∈ΠO♦P,i, where,
for each i ∈ Π, O♦P,i = {FD-♦P(S)i|S ∈ 2Π}. T♦P is the set of all valid sequences t over Î ∪O♦P
that satisfy the following two properties. (1) There exists a suffix ttrust of t such that, for every
i ∈ live(t), every j ∈ Π, and every event of the form FD-♦P(S)j in ttrust, i /∈ S. (2) There exists
a suffix tsuspect of t such that, for every i ∈ faulty(t), every j ∈ Π, and every event of the form
FD-♦P(S)j in tsuspect, i ∈ S.

Algorithm 2 shows an automaton whose set of fair traces is a subset of TP . Upon renaming
every action of the form FD-P(S)i to FD-♦P(S)i, Algorithm 2 shows an automaton whose set of
fair traces is a subset of T♦P . It is easy to see that P ≡ (Î , Ô, TP) and ♦P ≡ (Î , Ô, T♦P) satisfy all
the properties of an AFD and the proof of the aforementioned assertion is left as an exercise for
the reader. Similarly, it is straightforward to specify failure detectors such as ♦Ωk [23] and ♦Ψk

[22] as AFDs.

3.4 Failure Detectors that are not AFDs

While several popular failure detectors are expressible as AFDs, there exist failure detectors that
cannot be specified as AFDs. We mention two such failure detectors here: the Marabout failure
detector from [14] and the Dk failure detectors from [3]. The Marabout failure detector, which
always outputs the set of faulty processes, cannot be specified as an AFD because no automaton
can ‘predict’ the set of faulty processes prior to any crash events. The failure detector Dk, where k
is any natural number, which provides accurate information only about crashes that occur after real
time k, also cannot be specified as an AFD because real time is not modeled in the I/O Automata
framework.
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4 System Model and Definitions

An asynchronous system is modeled as the composition of a collection of the following I/O au-
tomata: process automata, channel automata, a crash automaton, and possibly other automata
(including a failure-detector automaton and possibly other services). The signature of each automa-
ton and the interaction among them are described in Section 4.1. The behavior of these automata
is described in Sections 4.2–4.4. The external world with which the system interacts is modeled as
the environment automaton described in Section 4.5. For the definitions that follow, we posit the
existence of an alphabet M of messages.

4.1 System Structure

A system contains a collection of process automata. Each process automaton is associated with a lo-
cation. We define the association with a mapping proc, which maps a location to a process automa-
ton. The process automaton at location i, denoted proc(i), has the following external signature. It
has an input action crashi which is an output from the crash automaton, a set of output actions
{send(m, j)i|m ∈M∧ j ∈ Π \ {i}}, and a set of input actions {receive(m, j)i|m ∈M∧ j ∈ Π \ {i}}.
Finally, a process automaton may contain other external actions with which it interacts with other
automata or the external environment. The set of such actions varies from one system to another.

For every ordered pair (i, j) of distinct locations, the system contains a channel automaton Ci,j

with the following external actions. The set of input actions input(Ci,j) is {send(m, j)i|m ∈M},
which is a subset of outputs from the process automaton at i. The set of output actions output(Ci,j)
is {receive(m, i)j |m ∈M}, which is a subset of inputs to the process automaton at j.

The crash automaton contains the set {crashi|i ∈ Π} ≡ Î of output actions and no input actions.

4.2 Process Automata

Each process is modeled as a process automaton. Recall that we associate a process automaton
proc(i) with every location i ∈ Π. Formally, a process automaton is an I/O automaton that satisfies
the following properties.

For each location i, every action of proc(i) occurs at i. Recall that (1) output(Cj,i) is a subset
of the input actions of proc(i), (2) input(Ci,j) is a subset of the output actions of proc(i), and (3)
crashi is one of the input actions of proc(i). Automaton proc(i) is deterministic. When crashi

occurs, it permanently disables all locally controlled actions of proc(i).
A distributed algorithm A is a collection of process automata, one at each location; for conve-

nience, we write Ai for the process automaton proc(i) at i.

4.3 Channel Automata

For every ordered pair (i, j) of distinct locations, the system contains a channel automaton Ci,j ,
which models the channel that transports messages from alphabet M from process automaton
proc(i) to process automaton proc(j). Recall that input actions {send(m, j)i|m ∈M} of the chan-
nel automaton Ci,j are output actions from proc(i), and the output action {receive(m, i)j |m ∈M}
of Ci,j are the input actions to proc(j). Ci,j has no internal actions and is deterministic. Next, we
describe the behavior of a channel automaton.

Communication channels implement reliable FIFO links as described next. The state of a
channel automaton Ci,j is determined by a queue of messages that is initially empty. A send event
can occur at any time. The effect of an event send(m, j)i is to add m to the queue of messages.

11



When a message m is at the head of the queue, the output action receive(m, i)j is enabled, and
the effect of the event receive(m, i)j is to remove m from the head of the queue.

4.4 Crash Automaton

The crash automaton C models the occurrence of crash faults in the system. The automaton has
the set {crashi|i ∈ Π} ≡ Î of output actions and no input actions. Every sequence over Î is a fair
trace of the crash automaton.

4.5 Environment Automaton

The environment automaton, denoted E , models the external world with which the distributed
system interacts. The external signature of the environment automaton includes all the crash
actions as input actions, and, in addition, it matches the input and output actions of the process
automata that do not interact with other automata in the system. The environment automaton
is task deterministic. The set of fair traces that constitute the externally observable behavior of E
specifies “well-formedness” restrictions, which vary from one system to another.
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Figure 1: Interaction diagram for a message-passing asynchronous distributed system augmented
with a failure detector automaton.

5 Solving Problems

In this section we define what it means for an automaton to solve a crash problem and for a
distributed algorithm to solve a crash problem in a distributed system expressed using the model
described in Section 4. We also define what it means for a system to solve a problem P using
another problem P ′. We use the aforementioned definitions to define what it means for an AFD to
be sufficient to solve a problem, and for a problem to be sufficient to solve an AFD.
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5.1 Solving a Crash Problem

An automaton E is said to be an environment for P if the input actions of E are OP , and the
output actions of E are IP \ Î. An automaton U is said to solve a crash problem P ≡ (IP , OP , TP )
in environment E , where E is an environment for P , if the following two conditions are true. (1)
The input actions of U are IP , and the output actions of U are OP . (2) The set of fair traces of
the composition of U , E , and the crash automaton is a subset of TP .

A distributed algorithm A solves a crash problem P in an environment E (or succinctly, A solves
P in E), iff the automaton Â, which is obtained by composing A with the channel automata, solves
P in E . A crash problem P is said to be solvable in an asynchronous system, in an environment E ,
or simply solvable in E , iff there exists a distributed algorithm A such that A solves P in E . If a
crash problem is not solvable in environment E , then it is said to be unsolvable in E .

5.2 Solving One Crash Problem Using Another

Often, an unsolvable problem P may be solvable if the system contains an automaton that solves
some other (unsolvable) crash problem P ′. We describe the relationship between P and P ′ as
follows.

Let P ≡ (IP , OP , TP ) and P ′ ≡ (IP ′ , OP ′ , TP ′) be two distinct crash problems. A distributed
algorithm A solves crash problem P using crash problem P ′ in an environment E for P , iff the follow-
ing are true. (1) For each location i ∈ Π, the set of input actions input(Ai) is ∪j∈Π\{i}output(Cj,i)∪
IP,i∪OP ′,i. (2) For each location i ∈ Π, the set of output actions output(Ai) is ∪j∈Π\{i}input(Ci,j)∪
OP,i ∪ IP ′,i \ {crashi}. (3) Let Â be the composition of A with the channel automata, the crash
automaton, and the environment automaton E . For every fair trace t of Â, if t|IP ′∪OP ′ ∈ TP ′ , then
t|IP∪OP

∈ TP . In effect, in any fair execution of the system, if the sequence of events associated
with the problem P ′ is consistent with the specified behavior of P ′, then the sequence of events
associated with problem P is consistent with the specified behavior of P .

Note that the above definition becomes vacuous if, for every fair trace t of Â, t|IP ′∪OP ′ /∈ TP ′ .
However, in the definition of a problem P ′, the requirement that there exist some automaton whose
set of fair traces is a subset of TP ′ ensures that there are ‘sufficiently-many’ fair traces t of Â, such
that t|IP ′∪OP ′ ∈ TP ′ .

We say that a crash problem P ′ ≡ (IP ′ , OP ′ , TP ′) is sufficient to solve a crash problem P ≡
(IP .OP , TP ), in environment E , denoted P ′ �E P iff there exists a distributed algorithm A that
solves P using P ′ in E . If P ′ �E P , then also we say that P is solvable using P ′ in E . If no such
distributed algorithm exists, then we state that P is unsolvable using P ′ in E , and we denote it as
P ′ 6�E P .

It is worth noting that in the foregoing definition, the problems P and P ′ must be distinct in
order for automata composition to be applicable. However, it is useful to consider problems that
are “sufficient to solve themselves”; that is, given a crash problem P and an environment E , it is
useful to define the following relation: P �E P . We do so next using the notion of renaming.

5.3 Renaming and Self-Implementability

Intuitively, a renaming P ′ of a problem P simply replaces every instance of each non-crash action
in P with a different unique name in P ′. Formally, a crash problem P ′ ≡ (IP ′ , OP ′ , TP ′) is said to
be a renaming of a crash problem P ≡ (IP , OP , TP ) iff the following three properties are satisfied.

1. The only actions in common between P and P ′ are the crash actions; formally, (IP ∪OP ) ∩
(IP ′ ∪OP ′) = Î.
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2. There exists a bijection rIO : IP ∪OP → IP ′ ∪OP ′ such that the following are true.

(a) For each a ∈ IP ∪OP , loc(a) = loc(rIO(a)).
(b) For each a ∈ Î, rIO(a) = a,
(c) For each a ∈ IP \ Î, rIO(a) ∈ IP ′ \ Î.
(d) For each a ∈ OP , rIO(a) ∈ OP ′ .
(e) For stating the next property, we extend rIO under homomorphism to sequences over

IP ∪ OP ; that is, for each sequence t over IP ∪ OP , rIO(t) has the same length as t —
denoted length(t) — and for each natural number x ≤ length(t), rIO(t)[x] = rIO(t[x]).
The set TP ′ is the range of the function rIO when the domain is TP ; that is, TP ′ =
{rIO(t) | t ∈ TP }.

Now, we can define solvability of a crash problem P using itself as follows. We say that a crash
problem P ≡ (IP , OP , TP ) is sufficient to solve itself, or is self-implementable, in environment E ,
denoted P �E P , iff there exists a renaming P ′ of P such that P �E P ′. For the remainder of
this article, the relation �E is used to compare both distinct problems P and P ′ as well as a single
problem P with itself.

5.4 Using and Solving Failure-Detector Problems

Since an AFD is simply a kind of crash problem, given an environment E , we automatically obtain
definitions for the following notions.

1. A distributed algorithm A solves an AFD D in environment E .

2. A distributed algorithm A solves a crash problem P using an AFD D in environment E .

3. An AFD D is sufficient to solve a crash problem P in environment E .

4. A distributed algorithm A solves an AFD D using a crash problem P in environment E .

5. A crash problem P is sufficient to solve an AFD D in environment E .

6. A distributed algorithm A solves an AFD D′ using another AFD D.

7. An AFD D is sufficient to solve an AFD D′.

We remark that when we talk about solving an AFD, the environment E has no output actions
because the AFD has no input actions except for Î, which are inputs from the crash automaton.
Therefore, we have the following lemma.

Lemma 1. For a crash-problem P and an AFD D, if P �E D in some environment E (for D),
then for any other environment E ′ for D, P �E ′ D.

Consequently, when we refer to an AFD D being solvable using a crash problem (or an AFD)
P , we omit the reference to the environment automaton and simply say that P is sufficient to solve
D; we denote this relationship by P � D. Analogously, when we refer to a D being unsolvable
using P , we omit the environment, and we denote this relationship by P 6� D.

Finally, if an AFD D is sufficient to solve another AFD D′, then we say that D is stronger than
D′, and we denote this by D � D′. If D � D′, but D′ 6� D, then we say that D is strictly stronger
than D′, and we denote this by D � D′.

Next, we consider reflexivity of the � relation between AFDs. We show that for every AFD D,
D � D must be true; that is, every AFD is self-implementable.
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6 Self-Implementability of AFDs

Within the traditional definitions of failure detectors, it is well known that not all failure detectors
are sufficient to solve (or implement) themselves (see [6] for a detailed discussion). Here, we show
that any AFD is sufficient to solve itself. Recall that an AFD D is self-implementable, denoted
D � D, iff there exists a renaming D′ of D such that D � D′.

6.1 Algorithm For Self-Implementability

Self-implementability follows easily from the validity, closure under sampling, and closure under
ordering properties. We provide a simple distributed algorithm Aself that demonstrates self-
implementability of an arbitrary AFD D.

First, we fix an arbitrary AFD D ≡ (Î , OD, TD). Let D′ ≡ (Î , OD′ , TD′) be a renaming of
D. Let rIO : OD → OD′ be the bijection that defines the renaming. Applying the definition of
renaming from Section 5.3, we obtain the following. (1) OD ∩OD′ = ∅. (2a) For each a ∈ Î ∪OD,
loc(a) = loc(rIO(a)). (2b) For each a ∈ Î, rIO(a) = a). (2c) Since D has no input actions other than
Î, this condition is vacuous. (2d) For each a ∈ OD, rIO(a) ∈ OD′ . (2e) TD′ = {rIO(t) | t ∈ TD}.
For convenience, for each a ∈ OD, we define rIO(a) = a′; that is, for every output action a in AFD
D, the action rIO(a) in D′ is named a′.

Next, we construct the distributed algorithm Aself that leverages the information provided by
AFD D to solve D′. Aself is a collection of automata Aself

i , one for each location i ∈ Π. Each
automaton Aself

i has the following signature. (1) An input action crashi which is the output action
from the crash automaton. (2) A set of input actions OD,i = {d|d ∈ OD ∧ (loc(d) = i)} which
are outputs of the failure-detector automaton D. (3) A set of output actions OD′,i = {d | d ∈
OD′ ∧ (loc(d) = i)} = {rIO(d) | d ∈ OD,i}.

At each location i, Aself
i maintains a queue fdq of elements from the range OD,i; fdq is initially

empty. When event d ∈ OD,i occurs at location i, Aself
i adds d to the queue fdq. The precondition

for action d′ ∈ OD′,i at i is that the head of the queue fdq at i is r−1
IO(d′). When this precondition

is satisfied, and event d′ occurs at i, the effect of this event is to remove r−1
IO(d′) from the head

of fdq. Finally, when event crashi occurs, the effect of this event is to disable the output actions
OD′,i permanently. The pseudocode for Aself is available in Algorithm 3.

6.2 Proof of correctness

In order to show correctness, we have to prove that for every trace t of Aself composed with the
crash automaton, t|Î∪OD

∈ TD ⇒ t|Î∪OD′
∈ TD′ . Since Aself does not send or receive messages, we

ignore the channel automata and consider only the events in the set Î ∪OD ∪OD′ in the proof. Fix
a trace t of Aself composed with the crash automaton. The proof is structured as follows.

We define a function rEV which maps each event e from OD′ in t, to a unique event rEV (e) from
OD in t that precedes e in t at the same location, and where rEV (e) is an occurrence of r−1

IO(e). rEV

also maps each event from Î to itself. We then show that the image of the rEV mapping includes
all events in OD in t that occur at live locations. That is, every event in OD in t that occurs at a
live location is in the image of rEV for some (unique) event in OD′ in t. At faulty locations, the
image of the rEV mapping includes some prefix of the sequence of events in OD in t.

Specifically, in Lemma 2, for each event e ∈ OD′ in t, we identify a unique event rEV (e) ∈ OD

in t that precedes e in t. Corollary 3 asserts that at each location i, the output events in the image
of the rEV function form a prefix of the events in OD,i in t. In Lemma 4, we show that for each live
location i, for every event in e from OD,i in t, there exists an event e′ in OD′,i such that rEV (e′) = e.
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Algorithm 3 Algorithm for showing self-implementability of asynchronous failure-detector.
The automaton Aself

i at each location i.
Signature:

input di : OD,i at location i, crashi

output d′i : OD′,i at location i

Variables:
fdq: queue of elements from OD,i, initially empty
failed: Boolean, initially false

Actions:
input crash
effect

failed := true

input d
effect

add d to fdq

output d′

precondition
(¬failed) ∧ (fdq not empty) ∧ (r−1

IO(d′) = head(fdq))
effect

delete head of fdq

Tasks:
{d′|d′ ∈ OD′,i}

Corollary 5 asserts that at each live location i, the output events in the image of the rEV function
are exactly the events in OD,i in t. We define t̂ to be the subsequence of t containing all the events in
Î and OD′ and containing exactly the events in OD that in the image of the function rEV . Lemma
6 says that t̂|Î∪OD

is a sampling of t|Î∪OD
, and by closure under sampling, Corollary 7 establishes

that t̂|Î∪OD
is in TD.

Next, we show that t̂|Î∪OD′
is in TD′ , as follows. Lemma 8 shows that if an event e1 pre-

cedes event e2 in t̂|Î∪OD
, where loc(e1) = loc(e2) or e1 ∈ Î, then event r−1

EV (e1) precedes event
r−1
EV (e2) in t̂|Î∪OD′

. In Lemma 9, (by invoking Lemma 8) we show that t|Î∪OD′
is a constrained

reordering of rIO(t̂|Î∪OD
). Applying the inverse of rIO, Lemma 10 shows that r−1

IO(t|Î∪OD′
) is a

constrained reordering of t̂|Î∪OD
. By closure under constrained reordering, Corollary 11 establishes

that r−1
IO(t|Î∪OD′

) is in TD. Therefore, t|Î∪OD′
must be in TD′ , and this is established in Lemma 12.

In other words, Aself uses D to solve a renaming of D′.

Lemma 2. In trace t, for every i ∈ Π, and for each x ∈ N+, the following is true. If t|OD′,i [x] 6= ⊥,
then t|OD,i

[x] 6= ⊥, event t|OD,i
[x] precedes event t|OD′,i [x], and t|OD′,i [x] = rIO(t|OD,i

[x]).

Proof. Follows from the behavior of the FIFO queue fdq.

We define a function rEV that maps events from Î ∪ OD′ to events from Î ∪ OD in trace t as
follows. For every event e that is an occurrence of an action in Î, we define rEV (e) = e. For every
i ∈ Π, for every event e that is an occurrence of an action in OD′,i, let e = t|OD′,i [x] for some
x ∈ N+, and we define rEV (e) = t|OD,i

[x]. From Lemma 2, we know that t|OD,i
[x] is non-⊥, and

rEV (e) is an occurrence of the action r−1
IO(e).
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Lemma 2 yields the following corollary.

Corollary 3. For each i ∈ Π, the subsequence of t|OD,i
containing all events that are in the image

of the rEV function (that is, events e for which there exist events e′ in t|OD′,i such that rEV (e′) = e)
is a prefix of t|OD,i

.

Lemma 4. In trace t, for every i ∈ live(t), and for each x ∈ N+, the following is true. If
t|OD,i

[x] 6= ⊥, then t|OD′,i [x] 6= ⊥.

Proof. Follows from the behavior of the FIFO queue fdq, noting that location i does not crash and
continues processing items on the queue.

Lemmas 2 and 4 yield the following corollary.

Corollary 5. For each i ∈ live(t), the subsequence of t|OD,i
containing all events that are in the

image of rEV is exactly t|OD,i
.

By assumption, t|Î∪OD
∈ TD. Let t̂ be the subsequence of t containing all events in Î and OD′ ,

and containing exactly the events in OD that are in the image of the rEV function.

Lemma 6. The sequence t̂|Î∪OD
is a sampling of t|Î∪OD

.

Proof. For each i ∈ Π, i is either in live(t) or faulty(t). If i ∈ faulty(t), then by Corollary 3, we
know that t̂|OD,i

is a prefix of t|OD,i
. On the other hand, if i ∈ live(t), then by Corollary 5, we

know that t̂|OD,i
= t|OD,i

. Thus, by definition, t̂|Î∪OD
is a sampling of t|Î∪OD

.

Corollary 7. The sequence t̂|Î∪OD
is in TD.

Proof. Follows from Lemma 6 and the closure under sampling property of AFDs.

Lemma 8. Let e1 and e2 be two events in t̂|Î∪OD
where e1 precedes e2 such that either loc(e1) =

loc(e2), or e1 ∈ Î. Then r−1
EV (e1) precedes r−1

EV (e2) in t|Î∪OD′
.

Proof. There are four cases to consider: (1) e1, e2 ∈ OD, (2) e1 ∈ OD and e2 ∈ Î, (3) e1 ∈ Î and
e2 ∈ OD, and (4) e1, e2 ∈ Î. We consider each case separately.

Case 1. e1, e2 ∈ OD. From the hypothesis of the lemma, we know that loc(e1) = loc(e2).
Applying Lemma 2, we know that since e1 precedes e2 in t̂|Î∪OD

, then r−1
EV (e1) precedes r−1

EV (e2) in
t|Î∪OD′

.

Case 2. e1 ∈ OD and e2 ∈ Î. From the hypothesis of the lemma, we know that loc(e1) = loc(e2);
let loc(e1) = i, and therefore, e2 = crashi. From the definition of rEV , we know that r−1

EV (e2) =
e2 = crashi, and loc(r−1

EV (e1)) = i. From the pseudocode, we see that no event in OD′,i occurs in t̂
after event crashi. Therefore, r−1

EV (e1) precedes r−1
EV (e2) in t|Î∪OD′

.

Case 3. e1 ∈ Î and e2 ∈ OD. From the definition of rEV , we know that r−1
EV (e1) = e1. Applying

Lemma 2 we know that e2 precedes r−1
EV (e2) in t. Therefore, r−1

EV (e1) precedes r−1
EV (e2) in t|Î∪OD′

.

Case 4. e1, e2 ∈ Î. From the definition of rEV , we know that e1 = r−1
EV (e1) and e2 = r−1

EV (e2).
Therefore, r−1

EV (e1) precedes r−1
EV (e2) in t|Î∪OD′

.

Recall that, for any sequence ts over Î ∪ OD, rIO(ts) is a sequence over Î ∪ OD′ such that for
each x ∈ N+, if ts[x] 6= ⊥, then rIO(ts)[x] = rIO(ts[x]).

Lemma 9. The trace t|Î∪OD′
is a constrained reordering of rIO(t̂|Î∪OD

).
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Proof. Follows from Lemma 8.

Applying the inverse of rIO, we have the following.

Lemma 10. The trace r−1
IO(t|Î∪OD′

) is a constrained reordering of t̂|Î∪OD
.

Corollary 11. The trace r−1
IO(t|Î∪OD′

) is in TD.

Proof. Follows from Lemma 10, and closure under constrained reordering.

Lemma 12. The trace t|Î∪OD′
is in TD′.

Proof. Follows from Corollary 11 and the definition of rIO.

Thus, from Lemma 12, we see that for any fair trace t of Aself , if t|Î∪OD
∈ TD, then t|Î∪OD′

∈
TD′ . Note that D′ ≡ (Î , OD′ , TD′) is a renaming of D. Thus, we have established the following
theorem.

Theorem 13. The distributed algorithm Aself uses AFD D to solve a renaming of D.

Corollary 14. Every AFD is self-implementable: for every AFD D, D � D.

Recall that we have overloaded the symbol ‘�’ to represent two relations: the first relation is
defined between distinct AFDs, and the second relation D � D is defined for a single AFD. For
the remainder of this article we define � to be the union of the aforementioned two relations. A
consequence of Corollary 14 is that the � relation is transitive.

Theorem 15. Given AFDs D, D′, and D′′, if D � D′ and D′ � D′′, then D � D′′.
Proof. If D = D′ or D′ = D′′, the proof is immediate. If D = D′′, then the proof follows from
Corollary 14. The only remaining case to consider is when D, D′, and D′′ are distinct AFDs.

Since D � D′, there exists a distributed algorithm AD.D′ that uses D to solve D′. Similarly,
since D′ � D′′, there exists a distributed algorithm AD′.D′′ that uses D′ to solve D′′. Let AD.D′′ be
an algorithm constructed as follows. At each location i ∈ Π, compose AD.D′

i and AD′.D′′
i , and hide

all the actions that are outputs from AD.D′
i and inputs to AD′.D′′

i . By construction, AD.D′′ uses D
to solve D′′; in other words, D � D′′.

7 Comparing AFDs and Other Crash Problems

In this section, we explore the relative solvability among AFDs and the consequences of such relative
solvability on other crash problems that can be solved using AFDs. In Section 7.1, we show that
if an AFD D′ is strictly stronger than another AFD D, then the set of problems that D′ can solve
in a given environment must be a strict superset of the set of problems solvable by D in the same
environment. In Section 7.2, we discuss the traditional notion of a weakest failure detector for a
problem and define what it means for an AFD to be a weakest to solve a crash problem in a given
set of environments. We also introduce the notion of an AFD to be representative for a problem in
a given set of environments. In Section 7.3, we show that a large class of problems, which we call
bounded problems, do not have a representative AFD. Bounded problems include crash problems
such as consensus, leader election, non-block atomic commit, and others; they capture the notion
of a “one-shot” problem.
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7.1 Stronger AFDs Solve More Crash Problems

Traditionally, as defined in [4], failure detector D is said to be stronger than failure detector D′ if
D is sufficient to solve D′. This definition immediately implies that every problem solvable in some
environment using D′ is also solvable in the same environment using D. However, this definition
does not imply the converse; if every problem solvable using D′ in some environment is also solvable
using D in the same environment, then it is not necessarily the case that D is stronger than D′.

We demonstrate that in our framework, the converse must also be true; that is, given two AFDs
D and D′, every crash problem solvable using D′ in a some environment is also solvable using D
in the same environment iff D is stronger than D′. This is captured by the following two lemmas
and the accompanying theorem.

Lemma 16. For every pair of AFDs D and D′, if D � D′, then for every crash problem P , and
every environment E, D′ �E P → D �E P .

Proof. Fix D and D′ to be a pair of AFDs such that D � D′. The proof is immediate for the case
where D = D′. For the remainder of the proof, we assume D 6= D′.

Let P to be a crash problem and E be an environment for problem P such that D′ �E P . By
definition there exists a distributed algorithm AP that solves P using D′ in E ; that is, for every
fair trace t of the composition of AP , with the crash automaton, the channel automata, and E , if
t|Î∪OD′

∈ TD′ , then t|IP∪OP
∈ TP .

Since D � D′, there exists a distributed algorithm AD′ that solves D′ using D; that is, for
every fair trace t of the composition of AD′ with the crash automaton and the channel automata,
t|Î∪OD

∈ TD ⇒ t|Î∪OD′
∈ TD′ . Let A be a distributed algorithm where each Ai at location i is

obtained by composing AP
i and AD′

i and hiding all the output actions from AD′
i that are inputs to

AP
i . Let TA be the set of all fair traces t of the composition of A with the crash automaton and

the channel automata such that t|Î∪OD
∈ TD. From the definition of AD′ , we know that for each

such trace t, t|Î∪OD′
∈ TD′ . Then, from the definition of AP , we know that t|IP∪OP

∈ TP , which
immediately implies D �E P .

Lemma 17. For every pair of AFDs D and D′, if, for every crash problem P and every environment
E, D′ �E P → D �E P , then D � D′.
Proof. Fix D and D′ to be a pair of AFDs such that for every crash problem P and every environ-
ment E , D′ �E P → D �E P . Specifically, D′ � D′ → D � D′. By Corollary 14, we know that
D′ � D′. Then by the implication, D � D′.
Theorem 18. For every pair of AFDs D and D′, D � D′ iff for every crash problem P , and every
environment E, D′ �E P → D �E P .

Proof. The proof of the theorem follows directly from Lemmas 16 and 17.

Corollary 19. Given two AFDs D and D′ where D � D′, there exists a crash problem P and
an environment E such that D �E P , but D′ 6�E P ; that is, there exists some problem P and an
environment E such that D is sufficient to solve P in E, but D′ is not sufficient to solve P in E.

Proof. If D � D′, then D′ 6� D. By the contrapositive of Theorem 18, there exists a problem P
and an environment E such that D �E P and D′ 6�E P .
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7.2 Weakest and Representative AFDs

The notion of weakest failure detectors for problems was originally tackled in [4]. In [4], a failure
detector D is defined as a weakest failure detector to solve a problem P if the following two
conditions are satisfied: (1) D is sufficient to solve P , and (2) given any failure detector D′ that
is sufficient to solve P , D′ is stronger then D. This definition can be directly translated to our
framework as follows.

An AFD D is weakest in a set D of AFDs for a crash problem P in an environment E iff (1)
D ∈ D, (2) D �E P , and (3) for every AFD D′ ∈ D such that D′ �E P , D′ � D. An AFD D is
weakest in a set D of AFDs for a crash problem P in a set of environments Ê iff for every E ∈ Ê , D
is weakest in D for P in E . Finally, if an AFD D is weakest in a set D of AFDs for a crash problem
P in a set of environments Ê , and the set D is the set of all AFDs, then we may state that AFD D
is a weakest AFD for P in Ê .

There have been many results that demonstrate weakest failure detectors for various problems.
The proof techniques used to demonstrate these results have been of two distinct styles. The first
proof technique, proposed in [4], for determining if DP , which is sufficient to solve P , is also a
weakest failure detector to solve problem P is as follows. It considers an arbitrary failure detector
D that is sufficient to solve the problem P using an algorithm A. It uses a distributed algorithm
that exchanges the failure detector D’s outputs and then continually simulates runs of A using the
set of D’s outputs available so far. From these simulations, the distributed algorithm extracts an
admissible output for DP . This proof technique has commonly been used to determine a weakest
failure detector for so-called one-shot problems such as consensus [4], k-set consensus[12], and
non-blocking atomic commit [18].

The second proof technique is more straightforward and follows from mutual reducibility. To
show that DP , which is sufficient to solve P , is also a weakest to solve problem P , it simply uses
a solution to P as a ‘black box’ and exploits the relationship between the inputs to P and the
outputs from P to design a distributed algorithm whose outputs satisfy DP . This proof technique
has commonly been used to determine a weakest failure detector for long-lived problems such as
mutual exclusion [9, 2], contention managers [15], and dining philosophers [28].

A natural question is, “does the mutual-reducibility based proof technique work for determining
weakest failure detectors for one-shot problems?” We answer this question negatively by introducing
the notion of a representative failure detector.

Representative AFD. Informally, an AFD is representative of a crash problem if the AFD can
be used to solve the crash problem and conversely, a solution to the problem can be used to solve
the AFD. Formally, an AFD D is representative of a problem P in an environment E iff D �E P and
P � D. AFD D is representative of problem P in a set of environments Ê iff for every environment
E ∈ Ê , D is representative of P in E .

From the definitions of a weakest AFD and a representative AFD, it is straightforward to
establish the following result.

Lemma 20. If an AFD D is representative of a crash problem P in Ê, then D is also a weakest
AFD to solve P in Ê.

In particular, we highlight that the weakest failure detector results in [29, 27, 16] establish that
the eventually perfect failure detector is representative for eventually fair schedulers, dining under
eventual weak exclusion, and boosting obstruction-freedom to wait-freedom, respectively. 3

3Note that the results in [29, 27, 16] use multiple instances of a “black box” solution to a problem P to solve the
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Next, we show that the converse of Lemma 20 need not be true. Specifically, if D is a weakest
AFD to solve problem P in Ê , it is not necessarily the case that D is representative of P in Ê . For
instance, Ω is a weakest AFD for solving consensus (follows from [4]), but it is not representative of
consensus in environments where each location has exactly one input event corresponding to either
a 0 or a 1 (which follows from the result in Section 7.4).

Next, we show that a large class of problems, which we call bounded problems, do not have a
representative failure detector despite having a weakest failure detector. Again, in the following
subsection, we assume that for an AFD D to be representative of a problem P , only one instance
of P is used to solve D (assuming D is sufficient solve P ). However, we assert that the following
result is true even if we allow multiple (but finite) instances of P to solve D.

7.3 Bounded Problems

In this subsection we define the notion of a bounded problem, which captures what others have
referred to as single-shot problem. Informally speaking, bounded problems are those that provide a
bounded number of outputs to the environment in every execution. Examples of bounded problems
include consensus, leader election, terminating reliable broadcast, and k-set agreement. Examples
of problems that are not bounded problems include mutual exclusion, Dining Philosophers, syn-
chronizers, and other long-lived problems.

Before we define bounded problems we need some auxiliary definitions. Let P be a crash
problem. An automaton U where input(U) = IP and output(U) = OP is crash independent if, for
every finite trace t of U , t|IP∪OP \Î is a trace of U . Crash independence captures the notion that
the automaton cannot distinguish a crashed location from a location that is merely ‘very slow’ in
finite time.

For any sequence t, let len(t) denote number of events in t. An automaton U where input(U) =
IP and output(U) = OP has bounded length if there exists a constant b ∈ N+ such that, for every
trace t of U , len(t|OP

) ≤ b.
A crash problem P is a bounded problem if there exists an automaton U such that U solves P

(as defined in Section 3.1), is crash independent, and has bounded length.

7.4 Bounded Problems do not have Representative AFDs

Recall that an unsolvable problem is one that cannot be solved in a purely asynchronous system
(i.e. without failure detectors). Next, we show that no bounded problem that is unsolvable in an
environment E has a representative AFD in E .

AFD D that is representative of P . This is different from the definition of representative AFDs in this manuscript,
which requires that only one instance of P be used to solve D in order to establish that D is representative of P
(assuming D is sufficient solve P ). We can weaken the notion of representative AFDs as follows. For each positive
integer x, let Px denote a unique renaming of P . An AFD D is said to be weakly representative of a problem P
in environment E iff (1) D �E P , and (2) there exists an algorithm AD

P and a positive integer k such that (a)
∪x∈[1,k]IPx \ Î is a subset of the output actions of AD

P , (b) ∪x∈[1,k]OPx is a subset of the input actions of AD
P , and (c)

for every fair trace t of the composition of AD
P , the crash automaton, and the channel automata, such that for each

x ∈ [1, k], t|IPx∪OPx
∈ TPx , then t|Î∪OD

is in TD; in this case, we say that AD
P k-weakly solves D using P .

Here, we assert without proof that if an AFD D is weakly representative of a problem P , then D is a weakest
AFD to solve P . The argument for this assertion is as follows. Let an AFD D be weakly representative of a problem
P , and let D′ be an arbitrary AFD that is sufficient to solve P . We can show that D′ � D as follows. Since D′ is
sufficient to solve P , there exists an algorithm A′ such that A′ solves P using D′. Let an algorithm AD

P k-weakly
solve D using P . We can replicate A′ k times to yield k instances A′1, . . . , A

′
k of A′, and each such instance A′x can

use the same AFD D′ to solve a renaming Px of P . Thus, the composition of A′1, . . . , A
′
k, and AD

P uses D′ to solve
D. In other words, D′ � D. Since D′ is an arbitrary AFD sufficient to solve P , we see that D is a weakest AFD to
solve P .
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Theorem 21. If P is a bounded problem that is unsolvable in an environment E then P does not
have a representative AFD in E.

Proof. For the purpose of contradiction, we fix a bounded problem P , an environment E , and an
AFD D such that P is unsolvable in E , and D is representative of P in E . That is, there exists
a distributed algorithm AP

D that solves P in E using D, and there exists a distributed algorithm
AD

P that solves D using P . Let AP
D consist of automata AP

D,i, one for each location i, and let AD
P

consist of automata AD
P,i, one for each location i. Fix such an AP

D and an AD
P .

By definition of a bounded problem, we obtain an automaton U such that (1) input(U) = IP ,
(2) output(U) = OP , (3) the set TU of fair traces of U is a subset of TP , (4) U is crash independent,
and (5) U has bounded length. Let SD

P denote the composition of AD
P with the crash automaton,

the channel automata, and U . Let Σ be the set of fair executions of SD
P , and let TS be the set of

fair traces of SD
P .

For each trace t ∈ TS , we know that t|IP∪OP
∈ TU , but we also know that TU ⊆ TP , and

therefore, t|IP∪OP
∈ TP . Since AD

P solves D using P , and for each t ∈ TS , t|IP∪OP
∈ TP , we

conclude that t|Î∪OD
∈ TD. By the bounded length property of U , we know that only boundedly

many events from OP occur in any trace in TS . Let maxlen = maxt∈TS
len(t|OP

). Since P is
a bounded problem, we know that maxlen is a natural number. Thus, we have the following
proposition.

Proposition 22. There exists a finite trace tf of SD
P , such that len(tf |OP

) = maxlen.

Proof. From the bounded length property of P , we know that there exists some fair trace t ∈ TS

such that len(t|OP
) = maxlen. Let tf be a prefix of t that contains all the events from OP in t.

Then len(tf |OP
) = len(t|OP

) = maxlen.

Next, we show that there exists a finite execution αq of SD
P such that there are no messages in

transit at the end of αq (in other words, the final state of αq is ‘quiescent’), and furthermore, in
any extension of αq, no events from OP occur in the suffix following αq.

Lemma 23. There exists a finite execution αq of SD
P such that (1) there are no messages in transit

in the final state of αq, and (2) for every execution α′ that extends αq, the suffix of α′ following αq

has no events in OP .

Proof. Applying Proposition 22, fix a finite trace tf of SD
P such that len(tf |OP

) = maxlen. Fix
a finite execution αf whose trace is tf . The definition of maxlen implies that no extension of αf

contains any additional events from OP .
Note that there may be messages in transit in the final state of αf . We extend αf to a finite

execution αq (the subscript ‘q’ stands for quiescent) by appending only message receive events such
that all the messages in transit are delivered in a reliable FIFO manner and no messages are in
transit in the final state of αq. Precisely, we obtain αq from αf as follows. In the lexicographic
order of location pairs (i, j) and for each such pair, in order of the messages m in the queue for
Ci,j append the event receive(m, j)i to αf . The resulting execution is αq. Note that the execution
satisfies reliable FIFO behavior of the channel automata. By construction, there are no messages
in transit in the final state of αq.

Since no extension of αf contains any additional events from OP , and αq is an extension of αf ,
it follows that for every execution α′ that extends αq, the suffix of α′ following αq has no events in
OP .
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We apply the crash independence property of U to obtain the next lemma, which asserts that
there exists a finite execution α0 of SD

P such that α0 satisfies the same properties as αq in Lemma
23, and in addition, no crashes occur in α0.

Lemma 24. There exists a crash-free finite execution α0 of SD
P such that (1) there are no messages

in transit in the final state of α0, and (2) for every execution α′ that extends α0, the suffix of α′

following α0 has no events in OP .

Proof. Applying Lemma 23, fix αq to be a finite execution of SD
P such that (1) there are no messages

in transit in the final state of αq, and (2) for every execution α′ that extends αq, the suffix of α′

following αq has no events in OP .
Let tq be the trace of αq; we know that len(tq|OP

) = maxlen. Note that tq may contain crash
events. Let t0 be the subsequence of tq obtained by deleting exactly the crash events from tq. Thus,
t0 is crash-free.

Next, we argue that t0 is a trace of SD
P by showing that the projection of t0 on the external

actions of each automaton A constituting SD
P is a trace of A. By invoking the crash independence

property of U , we know that t0|IP∪OP
is a trace of U . Note that t0|Î is the empty sequence, which

is a trace of the crash automaton. For each channel automaton Ci,j , by construction, t0|external(Ci,j)

is a trace of Ci,j .
Finally, we consider each process automaton AD

P,i. For each location i, if no crashi event occurs
in tq, then t0|external(AD

P,i)
= tq|external(AD

P,i)
, and therefore, t0|external(AD

P,i)
is a trace of AD

P,i. On the
other hand, if at least one crashi event occurs in tq, then t0|external(AD

P,i)
is obtained by deleting the

suffix of tq|external(AD
P,i)

that consists of only crashi events (which are inputs to AD
P,i), and we see

that t0|external(AD
P,i)

is also a trace of AD
P,i.

Therefore, we can invoke Theorem 8.3 from [21] that ‘pastes together’ the traces of the crash
automaton, the channel automata, AD

P , and U to show that t0 is a trace of SD
P . Let α0 be an

execution of SD
P whose trace is t0.

Since there are no messages in the channels at the end of αq, by construction, (1) there are no
messages in transit at the end of α0. Since the only events deleted from tq to obtain t0 are the
crash events, we know that len(t0|OP

) = maxlen. Therefore, (2) for every fair execution α′ that
extends α0, the suffix of α′ following α0 has no events in OP .

We now define a variant of AD
P that includes a buffer at each location i, so that OD,i outputs

can be delayed. Specifically, the collection of buffers is an instance of the automata collection
Aself from Algorithm 3 in which the set of input actions is OD, and the set of output actions is
OD′ = rIO(OD) for some bijection rIO. Recall that Aself implements a renaming D′ of D using
D. Let Â denote the collection of automata, an automaton Âi for each location i, where Âi is the
composition of AD

P,i and Aself
i . Let ŜD

P denote the composition of Â with the crash automaton, the
channel automata, and U .

The following lemma asserts the existence of a finite execution α1 of ŜD
P which satisfies the

same properties as α0 in Lemma 24, and additionally, no events from OD′ occur in α1.

Lemma 25. There exists a crash-free finite execution α1 of ŜD
P such that (1) there are no messages

in transit in the final state of α1, (2) for every execution α′ that extends α1, the suffix of α′ following
α0 has no events in OP , and (3) there are no events from OD′ in α1.

Proof. Fix a finite execution α0 of SD
P from Lemma 24; let t0 be the trace of α0. By definition, t0

is a trace of SD
P . Next, we show that t0 is also a trace of ŜD

P . We do this by showing that for each
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location i, t0|ext(Aself
i )

is a trace of Aself
i and then invoking Theorem 8.2 from [21] which ‘pastes

together’ the traces of SD
P and Aself

i at all locations i.
For each location i, let tselfi = t0|OD,i∪OD′,i . Since t0 is a trace of SD

P , it does not contain

any events from OD′,i; therefore, tselfi is a sequence of input events for the automaton Aself
i .

Consequently, tselfi is a trace of Aself
i . We invoke Theorem 8.3 from [21] and ‘paste together’

t0|external(SD
P ) and tselfi for all locations i, and see that t0 is a trace of ŜD

P .

Let α1 be an execution of ŜD
P whose trace is t0. From Lemma 24 we conclude the following. (1)

There are no messages in transit in the final state of α1. Since Aself does not have any actions in
OP , we apply Lemma 24 and conclude that (2) for every execution α′ that extends α1, the suffix
of α′ following α1 contains no events in OP .

Finally, since t0 does not contain any events from OD′ , (3) α1 does not contain any events from
OD′ .

Fix a finite execution α1 from Lemma 25; let σ1 and t1 be the schedule and trace of α1,
respectively. In the final state of α1, at each location i ∈ Π, let the state of AD

P,i be si, and let the
state of Aself

i be sself
i .

Next, we construct a distributed algorithm Â′ that does not have actions from OP among its
inputs, and we show that Â′ solves D′ (without using P ). This allows us to set up a contradiction
as follows. Since Â′ solves D′, and D′ is a renaming of D, we know that there exists a distributed
algorithm AD that solves D. We can then compose AD

i and AP
D,i at each location i to construct

a distributed algorithm that solves P in E . However, this contradicts our assumption that P is
unsolvable in E .

We start by describing the construction of Â′. At each location i, Â′i is the composition of
automata A′Di and A′selfi ; A′Di is similar to AD

P,i, but starts in state si, and A′selfi is similar to Aself
i ,

but starts in state sself
i .

Precisely, A′D and A′self are two collections of automata as described next. Recall that AD
P is a

distributed algorithm that solves P using D in environment E , and Aself is a distributed algorithm
that implements a renaming D′ of D. A′D is a collection of automata consisting of one automaton
A′Di at each location i, and A′Di is identical to AD

P,i except in the following ways.

1. The set of input actions input(A′Di ) is equal to input(AD
P,i) \OP . That is, A′Di has no actions

from OP .

2. Every action from IP,i \ {crashi} is reclassified as an internal action of A′Di .

3. The initial state of A′Di is si.

A′self is a collection of automata, which consists of one automaton A′selfi at each location i,
and A′selfi is identical to Aself

i except that the initial state of A′selfi is sself
i .

Recall that Â is the collection of automata Âi for each location i, where Âi is the composition
of AD

P,i and Aself
i . Similarly, let Â′ be the collection of automata Â′i for each location i, where Â′i is

a composition of A′Di and A′selfi . Let Ŝ′D be the composition of Â′ with the crash automaton and
the channel automata.

For the next two lemmas, let S1 denote the composition of Â and the channel automata.
Similarly, let S′1 denote the composition of the distributed algorithms Â′ and the channel automata.

Lemma 26. For every fair execution α′ of Ŝ′D, there exists a fair execution α of ŜD
P such that

α′|Î∪OD′
= α|Î∪OD′

.
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Proof. Fix a fair execution α′ of Ŝ′D. Consider the projection α′|S′1 of α′ on S′1. Note that, by
construction, the initial state of S′1 in α′|S′1 is identical the final state of S1 in α1|S1. Moreover,
the set of state transitions of S′1 is a subset of the state transitions of S1. Therefore, α1|S1 · α′|S′1
is a fair execution of S1.

Next, we show that there exist fair executions of the crash automaton C and automaton U such
that these executions can be ‘pasted together’ with αS1 to obtain a fair execution of ŜD

P .
Recall that every sequence over Î is a fair trace of the crash automaton C. Therefore, there

exists some fair execution αC of C such that αC |Î = αS1 |Î . Fix such an execution αC .
By construction, α1|U is a finite execution of U whose trace is α1|IP∪OP

. Since actions in IP
are inputs to U , there exists some fair execution fragment αsuff of U that starts in the final state
of α1|U and αsuff |IP

= α′|IP
. Thus, α1|U · αsuff is a fair execution of U . Next, we argue that

αsuff does not contain any events from OP .
Claim 1. The execution fragment αsuff does not contain any events from OP .

Proof. For the purpose of contradiction, assume that αsuff contains some event from OP . Let e
be the first such event in αsuff . Let βU be the prefix of αsuff that ends with the state just prior
to event e. Thus, α1|U · βU , denoted γU , is a finite execution of U .

Let βS1 be the shortest prefix of α′|S′1 such that βS1 |IP
= βU |IP

. We know such a prefix exists
because βU |IP

is a prefix of α′|IP
. Therefore, α1|S1 · βS1 , denoted γS1 , is a finite execution of S1.

Furthermore, γS1 |IP∪OP
= γU |IP∪OP

, because (1) α1|S1 is a prefix of γS1 and α1|U is a prefix of
γU , (2) βS1 |IP

= βU |IP
, and (3) neither βS1 nor βU contain any events from OP .

We also know that there exists some execution γC of the crash automaton such that γC |Î = γS1 |Î .
By Theorem 8.2 in [21], there exists a finite execution γS of ŜD

P such that γS |U = γU , γS |S1 = γS1 ,
and γS |C = γC . Note that, by construction, α1 is a prefix of γS .

Recall that event e, which is an occurrence of some action (say) a from OP , follows βU in αsuff .
Therefore, action a ∈ OP is enabled in the final state of γS . Let the state of ŜD

P after action a

occurs (in the final state of γS) be s′. We see that γS · a, s′ is a finite execution of ŜD
P . However,

this contradicts Lemma 25 which states that in any execution γ′ that extends α1, the suffix of γ′

following α1 has no events in OP .

Therefore, α1|U · αsuff , denoted αU , is a fair execution of U such that αU |IP∪OP
= αS1 |IP∪OP

.
We now invoke Theorem 8.5 from [21] which proves that there exists a fair execution α of ŜD

P

such that α|S1 = αS1 , α|C = αC , and α|U = αU . Note that αS1 = α1|S1 · α′|S′1 and α1 does not
contain any events in Î ∪ OD′ ; therefore, αS1 |Î∪OD′

= α′|Î∪OD′
. Since, α|S1 = αS1 , we conclude

that α′|Î∪OD′
= α|Î∪OD′

.

Lemma 27. For every fair trace t of Ŝ′D, t|Î∪OD′
∈ TD′.

Proof. Let α′ be a fair execution of Ŝ′D. By Lemma 26, we know that there exists a fair execution
α of ŜD

P such that α′|Î∪OD′
= α|Î∪OD′

. Since AD
P solves D using P , and Aself solves a renaming D′

of D, we know that α|Î∪OD′
∈ TD′ . Therefore α′|Î∪OD′

∈ TD′ .
Let t be the trace of α′. We conclude that t|Î∪OD′

∈ TD′ .

Lemma 28. There exists a distributed algorithm AD that solves D.

Proof. By Lemma 27 we know that Â′ (after hiding the actions from OD) solves D′ in an asyn-
chronous system. Since D′ is a renaming of D, we know that there exists an algorithm AD that
solves D.
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We can now complete the proof of Theorem 21. Fix an algorithm AD from Lemma 28. By
composing AD

i and AP
D,i, and hiding the output actions from AD

i to AP
D,i, at each location i, we

obtain a new algorithm that solves P in E . However, this contradicts the assumption that P is
unsolvable in E . Therefore, if P is a bounded problem that is unsolvable in an environment E then
P does not have a representative AFD in E . This completes the proof of Theorem 21.4

8 A Tree Representation of Executions

Consider a system (as defined in Section 4) containing a distributed algorithm that uses an AFD
D. Let tD be a trace in TD. In this section, we describe a directed tree that represents the set
of all possible executions α of a system where either α|Î∪OD

= tD, or α|Î∪OD
is a prefix of tD.

The tree is described by the tasks defined for the channel automata, the distributed algorithm,
the environment automaton, and the sequence tD. Naturally, different values for tD yield different
trees. Such a tree of executions is used in Section 9, where we show that if D sufficient to solve
consensus, then the tree satisfies certain properties that show exactly how information provided by
such AFDs circumvents the impossibility of consensus in asynchronous systems.

8.1 Task Tree

In this subsection, we describe a directed tree R that models all possible schedules of tasks of a
system. Subsequently, in Section 8.2, for each specific sequence tD over Î ∪OD, we tag the tree R
to obtain a tagged tree RtD that models the set of executions of the system whose projection on
events in Î ∪OD is a prefix of tD.

4Note that a similar proof can be employed to show that if P is a bounded problem that is unsolvable in an
environment E , then P does not have a weakly representative AFD in E . The argument for the above claim is a
generalization of the existing proof of Theorem 21, which is a special case where k = 1. We summarize the generalized
argument next.

Fix a bounded problem P and an environment E such that P is unsolvable in E . For each positive integer x, let Px

denote a unique renaming of P , and let Ux denote an automaton such that (1) input(Ux) = IPx , (2) output(Ux) = OPx ,
(3) the set TUx of fair traces of Ux is a subset of TPx , (4) Ux is crash independent, and (5) Ux has bounded length.
Note that for each positive integer x, we know that Ux exists because the first three restrictions on Ux follows from
the definition of a problem and the fourth and fifth restriction follows from the definition of a bounded problem.

For the purpose of contradiction, fix an AFD D such that D is weakly representative of P in E . By definition, there
exists a positive integer k and an algorithm AD

P such that the following three statements are true. (1) ∪x∈[1,k]IPx \ Î
is a subset of the output actions of AD

P . (2) ∪x∈[1,k]OPx is a subset of the input actions of AD
P . (3) For every fair

trace t of the composition of AD
P , the crash automaton, and the channel automata, such that for each x ∈ [1, k],

t|IPx∪OPx
∈ TPx , then t|Î∪OD

is in TD. However, recall that set TUx of fair traces of Ux is a subset of TPx and that

Px is a renaming of P ; therefore, for every fair trace t of the composition of AD
P , U1,. . . , Uk, the crash automaton,

and the channel automata, we see that that t|Î∪OD
is in TD.

Next, as in the proof of Lemma 25, we can construct a finite crash-free execution α1 of the composition of AD
P ,

U1,. . . , Uk, the crash automaton, and the channel automata, such that (1) for each x ∈ [1, k], t|IPx∪OPx
∈ TPx and

there are no messages in transit in the final state of α1, (2) for every fair extension α′ of α1, no additional events
from ∪x∈[1,k]IPx ∪ OPx \ Î occur in α′, and (3) there are no events from OD′ in α1. As in the proof of Theorem

21, we can now construct a distributed algorithm Â′ that does not have actions from ∪x∈[1,k]OPx among its output

actions such that, as in Lemma 26, for every fair execution α′ of the composition Ŝ′D of Â′, the crash automaton,
and the channel automata, there exists a fair execution α of the composition of AD

P , U1,. . . , Uk, the crash automaton,
and the channel automata such that α′|Î∪OD′ = α|Î∪OD′ . Therefore, as in Lemma 27, for every fair trace t of Ŝ′D,

t|Î∪OD′ ∈ TD′ , and consequently, as in Lemm 28, there exists a distributed algorithm AD that solves D. Fix such a

AD. By composing AD
i and AP

D,i, and hiding the output actions from AD
i to AP

D,i, at each location i, we obtain a
new algorithm that solves P in E . But this contradicts our assumption that P is unsolvable in E .
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Assume that the system SP
D consists of a distributed algorithm A, the channel automata, and

an environment automaton E such that A solves some crash problem P using an AFD D in environ-
ment E . Furthermore, assume that the environment automaton E is a composition of n automata
{Ei|i ∈ Π}, and the actions of each automaton Ei occur at location i.

The system SP
D contains the following tasks. We know that A consists of n tasks; one task

for each location. We also know that each channel automaton consists of a single task, and there
are n(n − 1) channel automata. For every automaton Ei (where the composition of {Ei|i ∈ Π}
constitutes the environment automaton E), let every task be denoted Envi,x, where x is in some
fixed task index set Xi.

The directed tree R for system SP
D is rooted at a special node denoted ‘>’ which corresponds to

the initial state of the system SP
D. Each node in the tree has n+n(n− 1) +

∑
i∈Π |Xi|+ 1 children,

and therefore, n+n(n−1)+
∑

i∈Π |Xi+1 outgoing edges, each with a different label. Each outgoing
edge corresponds to either to the AFD D or a task in the system. The set of labels of the outgoing
edges is L = {FD} ∪ {Proci|i ∈ Π} ∪ {Chani,j |i ∈ Π ∧ j ∈ Π \ {i}} ∪ {Envi,x|i ∈ Π ∧ x ∈ Xi}.

The child of a node N that is connected to N by an edge labeled l ∈ L is said to be an l-child
of N .

8.2 Tree of Executions

Next, we tag the nodes and edges of the task tree R. The inputs to the tagging process are the
task tree R and a (finite or infinite) sequence tD over Î ∪OD, and the output is a tagged tree RtD .
The tagged tree RtD describes all possible executions of system SP

D whose projection on Î ∪ OD

is either tD or a prefix of tD. We assume that the environment automaton E has a unique initial
state. Since all other automata in SP

D have unique initial states, the system SP
D has a unique initial

state.
The nodes and edges of RtD are tagged as follows. Each node N in RtD is tagged with (1) a

config tag cN , which contains a state of the system, and (2) an FD-sequence tag tN , which contains
a sequence over Î ∪ OD. Each edge E in RtD is tagged with an action tag aE , which is an action
of the system or ⊥.

The tagging proceeds recursively starting with the root node >. The root node > is tagged as
follows: the config tag c> is the unique initial state of system SP

D, and the FD-sequence tag t> is
tD.

For each node N that has been tagged with a config tag cN , and an FD-sequence tag tN , each
of the outgoing edges is assigned an action tag as follows.

• FD edge. The action tag of the FD edge is defined to be head(tN ) if tN is nonempty, and
⊥ if tN is empty.

• Proci edge. If some locally controlled action a of Ai is enabled in cN , then the action tag
of the Proci edge is a; otherwise, the action tag is ⊥. Since Ai is deterministic, at most one
such action a exists.

• Chani,j edge. If some locally controlled action a of automaton Ci,j is enabled in cN , then
the action tag of the Chani,j edge is a; otherwise, the action tag is ⊥. Specifically, if the
channel Ci,j is not empty, then some message m ∈M is at the head of the queue in Ci,j , and
the action a is receive(m, i)j .

• Envi,x edge. If some action a in task Ci,x is enabled in state cN , then the action tag of the
Envi,x edge is a; otherwise, the action tag is ⊥. Since the environment is task deterministic,
at most one such action a exists.
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Next, we tag the children of each node. For each node N that is tagged with a config tag cN ,
and an FD-sequence tag tN , and each outgoing edge E that is tagged with an action tag aE , the
child node N ′ of N connected via edge E is tagged as follows.

• Config Tag. If the action tag aE is ⊥, then cN ′ = cN . Otherwise, cN ′ is the state of the
system resulting from applying the action aE to state cN . Since all the actions in the system
are deterministic, applying aE to cN yields a unique state.

• FD-sequence tag. If the FD-sequence tag tN is ⊥ or the edge E is not an FD edge, then
tN ′ = tN . Otherwise, tN ′ is obtained by deleting the first element from tN .

8.3 Properties of a Tagged Tree

Here we establish various relationships between nodes, walks5, and branches6 in a tagged tree and
executions of the system SP

D.
For each node N , let w(N) be the walk from the root node > to N in the tree RtD . Let exe(N)

be the sequence of alternating config tags and action tags along the walk w(N) such that exe(N)
contains exactly the non-⊥ action tags and their preceding config tags in w(N) and ends with the
config tag cN . Observe that, by construction, the following propositions hold.

Proposition 29. For each node N in RtD , exe(N) is a finite execution of the system SP
D that ends

in state cN and exe(N)|Î∪OD
· tN = tD.

Proposition 30. For every node N in RtD , and for every child N̂ of N such that the edge from
N to N̂ has ⊥ action tag, exe(N̂) = exe(N).

Proposition 31. For every node N in RtD , and for every child N̂ of N such that the edge E from
N to N̂ has a non-⊥ action tag, exe(N̂) = exe(N) · aE · cN̂ .

Proposition 32. For each node N in RtD and any descendant N̂ of N , exe(N) is a prefix of
exe(N̂).

Proof. Following from repeated application of Propositions 30 and 31 along the walk from N to
N̂ .

For any two nodes N and N ′ in RtD such that cN = cN ′ and tN = tN ′ , the following lemmas
establish a relationship between the descendants of N and N ′. The proofs use the notion of
“distance” between a node and its descendant as defined next. The distance from a node N to its
descendant N̂ is the number of edges in the walk from N to N̂ . Note that if the distance from N
to N̂ is 1, then N̂ is a child of N .

Lemma 33. Let N and N ′ be two nodes in RtD such that cN = cN ′ and tN = tN ′. Let l be an
arbitrary label in RtD . Let El and N l be the l-edge and l-child of N , respectively, and let E′l and
N ′l be the l-edge and l-child of N ′, respectively. Then, aEl = aE′l, cN l = cN ′l, and tN l = tN ′l.

5A walk is an alternating sequence of nodes and edges, beginning and ending with a node, where (1) each node is
incident to both the edge that precedes it and the edge that follows it in the sequence, and (2) the nodes that precede
and follow an edge are the end nodes of that edge.

6A branch of a tree is a maximal chain in the tree. Since tagged trees are of infinite depth, branches of tagged
trees are are also infinite length.
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Proof. Fix N , N ′, l, El, N l, E′l, and N ′l as in the hypotheses of the lemma. We consider two
cases, l is the label FD, and l is not the label FD.

Case 1. If l is FD, then by construction, aEl = aE′l . Since cN l is obtained by applying aEl to
cN , and cN ′l is obtained by applying aE′l to cN ′ , we see that cN l = cN ′l . Since tN l and tN ′l are
obtained by deleting the first element from tN and tN ′ , respectively, we see that tN l = tN ′l .

Case 2. If l is not FD, then l is a task in the system. Since cN = cN ′ and the system is
task deterministic, aEl = aE′l . Since cN l is obtained by applying aEl to cN , and cN ′l is obtained
by applying aE′l to cN ′ , we see that cN l = cN ′l . Also, by construction, tN l = tN and tN ′l = tN ′ ;
therefore, tN l = tN ′l .

Lemma 34. Let N and N ′ be two nodes in RtD such that cN = cN ′ and tN = tN ′, and let N̂ be
a descendant of N . There exists a descendant N̂ ′ of N ′ such that tN̂ = t

N̂ ′, the suffix of exe(N̂)
following exe(N) is identical to the suffix of exe(N̂ ′) following exe(N ′), and the walk from N ′ to
N̂ ′ does not contain any edges whose action tag is ⊥.

Proof. Fix N and N ′ as in the hypothesis of the lemma. The proof is by induction on the distance
from N to N̂ .

Base Case. Let the distance between N and N̂ be 0. That is, N = N̂ . Trivially, we see that
N̂ ′ = N ′ satisfies the lemma.

Inductive Hypothesis. For every descendant N̂ of N at a distance k from N , there exists a
descendant N̂ ′ of N ′, such that tN̂ = t

N̂ ′ , the suffix of exe(N̂) following exe(N) is identical to the
suffix of exe(N̂ ′) following exe(N ′), and the walk from N ′ to N̂ ′ does not contain any edges whose
action tag is ⊥.

Inductive Step. Fix N̂ to be a descendant of N at a distance k + 1 from N . Let N̂k be the
parent of N̂ . Note that, by construction, N̂k is a descendant of N at a distance k from N . Let l
be the label of the edge El connecting N̂k and N̂ .

By the inductive hypothesis, there exists a descendant N̂ ′k of N ′ such that tN̂k
= t

N̂ ′k
, the

suffix of exe(N̂k) following exe(N) is identical to the suffix of exe(N̂ ′k) following exe(N ′), and the
walk from N ′ to N̂ ′k does not contain any edge whose action tag is ⊥.

If the action tag of edge El (connecting N̂ and N̂k) is ⊥, then by Proposition 30, we know
that exe(N̂) = exe(N̂k), and applying Proposition 29, we conclude that tN̂ = tN̂k

. Let N̂ ′ be N̂ ′k.

Therefore, N̂ ′ is a descendant of N ′ such that tN̂ = t
N̂ ′ , the suffix of exe(N̂) following exe(N) is

identical to the suffix of exe(N̂ ′) following exe(N ′), and the walk from N ′ to N̂ ′ does not contain
any edge whose action tag is ⊥, as needed.

On the other hand, if the action tag of the edge El (connecting N̂ and N̂k) is not ⊥, then let
N̂ ′ be the l-child of N̂ ′k, and let E′l be the l-edge connecting N̂ ′k and N̂ ′.

From Lemma 33, we know that aEl = aE′l , cN̂ = c
N̂ ′ , and tN̂ = t

N̂ ′ , as needed. By Proposition
31, exe(N̂) = exe(N̂k) · aEl · cN̂ and exe(N̂ ′) = exe(N̂ ′k) · aE′l · cN̂ ′ . Also recall that the suffix of
exe(N̂k) following exe(N) is identical to the suffix of exe(N̂ ′k) following exe(N ′). Therefore, the
suffix of exe(N̂) following exe(N) is identical to the suffix of exe(N̂ ′) following exe(N ′), as needed.
Finally, the walk from N ′ to N̂ ′ does not contain any edge whose action tag is ⊥, as needed.

This completes the induction and the proof.

Corollary 35. Let N be an arbitrary node in RtD . For every descendant N̂ of N , there exists a
descendant N̂6⊥ of N such that tN̂ = tN̂ 6⊥, the suffix of exe(N̂) following exe(N) is identical to the

suffix of exe(N̂6⊥) following exe(N), and the walk from N to N̂6⊥ does not contain any edges whose
action tag is ⊥.
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Proof. Follows from Lemma 34 by letting N = N ′.

In RtD , we can extend any walk starting from the root node ⊥ to a branch, and applying
Proposition 29, we argue that we can obtain a potentially infinite execution of the system. A
branch b of the tree RtD is said to be a fair branch if, for each label l ∈ L, the branch contains an
infinite number of edges labeled l. Next, we define a function exe that maps branches to executions
of the system7.

Let b be a branch in RtD . Let the sequence of nodes in b be >, N1, N2, . . . in that order. The
sequence exe(b) is the limit of the prefix-ordered infinite sequence exe(>), exe(N1), exe(N2), . . ..
Note that exe(b) may be a finite or an infinite sequence.

Lemma 36. For every fair branch b of RtD , the sequence exe(b) is a fair execution of the system,
and exe(b)|Î∪OD

= tD.

Corollary 37. For every fair branch b of RtD , and every node N in b, exe(N) is a prefix of exe(b).

So far, we have established that every walk, branch, and fair branch in the tree RtD models an
execution of SP

D whose projection on Î ∪OD is a prefix of tD. Next, we establish a partial converse.

Theorem 38. For every finite execution α of SP
D such that α|Î∪OD

is a prefix of tD, there exists a
node N in RtD such that exe(N) = α.

Proof. The proof follows from a straightforward induction on the number of events in α.

Next, we establish properties of the tree with respect to nodes whose configuration tags are the
same for process automata at all locations except one. The aforementioned relation between nodes
is formalized as similar-modulo-i relation (where i is a location). Intuitively, we say that node N
is similar-modulo-i N ′ if the only process automaton that can distinguish state cN from state cN ′
is the process automaton at i, and this automaton is crashed. The formal definition follows.

Given two nodes N and N ′ in RtD and a location i, N is said to be similar-modulo-i to N ′

(denoted N ∼i N
′) if the following are true.

1. Action crashi occurs in exe(N) and exe(N ′).

2. For every location j ∈ Π \ {i}, the state of the process automaton at j is the same in cN and
cN ′ .

3. For every pair of distinct locations j, k ∈ Π \ {i}, the state of Chanj,k is the same in cN and
cN ′ .

4. For every location j ∈ Π \ {i}, the contents of the queue in Chani,j
8 in state cN is a prefix

of the contents of the queue in Chani,j in state cN ′ .

5. For every location j ∈ Π \ {i}, the state of Ej is the same in cN and cN ′ .

6. tN = tN ′ .
7Note that we have overloaded the function exe to map nodes and branches to sequences of alternating states and

actions. Since the domains of each incarnation of exe is distinct, for any node N and any branch b in RtD , we can
refer to exe(N) or exe(b) without any ambiguity.

8Recall that Chani,j is the channel automaton that transports messages from the process automaton at i to the
process automaton at j.
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Note that the ∼i relation need not be symmetric; that is, N ∼i N
′ does not imply N ′ ∼i N .

However, the relation is reflexive.

Lemma 39. Let N and N ′ be two nodes in RtD , and let i be a location in Π, such that N ∼i N
′.

Let l be any label, and let N l and N ′l be the l-children of N and N ′, respectively. Then, one of the
following is true: (1) N l ∼i N

′, or (2) N l ∼i N
′l.

Proof. Fix N , N ′, i, l, N l, and N ′l as in the hypotheses of the lemma. Let E be the l-edge of N
and let E′ be the l-edge of N ′. Let aE and aE′ be the action tags of E and E′, respectively.

If aE = ⊥, then by construction, cN = cN l and tN = tN l . Therefore, N l ∼i N
′, and the lemma

is satisfied. For the remainder of this proof we assume that aE 6= ⊥.
Label l is an element of {Proci}∪{Envi,x|x ∈ Xi}∪{Procj |j ∈ Π \ {i}}∪{Envj,x|j ∈ Π \ {i} ∧ x ∈ Xj}∪

{Chanj,k|j ∈ Π ∧ k ∈ Π \ {j}} ∪ {FD}. We consider each case separately.
Case 1. Let l be in {Proci} ∪ {Envi,x|x ∈ Xi}. From the definition of ∼i, we know that

location i is crashed in exe(N) and exe(N ′). Therefore, aE = ⊥, and we have already established
that N l ∼i N

′.
Case 2. Let l be Procj (j 6= i). From the definition of the ∼i relation, we know that the state

of the process automaton at j is the same in states cN and cN ′ . Recall that if aE = ⊥, then the
lemma is satisfied. Otherwise, aE is in task Procj , and therefore aE = aE′ . Consequently, the state
of the process automaton at j is the same in cN l and cN ′l .

Also, from the definition of the ∼i relation, we know that for every location k ∈ Π \ {i, j}, the
state of Chanj,k is the same in cN and cN ′ . Therefore, from state cN , if aE changes the state of
Chanj,k for some k 6= i, then we know that the state of Chanj,k is the same in cN l and cN ′l .

Similarly, from the definition of the ∼i relation, we know that for every location j ∈ Π \ {i},
the state of Ej is the same in cN and cN ′ . Therefore, from state cN , if aE changes the state of Ej ,
then we know that the state of Ej is the same in cN l and cN ′l . The states of all other automata in
SP

D are unchanged. Thus, we can verify that N l ∼i N
′l.

Case 3. Let l be Envj,x where j ∈ Π \ {i} and x ∈ Xj . If aE = ⊥, then we have already
established that the lemma is satisfied. So we assume aE 6= ⊥. Action aE is enabled in state cN ′
, and aE is in task l; therefore aE = aE′ . Therefore, the state of Ej is the same in cN l and cN ′l .
Similarly, we know that the state of the process automaton at j is also the same in cN and cN ′ ,
and after the occurrence of aE , we see that the state of the process automaton at j is also the same
in cN l and cN ′l . The states of all other automata in SP

D are unchanged. Thus, we can verify that
N l ∼i N

′l.
Case 4. Let l be Chanj,k where j ∈ Π and k ∈ Π \ {j}. We consider three subcases: (a) k = i,

(b) j 6= i and k 6= i, (c) j = i. In all three cases, if aE = ⊥, then we have already established that
the lemma is satisfied. So we assume aE 6= ⊥.

Case 4(a). Let l be Chanj,i where j ∈ Π \ {i}. Since the process automaton at i is crashed,
and the definition of ∼i does not restrict the state of Chanj,i or the state of the process automaton
at i (except insofar as it is crashed), we see that N l ∼i N

′l.
Case 4(b). Let l be Chanj,k where j ∈ Π \ {i} and k ∈ Π \ {i, j}. Since we assume aE 6= ⊥, aE

must be the action receive(m, j)k for some message m ∈M. From the definition of the ∼i relation,
we know that the state of Chanj,k is the same in cN and cN ′ Therefore, action aE is enabled in
state cN ′ , and aE is in task l; therefore aE = aE′ .

Thus, we see that the state of Chanj,k is the same in cN l and cN ′l . Similarly, since N ∼i N
′

and aE = aE′ , we see that the state of the process automaton at k is also the same in cN l and cN ′l .
The states of all other automata in SP

D are unchanged. Thus, we can verify that N l ∼i N
′l.

Case 4(c). Let l be Chani,k where k ∈ Π \ {i}. Since aE 6= ⊥, aE must be the action
receive(m, i)k for some message m ∈M. From the definition of the ∼i relation, we know that the
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queue of messages in Chani,k in state cN is a prefix of the queue of messages in Chani,k in state
cN ′ , and the state of the process automaton at k is also the same in cN and cN ′ . Therefore, action
aE is enabled in state cN ′ , and aE is in task l; therefore aE = aE′ .

Consequently, the queue of messages in Chani,k in state cN l is a prefix of the queue of messages
in Chani,k in state cN ′l . Recall that the state of the process automaton at k is the same in cN and
cN ′ . Therefore, the state of the process automaton at k is the same in states cN l and cN ′l . The
states of all other automata in SP

D are unchanged. Thus, we can verify that N l ∼i N
′l.

Case 5. Let l = FD. Since tN = tN ′ , we see that aE = aE′ . Applying aE to cN and applying
aE′ to cN ′ , we can verify that N l ∼i N

′l.

Theorem 40. Let N and N ′ be two nodes in RtD , and let i be a location in Π, such that N ∼i N
′.

For every descendant N̂ of N , there exists a descendant N̂ ′ of N ′ such that N̂ ∼i N̂ ′.

Proof. Fix N , N ′, and i as in the hypothesis of the lemma; thus, N ∼i N
′. The proof is by

induction on the distance from N to N̂ .
Base Case. Let the distance from N to N̂ be 0. That is, N = N̂ . Trivially, we see that N̂ ′ = N ′

satisfies the lemma.
Inductive Hypothesis. For every descendant N̂ of N at a distance k from N , there exists a

descendant N̂ ′ of N ′ such that N̂ ∼i N̂ ′.
Inductive Step. Fix N̂ to be a descendant of N at a distance k+1 from N . Let N̂k be the parent

of N̂ . Note that, by construction, N̂k is a descendant of N at a distance k from N . Let l be the
label of edge E that connects N̂k and N̂ . By the inductive hypothesis, there exists a descendant
N̂ ′k of N ′ such that N̂k ∼i N̂ ′k. Let N̂ ′ be the l-child of N̂ ′k, and let E′ denote the edge connecting
N̂ ′k to N̂ ′. Invoking Lemma 39, we see that either N̂k ∼i N̂ ′ or N̂ ∼i N̂ ′. In other words, there
exists a descendant N̂ ′ of N ′ such that N̂ ∼i N̂ ′. This completes the induction and the proof.

For any tagged tree RtD , where tD ∈ TD, let RtD
x be the subtree of RtD which is rooted at ⊥,

in which each leaf is at depth x, and in which every internal node N has all the outgoing edges
from N in RtD .

Let t1 and t2 be two distinct traces in TD, and let t′ be the longest common prefix of t1 and
t2. Let t′ be of length x. We see that the trees Rt1

x and Rt2
x are ‘identical’ to each other in the

following theorem.

Theorem 41. Let t1, t2 ∈ TD be two distinct traces such that the longest common prefix of t1 and
t2 is of length x. The trees Rt1

x and Rt2
x are equal.

9 Consensus Using Asynchronous Failure Detectors

In a seminal result [4], Chandra et. al. established that the Ω failure detector was the weakest to
solve crash-tolerant binary consensus. Here, we show that using our modeling framework, argu-
ments similar to those used in [4] can be utilized to prove the following important property of any
AFD-based solution to binary consensus. Let S be a system containing a distributed algorithm A
that solves crash tolerant consensus using an AFD D in an environment E. For a given t ∈ TD,
in the tree of all possible executions α of S such that α|Î∪OD

= t, the events responsible for the
transition from a bivalent to a univalent execution9 must occur at a live location.

9Briefly, an execution of the system is v-valent (where v is either 0 or 1) if the only decision at each location, in
the execution or any fair extension of the execution, is v. A v-valent execution is univalent. If an execution is both
v-valent and (1− v)-valent, then it is bivalent. These notions are described in detail later.

32



This section is organized as follows. In Section 9.1, we define the f -crash-tolerant binary
consensus problem, where f is an integer in the range [0, n − 1]. In Section 9.2, we define a
well-formed environment EC for f -crash-tolerant binary consensus. Section 9.3 defines a system S
containing an algorithm A that solves f -crash-tolerant binary consensus in environment EC using
an AFD D. In Section 9.4, we construct the tree of executions RtD (as described in Section 8)
for system S where tD is a fixed sequence in TD. In Section 9.5, we define the notions of valence,
univalence, and bivalence of executions represented by the tree RtD . Finally, the main result of
this section is shown in Section 9.6.

9.1 Crash-Tolerant Binary Consensus

First, we provide a formal definition of the problem. The f -crash-tolerant binary consensus prob-
lem P ≡ (IP , OP , TP ), where f is an integer in [0, n − 1], is specified as follows. The set IP is
{propose(v)i|v ∈ {0, 1}∧ i ∈ Π}∪{crashi|i ∈ Π}, and the set OP is {decide(v)i|v ∈ {0, 1}∧ i ∈ Π}.
Before defining the set of sequences TP , we provide the following auxiliary definitions.

Let t be an arbitrary (finite or infinite) sequence over IP ∪OP . The following definitions apply
to the sequence t.

Decision value. If an event decide(v)i occurs for some i ∈ Π in sequence t, then v is said to be
a decision value of t.

Environment well-formedness: The environment well-formedness property states that (1) the
environment provides each location with at most one input value, (2) the environment does not
provide any input values at a location after a crash event at that location, and (3) the environment
provides each live location with exactly one input value. Precisely, (1) for each location i ∈ Π at
most one event from the set {propose(v)i|v ∈ {0, 1}} occurs in t, (2) for each location i ∈ faulty(t)
no event from the set {propose(v)i|v ∈ {0, 1}} follows a crashi event in t, and (3) for each location
i ∈ live(t) exactly one event from the set {propose(v)i|v ∈ {0, 1}} occurs in t.

f-Crash limitation: The f -crash limitation property states that at most f locations crash.
Precisely, there exist at most f locations i such that crashi occurs in t.

Crash validity: The crash validity property states that no location decides after crashing. That
is, for every location i ∈ crash(t), no event from the set {decide(v)i|v ∈ {0, 1}} follows a crashi

event in t.

Agreement: The agreement property states that no two locations decide differently. That is, if
two events decide(v)i and decide(v′)j occur in t, then v = v′.

Validity: The validity property states that any decision value at any location must be an input
value at some location. That is, for each location i ∈ Π, if an event decide(v)i occurs in t, then
there exists a location j ∈ Π such that the event propose(v)j occurs in t.

Termination: The termination property states that each location decides at most once, and each
live location decides exactly once. That is, for each location i ∈ Π, at most one event from the set
{decide(v)i|v ∈ {0, 1}} occurs in t, and for each location i ∈ live(t), exactly one event from the set
{decide(v)i|v ∈ {0, 1}} occurs in t.

Using the above definitions, we define the set TP for f -crash-tolerant binary consensus as follows.
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The set TP . TP is the set of all sequences t over IP ∪ OP such that, if t satisfies environment
well-formedness and f -crash limitation, where f is an integer in [0, n − 1], then t satisfies crash
validity, agreement, validity, and termination.

9.2 A Well-formed Environment Automaton for Consensus

Given an environment automaton E whose set of input actions is OP ∪ Î and set of output actions
are IP \ Î, E is said to be a well-formed environment iff every fair trace t of E satisfies environment
well-formedness. For our purpose, we assume a specific well-formed environment EC defined next.

The automaton EC is a composition of n automata {EC,i|i ∈ Π}. Each automaton EC,i has two
output actions propose(0)i and propose(1)i, three input actions decide(0)i, decide(1)i, and crashi,
and no internal actions. Each output action constitutes a separate task. Action propose(v)i, where
v ∈ {0, 1}, permanently disables actions propose(v)i and propose(1− v)i. The crashi input action
disables actions propose(v)i and propose(1− v)i. The automaton EC,i is shown in Algorithm 4.

Next, we show that EC is a well-formed environment automaton. Observe that the automaton
EC satisfies the following propositions.

Algorithm 4 Automaton EC,i, where i ∈ Π. The composition of {EC,i|i ∈ Π} constitutes the
environment automaton EC for consensus
Signature:

input crashi, decide(0)i, decide(1)i

output propose(0)i, propose(1)i

Variables:
stop: Boolean, initially false

Actions:
input crashi

effect
stop := true

input decide(b)i, b ∈ {0, 1}
effect

*none*

output propose(b)i, b ∈ {0, 1}
precondition

stop = false
effect

stop := true

Tasks:
Envi,0 ≡ {propose(0)i}, Envi,1 ≡ {propose(1)i}

Proposition 42. Each action propose(v)i (where v ∈ {0, 1} and i ∈ Π) in EC constitutes a separate
task Envi,v.

Proposition 43. In EC , action propose(v)i (where v ∈ {0, 1} and i ∈ Π) permanently disables the
actions propose(v)i and propose(1− v)i.

Proof. Fix v ∈ {0, 1} and i ∈ Π. From the pseudocode in Algorithm 4, we know that the precon-
dition for actions propose(v)i and propose(1− v)i is (stop = false). We also see that the effect of
action propose(v)i is to set stop to false. Thus, the proposition follows.

Theorem 44. Automaton EC is a well-formed environment.
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Proof. To establish the theorem, we have to prove the following three claims for every fair trace t of
EC . (1) For each location i ∈ Π, at most one event from the set {propose(v)i|v ∈ {0, 1}} occurs in t.
(2) For each location i ∈ faulty(t), no event from the set {propose(v)i|v ∈ {0, 1}} follows a crashi

event in t. (3) For each location i ∈ live(t), exactly one event from the set {propose(v)i|v ∈ {0, 1}}
occurs in t.

Claim 1. For each location i ∈ Π, at most one event from the set {propose(v)i|v ∈ {0, 1}}
occurs in t.

Proof. Fix i. If no event from {propose(v)i|v ∈ {0, 1}} occurs in t, then the claim is satisfied. For
the remainder of the proof of this claim, assume some event from {propose(v)i|v ∈ {0, 1}} occurs in
t; let e be the earliest such event. Let tpre be the prefix of t that ends with e. After event e occurs,
we know from Proposition 43 that e disables all actions in {propose(v)i|v ∈ {0, 1}}. Therefore, the
suffix of t following tpre, no event from {propose(v)i|v ∈ {0, 1}} occurs.

Claim 2. For each location i ∈ faulty(t), no event from the set {propose(v)i|v ∈ {0, 1}} follows
a crashi event in t.

Proof. Fix i to be a location in faulty(t). From the pseudocode in Algorithm 4, we know that
action crashi sets stop to true. Furthermore, no action sets stop to false. Also, observe that
the precondition for actions in {propose(v)i|v ∈ {0, 1}} is stop = false. Therefore, actions in
{propose(v)i|v ∈ {0, 1}} do not follow a crashi event in t.

Claim 3. For each location i ∈ live(t), exactly one event from the set {propose(v)i|v ∈ {0, 1}}
occurs in t.

Proof. Fix i to be a location in live(t). In Algorithm 4, we see that stop is initially false,
and is not set to true until either crashi occurs or an event from {propose(v)i|v ∈ {0, 1}} oc-
curs. Since i ∈ live(t), we know that crashi does not occur in t. Since t is a fair trace,
actions in {propose(v)i|v ∈ {0, 1}} remain enabled until one of the actions occur. After one
event from {propose(v)i|v ∈ {0, 1}} occurs, from Claim 1, we know that no more events from
{propose(v)i|v ∈ {0, 1}} occur.

The theorem follows from Claims 1,2, and 3.

9.3 System Definition

Let D be an AFD, let A be a distributed algorithm, and let f be a natural number (f < n) such that
A solves f -crash-tolerant binary consensus using AFD D in environment EC . Let S be a system
that is composed of distributed algorithm A, channel automata, and the well-formed environment
automaton EC .

Based on the properties of f -crash-tolerant binary consensus and system S, we have the following
propositions which restrict the number of decision values in an execution of S.

Proposition 45. For every execution α of S, where (1) either α|Î∪OD
∈ TD or α|Î∪OD

is a prefix
of some t ∈ TD, and (2) α|IP∪OP

satisfies f -crash-limitation, α|IP∪OP
has at most one decision

value.

Proposition 46. For every fair execution α of S, where α|Î∪OD
∈ TD and α|IP∪OP

satisfies f -
crash-limitation, α|IP∪OP

has exactly one decision value.
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Proof. Fix α to be a fair execution of S such that α|Î∪OD
∈ TD and α|IP∪OP

satisfies f -crash-
limitation. Recall that S consists of a distributed algorithm A, which solves f -crash-tolerant
binary consensus using AFD D, the channel automata, and E . Since α|Î∪OD

∈ TD, we know from
the definition of “solving a problem using an AFD” that α|IP∪OP

∈ TP .
Recall that TP is the set of all sequences t over IP ∪ OP such that if t satisfies environment

well-formedness and f -crash limitation, then t satisfies crash validity, agreement, validity, and
termination. We assumed that α|IP∪OP

satisfies f -crash limitation.
From Theorem 44, we know that EC is a well-formed environment. Therefore, α|IP∪OP

satisfies
environment well-formedness. Consequently, α|IP∪OP

satisfies agreement and termination. By the
agreement property we know that α|IP∪OP

contains at most one decision value. Since f < n, we
know that no crash event occurs in α for at least one location, and therefore, by the termination
property, we know that at least one location decides. In other words, α|IP∪OP

has exactly one
decision value.

9.4 The Tree of Executions

Recall the construction of the task tree R and the construction of the tree of executions RtD (where
tD is a sequence over Î ∪OD) from Section 8. Here we construct the tree RtD for system S and an
arbitrary, but fixed, trace tD ∈ TD that contains crash events for at most f locations.

The set L of labels of the outgoing edges from each node in RtD is {FD} ∪ {Proci|i ∈ Π} ∪
{Chani,j |i ∈ Π ∧ j ∈ Π \ {i}} ∪ {Envi,v|i ∈ Π ∧ v ∈ {0, 1}}.

Recall from Section 9.1 that in any sequence t over IP ∪ OP , if an event decide(v)i occurs,
then v is said to be a decision value of t. We extend this definition to arbitrary sequences; for any
sequence t, if t contains an element decide(v)i (where v ∈ {0, 1} and i ∈ Π), then v is said to be a
decision value of t.

The following proposition follows from Propositions 29 and 45.

Proposition 47. For each node N in RtD , exe(N) has at most one decision value.

The next proposition follows from Lemma 36 and Proposition 46.

Proposition 48. For each fair branch b in RtD , exe(b) has exactly one decision value.

9.5 Valence

Let N be an arbitrary node in RtD . From Proposition 29, we know that exe(N) is a finite execution
of system S. Node N is said to be bivalent if there exist two descendants N0 and N1 of N such
that exe(N0) has a decision value 0 and exe(N1) has a decision value 1; recall from Proposition 47
that every node has at most one decision value. Similarly, N is said to be v-valent if there exists a
descendant Nv of N such that v is a decision value of exe(Nv), and for every descendant Nv′ of N ,
it is not the case that 1− v is a decision value of exe(Nv′). If N is either 0-valent or 1-valent, then
it is said to be univalent.

For every fair branch b inRtD , we know from Proposition 48 that exe(b) has exactly one decision
value. Since every node N is a node in some fair branch b, we conclude the following.

Proposition 49. Every node N in RtD is either bivalent or univalent.

Proposition 50. For every bivalent node N in RtD , exe(N) does not have a decision value.
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Proof. Let N be a bivalent node. By Proposition 47, exe(N) has at most one decision value. For
contradiction, let exe(N) have a decision value (say) v. Then, every descendant of N also has
exactly one decision value v. However, since N is bivalent, some descendant of N must have a
decision value 1− v. Thus, we have a contradiction.

Recall that an execution consisting of only an initial state is called a null execution. Since the
system starts from a unique initial state, we have the following proposition.

Proposition 51. The root node >, of RtD , is bivalent.

Proof. The execution exe(>) is the null execution, which consists of just the unique initial state of
S.

Let σall0 be a sequence over {propose(0)i|i ∈ Π} where each element in {propose(0)i|i ∈ Π}
occurs exactly once. From the pseudocode of EC , we know that there exists a finite execution of
EC whose trace is σall0, and furthermore, every event in σall0 is an output event of EC . Therefore,
there exists a finite execution αall0 of S whose trace is σall0. Note that σall0|Î∪OD

is the empty
sequence. Therefore, by Theorem 38, there exists a node Nall0 in RtD such that exe(Nall0) = αall0.

Similarly, let σall1 be a sequence over the set {propose(1)i|i ∈ Π} where each element in the
set occurs exactly once. Following arguments similar to the previous paragraph, we conclude that
there exists a finite execution αall1 of S whose trace is σall1, and there exists a node Nall1 in RtD

such that exe(Nall1) = αall1.
Let b0 be a fair branch in RtD that contains node N0. By Proposition 48, we know that exe(b0)

has exactly one decision value. By the validity property of f -crash-tolerant consensus, we know
that that decision value is 0. Therefore, there exists a node N̂0 in b0 such that exe(N̂0) contains
an event of the form decide(0)i (where i ∈ Π).

Similarly, let b1 be a fair branch in RtD that contains node N1. By Proposition 48, we know
that exe(b1) has exactly one decision value. By the validity property of f -crash-tolerant consensus,
we know that that decision value is 1. Therefore, there exists a node N̂1 in b1 such that exe(N̂1)
contains an event of the form decide(1)i (where i ∈ Π).

Thus, we have two descendants N̂0 and N̂1 of > such that that the decision value of N̂0 is 0
and the decision value of N̂1 is 1. By definition, > is bivalent.

Based on the properties of the f -crash-tolerant binary consensus problem, we have the following
lemma.

Lemma 52. For each node N in RtD , if N is v-valent, then for every descendant N̂ of N , N̂ is
also v-valent.

Proof. Let N be a v-valent node in RtD , and let N̂ to be an arbitrary descendant of N . For the
purpose of contradiction, assume that N̂ is not v-valent. Applying Proposition 49, N̂ must be
either bivalent or (1− v)-valent. That is, there exists a descendant N̂ ′ of N̂ such that the decision
value of exe(N̂ ′) is (1− v). Since N̂ is a descendant of N , it follows that N̂ ′ is a descendant of N .
However, since N is v-valent, there does not exist any descendant N ′ of N such that the decision
value of exe(N ′) is (1− v). Thus, we have a contradiction.

9.6 From Bivalent to Univalent Executions

Fix f to be a natural number less than n (recall that n = |Π| is the number of locations). Fix a trace
tD ∈ TD that contains crash events for at most f locations and construct the tree RtD as described
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in Section 8 for system S, which contains a distributed algorithm A that solves f -crash-tolerant
consensus using D in EC .

In Section 9.6.1, we define a “hook” in RtD to be a tuple that represents a subtree of RtD that
consists of four nodes — a top node, an internal node, and two leaf nodes — in which the the top
node is bivalent whereas the leaves are univalent. The subtree also satisfies additional properties
described in Section 9.6.1. Next, in Section 9.6.2, we show that RtD must contain at least one
hook. Finally, in Section 9.6.3 we show (1) that the actions associated with the edges occur at the
same location, which we call the “critical location” of the hook, and (2) that the critical location
of any hook is a live location in tD.

9.6.1 Definition of a Hook

In the tagged tree RtD , a hook is a tuple (N, l, r), where N is a node and l and r are labels in RtD ,
such that (1) N is bivalent, (2) N ’s l-child is v-valent (v ∈ {0, 1}), and (3) the l-child of N ’s r-child
is (1− v)-valent.

The foregoing definition of a hook is similar to the constructions used in [11] and [21] to demon-
strate the impossibility of f -crash-tolerant binary consensus in asynchronous systems (without
AFDs). The main difference is that we use tasks to label the edges and associate each edge with
either an action in the system, or the ⊥ element; on the other hand, in the constructions in [11]
and [21], each edge corresponds to either a message receipt or a shared memory operation.

Furthermore, our definition of a hook is also similar to the notion of a hook in [4]. The main
difference is that in [4], each edge corresponds to a “step” at process i, which includes (in our
parlance) the following events at location i: a receive event, a failure detector output event, and a
locally-controlled event at the process automaton.

9.6.2 Existence of a Hook

We show that RtD contains at least one hook, and we do this in three lemmas. First, we show that
there exists a node N and label l in RtD such that N is bivalent whereas the l-child of N and the
l-children of all N ’s descendants are univalent. Let N l be N ’s l-child. Next, we show that among
the aforementioned l-children, there exists a node N ′′ that has a different valence from that of N l.
Finally, we show that there exists some descendant N̂ of N and a label r such that (N̂ , l, r) is a
hook.

Lemma 53. There exists some node N in tree RtD and a label l ∈ L such that (1) N is bivalent,
and (2) for every descendant N̂ of N (including N), the l-child of N̂ is univalent.

Proof. For contradiction, assume that for every bivalent node N in the tree RtD , and every label
l ∈ L, there exists a descendant N̂ of N , such that the l-child of N̂ is bivalent. Therefore, from any
bivalent node N in the tree RtD , we can choose any label l and find a descendant N̂ ′ of N such
that (1) N̂ ′ is bivalent, and (2) the path between N and N̂ ′ contains an edge with label l.

Recall that the > node is bivalent (Proposition 51). Thus, by choosing labels in a round-
robin fashion, we can construct a fair branch b starting from the > node such that every node
in that branch is bivalent. By Lemma 36, we know that exe(b) is a fair execution of S where
exe(b)|Î∪OD

= tD ∈ TD. Since at most f locations crash in tD, exe(b)|IP∪OP
satisfies f -crash

limitation. In other words, exe(b) is a fair execution of S such that (1) exe(b)|Î∪OD
= tD ∈ TD,

(2) no decision event occurs in exe(b), and (3) exe(b)|IP∪OP
satisfies f -crash limitation. Therefore,

exe(b)|IP∪OP
/∈ TP whereas exe(b)|Î∪OD

= tD ∈ TD.
However, recall that A solves f -crash-tolerant binary consensus using D in EC . From the

definition of A “solving” f -crash-tolerant binary consensus using D in EC , we see that for every fair
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trace t of A composed with the channel automata, the crash automaton, and EC , if t|Î∪OD
∈ TD,

then tIP∪OP
∈ TP .

Recall that S is the composition of A, the channel automata, and EC (note that the crash
automaton is missing) and that exe(b) is a fair execution of S. Let trace(b) denote the trace of
exe(b); therefore, trace(b) is a fair trace of S. Note that trace(b)|Î is a fair trace of the crash
automaton. By Theorem 8.3 in [21], we conclude that trace(b) is a fair trace of the composition
of S and the crash automaton. Thus, from definition of “solving a problem”, we see that since
trace(b)|Î∪OD

= tD ∈ TD, trace(b)|IP∪OP
must be in TP ; in other words, exe(b)|IP∪OP

∈ TP .
However, we previously established that exe(b)|IP∪OP

/∈ TP . This is a contradiction.

Next we show that for a node N from Lemma 53, where the l-child of N is v-valent, the l-child
of at least one descendant of N is (1− v)-valent.

Lemma 54. There exists a node N in tree RtD , a descendant N̂ of N , a label l ∈ L, and v ∈ {0, 1}
such that (1) N is bivalent, (2) for every descendant N̂ ′ of N , the l-child of N̂ ′ is univalent, (3)
the l-child of N is v-valent, and (4) the l-child of N̂ is (1− v)-valent.

Proof. Invoking Lemma 53, we fix a pair (N, l) of node N and label l such that (1) N is bivalent,
and (2) for every descendant N̂ of N (including N), the l-child of N̂ is univalent. Let the l-child
of N be v-valent for some v ∈ {0, 1}. Since N is bivalent, there must exist some descendant of N̂
of N such that exe(N̂) has a decision value (1− v); that is, N̂ is (1− v)-valent. By Lemma 52, it
follows that the l-child of N̂ is (1− v)-valent.

┬
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Nl

N

N
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Nrl M
l-edge

l-edge

l-edge
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~

(N,l,r) is a hook

Figure 2: Construction that shows the existence of a “hook” in the proof for Lemma 55.

Now we are ready to prove the existence of a hook.

Lemma 55. There exists a node N and a pair of labels l and r in the tagged tree RtD such that
(N, l, r) is a hook.
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Proof. Applying Lemma 54, we know that there exists some node Ñ in tree RtD , a descendant ̂̃N
of Ñ , and a label l ∈ L such that (1) Ñ is bivalent, (2) for every descendant Ñ ′ of Ñ , the l-child of
Ñ ′ (denoted Ñ ′l) is univalent, (3) the l-child of Ñ (denoted Ñ l) is v-valent, where v ∈ {0, 1}, and

(4) the l-child of ̂̃N (denoted ̂̃N l

) is (1− v)-valent.

If the walk w from Ñ to ̂̃N contains an l-edge, then let M be the node in w such that (1) the
walk from Ñ to M does not contain an l-edge, and (2) the l-child of M (denoted M l) is in w.

Otherwise, let M be the node ̂̃N . Since (1) ̂̃N l

is (1− v)-valent, (2) ̂̃N is either M or a descendant
of M l, and (3) by Lemma 54, M l is univalent, we conclude that M l must be (1 − v)-valent. See
Figure 2 for reference.

We present three arguments. (1) By construction, the walk from Ñ to M does not contain an
l-edge. (2) By Lemma 54, for every node N ′ in the walk from Ñ to M , the l-child of N ′ is univalent,
and Ñ l is v-valent. (3) We have already established that M l is (1− v)-valent.

From the above three arguments, we conclude that there must exist some pair of nodes N , N r

that are in the path from Ñ to M and a label r such that (1) N r is the r-child of N , (2) N ’s
l-child is v-valent, and (3) N r’s l-child is (1− v)-valent. (See Figure 2.) By definition, (N, l, r) is a
hook.

9.6.3 Properties of a Hook

Any hook (N, l, r) satisfies three properties that form the main result of this section: (1) the action
tags of N ’s l-edge and r-edge cannot be ⊥, (2) the locations of the action tags of the l-edge and
the r-edge must be the same location (say) i, and (3) location i, called the critical location of the
hook, must be live in tD. We prove each property separately.

For the remainder of this section, we adopt the following convention. Given a hook (N, l, r),
N l denotes the l-child of N , N r denotes the r-child of N , N lr denotes the r child of N l, and N rl

denotes the l child of N r. Also, El denotes N ’s l-edge, and Er denotes N ’s r-edge.

Lemma 56. For every hook (N, l, r) in RtD , the action tags of El and Er are not ⊥.

Proof. Fix (N, l, r) to be an arbitrary hook in RtD .
Case 1. If the action tag of El is ⊥, then, by construction, cN = cN l and tN = tN ′ . Since

N is bivalent, there exists a descendant N1−v of N such that the decision value of exe(N1−v) is
1 − v. Applying Lemma 34, we know that there exists a descendant N l

1−v such that the suffix of
exe(N l

1−v) following exe(N l) is identical to the suffix of exe(N1−v) following exe(N). Since exe(N)
is bivalent, by Proposition 50 it does not have a decision value; it follows that some event in the
suffix of exe(N1−v) following exe(N) must be of the form decide(1− v)i (where i ∈ Π). Therefore,
the decision value of exe(N l

1−v) is 1− v. But since N l is v-valent, we have a contradiction.
Case 2. If the action tag of Er is ⊥, then, by construction, cN = cNr and tN = tNr . Applying

Lemma 33, we see that cN l = cNrl and tN l = tNrl .
Since N l is v-valent, there exists some descendant N̂ l of N l such that exe(N̂ l) has the decision

value v. Observe that the action tag of N ’s l-edge cannot be a decide(v) action because N rl is
(1−v)-valent. Therefore, some event in the suffix of exe(N̂ l) following exe(N l) is a decide(v) event.

Applying Lemma 34 (whereN isN l andN ′ isN rl) we see that there exists a descendant N̂ rl such
that the suffix of exe(N̂ rl) following exe(N rl) is identical to the suffix of exe(N̂ l) following exe(N l).
Therefore, some event in the suffix of exe(N̂ rl) following exe(N rl) is a decision(v) event. Therefore,
the decision value of exe(N̂ rl) is v. But since N rl is (1− v)-valent, we have a contradiction.
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Lemma 57. For every hook (N, l, r) in RtD , the location of the action tags of El and Er must be
the same location.

Proof. Fix (N, l, r) to be an arbitrary hook in RtD .
For the purpose of contradiction, we assume that the location of the action tag aEl is different

from the location of the action tag aEr ; that is loc(aEl) = i, loc(aEr) = j, and i 6= j. This
assumption implies that l ∈ {FD,Proci} ∪ {Chank,i|k ∈ Π \ {i}} ∪ {Envv,i|v ∈ {0, 1}} and r ∈
{FD,Procj} ∪ {Chank,j |k ∈ Π \ {j}} ∪ {Envv,j |v ∈ {0, 1}}. From Lemma 56, we know that the
action tags of the l-edge and the r-edge are both enabled actions in state cN .

A simple case analysis for all possible values of l and r (while noting that i 6= j) establishes
the following. Extending exe(N) by applying aEl followed by aEr will yield the same final state
as applying aEr , followed by aEl , to exe(N). Intuitively, the reason is that aEl and aEr occur at
different locations, and therefore, may be applied in either order to exe(N) and result in the same
final state. Therefore, cN lr = cNrl . Also, observe that tN lr = tNrl .

Recall that since (N, l, r) is a hook, N l is v-valent and N rl is (1− v)-valent for some v ∈ {0, 1}.
Since N lr is a descendant of N l, by Lemma 52, N lr is also v-valent. Let N̂ lr be a descendant of
N lr such that exe(N̂ lr) has a decision value v. Applying Lemma 34, we know that there exists
a descendant N̂ rl of N rl such that cN̂ lr = cN̂rl and the suffix of exe(N̂ lr) following exe(N lr) is
identical to the suffix of exe(N̂ rl) following exe(N rl).

Note that since N is bivalent, by Proposition 50, exe(N) has no decision value. Also note that
for each of N ’s l-edge, N ’s r-edge, N l’s r-edge, and N r’s l-edge, their action tags cannot be a decide
action because that contradicts the conclusion that N rl and N lr have different valences. Therefore,
since exe(N̂ lr) has a decision value v, the the suffix of exe(N̂ lr) following exe(N lr) contains an
event of the form decide(v). In other words, the suffix of exe(N̂ rl) following exe(N rl) contains an
event of the form decide(v). However, this is impossible because N rl is (1− v)-valent.

Next, we present the third property of a hook. Before stating this property, we have to define
a critical location of a hook. Given a hook (N, l, r) of a tagged tree RtD , the location of the action
tag of El is said to be the critical location of the hook. From Lemma 57, we know that the location
of the action tags of El and Er are the same location. Therefore, the critical location of (N, l, r) is
also the location of the action tag of Er.

Next, we show that for every hook (N, l, r), the critical location of the hook must be live.

Lemma 58. For every hook (N, l, r) in RtD , the critical location of (N, l, r) is in live(tD).

Proof. Fix a hook (N, l, r). Note that N l is v-valent for some v ∈ {0, 1} and N rl is (1− v)-valent.
Let b be a fair branch that contains nodes N , N r, and N rl, and let b′ be a fair branch that contains
nodes N , N l and N lr. Let i be the critical location of the hook (N, l, r). Applying Lemma 57, we
know that the location tag of N ’s l-edge and r-edge is location i.

In order to show i ∈ live(tD), we have to show that no crashi event occurs in tD. For the
purpose of contradiction, we assume that crashi occurs in tD; therefore, for some FD edge in b,
the action tag of the FD edge is crashi. We denote the earliest such FD edge in b as Ecrash. We
consider four cases: (1) Ecrash is before N in b, (2) Ecrash is node N ’s r-edge, (3) Ecrash is node
N r’s l-edge, and (4) Ecrash is after N rl in b.

Case 1. Let Ecrash be before N in b. Recall that the locations of the action tags for edges
El and Er are i. By assumption, crashi occurs in exe(N), so by the validity property of tD, no
actions from OD,i exist in tN . Therefore neither l nor r is FD. From Lemma 56 we know that
the action tags of El and Er are not ⊥; therefore, we know that the tasks associated with l and r
belong to Chanj,i, where j ∈ Π \ {i}. Thus, from the definition of ∼i, we see that N rl ∼i N

lr (and
N lr ∼i N

rl).
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Since N is bivalent, from Proposition 50, we know that exe(N) does not have a decision value.
Since crashi occurs in exe(N), event decide(1− v)i does not occur in exe(b). Since N rl is (1− v)-
valent, exe(b) has the decision value (1 − v). Therefore, there exists an edge E in b, that occurs
after node N , and a location j 6= i such that, the action tag of E is decide(1− v)j . Let N̂ rl be the
node preceding E in b. Note that N̂ rl is descendant of N rl (or is N rl itself). By Theorem 40, we
know that there exists a descendant N̂ lr of N lr such that N̂ rl ∼i N̂ lr.

From the definition of the ∼i relation, we know that the state of the process automaton at j is
the same in c

N̂rl and c
N̂ lr . Since decide(1−v)j , which is an output action of the process automaton

at j, is enabled in state c
N̂rl , we conclude that decide(1− v)j is enabled in c

N̂ lr . Let N1−v be the

Procj-child of N̂ lr. Therefore, the action tag of the Procj-edge of N̂ lr is decide(1 − v)j , and the
decision value of exe(N1−v) is 1 − v. However, this contradicts the property of the hook (N, l, r)
that states that N l is v-valent.

Case 2. Let Ecrash be node N ’s r-edge. By construction, N l’s r-edge is also crashi. Since i is
the critical location of the hook (N, l, r), regardless of the action tag of N ’s l-edge and N r’s l-edge,
observe that N rl ∼i N

lr.10 Using arguments identical to Case 1, we see that for some descendant
N1−v of N lr the decision value of exe(N1−v) is 1− v. However, this contradicts the property of the
hook (N, l, r) that states that N l is v-valent.

Case 3. Let Ecrash be node N r’s l-edge. By construction, the action tag of El (N ’s l-edge) is
also crashi. Since i is the critical location of the hook (N, l, r), regardless of the action tag of N ’s
r-edge and N l’s r-edge, observe that N lr ∼i N

rl.11 Next, we use employ arguments similar to Case
1, except that the roles of r and l are reversed.

Since N lr is v-valent, exe(b′) has the decision value v. Therefore, there exists an edge E in b′

and a location j 6= i such that, the action tag of E is decide(v)j . Let N̂ lr be the node preceding E
in b′. Note that N̂ lr is descendant of N lr. By Theorem 40, we know that there exists a descendant
N̂ rl of N rl such that N̂ lr ∼i N̂ rl.

From the definition of the ∼i relation, we know that the state of the process automaton at j is
the same in c

N̂ lr and c
N̂rl . Since decide(v)j , which is an output action of the process automaton at

j, is enabled in state c
N̂ lr , we conclude that decide(v)j is enabled in c

N̂rl . Let Nv be the Procj-child

of N̂ rl. Therefore, the action tag of the Procj-edge of N̂ rl is decide(v)j , and the decision value of
exe(Nv) is v. However, this contradicts the property of the hook (N, l, r) that states that N rl is
(1− v)-valent.

Case 4. Let Ecrash be after N rl in b. Since i is the critical location of the hook (N, l, r), the
locations of the action tags at N ’s l-edge, N ’s r-edge, N r’s l-edge, and N l’s r-edge are i. Therefore,
the states cN , cN lr , and cNrl may differ only in the state of the process automaton at i, the state of
the environment automaton EC,i at i, and the states of at most two channel automata as described
next. If l or r is Proci, then the action tag of El or Er (respectively) could be a a send(m, j)i

event where m ∈ M and j ∈ Π \ {i}. Similar, if l or r is Chanj,i, then the action tag of El or Er

(respectively) could be a receive(m, j)i event where m ∈ M and j ∈ Π \ {i}. Regardless of the
actions tags of El and Er, note that the queue of messages in transit from i to any other location

10Note that although Nrl ∼i N
lr, it need not be the case that N lr ∼i N

rl. Consider the case where l is Proci, and
the action tag of El (node N ’s l-edge) is an action send(m, j)i (where m ∈ M and j 6= i). The action tag of Nr’s
l-edge must be ⊥, because N ’s r-edge is Ecrash. Therefore, the queue of messages in Chani,j in state cNlr is not a
prefix of the queue of messages in Chani,j in state cNrl .

11Note that although N lr ∼i N
rl, it need not be the case that Nrl ∼i N

lr. Consider the case where r is Proci,
and the action tag of Er (node N ’s r-edge) is an action send(m, j)i (where m ∈ M and j 6= i). The action tag of
N l’s r-edge must be ⊥, because N ’s l-edge is Ecrash. Therefore, the queue of messages in Chani,j in state cNrl is
not a prefix of the queue of messages in Chani,j in state cNlr .
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j in Chani,j in state cN is a prefix of the messages in transit from i to that location j in Chani,j

in states cN lr and cNrl .
Next, we construct three walks, starting from N , N lr and N rl to determine three nodes N i,

N lri, and N rli, respectively. See Figure 3 for reference.

Nl

N

Nr

Nrl

r-edge
l-edge

l-edge

(N,l,r) is a hook

Path consists of only FD edges
Ni FD-edge

Action tag 
is crash

i

Path consists of 
only FD edges

Nli FD-edge
Action tag 
is crash

i

Nrli FD-edge

Action tag 
is crash

i

Path consists of only FD edges

┬

Figure 3: This figure shows how the nodes N i, N li, and N rli are determined in the proof of Lemma
58.

Node N i: By construction, there exists some walk in the tree that starts at N and contains a
consecutive sequence of FD edges until it reaches an FD edge Ei whose action tag is crashi. Let
the node following Ei be N i.

Node N lri: By construction, there exists some walk in the tree that starts at N lr and contains
a consecutive sequence of FD edges until it reaches an FD edge Elri whose action tag is crashi.
Let the node following Elri be N lri.

Node N rli: By construction, there exists some walk in the tree that starts at N rl and contains
a consecutive sequence of FD edges following N rl, until it reaches FD edge Erli whose action tag
is crashi. Let the node following Erli be N rli.

By construction, observe that N i ∼i N
lri and N i ∼i N

rli.
Let bi be a fair branch in RtD that contains node N i. We consider two subcases: the decision

value of exe(bi) is either (a) v or (b) 1− v.
Case 4(a). Let the decision value of exe(bi) be v. Therefore, there exists an edge E in bi and a

location j 6= i such that, the action tag of Ei is decide(v)j . Let N̂ i be the node preceding E in bi.
Note that N̂ i is descendant of N i. By Theorem 40, we know that there exists a descendant N̂ rli of
N rli such that N̂ i ∼i N̂ rli.

From the definition of the ∼i relation, we know that the state of the process automaton at j is
the same in c

N̂ i and c
N̂rli . Since decide(v)j , which is an output action of the process automaton at

j, is enabled in state c
N̂ i , we conclude that decide(v)j is enabled in c

N̂rli . Let Nv be the Procj-child

of N̂ rli. Therefore, the action tag of the Procj-edge of N̂ rli is decide(v)j , and the decision value
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of exe(Nv) is v. However, this contradicts the property of the hook (N, l, r) that states that N rl is
(1− v)-valent.

Case 4(b). Let the decision value of exe(bi) be 1− v. This is analogous to case 4(a) except that
we use N lri instead of N rli.

The main result of this section is presented as the following theorem.

Theorem 59. For every FD-sequence tD ∈ TD, if at most f locations crash in tD, then there exists
at least one hook in the tagged tree RtD . For every hook (N, l, r) in RtD the following are true: (1)
the action tags of N ’s l-edge and r-edge are not ⊥, (2) the critical location of (N, l, r) exists, and
(2) the critical location of (N, l, r) is in live(tD).

Proof. Follows from Lemmas 56, 57, and 58.

10 Discussion

10.1 Query-Based Failure Detectors

We model failure detectors as crash problems that interact with process automata unilaterally.
In contrast, many traditional models of failure detectors employ a query-based interaction; that
is, processes query failure detectors for an output. The motivation for proposing and modeling
unilateral interaction of AFDs with process automata is that we are looking for failure detectors
that provide information exclusively about process crashes. Since the inputs to AFDs are only the
crash events, the information provided by AFDs can only be about process crashes. In contrast,
query-based failure detectors receive inputs from the crash events and the process automata. The
inputs from process automata may “leak” information about other events in the system to the
failure detectors, and therefore, such failure detectors may provide such additional information
in its outputs as well. We illustrate the ability of query-based failure detectors to provide such
additional information with the following example.

Applying Theorem 21 we know that consensus does not have representative failure detectors.
However, if we consider the universe of query-based failure detectors, we see that consensus has a
representative query-based failure detector, which we call a participant failure detector. A partici-
pant failure detector outputs the same location ID to all queries at all times and guarantees that
the process automaton whose associated ID is output has queried the failure detector at least once
(observe that this does not imply that said location does not crash, just that the location was not
crashed initially).

It is easy to see how we can solve consensus using the participant failure detector. Each process
automaton sends its proposal to all the process automata before querying the failure detector. The
output of the failure detector must be a location whose process automaton has already sent its
proposal to all the process automata. Therefore, each process automaton simply waits to receive
the proposal from the process automaton whose associated location ID is output by the failure
detector and then decide on that proposal.

Similarly, solving participant failure detector from a solution to consensus is also straightfor-
ward. The failure detector implementation is as follows. Upon receiving a query, the process
automaton inputs its location ID as the proposal to the solution to consensus. Eventually, the
consensus solution decides on some proposed location ID, and therefore, the ID of some location
whose process automaton queried the failure detector implementation. In response to all queries,
the implementation simply returns the location ID decided by the consensus solution.
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Thus, we see that query-based failure detector may provide information about events other than
crashes. Furthermore, unlike representative failure detectors, the representative query-based failure
detectors for some problems are not guaranteed to be the weakest failure detectors for the same
problem. Therefore, a representative query-based failure detector for a problem need not encode
the minimal synchronism necessary to solve the problem. In conclusion, we argue that unilateral
interaction for failure detectors is more reasonable than a query-based interaction.

10.2 Future Work

Our work introduces AFDs, but the broader impact of AFD-based framework on the extensive
results for traditional failure-detector theory remains to be assessed. There are several open ques-
tions. As an immediate follow-up, we have to verify that the proofs for weakest failure detectors
for consensus [4] and set agreement [31] can be recast into the AFD framework. Furthermore, the
exact set of failure detectors than can be specified as AFDs remains to determined. It remains to
be seen if weakest failure detectors for various problems are specifiable as AFDs, and if not, then
the weakest AFDs to solve these problems are yet to be determined. We are yet to investigate if
the results in [20] hold true for AFDs and if every problem (as defined in [20]) has a weakest AFD.
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