18.100C. Final. Solutions. Spring 2006.

Problem 1.(50 pts): (10; 15; 10; 15)
Let f be the function
2?sin(Zz), «#0

oy = {7 20

a) Show that f is continuous for all x.
b) Show that f is differentiable for all x, and find the derivative f’(z).
c¢) Is f'(x) bounded on the interval (0,1)? Prove your answer carefully.

d) Let g be a differentiable function on (0, 1) such that its derivative is bounded on (0, 1).
Prove that g(x) is uniformly continuous on (0, 1).

Solution:

a) For x # 0, f(x) is a product and composition of elementary continuous functions,
therefore it is continuous. We check the limit as = approches 0. Since |2?sin(Z;)| < |2?], as
x — 0, lim,_o f(z) = 0= f(0). So f is continuous at 0 as well.

b) We’ll show that

ion J2(xsind — Leos ), x#0
/ (:E) - { 0, r=0"
The formula for x # 0 is clear by applying the rules of differentiation. We check the derivative

at 0: .
pon g aTsingy =0 1
f(o)_ili%—x—(] —ilir(l)xsmxz—o.
The last equality follows as in a) from the fact that |z sin %5 | < |z|.
c¢) The derivative f’ is unbounded on the interval (0, 1). To see this, consider the sequence

{zx} given by z;, = ﬁ,k‘ > 0. This sequence is clearly in the interval (0,1). Then

f'(zx) = V2kn, and limy_, f'(zx) = 0.

d) Let g be a differentiable function on (0, 1), and let M > 0 be such that |¢'(x)| < M,
for all z € (0,1). For every x,y € (0,1), by the mean value theorem, there exists ¢ between
x and y such that g(z) — g(y) = ¢'(¢)(z — y). But this implies that |g(z) — g(y)| < M|z —y],
so ¢ is a Lipschitz function, therefore uniformly continuous. (Let ¢ > 0 be given, and set
§ = 57. Then for all z,y € (0,1), such that |z — y| < 6, we have |g(x) — g(y)| <e€.)



Problem 2. (60 pts): (10; 10; 15; 10; 15)
a) If n > 1, find an antiderivative for e "* cos(nx). (Hint: use integration by parts.) Check
your answer by differentiation.

b) Find [~ e™* cos(nz)dx.

c¢) Consider the series

oo
Z e """ cos(nx).

n>1
Prove that the series converges uniformly on every interval [a, c0) where a > 0.

d) If f(x) denotes the sum of the series in c), show that f(x) is continuous on (0, c0).
e) Prove that | [~ f(z)dz| < 2, where f(z) is as defined in parts c) and d).

Solution:

a) An antiderivative is 5-e"*(sin(nz) — cos(nz)).

b) Note that, since |e "*(sin(nz) — cos(nx))| < 27", and lim, ., e ™ = 0, we have
lim, o e~ (sin(nx) — cos(nz)) = 0. Then, using a), we find that

o 1
/ e "* cos(nx)dx
1

~ 2nen

¢) Since |e~"* cos(nz)| < e < e ™, for all x € [a,00), and the series ) . e " con-
verges (being a geometric series with ratio 0 < e~® < 1), by the Weierstrass M-test, it follows
that the series ) ., e "* cos(nz) converges uniformly on the interval [a,00). (Recall that
a>0.) -

d) Let f(z) denote the sum of the series in c¢). Then for every xz > 0, choose a such that
0 < a < z. The series in ¢) converges uniformly on [a, 00), and all the terms of the series
are continuous. By a theorem in Rudin, the sum of the series f is continous on [a, c0), so in
particular at x as well.

e) On the interval [1, co) the series in ¢) converges uniformly, and every term in integrable.
We can integrate term by term. Moreover, by the triangle inequality:

cosn —sinn).
( )

D o0 1
/ f(z)dz| < Z / e " cos(nz)dr| < —_
1 n>1 171 n>1 net
1 1
< — = < 1.
- ; en e—1"—



Problem 3. (35 pts): (15; 20)
a) Define the sequence {a,} by

— 92n __ 92n+1
Aoy = 2 s A2p1+1 = 3 s n Z 0.
Find the radius of convergence of Y ° j a,2".

b) Determine the radius of convergence of >~ °  nz", and find a formula for the sum. (Hint:
Start with a well-known formula for > "_ 2".) Justify the correctness of your calculations.

Solution:
a) We apply the root test to determine the radius of convergence, and so we need to find

limsup,, .. (a,)""z. Note that (as,)"/?" = 2, and lim,, .o (a2n41)" @) = lim,,_ 3241 = 3.

Then limsup,, . (a,)"" = 3, and so the radius of convergence is R = 5.

b) Since lim,, nw = 1, the radius of convergence is R = 1. So the interval of convergence
for >°>°  nz"is (—1,1). Note that Y 2 nz" = zY - nz""'. The series Y~ 2" has the
same interval of convergence and the sum f(z) = ﬁ The series with the differentiated terms
is % nz""!, so it converges to f'(z) (by a theorem in Rudin about analytic functions). It

follows that

oo N P
%nz =z2f'(2) = EEE when |z]| < 1.



Problem 4. (50 pts): (15; 15; 15; 5)
Let E be a nonempty closed subset of a metric space X with metric function d. Define
the distance from z € X to E by
pe(z) = inf d(z, 2).

zeR
a) Prove that pp(z) =0 if and only if z € F.

b) Prove that for all z € X,y € X,

lpe(x) = pp(y)| < d(z,y),
and therefore pg : X — R is uniformly continuous on X.

c¢) Let K be a compact subset of X, disjoint from E. Prove that there exists o € K such
that 0 < pr(xg) < pp(z), for all z € K.

d) If E C R is the Cantor ser, and = = 2, what is the distance pg(x) equal to?

Solutions:

a) In one direction, it is clear: if z € E, pg(z) = 0. Conversely, assume 0 = pg(x) =
inf.cp d(z, z). This means that there exists a sequence {z,} in E such that d(z,z,) < 1.
This implies that limy_ ., 2 = =, and so x is a limit point for E. Since F is closed, x € E.

b) From the definition, it is clear that for every x € X and z € FE, d(z,2) > pg(x).
Consider the triangle inequality d(x,y) + d(y, z) > d(x, z), with z,y € X,z € E. From the
preceeding remark, d(z,y) + d(y,z) > pg(x). Then we take the infimum over z € E, and
find that d(z,y) + pe(y) > pe(z), or equivalently, pr(z) — pr(y) < d(z,y). Now we can
interchange = and y, and find pg(x) — pg(y) > —d(z,y). The claim follows. The uniform
continuity follows as in Problem 1 d) (as before, pg is a Lipschitz function).

c)Let K be a compact subset of X, and K N E = (). Since the pg : X — R is continous,
when restricted to K, it is bounded and it attains its minimum (and maximum). Let zy € K
be the point where pg attains the minimum on K. Since xy € K, necessarily zo ¢ F, so by
a’)7 pE(xO) > 0.

d) pe(z) = 5.



Problem 5. (50 pts): (15; 20; 15)
Let f:]0,1] — R be a continuous function.
a) Assume fol f(z)dz = 1. Show that there exists ¢ € (0, 1) such that f(c) = 1.

b) Now suppose
1
1
/0 f(z)x"dx = T for all n > 0.
Prove that f(x) =1 for all x € [0,1]. (Hint: set g(x) = f(z) — 1. You may want to use the
Weierstrass theorem.)
c¢) Prove that if 4 : [0,1] — R is a continuous nonnegative function and fol h(z)dz = 0,

then h(z) = 0, for all z € [0, 1].

Solutions:

a) This follows immediately by the mean value theorem for integrals (and the fundamental
theorem of calculus).

b) Set g(x) = f(x)—1. Then fol g(x)x™dr =0, for alln > 0. If P(x) = ap+arz+- -+ a,a™
is any polynomial, this identity immediately implies that fol g(x)P(x) = 0.

Let € > 0 be given. Since g is continuous on [0, 1], by the Weierstrass theorem, there exists
a polynomial P(x) such that |g(x) — P(x)| < €. Then

/O () = / 9(2)(g(x) - P(a))dz| < / 9()]]9(z) — P(2)|de < e / l9(a)|de.

Note that fol |g(x)|dx is finite, doesn’t depend on ¢, and since € was arbitrary, necessarily
fol g*(z)dz = 0.

The function g?(x) is continous and nonnegative on [0, 1], so the only way the integral can
be zero is if the function is zero, which implies g(x) = 0, and so f(z) = 0.

c¢) If h is continuous and nonnegative, assume that it is strictly positive at some point z.
Because of continuity, » must be strictly positive on a subinterval [a, b] containing x,. Let
m > 0 denote the minimum of h on [a,b]. Then the integral fol h(z)dz > (b —a)m > 0,
contradiction!




Problem 6. (55 pts): (25; 15; 15)
Let X be the space of all sequences of real numbers. For any two sequences a = {a;} and
b= {b;}, define

o0

1 b
d(a,b) = 1 _loi=bl

=0 21+ |a; — b|
a) Show that d is well defined, and that it is a metric on X.

b) Prove that, with respect to d, X is bounded, but it is not compact. (Hint: construct a
sequence {z,} of sequences, such that d(z,,z,,) > 3 for all n,m.)

c¢) Prove that the metric space (X, d) is complete.

Solution:

. b
a) Since %2l

1+|a; —b;
comparison te‘st, t|he series used to define d(a,b) is convergent. Therefore d(a,b) < oo is
well-defined.

We need to check the axioms of the metric. The only one which is not obvious is the
triangle inequality. This follows from the inequality

< 1, and the series Y ;- 27" is a convergent (geometric) series, by the

|z — 2| [z — | ly — 2|
< +
I+|z—z2 “14+z—y|l 14]y— 2]
which, in turn, can be proved by a direct calculation.

b) Consider, for example, the sequence z,, defined by z, = (n,0,...,0,...). For two such
sequences, z,, and z,,, n # m, we have

Y x’y”zER7

d(z,,z,,) = _n—m| > 1
l+n—m| =2
(Another good example to consider would be z,, = (n,n,...,n,...).) But this implies that
the sequence {z,,} in X does not have any convergent subsequences. Therefore X cannot be
compact.
c) Let {z,,} be a Cauchy sequence in (X, d). Each z,, is a sequence of real numbers, let us
denote it by z,, = {z,,i}.
Fix j > 0. The first claim is that the sequence {z, ;}, is Cauchy in R. Let ¢ > 0 be

given. Since {z,} is Cauchy in X, we can choose N > 0 such that d(z,,z,,) < 2771, for

all n,m > N. Clearly engmrmsl < 9ig z ,x )< ——, for all n,m > N, which implies that
1 n) =m

+Tn,j—Tm,j| — 1+e’
| j — xm j| <€, for all ’rIL, 7;1 > ]J\‘f This proves the claim that {z, ;}, is Cauchy in R. Since
R is complete (with the Euclidean metric), {x,, ;}, is convergent, and denote its limit by y;.
To summarize, for each j > 1, z,, ; — y;, as n — oo. Let us prove that {z,} converges to
y in (X, d), where y = {y;}. Let € > 0 be given. There exists M > 0, such that

L |2n: — il i €

1 —— = < 27 < —.

8 R WARY
i>M ) i>M

(This is because the geometric series Y ;- 27" is convergent.)



For every j € {0,...,M — 1}, {x,;}, converges to y;, so we can find N; such that

eng=yil 95 e ,
o —y] < 2/ 52, for all m > N;j.

Let N be the maximum of all N;, j =0,...,M — 1. Then for all n > N,
— 1 |Tns — yil € €
2 —— <M —— = .

Now combining equations (1) and (2), we find that d(z,,,y) < ¢, for all n > N. This proves
that {z,} converges to y.



