18.100C. Quiz 2. Solutions.

Problem 1.

(a)
We know that the function % is continuous away from 0, and so the function
1+ e!/* is continuous except at 0. Note that 1+ e!/* is strictly positive on this
range, so that 1+e+/r is continuous on all of R except possibly at 0. (4 points)

To check continuity at 0, we take limits:
I z =
zi{(r)lJr 1+ el/w B
I z =
xi%l— 1+ el/z o
and f(0) = 0, so this function is continuous. (6 points)

(b)

The function f(z) is not differentiable at 0. We check the definition:

We have: 0 )
lim M = lim —— =0
z—0+ x—0 z—0+ 1 + el/=
(5 points)
lim 7f($) — f(O) = lim 71 =
z—0— rz—0 z—0— 1 + el/
(5 points)

So f(z) is not differentiable at 0.

Problem 2.

(a) We must show that f is Riemann-Stieltjes integrable with respect to a iff f
is continuous at 0.

First assume that f is integrable. Then for every ¢ > 0, there is some partition
P such that

U(P,f,O[)*L(P,f,OL)<E

Of course, this sum U — L can only decrease if we refine P, so if necessary we
may further refine P to include 0 and still have that U — L < e. Now the (new)
partition P has P = {—1 = z1,23,...,2, = 1} and z; = 0 for some k, so
that ;1 < 0 and x44; > 0. As usual, define M;, m; as the maximum and
minimum (respectively) of f on the interval [z, z;41]. Then:

U, f,a) = My-1(a(0) — a(zp-1)) + Mi(e(@rs1) — (0))
My_1/2+ My/2



and
L(P, f,a) = mp_1/2 4+ my/2

Since U — L < €, we have
(Mk—l — mk_l)/2—|— (Mk — mk)/2 <€

and both of these quantities are positive.

Now, choose a d such that [—0,d] C [zk—1,2Zk+1].- Then, for any y > 0 such
that y — 0 < §, we have |f(y) — f(0)] < My —my < 2¢. If we choose —6 <
y < 0 and repeat the computation with My_; and mg_1, we again find that
|f(y) — f(0)] < 2e. So, f is continuous at 0. (9 points)

Conversely, suppose that f is continuous at 0. For 0 < { < 1, Define the parti-
tion P to be Pr = {—1,—(,0,¢,1}. Now, choose ¢ such that |y — 0| < ¢ implies
that |f(y) — f(0)| < € as guaranteed by continuity. Then Ps = {—1,—6,0,d,1}.
Let Ms,ms3 denote the maximum and minimum (respectively) of f(y) on [0, d],
and similarly for Ma, ms on [—4,0]. In particular, this means that Ms—ms < 2¢
and My — mo < 2¢. Then:

U(Pg,f,o&)*L(Pg,f,Oé) = (M2/2+M3/2)7(MQ/2+7H3/2)
< 2e

Since we can find such a Pj for any €, f is integrable. (6 points)

(b)
We show f_ll fda = f(0). To show this, we show that U and L both get
arbitrarily close to f(0) for appropriate partitions P.

By assumpution f is continuous at 0. For any €, we can pick a § and Ps as
above. Then |Ms — f(0)] < e and | M3 — f(0)] <e.

U(Bs, f,a) = f(0) = (M2/2+ Ms/2) — f(0)
= (Mz—f(0))/2+ (M3 — £(0))/2
< €

and similarly f(0) — L(Ps, f,a) < e. Since such a Ps can be found for any €, we
must have that f_ll fda = f£(0). (15 points)

Problem 3.

(a) This is false.
One counterexample is as follows: we work with the interval [0, 1] and define

Fz) = { 1 if x is rational

—1 if x is irrational



Then f(z)? = 1 is integrable, but f is not; it is easy to check that for any
partition U(P, f) = 1 and L(P, f) = —1. (10 points)

(b) This is true.

On any interval [a,b] the function g(z) = 2!/3 is continuous. Since f(z)3
integrable, so is g(f(z)?) = f(x). (Note that the same argument fails for the
previous case, as the function 22 does not have an inverse.) (10 points)

1/3

(c) This is false.

We know that if f is bounded on [a, ], then f is integrable iff the set of discon-
tinuities has measure 0. So, the question reduces to: is every set of measure 0
countable? The answer is no. One example is the Cantor set, which is uncount-
able, but (as can be checked) has measure lim,,_,.(2/3)™ = 0. So, for example,
the function f defined on [0, 1] as

fz) = 1 if z is in the Cantor set
“ 1 0 ifzisnot in the Cantor set

is integrable. (10 points)

Problem 4.
(a) Let € > 0 be given. Set 6 = 57. For every z,y € X, such that dx(z,y) <,
we have

€
This verifies the definition of uniform continuity.

(b) Let 9 € X be arbitrary, and define inductively ,4+1 = f(z,). If we show
that the sequence {x,} converges, let = be its limit. Then by taking limit in
ZTnt1 = f(xy), since f is continuous, we find that f(x) = x, so x is a fixed point.
We will actually show that {x,} is Cauchy, which implies convergent, since the
space X is Cauchy.

Using the Lipschitz condition on f, we have that d(x,41, 2n) = d(f(zn), f(xn-1)) <
Md(zy,, 2y, —1. Proceeding by induction, we find that d(z, 1, 2,) < M™d(x1,xg).
Now, if m > n, by the triangle inequality,

d(SCm,SCn) S d(l‘mvxmfl)“i’d(xmfl»Im72)+' : '+d(l‘n+1,17n) S (Mm_1+' : +Mn)d(171,170) S

As n — o0, the right hand side tends to 0, which implies that {x,} is Cauchy.

To verify the uniqueness of the fixed point, assume there are two fixed points,
x and 2. Then d(z,z’) = d(f(z), f(z’)) < Md(x,2"). Since 0 < M < 1, neces-
sarily d(z,z’) = 0.

(c) Solving the equation f(x) = x on [1,00), we find that the unique fixed point
of f on this interval is © = /2. This is an example of the above result, since
flx) = 2+—I satisfies the hypothesis in this problem. Indeed, |f(z) — f(y)| =

Wlmy)lw y| < 3|z —yl, since z,y > 1.

n

—Md(xl, I()).



(d) The example in (c), when restricted to X = Q works.

Problem 5.

(a) Since f is periodic, with period T, f(R) = f([0,T]). Since [0, T is compact in
R, and f is continuous, by a theorem from the textbook, we know that f([0,7])
is bounded, and that f attains its maximum and minimum.

(b) Note that what we want to prove is stronger than the Mean Value Theo-
rem. Consider the function g(z) = f(z + a) — f(z) — af’(z). Let o and
be points where f attains its maximum, respectively minimum. Since these are
automatically interior points (R is open in itself), f/(z9) = 0 = f’(x1). But then
g(x0) <0, and g(z1) > 0. By the Intermediate Value Property of g, there must
exists t between xy and 1, such that g(¢) = 0.

(c) In terms of the graph of f, part (b) says that for every a > 0, there exists
a point ¢ such that the tangent line at ¢ to the graph of f intersects the graph
again a units to the right of ¢.



