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Abstract

Occupancy-moderated zonal space-conditioning (OZS) refers to the partitioning of
a residence into different zones and independently operating the space-conditioning
equipment of each zone based on its occupancy. OZS remains largely unexplored in
spite of its potential to reduce the cost of space-conditioning. Despite the excitement
surrounding cloud-connected devices like mobile phones and tablet computers, the
benefit of using them to aid energy management agents (EMAs) in reducing space-
conditioning cost under demand-driven pricing of electricity is not well understood.

We develop a novel framework and the algorithms to enable an EMA to implement
OZS for multiple inhabitants under a demand-driven pricing scheme for electricity.
We further investigate the effects that influencing factors can have on the effectiveness
of OZS under different scenarios using Monte Carlo simulations. The simulation
results demonstrate that OZS is realizable on a simple home computer and can achieve
significant space-conditioning cost reductions in practice. In our studies, both the
financial operating cost of space-conditioning and the cost associated with discomfort
are included in a single aggregate cost function.

We then expand the simulations to study the cost reduction that is achievable
when using cloud-connected devices to provide remote schedule updates to an EMA.
This part of the study reveals that reduction in space-conditioning cost is appreciable
if a working resident remotely updates an EMA at mid-day of his return time in the
evening. In addition, we establish a directly proportional relationship between the
level of space-conditioning cost reduction achievable and the variance of return time.

Based on the research findings, we further offer recommendations and ideas for fu-
ture research on the use of OZS and remote schedule updates to different stakeholders
like policy-makers and homeowners.

Thesis Supervisor: Richard C. Larson
Title: Mitsui Professor of Engineering Systems
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Chapter 1

Introduction

1.1 Motivation and Overview

Residential demand response is often predicated on the presence of an energy man-

agement agent (EMA) in the house under a demand-driven pricing of electricity,

such as those described in [Hammerstrom, 2007b, Livengood and Larson, 2009]. The

current state of affairs, however, is such that price per unit of electricity facing the

overwhelming majority of residential consumers in the world is fixed at a constant

rate independent of the time of the day. Changes in legislation is often hampered by

inertia while consumers so used to a pricing system that has been in place for decades

are not ready-adopters of new electricity pricing schemes. An incentive of some kind,

such as a monetary reward in the form of cost savings for example, is likely needed to

motivate the average homeowner to install an EMA to control the home appliances.

The status quo is expected to endure. Residential demand response schemes that

require demand-driven pricing will remain in the realm of pilot studies, test beds and

scale-limited rollouts as long as the status quo is maintained.

Under the current circumstances, it is desirable to have a bridging solution or

application that incentivizes the homeowner to adopt the said EMA under the promise

of cost savings in the absence of demand-driven pricing. This bridging solution or

application should also enhance the cost savings achieved by the EMA under a demand

driven pricing scheme for electricity when such an arrangement is in place.
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Residential heating and cooling, which is referred to as space-conditioning in this

dissertation, accounts for 26% of American residential electricity consumption in 2001

[EIA, 2001], which translates to 25.6 billion dollars. This is approximately equiva-

lent to 30 billion dollars today, which can literally solve the world hunger problem.

(According to the Food and Agriculture Organization (FAO) of the United Nations,

the "world only needs 30 billion dollars a year to eradicate the scourge of hunger."

[FAO, 2008]) In addition, the Commonwealth of Massachusetts is projected to ex-

pend thirty billion dollars in government spending for FY2011. These figures suggest

that residential space-conditioning deserves a closer look as a candidate for the said

bridging application. Within the domain of space-conditioning and demand response

applications, prior work [Chen, 2008, Lu et al., 2010] suggested the usefulness of zonal

space-conditioning as a strategy to reduce electrical consumption but did not explore

the subject further.

According to the American Housing Survey [Szymanoski and Johnson, 2009], there

are 130 million housing units in the United States, of which 112 million are occupied

year round. In the same survey, 103 million or 92% of occupants responded to having

some type of air-conditioning in their residence. In addition, 35 million or 32% of

occupants reportedly have some form of electric heating in their homes. Given that

99.7% of housing units have more than two rooms [Szymanoski and Johnson, 2009],

zonal space-conditioning appears to be a reasonable strategy towards the objectives of

increasing energy efficiency of a residence and reducing the space-conditioning load.

All the above motivated the author to study zonal space conditioning as a strat-

egy and a bridging application to enhance the savings of an EMA, with or without

a demand-driven pricing scheme of electricity in place. The astute reader will also

note that zonal space-conditioning entails that the occupancy of each zone will influ-

ence or moderate the degree of conditioning for that zone. To be exact, the strat-

egy in question can be termed occupancy-moderated zonal space-conditioning. By

occupancy-moderated zonal space-conditioning (OZS), we refer to the partitioning of

a residence into different zones and independently operating the space-conditioning

equipment of each zone based on occupancy and in so doing, achieve some degree
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of reduction in energy needed to maintain a level of comfort acceptable to the occu-

pant. Under a demand-driven pricing scheme, the potential for cost savings is further

enhanced through the use of pre-conditioning to shift loads, as discussed in [Chen,

2008, Constantopoulos et al., 1991, Livengood and Larson, 2009].

Livengood [Livengood, 2011], under the tutelage of Larson [Livengood and Larson,

2009], has laid the groundwork for an Energy Box that controls individual appliances

such as clothes washing machine, dryer, etc. and instructs the space-conditioning

system in place about the most desirable temperature to maintain the house at. The

author aims to lay the groundwork to realize zonal space-conditioning in an EMA

at the level of individual space-conditioning in each zone that factors in the the

occupancy state of each zone to complement the work by Livengood. In other words,

instead of deriving a most desirable temperature, the current work will enable the

EMA to provide actual control signals to the individual space-conditioning equipment

in each zone.

Occupancy is inherently random. Intuition suggests that the less random and the

more predictable one's occupancy patterns are, the greater the potential for savings

achieved by OZS. The advent of cloud computing and ubiquity of smart mobile devices

offers the EMA an ally in reducing the uncertainty of occupancy patterns. This

further motivates the author to investigate the notion of remote schedule updates

(RSU), where possibly real-time information from mobile devices is used to advise

the EMA of expected occupancy patterns.

1.2 Research Questions and Objectives

It is most logical to question the efficacy of OZS now that we have identified it as

a promising bridging solution. In addition, we would also like to know how RSU

can aid space-conditioning in general. In view of these queries, we pose the following

research questions which this dissertation will address:

1. What level of cost savings can OZS achieve under a demand-driven electricity

pricing scheme under realistic settings?
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2. How do influencing factors impact the savings achieved by OZS under a demand-

driven electricity pricing scheme?

3. What level of space-conditioning cost reduction can remote schedule updates

bring about?

The influencing factors referred to in the second research question are the number

of occupants and zones, the randomness of the occupancy patterns, the level of sim-

ilarity between the occupancy patterns of inhabitants and the thermal mass of the

residence.

1.3 Research Methodology, Framework Formula-

tion and Algorithm Design

Monte Carlo (MC) simulation is the primary method of investigation for both of

the studies on OZS and RSU. Towards this end, virtual residences were set up in

the Matlab environment and MC simulations driven by random signals including

occupancy, meteorological inputs and price of electricity under different scenarios

were ran. The total cost of operating the space-conditioning equipment for the case

with and without OZS under the same conditions were collected and compared.

Since the value of any results obtained using MC simulation is highly dependent

on the random inputs driving the simulations, we used real-world data observed in

practice or highly-realistic proxy data to drive the MC simulations as far as possible.

To the best knowledge of the author, there does not exist a readily available

framework or formulation to implement OZS. While there are occupancy learning

algorithms, optimal control techniques and inverse-modeling methods to characterize

the thermodynamics of buildings, there does not exist a unified framework that con-

solidates all the necessary elements from the various disciplines to realize a practically

feasible EMA or controller to implement OZS. This compels the author develop the

framework, formulation and algorithms needed to realize OZS, with Constantopoulos'

dissertation [Constantopoulos, 1983] as the starting point.
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The effort required to investigate the benefits of RSU, though challenging, was less

involved. This is possible only because the author could adopt the newly completed

Energy Box simulator [Livengood, 2011] to run MC simulations to investigate the

cost of space-conditioning with or without RSU.

1.4 Outline of Dissertation

Following a survey of the literature in the second chapter, the third chapter begins

the more technical discussion of the control strategy developed for realizing OZS

and paints a clearer picture of the need for learning of thermal characteristics and

occupancy patterns described in the fourth and fifth chapters.

Chapter Four provides a survey of common heating systems and discusses in detail

a simplified model for describing the thermal characteristics of a zone and the means

of learning about the parameters of the model. Chapter Five delves into the different

aspects of occupancy, including the source of occupancy data used in this work, the

framework to model occupancy patterns and method of learning about them. The

results of Monte Carlo simulation runs under the different scenarios and settings

using the framework and formulation described in previous chapters can be found in

Chapter Six. An account of the random inputs used to drive the simulations is also

included in the sixth chapter.

The subject of using mobile devices as an aid for RSU is discussed in Chapter

Seven. Chapter Seven will also describe some aspects of the Energy Box simulator

developed by Livengood [Livengood, 2011] as the study on RSU is based on the said

simulator. The dissertation is brought to a close in the concluding chapter, which

summarizes the results obtained, offers the different stakeholders e.g. homeowners a

few pointers about OZS and puts forth possible avenues for future research.

1.5 List of Acronyms

AC Air-Conditioner
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ADP Approximate Dynamic Programming

ATUS American Time Use Survey

DP Dynamic Programming

DPI Deterministic Perfect Information

EBA Event-based Appliance

EBS Energy Box Simulator

EMA Energy Management Agent

MCS Monte Carlo Simulation

OAT Outdoor Air Temperature

OZS Occupancy-Moderated Zonal Space-Conditioning

RSU Remote Schedule Update

RTP Real Time Pricing
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Chapter 2

Literature Review

2.1 Founding and Foundations

We begin our survey of the literature by tracing the beginnings of demand-driven

pricing and demand response in the electric industry and zonal space-conditioning.

The impact of the early work by Schweppe [Schweppe et al., 1988] and colleagues

at the Massachusetts Institute of Technology (MIT) [Schweppe et al., 1980] on de-

mand response can be likened to that made by Shannon on communications theory

and technology with his seminal work [Shannon, 1948]. Schweppe et. al. aimed to

provide the framework and foundation for the realization of utility-customer transac-

tions based on contemporary needs with the publication of [Schweppe et al., 1988].

A key element of such a realization is the use of spot pricing of electricity which was

discussed from different aspects including those on spot price behavior, energy mar-

ketplace transaction, means of implementation, generation and revenue reconciliation.

With remarkable prescience, one chapter in [Schweppe et al., 1988] prognosticated a

deregulated energy market place. Schweppe's idea and vision remain highly-regarded

by his colleagues at MIT and practitioners in the industry, including Dr. Chao of

ISO New England.

The idea of homeostatic utility control (HUC) was introduced in [Schweppe et al.,

1980]. Although an uncommon word in engineering literature, homeostatic aptly

captures the notion of the supply and demand systems in an electric power grid
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working together to maintain a continuous equilibrium to the benefit of both the

utilities and the consumer that is central to the idea of HUC. In essence, HUC utilizes

the rational supplier's and consumer's response to price, enabled by communication

and computation technologies, to realize an efficient, internally-correcting control

scheme. The paper goes on to explore the various elements and structures to bring

about this state of homeostasis.

Thus was the subject of demand-driven pricing founded, and the foundations of

demand response laid. An excellent account on the history of inducing responsive

electricity demand can be found in the doctoral thesis by Livengood [Livengood,

2011].

Working on the ground-breaking ideas of spot pricing and HUC, Constantopoulos

explored the idea of load shifting under a spot pricing scheme as a strategy to achieve

demand response in his doctoral dissertation [Constantopoulos, 1983]. In addition to

developing the framework, formulation and control strategy to shift loads using the

pre-conditioning of residences when the spot price is relatively low, his dissertation

factored in the occupant's utility function and introduced the means to appropri-

ately account for monetary cost and "service loss". In [Constantopoulos, 1983], the

controller of space-conditioning equipment allows the temperature in the house to

deviate from the desired temperature but within strict upper and lower bounds. The

resident decides and sets these bounds and the desired temperature.

It is worthy to note that Constantopoulos's dissertation appears to be a harbinger

to future work that occurs at the intersection of engineering, management and social

science. The more readily accessible paper by Constantopoulos, Schweppe and Larson

[Constantopoulos et al., 1991] published in an important journal describes the key

ideas and results from his dissertation and bears testament to the value and validity

of his work.

A discussion on the history of zonal space-conditioning is included here for the

sake of completeness. The earliest implementation of zonal space-conditioning dates

back to antiquity, in ancient China, Europe, Greece, India and the Near East, where

occupants of a space use portable fire stoves called braziers to provide heating when
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needed. The use of portable stoves for zonal space-conditioning is likely due to the

limitations of technology and for the sake of convenience, rather than solely out of a

desire to conserve fuel.

The Nimrud brazier [Russell, 2011] which dates back to at least 824 BCE, discov-

ered in the mid-1990s at the Neo-Assyrian capital of Nimrud in Iraq, was made of

wood clad with bronze that takes the form of a square box on four spoked wheels.

It remains the only known mobile firebox or portable brazier that Assyrian kings

used to provide heating in winter. In the mid-19th century, excavators working on

archaeological research sites in Iraq reported grooved "tramlines" running down the

centre of Assyrian throne rooms. With such "tramlines" in place, the brazier could

be wheeled along the lines to where heat is needed. The practice of installing or

operating space-conditioning equipment at zones where it is needed continues to this

day, with portable electric heaters or window-unit air-conditioners joining the modern

brazier in the quest for thermal regulation in zones. Chen [Chen, 2008] provides a

concise but informative account of the history of interior space conditioning.

The patent issued to Stacey [Stacey, 1936] in 1936 marks the beginning of mod-

ern zonal space-conditioning systems. To the best knowledge of the author, Stacey is

the first to have as an objective in an invention to "provide a system of atmospheric

control which includes the division of the enclosure into a number of zones... and the

control of atmospheric conditions in individual zones." This was followed by others

[Capps, 1965, Locke, 1940, Nessell, 1941, 1942] over the years that made incremen-

tal improvements on different aspects of zonal space-conditioning systems. These

developments, along with other advancements, eventually led to the development of

HVAC systems with ducts delivering conditioned air to different zones and multi-split

air-conditioning systems that has become indispensable to the modern lifestyle.

2.2 Recent Resurgence

A growing concern for the environment, a desire for greater energy independence, an

ever-increasing global demand for energy and other trends have ignited the interest
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in clean technology. Like a boat on a rising tide, demand response that aims to

"shave the peaks and fill in the valleys of demand" is an area that has garnered

much attention since the early 2000s. This renewed enthusiasm has brought about a

resurgence of research interest in the area founded by Schweppe.

The works by Black [Black, 2005, Black and Larson, 2007] can be seen as a herald

of this resurgence. His doctoral dissertation [Black, 2005] provides an in-depth look

at the technical, regulatory, and market issues to determine a system structure that

incentivizes demand response. The paper by Black and Larson is not limited to

electric power systems and investigates congestion pricing in general across critical

infrastructures in terms of the expected benefits of forgone investment achieved by

reducing peak demand [Black and Larson, 2007].

Frequency Adaptive Power Energy Reschedulers, or FAPERs, were introduced by

Schweppe in [Schweppe et al., 1980]. Brokish continued the work on FAPERs in

[Brokish, 2009] by investigating their use in the adaptive load control of microgrids.

FAPERs aim to use temperature-bounded appliances e.g. air-conditioners, electric

space or water heaters for energy storage by using grid frequency as a signal. When

grid frequency is too high or too low, FAPER-enabled appliances can power up or

down and consequently increase or shed load to aid with frequency regulation (as-

suming the pre-determined temperature bounds are not exceeded). A novel FAPER

control algorithm proposed by Brokish uses probabilistic functions outperformed one

that does not by achieving better frequency regulation and having less clustering of

appliances operations. In addition, Brokish discovered the limitations in using Markov

Chains to model wind power which he detailed in [Brokish and Kirtley, 2009].

Continuing from where Constantopoulos had left off, Livengood and Larson intro-

duced the idea of the Energy Box in [Livengood and Larson, 2009]. The Energy Box

is an energy management agent (EMA) that runs round the clock to manage energy

usage in a residence or small office/home office (SOHO) with the aim of achieving an

objective. The intelligence of the Energy Box lies in its algorithm bank, and can op-

erate either locally on a computer or remotely on a server. Using an implementation

of approximate dynamic programming, Livengood reports cost reduction (compared
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to a baseline) between 5% and 44% in simulations runs involving a residential energy

system that includes thermostat control, batteries, wind turbines etc.

The interested reader is referred to Livengood's doctoral dissertation [Livengood,

2011] for a more detailed account of research related to the Energy Box and the

development of a software simulator. Using the simulator he developed, Livengood

ascertained that coordinating decisions across appliances and devices within a home

did not bring about additional benefits for the typical consumer. In the case where the

resident is a 'prosumer' i.e. one who produces and consumes electricity, coordinating

decisions between appliances may bring about additional benefits as compared to

independently controlling the appliances and devices. In addition, it was reported

that a joint dynamic programming decision method that includes the thermostat of

an air-conditioner, the dishwasher and wind forecasts provides the most improvement

over independent control.

The testbed demonstrations projects completed by the Pacific Northwest National

Laboratory [Hammerstrom, 2007a,b] serve as good examples of successful real-world

experimentation of demand response. The report on the Olympic Peninsula Project

[Hammerstrom, 2007b] details the realization and results of a field demonstration in-

volving residential electric water heaters and thermostats, commercial building space

conditioning, municipal water pumps etc. The report concludes that the price is

an effective control signal for managing transmission or distribution congestion, thus

proving the value of Schweppe's vision in practice, albeit on a smaller scale.

The Grid Friendly Appliance Project [Hammerstrom, 2007a] has a greater residen-

tial flavor to it, involving 50 residential electric water heaters and 150 clothes dryers

in homes for a year. These appliances were modified so that they will shed load when

the power grid frequency was below 59.95 Hz. The appliances were found to have

responded reliably to each underfrequency event (averaging one per day) while end-

users reported little or no noticeable inconvenience to them and that the appliances'

load shedding activity went unnoticed.

The trilogy of doctoral dissertations [Chen, 2008, Jang, 2008, Peffer, 2009] cap-

tures the essence of a study involving policy analysis, system design, software develop-
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ment, hardware integration, among other tasks, that addresses the topic of residential

demand response with some emphasis on space-conditioning to realize a demand-

responsive electrical appliance manager (DREAM [Berkeley, 2011]). The DREAM is

in essence made up of a wireless network of sensors, actuators and controller that in-

telligently manages a residential space-conditioning system and informs the residents

of their energy usage patterns through a user interface.

In her dissertation [Peffer, 2009], Peffer provided a detailed account of the design

and testing of the DREAM and a user-interface, the evaluation of machine-learning

algorithms to predict a user's temperature preference and developed an algorithm

that generated temperature setpoints based on the outdoor air temperature (OAT).

The simulated energy used by the space-conditioning system using the generated

setpoints were compared to that used in the case where the default setpoints of the

traditional EnergyStar programmable thermostat were used. The former resulted in

running 17% fewer hours of heating and 34% fewer hours of cooling when compared

to the latter. A strength of the DREAM project lies in the fact that real-time data

collected from field tests are used. For instance, data was collected from test houses

in locations like Antioch, CA.

Of the trilogy, the dissertation [Chen, 2008] is the most relevant to the current

work on OZS, where Chen detailed the demonstration of an intelligent, adaptive

and autonomous residential space conditioning system under the context of demand

response. The discussion on optimization that focuses on the design and the imple-

mentation of supervisory control forms a significant portion of [Chen, 2008]. The

DREAM adopts a hierarchical structure for its supervisory controls, which is realized

in three steps: first is to decide the control mode, the second of which is to choose

the control states, and finally selecting the control strategy settings - temperature

setpoints and their schedule if need be, which will in turn be sent to local controls as

the control objectives.

In addition to describing local control, Jang's doctoral dissertation [Jang, 2008]

was primarily concerned with developing an algorithm to characterize the thermal

dynamics of a house. A multi-model approach was adopted, where several candidate
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models whose parameters were calculated from seven consecutive days were used. The

system could either operate in the multiple-model hard switching (MMHS) mode

where it picks one of the models or fuses all of them in the multiple-model soft

switching (MMSS) mode. The MMSS produced better overall performance when

compared to the MMHS.

Like in [Chen, 2008], Lu suggested but did not explore the usefulness of zonal

space-conditioning in [Lu et al., 2010]. In his paper, Lu described the use of low-cost

sensing technology to learn about occupancy patterns which will in turn moderate

the space-conditioning system in the residence, thereby saving energy. The proposed

method was evaluated by a deployment of sensors in eight homes, which achieved an

average savings of 28%.

2.3 Current Attempts to Kill Bill

With the cost of power on the rise, it is increasingly imperative to understand energy

consumption and adjust usage to non-peak times so as to lower power usage and costs.

There are already dozens of companies building home energy management systems

that typically use a home network to communicate with devices and the utilities.

In this section, we survey a non-exhaustive selection of products, tools, platforms

and services that attempt to help the average homeowner kill the utility bill. The

inclusion of any commercial offering in this survey should not be interpreted as an

endorsement.

2.3.1 Products and Tools

Kill A Watt [P3, 2012] can help the user assess how efficient appliances are. Its large

LCD display gives measurements of consumption by the kilowatt-hour and shows

meter readings in terms of volts, amps, watts, hertz and VA. Users can calculate

electrical expenses by the day, week, month, or even year. They can also check the

quality of power by monitoring voltage, line frequency and power factor. Its sister

product, the Save A Watt timer, will turn on and off based on users preferred settings.
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It can be programmed ON/OFF to save money and prolong the life of electronic

gadgets. Meanwhile, its cousin Kill A Watt Wireless monitors power consumption

remotely and calculates carbon emissions and costs by day, week, month and year. It

can also transmit data to the central LCD display where users can see their cumulative

electrical expenses and the carbon footprint of their appliances.

The Nest Learning Thermostat [Nest, 2012] is an independent gadget that does

away with the fiddling of knobs and programming of temperature. Set it like a

traditional thermostat, and it will pick up energy-saving habits and program itself in

a week. It ignores one-off changes but is quick to catch on when users make changes at

least a couple of times. Easy to install, its activity sensors have a 1500 wide-angle view

so its Auto-Away feature knows when to kick in and turn down heating and cooling

when no one is home. Its three temperature sensors track the space-conditioning

of the residence, an important function since a change in set-point can significantly

affect energy consumption.

It uses its Wi-Fi connection to monitor weather conditions so it can understand

how external temperature can impact internal energy use. The Energy History func-

tion shows how much energy is used each day. Its Nest Leaf icon pops up to show

users that they are saving energy, thereby encouraging energy-saving habits. Nest is

also nested online so a laptop, tablet or smartphone is all users need for real-time con-

trol to view multiple thermostats at home or adjust the temperature, wherever they

may be. Nest is also secure and boasts public key cryptography. Its money-saving

sensibilities are made more attractive by its sleek minimalist design.

The Prestige programmable thermostat [Honeywell, 2012] from Honeywell features

a full-color touchscreen that makes it easier to program than other offerings in the

market. It asks users questions and then programs itself based on the answers given.

The gadget allows separate programming for each day of the week and can save up to

33% on annual energy costs - or up to $200 per year. It can function as a load-shifter

by automatically adjusting setpoint temperature when the price of electricity are at

their highest to help slash energy costs. Prestige HD also controls temperature and

indoor air quality such as humidification, dehumidification and air filtration from a

28



single control. Its Total Connect Comfort Services function offers remote control over

the Internet from a PC, smartphone or tablet so users can adjust home temperature

settings on the fly. It can communicate in English, Spanish or French and its Wireless

Outdoor Air Sensor displays outdoor temperature readings.

The Home Energy Saver [HES, 2012] is a set of on-line resources developed by

the U.S. Department of Energy to help consumers and energy analysts evaluate,

reduce, and manage home energy use. Created at the Lawrence Berkeley National

Laboratory, this energy assessment tool enables consumers to carry out home energy

audit and provides recommendations to help reduce household energy consumption

and utility costs. Users enter a zip code to receive estimates for typical and efficient

homes in their area. The estimates break down energy consumption by "end use", such

as cooling, water heating, major appliances, and lighting. The more details a user

enters, (e.g., insulation levels, roofing, age of major equipment, how systems are used),

the more customized the assessment results and energy efficiency recommendations

become. The reports shed light on the estimated cost of improvements, anticipated

payback time, projected utility bill savings, and how much energy use and green house

gas production will be cut. Consumers can adjust energy efficiency assumptions

and upgrade costs, (e.g., replacing the default values with actual estimates from

contractors) and recalculate payback times and other details.

The website has a section that provides tips on energy savings, explain the house-

as-system energy efficiency approach, and gives other information to help users un-

derstand how energy is used in a home. Launched in 1994, Home Energy Saver has

been used by 6 million people to analyze their home energy use. The site is visited

by nearly a million people each year. In 2009, a second version of the tool, Home

Energy Saver Professional, was launched and boasts a low-cost, interactive energy

simulation/assessment tool for building professionals, contractors, and weatheriza-

tion professionals.
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2.3.2 Platforms

Tendril Connect [Tendril, 2012] is an energy management platform that offers the

different stake-holders unprecedented insight, choice, control and access to the Smart

Grid. This scalable, open and standards-based, end-to-end solution empowers util-

ities and their customers to deploy cutting-edge energy solutions and gives them

access to data and analytics about energy consumption, so that they can cut costs,

reduce environmental impact and realize operational efficiencies. Consisting of an

integrated suite of utility and consumer applications, as well as robust application

program interfaces (APIs), Tendril Connect aims to create a two-way dialogue be-

tween utilities and their customers. This dialogue promotes customer participation

and improves customer satisfaction in tandem with energy efficiency and demand

response programs.

The result is improved compliance with Public Utilities Commission (PUC) man-

dates as well as long-term operational and infrastructure cost savings. Its open APIs

enable extensibility and third-party application integration. Its horizontally scal-

able architecture provides high-availability infrastructure and lowers the total cost of

ownership. Infrastructures are kept at a high level of availability through the use of

redundancy and replicated service instances.

Its event-driven architecture allows for real-time data capture, improves processing

capacity and throughput. Customers can track home energy costs and consumption

by appliances, electronics, and household devices. Tendril Connect links a set of

applications and devices that form a reliable and secure ZigBee enabled Home Area

Network (HAN). These devices interact beyond the meter with existing home appli-

ances to provide access and information about energy usage in the home as well as

insight into the applications deployed on the platform, including energy awareness,

load control, and demand response applications. The repertoire includes the Tendril

Insight in-home display, Tendril SetPoint smart thermostat, Tendril Volt smart out-

let, Tendril Relay range extender, Tendril Translate gateway and the Tendril Load

Control Switch. The information captured and displayed by Tendril HAN products
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can be accessed over the Internet or smart mobile devices through the Tendril web

portals. Multi-tier security is possible thanks to standards-based authentication, au-

thorization and encryption procedures.

The Qurrent Qbox [Qbox, 2010] is a Local Energy Network Interface, or 'energy

modem', that entered the scene with much acclaim, clinching the top prize of the

Postcode Lottery Green Challenge in 2007. It collects energy data from a building,

communicates with the server and can switch appliances to improve efficiency within

the limits set, such as when a task has to be completed and the amount of time

allowed. Qbox will decide what will be the best time to work on a task. It takes

into account the user's production profiles and energy rates, as well as the neighbors

consumption and production. It will independently measure all electricity production

and consumption and make it possible to share capacities with the neighborhood or

cluster, all within a Local Energy Network. Qbox ensures that self-produced energy

is used to the maximum. It comes with four standard switches but can be expanded

through serial connection. This allows users to control other energy-equipment, such

as heat pumps and combined heat and power systems, and also to switch appliances

in the building, further optimizing energy efficiency.

Qbox has multiple means of flexible connection to meters, appliances and energy

systems. These multiple interfaces (pulse, serial, digital and analog i/o) allow Qbox

to be applied in myriad of situations. Qbox also measures energy usage at a very

detailed level. The data is then transferred to the central Qurrent Qserver which

holds all records. User can then log on to the Qmunity website and analyse their

energy consumption and production. Energy data is stored indefinitely but secured

according to the highest privacy standards and laws.

2.3.3 Services

Verizon's fiber-optic communications network forms the backbone to connect a gateway-

based smart-home automation system named Home Monitoring and Control (HMC)

[Verizon, 2012] to the cloud, thereby allowing users to remotely access the system as

long as they have Internet access. This is done by having the gateway in the house
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connect to Verizon's existing high-speed Fios broadband network. The management

system which Verizon markets as a subscription service for $9.95 a month gives real-

time access to view and make changes to a home's lighting, security cameras, locks,

and thermostats, as well as appliances and consumer electronics devices connected to

the home network. The software application can be accessed by smartphone, com-

puter, or Fios TV. Customers who sign up for the home service have the option to

either install the home control equipment themselves, including electronic door locks,

or hire an installer. Professional installation can be provided by installation company

InstallerNet. Verizon will extend InstallerNet's InstallCard program to customers so

they can go online and chose a local installer to schedule an installation.

In Verizon's HMC, space-conditioning applications can be realized through the

110V appliance switch, which uses the Z-wave protocol, to turn an appliance on or

off at the command of the gateway and can also track energy use. This operates

on the simple principle where the appliance to be controlled e.g. air-conditioner,

space heater, can be plugged into the appliance switch which is then plug into a

wall outlet. In residences where there is a compatible space-conditioning system, the

smart thermostat can be set via the Internet, such as through a smartphone.

In addition, users can connect as many as accessories as they deem fit. For in-

stance, the Schlage door latches and deadbolts can be locked and unlocked by key,

access code or smartphone. The cameras can be connected by wire or wirelessly and

come in three versions: indoor camera, pan and tilt indoor camera, and outdoor cam-

era. Sensors and switches are available for windows and doors and can let users know

whether a door or window is open or shut. They can be easily installed with screws

or double-sided tape. Light modules can be turned on or off by plugging a light into

a module which is in turn plugged into a wall outlet. Remote controls are available

to control lights and other tools at the push of a button. The energy reader analyzes

the energy use of the entire house.

According to industry representatives in the know, Verizon worked with Motorola

to offer the HMC. Motorola muscled its way into the smart home market by buy-

ing home automation and energy monitoring startup 4Home Connected Solutions
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(4Home) via its communications subsidiary Motorola Mobility. 4Home's strength lies

in its user-interface, and provides the software that gives home owners remote and

round the clock access to information - from digital media to energy info, home

security and health data - across devices. 4Home provides affordable home security

(alerts home owners to security breaches, avoids false alarms), energy management

and analysis (reduces carbon footprint, manages energy use, cuts costs), life manage-

ment (ensures elderly or young family members are safe, helps users stay connected

with loved ones), and home control (multi-feed video display, remote camera toggling,

entry/exit logs, appliance scheduling, go to bed mode). 4Home also boasts a busi-

ness working with utilities and smart meter installers on home energy management

projects.

Microsoft trotted out the Microsoft Hohm [Microsoft, 2012b] in conjunction with

PowerCost Monitor for managing home electricity use. Hohm is a free online appli-

cation that helps save energy and money. Hohm helps users understand their home

energy usage and gives them recommendations to conserve energy and enjoy saving.

Hohm uses advanced analytics licensed - from Lawrence Berkeley Laboratories and

the Department of Energy - to give personalized energy saving recommendations.

These recommendations are tailored based on specific household circumstances in-

cluding home attributes and use of appliances and systems. The recommendations

will also be refined as the beta application evolves with feedback from users, their

communities and the energy industry. Users can also compare energy usage with that

of other users in the area. Actual energy savings vary and depend on a variety of fac-

tors, including local weather data, personal habits, and home age, size, and structure.

Slow overall market adoption of the service, however, has made Hohm unsustainable

as a business proposition and will be discontinued on May 31, 2012 [Microsoft, 2012a].

Google launched its PowerMeter service as a Google.org project to increase aware-

ness about the importance of giving people access to data pertaining to their energy

use. It is worthy to note that Google.org is the philanthropic arm of Google. Despite

the fact that Google has retired the service on September 16 2011, the PowerMeter

has nevertheless demonstrated the usefulness of access to energy information and pro-
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vided a model for other developers or service providers [Google, 2011]. The project

did get off the ground in that Google rolled out the PowerMeter to U.K. residents, and

used the "white space" spectrum of the broadcast system left open by TV's switch

to digital for smart-grid communications in Plumas-Sierra County, California in a

partnership with Spectrum Bridge and the Plumas-Sierra Rural Electric Cooperative

and Telecommunications utility. Although no longer in active service, the Google

PowerMeter deserves a mention for having shown the way.

PowerMeter is realized through a free opt-in software tool that allows users to see

detailed home energy information right on their computer. The online application

takes information from a smart meter or electrical monitoring device in the home and

provides real-time information about power usage. The advantage is that users can

see which appliances are using the most power, when the peak power usage is, and how

to adjust usage to benefit from lower off peak electricity prices. With PowerMeter,

users can view details, such as weekly trends, from a Web browser or a smart phone

running iGoogle. Users can use PowerMeter without having to have a smart meter

installed.

PowerMeter works with TED 5000, a small-screen monitor that provides a real-

time read-out of home electricity use. TED, which stands for The Energy Detective,

is one of many monitors aimed at giving consumers more detailed information so

they can find ways to reduce energy use. Though straightforward, installation of the

TED 5000 requires technical savvy. Google was looking to expand the number of

devices that work with PowerMeter and had wanted to expand beyond simple energy

monitoring. While the project was still active, there were plans to implement features

like ways to control home appliances to take advantage of off-peak electricity rates

and demand-response programs.

General Electric (GE) offers a smart-grid home-monitoring system that can also

be tied to using a home electric vehicle (EV) charger in anticipation of what is to

come. The Nucleus [GE, 2012] home energy monitor and energy management system

can monitor electricity use and control appliances using a home wireless network.

About the same size and shape as a mobile phone charger, Nucleus can monitor
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and control connected appliances. It will only work with a smart meter that uses

the Zigbee wireless protocol, which means it will only be available to consumers

who are customers of utilities that have installed and activated smart meters. With

Nucleus, users can see their energy usage in real time through a PC or a smartphone

application. The device, which connects to an Internet broadband router with an

Ethernet cable, can store up to three years' worth of energy data. Future models will

have a removable data storage option.

By communicating with a smart meter, Nucleus allows users to program appliances

to participate in demand response and take advantage of off-peak pricing plans offered

by utilities that have time-of-use electricity plans. GE is making a line of networked

appliances that can go into energy-saving mode when a utility sends a load shed

request. While these appliances will operate automatically, the peak-time modes

can be manually overridden so as not to frustrate and alienate the user. It is also

worthy to note that the WattStation EV charging pedestal or wall-mount is made

for charging electric vehicles for use in cities, residences, university campuses, offices

or parks. GE is expected to play a big role in the future as its biggest advantage

may be its relationship with utilities, which could recommend the device as part of

smart-meter programs.

2.4 Behavioral Aspects of the Problem

There are literally hundreds of studies on the behavioral aspect of user response,

interaction and engagement with devices and systems related to energy use. Stern

[Stern, 1999] reports that the most useful information is the one that captures the

user's attention, wins his involvement and is useful and reliable in the user's situation.

In other words, what matters most is how the information motivates the user into

action and not the content or means of presentation. This section aims to highlight

studies and their results that can inform the design and implementation of an energy

management agent (EMA) in the mold of an Energy Box to achieve the best possible

results for engaging the user.
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Wood and Newborough published a series of papers [Wood and Newborough,

2003, 2005, 2007a,b] addressing the subject of user behavior and its relationship with

the presentation of energy information. This series collectively presents the results

from one of the more comprehensive investigations so far. They report that electrical

feedback methods are more effective in engendering behavior change while antecedent

information is found to be of limited effectiveness in [Wood and Newborough, 2003].

In [Wood and Newborough, 2007a], they presented a useful summary of factors influ-

encing the effectiveness of energy information display in an intelligent home.

Consistent with the belief that money makes the world go around, Wood and

Newborough further reported in [Wood and Newborough, 2007a] that given a financial

incentive for reducing their energy consumption, people tend to perform better than

if there were no monetary reward. In a Canadian study [Dobson and Griffin, 1992]

involving 25 homes over 50 days where a "residential electricity cost speedometer"

to provide feedback to users was implemented, Dobson and Griffin observed that the

average daily electricity consumption fell by 12.9%.

Apart from financial incentives, emotional rewards, perhaps in the form of social

commendation, may be helpful as a motivating factor but the jury is still out on

its effectiveness. According to Katzev et. al. [Katzev et al., 19801981], social rein-

forcement, in the form of a card that says "we are saving electricity", have no effect

on users' energy-consumption behavior. The use of social reinforcement may have

greater effect on those who are environmentally conscious. According to Osbaldis-

ton and Sheldon in [Osbaldiston and Sheldon, 2003], people who are environmentally

conscious significantly outperform than those who feel that the goals were imposed

on them or whose compliance were engendered by a guilty conscience.

Related to the notion of a guilty conscience, some studies [Humphries and Hyl-

don, 2004, Wood and Newborough, 2005] investigated the usefulness of self-other

comparison. Humphries and Hyldon [Humphries and Hyldon, 2004] suggested that

self-other comparison is typically unpopular among as a means of motivating behav-

ioral change among end-users. In particular, participants remains doubtful of the

service provider's ability to accurately ascertain self-other comparisons. This view is
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also echoed in [Wood and Newborough, 2005].

Self-comparison and goal setting, on the other hand, display much promise in

terms of effectiveness in engendering behavior change. Wood and Newborough [Wood

and Newborough, 2007a] note that self-comparison of historical data by consumers

have been positively received, a position supported by Humphries and Hyldon in

their study that enlisted the help of focus groups to identify preferences [Humphries

and Hyldon, 2004]. Goal setting, as reported by Harkins and Lowe [Harkins and

Lowe, 2000], is effective in improving performance of tasks in general. Wood and

Newborough [Wood and Newborough, 2003] reports an average reduction of 15% in

energy use in a study that investigates goal setting by consumers.

The astute reader will observe that apart from motivating factors, the type of

energy information displayed and the manner in they are presented will play a key

role in engaging the user. Numerical data used in field studies to provide informa-

tion on appliances revealed significant energy savings [Wood and Newborough, 2003].

While it is tempting for a interface designer with a technical background to include

technical units like kWh, tons of carbon dioxide emitted, etc., it will be foolhardy

to assume that such units are readily understood by the average user. Research in

the United Kingdom [Mansouri et al., 1996, Newborough and Probert, 1994] shows

that the majority of the population do not understand energy units and face difficulty

estimating how much energy is required for different tasks.

Since financial incentive is known to be a good motivating factor, an obvious

piece of information to display for the purpose of seeking consumer engagement will

be energy expenditure (or savings) per unit time. Wolinsk [Wolsink, 1997] reports

that such an approach can be effective if the potential savings is considerable or if

time-of-use tariffs are in place. This suggests that any savings to be presented to the

user ought to be projected or averaged out over weeks, months or the year, rather

than hours or days.

A Finnish study further reports that graphical representation like pie and bar

charts actually receive more attention than numerical values of kWh readings, prices,

etc. [Arvola et al., 1993]. According to [Preece and Keller, 1990], pie charts may
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be useful for pattern detection but do not measure up as well for determining values

or making comparisons. In addition, a pie chart should not have more than five

segments and that each segment should be clearly labeled with numerical values on

the segments. With these in mind, the practitioner should try to use a bar chart as

much as possible as it allows for more accurate comparisons. The venerable handbook

[Harris, 1999] advises that bar and column charts are effective in showing values for

separate quantities while line graphs are suited for displaying trends and changes

over time. The bar chart was put to good use in the "residential electricity cost

speedometer" [Dobson and Griffin, 1992].

An important caveat to take note of is that cultural differences may cause the

mileage to vary for a certain means of presentation in different cultures. For instance,

Wilite et al. [Wilite et al., 1999] reports that the univariate graph was more easily

comprehensible to the 2000 Norwegian households tested. On the other hand, Egan in

an American study [Egan, 1999] found the opposite result, where the univariate graph

did not do as well as the distribution graph when it comes to consumer understanding

of what the graphs wanted to present. Given that both studies were well-conducted,

cultural differences appear to be a reasonable explanation for the contradiction in

outcomes.

With a more avant garde approach, Rodgers and Bartram [Rodgers and Bartram,

2011] investigated the use of artistic visualization for energy use feedback. One of the

novel, artistic representation they developed used spinning pinwheels, where power

used is represented by the rate of spinning and the number of pinwheels.
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Chapter 3

Optimization in the Energy Box

The performance of the Energy Box is highly dependent on the optimization and op-

timal control technique(s) used to decide on the operations of the space-conditioning

equipment. Inheriting the rigorous approach adopted in [Constantopoulos, 1983, Con-

stantopoulos et al., 1991], we attempt to reformulate the multi-zone space-conditioning

problem in the dynamic programming (DP) framework while including occupancy as

a random disturbance. The problem involves several state and random variables such

as the temperature of a zone and that of neighboring zones, the outdoor air tem-

perature (OAT) and the price of electricity. The OAT and price of electricity pose

an additional challenge as the range of values they can take are wider than that of

indoor zone temperatures. This is especially so in the case of price of electricity

which can take on values that differ by at least one order of magnitude. The "curse

of dimensionality" seems to have reared its ugly head.

Against this backdrop, just like in [Constantopoulos, 1983], exact backward dy-

namic programming (DP) is ineffective given the need for speed in a real-time appli-

cation like space-conditioning as the nature of the task and variables involved make

the "curse of dimensionality" unavoidable. The presence of other stochastic distur-

bances in addition to price makes the determination of expected values relating to

all these random quantities intractable in practice. These factors motivate the use of

approximate dynamic programming (ADP) and Monte Carlo (MC) simulations.

Thankfully, decades of advancement have produced many new techniques such as
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ADP and neuro-dynamic programming described in [Bertsekas and Tsitsiklis, 1996,

Bertsekas, 2007, Powell, 2007] to address the issue of dimensionality, which we will

explore in this chapter. We begin by first presenting the framing and formulation of

the problem, which introduces the elements of DP involved. At the heart of the said

framework is an ADP algorithm that makes use of value function approximation and

seeks to minimize the cost of space-conditioning. Dimension is reduced through the

aggregation of variables and estimation of parameters for use with models.

3.1 Framing and Formulation

The DP framing is carried out at the zone level i.e. each zone is seen as an agent

with its own state variable, control action, disturbance etc. We proceed to discuss

each of the key elements of our DP framework in greater detail. All quantities and

variables are standardized i.e. normalized by their maximum or mean value to give

a dimensionless quantity often with absolute value less than or equal to unity. The

control horizon consists of one-hour blocks (T = 1) over the course of a normal work

day, which sets the stage for a finite horizon DP problem with N = 24/T = 24.

3.1.1 State Variable (xi), Control Action (ui) and Stochastic

Disturbances

All variables pertaining to temperature are standardized by subtracting the desired

temperature from it and dividing the difference by the maximum allowable tempera-

ture deviation for each zone, as described in [Constantopoulos, 1983]. For example,

with a desired temperature of 75'F and a maximum swing of 15'F, a 90*F tempera-

ture corresponds to 1 after standardization. The temperature of the zone of interest

(e.g. the master bedroom) at time period i, denoted by xi, is the main state variable,

where xi E [-5,3], which corresponds to the limits of [00F, 120'F]. This extended

limit is motivated by the need for consistency with the outdoor or solar air tempera-

ture in the external environment. Other operational constraints limit the value of xi

40



such that x; E [-1, 1].

The use of value function approximation [Bertsekas and Tsitsiklis, 1996, Powell,

2007] motivates the formulation of an augmented state variable, which will include

the difference between temperature of the zone of interest and the outdoor (sol-air)

temperature denoted by di and the occupancy probability of neighboring zones de-

noted by nk,i in addition to the temperature of the zone of interest denoted by xi. As

will be discussed in section 3.2, the augmented state variable can be seen as an infor-

mation vector that enables value function approximation by providing the relevant

information as inputs to the approximating function. It may appear to the astute

reader that an augmented state space exacerbates the curse of dimensionality. The

problem is worsened only when exact DP is used. As will be made clear in later expo-

sitions, the ADP technique adopted does not make any evaluation at every possible

combination of the augmented state variable, and hence the issue of dimensionality

does not matter.

The control action for the zone at time period i, denoted by ui, is simply the

actuated power of the heater or air-conditioner, expressed as a fraction of maximum

power. In this application, we set ui E {0, u, ... , u10 }, where uP = .10'

We represent the set of stochastic disturbances, which consists of the price of

electricity, temperatures in adjacent zones and occupancy, with a vector quantity ji.

The price of electricity at time i is denoted using pi, with pi E [0, 1] and the maximum

possible price of electricity is used as the normalization factor. Occupancy Qj is used

to represent the presence of an occupant in the zone of our interest. The random

variable of occupancy, which takes a binary value where Qj E {0, 1}, corresponds

to the notion of an occupant being "absent" or "present" In the augmented state

variable, the occupancy probability is denoted by nki, where Uk,i E [0, 1], gives the

probability of zone k being occupied.

For a zone with m adjacent zones in the house, it has m + 1 temperature-related

stochastic disturbances at time period i, denoted by w , where j = {0, 1, ... , m}. The

outdoor or solar air temperature of the external environment is denoted by w?.

In some instances, we suppress the subscript k = 1 when referring to any quantity
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pertaining to zone 1- the zone of interest, while quantities with subscripts e.g. Xk,

refers to the quantity related to zone k with k = 0 referring to the outdoor envi-

ronment and k = j Vj #L 0, 1 relating to the neighboring zones e.g. Q2,i denotes the

occupancy of the neighboring zone 2. Control (u) and occupancy (Q) are meaningless

for the outdoor environment, while control for the neighboring zones in the house is

not part of the optimization.

3.1.2 Transition, Cost and Objective Functions

The transition function pertaining to xi, which is derived from the laws of thermody-

namics, captures the relationship between the temperatures in the different zones, the

control action and the current temperature in the zone. The quantity di is simply the

difference between the new zone temperature and the current outdoor temperature.

Predicted occupancy probabilities are given by occupancy probabilities for each zone

given the current occupancy, based on a conditional probability mass function.

The augmented state variable and the associated transition functions are given by

r i+1 (EkXi + 7Ui + E 0 Ek,jU4

di+ 1  i+1 - wg (3.1)

yi, +1 ZE(Qj,i+1 = 1,Qi,, ... , 2m,i) )
where Ek, yk and ekj are known constants and the underlined quantities (Q and

P(.)) are column vectors with m entries and the jth entry corresponding to zone j in

the residence. One may question how the transition functions for the state variable

and the conditional probability in (3.1) can be obtained. In short, the state variable

transition function is to be learned i.e. the parameters estimated during the process of

zone thermal characteristics learning. The conditional probability is provided by an

occupancy learning algorithm. Chapters 4 and 5 detail the zone thermal characteristic

and occupancy learning respectively.

The cost function aims to capture the trade-off between the cost of operating the

space-conditioning equipment and the cost of service loss due to discomfort when the

zone temperature deviates from the preferred temperature. It is given by
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gk(zk,i, Uk,i, !Lk,i) = aiPiUki +,3b( fk(zk,i, Uk,i, 1k,i) )Qk,i

where

Xk,i, Uk,i , !k,i state variable, control action, disturbance for zone k at period i

p normalized price of electricity at period i

Uw, temperature of adjacent zone j at period i

ai1,3i constants related to inhabitant preference at period i.

7 k,i occupancy status of zone k at period i

b(.) service loss function.

The service loss function is assumed to be a quadratic function that takes in

the zone temperature as the input and returns the squared value as the output, as

described in [Constantopoulos, 1983]. The service loss function does not exceed one

since its argument is standardized and is limited to a value between -1 and 1.

With the aim of jointly minimizing the cost of operating the space-conditioning

equipment and of service loss, the objective function is formulated as

Jk,i(zk,i) = min E{ g(zk,i, U,,Li) + Jk,i+l A( f Uzi, , !L,) ) } (3.3)
Uk,i

where gk(.) and fk(.) denote the cost and transition functions, as described by equa-

tions (3.1) and (3.2) respectively. The expectation is taken with respect to the random

quantities in vector wei. We suppress the tilde's (~) commonly associated with cost,

transition and objective functions that involve augmented state variables to reduce

clutter in the nomenclature.

43

(3.2)



3.2 ADP for Finite Horizon Problem

3.2.1 Backward Value Function Approximation

The framing and formulation of the problem as described in section 3.1 readily lends

itself to a solution based on sequential backward approximation for finite horizon

problems discussed in [Bertsekas and Tsitsiklis, 1996, pp. 330].

For the problem at hand, the DP algorithm for a zone 1 takes the form

Jv(zN)= min Epxg(u)(9(xN, u, ) + G (3.4)
UEU( N) -

and

J7(24) = min Epg(u)(g(i, u, 9) + Ji+1()), i = 1, ... , N - 1 (3.5)
uEU(zi)

where

pig transition probability from state z to state #

G(z) terminal cost of being in state

J;*(z;) optimal cost to go of an i-stage problem starting from state ;.

and we suppress the subscript 1 to improve readability. (With the subscript, the

variables will appear as Ji*, zi,1 and so on.)

Equation (3.4) relates to the terminal stage, while (3.5) is for all other stages. The

difference arises because the terminal stage does not have to account for the cost to

go of the next stage in this formulation, but has to include the terminal cost. In this

case, the terminal cost function is given by the product of a scalar and the service

loss function.

A solution is offered through recursively approximating the cost to go (J(.))

function. We begin by making an approximation of the optimal cost to go using a

function JN(zN, rN) f y 4(zN), where rN is a parameter vector given by the solution
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to

min E (JN(N) - jN(N,rN)) 2  (3.6)
x~ NESN

where SN is a representative set of states. This formulation omits the weight factors

that are present in [Bertsekas and Tsitsiklis, 1996, (6.58)] as all time periods are

considered to be equally important. In this case, (3.6) was solved by fitting a minimum

mean-squared error linear regression model, which will be discussed later.

The approximating function to the cost to go function in subsequent (preceding)

time periods can be obtained by first finding the approximate cost to go function

values Ji(zi) for a representative subset of states Si through an approximate DP

formula:

Zi(z) = min Epi(u)(g(i, u, ) + ji+1(,ri+1)), Yi E Si (3.7)
UEU(zi)

The values obtained from this representative set Si are then used to derive an ap-

proximation of the cost to go function J*(j) by a function JiPi , ri), which can be

obtained by solving

mn 5 (h(zi) - Ji(zi, ri))2 . (3.8)
i E Si

In this way, we recursively derive Ji(.) and Ji(.) for all time periods.

3.2.2 Linear Regression for Approximation

We first use minimum mean-squared error linear regression to address the family of

problems defined by (3.6) and (3.8). This implies

m

J(i, ri) = r(O) + r(1)xi + +r(2)di + E +r(j + 2)Uji. (3.9)
j=1

where

r(l) parameters and components of the vector r, (1 = 0, 1, ..., m + 2)

x state variable for zone temperature at time i
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di difference between the zone temperature and the outdoor temperature

Uj,i probability of zone j being occupied at time i.

The variables x 1 , di and nyi are embedded in the state variable zi. In addition, there

are m neighboring zones that is indexed by j.

The parameters r(l) was obtained through the use of standard minimum mean-

squared error linear regression, which affords a simple and possibly speedy solution.

In addition, the R2 statistic associated with linear regression turns out to be a conve-

nient indicator of getting a sense of the "closeness of fit" provided by the parameters

obtained for each time period.

The R2 statistic from the linear regression conducted for each time period suggests

that linear regression will do well. Most time periods have R 2 ~ 0.9 with those

corresponding to the graveyard shift closing in on unity. Time periods corresponding

to time of day where there is greater uncertainty in occupancy e.g. just before and

right after working hours tend to score lower on R 2 . The high R 2 statistic hints

that a simple linear model may suffice for the problem at hand, and that additional

complexity in the model may only marginally improve performance but render the

algorithm less robust to noise. While the statistics suggest great promise, the proof

of the pudding remains in the eating.

3.2.3 Monte Carlo Simulation and Resulting Policy

The reader will observe from the discussion in section 3.2.1 that knowledge of the

transition probabilities psg is needed for determining the expected values necessary

for sequential backward value function approximation to be possible. Given the multi-

dimensional nature of the augmented variable and the large state-space that results,

coupled with the complexity of random disturbances, the use of transition probabili-

ties is impractical. In the same vein as approximate policy iteration based on Monte

Carlo (MC) simulations in [Bertsekas and Tsitsiklis, 1996, pp. 271], MC simulations,
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instead of transition probabilities, were used to find the expected values.

To determine the expected value, we simply run a sufficiently large number of

simulations using i as the beginning state, then apply a candidate control u and

take the average of the sum of all the resulting costs. The resulting cost from each

simulation includes both the one-step cost (g(.)) and the value function approximate

(J(.)) of being in the resulting state.

The resulting policy is also based on Monte Carlo simulations. Using the approach

described in section 3.2.1, we obtain a set of approximate cost to go functions ji(., ri),

where i = 1, 2, ..., N. Based on these approximate functions, the resulting policy is

then given by

jit(zi) = arg min Epgig(u)(g(zi U, 9) + ji+1(, ri+ 1)) (3.10)
uEU(zi)

where the expected value corresponding to each control u E {0, u'...u10 } on the RHS is

obtained by taking the average of the outcomes of a large number of MC simulations.

One will observe that this may not be suitable for a controller operating in real-time,

especially if each time period is short. In this case, a possible improvement lies in the

use of an action network [Bertsekas and Tsitsiklis, 1996, pp. 261].
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Chapter 4

Zonal Space Conditioning and

Thermodynamics

An objective of studying zonal space-conditioning and building thermodynamics is

simply to develop a sufficiently-sophisticated model that will provide a transition func-

tion (3.1) of appropriate fidelity for use with the ADP algorithm discussed in section

3.2. While not at the same level of fidelity as that used in commercial building simu-

lators, the derived transition function should be computationally efficient such that it

can work in a real-time controller and yet be accurate enough for ADP to work well.

In addition, the parameters of the transition function should be easily estimated with

as little user input or intervention as is possible. A deeper look at space-conditioning

systems will also provide insights on the types of space-conditioning system that can

work with an energy management agent (EMA) like the Energy Box and hence outline

the scope of the work.

The first section of this chapter aims to provide an overview of space-conditioning

systems and the scope of the work. This is followed by a section that surveys the

different well-established models of building thermodynamics and provides the theo-

retical basis for the model that is developed for use with the ADP framework. Section

three presents the derivation of the model and the transition function for use in the

ADP framework. It also describes the virtual residential set-up for simulations.
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4.1 Overview of Space-Conditioning Systems

4.1.1 Heating Systems

We begin by surveying the landscape of heating systems and determine the types that

are suitable for use with the Energy Box. Heating systems can be broadly categorized

along two dimensions, namely the energy used to generate heat and the response time

of the heating system. For simplicity, we divide heating systems into those that are

powered by electricity and those that use combustible fuels or other sources of energy.

With regard to response time, we categorize heating systems into those that have

short response times and those that have long ones. Response time refers to the time

elapsed between the moment of actuation and the instant the heater begins to emit

heat at the maximum power or the desired power level. A short response time has an

order of magnitude in seconds or less while a long response time could mean minutes

or even hours are needed to attain maximum power from the moment of actuation.

Publications from the venerable American Society of Heating, Refrigerating and

Air-Conditioning Engineers (ASHRAE) such as [ASHRAE, 2004] were used as the

primary reference and were complemented by technical data sheets, commercial cat-

alogues and product literature in the public domain. Table 4.1 presents the various

commonly-available heating systems according to their response time and energy

source. The information presented here is not intended to be exhaustive but is the

result of a "best effort" attempt to capture the essential and relevant characteristics of

common heating systems in North America which are used for automatic residential

zonal space conditioning.

Observe that the hydronic and steam heating systems require the bulk heating

of water in a boiler before the heated fluid is circulated to different zones. This

means that without making changes to such systems, it is not possible to calculate the

amount of energy that was transferred to each zone with a sufficient degree of accuracy

for dynamic programming (DP) to be useful. Infra-red heaters can be differentiated

from conventional resistance-based heaters by their operating temperature where the

former typically operates at temperatures between 300 - 5000 *F while the latter
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resistance-based heaters hydronic heating systems
Powered by forced hot air systems steam heating systems
Electricity heat pumps

infra-red heaters

Powered by fireplaces/stoves hydronic heating systems
Combustible Fuels forced hot air systems steam heating systems

and Others geothermal infra-red heaters
infra-red heaters

Table 4.1: Heating systems categorized according to response time and energy source.

usually operates at temperatures below 300 'F [ASHRAE, 2004, p.15.1]. Another

peculiar feature of infra-red heaters is that they directly heat the object or person

using infra-red radiation and very little energy is used to heat up the air. As such,

the indoor air temperature of the zone may not give a good indication of thermal

comfort, unlike other heaters. The infra-red heaters will most likely work best under

manual control due to this peculiarity.

Forced air systems are usually used in a central space conditioning system. A

typical electric forced hot air furnace works by blowing filtered, cool air directly

through electric heating elements [ASHRAE, 2004, p.28.4] and transferring the heated

air to different zones through ducts. We assume there exists a means of accurately

measuring the amount of electricity used for space-conditioning for each zone at any

time. The energy used to move the conditioned air as well as heat gain or loss en

route to the zones can be accounted for by an efficiency or coefficient of performance

(COP) factor, denoted by rj.

Panel heating, as described in [ASHRAE, 2004], refers to a class of heating system

that can be categorized in all the four categories in Table 4.1. When they run on

electricity using heating elements to generate heat, they fall under the categorization

of resistance-based heaters. A possible disadvantage of electric panel heating is that

"response time can be slow if controls and/or heating elements are not selected or

installed correctly" [ASHRAE, 2004, p. 6.1]. In other words, the long response time
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is the consequence of incorrect deployment rather than a design consideration, and

suggests that it is more the exception than the rule.

4.1.2 Heating Time Constants

The heating time constant, denoted by TH, is a measure of how quickly a heater

can "ramp up" to warm a given space. This is different from the power rating of

the heater, and is largely dependent on the technology used for heating. For a given

power rating, a radiating electric heater that works by running a high current through

a heating element will have a much shorter heating time constant compared with one

that is based on forcing hot water through a system of pipes.

One way to capture the effects of the heating time constant is through the use

of a time-dependent factor that scales the power output from the heater, to give the

effective power output. We can express the effective power output at time t in the

nth control interval as

Eefg = (1 - e- H) E, t E [n-r, (n + 1)r7]

where E is the power rating of the heater and r is the length of each control interval.

It is assumed that the heater is actuated at the beginning of each control period i.e.

at multiples of r. Observe that for small TH, Eeff ~ E. For larger values of TH, say

TH =24 and assuming r = 1, Eeff ; 0.04E regardless of the value of t, n.

An alternative formulation is to assume a linear relationship between the time

elapsed, the maximum power and the effective power output. We express this as

Eeff = min( 1, RH(t - nT) )E, t E [nT, (n + 1)r], RH E (0, oo)

where RH is a parameter that captures the rate at which the heater "ramps up" to

full power. Regardless of the values of RH, t and r, the effective power output cannot

exceed the rated, maximum power rating of the heater.
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4.1.3 Scope of Discussion for Space-Conditioning Systems

In this dissertation, the discussion is limited to properly installed, residential air-

conditioning and heating systems powered by electricity, which allows for an accurate,

quantitative account of how much energy is used to cool or heat a zone. Resistance-

based heaters, forced hot air systems and heat pumps with heating time constants

equal to or approximately zero (TH = 0 or TH ~ 0) are heaters of interest that are

considered in this work.

The typical air-conditioner can be considered to have a short or even negligible

response time. One constraint air-conditioners have, however, is that a mandatory

time delay is required between the time it is powered down and the next actuation.

Personal communication by the author with those familiar with the operations of air-

conditioners revealed that a 20 minute delay between power down and re-actuation is

usually sufficient. Consequently, we do not consider any control interval that is less

than 20 minutes for air-conditioners in this study.

4.2 Modes and Models of Heat Transfer

The fact that universities dedicate entire departments to the study of building ther-

modynamics underscores the vastness of the field. In this work, we consider the

general, first-order effects of heat transfer between a zone in the house and the out-

side environment as well as to other zones. The objective is to develop a model that

captures the dominant heat transfer processes accurately for the ADP algorithm to

perform well and can be used in a software running on a simple home computer.

The author surveyed the different modes of heat transfer using [Givoni, 1998,

ASHRAE, 1997, 2005] as the primary references with the aim of identifying the dom-

inant heat transfer processes. Once the dominant processes were identified, a deeper

look at the physics underlying the processes was made with the hope of finding a

suitable model on which the transition function described in Chapter Three can be

based upon. The heat transfer processes of conduction, air infiltration and radiation

were considered, and were looked into with greater detail. Other possible modes of
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heat transfer were considered to be less dominant and can either be assumed to be

negligible or dominated by the three modes listed above.

4.2.1 Conduction

Thermal conduction in buildings is simply the transfer of heat through solid materials

such as a building element e.g. a wall, a roof, from the side of the element at a higher

temperature to the other side at a lower temperature. The rate of heat transfer

depends on many factors, key among them are the conductivity of the material and

the thickness of the element in question.

Each type of material has a measure, called thermal conductivity, to indicate its

ability to conduct heat. Conductivity values of common building materials can be

obtained from many public domain resources such as online databases maintained

by the National Institute of Standards and Technology [NIST, 2010] and published

references such as [Givoni, 1998]. Conductivity has energy per unit time per unit

temperature difference per unit length for its dimension.

As thermal conductivity relates to building materials, we need other measures of

heat conductivity or resistance for building elements, such as walls. In a building

element made up of more than one layer of material, the thermal resistance of any

given layer i is the ratio of the thickness of that layer 1i to the conductivity of the

material ki used in that layer i.e.

r =*(4.1)
ki

For building element m with n layers, its total resistance R, is given by the sum

of the resistance from each of the n layers i.e.

Rm ri= - (4.2)
i=1 i=1 k

where ri, li and ki are the thermal resistance, thickness and thermal conductivity for

layer i respectively, as used in (4.1).

The concept of thermal resistance, though useful and intuitive, is not often used
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in heat calculations in the literature. Thermal transmittance, which is often known as

the "U value", is commonly used instead. The thermal transmittance of an element

with one side indoors and the other outdoors refers to the thermal transmission of

heat through a unit area of the element per unit time per unit temperature difference

between the indoor and outdoor temperatures. Its dimension is given by energy per

unit time per unit temperature difference per unit area. Mathematically, it is given

by the reciprocal of thermal resistance:

1 1
Um (4.3)

Rm%=1 ki

where Ri, ri, 1i and ki are as defined in (4.1) and (4.2). The astute reader will observe

that it is in general easier to calculate the thermal resistance of a building element as

it involves summing several quantities while the thermal transmittance simplifies any

heat transfer calculation as it is a multiplicative factor to any temperature difference.

In the calculation of the thermal resistance for any building element, it is impor-

tant to account for the resistance due to the air attached to its surface. The thermal

resistance of any such air film depends on the air speed. The indoor surface is usually

exposed to still, indoor air which means its resistance, commonly denoted by Ri ,

is typically higher and assumed to take on 0.12 in the metric system or 0.68 in the

British system [Givoni, 1998, pp. 116]. The outdoor surface, being exposed to wind,

has a smaller air film thermal resistance Ro, associated with it, which is commonly

assumed to be 0.03 (metric) or 0.17 (British).

The rate of heat flow Qm through a building element m with area Am is given by

Qm = UmAm(Th - Tc) (4-4)

where

Um thermal transmittance or U value of building element m

Am area of exposed surface on building element m

Th air temperature on the hotter side of building element m
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Tc air temperature on the cooler side of building element m.

Equation (4.4) can be modified for use in the case of windows. For a glazed

window w of area A, with U value of glazing Ug1, the rate of heat flow through the

window is given by [Givoni, 1998, pp. 131]

QW = UgiAw(T - Tc) (4.5)

with Tc and Th denoting the same quantities defined in (4.4).

The astute reader will observe that another possible avenue of heat transfer, via

conduction through the ground, exists. It is noted, however, that "the state-of-the-

art in ground modeling is not very good even in detailed building energy simulation

programs," according to [ASHRAE, 2007, p.70]. Consequently, it is assumed that

heat transfer through the ground occurs at a constant rate.

4.2.2 Air Infiltration

Given that residential buildings cannot be assumed to be air tight in general, air infil-

tration as a potential cause of heat loss (or gain) cannot be neglected. Air infiltration

is usually accounted for in the literature [ASHRAE, 2007, Givoni, 1998] through a

rate of air change statistic. The air change rate or air changes per hour, denoted by

"ach", essentially specifies how many times the whole air volume of the space changes

in an hour.

Obviously, the airflow and air change rate depend on the air tightness of the

building. A very tight building may have an ach rate of 0.5 or even lower. A value

of 1 ach is typically assumed in standard calculation of heat transfer [Givoni, 1998,

pp. 128].

Infiltration heat loss (or gain) of air is proportional to the difference between

the indoor and outdoor air temperatures, and is directly related to the ach and the

heat capacity of air. For an enclosure or zone k, the rate of heat transfer due to air
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infiltration QVk can be written as

Qv,k = Vkachk(Oc)a(T - T) (4.6)

where

Vk volume of air in enclosure/zone k

achk air changes per hour statistic of enclosure/zone k

(0c), heat capacity of air

Th temperature of the volume of hotter air

T temperature of the volume of colder air.

The value of (0c), is typically taken as 0.33 Wh/m 3 C (metric), 1200 J/m 3 C (SI)

and 0.018 Btu/ft3 F (British) according to [Givoni, 1998].

4.2.3 Radiation

Radiation is another process through which a building gains or loses heat. Radiant

energy emitted by an object is known to be proportional to the fourth power of its

surface absolute temperature. As energy is conserved, radiating energy also means

losing energy, which entails a drop in temperature of the object emitting the radiant

energy.

The energy radiated by the object travels through space in the form of electro-

magnetic waves until it strikes an opaque surface, where it is partially reflected and

partly absorbed. (There exist extreme cases where almost all the energy is absorbed

or reflected but these are not commonly encountered in buildings.) The absorbed

radiation raises the temperature of the object that the radiation is incident upon.

Emissivity, absorptivity and reflectivity are three properties of a surface which

relate to its behavior with regard to incident radiation. In the context of building

elements, the emissivity of a surface has to do with the emission and absorption of

long-wave radiation while absorptivity and reflectivity relate to its response to solar
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radiation.

Radiant Energy Loss

The emissivity of a surface, typically denoted by Eo, is a dimensionless ratio between

zero and unity that captures its capacity to emit long-wave radiation relative to a

"perfect" black body. In physics, a black body is a body or surface that absorbs all

incident radiation.

Long-wave radiation denoted by RadLw emitted by a surface with dimensions in

energy per unit time per unit length per unit temperature squared is given by

RadLw = TE( )4 (4.7)
100

where

o Stefan-Boltzmann constant (5.67 in metric or 0.1713 in British)

E, emissivity of surface

T absolute temperature of surface.

For a surface on buildings, emissivity can be assumed as 0.9, which is the typical

value for masonry material in general [Givoni, 1998].

Solar Heat Gain

While emissivity decides the rate at which a surface emits energy, (short-wave solar)

absorptivity dictates how much energy is absorbed by a surface. While emissivity is

largely dependent on material, absorptivity can be altered relatively easily by chang-

ing the color of the surface. While the proportion of absorbed radiation is proportional

to absorptivity, the reflected radiation is proportional to the reflectivity of the surface.

Absorptivity (a) and reflectivity (r) are related by

r=1-a
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In this work, we assume absorptivity to be 0.4 which corresponds to a surface

with a lighter grey, green, brown or another light color [Givoni, 1998].

4.2.4 Sol-Air Temperature

At first glance, it seems that a complicated model is required to capture all of the

effects of conduction, solar heat gain and radiant energy loss. An ingenious abstrac-

tion in the form of a theoretical temperature called the "sol-air" temperature enables

us to capture the effects of conduction, solar heat gain and radiant energy loss in

one fell swoop. In addition, the effects of wind are also captured. The concept of

using the "sol-air" temperature was mentioned in [Constantopoulos, 1983, 1987]. In

this work, the author attempts to justify the appropriateness of its use for home

space-conditioning applications.

According to [Givoni, 1998], the "sol-air" temperature TSA is given by

aI
TSA = TOA + - TLWR (4.8)

where

TOA outdoor air temperature

a absorptivity of the surface, assumed to be 0.4

I intensity of incident solar radiation

ho overall external surface coefficient

TLWR temperature drop due to long-wave radiation to the atmosphere.

Observe that the TSA is a function of a few other parameters and random variables,

which are a, TOA, I, TLWR and ho. We proceed to account for and specify each of

these parameters or random variables.

TOA is simply the outdoor air temperature, which can be obtained from outdoor

thermometer readings, or from one of the many online weather resources. We assume

an accurate value of TOA is available, and any forecast of it is the best available.
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The intensity of incident solar radiation is a less familiar quantity to the average

homeowner but nevertheless needs to be accounted for. In residences where an instru-

ment capable of accurately measuring solar radiation intensity is present, the value

of I can be obtained easily and accurately. In the absence of such an instrument, we

assume I = 600 W/m 2 (or 190 Btu/hr sq. ft.) when the sun is shining, as per stan-

dard calculations presented in [Givoni, 1998]. A higher level of sophistication can be

incorporated into the model by formulating I as a function of another meteorological

phenomenon, namely cloud cover. We assume that I and cloud cover as well as time

of day are related in the following way:

600(190), Clear sky in the day

I in W/m 2 (Btu/hr sq. ft.) = 300 (95), Partly cloudy sky in the day

0, Cloudy sky or at night.

Information on cloud cover and times at which the sun will rise or set can be obtained

from online services providing weather information.

Cloud cover also plays an important role in determining the value of the tempera-

ture drop due to long-wave radiation to the atmosphere, TLWR. According to [Givoni,

1979, 1998], TLWR is equal to 6"C (11*F) for a roof in an arid climate and equal to

4*C (7"F) in a humid climate, under a clear sky. As for a wall facing an open field,

TLWR is 2*C (5"F). Under a cloudy sky, and for walls facing other walls in a built-up

urban area, TLWR can be assumed to be zero. For simplicity, we assume TLWR to be

related to cloud cover in the following way:

TLWR = 30 C (60F), Clear sky

0"C/F, Cloudy or partly cloudy sky.

The overall external surface coefficient ho depends on the wind speed and serves

as the mechanism through which the effects of wind is captured. A ho value of 20

W/m 2C (or 6 Btu/hr sq. ft. F), under the assumption that wind speed is 3.5 m/s (or

700 fpm), is suggested for design purposes [Givoni, 1998]. We assume ho to take the
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suggested value for simplicity. This simplification is reasonable as "wind speed effect

in case of light-colored walls is much smaller[Givoni, 1998]," which is consistent with

the assumption that the residence has a light-colored envelope, as discussed earlier.

The "sol-air" temperature is useful in the quest for a suitable transition function

in that it captures the most important environmental factors that play a key role in

heat transfer to a building. Consequently, it becomes the key proxy variable in the

model.

4.3 Thermodynamic Characterization of Zones

4.3.1 Assumptions and Formulation

The model derived and described in this section is not intended to be a high-fidelity

thermodynamic model suitable for use in a building simulator. Instead, it is a

sufficiently-sophisticated prediction model that enables the ADP control strategy de-

scribed in Chapter Three to work by providing a reliable state transition function.

The formulation and methods developed in earlier doctoral dissertations related

to the current work are for a single-zone space-conditioning scenario [Jang, 2008,

Constantopoulos, 1983], and can be used directly in the multi-zone case under the

(relatively strong) assumption that the heat transfer between zones is negligible and

that the temperature in each zone is influenced only by the "sol-air" temperature.

While this assumption may be true for houses with very good insulation between

zones, it cannot be assumed to be true for all houses. This motivated the author to

develop a model that accounts for inter-zone heat transfer and an accompanying set

of procedures to learn the parameters of such a model for occupancy-moderated zonal

space-conditioning to be possible.

In order to develop a tractable model that captures the thermal effects of in-

terest and relevance to occupancy-moderated zonal space-conditioning, we make the

following modeling assumptions:

1. A house with K zones, where each zone can be independently conditioned by
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space-conditioning equipment e.g. air-conditioner or heater is considered. With-

out any loss of generality, it is assumed that the rated (maximum) power of the

equipment is the same for all zones for simplicity.

2. The thermodynamic characteristics of zone k are captured by its total thermal

mass mck and a set of effective thermal conductivities Aki's describing the heat

transfer characteristics between it and the adjacent zones. The total thermal

mass of a zone is due to the envelope, the air mass and other contents in the

zone.

3. The partitions between zones are not perfect insulators and heat exchange

between zones though not negligible, does not dominate. Solar heating and

heat exchange with the outdoors through building envelope remain the primary

drivers of changes in zone temperature while heat exchange between zones,

though accounted for, are higher-order effects.

4. We capture the effects of weather elements using the effective outside tempera-

ture, denoted by To. This is the "sol-air" temperature TSA described in section

4.2.3. The effects of incident solar radiation or radiative heat loss can raise or

lower the effective outside temperature respectively and it is modeled in the

manner described in section 4.2.3. An estimation of T0 or TSA under various

weather conditions is given by (4.8).

5. Ventilation and airflow between zones is assumed to be zero, as is the case

presented in [Khoury et al., 2005].

6. The space-conditioning equipment in each zone is able to ensure uniform tem-

perature in the zone and the parameter -r on efficiency or coefficient of perfor-

mance captures any loss, or additional heat load e.g. sensible heat load. This

allows the model to account for humidity for air-conditioning by increasing the

sensible heat load by 30% [ASHRAE, 1997].

7. The cycling effects of the thermostat are neglected, as in [Constantopoulos,

1983].
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An introduction to the nomenclature prior to the discussion on a model that

captures the dynamics of inter-zone heat transfer is in order. The notation used in

thermodynamic modeling can be found in Table 4.2. The overall or effective thermal

conductivity between two zones k and i denoted by Aki aims to capture the char-

acteristics of the heat transfer between the two zones and we assume a symmetric

relationship i.e. Aki = Aik. The set of zones adjacent to zone k denoted by n(k)

refers to all the zones that are located in such a way that there is a potential for

heat transfer between that zone and zone k. The outdoor environment, assumed to

be adjacent to all zones, is indexed by zero i.e. zone zero refers to the zone that is

outside of the house.

Variable Symbol Unit
No. of zones, occupants KM -

Zone k Temperature at time t or nth time interval Tk(t), Tn C/F
Thermal time constant for zone k TCk h
Thermal mass for zone k mck kWh/F
Thermal Conductivity between zones k and i Aki kW/F
Occupancy of zone j at time period i (binary r.v.) Qi, -

Set of zones adjacent to zone k r.(k) -

Table 4.2: Notation adopted in models

The overall external surface coefficient ho depends on the wind speed. A ho value

of 20 W/m 2 C (or 6 Btu/hr sq. ft. F), under the assumption that wind speed is 3.5

m/s (or 700 fpm), is suggested for design purposes [Givoni, 1998]. We assume ho

to take the suggested value for simplicity. This simplification is reasonable as "wind

speed effect in case of light-colored walls is much smaller [Givoni, 1998]," which is

consistent with our assumption that the residence has a light-colored envelope. In

scenarios where the residence does not have a light-colored envelope, it is possible to

adopt another model and include other additional terms, say one that relates to wind

speed or any other meteorological quantity, to the equation describing the model (4.8).

Intensity of incident solar radiation I is a function of time while TLWR is assumed to

be 6'C when the sun is up with a clear sky and is set to zero otherwise. An equation

with a different set of parameter values can be used for different regimes or different

62



times of the day.

In general, if a more sophisticated model is desired or required, the model and

equation for TOA can be similarly made more complex. The resulting model and

equation(s) can still be used with other parts of the framework as long as the ther-

modynamic model provides an accurate approximation of the temperature trajectory

of each zone.

In continuous time, the energy balance equation for the said simplified system

consisting of zone k and a set of adjacent zones r(k) is given by

dTk (t) -AN [Tk (t) - k ± ek(t) (4.9)
dt mck mckdt iEr.(k) kMk

Solving (4.9) over an arbitrary time interval [0, t] and assuming ek(t) and TP(t) V i #
k remain constant over the said interval, we obtain

__ 1
Tk(t) = Tk(0)e TCk + [ ( AkiT(t) k ?lek(t)](1 - e- Tk) (4.10)

iEn(k) Aki inE(k)

where the thermal time constant is given by TCk =Akc . The temperature
LiEnc(k)k

of adjacent zone i denoted by T(t) can take the value of the average temperature

in zone i if the temperature is not held constant over the said interval. The same

approximation can also be used for ek(t).

Since our interest lies in the value of Tk(t) at the beginning of each control interval

Tk(nr), we can express Tn+1 in terms of Tk and other parameters by substituting the

appropriate values into (4.10) to give

T+1 iT + 1 [ AkrT t rek(t)](1 - e TC), (4.11)
1 ni(k) Aki iEn(k)

where Tn can take the estimated value of the average of T(nr) and T((n+1)r) instead

of T(nr) for better accuracy. For brevity, we let c' = e ~N, Ak - Eienck)Aki and
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(k = = i-± and rewrite (4.11) to give

Tn+1 =kT +[ AkiT k (ek(t)](1 - e4) (4.12)
k iEn(k)

The "sol-air" temperature is denoted by T or T,0 which correspond to T' or T

respectively when i = 0. Since the outdoor environment indexed by k = 0 is adjacent

to all zones, {0} E r(k) V k # 0. The astute reader will observe from (4.12) that a

linear regression model can fully relate T,'+1 with other quantities (albeit some will

be proxy values or estimates). Statistical learning can provide us with the regression

coefficients. The derivation for the single zone case can be found in [Constantopoulos,

1983]. By setting Aki = 0 V i 7 0, k, we obtain an expression for Ta+1 from (4.12) that

is the same as that in [Constantopoulos, 1983, 1987, Constantopoulos et al., 1991].

This verifies that the present model is consistent with the single-zone case developed

by Constantopoulos.

4.3.2 Set-up of Building Structures for Simulation

To the best knowledge of the author, there is currently no standardized test for

evaluating the performance of building energy analysis computer programs for the

multi-zone case. The standardized tests described in [ASHRAE, 2007] come closest

to what is needed, but do not provide test cases for multi-zone scenarios.

This section describes the set-up of building structures for the simulation of differ-

ent zone configurations based on standardized tests in ASHARE Standard 140-2007

[ASHRAE, 2007].

Using Case 900 for structures with heavy thermal mass described in [ASHRAE,

2007], the author developed a set-up with three configurations which has two to

four zones for the purpose of evaluating the performance of any method to learn the

thermal characteristics of the zones. The set-up will also be used when simulating

the different scenarios for other parts of the research.

Case 900 has the same dimensions, structure and orientation as Case 600, which

is depicted in Figure 4-1. Case 900, however, is the heavyweight case which has a
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Figure 4-1: Isometric view of Case 600. Extracted from [ASHRAE, 2007].

different material specification from that of Case 600. The material specification of

Case 900, which is excerpted from [ASHRAE, 2007], can be found in Appendix A.

A south-facing configuration was chosen to limit the effects of fenestration. Having

windows that face the east or the west will aid heating in winter but add to the cooling

load during summer. Windows that face south (or north) will capture the effects of

fenestration without potentially adding bias to the heating or cooling processes.

By cascading more than one Case 900 structure and adding partitions to each

structure, we obtain the set-up with the desired number of zones. It is assumed that

the indoor partitions separating the zones are 0.2 m thick and made of the same

type of plasterboard used in Case 960, which is the same design adopted in [Khoury

et al., 2005]. The thermodynamic properties of the said plasterboard can be found

in Appendix A. This is to enhance the realism of the set-up as houses in temperate

places tend to have, from a thermal perspective, lighter indoor partitions and heavier

walls for the envelope. Figures 4-2, 4-3 and 4-4 depict the floor plans for the structures

with two, three and four zones respectively.

It is worthy to note that "the state-of-the-art in ground modeling is not very good

even in detailed building energy simulation programs," according to [ASHRAE, 2007,

p.70]. This may pose a problem as it introduces uncertainty into the testing and

evaluating, which can be circumvented by making the floor insulation very thick to
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Figure 4-2: Floor plan for configuration with two zones. All dimensions in metres.
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Figure 4-3: Floor plan for configuration with three zones. All dimensions in metres.
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Figure 4-4: Floor plan for configuration with four zones. All dimensions in metres.
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thermally decouple the floor from the ground. Taking a leaf out of the ASHRAE play-

book [ASHRAE, 2007], the set-up is assumed to have thick floors that are thermally

decoupled from the ground and that the rate of heat loss through per unit area of the

floor is a constant. It is further assumed that the doors leading to the outside, with

the help of insulation, have the same thermodynamic property as the walls, and any

heat loss or gain through air exchange is captured by the air changes per hour (ach)

statistic. Interior doors leading from one zone to another are assumed to be made

of similar material to the plasterboards and hence, share the same thermodynamic

properties. Heat exchange due to door openings is assumed to be negligible or fully

accounted for by air infiltration. These assumptions make it possible for us to do

away with the doors in the set-up.

4.3.3 Characterizing Zone Thermodynamic Properties

The characterizing or learning of zone thermodynamic properties must be completed

before any dynamic programming can be possible. During the characterizing and

learning phase, for each regime, the zone thermodynamic properties are characterized

by estimating the coefficients to each term on the RHS of (4.12). These coefficients

are simply given by the regression coefficients obtained from running a large number

of simulations on the building simulator adapted from [van Schijndel, 2007] based on

the set-up, such as those depicted in Figures 4-2, 4-3 and 4-4. Random realizations

of the terms on the RHS of (4.12) are fed into the simulator and the outcome, which

corresponds to the zone temperature of the next stage, is observed. Standard linear

regression using the random realizations as independent variables and the outcome

as the dependent variable yields the regression coefficients.

In the actual operation of the EMA or controller in the field, observations of the

independent and dependent variables can be made and recorded. If a less noisy version

is desired, the EMA or controller can actuate the space-conditioning equipment when

the house is vacant and record the outcomes. The same linear regression technique

can be used to obtain the coefficients.

The transition function described in Chapter Three that is needed for dynamic
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programming to be possible can indeed be accounted for.

4.3.4 Summary

Fig. 4-5 provides an overview of zone thermal characteristic learning, laying out the

key topics discussed in this chapter are presented. Zone thermal characteristic learn-

ing aims to estimate a transfer function that can be used by the dynamic programming

algorithm discussed in Chapter Three. The transfer function actually takes the form

of a set of linear regression models, with a model corresponding to a different regime

in the day. The transfer function estimates the temperature for a given zone at the

next time period based on the current zone temperature, the net energy gain from

the external environment, the net energy gain from neighboring zones and the net

energy gain from the space-conditioning equipment.

Net Energy Gain from
Space-conditioner

Only air-conditioner
or electric heaters considered

Zone j
Net Energy Gain Zone Zone

from Neighboring -+Temperature Transfe Function Temperature

Zones at time i at time i+1

Net Energy Gain from the Regression models
Environment

Modeled using "sol-air temperature",
that captures effects of solar heating,

outdoor temperature, etc.

Figure 4-5: Overview of zone thermal characteristics learning.

Net energy gain from the external environment is modeled using a proxy measure

called "sol-air temperature" that captures the effects of outdoor air temperature, solar
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radiation and other phenomena. Net energy from neighboring zones is estimated

using the temperature of the neighboring zones. Net energy gain from the space-

conditioning equipment is easily obtainable as only air-conditioners and heaters that

run on electricity are considered.
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Chapter 5

Modeling and Learning of

Occupancy

An occupancy pattern is a daily record of the location of residents within the house

made on an individual basis. This chapter discusses the source and nature of the

occupancy patterns used in this study and describes how they were sourced, processed

and obtained. In addition, it also details the way in which the occupancy patterns

were used in simulations after being processed and how the probability of each zone

being occupied at each time period was obtained.

Fig. 5-1 provides an overview of the phases and tasks described in this chapter.

The work on occupancy begins with the phase of processing the occupancy patterns.

This phase, which is described in section 5.1, produces three sets of occupancy vectors,

each corresponding to a different type of resident. This is followed by a study to

develop quantifiable measures to characterize occupancy patterns in a meaningful way,

which is discussed in section 5.2. The task of occupancy modeling aims to develop

and train a model that will provide the dynamic programming algorithm discussed

in Chapter Three with the probability of a zone being occupied at every time period.

Section 5.3 details the occupancy modeling task and the use of occupancy vectors in

Monte Carlo (MC) simulations.
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Occupancy Pattern Processing Characterization Study

-Stay Home Use Randomness and Similarity
...... Resident to characterize occupancy.

!All Modeling of Occupancy
iATUS ExpectationOccupancy axptation Working Use frequency counting toOccupancy maximization esdn
Patterns AlgorithmResident estimate probability of zone

being occupied.

Others Simulation
1 Use occupancy vectors in

Occupancy vectors simulation runs.

-- + Uses training data set -- + Uses validation/experimental data set

Figure 5-1: Overview of phases and tasks relating to occupancy modeling.

5.1 Occupancy Pattern Processing

5.1.1 Source and Nature of Occupancy Data

While there exist studies like [Tapia, 2003, van Kasteren et al., 2008, Youngblood and

Cook, 2007] that provide quality data sets of occupancy patterns, they are specific

cases of individuals and are limited in size. In order to get a sizable data set that is

suitable for training models and to use occupancy patterns that are more reflective

of the population at large, the author chose to derive proxy data from the American

Time Use Survey (ATUS) [ATUS, 2007], where each participant has a record of

activities detailing the nature, start time, end time, etc. of the activities undertaken

on a particular day.

Each participant is randomly drawn from a subset of the population that rep-

resents a range of demographic characteristics. This subset of the population is

characterized by their participation in the Current Population Survey (CPS). Some

degree of selection bias may be present in that the survey only considers those who do

not mind participating in surveys of this nature and have actually participated in the
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CPS conducted by the Department of Labor in 2007 and 2008. The author regret-

tably notes that there is no easy means to make up for this imperfection. It is worthy

to note, however, that the use of time use survey results for the purpose of model-

ing occupancy in domestic buildings for energy demand studies has a precedence in

[Richardson et al., 20081.

Although not a perfect representation of the U.S. population, the ATUS data

provide a rich source of information with over 100,000 activity journal entries from

more than 12,000 respondents from all over the United States. This translates to

more than 100,000 occupancy schedules in total.

As the survey does not capture the location where an activity takes place, we infer

the whereabouts of residents at each time period from, and derive occupancy patterns

based on, the participants' responses to the ATUS. For example, if a participant

reports that he is sleeping, we assume he is in the bedroom, while if he is participating

in an out of house activity like "shopping for groceries," he is assumed to be out of

the house and in zone zero. In this way, we obtain a rich, sizable proxy data set

that captures the multitude of occupancy patterns in the U.S. population. Though

not exactly the actual occupancy schedule collected by an observational study, the

derived data set serves as a good, convenient proxy.

The data set obtained from [ATUS, 2007], after some post-processing, yields a

large number of occupancy vectors of length N and denoted by v that represents an

occupancy pattern. Each of the N entries or components in a vector corresponds to

one of N defined time periods of the day and takes an integer value between 0 and K

i.e. v E {0, 1, ..., K}N. Each of the N entries describes the location of the inhabitant

during the corresponding time period, where the first entry corresponds to the hour

between midnight and 1 a.m. and so on such that N = 24. An entry with zero value,

corresponding to zone zero, indicates that the inhabitant is outside of the house or

not in any of the zones during that time period. Each occupancy vector corresponds

to an occupancy pattern of a particular day as recorded by any one of the respondents

to the ATUS study.

The vector y listed below depicts an occupancy vector of length N = 24 that
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corresponds to the occupancy pattern of a random respondent who participated in

the ATUS and is assumed to live in a residence with two zones:

v= 1 1 1 1 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 2 2 2 1 1

The jth entry of an occupancy vector v is denoted by v(j). In the example above,

v(1) = 1 while v(8) = 2 and v(17) = 0. To further illustrate, we assume that zone

one corresponds to the bedroom while zone two corresponds to other parts of the

residence and includes the dining area and living room. The resident was asleep

between midnight and 7 a.m. Between 7 and 8 a.m. which corresponds to the eighth

time period, he was in the dining area and/or living room getting ready for work.

He was commuting or at work between 8 a.m. and 7 p.m., and hence was out of the

house from the ninth time period to the nineteenth time period. He returned home

at 7 p.m. and stayed in zone two until he retires at 10 p.m. which corresponds to the

twenty-third time period. Note that we round time to integers representing hours.

The general argument could be extended to more fine-grained time intervals.

In this study, each occupancy vector is an actual realization of a random process

and is made up of 24 multinomial random variables. Each entry of the occupancy

vector corresponds to an hour of the day and can be seen as a multinomial random

variable with a properly-defined probability mass function. The location of residents

in a house is greatly influenced by the time of day. For instance, it is most likely that

the residents are asleep and hence in the bedroom (zone one) between 12 midnight and

6 am. This relatively heavy time-dependence suggests that modeling each entry as

a multinomial random variable will capture the dominant occupancy characteristics

of residents in general. Some loss of fidelity is expected if the dependence between

entries in an occupancy vector is not captured. Results presented in Chapter Six go

on to reveal that the multinomial model is indeed sufficient to address the problem,

and the said loss of fidelity does not critically impair the model to render it useless

for the purpose of realizing OZS.

A formulation based on a Markov process is expected to be an improvement as it
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addresses the said loss of fidelity suffered by the model that uses multinomial random

variables. A Markov-based formulation will capture both the time-dependence of each

entry as well as the dependence between entries. In such a formulation, the probability

mass function of the random variable for the next time period is dependent on the

value of the current time period. The reader is referred to section 5.3 for a discussion

on how the two models can be used in practice for the purpose of realizing OZS.

5.1.2 Classifying the Occupancy Patterns

Faced with thousands of occupancy vectors, the author tried to find patterns within

the collection of vectors and come up with a meaningful way of organizing them. A

visual inspection of a subset of the occupancy vectors revealed that there are at least

two types of occupants or residents, namely those who are out in the day during

working hours and those who are not. A closer look at the occupancy vectors further

revealed that there are possibly three types of residents, with the third as those who

are out of zone one (which corresponds to the bedroom) later in the day and exhibit a

more random schedule for the rest of the day. This implies that the set of occupancy

vectors is essentially a mixture of occupancy vectors corresponding to different types

of residents.

With this insight, the author framed the problem as a clustering problem and

developed a model for clustering or classifying different types of occupancy vectors

using an implementation of the Expectation-Maximization (EM) algorithm [Dempster

et al., 1977, Hastie et al., 2008]. In this way, it is possible to assign each occupancy

vector to a particular type, differentiated from the others based on their differences in

occupancy characteristics. These occupancy vectors, once classified correctly in their

respective types, can be used to drive the MC simulations central to addressing the

research questions listed in the introductory chapter.
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Types of Residents and Simulation Scenarios

It is most reasonable to ask why do we not just use the occupancy vectors as they

are to run the simulations. Put another way, it is logical to question the necessity of

classifying the occupancy vectors into the different constituent types. As discussed

earlier, the entire set of occupancy vectors is made up of occupancy vectors from

different types of residents. To facilitate the discussion, let us further assume there

are D different types of residents and use an analogy to explain a possible problem

associated with using the entire collection of occupancy vectors as it is without regard

for the constituent types of residents.

Using the set of occupancy vectors in totality as a single set can be likened to

conducting a coin tossing experiment with D coins where each is biased differently.

With each coin toss, one randomly picks one of the D coins and uses it for a single toss.

Any conclusion drawn from a large number of coin tosses conducted in this manner is

representative of the collection of the D coins, and does not tell us anything specific

about each of the individual coins.

By using the entire collection of occupancy vectors as it is, it is as if the MC

simulations are run based on a schizophrenic resident, whose occupancy characteris-

tic randomly takes on the features of a working resident on some days and another

type of resident on other days. It is likely that simulations conducted in this manner

with our schizophrenic resident will give poor results through no fault of the under-

lying framework or algorithms used. In addition, people in general do not exhibit

such schizophrenic behavior in life. Results obtained from simulations based on our

schizophrenic resident may not be of great relevance or interest to the industry and

the academic community.

The presence of more than one type of resident requires that the simulations be run

as a series of different scenarios based on a logical, realistic combination of different

types of resident e.g. a stay home resident and a working resident. In this way, the

results obtained will be closer to what one can expect when occupancy-moderated

zonal space-conditioning is deployed in real settings.
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Consequently, appropriately compartmentalizing or classifying the entire collec-

tion of occupancy vectors into the D constituent sets is necessary.

Additional Characterization of Occupancy Pattern

A person's daily activities can be highly dynamic and this implies that the nature of

one's occupancy patterns may vary greatly due to many different factors e.g. day of

week. It is clear that simply characterizing the occupancy patterns by the type of

resident as described in the preceding section may not address the problem at hand

to satisfaction. Additional dimensions of characterization are needed in order for the

framework developed by the author to include more realistic scenarios.

In this study, occupancy vectors are further characterized along the additional

dimensions of randomness and similarity. This is in addition to the type of resident

characterization discussed earlier. For example, the simulations can be based on

scenarios which involve a stay home resident, who is further characterized along the

dimension of randomness. A set of simulation runs can be based on the case where the

stay home resident has less random occupancy patterns and another set of simulations

can be based on highly random occupancy patterns.

An advantage of using randomness as an additional characterization is that it

allows for a more convenient means of generalization as compared with a characteri-

zation based on day of the week or the date. Instead of running additional simulations

for New Year's Day, Sunday, Saturday and "Lots of Errands to Run Day", we can

consider all these cases as a single case characterized by high randomness in occu-

pancy patterns. The reader is referred to section 5.2 for a detailed treatment of using

randomness and similarity in characterizing occupancy patterns.

Using the EM Algorithm

Classification is a broad topic in machine learning and a discussion on using the EM

algorithm for classification (in the presence of hidden or unavailable data) requires a

lengthy exposition. The author will make a modest attempt to outline the approach

adopted to classify the occupancy patterns using the EM algorithm in this section.
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In Maximum Likelihood (ML) estimation, the objective is to estimate the model

parameter(s) for which the observed data are the most likely. The EM algorithm

is an iterative procedure to compute the ML estimate in the presence of missing or

hidden data. In this case, the latent or missing data is a label that describes which

type of occupancy vector (1, 2, ... or D) a particular occupancy vector v belongs

to. In other words, in an ideal situation, every occupancy vector would have a label

that stipulates which type e.g. working resident or stay-home resident the vector

belongs to. In practice, however, the vectors do not come with such labels and some

means of accurately assigning a label to each vector must be in place in order for the

vectors to be useful for MC simulations. (Recall from the earlier sections that the

MC simulations will be based on logical combinations of different types of residents.

This makes it important that every occupancy vector is correctly labeled.) Given the

large number of occupancy vectors available, a manual assignment of labels to each

vector is too onerous to be feasible. Consequently, the author decided to use the EM

algorithm to help with the task.

For any occupancy vector v, drawn from a mixture consisting of D different types,

we denote the mixture type it belongs to using TI, and Q to represent the ith entry

of v, i.e. T1 E {1, 2, ... D} and Q = v(i). The objective of the labeling task can be

seen as determining P(Ti = j I v1 , ... , Q = VN) for each vector v, and v, is

assigned label j, corresponding to the jth type where ji = arg max P(TI = j I Q =

V1, ... , £N = VN)-

Using the Naive Bayes Model, where each entry of an occupancy vector is indepen-

dent of other entries given the mixture type, the joint distribution for an occupancy

vector v, can be formulated as

N

P(Tj =j, 1 = v 1, ... , QN = VN) = = V( i vi T=j)P(Ti j)

N

= Hp(vilj)p(j). (5.1)
i=1

With the formulation of the joint distribution in place, the EM algorithm is used

78



to determine j, = arg max P(Tj = j | Q1 = vi, ... = VN). In essence, the EM

algorithm has two key steps that are iteratively carried out. In this implementation,

the "E" step computes, using the current values of the parameters, the posterior

probability P(T = j|iQ = vi, ... , Q' = VN) that is sought. This is followed by

an "M" step that updates the parameters P(T = j)t and pj,i(k)t. The two steps

are iteratively executed until the log-likelihood values, which are obtained by taking
N

the logarithm of 171 pj,i (vi; ), of two consecutive iterations are sufficiently close as
i=1

defined by a threshold E. The EM algorithm is presented in the following pseudocode:

EM Algorithm for Discrete Mixture of Occupancy Vectors:

Initialization:

Set parameters 0 i.e. p(j) and pj,i(k)0 to initial values based on "guesstimates"

of proportion of each type of occupancy vector and typical schedule for a type of

occupancy vector.

Algorithm:

while I previous log-likelihood - log-likelihood > e do

at the tth iteration,

E-Step: Compute posterior probability
N

P(Tl=j) H pg,i(vi;6*-1)

P(TI = j = V1, ... ,N = VN) P(T ')p,,j(xi-6-1)

M-Step: Compute updates for
NT

Z P(T=j|Ij=vi, ..., n=vl)+a
1) P(T = j)t NT+ , and

NT

E J(v!=k)P(Tj=jlf2'=v', ..., Q1 =vI)+
2) pj,i(k)t = '-1 NTZP(Tz=jIf2=v1. Ql-vk +3

1=1

where

NT is the number of occupancy vectors,

6(A) = 1 if expression A is true and J(A) = 0 otherwise, and

a, a',3, ' are smoothing constants

end while
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5.2 Quantitative Characterization of Occupancy

5.2.1 Randomness in Occupancy Patterns

The author adopted the information-theoretic concept of entropy developed by Shan-

non [Shannon, 1948] as a measure of randomness in occupancy patterns. For the

purpose of this discussion, it suffices to say that a discrete random variable with a

probability mass function that gives a lower entropy is less random and more pre-

dictable than one with a higher entropy and vice versa. The reader is referred to

[Shannon, 1948, Cover and Thomas, 2006] for a detailed discussion on information-

theoretic entropy.

For a given set of occupancy vectors denoted by IF, the average occupancy entropy

Hn(1) of the set of occupancy vectors is defined by

N
HQ(T) Hi (5.2)

N=1

where Hi is the information-theoretic entropy of the probability mass function (PMF)

of the location of the occupant at time period i, a random variable denoted by Qj with

i = 1, ..., N. The PMF of Rj can be obtained from the histogram of the occupant's

location at each time period. Given the PMF of Qj, which describes the probability

of the occupant being at zone j at time i denoted by P(Qi = j), where ' P(Qi =

j) = 1, H is calculated using

K

Hi= - E P(A = j) log 2 P(A = j) (5.3)
j=0

In general, an occupant who has an occupancy pattern with a lower entropy and

lower randomness can look forward to greater savings if OZS was in place, as compared

with another occupant displaying an occupancy pattern with higher average entropy.

The use of Shannon's information-theoretic entropy is motivated by necessity, as

the underlying random variable that relates to the occupant's location is a categorical

random variable. Standard measures of central tendency e.g. mean, variance are

meaningless in the context of a categorical random variable. The use of Shannon's
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entropy, however, means that it is harder to develop an intuition for how entropy

relates to randomness. The reader may find a numerical example useful in developing

such an intuition.

In a high entropy, high randomness time period h where the occupant is equally

likely to be in any one of the K = 2 zones and the outside zone, the entropy is given

by

21
Hh = - Z P(As = j) log2 P(Ai = = = - log 2 - = 1.58

j=0 3

which we calculate using (5.3).

In another case, where the occupant is more predictable and the entropy associated

with him is lower, let us assume he stays in zone one with probability 0.95 and is

equally likely to be in zone two or outside the house for a particular time period 1.

In this case, the entropy is given by

H, = -(0.025log 2 0.025 + 0.9510g 2 0.95 + 0.02510g 2 0.025) = 0.34

which is significantly smaller than Hh. Taking the average entropy over all the time

periods, we obtain a quantitative measure that gives an indication of the level of

randomness associated with the set of occupancy vectors. This is given by (5.2).

5.2.2 Dice's Coefficient and Similarity

The concept of similarity of occupancy patterns between or among the occupants

becomes relevant in cases where there is more than one occupant. We adopt the

Dice's coefficient [Dice, 1945] as the measure of similarity. For any two sets A and B,

the Dice's coefficient is given by

rD = IABI (5.4)

where |Al gives the cardinality of set A.
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In this case, for any two occupancy vectors vj and vk, the Dice's coefficient

rD(Lj, Vk) is given by the fraction of entries the two vectors have in common e.g.

rD(lj, Vk) = 0.75 if the first 18 entries of the two vectors vj and vk, both of length 24,

take on the same value.

5.2.3 A Note on Frequency of Change in Location

While randomness and similarity are two relevant dimensions to look at with regard

to occupancy, they do not paint the complete picture. The (very) astute reader will

observe that there is also the notion of frequency of change in the location of the

residents that may also impact the performance of OZS.

To illustrate the concept of frequency of change in location, let us suppose there

are two occupancy vectors, vi and Vh, given by

v= [ 1 1 12 0 0 0 0 0 2 2 1]

and

Vh = [0 1 0 2 1 2 0 1 2 1 0 2].

Clearly, v, displays a lower frequency of change in the location of the resident. On the

other hand, vh represents the occupancy schedule of a resident who is always moving

from one zone to another. Intuition suggests that a higher frequency of change will

mean a poorer showing by OZS.

This is a perspective that is not explored to the full in this dissertation. It is

the hope of the author that other researchers will explore the notion of frequency of

change in the resident's location in a future study.
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5.3 Using the Occupancy Model and Vectors

5.3.1 Estimating Probabilities of A Zone Being Occupied

A naive occupancy learning method, which is essentially a frequency counter, that pre-

dicts occupancy based on the number of times a zone has (historically) been occupied

for a time period or stage was used in this study. This means that we approximate the

conditional probability P(Qj,i+1 = 1|1i,i, ---, AK,i) using the probability of occupancy

P(Qj,i+1 = 1) as if Qj,i+1 is independent of the occupancy state of the zones in the

previous time period i to give P(Qj,i+1 = 11,i, ... , K,i) ^ P(Qj,i+1 = 1) V j in this

study. The probability of occupancy P(Qj,i+1 = 1) can be simply derived from the

frequency of occupancy of zone j at time period i.

We can then approximate P(Oj,i+1 = 1 ..., QK,i) using

NT

E (v(i + 1) = j)
P(Qj,i+1 = 1jQ 1,i, ..., OK,i) O 1) = k=1(55)

where

6(A) returns 1 if expression A is true and returns 0 otherwise, and

NT total number of occupancy vectors considered.

Improvements may be achieved by using a more sophisticated probabilistic model,

such as one that actually models the conditional probability P(j,i+1 = 11,Q, ... , K,i).

A Markov model was not used in this study but is included in this discussion as an

example of a more sophisticated model. In a Markov model, the probability of a zone

being occupied is dependent only on its occupancy state in the previous time period.

In such a Markov model, the conditional probability P(Qj,i+1 = 1|Q 1,i, ... , £AK,i) will

be approximated as

P(Gj,i+1 = 1|G1,i, ---, QK,i) ~ P(Qj,i+1 = ji) (5.6)
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In a Markov model that uses the approximation in (5.6), the occupancy infor-

mation is captured by the transition probability from one stage to another. The

computation of P(Qj,inl = 1In,i) in (5.6) requires the stochastic matrix T(i), which

describes the transition probability from one zone to another at time period i, to be

specified for all i based on the training data. This can be done by setting the entries

az,5(i) of T(i) according to

ai,3(i) = ni (5.7)
Ej=0 ni'j (i

where nj denotes the number of transitions from zone 1 to zone j at time i, considering

all the NT occupancy vectors.

In practice, the energy management agent (EMA) or controller will have amassed a

(possibly sizable) collection of occupancy patterns of the occupant(s), and can derive

the conditional probability using (5.5) when a frequency counter is used or (5.7) if a

Markov model is used instead.

5.3.2 Occupancy Characteristics and Models of Working and

Stay-Home Residents

The probability vector and stochastic matrices for the naive and Markov models can

be obtained by using equations (5.5) and (5.7) with the labeled occupancy vectors

produced by the EM algorithm. (Recall that the EM algorithm produces different

sets of occupancy vectors, corresponding to those of a working resident, a stay-home

resident and a resident on a non-working day.) This section presents samples of

probability vectors p(t) and stochastic matrices T(t) corresponding to the naive and

Markov models respectively. For ease of understanding, the time t in parentheses

gives the starting time of the control period the vector or matrix corresponds to.

Naive Model: Stay Home and Working Residents

0.2909 0.0367

Ps( 9 a.m.) = 0.4996 Pw( 9 a.m.) = 0.0464

0.2095 ) 0.9169)

84



1 0.1166 ( 0.0142

Ps(1 p.m.) = 0.5810 Pw(l p.m.) = 0.0466

0.3024 0.9392

Markov Model: Stay Home and Working Residents

0.2003 0.0590 0.7407 0.0074 0.0033 0.9893

Ts(9 a.m.) = 0.0305 0.4180 0.5515 Tw(9 a.m.) = 0.0035 0.0179 0.9786

0.0078 0.0328 0.9594 0.0035 0.0055 0.9910

0.0847 0.0209 0.8944 0.0070 0.0011 0.9919

Ts(1p.m.) = 0.0248 0.5209 0.4543 Tw(lp.m.) = 0.0024 0.0241 0.9735

0.0100 0.0568 0.9332 0.0063 0.0192 0.9744

For the vectors and matrices above, it is assumed that a two-zone, two-occupant

scenario is in place, where zone one is the (single) bedroom and zone 2 is the rest of

the residence that has space conditioning e.g. living room. Zone 3 refers to the case

where the resident is actually outside of the residence. The subscripts "S" and "W'

represent the "stay home" and "working" residents respectively.

The ith row of p(t) gives the probability of the resident being in zone i at time

t. Similarly, the element in the ith row and jth column of T(t) i.e. entry ai(t)

corresponds to the transition probability from zone i at time t to zone j at time t +1.

The above probabilities can be considered as "inhabitant-centric" as it captures

the characteristics of inhabitant occupancy in a probabilistic fashion. A "zone-

centric" probabilistic model, however, is needed for controlling the space-conditioning

equipment in the zones. In scenarios with multiple occupants, some organized means

of combining occupancy vectors of different types is needed. In order to do that,

some metrics, e.g. information-theoretic entropy to help quantitatively characterize

the occupancy vectors as discussed in section 5.2, is required.

5.3.3 Occupancy Patterns in Simulation

85



From the occupancy pattern processing phase (described in section 5.1), we discover

that there are three different sets of occupancy vectors, each corresponding to a

different type of resident. This motivates the use of scenarios generated by combining

the different types of residents at different degrees of randomness and similarity.

(Similarity is applicable in the scenarios with more than one resident.) Using the

occupancy vectors is a matter of randomly choosing an occupancy vector from the

collection that corresponds to the type of resident to be included in the study and

using it to drive an instance of the MC simulation. For instance, as depicted in

Fig. 5-2, simulating a scenario that involves a couple (M=2) will entail drawing an

occupancy vector from the collection corresponding to stay home residents and one

from the pool for working residents.

To obtain a set of occupancy vectors with low randomness, one simply has to

randomly pick a set of occupancy vectors, with the help of the Dice coefficient, such

that they collectively give a set that has the appropriate degree of randomness. The

appropriate degree of randomness is determined by the average entropy (5.2). If the

average entropy of the collection of occupancy vectors is below a threshold value, it

is considered to have low randomness. The criterion for having high randomness is

similarly defined.

In the case of two inhabitants, the occupancy vector of the working resident is

randomly drawn from the collection of all vectors for working residents, and compared

to a randomly chosen vector from the stay-home resident pool of vectors based on

the Dice coefficient. As long as their Dice coefficient satisfies the criterion set out,

the random pair can be used for simulation. Another draw is made if the pair fails

to meet the criterion.

The work on occupancy modeling and learning completes the jigsaw. With the dy-

namic programming algorithm, thermal characteristics learning and occupancy mod-

els in place, the next step is simply to combine all the elements developed thus far and

put them to the test in a simulation environment. Chapter Six provides the details

behind the simulation runs and the results obtained.
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Figure 5-2: Use of occupancy vectors in Monte Carlo simulation runs.

87



Chapter 6

Simulation and Results

The proof of the pudding is in the eating. This chapter describes the activity that

puts all the elements for achieving occupancy-moderated zonal space-conditioning

(OZS) to the test. The first section of the chapter describes the Monte Carlo (MC)

simulations that were run to study the effectiveness of OZS and the effects of influ-

encing factors. Section 6.2 presents and discusses the results obtained from the MC

simulation. Recommendations on the realization of OZS in practice are included in

the discussion of results as well.

6.1 Scenarios and Simulations

Since an analytic solution eludes the problem, we use Monte Carlo (MC) simulation

as the primary means of investigation. We implemented the proposed framework

and algorithms in the MATLAB simulation environment to investigate the potential

improvement that can be achieved with OZS in place. Simulation results have an

error margin of two percent at 90% confidence.

Prior to running the simulations, there was a learning and training phase where

all the models were trained and parameters were estimated and fine-tuned using

appropriate data sets. The data sets were divided into mutually exclusive training

and experimental partitions, where the former is used during the learning phase to

train the models while the latter is used during simulation runs when carrying out
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the experimentation.

6.1.1 Choice of Building Simulator

In both the learning phase and during experimentation, the HAMBase building simu-

lator described in van Schijndel's doctoral dissertation [van Schijndel, 2007] was used

to simulate the evolution of zone temperature under the influence of random inputs

over time. In practice, the temperature of a zone will vary under the influence of

many variables e.g. outdoor air temperature (OAT) according to the laws of physics.

In the simulation environment, the HAMBase simulator takes the role of Mother Na-

ture. The HAMBase takes into account the underlying physical processes and all the

relevant inputs to simulate the temperature in each zone at all time periods. The

building simulator receives and uses all the meteorological inputs that were available

at the time of this study and not just the OAT.

While there are a number of software simulators of building envelope and in-

door environment, few are capable of simulating multi-zone residential space. The

simulators described in [DREAM, 2011, Mendes et al., 2003] appear to be good can-

didates but are not publicly available or easily obtainable. There exists other high-

performance building simulation applications e.g. TrnSys, ESP-r, EnergyPlus but

these offer a less direct integration path with popular mathematical computing and

simulation environments e.g. MATLAB. Two MATLAB-based simulators, described

in [van Schijndel, 2007, Khoury et al., 2005], are publicly available but [Khoury et al.,

2005] may be priced beyond the reach of some researchers. To the best knowledge

of the author, the software developed in [van Schijndel, 2007] remains the only freely

available simulator that can be easily adapted to simulate multi-zone residences in

the MATLAB computing environment, and hence was adopted in this study.

6.1.2 Influencing Factors

In this study, the author exhaustively considered the cases where there were one or

two inhabitants (M = 1, 2) and two or three zones (K = 2, 3). In the cases where
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there were two inhabitants (M = 2), it was further assumed that they were a married

couple, where one worked in the day while the other was a stay-home spouse (SHS).

The single inhabitant in the case where M = 1 is assumed to have a daily schedule

similar to that of a SHS. The reader may question the relevance and usefulness of

occupancy-moderated zonal space-conditioning (OZS) for a single working resident.

While this is a pertinent question, the problem poses by the single working resident is

less interesting as he/she is typically highly predictable e.g. sleeping in the bedroom or

being out of the house for more than 18 hours of the day. This limits the opportunity

for OZS to come into play. Instead of studying the problem related to the single

working resident, the author chose to invest his time and effort in another research

direction that will directly benefit the single working resident - using remote schedule

updates to inform the energy management agent (EMA) of a more accurate return

time. This is discussed in Chapter Seven.

Unless stated otherwise, the baseline scenario refers to the single zone case (K =

1) where the EMA space-conditions the house as a single-unit at the same desired

temperature under demand-driven electricity pricing that enables pre-conditioning.

In other words, the baseline result produces what achievable with pre-conditioning

but without zoning.

Intuition suggests that the more predictable the occupancy patterns, the greater

the potential for savings when OZS is in place. We adopt a probabilistic approach to

quantify the predictability of occupancy by modeling the location of an inhabitant at

each time period as a discrete random variable with a well-defined probability mass

function.

Similarity, a measure related to predictability, is relevant in any case where M > 1

and it measures the degree of similarity with respect to occupancy among a group

of inhabitants. The reader is referred to section 5.1 for a discussion on the different

types of occupants included in this study while section 5.2 elaborates on the concept

of similarity.

The effectiveness of OZS under demand-driven pricing in reducing cost is de-

pendent on the extent to which each zone can be pre-conditioned. The extent of
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pre-conditioning is in turn dependent on the thermal mass of the residence, thus

motivating the inclusion of thermal mass as an influencing factor in this study.

In addition to the approximate dynamic programming (ADP) technique described

in Chapter Three, an exact, deterministic dynamic programming (DP) technique that

operated with perfect information was used as well. In the deterministic perfect

information (DPI) case, it was assumed that the EMA or controller has the power

of clairvoyance and knows the values of all random inputs prior to the time period.

This assumption reduces the DP problem into a deterministic one and can be solved

using backward induction or reducing it into a shortest path problem as described in

[Bertsekas, 2007]. Even though it is impossible to implement in practice, the DPI is a

useful indicator of the theoretical upper bound of performance. Although not exactly

an influencing factor, the type of DP algorithm used was varied so as to provide the

reader with a sense of what is achievable in practice (as illustrated by the ADP case)

and how far it is from the ideal, as achieved by the DPI case.

6.1.3 Parameters and Random Inputs

The value or usefulness of any results obtained using MC simulation is highly de-

pendent on the random inputs driving the simulations. As such, we elected to use

real-world data observed in practice as far as possible. Atmospheric data were down-

loaded from the National Oceanic and Atmospheric Administration [NOAA, 2011]

while the price of electricity was obtained from organizations overseeing power gener-

ation in the various regions. For instance, for simulations involving Dallas in Texas,

the price of electricity related to Dallas was obtained from the Electric Reliability

Council of Texas [ERCOT, 2011]. In cases where a time-series of values for a given

random input is available over an entire time period, the average value of the series

is calculated and used as the value for that time period.

Table 6.1 summarizes all the parameter values used in the simulation. As zone

temperatures were allowed to fluctuate between the given bounds and never exceed

the limits that were acceptable to the inhabitant, it was assumed that the inhabitant

did not have to manually override and interfere with the EMA or controller. As
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Parameter

Desired Indoor Temperature (Cooling)
Desired Indoor Temperature (Heating)
Maximum Allowable Indoor Temperature Deviation
Overall external surface coefficient
Temperature drop due to long-wave radiation
Absorptivity of surface
Equipment rating (Air-conditioner or Heater)
Air-conditioner Coefficient of Performance
Heater Efficiency
Control Interval
No. of stages or time periods in DP

Symbol

ho
TLWR

a
E
rq
7
r
N

Value/Unit
23.90 C (75 0F)
21.1 0 C (700F)
±8.30 C (150F)

20 W/m 2 C
6 *C
0.4

4.2 kW
2.5
1

1 h
24

Table 6.1: Parameter values used in simulations

presented in the third chapter on optimization, the cost consists of both monetary

charges due to the operations of the space-conditioner and the "service loss" arising

from the zone temperature deviating from the desired temperature. (The astute

reader familiar with the concept of utility functions [Keeney and Raiffa, 1993] may

notice that "disutility" is a more precise term to capture the notion of penalty in this

study. The author decided to use "cost" instead of disutility to maintain consistency

with the vocabulary used to discuss dynamic programming in Chapter Three and to

reduce clutter in the nomenclature.)

It was further assumed that the user was equally conscious of the financial oper-

ating cost as he was mindful of comfort. This implies that the financial operating

cost and the cost associated with discomfort have equal weights in the aggregate cost

function described in Chapter Three.

6.1.4 Overview of Scenarios

Except in the investigation of heating scenarios, a summer cooling in Dallas, TX

scenario, similar to that presented in [Constantopoulos, 1983], was adopted. Unless

stated otherwise, the baseline is the case where space-conditioning of the residence

is carried out using a single set point, the same desired temperature, for all the

zones in the residence, similar to that described in [Constantopoulos et al., 1991,
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Livengood and Larson, 2009]. This implies that the results of interest presented in

this dissertation are improvements expressed as a percentage over the baseline which

is the case with pre-conditioning but without zoning that was introduced in section

6.1.2, unless stated otherwise.

The author first investigated the effects that the number of zones and the number

of inhabitants have on improvement, in a residence with heavy thermal mass using

the different types of control algorithms. In the case where there is more than one

inhabitant, their occupancy showed a high degree of similarity. This is followed by

a study on similarity and randomness in a two-inhabitant, two-zone setting in a

residence with high thermal mass. A set of occupancy vectors is considered to have

low randomness if the average entropy as defined by (5.2) is less than or approximately

0.5 while an average entropy greater than 0.7 means that the randomness is high. A

couple is considered to have highly-similar occupancy patterns if the Dice's coefficient

of their occupancy vectors is greater than 0.55 and is said to have low similarity if

the Dice's coefficient is less than 0.45. A Dice's coefficient of 0.45 means that the pair

of occupancy vectors had the same value for 45% of their entries. This also means

that the corresponding pair of occupants spent 45% of that day in the same place.

The reader is referred to section 5.2 for a more detailed treatment on the measures

of randomness and similarity.

The author next studied the effects that different thermal masses have on the

improvements in a single inhabitant residing in a three-zone house. The low thermal

mass setting is identical to the heavy thermal mass one except for the thermodynamic

property of the material used in construction, which is based on the "lightweight"

case in [ASHRAE, 2007]. The heavy thermal mass setting is also known as the

"heavyweight" case.

To compare the improvement that can be achieved in heating and cooling scenar-

ios, we looked at cooling in Dallas, TX and heating in Los Angeles, CA. The author

further introduced an imaginary city Sallad in the state of Saxet as the climatic and

meteorological analog to Dallas, conjured for the purpose of exploring a heating sce-

nario. The OAT trajectory of Sallad is given by the mirror reflection of the OAT
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Figure 6-1: Relationship between outdoor air temperatures in Dallas and Sallad.

in Dallas reflected about the desired indoor air temperature. For instance, for the

cooling scenario in Dallas where the desired temperature is 75 *F (23.9 *C), if the

OAT is 79 *F (26.1 0C), the corresponding temperature in Sallad will be 70 - 4 = 66

*F (18.9 *C), when the desired indoor temperature is 70 *F or 21.1 *C (which is the

desired temperature used in all heating scenarios). Fig. 6-1 graphically depicts the

relationship between the OAT of Dallas and Sallad.

To study the individual contributions of zoning and pre-conditioning to the over-

all savings achieved, the author ran a series of simulations with zoning only while

controlling the temperature of the residence at the desired temperature, with pre-

conditioning only and with both strategies simultaneously. The baseline used is the

case of maintaining the temperature of the entire residence at the desired temper-

ature. Just like in the case where we compared heating and cooling, the setting in

this case is a single-inhabitant in a three-zone residence with high thermal mass. In
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all simulations, except for the investigations on randomness and similarity, all single

inhabitants were assumed to have low-randomness occupancy patterns.

The last scenario has to do with a family of four, consisting of a working spouse, a

stay home spouse and two school-going children, staying in a "heavyweight" residence

with four zones as depicted in Fig. 4-4 in the fourth chapter of this dissertation. In

the absence of actual occupancy patterns of families fitting the description, the author

had to generate occupancy vectors for the imaginary family of four. Similarity in the

occupancy patterns of the four family members was qualitatively described, rather

than quantified using a metric.

6.2 Results and Discussions

6.2.1 Inhabitants and Zones

As shown in Fig. 6-2, where the height of the bar corresponds to the improvements

achieved (in percentage), we observe the trend of improving performance when there

are more zones with fewer inhabitants. The improvement is the reduction in cost

achieved over the K = 1 case where all the space in the residence is conditioned as

a single unit. Both the financial operating cost of space-conditioning and the cost

associated with discomfort are included in the aggregate cost function.

In the DPI case, which is where all the stochastic inputs are made known a priori

to the EMA or controller and the optimization is deterministic, an improvement over

the baseline from approximately 30% to 41% can be expected. Intuition suggests

that improvements of 50% and around 67% should be achievable with DPI in the

case of a single-inhabitant in two or three zones respectively. This is not achieved

even with DPI simply because all zones, even unoccupied ones, are kept within the

user-defined limits, and some overheads have to be incurred to keep all the zones

within the acceptable bounds.

We borrow the concept of hits and misses in marksmanship to help explain the

results obtained. Observe that the EMA operates the space-conditioner of a zone
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Figure 6-2: Variation of improvements over the baseline
zones and inhabitants.
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partly based on the anticipated occupancy of the zone. A "miss" is said to have

occurred if the EMA conditions a zone in anticipation of it being occupied for a

particular time period but it is unoccupied when the time comes. A "hit" happens

when the EMA conditions a zone such that it expects the zone to be occupied at a

time period and it turns out that the zone is occupied when the time comes.

In practice, the improvements achieved were typically at least 10% lower than

the theoretical upper bound achieved, as depicted in Fig. 6-3 which presents the

ADP result. The same relationship between improvement and the number of zones

or inhabitants was observed as well. These results do not come as a surprise as having

an inhabitant whose occupancy is predictable with more zones simply means that a

comfortable temperature can be maintained for the inhabitant using a smaller cooling

load as compared to the case with fewer zones.

From the floor plans of the residences with two or three zones depicted in Figures

4-2 and 4-3, it is clear that with OZS, an EMA can theoretically save up to half the

cooling load for a single inhabitant. In the case of a single inhabitant in a scenario

with three zones, the EMA can theoretically save anything between half and three-

quarters of the cooling load. These theoretical limits were not achieved even in the

DPI case because the unoccupied zones were still maintained within the maximum

tolerable temperature limits and possibly further away from the desired temperature.

In practice, the drop in performance was even bigger as there were times when

the "misses" occurred, where the inhabitant occupies the zone that the EMA thought

would be unoccupied and was hence maintained at a temperature away from the

desired temperature. The "misses" are not expected to happen too often and more

"hits" can be expected if the inhabitant's occupancy pattern is predictable.

It is this interplay of overheads due to maintaining unoccupied zones within toler-

able limits, "hits and misses", among other factors that rendered an analytic solution

to be untenable and motivated the use of MC simulation.

Looking at these results, one can infer that single inhabitants in residences with

more zones should try to have OZS in place if possible. This also suggests that policy

makers should target their incentive schemes that encourage the use of OZS at the
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Figure 6-3: Scenarios with fewer inhabitants and more zones do better than those
with more inhabitants in fewer zones.

demographic segment of single inhabitants in houses with more zones in order to

get the most out of their expenditures on incentive schemes. Ideally, the inhabitant

should be someone with a more regular and predictable occupancy pattern than one

who is not.

In the case where M = 2 as depicted in Figures 6-2 and 6-3, the inhabitants

exhibit a high degree of similarity, which means that the inhabitants are in the same

zone most of the time. This implies that the results will not drastically differ from

the case where there is only one inhabitant. This begs the questions, what happens

when the couple in question has low similarity with regard to occupancy patterns and

how do predictability and similarity affect improvement over the baseline?
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improvement (%) vs. Similarity and Randomness
(DPI, Couple in 2 Zones)

t Low Randomness

U------.U High Randomness

High Similarity Low Similarity

Figure 6-4: Low similarity impacts improvement in DPI case.

6.2.2 Randomness and Similarity

In the DPI case where the stochastic inputs have no effect with K = 2 and M = 2, we

observe that lower similarity leads to smaller improvements, as depicted in Fig. 6-4.

The picture is not as rosy in practice, especially when similarity is low as depicted in

Fig. 6-5 for the ADP case.

The performance drop from the low randomness case to the high randomness case

can be due to the higher number of "misses" where the inhabitant(s) are in the zone

that the EMA did not expect them to be in. (With greater randomness or lower

predictability, we can expect more "misses".)

Low similarity implies that the two inhabitants are in different zones more often

than in the case where similarity is high. In the case where there are only two zones,
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Improvement (%) vs. Similarity and Randomness
(ADP, Couple in 2 Zones)
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Figure 6-5: Low similarity among multi-inhabitants significantly impacts improve-
ments.
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the savings are marginal as the EMA is operating as if it was space-conditioning

the residence with two zones as a single-unit. This explains the almost precipitous

drop in performance, to improvements of around 7%. In summary, the effects of low

similarity dominate the potential gains from high randomness.

As expected, a combination of low randomness with high similarity, which corre-

sponds to a SHS with high predictability and a WS who is usually in the same zone

when (s)he is home, yields the best performance. Observe that with high similarity,

even poor predictability yields relatively better improvement.

This set of results suggests that a couple whose residence has OZS will benefit

from having a routine of their activities at home to reduce the randomness of their

occupancy patterns and try to organize their activities such that they are in the same

zone more often than not.

6.2.3 Thermal Mass

From Fig. 6-6, it is evident that a house with greater thermal mass achieves a greater

improvement over one with a lighter thermal mass. This discrepancy can be due to

the heavyweight house having both the effects of zoning and pre-conditioning at work,

while the thermally lighter residence, which is less thermally inert, is largely unaided

by pre-conditioning that gives rise to load shifting. This was further investigated

by running another set of simulations at constant price, which nullifies the effects of

pre-conditioning and load shifting.

We observe that in both cases of constant and spot price in a light thermal mass

setting, the performances achieved are similar, especially in a practical implemen-

tation using ADP, thus verifying the explanation. In theory, one can still expect

a slightly higher savings (< 5%) achieved by the perfect information case under

spot pricing as compared to a constant price, as some albeit limited degree of pre-

conditioning and load shifting is still possible.

Our study on thermal mass allows us to infer that a thermally light house is not

well-suited for pre-conditioning. Consequently, OZS remains the more viable strategy

to achieve savings, since load shifting arising from pre-conditioning is severely limited
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Figure 6-6: Lightweight residences achieves smaller improvements as potential savings
from pre-conditioning are absent.

or perhaps even inadmissible. This result underscores the importance of OZS to an

EMA, as OZS enables an EMA to bring value to a lightweight residence by allowing

the resident to reduce space-conditioning cost through OZS. In other words, OZS

provides the owner of a house of light thermal mass with a reason to install an EMA

because an EMA with OZS can potentially reduce the space-conditioning cost in a

lightweight house.

6.2.4 Heating

Looking at Fig. 6-7, it is evident that cooling seems to benefit the most from OZS

when compared to heating. While climatic differences may explain the disparity in

improvement between Los Angeles and Dallas, the disparity between Dallas and its

heating analog Sallad is counter-intuitive. One would expect cooling in Dallas and
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Comparing Improvement (%) in Heating and Cooling Scenarios
(Single in 3 Zones)

DPI

!! Los Angeles, CA (H)

ADP

U Sallad, XT (H) if Dallas, TX (C)

Figure 6-7: Heating does not benefit as much as cooling.

heating in Sallad to benefit to a similar if not the same extent, given that one is the

analog of the other.

The disparity can be explained by the fact that solar heating in the day, which

is when Sallad is the coldest, actually aids the heating process thereby reducing the

need for heating or pre-heating. This reduces the opportunity for pre-conditioning or

OZS to come into play. This result also implies that performance or savings achieved

by OZS cannot be assumed to be symmetrical for both heating and cooling in general.

A policy maker, presumably operating with limited funding for his programs,

should first target locations where cooling takes place to achieve the greatest benefit.

This all the more so given that the cost of electricity is higher in the day during office

hours, which is when there is solar heating (barring cloudy or inclement weather)

which will lower the heating load.
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Contributions of Zoning and Pre-conditioning

Zoning With Pre-conditioning i Zoning Only H No Zoning With Pre-conditioning

0 10 20 30 40 50 60

Improvement (%)

Figure 6-8: Individual contributions from zoning, pre-conditioning and combined
effect of both.

6.2.5 Individual Contribution

Fig. 6-8 shows the extent to which zoning and pre-conditioning contributes to the

total improvement, expressed as a percentage over the baseline and represented on

the horizontal axis. The baseline is the case where the entire residence is maintained

at the desired temperature. In other words, the baseline is the case where there was

neither zoning nor pre-conditioning in place. Observe that without zoning, the use of

pre-conditioning to shift the load as described in [Constantopoulos et al., 1991, Chen,

2008, Livengood and Larson, 2009], achieves savings of around 12%.

With zoning only, the savings achieved is close to 30%. In the case where only

zoning is deployed, the effects of pre-conditioning were nullified by having the space-

conditioning equipment maintain the zone temperature at the preferred temperature,

just like the baseline case. With both strategies in place, the overall savings rises to

around 48%.

This set of results would suggest to the policy maker that in some cases, zoning

may turn out to be more cost effective than pre-conditioning/load-shifting. For in-

stance, in locations where houses are "lightweight", it may be more cost effective to

implement OZS than to embark on a program to increase the thermal mass of houses

to enable pre-conditioning/load-shifting.
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Similarity Description
Normal Dine together, other activities conducted separately

High Most activities conducted together, including dining,
entertainment, doing homework (for children)

Ultra Same as High, and family retires in the same bedroom at night

Table 6.2: Description of degrees of similarity in occupancy patterns.

6.2.6 Results on A Family of Four

We now turn our attention to the aforementioned imaginary family of four. Similarity

in this scenario takes a more qualitative tone, as described in Table 6.2. The "ultra"

case was inspired by a celebrity, despite enjoying fame and fortune, but having expe-

rienced poverty in the past, continues her family's habit of retiring in the same room

so as to run one fan or air-conditioner every night. It should also be noted that in

places where space comes at a steep premium, it is not uncommon for a family to roll

out the beddings every night and sleep in the living room.

The results depicted in Fig. 6-9 shows that OZS can potentially help a family

achieve savings. A typical family can look forward to improvements that are close to

the 20% level, with the "ultra" case achieving an improvement of around 40%. This

is possible because every night, there is only one room, which may potentially have a

footprint that is about one-quarter that of the entire residence, that is occupied and

maintained at a temperature close to the desired temperature while other zones can

have temperatures at the maximum tolerable limit.

6.2.7 Summary

The first research question asks about the level of cost savings OZS can achieve under

a demand-driven electricity pricing scheme under realistic settings. The simulations

reveal that a single occupant of a house with three zones can reduce up to 30% of

total cooling cost in practice. Under less favorable circumstances, such as in the case
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Improvement(%) and Similarity for Family of Four in Four Zones
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Figure 6-9: Results on a family of four at different degrees of similarity in occupancy

patterns.
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of a couple with dissimilar occupancy patterns in a two-zone house, a marginal 7%

reduction in cooling cost was observed.

The second research question queries how influencing factors impact the savings

achieved by OZS under a demand-driven electricity pricing scheme. The number

of zones and the similarity of residents' occupancy patterns are found to have a

positive relationship with the level of savings. (A positive relationship means that

the larger the magnitude of the influencing factor, the greater the level of savings,

when everything else remains the same.) The number of residents and the randomness

in their occupancy patterns have a negative relationship with the level of savings.

In addition, given the same temperature difference between outdoor air temper-

ature and desired zone temperature, the cost associated with cooling is expected to

be lowered to a greater extent than that for heating.

The results presented in this chapter relates to families, couples and singles who

stay home. It appears that the single working adult who leaves for work in the day

has been left out. As explained in section 6.1.2, zoning is less useful to working singles

as their typical occupancy pattern leaves the OZS with a limited role. The author

chose to investigate another variation of occupancy moderation that will directly

help working singles. The said variation of occupancy moderation, which is discussed

in Chapter Seven, involves the use of cloud-connected devices to provide schedule

updates to the EMA.
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Chapter 7

Remote Schedule Updates

7.1 Motivation and Objective

The advent of cloud computing, the ubiquity of mobile devices and the convergence

of computing and communications has enabled a "hyperconnected world" [Friedman,

2012]. According to an industry group CTIA The Wireless Association, there are 323

million wireless subscriber connections in the United States as of June 2011 [CTIA,

20121. This translates to having a Wireless Penetration Equals of 102.4%, which is a

statistic given by the number of active units divided by the total U.S. and territorial

population, including those of Puerto Rico, Guam and the Virgin Islands.

Mobile phones and their ecology of apps are revolutionizing almost every aspect

of our lives. Enterprising service providers have identified this ubiquity as an oppor-

tunity for greater profits by offering more services to their subscribers. For instance,

residents can now monitor and control appliances in their homes through their mobile

devices [Verizon, 2012]. While this can bring about greater convenience, it is not clear

from the literature to what extent the end user benefits from the use of mobile devices

to monitor and control home appliances, especially under a demand-driven pricing

scheme. This motivates a study to investigate and possibly quantify the benefit of

using mobile devices as an aid to home control and monitoring for the application of

space-conditioning.

One way in which a mobile device can help is to provide additional information
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in the form of schedule updates to inform an appliance or its controller so that it

can operate at a time that best achieves an objective, such as to minimize cost.

In this regard the mobile device enhances the knowledge base of the appliance or

the controller by allowing the resident to remotely provide schedule updates. Such

"remote schedule updates" (RSU) may bring about better performance by improving

the predictability of the return time of a resident

The author studied how RSU provided by a mobile device can improve the cost

performance of a residential air-conditioning system controlled by an energy manage-

ment agent (EMA) in the case of a resident who works or leaves the house in the

day. This is a variation on the theme of occupancy-moderation and an attempt to

address the third and final research question listed in the introductory chapter of this

dissertation, "What level of space-conditioning cost reduction can remote schedule

updates bring about?

Towards that end, the author adapted the Energy Box simulator (EBS) developed

by Livengood and described in [Livengood, 2011] to simulate the effect RSU have on

the cost of air-conditioning for a working adult who lives alone. The objective is to

compare the total cost, which includes both monetary cost and level of discomfort,

in the case where there is RSU to the case without, under different settings. In

simulation runs with RSU, the Energy Box received an accurate return time of the

resident at mid-day and carried out optimization based on the return time to arrive

at a control sequence for the air-conditioner that achieves the best balance between

monetary cost and discomfort. Fig. 7-1 aims to illustrate the difference between the

baseline case that does not have RSU in place and the case with RSU.

In the baseline case, the EBS operates using the default setting that the resident

arrives at home some time between 17:00 (5 pm) and 18:00 (6 pm). The EBS may,

depending on factors like price of electricity and other parameters, cool the room with

the aim of lowering the discomfort of the resident. This effort, however, is wasted as

the resident is not home until after 19:00 (7 pm). In the case with RSU, the resident

updates the EBS between 12:00 (noon) and 13:00 (1 pm), that he expects to be home

some time between 19:00 (7 pm) and 20:00 (8 pm). With this additional information,
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Figure 7-1: Illustration of case with RSU and baseline case. Numbers on horizontal
scale correspond to time of the day.

the EBS is able to reduce the cooling load without adversely affecting the comfort of

the resident and in so doing, achieve some degree of cost reduction.

7.2 Introduction to the Energy Box Simulator

The EBS is a highly-flexible, easily-configurable simulator of the Energy Box devel-

oped in the Matlab computing environment. It simulates the response and behavior

of an Energy Box controlling event-based appliances (EBA) e.g. clothes washing ma-

chines and thermostatically-controlled appliances (TCA) e.g. air-conditioners, elec-

tric space heaters under different pricing schemes e.g. real-time pricing, flat rate.

The simulations are driven by historical or highly-realistic meteorological inputs e.g.

outdoor air temperature, wind speed that are typical of a Bostonian summer. For

space-conditioning applications, the entire residence is considered as a single-unit that

is maintained at a single temperature. Furthermore, it can operate in a "prosumer"

mode and simulate the effects of having residential distributed generation in place

e.g. rooftop wind turbine in addition to simultaneously simulating the control of

EBAs and TCAs. The EBS produces a number of output variables, including actual

control sequence for an appliance, temperature trajectory, total operating cost and
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Figure 7-2: Key input and output variables and parameters used in the study of RSU.

discomfort measure.

7.2.1 Key Variables and Parameters

Given the large number of parameters, input and output variables that the EBS has,

the author had decided to focus the discussion on several key variables used in the

study on RSU. Figure 7-2 depicts the key input and output variables and parameters

of the EBS used in investigating the benefits of RSU.

The EBS has the capacity to incorporate different meteorological inputs, such as

temperature, sunshine and wind. The outdoor air temperature (OAT) is the primary

meteorological input of concern in space-conditioning applications. Using 25 years of

historical weather data from the National Oceanic and Atmospheric Administration,

Livengood developed an hourly Markov chain to model and simulate the OAT. The

OAT was bounded and discretized to a set ranging from 50*F to 110*F, which captured

all except for a few hours out of the entire 25 years of data.

With regards to the price of electricity, the EBS can run simulations with any of

the following retail tariffs:

1. flat rate,

2. time-of-use, and

3. hourly real-time pricing (RTP).
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The flat rate and time-of-use tariffs were implemented relatively easily as they are

deterministic. The RTP, however, was more involved and required the development of

a model. An RTP model was developed based on the dynamics of an hourly real-time

wholesale electricity market in New England using hourly grid-level electricity demand

information from 1993 to 2002 obtained from the Independent System Operator of

New England (ISO-NE). (The ISO-NE oversees the operation of electricity markets

in the New England region.)

Another important random input is the return time of the said resident, who leaves

his residence earlier in the day and returns home in the evening each day. The return

time is simply the nearest hour at which the resident arrives home. This random

input variable is a new addition to the EBS and enables the study of RSU. In this

implementation, the author went back to the American Time-Use Survey (ATUS)

dataset and obtained instances of the actual return times (ART) from the records of

activities from the survey respondents. The mode of this distribution of return times

is 17:00, which is the same as the default return time used by the EBS. Since the

scenario under study entails having an RSU during the noon to 13:00 time slot, the

return times considered in this study range from 14:00 to 24:00. Section 7.3.1 has a

more detailed discussion on the value of using the ART derived from the ATUS data.

The astute reader will probably notice that despite the more accurate return time

that the RSU provides, it is possible that the resident may still reach home early or

late due to a variety of reasons, such as uncertainty in commute time. To illustrate,

let us suppose a resident remotely updates the EMA that he will arrive home at

19:00 (7 pm). Due to heavy traffic, he may actually reach home at 20:00 (8 pm).

Consequently, the improvement achieved may suffer as a result. This is all the more

important if the duration of each control period is short e.g. 20 minutes. In this

study, it is assumed that any deviation from the reported return time is small relative

to the duration of each time period, which is an hour.

The cost-discomfort tradeoff constant is a key user-defined parameter. It allows

the user to decide the extent to which discomfort plays a role vis a viz the operating

cost in the dynamic programming (DP) process. An individual who is more concerned
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about the finances and the operating cost than he is about comfort will set the

cost-discomfort tradeoff constant to a low level. Another individual, such as one

more affluent, may value comfort over cost and hence set the cost-discomfort tradeoff

constant to a larger number.

The operating cost in one time period is simply given by the number of units of

electricity used by the air-conditioner multiplied by the price per unit of electricity

for that time period. The discomfort measure at time period i, which we denote using

di, is given by the square of the difference between the desired temperature and the

actual temperature in the residence at time period i, with a lower bound of zero i.e.

di = max(O, (Td - T )2) where Td and T are the desired temperature and the actual

temperature respectively.

7.2.2 Using Total Cost as A Performance Measure

The EBS aims to minimize the Total Cost JTota of a simulation run, and Jrota is

given by:

NTotal

JTota = Z ci + di (7.1)
i=1

where

c2  operating cost of running air-conditioner at time period i

di discomfort measure at time period i

k cost-discomfort tradeoff constant, and

NTotal total number of time periods in a simulation run.

The astute reader will observe that (7.1) essentially describes a cost function that

is a weighted average of two types of cost, that of the financial, operating cost and

a discomfort measure. Operating cost ci has dollars for its dimension while di is

dimensionally given by temperature squared and k has dollars per unit temperature

squared as its dimension.
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Clearly, (7.1) assumes a linear, additive model in modeling the personal cost

accrued or "disutility" suffered and adds the two types of costs together. It allows

for a comparison that accounts for both the financial cost and discomfort over a wide

range of user preferences. An alternative means of modeling is based on the concepts

of utility function, decisions with multiple objectives, preferences and value tradeoffs

introduced in [Keeney and Raiffa, 1993]. The alternative is more formal and requires a

more grounded approach that necessitates the derivation of utility functions to relate

financial cost to discomfort. Given that all that is needed is a fair means to compare

the total costs of the scenario with RSU to the case without, the author decided on

the model described in (7.1) since the values of ci and di are readily available from

the EBS.

The reader is referred to [Livengood, 2011] for an in-depth treatment of the DP

formulation and solution, as well as other details on the EBS.

7.3 Simulation and Results

7.3.1 Simulation

In this study, the dependent variable is simply improvement, which is the reduction

(expressed as a percentage) in total cost as defined in (7.1) in the case with RSU

over the baseline case without RSU. The author adopted the cost-discomfort tradeoff

constant as an independent variable to be varied across an interval of values, ranging

from 0.6 to 10. In this way, it will be possible to tell how the performance of RSU

varies with the value of the cost-discomfort tradeoff constant. Although a uniformly-

distributed return time may sound far-fetched, it is possible that the return time of

some sales representative is best modeled by a uniform distribution.

The performance of RSU under different electricity tariffs and types of return time

was investigated as well. The author modeled the return time of the resident using

the uniform distribution to simulate the case of a resident whose return time is less

predictable as compared with someone whose return time is normally distributed. In
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this case, the residents return time is assumed to be uniformly distributed between

2 p.m. and 12 midnight, giving a total of 10 control periods, each an hour long. In

this way, it is now possible to study the performance of RSU under both the ART

of working residents obtained from ATUS and the uniformly-distributed return time

(URT).

The use of the word "actual" in ART connotes the quality of representativeness

i.e. the ART is representative of the U.S. population at large. This, however, may not

be the case and the author makes no claim of representativeness. A deeper discussion

of the ART is in order so as to better understand the value of using it to drive

simulations.

A histogram, such as the one depicted in Fig. 7-3, is an informative way to

represent the entire set of ART as it graphically represents the distribution of the

return time. Each respondent to the ATUS can be characterized by a probability

density function (PDF) of return time that describes the distribution of return time

for the respondent. Each recorded return time is a realization of a random draw out

of all the possible return time according to the PDF characterizing the respondent.

The collective accumulation of all the realizations from all the respondents yields the

set of ART.

We turn to Alice and Bob and the PDFs of their return time depicted in Fig. 7-3

for an illustrative example. Suppose that Bob reaches home at 14:00 (2.00 pm) on a

particular day and at 18:01 (6.01 pm) on another, which corresponds to realizations

one and two in Fig. 7-3 respectively. The first realization will add one to the count

of the 14:00 bin. Similarly, the second realization adds one to the 18:00 bin. For

Alice, her first and second realizations give 21:15 (9.15 pm) and 17:10 (5.10 pm),

thus her return times add one to the 21:00 and 17:00 bins. Accumulating the random

realizations from all the respondents, in the form of their recorded return time, gives

us the ART.

The astute reader will conclude that the ART cannot be treated as representative

of a "typical American", and cannot be used as such. This begs the question, what

then is the value of using ART in the simulations investigating RSU? The results from
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Figure 7-3: Illustration for example on random realizations of return time by respon-
dents to the American Time Use Survey form the set of actual return times used in
simulations.
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using the ART in simulations are valuable in that they tell us the collective level of

cost reduction we can expect if RSU were adopted by a large number of people from

the population of which the set of ATUS respondents represents, under conditions

similar to those being assumed in the simulations.

Intuition suggests that a positive relationship exists between the variance of the

return time and improvement i.e. greater variance entails a greater potential for

improvement. To test this hypothesis and explore the relationship between return

time variance and improvement, another set of simulations was run with URT at

different values of variance under both types of pricing tariffs.

The desired temperature was 71'F (21.67'C) while the maximum tolerable tem-

perature was set at 79*F (26.11*C) and the performance of RSU under both the flat

rate and the real-time pricing tariffs was investigated. All runs were made using

the "Full Historical Variation" mode of the EBS i.e. using the models derived using

archived data of weather and electricity prices. All results presented have a margin

of error of 2% at 90% confidence.

7.3.2 Results

Fig. 7-4 depicts the results of the simulation runs using ART over a range of values

of the cost-discomfort tradeoff constant, k. The level of improvement brought about

by RSU with ART ranges from zero to more than 14%. Each marker represents a

data point obtained from simulation while the lines joining the markers in a series

are trendlines of best fit obtained by fitting a polynomial to the data.

At low values of k, which corresponds to region A in Fig. 7-4 where k < 3,

the (financial) operating cost is highly-valued by the resident. In region A, where A

can stand for "Austere", there is little or almost no difference in the improvement

gained for both types of pricing schemes as the temperature of the residence is largely

maintained at the maximum tolerable temperature.

This means that in order to minimize financial cost, the EMA operates at the

maximum tolerable temperature so as to minimize the frequency and duration of

actuating the air-conditioner. Pre-conditioning, which is the trump card real-time
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Figure 7-4: Improvement achieved at different values of cost-discomfort tradeoff con-
stant with actual return time.
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pricing has over flat rate tariff, has limited opportunity to come into play under such

operating conditions.

Region B, which is where the value of k lies between three and seven, can be seen

as a transitional phase. During this transitional phase, the improvement achieved by

RTP begins to pull away from that gained by the flat rate tariff. From Fig. 7-5,

which depicts the improvement in the discomfort measure over different values of k,

we observe that in region B where 3 < k < 7, the improvement in discomfort measure

for the RTP increasingly outperforms the flat rate tariff case. This trend comes about

as pre-conditioning is able to play an increasingly significant role as the weight given

to discomfort is increased with increasing values of k. This improvement drives the

trend observed in the overall improvement achieved depicted in Fig. 7-4. Region B

also corresponds to the phase where some degree of balance between operating cost

and discomfort is achieved. In this regard, the "B" in region B can mean "balanced".

Beyond k > 7, which corresponds to region C in figures 7-4 and 7-5, we observe

that the difference in improvement between the two pricing schemes has stabilized.

This stabilization comes about because the EMA has reaped all the benefits that pre-

conditioning can offer. Region C corresponds to the region of "comfort", where the

temperature is closer to the desired temperature as compared to the other regions.

These results bode well for RSU as a cost reduction strategy. Although no guar-

antees about the level of cost reduction can be made to individual residents who may

decide to adopt RSU, we can surmise that a large population of users who can be

represented by the ATUS respondents with the characteristics described earlier, can

collectively expect to reduce their air-conditioning cost by 12% under flat rate or

14% with RTP, under the same conditions e.g. setting the cost-discomfort tradeoff

constant at 10.

7.3.3 Effects of Greater Return Time Variance

Intuition suggests that a resident with a return time distribution of higher variance

e.g. URT can expect greater savings compared with one whose return time has a

smaller variance e.g. ART. A very logical question to ask at this juncture is, how
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off constant with actual return time.
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Improvement (%) Achieved with Remote Schedule Update
(U[14,23] Return Time)
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Figure 7-6: Improvement achieved at different values of cost-discomfort tradeoff con-
stant with uniformly-distributed return time.

does the variance of the return time influence improvement? To address this question,

simulations were run to investigate improvement achieved at different values of k

under RTP and flat rate tariff with return time assumed to be uniformly-distributed

between 14:00 (2 pm) and midnight.

The results of these simulation runs are presented in Fig. 7-6, where we observe

that the level of improvement achieved at every value of k is higher. The highest

level achieved exceeds 18%, compared with 14% in the ART case. Based on this

result, we can hypothesize that a larger variance for the return time leads to greater

improvement, with all else remaining equal.

Additional simulations were run to test this hypothesis and to investigate the

relationship between return time variance and improvement achieved. From Figures

7-4 and 7-6, it is clear that the highest improvement is achieved when the cost-
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Improvement(%) vs. Variance of Uniformly-Distributed Return Time
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Figure 7-7: Improvement varies positively with variance of return time for both types
of electricity tariffs over all values of comfort-discomfort tradeoff constant..

discomfort tradeoff (k) is set at 10, and that improvements at other settings are

lower. The author ran simulations at k=10 with uniformly-distributed return times

with variance that ranged from 0.75 to 6.75. Each value of the variance was obtained

by narrowing the window of the return time by two hours to give uniformly-distributed

return times over the intervals [14,23], [15,22], [16,21], [17,20] and [18,19].

The results are shown in Fig. 7-7, where every point corresponds to the improve-

ment obtained when the cost-discomfort tradeoff constant is set at 10 for a uniformly

distributed return time with variance on the horizontal axis. In other words, when

the variance of the return time is approximately two, the improvement obtained un-

der the flat rate and the RTP tariffs are approximately given by five and six percent

respectively.

The plots in Fig. 7-7 were obtained by plotting the experimentally obtained re-

sults and the origin as an additional point. The origin corresponds to the theoretical

case where the return time is a degenerate random variable with zero variance. Con-

sequently, if the return time is a known constant, it is assumed that RSU has no effect

and thus yield no improvement. This qualifies the origin as a valid point to be used in
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modeling the relationship between return time variance and improvement. Fitting a

minimum mean-squared error line of best fit using standard linear regression yielded

a linear regression model with a very high R-squared value of 0.998.

This positive relationship between improvement and variance is simply due to the

fact that a resident with a larger variance in return time will have a greater likelihood

of deviating from the expected return time that is used as the default return time in

the EBS. This greater likelihood leads to a greater potential to have RSU save the

day by providing a more accurate update, thereby leading to larger improvements.
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Chapter 8

Summary, Conclusions and Future

Research

8.1 Summary of Results

In 2010, the residential sector of the United States of America spent approximately

52 billion dollars on electricity for space-conditioning [DOE, 2010]. This is very close

to the projected total government spending by the Commonwealth of Massachusetts

for the financial year of 2011 [NASBO, 2010]. Clearly, space-conditioning is the

elephant in the room. Occupancy-moderated zonal space-conditioning (OZS), which

is the partitioning of a residence into different zones and independently operating

the space-conditioning equipment of each zone based on occupancy, is a promising

strategy to reduce the cost of space-conditioning. It should be noted that the cost

of space-conditioning in this dissertation includes both the financial operating cost of

running air-conditioners or electric space heaters as well as the cost associated with

"service loss" or discomfort.

Although the use of zones in space-conditioning is simple and well-known, OZS

under a demand-driven electricity pricing scheme electricity is not well understood.

This dissertation presents the results of a modest effort to realize OZS and investigate

its effectiveness.

The author developed the framework and algorithms to enable a local energy
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Influencing Factor Relationship with Level of Savings
Number of Zones Positive
Number of Occupants Negative
Randomness of Occupancy Pattern Negative
Similarity of Occupants' Occupancy Patterns Positive

Table 8.1: Summary of relationship between influencing factor and level of savings.

management agent (EMA) to accomplish occupancy-moderated multi-zone, multiple

inhabitant space-conditioning under a demand-driven pricing scheme for electricity.

The framework enables the EMA, once equipped with the right sensors and furnished

with the needed information, to learn about the thermodynamic characteristics and

occupancy patterns of the zones. This knowledge is then incorporated into a model

to be used by an approximate dynamic programming algorithm to produce a series

of control actions to the space-conditioning equipment.

In order to address the research questions listed in the introductory chapter, the

author further investigated the effectiveness of the proposed framework and algorithm

using Monte Carlo simulations. These simulations were run under realistic settings,

made possible by using actual historical data or highly-realistic proxy data as the

random inputs in virtual residential set-ups put together based on test cases presented

in international standards.

The first research question asks about the level of cost savings OZS can achieve

under a demand-driven electricity pricing scheme under realistic settings. The simu-

lations reveal that a single occupant of a house with three zones can reduce up to 30%

of total cooling cost in practice. Under less favorable circumstances, such as in the

case of a couple with dissimilar occupancy patterns in a two-zone house, a marginal

7% reduction in cooling cost was observed.

The second research question queries how influencing factors impact the savings

achieved by OZS under a demand-driven electricity pricing scheme. Table 8.1 summa-

rizes the relationship between the influencing factors and the level of savings achieved.

A positive relationship means that the larger the magnitude of the influencing factor,

the greater the level of savings, when everything else remains the same.
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In addition, given the same temperature difference between outdoor air temper-

ature and desired zone temperature, the cost associated with cooling is expected to

be lowered to a greater extent than that for heating.

The usefulness of remote schedule updates (RSU) as an ally to the EMA to reduce

cost was investigated to address the third research question of "what level of space-

conditioning cost reduction can remote schedule updates bring about?" RSU refers

to the use of a cloud-connected device, such as a mobile phone, to provide additional

information in the form of schedule updates to inform the appliances, their controller

or the EMA so that they can operate at a time that best achieves an objective, such

as to minimize cost. In this regard, the mobile device enhances the knowledge base of

the appliance or the controller by allowing the resident to remotely provide schedule

updates to the EMA.

The highest level of cost reduction brought about by RSU stands at 18%. The

level of cost reduction, however, is highly dependent on the variance of the return

time of the resident. A directly proportional relationship between the level of cost

reduction and the variance of the return time was established as well, with cases

where the variance is low reporting no cost reduction.

8.2 Conclusions

The research results described in the sixth and seventh chapters enable us to arrive

at many conclusions. This section aims to present these conclusions as recommenda-

tions or pointers that may be useful to different stakeholders like homeowners, policy

makers and developers of EMAs and related service providers. Cost in this section

refers to a total cost that includes both the financial operating cost of running the

space-conditioning equipment and the cost associated with service loss or discomfort.

8.2.1 Policy Makers

Policy makers may find themselves in a position where there are many different pro-

grams and initiatives in different candidate locations competing for a limited pool
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of funding. The author hopes that the following recommendations will help policy

makers in formulating policy that pertains to energy efficiency in residential buildings.

1) Policy makers should consider promoting OZS and RSU for houses

with light thermal masses as an alternative to weatherizing them and/or

enabling them to participate in real-time pricing.

From Chapter Six, we see that houses with light thermal mass or "lightweight" houses

do not benefit from pre-conditioning as they are unable to maintain the indoor zone

temperature well on their own. The concept of pre-conditioning can be explained

with the help of an example. In summer, the price of electricity typically peaks in

the afternoon when the outdoor air temperature is high. Under a demand-driven

pricing scheme, a house owner may save money by over-cooling or pre-conditioning

the house in the early afternoon to a temperature below the desired temperature.

Once the peak price sets in, he can switch off the air-conditioner, thereby refraining

from using expensive electricity. The homeowner will not be too uncomfortable with

the air-conditioner off as the house has been pre-cooled and is heating up slowly,

assuming the house maintains indoor temperature well on its own.

In order for "lightweight" houses to benefit from pre-conditioning, some degree

of weatherization or effort to increase their thermal mass must happen. The cost

involved in doing so may be prohibitive, especially if it entails enhancing certain

building elements.

OZS and RSU can make use of existing infrastructure and a ready-installed base

of home computers to achieve the objective of reducing the cost of space-conditioning.

For houses with broadband access, OZS is viable and may be more cost-effective as

additional hardware to control space-conditioning devices are relatively inexpensive,

compared with the cost of weatherizing a house that entails upgrading the insulation

of the walls. This makes OZS and RSU a viable alternative to weatherization. The

author is aware, however, that some houses can be weatherized at little cost. In such

cases, weatherizing may turn out to be more cost-effective than implementing OZS

and/or RSU.
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2) Policy makers should consider implementing OZS in locations with large

demand for cooling first.

The simulation results reveal that given the same temperature difference between

the outdoor air temperature and the desired zone temperature, the cost associated

with cooling is expected to be lowered to a greater extent than that for heating.

Consequently, we can expect to achieve a greater degree of cost reduction in an air-

conditioning situation vis-a-viz an electric heating one, with other things being the

same.

In addition, the cooling load typically peaks at the same time as electricity demand

does e.g. on a hot summer afternoon. OZS will also reduce peak demand and bring

about the benefits of shaving the peaks of electricity, as described in [Black, 2005,

Black and Larson, 2007]. Heating, on the other hand, is aided by solar heating and

peak heating load typically does not coincide with peak electricity demand.

Since a cooling scenario is expected to give more bang for the buck, it should

have priority over a heating scenario, assuming other conditions are similar, if not

the same. This will help make the most out of the financial outlay.

3) Policy makers should consider adopting a cloud-based approach towards

improving energy efficiency in residences by using strategies like OZS and

RSU as this offers a relatively low-cost but potentially high impact option.

Being one of the most developed countries in the world, the U.S. has relatively high

broandband and wireless penetration rates. The U.S. had a Wireless Penetration

Equals of 102.4% as of June 2011 [CTIA, 2012] while 63.5% of American homes had

broadband Internet connections [OECD, 2011] as of 2009. These statistics suggest

a ready-installed base that is connected to the cloud in the U.S. which makes for

a fertile ground for OZS and RSU to thrive on. In houses with broadband Internet

connections, OZS can be realized by installing low-cost hardware that enables a home

computer to control space-conditioning equipment.

With regard to OZS, the hardware needed for each zone is as simple as an occu-
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pancy sensor and a plugin device that goes between the wall socket and the space-

conditioner. The plugin device serves as a switch that can be remotely controlled to

manage the power supplied to the space-conditioner. To communicate with all the

plugin devices, a wireless transmitter that is attached to the computer (that func-

tions as an EMA) through the universal serial bus connection is needed as well [Leow,

2008] . This is the same set-up adopted by Verizon to control air-conditioners in the

house [Verizon, 2012]. The combined cost of such a set-up (excluding the cost of the

computer) is not expected to exceed hundreds of dollars for a house with many zones.

For houses with broadband Internet, this comes as good news as it makes OZS viable

since the additional hardware needed is relatively inexpensive.

8.2.2 Consumer/Homeowner

The residential sector currently does not have ready access to demand-driven pricing

in most retail electricity markets. Consequently, opportunities for cost reduction

through load shifting for homeowners are limited. Homeowners who have OZS or

are considering OZS as an alternative cost-reduction strategy may find the following

recommendations useful:

4) Home buyers or owners who can easily and economically realize OZS

should consider doing so.

With OZS in place, they may see cost reduction exceed 40% if pre-conditioning that

makes use of demand-driven pricing is in place as well. Without pre-conditioning,

employing zoning only can bring the cost reduction close to 30%.

OZS is especially useful in residences where there are fewer residents and more

zones. In general, if there are fewer residents and more zones, a greater degree of cost

reduction can be expected.
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5) In the absence of demand-driven pricing or in the case of a "lightweight"

house, homeowners should consider installing OZS in their residences.

Pre-conditioning is not realizable without demand-driven pricing or if the house does

not maintain the indoor temperature well on its own. This leaves OZS as the al-

ternative to pre-conditioning in reducing space-conditioning cost. Simulations show

that a single resident in a three-zone "lightweight" house can look forward to a 14%

reduction in cooling cost with only OZS in place.

6) Homeowners should consider having a regular schedule and similarity

in routines (for multiple inhabitants) as this will enable OZS to operate

more efficiently.

Occupants having a regular schedule of activities and adhering to it will establish a

pattern that the EMA can learn. (This is assuming that the occupants do not change

the location where they conduct each activity i.e. always watching the television

in the living room.) Consequently, this will reduce the randomness in his/her/their

occupancy pattern(s) and enhance the predictability of their occupancy. The effect

of this is that the EMA will be able to make more accurate predictions about the

occupancy of a zone and make better decisions about when to actuate the space-

conditioning equipment of a zone.

In the case with multiple occupants, having the occupants use the same zone at

the same time will reduce the cooling load. For instance, based on the simulation

results, a family of four that makes an effort to conduct most activities together could

stand to gain an extra 8% of cost reduction than one that does not.

8.2.3 Developers of EMAs and Related Service Providers

Although home automation is several decades old, the development of EMAs that can

operate appliances based on demand-driven electricity pricing for the mass market is

relatively nascent. The following recommendations may be of use to future developers

of EMAs and related service providers:
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7) Developers should consider incorporating a simple override control for

residents to inform the EMA that the current day is expected to be a day

where occupancy will be highly random or that a large number of guests

are expected, and it is better to go without OZS for the day.

While the EMA should operate with as little human intervention as possible, giving

the user an option to change some aspect of its operation will be helpful. After all,

people like to be in control.

From the simulation results, the gains from OZS tend to be low (at 7%) when the

randomness is high and/or when occupants have dissimilar occupancy patterns. At

such times, it may be better to do without OZS. This motivates the inclusion of an

override control for the user to switch off OZS at will.

8a) Developers should consider incorporating a preset function for days

when the occupancy schedule is known and will be followed very closely.

8b) Developers should consider realizing a function that will suggest changes

to the residents' routine based on the learned occupancy model to reduce

cost.

Pointers 8a and 8b aim at improving the predictability of occupancy patterns. The

preset function will enable the EMA to operate as if it has perfect information on

occupancy. For instance, during the baseball season, an avid baseball fan will be

catching games on game days and can most likely be found in the entertainment

room when the game is being played. Having a "Home Game Day" preset will inform

the EMA that the resident will most likely be home by 7 pm that day and that the

entertainment room will almost surely be occupied between say 8 pm and 11 pm. It

is interesting to note that from the simulation runs, there is often a difference of at

least 10% in the cost reduction achieved between the "perfect information" scenario

and the realistic one, with all else being equal.

To realize OZS, the EMA would have learned an occupancy model of the occu-

pant(s). Based on this model, it can actually look for times when it is advantageous
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for the occupant(s) to be at a zone at a particular time. For instance, it can rec-

ommend occupants to conduct their activities in the same zone on a hot summer

afternoon when the price of electricity is at its peak.

A more sophisticated suggestion function can incorporate the thermodynamic

model of the house as well. For instance, the EMA can recommend the occupant(s) to

'seek refuge' in the room that is least affected by the afternoon sun on a hot summer

day. In this way, cost reduction is achieved by reducing the number of zones that

need to be cooled, as well as the amount of electricity needed to pre-cool a zone or

maintain the zone at a comfortable level.

9) Developers should consider incorporating OZS and RSU that make use

of cloud-connected devices, like smartphones, and information from the

cloud, like online calendars and television program listings, as much as

possible.

A strength of OZS and RSU lies in the fact that they can make use of infrastructure

that is already in place and can have allies that come for free. For instance, a mobile

app on a Global Positioning System(GPS)-enabled smartphone can provide real-time

updates to the EMA about the predicted arrival time of a resident as he commutes

home from work. Having the EMA check the online calendar of the resident and even

television listings of the resident's favorite program is another means of improving

the predictability of occupancy patterns.

8.3 Future Work

This section discusses several directions for future research. These suggested direc-

tions for research aim to advance our understanding of OZS and RSU in the context

of residential EMAs, or to address certain limitations of the study presented in this

dissertation.
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8.3.1 Remote Schedule Updates

From the discussion in the preceding chapter, we know that even with RSU, the resi-

dent may still reach home early or late due to a variety of reasons, such as uncertainty

in commute time. Further studies to understand the degree of degradation due to

deviations from the time reported by RSU will enhance our understanding of the

true value of using RSU in practice. Towards this end, future researchers can run

simulations with RSU while incorporating a random deviation on the actual return

time to observe the drop in cost reduction due to such deviations.

As smartphones typically come with the capability to locate themselves using the

GPS, there are mobile apps on the market that enables a smartphone to function as an

in-vehicle GPS unit that provides navigational assistance and projected arrival times.

The projected arrival times can potentially be used to advise the EMA in real-time of

the resident's expected return time. If such an arrangement can be put in place, it can

complement the RSU described in Chapter Seven. Residents with lengthy commutes

will stand to benefit the most from such GPS-enabled updates. Further research to

investigate the actual benefit arising from the use of GPS-enabled updates will be

of great interest to consumers and policy makers alike. Gupta, Intille and Larson

[Gupta et al., 2009] and Kleiminger, Santini and Weiss [Kleiminger et al., 2011] have

investigated the use of mobile phones as an aid to residential space-conditioning.

8.3.2 Prototype Implementation and Evaluation

Future researchers may want to implement the proposed framework and algorithms

in a prototype for a field study to investigate how OZS and RSU will perform in

practice. This will tell us about the effectiveness of OZS and RSU and can serve as

a litmus test of their usefulness. Furthermore, a field study will enable engineers and

builders to understand the issues and subtleties that may arise in practice, and come

up with modifications or enhancements should any be needed. This will bring us one

step closer to an EMA with OZS and RSU capabilities which is ready for deployment

in houses.
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In addition, such field studies can advise decision makers on public policy on

the effectiveness of policy schemes involving OZS, RSU and residential responsive

demand for electricity. By informing the decision makers in cost-benefit analysis,

they can determine socially-equitable levels of subsidies to encourage modifications

to houses to implement OZS and/or RSU.

Future researchers can also consider extending this work to other disciplines. For

instance, researchers working on the behavioral aspects of energy consumption can

consider implementing the proposed framework and algorithm in a house to observe

user response.

In this study, it is assumed that the space-conditioning equipment can be actuated

at evenly-spaced levels of power, from zero to maximum. In practice, especially with

the option of using a plugin device described in [Leow, 2008] and adopted in [Verizon,

2012], the actuation may only occur at two levels i.e. On-Off in a binary control

scheme.

The performance of OZS and RSU under binary control should be investigated as

well. And if the degradation in performance is large, a solution may be to operate

the space-conditioning device using a duty cycle to simulate the effects of having

graduated power levels. For instance, for an electric space heater on binary control,

operating it at a duty cycle of 50% over the duration of the control period effectively

produces a heater operating at 50% of maximum power. (Air-conditioners in general

should not be turned on and off in quick succession.)

8.3.3 Further Study on Number of Zones and Occupants

The results presented in Chapter Six validate our intuitive notion that having fewer

occupants and more zones leads to better OZS performance. This leads naturally to

the question of how the performance of OZS varies with different number of zones

and occupants, where asymptotic results are of particular interest.

Future researchers can consider investigating how the performance of OZS im-

proves given a fixed number of occupants and occupancy characteristics. A possible

way to frame the problem is:

134



p = f(M, KIQM) (8-1)

where

p a metric measuring the performance of OZS,

f a function to be estimated or determined,

M number of occupants,

K number of zones, and

QM vector describing occupancy characteristics of M occupant(s).

We can approximate the limiting case where K is very large as each occupant

being in a zone consisting of a space of infinitesimally small width away from the

occupant that is maintained at the preferred temperature. The physical realization

of this is is a "comfort suit", which operates like a space suit except that the "comfort

suit" aims to keep the person wearing it comfortable. Observe that in such a case,

occupancy pattern does not matter as the space surrounding the occupant is always

with the occupant. We can express this as:

lim p = lim f(M, KIM)
K-oo0 K-oo

= lim f(M, K).
K-+oo

With the above formulation, determining p is a matter of finding the cost of

powering the "comfort suit" by a battery (which can presumably be charged during

the hours when electricity is the cheapest) and the cost of conditioning the residence

as a single unit. Monte Carlo simulation can be used to investigate the cases where

the residence has an intermediate value for the number of zones i.e. K E [5, oo).

Another interesting direction of research is to investigate the number of occupants
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at which the performance of OZS is virtually zero, given a fixed number of zones. We

expect this to be highly dependent on the occupancy patterns of the occupants.

Intuition suggests that if the occupants have dissimilar occupancy patterns, one can

expect performance to degrade significantly as the number of occupants comes close to

the number of zones. On the other hand, if the occupants have very similar occupancy

patterns, it may turn out that performance will suffer significantly when the number

of occupants exceeds that of the number of zones by a large extent.

8.3.4 Learning and Characterization

An important thrust for future research ought to be studies that improve the perfor-

mance of OZS, as this will directly and positively impact the level of cost reduction

attainable by an EMA. The performance of OZS may be improved through the use of

more sophisticated thermodynamic modeling to arrive at a state transition function.

For example, a neural network can be used in place of the linear regression model in

learning about the thermodynamic characteristics of each zone. The author would

like to urge future researchers to adopt the same virtual set-up of residences presented

in Chapter Four in their investigations so as to share a common basis for comparison.

One of the key lessons from Chapter Six is that a residence with light thermal mass

may not benefit from pre-conditioning. This begs the question if there is a threshold

below which pre-conditioning is not worth pursuing. A possible line of inquiry is to

investigate if the said threshold can be determined from the thermal mass of a zone,

the price difference between the peak price of electricity and the off-peak price and

the duration of time between the peak and the off-peak prices of electricity.

While randomness and similarity in occupancy patterns discussed in Chapter Five

are two key influencing factors, there is also the notion of frequency of change in the

location of the resident that may also impact the performance of OZS. It will be

of great interest to determine, possibly with the help of Monte Carlo simulations,

the relationship between frequency of location change and improvements achieved by

OZS.

Recall from Chapter Five that the current implementation uses a frequency count-
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ing approach to learn occupancy patterns. In this approach, the probability of a zone

being occupied at a certain time period is given by the historical record of it being

occupied. An approach that uses a Markov model can be developed in conjunction

with the investigations on the relationship between frequency of location change and

improvements achieved by OZS.

A Final Note

It is a tall order to ask of homeowners to overhaul their houses at great financial

costs just to lower the cost of space-conditioning. While we await the renewal of the

housing stock in the United States over the coming decades such that they are more

energy efficient through weatherization or having a built-in OZS system, an EMA

in the mold of an Energy Box realizing OZS and perhaps aided by RSU remains a

viable bridging solution for the near future and the medium term. It is the wish of

the author that the findings presented in this dissertation will contribute in some

modest ways towards the overarching objective of addressing the energy needs of our

civilization.
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Figure A-1: Material specification for heavy thermal mass Case 900
[ASHRAE, 2007].)
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Figure A-2: Material specification for light thermal mass Case 600
[ASHRAE, 2007].)

(Extracted from
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Figure A-3: Material specification for common wall in Case 960 (Extracted from
[ASHRAE, 2007].)
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