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Abstract

Social networks can be organized into communities of closely connected nodes, a property known as modularity. Because
diseases, information, and behaviors spread faster within communities than between communities, understanding
modularity has broad implications for public policy, epidemiology and the social sciences. Explanations for community
formation in social networks often incorporate the attributes of individual people, such as gender, ethnicity or shared
activities. High modularity is also a property of large-scale social networks, where each node represents a population of
individuals at a location, such as call flow between mobile phone towers. However, whether or not place-based attributes,
including land cover and economic activity, can predict community membership for network nodes in large-scale networks
remains unknown. We describe the pattern of modularity in a mobile phone communication network in the Dominican
Republic, and use a linear discriminant analysis (LDA) to determine whether geographic context can explain community
membership. Our results demonstrate that place-based attributes, including sugar cane production, urbanization, distance
to the nearest airport, and wealth, correctly predicted community membership for over 70% of mobile phone towers. We
observed a strongly positive correlation (r = 0.97) between the modularity score and the predictive ability of the LDA,
suggesting that place-based attributes can accurately represent the processes driving modularity. In the absence of social
network data, the methods we present can be used to predict community membership over large scales using solely place-
based attributes.

Citation: Caughlin TT, Ruktanonchai N, Acevedo MA, Lopiano KK, Prosper O, et al. (2013) Place-Based Attributes Predict Community Membership in a Mobile
Phone Communication Network. PLoS ONE 8(2): e56057. doi:10.1371/journal.pone.0056057

Editor: Angel Sánchez, Universidad Carlos III de Madrid, Spain

Received July 20, 2012; Accepted January 9, 2013; Published February 22, 2013

Copyright: � 2013 Caughlin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: TTC, NR, MAA, KL, and OP were supported by the National Science Foundation (http://www.nsf.gov/) under grant 0801544 at the University of Florida.
AJT is supported by grants from the Bill and Melinda Gates Foundation (www.gatesfoundation.org/) under grants 49446 and OPP1032350). AJT also
acknowledges funding support from the RAPIDD program of the Science & Technology Directorate, Department of Homeland Security (www.dhs.gov), and the
Fogarty International Center, National Institutes of Health (http://www.fic.nih.gov). The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: trevor.caughlin@gmail.com

Introduction

Social networks can be used to model many types of interactions

between people, including friendship [1], disease transmission [2],

and sexual contact [3]. Because network analysis allows key

properties of otherwise complex systems to be represented by

simple metrics, the study of social networks has revolutionized our

understanding of a range of fields, including behavioral psychology

[1], public health [3–5], and regional conflict [6]. One key

property of social networks is modularity, the degree to which the

network can be partitioned into communities of nodes with

a relatively higher density of connections within the same

community than between communities [7]. Modularity structure

results in higher rates of disease spread [2], criminal activity [8],

and movement [9], between nodes located in the same commu-

nity. Consequently, understanding the processes that determine

modularity in social networks is an important research goal.

For networks in which nodes represent individual people,

general principles explaining community formation incorporate

individual attributes. Homophily, the principle that similar

individuals are more likely to interact, results in communities of

individuals with similar attributes, such as ethnicity, gender,

income, political views and more [10,11]. Focus constraints,

including shared activities, such as attending the same class at

a university, may also lead to community formation [12–13].

Finally, spatial proximity, regardless of other shared activities or

social attributes, may promote communities in social networks

[14–15]. A challenge remains in translating these general

principles for community formation in networks of individual

people to large-scale social networks, in which network nodes

represent a population of people at a given location. Examples of

edges and nodes in these large-scale social networks include

human movement between regions, patient transfer between

hospitals, and criminal offenses between census tracts [4,8–9].
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Quantifying the importance of principles like homophily or

focus constraints for network structure requires data on attributes

of each node in the network. In large-scale networks, defined by

a population at a location, attributes are place-based, representing

the economic, social and ecological characteristics that define the

geographic context of a location. While high modularity has been

described for several large-scale social networks [6–8], whether or

not place-based attributes can explain community membership in

these large-scale social networks remains unknown. Aggregating

data on individual attributes to create place-based attributes could

be problematic if the mixture of individuals at a given location is

too heterogeneous to represent as a single group. Another major

challenge in using place-based attributes to explain patterns of

connectivity in large-scale social networks is that space could

overwhelm the effects of place-based attributes [15]. Resolving

these uncertainties will require quantitative models to test whether

various place-based attributes can explain module structure in

large-scale social networks.

High modularity has been observed in large-scale social

networks constructed from mobile phone communication between

cell phone towers [6,14]. Because mobile phone communication is

correlated with friendship networks [1] and human movement

[16–17], the ability to predict patterns, including modularity, in

communication networks would have many useful applications in

a great variety of fields. For example, mobile phone communica-

tion data could be used in epidemiology to model human

movement between patches with high and low disease trans-

mission risk [18–19]. However, mobile phone towers are absent

for many locations within countries or regions. Consequently,

extrapolating communities formed by call flow connectivity across

an entire region requires predicting community membership for

areas without mobile phone towers. If geographic context of

mobile phone towers can explain modularity, quantifying place-

based attributes may enable regional predictions of community

membership in areas with and without mobile phone towers.

Here, we quantified whether place-based attributes can predict

community membership for a large-scale social network of

communication between mobile phone towers in the Dominican

Republic. While previous studies have shown that individual

attributes can predict community membership in person-to-person

social networks, our study goes further to ask whether place-based

attributes can predict communities in this large-scale tower-to-

tower social network. We assigned towers to communities using

a modularity algorithm then applied a linear discriminant analysis

(LDA) to evaluate whether a set of four place-based attributes,

including urbanization, area used for sugar cane production,

distance to nearest airport, and wealth, could correctly predict

tower community membership.

Results

First, we determined community membership for each tower in

the network (Figure 1). For 100 separate runs of the modularity

algorithm used to detect communities within the DR communi-

cation network, the modularity score ranged from a minimum of

0.26 to a maximum of 0.52. The results for community

membership of mobile phone towers from the run with the

highest modularity (hereafter ‘‘top’’ run) can be seen in Figure 1.

The modularity algorithm maximizes the modularity score based

on both community membership and total number of communi-

ties in the data, and the community structure that maximized this

modularity score contained 13 different communities. Results from

the top 20 runs of the modularity algorithm suggest that the

simulated annealing algorithm had reached a plateau of modu-

larity scores, with very similar output for these top runs. The mean

(6SD) of modularity score for the top 20 runs of the modularity

algorithm was 0.5260.002, and the mean number of communities

generated by these top 20 runs was 10.961.65. The core

communities in these top 20 runs were also qualitatively similar

(Figure S1). Notable features of the community structure include

the division of the capital city of Santo Domingo into two separate

communities (represented by red and blue dots in Figure 1), as well

as the close links between towers on the border between Haiti and

the Dominican Republic with the western half of the capital city

(blue dots). The 13 described communities from the top

modularity run appear clustered in space, however a clustering

algorithm based only on node locations produced a simpler

geographic pattern (Figure 2) than revealed by the cell phone data

(Figure 1a). Therefore, to better explain the call patterns and

community memberships, we used a linear discriminant analysis

(LDA) to relate community membership to the four place-based

attributes (sugar cane production, distance to nearest airport,

urbanization and wealth).

Towers varied in their place-based attributes (Figure 3, Table 1).

For the 100 runs of the LDA, correct predictions of tower

community membership ranged from a minimum of 0.5%,

corresponding to a modularity score of 0.26, to a maximum of

70.59%, corresponding to a modularity score of 0.51. Indeed, the

predictive capability of each LDA model was strongly correlated

with the modularity score (Figure 4; Pearson’s linear correlation

coefficient r = 0.97). This result demonstrates that runs with higher

modularity, presumably closer to the underlying ‘‘true’’ commu-

nity structure, are better able to be explained by geographic

context of towers than runs with low modularity indices.

In general, the LDA performed well in reconstructing the

qualitative features of the communities in the Dominican Republic

(Figure 1b). For instance, both the major cities on the island (Santo

Domingo and Santiago) were correctly assigned to the appropriate

communities by the LDA, and predictions included the distinctive

separation between the east and west halves of Santo Domingo.

The mobile phone towers that were incorrectly assigned to

communities by the LDA tended to be located in outlying areas,

such as the towers in the far west of the country near the border

with Haiti.

Finally, we assessed the relative importance of our four place-

based attributes on community structure in the LDA applied to the

run with the highest modularity score. The first, second and third

discriminant functions explained 44.1%, 40.3% and 12% of

between group variance, respectively (Table 2). Sugar cane land

use had the largest coefficients in standardized discriminant

functions one and two, followed by urbanization in discriminant

function one and the wealth index in discriminant function two.

The third discriminant function was dominated by the wealth

index. Distance to the nearest airport did not appear to play an

important role in the LDA, and was the least important predictor

variable in all of the discriminant functions. Qualitatively similar

results were observed for other high-ranking runs of the

modularity algorithm.

Discussion

We have demonstrated a close link between community

membership and place-based attributes for a large-scale social

network of mobile phone communication in the Dominican

Republic. This link is evident in the high (.70%) predictive

capability of a linear discriminant analysis of community member-

ship based on place-based attributes, and the strongly positive

correlation between LDA predictive capability and modularity for
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100 separate runs of the modularity algorithm. These results imply

that community formation between locations in this mobile phone

communication network is related to geographic context, in-

cluding social structure, wealth distribution, economic production

and land use. Consequently, place-based attributes could be used

to predict community membership for locations that are not

included in the network.

The general principles of homophily [10] and focus constraints

[12] have been shown to predict group membership in small-scale

social networks. Whether groups of individuals similarly form

bonds with other groups of individuals on much larger spatial

scales remains an important unaddressed question, because

general theories are required to understand the processes un-

derlying community formation in large-scale social networks. In

this study, we demonstrate that processes which cause community

formation among individuals may also drive community formation

in large-scale networks composed of groups of individuals. For

example, homophily may explain why communication is higher

between towers in the wealthy western half of Santo Domingo

than between western towers and towers in the less wealthy,

eastern half of the city. One group of towers which was not

correctly assigned community membership by the LDA were the

towers in the west of the country near the border with Haiti, which

the modularity algorithm determined were in the same community

as towers in Santo Domingo. This discrepancy could reflect a focus

constraint between tower locations not captured by our set of

place-based attributes, such as wealthy Dominican urbanites

hiring Haitian laborers for housekeeping services.

The amount of land used for sugar cane cultivation was the

most important predictor of community membership. Although

sugar cane production is no longer a dominant economic activity

in the Dominican Republic, the importance of sugar cane in

determining community membership likely reflects deep, un-

derlying differences in social structure between regions. These

differences may be driven by the long-term social effects of class

divisions arising from the mode of sugar cane cultivation in large

plantations, compared to the country’s other main agricultural

crops, which are produced by more egalitarian collectives of small

farmers [20]. Here we have demonstrated that community

structure can be predicted accurately using a choice of just four

relevant place-based attributes to quantify geographic context.

These represent only a fraction of the potential additional

attributes that could be used to describe the location of nodes in

large-scale networks, and the addition of a broader range of place-

based attributes, including ethnicity, gender or health infrastruc-

ture, may further aid explanation of the underlying community

patterns, and should be a focus of future research.

Figure 1. Community membership of 170 mobile phone towers in the Dominican Republic. Each dot represents a mobile phone tower,
and each color represents a unique community. The capital city, Santo Domingo, is located in the center of the southern coast, represented by the
cluster of red and blue dots. Panel a (top) shows the result from the run of the modularity algorithm with the highest modularity score. Panel
b (bottom) shows predicted community membership of mobile phone towers from the LDA using four place-based attributes for the modularity
realization with the top modularity score.
doi:10.1371/journal.pone.0056057.g001

Figure 2. Predicted communities from k-means clustering, based upon the spatial location of each tower (here, k =12). Each mobile
phone tower is represented by a circle. The color of the circle indicates community membership.
doi:10.1371/journal.pone.0056057.g002
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One challenge for future research is to incorporate both space

and place-based attributes into quantitative models for community

membership. Several previous studies have demonstrated that

space plays an important role in determining patterns in large-

scale social networks [8,14–15]. Expert (2011) has presented

a method for modularity which removes the effect of space from

community membership in the modularity algorithm [15]. A

disadvantage of this approach is that if the goal of analysis is to

predict community membership, and space drives the pattern of

modularity, removing space using the modularity algorithm

eliminates an important element leading to community formation.

In contrast, the method we present, using an LDA with place-

based attributes can account for spatial autocorrelation due to the

spatial distribution of predictor variables. Our method is unable to

account for patterns in modularity which are the result of space

alone, for example, if nearby towers are more likely to

communicate, regardless of any shared social or economic

attributes. However, results from a k-means clustering analysis

classifying towers into 13 communities based solely on pairwise

distance between towers, suggest that spatial proximity alone does

not capture many features of the observed community structure

(Figure 2). A method of analysis which simultaneously quantifies

the effect of space and place-based attributes on community

membership is an important goal for future research.

There are several limitations to the dataset used. First, although

per capita mobile phone ownership in the Dominican Republic is

relatively high [21], mobile phone use may be biased towards

wealthier and working age individuals. Despite these heterogene-

ities in mobile phone ownership, the most extensive study of

mobile phone ownership to date has found that every region,

income and demographic bracket is represented in mobile phone

datasets [22]. Additionally, the mobile phone network used

comprised only 5% of market share in the Dominican Republic,

meaning results may have limited generality if mobile phone

coverage or call flow is very different for other in-country mobile

phone companies. Finally, mobile phone towers are placed non-

randomly, usually in places with high population density [23], and

geographic context of towers reflects this non-random placement;

however, placement alone seems unlikely to explain many of the

striking patterns we observed in the data, such as the division

between the east and west halves of Santo Domingo. Despite these

caveats, our findings show clear patterns that match with existing

geographical knowledge on the Dominican Republic, and also

demonstrate the application of a method for quantifying the

influence of geographic context on modularity.

Because mobile phone communication networks are related to

economic activity [17], friendship [1], and human mobility [16–

19], the ability to predict patterns of communication across regions

has major implications for a range of fields, from epidemiology to

political science. Our results suggest that place-based attributes

related to social, economic and ecological context can predict

community membership in mobile phone communication net-

works. Consequently, the potential to extrapolate community

membership across wide regions not covered by mobile phone

towers exists.

Methods

We used a dataset composed of the symmetrized number of calls

between 177 mobile phone towers in the Dominican Republic.

These data represent a single mobile phone company with 5% of

Dominican mobile phone market share. The 57 million mobile

phone communications in this dataset occurred between June

2007 and May 2008. For each call, the tower used by the phone

initiating the call (the ‘‘origin’’ tower) and the tower used by the

telephone receiving the call (the ‘‘destination’’ tower) were

recorded. Over the entire study period, the mean call volume

originating from each tower was 323655 (standard deviation

240468). For each pair of towers A and B, the number of calls

originating from A calling phones serviced by B was known, as

well as the number of calls originating from B to phones in A. In

this dataset, these two values were not necessarily equal. Following

previous analyses of country-wide mobile phone communication

networks (4), we symmetrized calls going between a pair of towers

by setting the number of calls from A going to B and the number

of calls from B going to A equal to the lesser of the two values.

Symmetrizing in this manner did not significantly affect the data;

the mean discrepancy between the two values for pairs of towers

was 3%. The total number of nodes in the network is 177 (the

number of mobile phone towers) and the number of links between

towers is 57286839. We excluded towers identified in the dataset

as repeaters from analysis, because these towers are used to boost

signals from other towers, rather than servicing a particular

location. This network of towers covered much of the population

of the Dominican Republic, and serviced a wide range of

urbanization, wealth and land use (Figure 2, Table 1).

We analyzed existing data from the mobile phone company,

which originally had been collected for billing purposes, not for the

purposes of this study. This mobile phone network was rendered

anonymous by the mobile phone company before we accessed the

data, making it impossible to identify individual mobile phone

users. Additionally, the data were aggregated as the sum of calls

from one tower to another, making it impossible to extract

information on individuals from the dataset. The anonymity and

aggregation of the data are strong safeguards maintaining the

privacy of individual mobile phone users in the dataset.

We quantified community structure in the network using

modularity maximization with a simulated annealing algorithm

[25]. Previous research has shown that modularity maximization is

a particularly effective approach for detecting communities in

networks [7] and modularity maximization has been successfully

applied to several mobile phone communication networks [6,15].

This algorithm determines the number of communities and node

membership in communities by maximizing the difference in calls

Table 1. Characteristics of place-based attributes used to quantify geographic context.

Place-based attribute Spatial scale Range Mean6SD

Land used for sugar cane production 15 km radius around tower 0–0.54 0.1760.15

Distance to nearest airport (km) 8 airports in country 1.4–125 20.45617.96

Urbanization 15 km radius around tower 0–0.96 0.5860.32

Wealth index 2nd level administrative unit (municipio) 0–0.62 0.4560.15

doi:10.1371/journal.pone.0056057.t001

Predicting Communities in a Mobile Phone Network
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Figure 3. Two of the place-based attributes used in the LDA analysis predicting community membership in the Dominican
Republic. Panel a (top) displays sugar cane production and panel (b) displays urbanization. Area shown represents a 15 km radius around mobile
phone towers.
doi:10.1371/journal.pone.0056057.g003
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within a community and calls between communities. We used

a weighted version of modularity, with a null model in which edges

are placed at random, with the constraint that the degree of

a vertex in the null model is equal to the degree of that same vertex

in the real network [25]. The output of this algorithm is

community membership of each node and modularity, an index

representing the degree of clustering from 0 (modularity not

significantly different than edges distributed at random) to 1.

Determining the global maximum of the modularity function

requires calculating the modularity score for all possible partitions

of the network into communities. In fact, optimizing modularity is

an NP-hard problem, meaning that optimization algorithms can

only approximate the optimal modularity score [24–26]. Further-

more, there may be many local optima in the modularity surface,

arising from different partitions of the network into communities.

To address this concern, we conducted 100 separate runs of the

modularity optimization algorithm. For each run, we extracted the

optimum modularity score and the community membership of

each mobile phone tower.

We analyzed the process determining community formation in

the call network by relating community membership to place-

based attributes using a linear discriminant analysis (LDA). We

selected four variables to use as predictors of community

membership in the LDA: area occupied by urbanized land, area

used for sugar cane production, distance to nearest airport and

income at the second level administrative unit. Each of these

variables represents an economic, social or ecological element of

each tower’s landscape. Urbanization is central to many social

processes in Latin America [27]. We chose land cover used for

sugar cane production as a place-based attribute because social

networks in regions of the country with sugar cane plantations

have fundamental differences, including higher social stratification

and economic inequality, relative to social networks in regions

with other forms of agriculture [20]. Both urbanization and sugar

cane land cover were quantified from satellite imagery datasets

[28–30] using a 15 km radius around each tower (Figure 2), an

area chosen as an appropriate scale to represent the maximum

area that a signal from an individual mobile phone tower could

Figure 4. Correlation between predictive power of LDA and modularity score for 100 runs of the modularity algorithm. Modularity
values closer to zero represent runs with fewer differences in connectivity between communities than within communities. Predictive power of LDA
represents the percentage of towers with community membership correctly predicted.
doi:10.1371/journal.pone.0056057.g004

Table 2. Output from a linear discriminant analysis for the
realization of the modularity algorithm with the highest
modularity score.

Discriminant function

Predictor LD1 LD2 LD3 LD4

Sugar cane 7.26 10.97 0.70 1.64

Urbanization 4.27 23.58 24.12 22.47

Rich quintiles 1.61 23.95 9.26 7.67

Airport distance 0.04 20.02 20.04 0.06

Proportion of
trace

0.44 0.40 0.12 0.04

doi:10.1371/journal.pone.0056057.t002

Predicting Communities in a Mobile Phone Network
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occupy. We quantified distance from each tower to the nearest of 8

airports, because we anticipated the proximity to airports would

reflect economic conditions related to international tourism, which

is a major source of income for the Dominican Republic [31].

Finally, we measured income as the proportion of people in each

second-level administrative unit belonging to the highest quintile

of wealth, as measured by the Wealth Index developed by

MEASURE DHS (www.measuredhs.com). Although the MEA-

SURE DHS data contains many other predictor variables related

to socioeconomic status, such as motorcycle ownership, poverty

rates and presence of indoor plumbing, multicollinearity between

socioeconomic variables limited the number of predictor variables

we could include in the model. Consequently, we chose to use the

Wealth Index, because this measure of wealth correlates much

more strongly with socioeconomic status than most other

measures, as measures such as self-reported income can be highly

inaccurate, can change over the course of a year, and may not

include all sources of income [21]. Upon determining the

proportion belonging to the highest quintile of wealth in each

second-level administrative unit (‘‘municipio’’), we associated that

proportion with every tower in each municipio. We chose to

aggregate this proportion over municipios rather than aggregate

over each tower because the MEASURE DHS data is weighted to

be aggregated to the first level administrative unit. Our LDA

analysis had two objectives: first, to quantify the predictive power

of the LDA for community membership, and second, to analyze

the relative explanatory power of our four predictor variables. We

determined whether our place-based attributes were able to

correctly predict community membership of towers by applying an

LDA with leave-one-out cross-validation to all 100 realizations of

the modularity algorithm. This approach provides a value of

predictive capability linked to each modularity realization.

Calculating a range of predictive capabilities linked to various

levels of modularity has the benefit of enabling us to link the

pattern described by the modularity algorithm with the process

quantified by the LDA. If the LDA is accurately reflecting the

processes which drive community membership, we would expect

the predictive capability of the LDA to increase as the modularity

index increases.

To evaluate which predictor variables were most important for

determining community membership, we conducted an LDA

using the realization of the modularity algorithm with the top

modularity score. Repeating the analysis for other realizations

revealed qualitatively similar results. Because the goal of analyzing

the single LDA for the top modularity realization was explanation,

rather than prediction, we included the full dataset in this analysis.

To assess the relative importance of predictor variables, we

examined the proportion of between group variance explained by

each of the four discriminant functions and the coefficients of the

standardized discriminant function.

Supporting Information

Figure S1 The simulated annealing runs with the 20 highest

modularity scores (Q ..52, out of 100 total runs) were used to

determine core communities. Core communities were defined as

communities with at least 3 towers that appeared in every run,

where each core tower was a member of the same community for

all 20 runs. Towers that were not assigned to the same community

throughout all 20 runs were termed non-core towers, and are

represented as green open circles, while core communities are

represented with filled circles, with colors corresponding to the

communities in Figure 1.

(TIF)

Video S1 This brief video presents our methods and results in

language appropriate for a general audience.

(MOV)
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