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I. INTRODUCTION

Historically, feedback has been used in control system engineering

as a means for satisfying design constraints requiring

1) stabilization of insufficiently stable systems,

2) reduction of system response to noise,

3) realization of a specific input/output relation
(e.g., specified poles and zeroes), or

4) improvement of a system's robustness against varia-
tions in its open-loop dynamics.

Classical feedback synthesis techniques include procedures which ensure

directly that each of these design constraints is satisfied [1] and [2].

Unfortunately, the direct methods of classical feedback theory become

overwhelmingly complicated for all but the simplest feedback configu-

rations. In particular, the classical theory cannot cope simply and

effectively with multiloop feedback.

Linear-Quadratic-Gaussian (LQG) control theory has made relatively

simple the solution of many multiloop control synthesis problems. The

LQG technique [3] provides a straightforward means for synthesizing stable

linear feedback systems which are insensitive to Gaussian white noise.

Variations of the LQG technique have also been devised for the synthesis

of feedback systems with specified poles [4, pp. 77-87], [5], [6]. Thus,

the LQG technique is a valuable design aid for satisfying the first three

of the aforementioned design constraints.

The results which follow show how the multivariable LQG design can

satisfy constraints of the fourth type, i.e. constraints requiring a sys-

tem to be robust against variations in open loop dynamics. The Linear-
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Quadratic-State-Feedback regulator, which we refer to as the LQSF

regulator, is considered. The robustness of LQSF regulator designs

against variations in open-loop dynamics is measured in terms of

multiloop generalizations of the classical notions of gain and phase

margin. It is shown that LQSF multivariable designs have the property

of an infinite gain margin and +600 phase margin for each control

channel.

Such robustness results may appear incorrect at first glance,

especially to control engineers familiar with classical servomechanism

design. It should be noted that in classical servomechanism design the

dimension of the compensators used (e.g. lead-lag networks) generally

leads to conditionally stable systems, so that one may never have the

infinite gain margin property. However, it should be stressed that

when one uses full state-variable feedback one, in effect, introduces

a multitude of zeroes in the compensator; it is this abundance of zeroes

together with the Linear-Quadratic optimal design procedure that results

in the surprising robustness properties of LQSF designs.

In order to provide a more detailed and realistic bridge between

the classical and modern approaches, especially with respect to robustness

issues, one has to examine the case in which not all state variables are

available for feedback. In the modern control approach, one would then

have to use a state reconstructor (Luenberger observer or constant gain

Kalman filter). The results of this paper have obvious implications with

respect to the robustness properties of Kalman filters, by duality. How-

ever, the overall robustness properties of the LQG design are not settled
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as yet; they will be addressed in a future publication. Also there are

interesting and as yet unresolved issues of the robustness properties

of output (or limited-state) variable feedback designs using quadratic

performance criteria [31].
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II. PREVIOUS WORK

The fundamental work on the robustness of feedback systems is due

to Bode [1, pp. 451-88]. Employing the Nyquist stability criterion,

Bode showed how the notions of gain and phase margin can be exploited

to arrive at a simple and useful means for characterizing the classes

of variations in open-loop dynamics which will not destabilize single-

input feedback systems. The engineering implications of Bode's results

are further developed by Horowitz [2]. Although the Nyquist criterion has

been extended to multiloop feedback systems [7] and [8], there has as yet

been only limited success in exploiting the multiloop version in the ana-

lysis of multiloop feedback system robustness [9] - [14].

Regarding the robustness properties specific to LQSF regulators,

perhaps the most significant result is due to Anderson and Moore [4,pp.70-

76]. Exploiting the fact that single-input LQSF regulators have a return-

difference greater than unity at all frequencies [15], these authors show

that single-input LQSF regulator designs have +600 phase margin, infinite

gain margin, and 50% gain reduction tolerance. It has also been shown

that the gain properties extend to memoryless nonlinear gains of the

type shown in Figure 1 ([16] and [4, pp. 96-98]). Related results by

Barnett and Storey [18] and Wong [19] parameterize a class of linear,

constant perturbations in feedback gain which will not destabilize a multi-

loop LQSF regulator. A generalization of the latter result to multiloop

nonlinearities in optimal nonlinear state-feedback regulators with quadratic

This result is attributed by Anderson [16] to Sage (17].
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Fig. 1 Non-destabilizing Nonlinear Feedback Gain
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performance index is incorrectly attributed to [16] by [20]. Insofar

as the generalization stated in [16] applies to LQSF regulators, it is

essentially equivalent to theorem 1 of this paper.

Various other results have been produced which are more or less

indirectly related to the question considered here. Issues related to

the inverse problem of optimal control, i.e. the characterization of the

properties of optimal systems, are considered by [15], and [20] - [24].

The question of sensitivity in LQSF regulators is considered by [10], [15],

and [25] - [28]. The stability conditions of Zames [29] and [30] involving

loop gain, conicity, and positivity have many features in common with the

results which are presented here.
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III. DEFINITIONS AND NOTATION

The following conventions of notation and terminology are

used:

T T
(i) A (x ) denotes the transpose of the matrix A (the vec-

tor x).

(ii) A denotes the adjoint of the matrix A (i.e., the complex-

conjugate of A T ).

(iii) We say that the function x:[O, a)+ Rn is square-integrable

if

f x T(t) x(t) dt < 
0

(iv) The term operator is reserved for functions which map func-

tions into functions. For example, a dynamical system may be viewed as

an operator mapping input time-functions into output time-functions.

(v) We say that an operator N with N 0 = 0 is norm-bounded if there

exists a constant k < o such that

f [(N u) (t)]T [(N u)(t)] dt < k uT (t)u (t )d t

0 0

for all square-integrable u.

(vi) We say that an operator mapping input time-functions into

output time-functions is non-anticipative if the value assumed by the

output function at any time to depends only on the values of the input-

function at times t < t .

(vii) If a function x:[O, g)+ R has the property that

lim x(t) = 0

t4O
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then we say that x is asymptotically stable. A system of ordinary

differential equations is asymptotically stable if every solution is

asymptotically stable.

(viii) If (S) denotes the system x(t) = (F x) (t) where F 0 = 0,

we say that the pair [H, S] is detectable if, for each x: [0, o)+ Rn

satisfying (S) with x not square-integrable, H x is also not square-

integrable. The significance of detectability is most apparent if we

consider x(t) as a description of the internal dynamics of some physi-

cal system and (H x) (t) as the observed output. Viewed in this manner,

detectability means essentially that unstable behavior in the system's

internal dynamics always results in an output which is unstable. For

example, if H is a non-singular square matrix, then [H, S] will be

detectable.

(ix) We say that an operator mapping time-functions into time-

functions is memoryless if the value assumed by its output function at

any instant t depends only upon t and the instantaneous value of the

input function at time to.

(x) A > 0 (A > 0) is used to indicate that the matrix A is posi-

tive definite (semi-definite).

(xi) We say that a rational transfer function P(s) is proper if

P(s) has at least as many poles as zeroes.
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IV. PROBLEM FORMULATION

The Linear-Quadratic-State-Feedback (LQSF) regulator problem can

be formulated as follows

min J(x, u)
U

subject to (4.1)

x(t) = A x(t) + B u(t) ; x(0) = x
_ _ _-- - - o

x(t) C Rn , u(t)C Rm A C Rnn B C RnXm

where the performance index J(x, u) is given by

c0

J(x, U) = ( [xT (t) x(t) + u (t) R u(t)]dt

0 (4.2)

T T
Q - 2 > 0 , R = R > 0.

The optimal control u (t) and the associated optimal state-trajectory

x (t) are given by

** * * *

x (t) = Ax (t) + B u (t) ; x (0) = x

* * -1T * (
u (t) =-H x (t) = -R B K x (t)

where K = KT > 0 satisfies the Riccati equation

o = K A + ATK - K B RB TK + (4.3)



The minimal value of the performance index is

* * T
J(x , u ) = x K x (4.4)

The class of systems considered here are perturbed versions of

( ) satisfying

dt x(t) = A x(t) + (B N )(t) ; x(O) x

_(t) = -H x(t) (
where A, B, x , and H are the same as in (I*). We assume that N is

a norm-bounded, non-anticipative operator with N 0 = 0 (see Figure 2).

It is further assumed that either N is memoryless or that N is linear-

time-invariant with a rational transfer function matrix.

The condition N o = 0 is not restrictive since we can always consider
the "DC" or steady-state effects separately as is common engineering
practice.
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Fig. 2 Perturbed LQSF Regulator (~)
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V. RESULTS

The two theorems which follow quantitatively characterize the

tolerance of (I) to perturbations N. It is noted that the significance

of these results is not restricted to systems with perturbations ori-

ginating only at the point shown in Figure 2. Rather, it is only

necessary that the system under consideration have open-loop input/

output behavior which is the same as the open-loop behavior of (I).

Both of the theorems which follow have interpretations in terms of gen-

eralizations of the classical notions of gain and phase margin. The

proofs are given in the Appendix.

Theorem 1 -- (LQSF Multiloop Nonlinear Gain Tolerance)

Let the perturbation N of (I) be a memoryless, time-varying non-

linearity,

(N u) (t) = f(u(t), t). (5.1)

If there exists a constant 8 > 0 and a constant k < X such that

k uTu > uTf(R-lu, t) > 1 + uTR-u (5.2)

for all u Rm and all t £ [0, 0), then

00 (t) (t) + (t) R(tdt (5.3)

J(x , u) > [x3(t)Q x(t)+ 8 u (t) Ru(t)]dt (5.3)

and if, additionally, [QI/2, A] is detectable then (I) is asymptotically

stable. 0
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Theorem 2 -- (LQSF) Multiloop Gain and Phase Margin)

Let the perturbation N of (I) be a norm-bounded, linear, time-invariant

operator L with rational transfer function matrix L(s). If for some f > 0

and all w

-1 -1 * -1
L(jW)R1 + R 1 L (jW) - (1 + ~) R > O (5.4)

and if [Q1/2, Z] is detectable, then (I) is asymptotically stable. O



VI. DISCUSSION

Theorems 1 and 2 characterize a wide class of variations in open-

loop dynamics which can be tolerated by LQSF regulator designs. To

appreciate the significance of these results and, in particular, their

relation to classical gain and phase margin, it is instructive to con-

sider the special case depicted in Figure 3 in which

Q > (6.1)

rl O ... O

O r 0

0r ... r

and the perturbation N satisfies

1

N u = . (6.3)

N u
-~m m-

so that the perturbations in the various feedback loops are non-inter-

acting.

In this case theorem 1 specializes to the following:

Corollary 3: If in the perturbed system (I) satisfies (6.1), (6.2),

and (6.3) and each of the perturbations N. is memoryless with (Niui)(t)

- fi(ui(t), t) and for some k > 0, some B > 0 and all t £ [(0, )

fi (, t) = 0 (6.4a)
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Fig. 3 LQSF Regulator with Non-interacting Perturbations
in Each Control Loop
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k > - f. (u, t) > 2 for all u Z 0 (6.4b)

(see Figure 1), then (I) is asymptotically stable and (5.3) holds. 0

Proof: This follows immediately from theorem 1. O

If we consider the case in which the N. 's of the system in
1

Figure 3 are linear time-invariant operators, then theorem 2 becomes:

Corollary 4: If the perturbed system (I) satisfies (6.1), (6.2),

and (6.3) and if each of the perturbations Ni is linear and time-invariant

with proper rational transfer function P.(s), Re[sj] < 0 for each pole s.

of Pi(s), and Re[Pi(jw) > 1/2 for all w, then (I) is asymptotically stable. O

Proof: The condition Re[sj] < 0 assures that N is norm-bounded.

Taking L(s) = diag(Pi (s)), the result follows immediately from theorem 2. 0

From corollary 3, it is clear that the sufficient condition for

stability

1 1
- f(u) > - (6.5)u 2

proved in [4, pp. 96-98] and [16] for single-input LQSF regulators, gen-

eralizes to multiloop systems when R = diag(rl,...,r ).

From corollary 4, the following two results follow directly:

Corollary 5: (LQSF +600 Multiloop Phase Margin): If Q and R

satisfy (6.1) and (6.2), then a phase shift 4i with |Iil < 600 in the

respective feedback loops of each of the controls ui will leave an LQSF

regulator asymptotically stable. 0



j4i (W)
Proof: Take P.(jw) = e . From corollary 4, we require

cos Pi(W) >-2 ori(w){ < cos 1 (/2) = 60°. 0

Corollary 6: (Multiloop LQSF Infinite Gain Margin and 50% Gain

Reduction Tolerance): If 2 and R satisfy (6.1) and (6.2), then the

insertion of linear constant gains a.> 1 into the feedback loops of the
1-- 2

respective controls ui will leave an LQSF regulator asymptotically sta-

ble. 3O*

Proof: Follows trivially from corollary 4. 0

Corollaries 5 and 6 are obvious multiloop generalizations of the

previously established result [4, pp. 70-76] that single-input LQSF

regulators have infinite gain margin, +600 phase margin, and 50% gain

reduction tolerance.

Corollary 6 is a special case of a result proved by Wong [19].
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VII. CONCLUSIONS

Results have been generated which quantitatively characterize a

wide class of variations in open-loop dynamics which will not destabilize

LQSF regulators. A +600 phase margin property of LQSF regulators has

been established for multiloop systems (corollary 5). The class of non-

destabilizing linear feedback perturbations for multiloop LQSF regulators

has been extended to include dynamical, transfer-function perturbations

(theorem 2). A nonlinearity tolerance property for LQSF regulators has

been proved (theorem 1). An upper bound on the performance index change

in a perturbed LQSF system has been established (Eq. (5.3) in theorem 1

and corollary 3). The latter result can be interpreted as a measure of

the stability of a perturbed LQSF regulator in comparison with the unper-

turbed regulator. The process of generating these results has brought

pertinent previous results [4, pp. 70-76, 96-98], [16], [18] - [20] together

under a unified theoretical framework.

The results presented show that modern multiloop LQSF regulators have

excellent robustness properties as measured by the classical criteria of

gain and phase margin, thus strengthening the link between modern and

classical feedback theory. Additionally, these results show that multi-

loop LQSF regulator designs can tolerate a good deal of nonlinearity. The

quantitative nature of the results suggests that they may be useful in the

synthesis of robust controllers.

Although the results presented all specify that the tolerable pertur-

bations be measured with respect to a perfect state-measurement LQSF system,
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it is apparent that statements may also be made about the general LQG

regulator if the effect of the Kalman filter on the system's open-loop

dynamics is viewed as a component of the perturbation N.
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APPENDIX

Proofs of Theorems 1 and 2

We begin by introducing the following notation to facilitate the

proofs:

(i) The inner-product space L2[0, a) is defined by

00

L2 [0, ) = {xIx :[0, )+R n , x(t) x(t) dt < c} (A.la)

~~00

<x, > = xT(t) y(t)dt (A.lb)
0

(ii) The extension L2en [0, ) of L2 [n0, ) is defined by

n T
Le [0, ° ) = xx [O, )+-R , x (Tt)x_(t)dt<- for all T}
2e [

0 (A.2a)

<x, y> if the integral (A.lb) converges

<x, Y>e = (A.2b)
o otherwise

(iii) The linear t runcation operator P is such that for some)
_' 2e 2

0 otherwise

For brevity of notation we denote 1' x by xT.

> o

< u, (2N - (1 + ) I)R u >> 0 (A.4)
_ fn. - -_ _ -
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for all u c L2 [0, then (i)

T
x K x > < x, Q x > + <u, Ru> (A.5)-o -o -

where x, u are the solution of (i), and (ii) if, additionally, [Q1/2, C]

is detectable, then x is asymptotically stable and square-integrable.

Proof: For K the solution of (4.3) and x the solution of (6) with

x(O) = x , we have that for every T [(0, o)

T
T -T d (T

x TK x = x (T) K x(T) _ (t)K x(t))dt

R -1T x
= x (T) K X(T) - 2 <K x-T (A - B N R B K)x >

-T-- - -- T

> -2 < x , K(A - B N R- BK) x >
-l T

·= <-T (K B(2 N- I)R BK + ) T- (A.6)

Using (A.4) and the fact that u = -R B K x, we have

x K x K x - < x , Q x> - <u ,R u >
--o- --o - - -T -T --T

> <X , K B (2 N - (1 + B) I) R-1 BTKx >
- -T -- T

<B K x (2 N - (1 + ~) I) R -1K x >

>0 . (A.7)

Rearranging and taking the limit T + c, (A.5) follows. Now, suppose for

the purpose of argument that x is not square-integrable. Since [Q1/2, ]
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is detectable, this means <Q/2 x, Q/x> increases without bound

as T increases, contradicting (A.5). Therefore, x is square-integrable.

By hypothesis N and hence A - B N R1B TK are norm-bounded. Thus,

x = (A - B N R B K)x is also square-integrable. Since both x and X

are square-integrable, it follows (cf. [32, pp. 235-37]) that x is

asymptotically stable. 0

Proof of Theorem 1: Equation (5.2) ensures that (A.4) is satisfied.

Since, for memoryless N, x is the state of (I) and since the initial time

t = 0 is not distinguished, the asymptotic stability of (I) is assured if

x is asymptotically stable for every initial state x(O) = x . Theorem 1

follows from (4.4) and theorem A.1. 0

Proof of Theorem 2: From (5.4) and Parseval's theorem it follows

that, for every u £ L [O2 , )

< u, (2 N - (1 + S)I)R l u >

= <u, (2 L - (1 + B)I)R-lu>

00

= _ (jw) (L(j )R1 + R-1 *(j) - (1 + )R-1 )U(j)dw
-00

> 0 (A.8)

where U(jw) is the Fourier transform of u. Thus (A.4) is satisfied.

Since [Q1/2, £] is detectable, theorem A.1 implies that x is asympto-

tically stable, regardless of the value of x . It follows that the
-weighting pattern Wt i.e., the response of 

weighting pattern W(t) (i.e., the response of (.) to an impulse I S(t)
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where 6(t) is the Dirac delta function) is asymptotically stable.

From standard results on linear systems we have

(i) W(s) = [Is + A - B L(s)R BTK] 1 (A.9)

where W(s) is the Laplace transform of W(t),

s.t
(ii) W(t) = 1 C.(t)e 1

s. C C(W) (A.10)
1

where C. (t) are non-zero matrices of polynomials in t and C(W) is the

set of characteristic frequencies of W(t), and

(iii) P(W) -Z(W)C C(W) C P(W) (A.lla)

where

Z(W)- sdet[W(s)] = O} (A.llb)

P(W)- { s.(det[W(s)]) = (A.llc)

(We call Z(W) and P(W) respectively the zeroes and the poles of W(s).)

Since W(t) is square-integrable,

Re[s.] < 0 for all si C (W). (A.12)

The dynamics of (C) are described (not necessarily minimally) by

the differential equations

I s - A -B x

= O (A.13)

i (s) R-1BTK . LD (S) u

L _j L _j~~~~~~~--------·----
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where s = t, L (s) and LiD(s) are polynomial matrices satisfying

L(s) = LD-1i (s), and the roots of det[L (s)] are the poles of L(s).

For ( ) to be asymptotically stable, we require that the roots of the

characteristic polynomial p(s) associated with (A.13) all have negative

real parts. Using a well-known matrix identity, we have from (A.9) and

(A.13)

Is - A -B

p(s) - det
-1 T

i (s)R B K i (s)

= det[L (s)] · det[Is - A + B L(s)R B K]
-D

det[L (s)]
-D

detEW(s)] (a.14)

and therefore

det[W(s)] = det[( (s)] (A.15)

p (s)

From (A.11) and (A.15) it follows that, except for those roots of p(s)

which cancel with the roots of the polynomial det[L (s)], all roots of the

characteristic polynomial p(s) are contained in C(W). Since L is norm-

bounded, it follows that all the roots of det[L (s)] have negative real

parts. Thus any cancellations in (A.15) can involve only roots with

negative real parts. From (A.12) we conclude that all the roots of the

characteristic polynomial p(s) have negative real parts and, hence, (1) is

asymptotically stable. 0
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