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1 Retirement Saving 

1.1 Part (a) 

The individual solves: 

max 
C1,C2 

log(C1) + log(C2) 
C2s.t. C1 + = W11+r(1−τ ) 

max β1 log(C1) + β2 log(C2)
C1,C2 

s.t. p1C1 + p2C2 = W1 

can be written as 

β1 β2W1 W1 
C1 

∗ = β1+β2 ; C2 
∗ = β1+β2 . 

p1 p2 

Using this with r = 2 and τ = 
2
1 , we find the solution with no income tax is C1 

∗ = 
1 , C∗ = 3 , and the solution with income tax is C∗ = 1 , C∗ = 1.
2 2 2 1 2 2 

1.2 Part (b) 

The consumer’s budget constraints are depicted in the following figure. 

1.3 Part (c) 

With the retirement saving program, the consumer’s budget constraint may be written as 

1 
C1 + C2 = 1 if .8 < C1 ≤ 1 

3 
1 

C1 + C2 = 1.1 if 0 ≤ C1 ≤ .8. 
2 

1 



Figure 1: Budget Set I


Using the budget constraint over the first segment yields C
∗ =
 1 
1 2 which is infeasible.


11 11∗ ∗Over the second segment, we obtain C
 and C
 , which is a valid solution. This
=
 =
1 220 10 

means that first period saving declines relative to part (a). This is apparent from considering 

the relevant portion of the new budget constraint, where we see that the new program is 

equivalent to a pure increase in income. This implies greater consumption in both periods 

(due to preferences) and hence lower savings. 

1.4 Part (d) 

The new budget set is drawn below. The budget constraint may be represented as 

1 
C1 + C2 = 1 if .5 ≤ C1 ≤ 1 

2 
1 5 

C1 + C2 = if 0 ≤ C1 < .5. 
3 6 

1∗ and C
∗ 
2 = 1, and on the second segment, we have
Over the first segment, we obtain C
 =
1 2 

5 5∗ ∗and C
 . Note that due to the nonconvexity of the budget constraint both are
=
 =
212 4 

valid solutions. However, U(1 , 1) < U( 5 , 5 
2 12 

5 5∗ ∗), so the solution is C
 and C
=
 =
 .
1 24 12 4 

The policy considered in (b) and (c) alters relative prices for relatively small values of 

savings, but otherwise acts as an upward parallel shift in the budget set, leaving only income 

effects. The second policy, on the other hand, provides benefits to those saving a relatively 

large amount. In particular, it is designed with the kink at exactly the point where people 

are saving in the solution to (a) and offers a greater return to saving beyond this point, 

2 

C1 



which must weakly increase savings. (This is essentially a pure substitution effect.)


Figure 2: Budget Set II 

1.5 Part (e) 

Under this policy, the budget set looks almost the same as the one depicted in part (d) and 

can be represented as 

1 
C1 + C2 = 1 if .49 ≤ C1 ≤ 1 

2 
1 83 

C1 + C2 = if 0 ≤ C1 < .49. 
3 100 

83Using this budget constaint, we find that the utility maximizing solution is to set C1 
∗ = 

200 
249 117 7and C2 

∗ = 
200 . This yields S = 

200 > 
12 which is the savings from part (d), so this policy 

increases personal savings relative to part (d). Government saving also increases since the 

revenue cost of the ”retirement saving program” is reduced when the threshold for tax-exempt 

saving is raised from 0.50 to 0.51. Therefore, national saving increases. 
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2 Optimal Saving Distortions and Welfare 

2.1 Part (a) 

With the CRRA specification, the inverse Euler equation is 

c γ 
0 = 

qa Ec γ 
1β 

and hence � �γ � � �� 

1 = 
qa E 

c1 
= 

qa E exp γ log 
c1 

= 
qa 

exp(γµ + γ2σ2/2)
β c0 β	 c0 β 

by the fact that log(c1/c0) ∼ N(µ, σ2). This implies 

qa = β exp(−γµ − γ2σ2/2). 

Similarly, the Euler equation implies 

qb = βE	
c1 

−γ 

= β exp(−γµ + γ2σ2/2). 
c0 

Hence, we obtain 
qb 

= exp(γ2σ2) ≈ 1 + γ2σ2 > 1, 
qa 

which implies a positive implicit tax γ2σ2 on the return to saving. The wedge increases with 

both γ and σ. 

2.2 Part (b) 

In the log-case, we have from (a) 

qb = β exp(σ2/2 − µ). 

Let us first compute the allocation that leaves incentives and total expected utility from 

consumption unchanged and minimizes expected cost. To do that, start from the original 

allocation with u0 = log(c0) and u1(θ1) = log(c1(θ1)) and distort it to u∗ 
0 = u0 − βΔ 

and u∗ 
1(θ1) = u1(θ1) + Δ. Clearly, this leaves incentives and total expected utility from 
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consumption unaffected. Then we solve 

min exp(u0 − βΔ) + qbE exp(u1 + Δ) 
Δ 

= exp(log(c0) − βΔ) + qbE exp(log(c1) + Δ) 

= c0 exp(−βΔ) + β exp(σ2/2 − µ) exp(Δ)E exp(log(c1/c0)) 

= c0[exp(−βΔ) + β exp(Δ + σ2)]. 

From the FOC, we obtain 
σ2 

Δ = −
1 + β 

and hence � � 
βσ2 

c
∗ 
0 = c0 exp > c0

1 + β


and � �

σ2 

c
∗ 
1 = c1 exp −

1 + β 
< c1. 

This allows us to compute the welfare gains from the optimal savings distortion in terms of 

the cost ratio � � 
c0 + qbEc1 βσ2 1 + β exp(σ2) 

= exp − (1)

c0 + qbEc∗ ∗ 

1 1 + β 1 + β


after some simplifications. 

Let us next find the allocation that leaves incentives and expected cost unchanged and 

maximizes expected utility from consumption. To do so, let us again start from the original 

allocation u0 = log(c0) and u1(θ1) = log(c1(θ1)) and move to ũ0 = u0 + Δ0 and ũ1(θ1) = 

u1(θ1) + Δ1 such that 

exp(ũ0) + qbE exp(ũ1(θ1)) = c0 + qbEc1(θ1). (2) 

Clearly, this move leaves incentives and expected cost unaffected. Then we solve 

max Δ0 + βΔ1 
Δ0,Δ1 

subject to (2). Let us use (2) to solve for Δ0 as a function of Δ1. Substituting the definitions 

of ũ0 and ũ1 in (2) yields 

c0 exp(Δ0) + qb exp(Δ1)Ec1(θ1) = c0 + qbEc1(θ1) 
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and thus 

exp(Δ0) + qb exp(Δ1) exp(µ + σ2/2) = 1 + qb exp(µ + σ2/2). 

Using qb = β exp(σ2/2 − µ), this simplifies to 

Δ0 = log[1 + β exp(σ2)(1 − exp(Δ1))] 

after few manipulations. Hence, we just solve 

max log[1 + β exp(σ2)(1 − exp(Δ1))] + βΔ1 
Δ1 

with the FOC 

exp(σ2 + Δ1) = 1 + β exp(σ2)(1 − exp(Δ1)). 

This yields � � 
1 + β exp(σ2)

Δ1 = log 
(1 + β) exp(σ2) 

and hence � � 
1 + β exp(σ2)

Δ0 = log . 
1 + β 

The optimal distorted allocation is 

1 + β exp(σ2) 
c̃0 = c0 

1 + β 

and 
1 + β exp(σ2) 

c̃1(θ1) = c1(θ1) . 
(1 + β) exp(σ2) 

Now let us compute λ such that 

log((1 + λ)c0) + βE log((1 + λ)c1) = log(c̃0) + βE log(c̃1). 

Substituting c̃0 and c̃1 and simplifying, this becomes 

1 + β exp(σ2) 1 + β exp(σ2)
(1 + β) log(1 + λ) = log + β log

1 + β (1 + β) exp(σ2) 

and, after some manipulations, 

βσ2 1 + β exp(σ2)
1 + λ = exp ,−

1 + β 1 + β 
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� � �	 � 

which of course exactly coincides with the result we found in (1). 

Finally, let us compute q∗ such that the agent’s Euler equation is satisfied for {c∗ 
0, c

∗ 
1(θ1)}. 

It is given by 

q∗ = βE	
c1 
∗ −1 

= β exp(σ2)E 
c1 

−1 

= β exp(3σ2/2 − µ). 
c∗ 
0 c0 

The wedge is thus given by 
q∗ 

= exp(σ2) ≈ 1 + σ2 , 
qb 

which confirms the result from (a) for the special case γ = 1. Similarly, we can compute q̃ 

such that	 � �
q̃ = βE 

c̃1 
−1 

= β exp(3σ2/2 − µ) = q∗ 

c̃0 

and hence we obtain the same implicit tax on the return to savings 

τ = 
q∗ 

− 1 ≈ σ2 . 
qb 

3 Part (c) 

The planning problem with 3 periods becomes 

max log(c0) + βE log(c1(θ1)) − v
y(θ1)

+ β log(c2(θ1))
θ1 

subject to 

c0 + qbE[c1(θ1) − y(θ1) + qbc2(θ1)] = 0. 

Combining the FOCs for c1(θ1) and c2(θ1) immediately implies 

c2(θ1) = βqbc1(θ1) ∀θ1. 

To calibrate the model, note that a period here is about 30 years long, so if the annual 

discount factor is .97, the discount factor in our model is roughly β = .4. Also, let’s assume 

an annual consumption growth rate of about 5%, so µ = 30 ∗ .05 = 1.5. Finally, we 

need a number for the variance of consumption growth, which is hard to determine (see 

Farhi and Werning (2007) for some discussion). A reasonable number from the literature 

(e.g. Blundell, Pistaferri and Preston (2004)) may be about 1% for the variance of annual 

consumption growth. The variance for our 30-year period may therefore be approximated by 
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σ2 ≈ 30∗.01 = .3. Based on these estimates, we obtain λ ≈ .96% and q∗/qb = exp(σ2) ≈ 1.35. 

This, however, is a wedge for a 30 year period, so the corresponding annual value would be 

1.351/30 ≈ 1.01. 

4 Implementation of Optimal Saving Distortion 

The social planner’s problem is to maximize the agent’s expected utility subject to both 

budget constraint and IC constraint. 

max u(c1) + v(y1) + β{(1 − π)[u(c2) + v(y2)] + πu(cd)} 

s.t. 
(1 − π)c2 + πcd (1 − π)y2 

c1 + = y1 + 
r r


u(c2) + v(y2) ≥ u(cd)


Note that here I have defined r as one plus interest rate, and rβ = 1.


Let λ and µ denote the Lagrange multipliers of the budget constraint and IC constraint, 

respectively. We have the following FOCs: 

u�(c∗ 
1) = λ (1) 

v�(y∗) = −λ (2) 1

β(1 − π)u�(c∗) + µu�(c∗) = β(1 − π)λ (3) 2 2

β(1 − π)v�(y2 
∗) + µv�(y2 

∗) = −β(1 − π)λ (4) 

βπu�(c∗ 
d) − µu�(c∗ 

d) = βπλ (5) 

Taking the ratio of (1) to (2) and the ratio of (3) to (4), we have 

u�(c∗ 
1) u�(c∗ 

2) 
v�(y1 

∗)
= −1,

v�(y2
∗)

= −1 (6) 

Since the agent supplies one unit of labor to produce one unit of consumption goods, (6) 

suggests that there should be no distortion on the leisure-consumption margin, that is, 

the social planner should not impose labor taxes in either period. Now let’s look at the 
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intertemporal consumption margin. If we add (3) and (5), we have


β(1 − π)u�(c∗ 
2) + βπu�(c∗ 

d) + µ [u�(c∗ 
2) − u�(c∗ 

d)] = βλ = βu�(c∗ 
1) 

or equivalently, 

) + πu�(c∗ µ 
d(1 − π)u�(c∗ 

2 ) − u�(c∗ 

� ∗ � ∗, it has to be true that ( ) (−u c u c2 d

d) +
 [u�(c∗ 
2 )] = u�(c∗ 

1)
β


Since we know that c∗ 
2 > c∗ 

1 > c∗ 

Lagrange multiplier µ is positive, we have 
d ) < 0. Because the


) + πu�(c∗ 
d

In the case where there is no tax on savings, the agent should equate his marginal utility 

of consumption in the two periods. Equation (7) suggests that to satisfy the IC constraint, 

the social planner would like to let the agent have a higher marginal utility (i.e. lower 

consumption) in the second period and a lower marginal utility (i.e. higher consumption) in 

the first period. This means that it is optimal for the social planner to discourage savings. 

k∗ = y1 
∗ − c∗ 

1. 

4.1 Part (a) 

If the social planner imposes a uniform linear tax τ on savings in the second period on both 

able and disabled agents, the agent solves the following optimization problem: 

max u(c1) + v(y1) + β [(1 − π)(u(c2) + v(y2)) + πu(cd)] 

s.t. 

c1 + k = y1 

c2 = y2 + r(1 − τ)k 

cd = r(1 − τ)k 

(Note that I’ve defined the tax τ here in a non-standard way as a tax on the gross return 

instead of the net return as usual to simplify the following expressions. The analysis with 

a tax on the net return would be completely analogous, and there is always a one-to-one 

mapping between the two.) Once we write down all the FOCs, we will find the following 

Euler equation holds: 

u�(c1) = (1 − τ) [(1 − π)u�(c2) + πu�(cd)] 

9 

(1 − π)u�(c∗ 
2 ) > u�(c∗ 

1) (7) 



where we used the fact that γβ = 1. To implement the optimal allocation {(c∗ 

the social planner has to pick τ such that 
1 ), (c∗ 

d, 0), k∗},, y∗), (c∗, y∗ 
22

) + πu�(c∗)] < (1 − τ)u�(c∗) (8) d d

1

u�(c∗) = (1 − τ) [(1 − π)u�(c∗ 
2

∗ ∗The last step is due to the fact that c c1

agent wants to double-deviate. Double deviation here means that when the agent says he is 
2

1

c∗ 
d. If (8) is true, we will find that the >
 >


∗ ∗disabled no matter what his true type is, she can do better than consuming (c , y1

∗first period and ( 0) in the second period. Suppose the agent saves a little bit more in the c ,d

first period and claims to be disabled in the second period. His utility becomes 

1

� ∗) (u c− 1

Ũ u(c∗ − ε) + v(y∗ 
d + r(1 − τ )ε) 

� ∗) (u c− 1

11

) in the


) + βu(c∗=


u(c∗) + v(y∗ 

U + ε{(1 − τ)u�(c∗ 
d

11 ) + βu(c∗) + ε{(1 − τ)u�(c∗ 
d d )}
≈


)}
=


> U


∗ ∗where U represents the utility level the agent gets by consuming (c , y1

∗and ( 0) in the second period. The last step follows from inequality (8). Therefore, c a,d

uniform linear tax on savings cannot achieve the optimal allocation. Of course, the optimal 

allocation can be implemented if non-linear taxes are available. You tell the agent to choose 

1 ) in the first period


(c∗, y∗


chooses anything else. However, the optimal allocations are no longer implementable with

22 ) if he says he is able and (c∗ 

d, 0) if he says he is disabled. He would be punished if he 

11a uniform linear tax. The reason is that {c∗, y∗, cd
∗, 0} is not in the argmax set of the agent 

who faces the uniform linear tax and wants to always claim to be disabled in the second 

˜ � ∗U ) (− u cd 1

period. 

4.2 Part (b) 

When the social planner taxes the able and disabled agents differently on their savings, the 

following Euler equation holds: 

u�(c1) = (1 − τ2)(1 − π)u�(c2) + (1 − τd)πu�(cd) (9) 

If the agent double deviates, he gets a utility of 

= U + ε{(1 − τd)u
�(c∗ )}
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In order to prevent the double-deviation, the social planner needs to make sure that Ũ = U , 

or equivalently, 

τd = 1 − 
u

u
�

�

(

(

c

c
∗ 
d

1
∗)

) 
(10) 

4.3 Part (c) 

From (c) we know that when the social planner taxes able agents at τ2 and disabled agents 

at τd, the agent is going to consume and save such that (9) is satisfied. When the optimal 

allocation is implemented, we will have 

u�(c∗ 
1) = (1 − τ2)(1 − π)u�(c∗ 

2) + (1 − τd)πu�(cd
∗) 

If we substitute (10) into the equation above, we can solve for τ2 and get 

u�(c∗ 
1)τ2 = 1 − 

u�(c∗ 
2) 

Since we know that c∗ 
2 > c1 

∗ > c∗ 
d, we know that τ2 < 0 (subsidy) and τd > 0 (tax). 

4.4 Part (d) 

The total amount of revenue collected is 

R = (1 − π)τ2rk
∗ + πτdrk

∗ � � � � �� 

= rk∗ (1 − π) 1 − 
u

u
�

�

(

(

c

c1
∗ 
2

∗)

) 
+ π 1 − 

u

u
�

�

(

(

c

c

d
∗ 
1
∗)

) 
1 1 1 

= rk∗u�(c∗ 
1) u�(c1

∗) 
− (1 − π) 

u�(c2
∗) 
− π

u�(c∗ 
d) 

= 0 

The last step comes from equations (1), (3) and (5). By taxing savings when the agent 

is disabled and his marginal utility is high and subsidizing savings when the agent is able 

to work and his marginal utility is low, the tax effectively reduces the marginal return of 

savings (i.e. discourages savings) even though on average it collects no revenue. The reason 

why we need to discourage savings is because we have the IC constraint. By taxing savings 

in the bad state (disabled), we make sure that the able agents would not want to pretent to 

be disabled agents and double-deviate. 
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