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Summary: This essay introduces the two methods that are widely used to observe and analyze fluid flows,
either by observing the trajectories of specific fluid parcels, which yields what is commonly termed a
Lagrangian representation, or by observing the fluid velocity at fixed positions, which yields an Eulerian
representation. Lagrangian methods are often the most efficient way to sample a fluid flow and the physical
conservation laws are inherently Lagrangian since they apply to moving fluid volumes rather than to the fluid
that happens to be present at some fixed point in space. Nevertheless, the Lagrangian equations of motion
applied to a three-dimensional continuum are quite difficult in most applications, and thus almost all of the
theory (forward calculation) in fluid mechanics is developed within the Eulerian system. Lagrangian and
Eulerian concepts and methods are thus used side-by-side in many investigations, and the premise of this
essay is that an understanding of both systems and the relationships between them can help form the
framework for a study of fluid mechanics.
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The transformation of the conservation laws from a Lagrangian to an Eulerian system can be envisaged
in three steps. (1) The first is dubbed the Fundamental Principle of Kinematics; the fluid velocity at a given
time and fixed position (the Eulerian velocity) is equal to the velocity of the fluid parcel (the Lagrangian
velocity) that is present at that position at that instant. Thus while we often speak of Lagrangian velocity or
Eulerian velocity, it is important to keep in mind that these are merely (but significantly) different ways to
represent a given fluid flow. (2) A similar relation holds for time derivatives of fluid properties: the time rate
of change observed on a specific fluid parcel,D. /=Dt D @. /=@t in the Lagrangian system, has a counterpart
in the Eulerian system,D. /=Dt D @. /=@t C V � r. /, called the material derivative. The material derivative
at a given position is equal to the Lagrangian time rate of change of the parcel present at that position. (3) The
physical conservation laws apply to extensive quantities, i.e., the mass or the momentum of a specific fluid
volume. The time derivative of an integral over a moving fluid volume (a Lagrangian quantity) can be
transformed into the equivalent Eulerian conservation law for the corresponding intensive quantity, i.e., mass
density or momentum density, by means of the Reynolds Transport Theorem (Section 3.3).

Once an Eulerian velocity field has been observed or calculated, it is then more or less straightforward to
compute parcel trajectories, a Lagrangian property, which are often of great practical interest. An interesting
complication arises when time-averaging of the Eulerian velocity is either required or results from the
observation method. In that event, the FPK does not apply. If the high frequency motion that is filtered out is
wavelike, then the difference between the Lagrangian and Eulerian velocities may be understood as Stokes
drift, a correlation between parcel displacement and the spatial gradient of the Eulerian velocity.

In an Eulerian system the local effect of transport by the fluid flow is represented by the advective rate of
change,V � r. /, the product of an unknown velocity and the first partial derivative of an unknown field
variable. This nonlinearity leads to much of the interesting and most of the challenging phenomena of fluid
flows. We can begin to put some useful bounds upon what advection alone can do. For variables that can be
written in conservation form, e.g., mass and momentum, advection alone can not be a net source or sink when
integrated over a closed or infinite domain. Advection represents the transport of fluid properties at a definite
rate and direction, that of the fluid velocity, so that parcel trajectories are the characteristics of the advection
equation. Advection by a nonuniform velocity may cause linear and shear deformation (rate) of a fluid parcel,
and it may also cause a fluid parcel to rotate. This fluid rotation rate, often called vorticity follows a
particularly simple and useful conservation law.

Cover page graphic:SOFAR float trajectories (green worms) and horizontal velocity measured by a
current meter (black vector) during the Local Dynamics Experiment conducted in the Sargasso Sea. The float
trajectories are five-day segments, and the current vector is scaled similarly. The northeast to southwest
oscillation seen here appears to be a (short) barotropic Rossby wave. (See the full essay for an animation of
these data.)
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