
18.100C. Quiz 2. Solutions. 

Problem 1. 

(a)

We know that the function 1 is continuous away from 0, and so the function
x 

1 + e1/x is continuous except at 0. Note that 1 + e1/x is strictly positive on this 
xrange, so that 

1+e1/x is continuous on all of R except possibly at 0. (4 points) 
To check continuity at 0, we take limits: 

x 
lim = 0 

x�0+ 1 + e1/x 

x 
lim = 0 

x�0− 1 + e1/x 

and f(0) = 0, so this function is continuous. (6 points) 

(b)

The function f(x) is not differentiable at 0. We check the definition:

We have: 

lim 
x�0+ 

f(x) − f(0) 
x − 0 

= lim 
x�0+ 

1 
1 + e1/x 

= 0 

(5 points) 

f(x) − f(0) 1 
lim = lim = 1 

x�0− x − 0 x�0− 1 + e1/x 

(5 points)

So f(x) is not differentiable at 0.


Problem 2. 

(a) We must show that f is Riemann-Stieltjes integrable with respect to � iff f 
is continuous at 0. 
First assume that f is integrable. Then for every α > 0, there is some partition 
P such that 

U(P, f, �) − L(P, f, �) < α 

Of course, this sum U − L can only decrease if we refine P , so if necessary we 
may further refine P to include 0 and still have that U − L < α. Now the (new) 
partition P has P = {−1 = x1, x2, . . . , xn = 1} and xk = 0 for some k, so 
that xk−1 < 0 and xk+1 > 0. As usual, define Mj , mj as the maximum and 
minimum (respectively) of f on the interval [xj , xj+1]. Then: 

U(P, f, �) = Mk−1(�(0) − �(xk−1 )) + Mk(�(xk+1 ) − �(0)) 

= Mk−1/2 + Mk /2 
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and 
L(P, f, �) = mk−1/2 + mk /2 

Since U − L < α, we have 

(Mk−1 − mk−1)/2 + (Mk − mk)/2 < α 

and both of these quantities are positive.

Now, choose a � such that [−�, �] ≥ [xk−1, xk+1 ]. Then, for any y > 0 such

that y − 0 < �, we have f(y) − f(0) � Mk − mk < 2α. If we choose −� <
| |
y < 0 and repeat the computation with Mk−1 and mk−1, we again find that 
f(y) − f(0) < 2α. So, f is continuous at 0. (9 points) | | 
Conversely, suppose that f is continuous at 0. For 0 < � < 1, Define the parti­
tion P� to be P� = {−1,−�, 0, �, 1}. Now, choose � such that y− 0 < � implies| |
that f(y) − f(0) < α as guaranteed by continuity. Then P� = {−1,−�, 0, �, 1}.| |
Let M3, m3 denote the maximum and minimum (respectively) of f(y) on [0, �], 
and similarly for M2, m2 on [−�, 0]. In particular, this means that M3 −m3 < 2α 
and M2 − m2 < 2α. Then: 

U(P� , f, �) − L(P� , f, �) = (M2/2 + M3/2) − (m2/2 + m3/2) 

< 2α 

Since we can find such a P� for any α, f is integrable. (6 points) 

(b) 

 1

We show f d� = f(0). To show this, we show that U and L both get 
−1 

arbitrarily close to f(0) for appropriate partitions P . 

By assumpution f is continuous at 0. For any α, we can pick a � and P� as 
above. Then M2 − f(0) < α and M3 − f(0) < α.| | | | 

U(P� , f, �) − f(0) = (M2/2 + M3/2) − f(0) 

= (M2 − f(0))/2 + (M3 − f(0))/2 

< α 

and similarly f(0) − L(P� , f, �) < α. Since such a P� can be found for any α, we 

 1

must have that f d� = f(0). (15 points) 
−1 

Problem 3. 

(a) This is false.

One counterexample is as follows: we work with the interval [0, 1] and define


1 if x is rational 
f(x) = 

if x is irrational −1 
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� 

� 

| | � | |

Then f(x)2 = 1 is integrable, but f is not; it is easy to check that for any 
partition U(P, f) = 1 and L(P, f) = −1. (10 points) 

(b) This is true. 
On any interval [a, b] the function g(x) = x1/3 is continuous. Since f(x)3 is 
integrable, so is g(f(x)3) = f(x). (Note that the same argument fails for the 
previous case, as the function x2 does not have an inverse.) (10 points) 

(c) This is false. 
We know that if f is bounded on [a, b], then f is integrable iff the set of discon­
tinuities has measure 0. So, the question reduces to: is every set of measure 0 
countable? The answer is no. One example is the Cantor set, which is uncount­
able, but (as can be checked) has measure limn��(2/3)n = 0. So, for example, 
the function f defined on [0, 1] as 

1 if x is in the Cantor set 
f(x) = 

0 if x is not in the Cantor set 

is integrable. (10 points) 

Problem 4. 
(a) Let α > 0 be given. Set � = M . For every x, y ∞ X, such that dX (x, y) < �, 
we have 

α 
dX (f(x), f(y)) � M dX (x, y) < M = α.· · 

M 
This verifies the definition of uniform continuity. 

(b) Let x0 ∞ X be arbitrary, and define inductively xn+1 = f(xn). If we show 
that the sequence {xn} converges, let x be its limit. Then by taking limit in 
xn+1 = f(xn), since f is continuous, we find that f(x) = x, so x is a fixed point. 
We will actually show that {xn} is Cauchy, which implies convergent, since the 
space X is Cauchy. 
Using the Lipschitz condition on f , we have that d(xn+1, xn) = d(f(xn), f(xn−1)) �
Md(xn, xn−1. Proceeding by induction, we find that d(xn+1 , xn) � Mnd(x1, x0). 
Now, if m � n, by the triangle inequality, 

Mn 

d(xm, xn) � d(xm, xm−1)+d(xm−1, x +d(xn+1, xn) � (Mm−1+ +Mn)d(x1, x0) � 
1 − M

d(x1, x0).m−2)+· · · · · ·

As n � →, the right hand side tends to 0, which implies that {xn} is Cauchy. 

To verify the uniqueness of the fixed point, assume there are two fixed points, 
x and x . Then d(x, x�) = d(f(x), f(x�)) � Md(x, x�). Since 0 < M < 1, neces­
sarily d(x, x� ) = 0. 

(c) Solving the equation f(x) = x on [1,→), we find that the unique fixed point 
of f on this interval is x = 

≤
2. This is an example of the above result, since 

2+xf(x) = 1+x satisfies the hypothesis in this problem. Indeed, f(x) − f(y) =| |
1 1 , since x, y � 1.(1+x)(1+y) x − y 4 x − y
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(d) The example in (c), when restricted to X = Q works. 

Problem 5. 
(a) Since f is periodic, with period T , f(R) = f([0, T ]). Since [0, T ] is compact in 
R, and f is continuous, by a theorem from the textbook, we know that f([0, T ]) 
is bounded, and that f attains its maximum and minimum. 

(b) Note that what we want to prove is stronger than the Mean Value Theo­
rem. Consider the function g(x) = f(x + a) − f(x) − af �(x). Let x0 and x1 

be points where f attains its maximum, respectively minimum. Since these are 
automatically interior points (R is open in itself), f �(x0) = 0 = f �(x1). But then 
g(x0) � 0, and g(x1) � 0. By the Intermediate Value Property of g, there must 
exists t between x0 and x1, such that g(t) = 0. 

(c) In terms of the graph of f , part (b) says that for every a > 0, there exists 
a point t such that the tangent line at t to the graph of f intersects the graph 
again a units to the right of t. 
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