
Separate Effects of Surface Roughness, Wettability and Porosity on Boiling Heat

Transfer and Critical Heat Flux and Optimization of Boiling Surfaces
by

Harrison Fagan O'Hanley
SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING
AND THE DEPARTMENT OF NUCLEAR SCIENCE AND ENGINEERING

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREES OF

BACHELOR OF SCIENCE IN MECHANICAL ENGINEERING
AND MASTER OF SCIENCE IN NUCLEAR SCIENCE AND ENGINEERING

AT THE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2012
@2012 Massachusetts Institute of Technology. All rights reserved.

Signature of Author
Department of Mechanical Engineering

Depart of Nuclear Science and Engineering
Mny 11 9012

Jacopo Buongiorno
Associate Pressor of Nuclear ience and Engineering

- 1 Thesis Supervisor

Certified by

Certified by

Michael Rubner

Professor/Director of Cent or terials S ce and Engineering
Thesis Supervisor

Robert Cohen
St.Laurent Professor of Chemical Engineering

Thesis Supervisor

Certified by
Lin-Wen Hu

Associate Director, MIT Nuclear Reactor Laboratory
Thpesig Supervisor

Certified by
'' Thomas McKrell

Research Scientist for Nuclear Science and Engineering
Thesis Supervisor

Accepted by

Accepted by

Muy p
Tneering

Chas, Iocien Go tt on Graduate Students

John H. Lienhard V
Samuel C. Collins Professor of Mechanical Engineering

Undergraduate Officer

Certified by



2



Separate Effects of Surface Roughness, Wettability and Porosity

on Boiling Heat Transfer and Critical Heat Flux and

Optimization of Boiling Surfaces

by

Harrison Fagan O'Hanley

P

Submitted to the Department of Mechanical Engineering

and the Department of Nuclear Science and Engineering

on May 11, 2012, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science in Mechanical Engineering

and
Master of Science in Nuclear Science and Engineering

Abstract

The separate effects of surface wettability, porosity, and roughness on critical heat flux (CHF)

and heat transfer coefficient (HTC) were examined using carefully-engineered surfaces. All

test surfaces were prepared on nanosmooth indium tin oxide - sapphire heaters and tested

in a pool boiling facility in MIT's Reactor Thermal Hydraulics Laboratory. Roughness was

controlled through fabrication of micro-posts of diameter 20pm and height 15pm; intrinsic

wettability was controlled through deposition of thin compact coatings made of hydrophilic

Si0 2 (typically, 20nm thick) and hydrophobic fluorosilane (monolayer thickness); porosity

and pore size were controlled through deposition of layer-by-layer coatings made of Si0 2

nanoparticles. The ranges explored were: 0 - 15pt for roughness (Rz), 0 - 135 degrees

for intrinsic wettability, and 0 - 50% and 50nm for porosity and pore size, respectively.

During testing, the active heaters were imaged with an infrared camera to map the surface

temperature profile and locate distinct nucleation sites. It was determined that wettability

can play a large role on a porous surface, but has a limited effect on a smooth non-porous

surface. Porosity had very pronounced effects on CHF. When coupled with hydrophilicity,
a porous structure enhanced CHF by approximately 50% - 60%. However, when combined

with a hydrophobic surface, porosity resulted in a reduction of CHF by 97% with respect

to the reference surface. Surface roughness did not have an appreciable effect, regardless

of the other surface parameters present. Hydrophilic porous surfaces realized a slight HTC

enhancement, while the HTC of hydrophobic porous surfaces was greatly reduced. Roughness

had little effect on HTC. A second investigation used spot patterning aimed at creating a

surface with optimal characteristics for both CHF and HTC. Hydrophobic spots (meant to

be preferential nucleation sites) were patterned on a porous hydrophilic surface. The spots

indeed were activated as nucleation sites, as recognized via the IR signal. However, CHF

and HTC were not enhanced by the spots. In some instances, CHF was actually decreased

by the spots, when compared to a homogenous porous hydrophilic surface.
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Chapter 1

Introduction

1.1 Motivation

Boiling is a common energy transfer mechanism. Examples of boiling systems can be found

in a variety of industries, including nuclear and non-nuclear power generation. Typically,

heat is transferred from a source through a surface to a working fluid. The behavior of the

liquid at the surface-liquid interface characterizes the system's capability to transfer heat

energy. Thus, it is highly desirable to engineer the heat transfer surface to promote efficient

boiling and specifically nucleate boiling heat transfer.

While there are many characteristics of a boiling system, two properties are of specific

interest: the critical heat flux (CHF) and the heat transfer coefficient (HTC). CHF occurs

at the transition from the nucleate boiling regime to the film boiling regime. This shift

results in a dramatic reduction in heat flux, causing a rapid increase in surface temperature.

This is problematic because increased temperatures can weaken a material by lowering its

yield strength and also induce accelerated corrosion. [1] Achievement of CHF often leads

to catastrophic failure and thus a thermal hydraulic system must be maintained below this

threshold. The HTC characterizes the system's ability to transfer heat by relating heat

flux to the temperature difference between the surface and the bulk liquid. Both of these

parameters dictate a heat transfer system's capacity and performance.

While these parameters are integral to the function of thermal hydraulic systems, there

are still many gaps in the engineering community's understanding of the triggering of CHF
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and control of HTC. In many instances, optimization of CHF has largely been a trial and error

process. This is primarily a result of the markedly complex nature of the CHF and overall

boiling phenomena, where minuscule changes in surface properties or operating conditions

can have profound consequences. As a result, there is a need to investigate the effects

that individual surface parameters - such as wettability, roughness, and porosity - have on a

system's CHF and HTC. Through this characterization, researchers will be better positioned

to engineer and optimize boiling surfaces.

Building upon the individual parameter characterization, it is possible to design of nano-

scale feature patterns to enhance CHF and HTC. Throughout the twentieth century, a variety

of methods were explored for machining and treating transfer surfaces to enhance boiling.

Recent boiling optimization techniques have included physical machining, thin film depo-

sition and chemical treatments. Additionally, numerous boiling enhancement technologies

have found success in large scale industry applications.

Through this long history of surface engineering for boiling enhancement, the validity

of the approach can be inferred. The engineering community has made great strides in

controlling the boiling phenomenon. Currently, however, the advent of micro- and nano-

scale fabrication techniques - many of which are borrowed from the electronics sector - opens

new room for innovation in creating surface patterns to enhance CHF and HTC. Features

can be created on a scale more closely to that which is found in nature and exotic patterns

can be pursued. Through the use of a variety of nanoengineering techniques, it is possible

to control boiling heat transfer in increasingly precise and optimal manners.

The ubiquity of boiling heat transfer systems across numerous industries and engineering

applications warrants both the separate effects investigation and surface optimization. The

former portion of this project will provide an initial understanding of how specific surface

properties affect boiling. This knowledge will provide subsequent researchers with the tools

necessary to exploit such parameters in the optimal design of thermal hydraulic systems.

Likewise, the latter part of this investigation draws upon the separate effect characterization

and serves to further the exploration of the nanoengineering techniques for surface heater

optimization.
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1.2 Objective

This investigation seeks to better understand the CHF phenomenon and use this knowledge

to develop nanoengineered heaters with optimized CHF and heat transfer characteristics.

This overall objective is accomplished by:

1. Characterizing the individual effects of surface roughness, wettability, and porosity on

CHF and HTC.

2. Using nanoengineered surface feature patterns to enhance both CHF and HTC. These

patterns predominantly consist of porous hydrophobic spots of varying diameter, pat-

terned on different pitches. The background surface is nominally porous hydrophilic.
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Chapter 2

Background and Prior Research

It is important to first consider the mechanisms by which boiling occurs. The processes of

bubble nucleation, growth, and departure all affect the amount of heat than can be removed

from a surface. Surface characteristics such as roughness, porosity, and wettability all are

thought to affect the nucleation site density, bubble growth rate, departure diameter and fre-

quency, thus ultimately determining the performance of a boiling surface. An understanding

of how these parameters are characterized is required before they can be controlled in boiling

experiments. Finally, pool boiling itself as an integral phenomenon must be reviewed. Here,

numerous correlations for predicting boiling behavior are presented. There are countless

other equations to characterize boiling that can be readily found in literature; however, the

correlations selected here are believed to give an adequate overview of the relevant trends.

Please note, that the nomenclature for all equations presented here is consistent. Variables

are introduced at their first appearance.

2.1 Nucleation Theory

2.1.1 Bubble Nucleation

Nucleation is where boiling heat transfer begins and is the process of vapor bubble formation.

Bubble nucleation can occur both in the bulk liquid - known as Homogeneous Nucleation - or

at the interface between a liquid and the surfaces that contain it - known as Heterogeneous
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Nucleation. However, as homogeneous nucleation requires substantial superheat, heteroge-

neous nucleation is most commonly encountered at lower superheats. [1] Moreover, as this

investigation focuses on how boiling is affected by surface conditions, heterogeneous nucle-

ation is the relevant mode of nucleation here. Typically, heterogeneous nucleation occurs in

small cavities on the surface, with a characteristic dimension of 0.1pm to 10pLm. [1] Here,

vapor is trapped and serves to initiate bubble formation, as seen in Figure 2-1. Because

the bubble nucleation process is seeded by stored vapor or air in the cavities, heterogeneous

nucleation requires only a few degrees of superheat before the onset of nucleate boiling. [2]

Liquid -- Heaier Surface

Vapor

Figure 2-1: Nucleation cavity.

Heterogeneous bubble nucleation can also occur on a smooth surface, in the absence of

a cavity. In such a scenario, the energy required for nucleation becomes a function of the

contact angle of the liquid on the surface. Contact angle, E, is depicted in Figure 2-2. This

angle is a function of a surface's wettability and low contact angle corresponds to a high

wettability.

Vapor

e' Liquid

Solid

Figure 2-2: Contact angle.

The manner in which water wets a surface is a result of the intrinsic chemical surface

chemistry, but also depends on roughness and porosity. Moreover, surface wettability has

22



complex effects on the heat transfer system. A high wettability can promote the rewetting of

the surface, thus delaying CHF. However, higher wettability can also deactivate nucleation

sites and consequently decrease the overall heat transfer coefficient. [1,3]

2.1.2 Bubble Growth

Following nucleation, a bubble goes through two different stages of growth: inertia controlled

and heat transfer controlled. Inertia controlled growth occurs first and is limited by how

quickly the bubble can displace the surrounding liquid. [4] During this period, the bubble

radius increases roughly linearly as predicted by Rayleigh (1917) [5]:

=2 [Tf - Tgat(Pf) [hSgpg ~ 2r(t) = [-~ (P t (2.1)
3 Tsat(Pf) ][Pf _1

Where, r(t) is the time dependent bubble radius, Tf is the liquid temperature, Tsat(Pf)

is the saturation temperature at the corresponding liquid pressure, hyg is the latent heat of

vaporization, t is time, and Pg and pf are the vapor and liquid densities, respectively. [2]

Heat transfer controlled growth occurs later, when the liquid superheat near the surface

has been largely exhausted. In this regime, bubble growth is limited by heat transfer at the

vaporization interface. [2,6] Here, bubble radius varies with square root of time, as modeled

by Plesset and Zwick (1954) [7]:

r(t) = 2ATsat(Pf)kf 3t 1 (2.2)
h5gpg Lra5

Where, kf is the liquid phase thermal conductivity and af is the liquid phase thermal

diffusivity.

Mikic et al. (1970) created a model that spans both bubble growth regimes. Here, bubble

radius and time are non-dimensionalized, with growth predicted as,

r+= t + 1)9 - (t+)9 - 1] (2.3a)

+ - r(t)A (2-3b)
r B2
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tA2

2[T5 - Tat(Pf)]hf5pgg ]
. p5Tsat(P5)

12af i [Tf - Tsat(P)]hfgcpj
'] Pghfg

(2.3c)

(2.3d)

(2.3e)

Where, r+ is non-dimensional bubble radius, t+ is non-dimensional time, cp, is the liquid

specific heat capacity. [8] Bubble growth rate can be visualized from the Mikic equation

presented in Figure 2-3. For t+ << 1 the Mikic curve approaches the Rayleigh curve, while

for t+ >> 1 it approaches the Plesset curve.

0 0.002 0.004 0.006 0.008
Time (milliseconds)

0.01 0.012

Figure 2-3: Mikic equation
100C superheat.

for bubble radius growth. Calculated for water at latm and a

The Mikic equation provides insight into the behavior of the vapor bubble as it grows on

the heat transfer surface. As surface features are designed and spaced on the heater surface,

it is important to understand which growth regime the bubble will be in when such features

are encountered.

Understanding the bubble growth dynamics in these regimes is important for optimizing

surface features to exploit the differences in growth dynamics. As bubbles continually grow
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and depart from the surface, an ebullition is established. This process can best be understood

through the following steps [2]:

1. As a bubble departs, it removes the surrounding thermal boundary layer. Therefore,

the bulk fluid comes into contact with the heater surface.

2. A new thermal boundary layer begins to grow and during this time there is no appre-

ciable bubble growth. This is known as the waiting period.

3. Following the waiting period, when the temperature at the nucleation site reaches the

critical superheat required for nucleation of a new bubble, there is a rapid period of

inertia controlled bubble growth.

4. The growth rate decreases and bubble growth becomes governed by heat transfer.

5. The bubble departs the surface and the cycle is restarted.

2.1.3 Bubble Departure Diameter

An understanding of the bubble's diameter when it leaves the surface is important for the

design of surface features and specifically their relative spacing. As one might expect, the

relationship between the size of the bubble and the size of a given surface feature can dramat-

ically affect their interaction. Fritz (1935) proposed a correlation for the departure diameter

as:

ddeparture = 0.02083 E (2.4)
g (pI - pg)

Where, ddeparture is the bubble departure diameter, o is the surface tension, g is gravi-

tational acceleration, and # is the contact angle of the liquid on the surface in degrees. [9]

A dependence of boiling on surface wettability can be witnessed from this correlation, as

presented in Figure 2-4.

Alternatively, Cole and Rosenhow (1969) predict bubble departure diameter as [10],

ddeparture = 1.5 x 10-4 I P] Ja*' (2.5a)
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Figure 2-4: Fritz equation for bubble departure diameter.

Ja* = picITsat (2.5b)
Pghfg

Where cpl is the specific heat capacity of the liquid. While the Cole and Rosenhow

correlation does not account for wettability, it is a useful tool for understanding how bubble

departure diameter varies with system operating pressure. Other bubble departure diameter

models are more complex and solve for diameter by summing inertial, buoyancy, drag and

surface tension forces. [11] However, these correlations are an adequate starting point for

bubble departure diameter analysis. In this instance, bubble diameter is important in order

to position engineered nucleation sites such that adjacent bubbles positively interact (more

pertinent to the Spot Patterning portion of this investigation). In other words, it is important

to ensure that excessive bubble coalescence, due to tight packing of nucleation sites, does

not undermine nano-engineering efforts.
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2.1.4 Bubble Frequency

The bubble departure frequency is an important metric in quantifying the capacity of a fluid

to remove heat from the surface. Calculated for a given nucleation site, this frequency is

dependent on both the bubble growth time, tg, and the waiting period between bubbles, t,.

1
f = 1 (2.6)

tg + tw

It is apparent that bubble departure frequency is highly coupled to the bubble growth

equations presented earlier. Though this is not an exclusive relationship. In fact at low

heat fluxes, the waiting period is much longer than the growth period. The waiting period

depends on the heat flux, the liquid and surface heat diffusivities and the critical superheat

for bubble nucleation, not on the growth rate of the bubble. [2] As such, bubble frequency

is also a function of a variety of surface and operating conditions. Because bubble departure

frequency is easier to observe during experimentation than other bubble characteristics, it is

a good metric for inferring the effectiveness of boiling on a given surface.

All nucleation sites on a heater surface are not active simultaneously. Moreover, their

relative spacing and size can cause the activation of a given site to influence others. Calka

and Judd (1985) approached nucleation site activation by taking a ratio of the intersite

spacing, a, and the bubble departure diameter, dd. Through their theory, if - < 1 then the

interaction between two sites is attractive. The activation of one site leads to the activation

of the other. This occurs because the vapor from the first site reaches and seeds the second

site. If 1 < a < 3 the interaction between two sites is repulsive. The exact mechanism

of deactivation is not entirely understood, but has been experimentally observed. Finally,

if 3 < a, the two sites operate independently. [12] Zhang et al. (2003) also found similardd'I

site spacing to drive hydrodynamic between departing bubbles, thermal interactions between

nucleations sites and bubble coalescence. [13] Their findings are good reference tools for the

spacing of features on engineering surfaces.
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2.1.5 Bubble Coalescence

Coalescence can occur between vertically stacked and horizontally adjacent bubbles. This

happens both on the heat transfer surface or within the working fluid, well away from the

surface. In regards to heat transfer, horizontal bubble coalescence on the heat transfer surface

is the primary concern. However, it should be noted that Buyevich and Webbon (1996) have

examined vertical bubble coalescence and concluded that the formation of a vapor column

can inhibit surface rewetting, leading to CHF [14].

For horizontal bubbles, the coalescence criterion simply requires the bubble diameter to

be greater than the spacing between nucleation sites. Bonjour et al (2000) examined bubble

coalescence as a function of site spacing and its effect on the HTC. The researchers consider

the influence area of a departing bubble, a notion originally developed by Han and Griffith

(1965). [15] When a bubble departs the surface, it also removes a layer of the surrounding

superheated liquid with it due to vortex action. The area of influence diameter is accepted to

be one to two times as large as the bubble diameter [15]. Bonjur et al (2008) examined the

spacing of three nucleation sites in a triangular pattern. Optimal heat transfer was achieved

at a spacing where the three areas of influence were tangent (in other words the intersite

spacing is equal to the area of influence diameter). In this scenario, central liquid region,

outside of the areas of influence can also remove with bubble departure. In geometries where

the site spacing is smaller, overlapping areas of influence minimize the superheated liquid

removed by capillary action. [16] Additionally, an excessively large intersite spacing prevents

the removal of the central liquid surrounded by the areas of influence. If the bubble departure

diameter can be accurately characterized, nucleation sites on an engineered surface can be

spaced to exploit this behavior.

Mukherjee and Dhir (2004) performed numerical simulations, as well as boiling experi-

ments and also found some bubble coalescence to enhance the HTC. During bubble merging,

a vapor layer connects the two sites, trapping and removing the underlying liquid layer.

Additionally, the contraction of two bubbles following their coalescence drew cool water in

towards the heat transfer surface [17]. These analytical and experimental results continue

to support the conclusion that some bubble coalescence can be beneficial to a heat transfer
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system.

2.2 Surface Characteristics

Surface morphology and chemistry have pronounced effects on CHF and HTC. Specifically,

surface roughness, porosity and wettability are suspected to influence boiling behavior. As

these three surface characteristics are the primary subject of this investigation, it is important

to define these characteristics.

2.2.1 Roughness

Roughness has historically been attributed to have large effects on HTC, made famous by

Berenson's 1960 study on pool boiling. [4]. Surface roughness is essentially a measure of a

surface's texture. It is characterized by vertical (positive or negative) deviations from an

ideal, flat surface. [18] The roughness of a surface can be understood from Figure 2-5.

Waviness

Roughness

Figure 2-5: Unidirectional surface roughness and waviness.

Surface roughness and waviness is depicted, which can be considered somewhat sepa-

rate characteristics. [18]. For the purposes of this investigation, only surface roughness is

considered. All test specimens in this study have no waviness associated with their sur-

face topography. Additionally, roughness can arise from a variety of surface textures. For

simplicity, Figure 2-5 illustrates unidirectional trench type roughness. However, roughness

can be a result of multidirectional surface texture, surface extrudes, and divots. There are
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numerous methods to define roughness. For example, often utilized in science and industry

are:

1. Ra, the arithmetic average of the absolute value of surface feature heights.

2. RRMS, the root mean squared of the arithmetic average.

3. R2, the average distance from the highest peak to lowest valley of numerous sample

lines.

Here, Ra and R2 are used to characterize the roughness of the heater surfaces. The

measurement of Ra surface roughness can be performed by taking the cross section of a

surface and analyzing the height variation along a horizontal line, as depicted in Figure 2-6.

z ,xz(x) 'M

V X

L

Figure 2-6: Arithmetic average roughness (Ra).

Mathematically, this roughness can be represented as,

Ra = - Iz(x)ld x (2.7)

Where, z(x) is defined as the the vertical distance from the mean surface line, M, and L

is the length over which the surface roughness is measured. [18]

R2 differs in how it is defined and can be understood from Figure 2-7. Here, roughness is

characterized by the average height distance between the five highest peaks and five lowest

valleys.

Mathematically, R2 can be calculated as,

30



Figure 2-7: Rz surface roughness.

1 5 5 -
R2 =_ [Pi+(vi (2.8)

5i=1 i=1 -

For surfaces comprised mainly of extruded features and a lack of valleys, R, approaches

the value of the average feature height. Through both the use of Ra and Rz heater surface

roughness can be adequately characterized.

2.2.2 Porosity

Surface porosity can enhance pool boiling heat transfer through a variety of hypothesized

mechanisms. For example, porosity can increase the nucleation site density, by creating

cavities to seed bubble formation. [19] Moreover, the interconnection of the porous structure

allows for transport of liquid between nucleation sites. Therefore, rewetting of nucleation

sites is enabled, which can help delay CHF. [20] Finally, surface rewetting is further pro-

moted through capillary action induced by the porous structure. [19] However, a porous layer

can also have negative attributes. The porous structure can attract surface contaminant,

accelerating fouling of the heat transfer surface. Additionally, the thickness of the layer also

adds an additional thermal resistance to the heat transfer system. Therefore, balancing the

positive and negative consequences of a porous surface is integral to its inclusion in a heat

transfer system.
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2.2.3 Wettability

As described in Section 2.1.1, the contact angle is an important parameter in understanding

bubble nucleation. A hydrophilic surface attracts water and can improve boiling perfor-

mance through surface rewetting following bubble departure. Conversely, a hydrophobic

surface repels water and can be detrimental to boiling; however, hydrophobicity does pro-

mote bubble nucleation. Typically, 90* is considered neutrally wetting, with lesser angles be-

ing hydrophilic and greater angles being hydrophobic. Contact angle is primarily a function

of surface chemistry, but can also be affected by other surface characteristics. For example,

roughness has the effect of making hydrophilic surfaces more hydrophilic and hydrophobic

surfaces more hydrophobic.

In assessing wettability, the methods of contact angle measurement must be considered.

There are multiple types of contact angle measurements, three of which are of particular

importance to boiling. These are the static, advancing, and receding contact angles. The

static contact angle is simply the angle between of the surface and the liquid bubble in a

stationary setting, as measured 0.5 seconds after contact of the droplet with the surface.

The contact angle is measured after 0.5s because super hydrophilic surfaces tend to spread

liquid very rapidly. Observation of contact angle at a specific time interval adds a level of

uniformity to the measurement. The advancing contact angle is the angle that the water

makes with the surface as the liquid/vapor/surface contact line is moving forward towards a

non-wetted area. Conversely, the receding contact angle is the angle made by the water and

the surface as the liquid/vapor/surface contact line moves backwards towards the already

wetted area. All three contact angle measurements offer important insight into the behavior

of a liquid drop on the heater surface of interest because during bubble growth and departure

the bubble base both advances and recedes on the solid surface.

Finally it is important to consider the manner in which liquid wets a surface in the

presence of surface roughness or features. Two regimes exist: Cassie and Wenzel. In the

Cassie model, a liquid droplet sits atop surface features, as depicted in Figure 2-8a. This is

commonly observed with hydrophobic surfaces. Conversely, in the Wenzel regime, the liquid

fills the voids between surface features, as illustrated in Figure 2-8b. Hydrophilic surfaces
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commonly exist in this regime as the intrinsic wettability attracts water towards the surface.

Additionally, it is possible for a water droplet initially in the Cassie regime to transition to

the Wenzel regime as a result of external stimuli.

(a) Cassie (b) Wenzel

Figure 2-8: Cassie and Wenzel wettability regimes.

2.3 Pool Boiling Heat Transfer and Critical Heat Flux

2.3.1 Pool Boiling Overview

Beyond understanding bubble nucleation, growth and departure phenomena, pool boiling

must also be considered on the macro-scale. The term pool boiling refers to heat being

transferred from a surface to liquid macroscopically at rest. Pool boiling is best understood

through introduction of a boiling curve, as presented in Figure 2-9. There are many distinct

regimes in a boiling curve, each depicting the behavior of the boiling system. At low heat

flux, heat is transferred to the liquid via natural convection. In this regime, the temperature

of the fluid immediately adjacent to the heater surface increases, thereby lowering its density,

causing it to rise due to buoyancy forces. [1] In Figure 2-9, this region is from Point A to

Point B.

Increasing heat flux eventually results in the onset of nucleate boiling (Point B), where

vapor bubbles forming on the surface remove heat. Nucleate boiling is capable of transferring
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Figure 2-9: Characteristic pool boiling curve.

significant amounts of energy because of the large heat of vaporization required for phase

change during bubble formation. [2] As such, the surface temperature does not rise as fast

with increasing heat flux in this regime. Eventually, as the heat flux is driven upwards, there

is a sharp drop in heat transfer coefficient, occurring at point C; this is known as critical heat

flux. [1] If the heat flux remains constant, the system will translate to point D on the boiling

curve and enter the film boiling regime. Here, a thin vapor layer exists on the heater surface,

through which heat must conduct before being transferred to the liquid. This markedly less

efficient heat transfer mechanism results in a rapid rise in heater surface temperature, which

often leads to heater burnout. [1]

The heat transfer from the wall to the bulk fluid can be modeled by Newton's law of

cooling,

q" = h(Twall - Tulk) (2.9)

Where q" is the heat flux, h is the heat transfer coefficient (HTC), Twarl is the wall

temperature, and Tlk is the bulk liquid temperature (however in boiling Tbulk is always

assumed to be Tat even if Tt,,lk < Tat). In this relationship, the HTC is a measure of of
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boiling performance and is a good way to characterize a heater surface. Often in boiling

heat transfer, HTC will exhibit a temperature dependence.

2.3.2 Critical Heat Flux

While the driving factors behind CHF are not completely understood, many strides have been

made into characterizing this occurrence. Four main theories on CHF have been proposed

to account for this phenomenon:

1. Hydrodynamic instability. Vapor release from the surface is achieved in an ordered

array of columns. These jets are initiated from a fundamentally unstable vapor layer

immediately above the surface. However, was the velocity of the vapor jets increases,

they themselves become unstable and breakdown, inhibiting vapor removal from the

surface. As a result, the HTC drops and CHF is achieved. [1,2]

2. Macrolayer consumption model. This theory models vapor release as mushroom

shaped bubbles. CHF is triggered when the macrolayer behind the departing mushroom

bubble is totally evaporated, leaving the heater surface completely bare. [2]

3. Bubble crowding on heater surface. The prevalence of vapor bubbles on the

surface continues to increase until the entire heater is covered with adjacent bubbles.

The vapor bubbles eventually coalesce and form a uniform film layer between the heater

and the liquid, triggering CHF. [2]

4. Hot spot heating. As the surface temperature increases, individual hot spots form.

At these points on the heater surface, the temperature reaches a value at which it

cannot be adequately rewetted. As more and more of these spots form on the surface,

CHF ensues. [2] Though in principle, it is possible for a single irreversible hot spot to

form and grow to cover the entire surface, leading to CHF.

These postulates are somewhat contradictory and finding evidence for the conclusive

support of a single theory is difficult. Zuber (1959) worked with the hydrodynamic instability

model and predicts CHF as, [21],
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HF = Kpghfg P 2  (2.10)

Where, q$HF is the critical heat flux, K is a dimensionless constant that captures geome-

try of the boiling surface, hyg is the latent heat of vaporization. While traditionally popular,

this model is rooted only in hydrodynamics and does not account for surface characteristics,

such as roughness, porosity, or wettability. Many pool boiling investigations have determined

there to be an effect of surface characteristics on boiling performance. [4,20,22-24] As such,

this correlation is a good starting point, but does not fully capture the boiling phenomenon.

More recently, the inability of a surface to rewet after bubble departure has become the

dominant theory behind CHF. [11] Temporary dry spots begin to form on the surface, with

the frequency and size of such dry spots increasing, until the critical heat flux (CHF) is

reached (Point C in Figure 2-9). At this point, the surface cannot rewet fast enough to

replace the vapor lost through nucleation and a thin vapor layer forms immediately above

the heater surface.

Other models have been proposed to predict CHF, whilst including the effects of surface

characteristics. Kandlikar (1996) created a model to predict pool boiling CHF as a function

of contact angle and heater orientation.

S1/2 1 + cos(#) 2 + 7r 1/2
qCHF gp/ 16 7 \(1+o#c( (c-g(pf-pg))1/4  (2.11)

Where, # is the receding contact angle of the surface, and # is the heater angular orien-

tation. Figure 2-10 depicts the theoretical dependence of CHF on surface wettability for a

horizontally oriented heater (# = 0.

This model offers more insight into the prediction of CHF, as it captures at least one

surface characteristic. However, the effects of roughness and porosity are absent.

Polezhaev and Kovalez (1990) derived a semi-empirical correlation, rooted in the Zuber

hydrodynamic instability theory to relate CHF and porosity. For a uniform porous layer,

CHF is predicted as [25]:
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Figure 2-10: Kandlikar model of CHF dependence on wettability. All values for horizontal
heater orientation and atmospheric conditions.

qH F = 0.562.28hg PlP (.2
( pf + p )Rb)1 (2.12)

Where, c is the porosity and Rbg is the break through pore radius, which is determined

experimentally. However, it can typically be assumed to be half the particle diameter in the

surface coating layer. [26] The trends of this correlation can be observed in Figure 2-11.

Predicted CHF increases with increasing porosity, but is inversely proportional to particle

diameter. Yet, this correlation does not account for porous layer thickness. Moreover, it

may not be appropriate for use on the nanoscale, as the bubble radius will be considerably

larger than the characteristic pore size. [26] Additionally, this model largely over predicts the

absolute value of CHF. Regardless, like the others, this correlation is a good tool to begin

understanding the effects of surface characteristics on pool boiling performance.

While absolute CHF values predicted by the correlations may vary from experimental

findings, the trends of the equations offer important insight into the design of heat transfer

surfaces. Recognizing the theoretical effect of varying each surface characteristic frames this

investigation. However, as this study will show, it will be important to consider multiple

surface characteristics not just one parameter in predicting CHF. Though creating an all-

encompassing correlation is not a trivial matter.
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Figure 2-11: Polezhaev model for CHF as a function of particle size and porosity level.
Evaluated at atmospheric conditions.

2.4 Surface Engineering

Much research has been conducted into surface engineering for boiling heat transfer improve-

ment. As early as 1962, it was determined that boiling heat transfer could be enhanced by

up to 600% through surface roughening [4]. The surface treatment increases the number

of nucleation sites, which promotes bubble formation and thus nucleate boiling. Other re-

searchers have characterized the effects of microscale structures. It was determined that

micro-roughness, microcavities, and microporosity all have significant ability to enhance nu-

cleate boiling. Specifically, these structures serve to hold a bubble on the surface longer

than if it were to form on a smooth surface [27]. Most recently, the effects of nanoscale

features have come into focus. Methods include altering the boiling surface chemistry, ran-

domly roughening of a surface, and enginering patterns of cavities. These investigations offer

insight into surface wettabillity, as well as bubble departure diameter, departure frequency

and coalescense. Cumulatively, these characteristics help to govern the overall heat transfer

rate and CHF. Here, a brief overview of previous research in this field is presented.
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2.4.1 Surface Roughness and Porosity

Because surface roughening was early identified as a means to enhance boiling heat transfer,

this subject has been researched extensively. Berenson (1960) used emery paper as well as

lapping compound to create surfaces with varying roughness. Additionally, he investigated

the effects of roughening procedures, such as rubbing in one or two directions or in circular

motions [28]. Through these efforts, it was determined that increasing surface roughness

reduces the temperature difference required to transfer a given heat flux [4].

More recently, researchers have painted surfaces with particle containing mixtures to

achieve surface roughness. For example, Chang and You (1997) individually mixed alu-

minum, copper, diamond, and silver particles with epoxy to create brushable compounds.

Particle sizes ranged from 1pm to 50pm and created microstructures, resulting in increased

surface porosity. Through this technique, the researchers were able to enhance the over-

all HTC by 330% and CHF by 100% over an untreated surface with saturated FC-72 [22].

O'Connor and You (1995) also employed painting techniques with silver flakes and epoxy.

Similar increases in HTC and CHF were realized and attributed to the microstructures abil-

ity to quickly heat liquid on a local level as well as promote internal vaporization in the

proximity of bubble embryos [29].

Li et al. (2008) used an electrodeposition process to create a well ordered, three dimen-

sional surface layer with both micro and nanoscale features. The copper dendritic structures

that were formed were highly interconnected and microporous. The researchers suspect that

the nanocavities initiate bubble generation, but the larger macro-scale voids actually serve

to promote bubble growth. This surface conditioning resulted in a heat flux seventeen times

higher than a plain surface [30].

Ahn et al. (2009) created heater surfaces with vertically oriented carbon tubes, with

diameters of 30nm and heights of 9pm and 30pLm. A weak dependence of boiling performance

on carbon nanotube height was found. However, the taller carbon nanotubes were able

to realize a 40% CHF enhancement, compared to a bare silicon surface. The researchers

hypothesize that the boiling enhancement stems from increased heat transfer surface area,

greater liquid-solid contact, and a pinning of the liquid-vapor contact line, which may alter
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bubble nucleation profiles. [31]

Furberg et al. (2009) deposited nano and microporous copper structures on stainless

steel heat exchanger plates. At low heat fluxes, the researchers were able to realize a ten

times HTC improvement using R-134a as a test medium. The overall HTC during the

experiment was enhanced by 100%. [20]. Here, the researchers were able to clearly identify

the advantages of a porous heat transfer surface.

Similarly, Chen et al. (2009) patterned silicon and copper nanowire arrays on heater

surfaces, and achieved both CHF and HTC enhancement of 100%. This enhancement is

attributed to a high nucleate site density, superhydrophilicity, and capillary pumping action

stemming from the natural structure of the nanowires. [23]

2.4.2 Nanofluids

While this investigation does not employ nanofluids explicitly, the following studies still offer

important insight into the engineering of boiling surface. Many studies have been conducted

using nanofluids as a boiling medium. Consisting of a base fluid and dispersed nanoparticles,

nanofluids offer potential to enhance CHF. Numerous investigations have established that

CHF enhancement results from nanoparticles being deposited on the heater surface. [32-35]

For example, Kim et al. (2006) deposited nanoparticles on heater surfaces during pool

boiling with TiO2-water and A12 0 3-water nanofluids. Subsequently, pool boiling tests were

performed using the predeposited surfaces, but with pure water. CHF enhancement was

recorded over pure water boiling on clean surfaces, thus indicating the effect of nanoparticles

deposited on the surface. [32] It has been further established that the nanoparticles serve

to improve the wettability and capillarity of the heating surface, which could drive CHF

enhancement. [33]

Kwark et al. (2010) performed similar nanoparticle deposition tests during pool boiling.

It was confirmed that the surface coatings are constantly being modified during nanofluid

boiling and that there is a dependence of boiling performance on nanoparticle coating thick-

ness. [34] Additionally, similar tests were performed with both water and ethanol nanofluids.

More significant enhancement was seen with ethanol and this is attributed to the smaller

bubble departure diameter of bubbles boiling in ethanol (due to surface tension). [34]
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Kim et al. (2007) modeled the system of deposited nanoparticles as a thin absorption

layer, which helps to describe how the nanoparticles alter the surface wettability. [35] That

nanofluids can enhance CHF through surface deposition of nanoparticles opens up much

space for heater surface engineering.

Ahn et al. (2010) created artificial micro and nanostructures that mimicked those created

naturally during pool boiling with nanofluids through nanoparticle deposition. Here, the

researchers were able to conclude that the micro and nanostructures enhanced CHF not

only by increasing wettability, but also liquid spreading. The researchers developed a model

to predict liquid spreading and found that the tested surface with the highest degree of liquid

spreading to also had the greatest CHF value. [36]

2.4.3 Surface Chemistry

Through surface chemical treatments, many researchers have been able to control the wet-

tability of boiling surfaces. Phillips (2011) explored the effect of porous hydrophobic and

hydrophilic heater surfaces, as well as patterns of hydrophobic and hydrophilic spots. These

patterns were created through a layer by layer (LBL) dipping process in a nanoparticle so-

lution. Hydrophilic heater surfaces promoted rewetting during boiling, thereby enhancing

CHF by around 100% [24]. Patterns of hydrophobic spots on a hydrophilic heater were

designed to create distinct nucleation sites. The spot diameters were 160pum and 260pm on

1mm and 2mm hexagonal pitches. However, such patterns did not significantly increase the

HTC and resulted in CHF values lower than purely hydrophilic surfaces [24].

Betz et al. (2010) created similar patterns of both hydrophobic spots on hydrophilic

surfaces (hydrophilic network) and hydrophilic spots on hydrophobic surfaces (hydrophobic

network). In this experiment, spot spacing varied between 50pim and 200pum, with the

spot diameter ranging between 40% and 60% of the spacing dimension [37]. Hydrophobic

networks resulted in the highest enhancement of HTC, but in some instances reduced CHF.

Hydrophilic networks improved the HTC moderately, but also enhanced CHF. Overall, this

study found such spot patterns to enhance CHF and HTC by 65% and 100%, respectively

over a nominally hydrophilic surface [37].

Phan et al. (2009) examined the influence on nucleate boiling heat transfer by varying
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water contact angles from 100 to 1100 through nanoscale surface topography and chemistry.

It was found that hydrophilic surfaces can increase the bubble departure diameter and reduce

the departure frequency. For contact angles between 450 and 900, the HTC was found to

decrease. However, for contact angles less than 450, the HTC increased. Therefore it is

hypothesized that optimal contact angles for HTC are 0' and 90'. Conversely, hydrophobic

surfaces require less superheat to initiate bubble growth, but it can be more difficult for

a bubble to finally detach from the surface. Additionally, it was found that bubbles on

hydrophobic surfaces can move around and coalesce with bubbles from adjacent sites, which

ultimately can lead to a vapor blanket covering the heat transfer surface. [38]

2.5 Conclusions from Prior Research

Insight gained from this literature review guided the design of the heat transfer surfaces in

this investigation. In summary, the important conclusions are:

1. Surface roughness and porosity can enhance the performance of a boiling surface.

However, it is important to investigate each parameter's effect on boiling individually.

In particular, some surfaces considered rough, may in fact be benefiting primarily from

a degree of porosity.

2. Porosity can have profound effects on HTC and CHF, largely a result of the intercon-

nection of nucleations sites.

3. Hydrophilic surfaces can promote rewetting and thereby delay CHF.

4. Hydrophobic surfaces can be unstable, enabling lateral bubble movement, which can

create a vapor blanket on the surface.

5. A high degree of liquid spreading on a surface can help to inhibit CHF.

6. Particles deposited on a surface can enhance wettability.

7. The intersite spacing of nucleation sites is an important parameter in governing the

individual site activation and bubble frequency.
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8. Some bubble coalescence can enhance a boiling surface by removing the trapped liquid

between departing bubbles. However, too much coalescence can be detrimental to the

system. Again, the intersite spacing dictates the behavior of the coalescence.
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Chapter 3

Test Matrix

3.1 Separate Effect Investigation

As identified through literature review, it is well understood that roughness, porosity, and

wettability all affect the performance of a heater surface. However, the exact extent to

which each character 1itcb inuences boiling is not known. In this investgation, surface

parameter is individually varied, allowing the separate effects to be isolated. Furthermore,

combinations of these surface parameters are also examined, providing insight into the cou-

pled affects of the surface features.

3.1.1 Roughness

Two categories of heater roughness are considered: Rough and Smooth. The respective

roughness characteristics are defined in Table 3.1.

By fabricating rough and smooth heaters, it is possible to determine the effect surface

roughness has on HTC and CHF. Primarily, the focus here is on whether or not surface rough-

Surface Ra(pim) Rz(pm)
Smooth < 0.1 < 1
Rough > 1 ~15

Table 3.1: Smooth and Rough heater surface roughness characteristics.
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ness is present, not examining the effect of varying the magnitude of the surface roughness

(though this is a good space for future work). Therefore, only these two categories of surface

roughness are considered.

As received, the heater surfaces are nanosmooth. To induce surface roughness, small

posts are fabricated on the surface of the heater. These features are 20pm in diameter,

15 - 20pm tall. The posts are spaced on a hexagonal pitch of 500im, which is sized large

enough to avoid inducing capillary effects. While capillary wicking can be beneficial to CHF,

this investigation seeks to understand the effects of roughness independent of the wicking

phenomenon. Posts of a similar design have been employed with success in the past by

Troung (2011) to investigate roughness effects. [26]

3.1.2 Porosity

As with roughness, porosity is considered in a binary context. Heater surfaces are either

non-porous or porous. Porosity is created by depositing nanospheres on the surface. These

spheres closely pack, naturally resulting in a porosity in the range of 50% to 60% of the total

volume. The particle diameter used to create the porous layer is 50nm and the characterisitic

pore size is on thesame order of magnitude. This pore size was selected, as it was previously

identified by Phillips (2011) as a particularly well performing heater surface.

It is important to recognize that the fabrication of a porous layer on the heater surface

can also induce roughness. While this roughness can be appreciable when compared to

the nanosmooth, as received ITO-Sapphire heater, it is orders of magnitude less than the

roughness imparted by the post features. As such, all heater surfaces with an Ra < 0.1pm

will be considered Smooth in the context of this investigation.

3.1.3 Wettability

Finally, two regimes of wettability are also investigated: hydrophobic and hydrophilic. In

this investigation, hydrophobic is defined by a contact angle of greater than 110', with

hydrophilic being a contact angle less than 100. In some test cases, the level of hydrophobicity

or hydrophilicity may exceed the stated value. This stems from the fact that contact angle
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is a function not just of wettability, but also porosity and roughness. For example, porosity

has the effect of increasing the contact angle of hydrophobic surfaces, while decreasing the

contact angle of hydrophilic surfaces. As such, limits are set for hydrophobic and hydrophilic

thresholds. However, the contact angle for each heater surface is characterized and imaged

before heater testing.

3.1.4 Overall Separate Effect Test Matrix

The overall test matrix of heater surfaces for the Separate Effect investigation is presented

in Table 3.2. By examining all combinations of different surface parameters, it is possible

to understand how different traits can have compounding effects on HTC and CHF. The

attributes for each heater surface presented in Table 3.2 are target values. Measurements

of each characteristic are made on the actual heater surfaces. Additionally, for each surface

configuration, three nominally identical heaters are fabricated and tested.

Additionally, a modified Rough Non-porous Hydrophilic heater, with a different post

pitch is fabricated and tested. This is somewhat separate for the main investigation and

intended to investigate how the roughness would affect boiling at elevated pressures. For

clarity, this modified test case is not included in the Test Matrix table. In the modified

case, the pitch on which the posts are patterned is 1.98mm. This increased pitch is designed

to mimic the relative the relative dimensions of bubbles in a system pressurized at 5bar

and the nominal pitch of 0.5mm. In other words, the relationship between the bubble

departure diameter at atmospheric conditions and the modified pitch (1.98mm) is identical

to the relationship between bubbles departing the surface at 5bar and the standard post

pitch (0.5mm). The Cole and Rosenhow correlation is used to predict the bubble departure

diameters. This offers insight into how the roughness condition might affect a boiling system

at elevated pressures.
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Pattern Roughness Porosity Wettability
Patr adRVolume Fraction Static Contact
Ra and Rz~um) (dimensionless) Angle (degrees)

Uncoated Heater Ra < 0.1, Rz < 1 0 600 -700
(reference)

Smooth
Non-porous Ra < 0.1, Rz < 1 0 < 100
Hydrophilic

Smooth
Non-porous Ra < 0.1, Rz < 1 0 > 110*

Hydrophobic

Smooth Porous
Smh roil Ra < 0.1, Rz < 1 50-60 < 100
Hydrophihec

Smooth Porous Ra < 0.1, Rz < 1 50-60 > 1100
Hydrophobic

Rough Non-porous Ra > 1, Rz ~ 15 0 < 100
Hydrophilic

Rough Non-porous Ra > 1, R~ 15 0 > 1100
Hydrophobic

Rough Porous Ra>1, Rz 15 50-60 <100
Hydrophilic

Rough Porous Ra>1, Rz 15 50-60 >1100
Hydrophobic

Table 3.2: Separate Effect investigation test matrix.

3.2 Spot Patterning for Heater Optimization

Previous research has indicated that hydrophilic surfaces can promote rewetting and enhance

CHF. Additionally, it is suspected hydrophobic spots patterned on the nominally hydrophilic

heater can serve as individual nucleation sites during boiling, thereby enhancing the HTC.

[24] To examine this phenomena, hydrophilic heaters, with hydrophobic spots patterned

on a hexagonal pitch are generated. Additionally, to further enhance hydrophilicity and

hydrophobicity, porosity is engineered into the heater surfaces, with pore sizes on the order

of 50nm. Spot size and pitch are varied to examine the effect of these dimensions on HTC

and CHF. For each pattern, three nominally identical heaters were fabricated and tested to

ensure repeatability. The complete spot pattern text matrix is presented in Table 3.3

Patterns A-D are intended to investigate the effect of varying spot pitch on CHF and

HTC. Previously, Phillips (2011) examined similar spot patterns with 260pm spots on 2mm
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Pattern Nominal Spot Diameter (pum) Pitch (mm)
A 260 0.5
B 260 0.75
C 260 1.25
D 260 1.5
E 90 0.2
F 120 0.75
G 120 2
H 120 0.2

Table 3.3: Spot Pattern Test Matrix.

and 1mm pitches. Therefore, 260pm spot size was selected to complement this prior inves-

tigation. During fabrication, the final spot diameter is somewhat reduced from this nominal

value. The value of 260pm was selected by Phillips (2011) to achieve a final diameter of

around 200pm. [24] However in practice it is been determined that the final spot size is closer

to 180pm after all fabrication is complete. For simplicity, all spot patterns are referred to

by their nominal value (e.g. 260pim).

An important consideration in designing the test matrix is the possibility of bubble

coalescence during boiling. With a few degrees of wall superheat, the bubble departure

diameter is around 1mm, under atmospheric conditions. Assuming nucleation is centered

on the patterned nucleation spots, the vapor bubble will extend from the center of the site

by half the departure diameter (ddepa2rture). Therefore, the criterion for bubble coalescence

requires that the intersite spacing (pitch) be equal to the bubble departure diameter, which

in this case is considered to be 1mm.

The spot pitches were selected such that the coalescence threshold was crossed. This

allows for insight into the effect of bubble coalesce on the spot pattern performance. Patterns

A and B should induce bubble coalescence, while Patterns C and D are spaced wide enough

to avoid this effect.

Patterns E-F investigate varying the spot diameter as well as the ratio between spot

diameter and pitch. Patterns F and G have pitches of 0.75mm and 2mm, respectively. These

pitches were investigated with 260pm diameter spots in Pattern B and by Phillips (2011).

This allows for a direct comparison of the performance of patterns with similar pitches, but

varying spot sizes. The spot pitches were again selected such that they straddled the bubble
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coalescence threshold. The sizing of Patterns E and H was motivated by Betz's 2010 work

with similar style spot patterning, described in Section 2.4.3. Here, the relationship between

spot diameter and pitch was directly considered. In Pattern E, the spot diameter is 45% of

the spot pitch, while Pattern H the spot diameter is 60% of the spot pitch. The objective

of Pattern H is to allow a comparison with Patterns F and G (given similar spot diameter),

with a drastically reduced pitch. Pattern E allows for comparison with other patterns in

terms of diameter to pitch ratio.

Through this test matrix, the effects of both spot diameter and pitch are to be character-

ized. This will offer insight into the ability to engineer distinct nucleation sites on a boiling

surface through manipulation of surface chemistry.
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Chapter 4

Experimental Methods

The objective of this project is to investigate the effect various surface treatments and

patterns have on HTC and CHF. Heater surfaces must be fabricated with desired features.

Next, the surface patterns must be inspected appropriately to confirm the existence and

nature of the fabricated features. Finally, the heater must be tested to characterize the

surface's boiling performance. Thus, there are three fundamental aspects to the experimental

methodology:

1. Surface fabrication

2. Feature verification

3. Heater testing

Given the delicate nature of micro and nanoengineering techniques, it is important that

verification methods are employed to examine surface features. Often small, and natural,

variations in fabrication procedure can drastically alter the end product. Therefore, care is

taken to fully understand all aspects of the heater surface before its boiling performance is

tested. Here, the different techniques used to process the heaters are described, framing the

overall investigation.
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4.1 ITO-Sapphire Heaters

Indium tin oxide-sapphire (ITO-sapphire) heaters are the test bed for this investigation.

Supplied by Diamond Coatings, these heaters have been used extensively in MIT's Reactor

Thermal Hydraulics Laboratory and are a robust platform for examining surface features. [24]

The heater substrate is a 50.8mm square sapphire wafer, with a thickness of 0.25mm. The

surface of the heater is polished to a nano-smooth level. Centered on one side of the heater, a

2cm wide and approximately 700nm thick layer of ITO is deposited across the length of the

heater. Two silver electrodes are deposited on the ITO film. Each silver pad begins at the

edge of the heater and extends inwards 20.4cm, with a width of 2cm. The silver thickness is

approximately 20 - 25pm. A diagram of the heater dimensions can be seen in Figure 4-1.

Silver Electrodes
Active Heater Area

Indium Tin Oxide (ITO) Film

Sapphire Substrate

20 50.8

20.4
10

50.8

Figure 4-1: ITO-Sapphire Heater (all dimensions in millimeters).

The conductive ITO film and silver pads serve as a resistive heating element and electrode

attachment points, respectively. Electrodes are attached to the silver pads with a conductive

epoxy to provide power for resistive heating. The center area (2cm x 1cm) of ITO film is

the actual active heater area. The resistivity of the active heater area is 10-" . Surface

features are patterned on the opposite (non-ITO/silver) side of the sapphire substrate. This

orientation isolates the electrodes from the water bath, thereby preventing corrosion.
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4.2 Surface Fabrication

Numerous methods are employed to customize the heater surfaces. In some instances, a

fabrication technique has the effect of altering a single characteristic of the heater surface

(e.g. roughness). However, many procedures affect multiple properties of the heater surface.

For example, as described below, the method employed to fabricate porosity is accompanied

with intrinsic hydrophilicity. In some cases, extra steps must be taken to modify and account

for these characteristics. While this is somewhat inconvenient, other factors, such as the

simplicity and affordability, justify this coupling. It is therefore simplest to explain the

heater fabrication in the context of the different machining operations.

4.2.1 Layer by Layer Deposition

Layer by layer deposition (LBL) is a process in which a single thin layer of nanoparticles is

deposited on a substrate surface. A robust recipe for creating LBL coatings using silica (SiO 2 )

nanoparticles was estabished by Professors Michael Rubner and Robert Cohen in MIT's

Center for Materials Science and Engineering and Department of Chemical Engineering.

[39-41] Originally, designed for anti-fogging applications, these coatings have proved durable

under boiling conditions. LBL coatings are created by alternatively dipping a substrate in

positively and negatively charged solutions. The difference in charge causes particles in the

solution to diffuse onto the substrate surface, creating what is known as a bilayer. Dipping

operations are carried out on a Zeiss HMS Programmable Slide Stainer.

The negative LBL solution is prepared with intrinsically hydrophilic Si0 2 nanoparticles

(Polysciences Silica Microspheres). The diameter of the Si0 2 particles can vary, but here

50nm particles are used. As received, these nanoparticles are in an aqueous solution of around

5.9wt%, though the exact concentration varies by production lot. The LBL nanoparticle

solution calls for a concentration of 0.03wt% SiO 2 nanoparticles in a pH 9.0 buffer. Therefore,

the stock nanoparticles are diluted in a laboratory made buffer solution of deionized water

and a mixture of boric acid, KCL and NaOH. Additionally, NaCl is added to bring the

solution to a concentration of O.1M NaCl. This helps create an ionic interface during the

adsorption process. An overivew of the chemical mixture for the Si0 2 nanoparticle solution
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Figure 4-2: Zeiss HMS Programmable Slide Stainer.

is presented in Table 4.1. Typically one liter batches of nanoparticle solution are mixed for

each LBL process. The nanoparticle solution is placed on a stir plate for at least one hour,

with care taken to ensure that all the NaCI had dissolved.

Component Quantity Purpose
Deionized

H2 0 1 L Dilution

Si0 2  Quantity required for Sourceof Si0 2

nanoparticles 0.O3wt%, depending on nanoparticles
stock lot concentration

Boric acid 3.1 g/L
KCL 3.7 g/L pH 9.0 Buffer

NaOH 0.86 g/L
NaCl 5.845 g/L Aid absorption

Table 4.1: Negative LBL Solution: 0.3wt% SiO 2 nanoparticles of pH 9.0.

For the positive LBL solution, a poly(allylamine) hydrochloride (PAH) solution is pre-

pared to a concentration of 10~ 2 M PAH (Aldrich OAH 283223). Additionally the pH of the

solution was then adjusted to 7.5 using IM NaOH. Again, typically one liter of solution was

prepared for each LBL process. The PAH solution was mixed on a stir plate for at least

thirty minutes.
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Component Quantity Purpose
Deionized 1 L Dilution

H 2 0
PAH 0.9370 g/L Supply of positive polymer

iM NaOH Quantity required to
solution achieve solution pH 7.5

Table 4.2: Positive LBL Solution: PAH of pH 7.5.

First the substrate is dipped into the positive PAH solution for ten minutes. After

this first coating, the substrate is rinsed in three successive deionized water baths for two

minutes, one minute and one minute, respectively. Next, the substrate is dipped in the

negative solution for ten minutes. The oppositely charged particles are attracted and diffuse

onto the substrate surface. The substrate is subsequently rinsed in three separate deionized

water baths following the same rinsing times indicated above. At this point, one bilayer is

complete. This process is illustrated in Figure 4-3.

PA H (+ IH20 #1 DI H2 #2% Dr ZI H2 #3J r_

10 min 2 min 1min 1 min

DI H20 #3 DI H20 #2 DI H20 #1 SiO2(-
1 min 1 min 2 min 10 min

Figure 4-3: LBL process flow.

The complete process is simply repeated for the desired number of particle layers. It

is important to note that the thickness of each layer is a function of the particle size and

the pH. As particles diffuse onto the surface, the process is self regulating as the surface

charge is brought to equilibrium with that of the bath. Therefore, layer characteristics are

easily adjusted by altering the chemical composition of the baths. In this arrangement,

immersion time in the baths does not play a crucial role in determining layer thickness. The

substrate must simply be immersed long enough such that all possible particle diffusion onto

the surface has occurred. [39-41]

During layer by layer deposition, the approximately spherical particles assemble in a loose

packed fashion. The packing of the particles is around 50% of the total volume. [42] As this
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packing is similar for spherical particles of all sizes, the level of porosity is approximately

constant regardless of particle size. However, the actual pore size correlates with the par-

ticle diameter. For example, a multi-layer surface fabricated with 50nm diameter particles

will have pores with a characteristic dimension around 50nm. While this layer achieves the

benefits associated with porosity, it does not induce significant roughness onto the heater

surface. Most simply, the roughness of this porous layer can be considered to also be on

the order of 50nm. As one would expect, The coating thickness scales with diameter of

the nanoparticles and the number of multi-layers deposited. The positive polymer solutioon

(PAH) has a negligible thickness in comparision to the nanoparticles and are thus not con-

sidered to contribute to the overall layer thickness. [41] Finally, it is important to note that

as the SiO 2 nanoparticles are intrinsicially hydrophilic due to their chemical composition,

the resulting bilayer surface is also hydrophilic.

Following the LBL process, the bilayers can be calcinated at 5500 for one hour to enhance

durability and remove some of the polymer layers. The high temperature effectively sinters

the nanoparticles together and to the substrate, forming a substantially stronger surface.

Removal of the polymer layers leaves behind only the nanoparticle matrix, which can help to

improve the wettability of bilayer surfaces fabricated with intrinsically hydrophilic particles.

[43]

In some instances, calcination is not possible, as the high temperatures may damage the

underlying substrate. Such is the case with the silver electrode pads on the ITO-sapphire

heaters. The LBL coatings can also be cleaned with an oxygen-plasma treatment. A Harrick

Plasma Plasmaflo is used on the highest power setting, under a 150mTorr vacuum for two

minutes.

Immediately following plasma treatment, the static contact angle of the heater surface is

essentially zero. However, as the primary effects of the plasma treatment process wear off,

the contact angle stabilizes around 100. Because the high energy hydrophilic surfaces tend

to absorb contaminants, the heaters are kept in a sealed container until pool boiling testing.

Moreover, testing is completed within one week of LBL deposition.
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Figure 4-4: Harrick Plasma Plasmaflow.

4.2.2 Chemical Vapor Deposition of Fluorosilane

In order to fabricate a hydrophobic coating, a chemical vapor deposition (CVD) process

is employed using 1H,1H,2H,2H-perfluorodecyltriethoxysilane, commonly known as fluorosi-

lane. Fluorosilane is obtained in liquid form. Approximately 5mL of fluorosilane are placed

in a small open vial, which is in turn placed in a larger poly-tetrafluoroethylene (PTFE)

container. The PTFE container is sealed and placed in an oven at 1400 for thirty minutes to

preheat the fluorosilane and remove any moisture, which can interfer with CVD. The PTFE

container is removed from the oven and the substrate to be coated is placed in the PTFE

container with the open vial of fluorosilane. For porous surfaces, the container is sealed and

placed back in the oven at 1400 for another thirty minutes. Non-porous surfaces require

longer exposure times to achieve a uniform fluorosilane coating. Non-porous surfaces are

placed in the sealed PTFE container and exposed to 140' for eight hours.

The boiling point of fluorosilane is between 1030 and 1060. [44] Therefore, the temper-

atures in the oven are adequate to vaporize the fluorosilane and allow it to deposit on the

substrate surface. However, it is important that the surface chemistry be appropriate for

binding with fluorosilane. For example, surfaces of SiO 2 are particularly well suited for adhe-

sion with fluorosilane. Surfaces comprised of a material unsuited for fluorosilane treatment
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are coated with a thin layer of SiO 2 first to prepare them for fluorosilane adhesion. Unlike the

LBL process, fluorosilane deposition is not controlled by surface charge. Therefore, multiple

fluorosilane layers may be deposited, but their overall thickness is generally negligible in

comparison with other surface features (e.g. 50nm particles). [45]

4.2.3 Ultraviolet Ozone Patterning

Completely hydrophilic or hydrophobic surfaces can be fabricated with the LBL and CVD

processes previously described. However, often it is desirable to create surfaces that have

wettability- patterns. For example, to have a nominally hydrophilic surface, with hydrophobic

spots. One way to create such a surface is through ultraviolet ozone (UVO) patterning. Like

plasma cleaning, UVO is a common cleaning procedure to prepare substrates for surface

fabrication processes. [46] A typical UVO apparatus emits ultraviolet (UV) light with a

wavelength of 184.9nm, which breaks down oxygen into atomic oxygen. A second wavelength

of UV light, this one at 253.7nm breaks down ozone by photodisassociation. Highly reactive

atomic oxygen oxidize organic materials from the substrate surface. As a result, atomic

oxygen is constantly generated, while ozone is continuously created and broken down. [47-49]

Through these processes, volatile species can be destroyed on the surface of a substrate.

This technique can be further customized with the use of a patterned mask. If only

specific portions of the substrate are exposed to UVO, the resulting effect on the substrate

surface will follow a similar pattern as the mask. [50,51] A thin layer of fluorosilane deposited

across the entire heater surface can be subsequently patterned with a mask and UVO expo-

sure. A mask is created with the desired fluorosilane pattern opaque to UV light (a positive

mask). This effectively protects those regions from the UVO exposure. The remainder of

the mask is transparent to UV light, thus permitting the removal of the fluorosilane from

the heater surface in those regions. For this process to be successful, it is important that

the mask be made of a material that has a high transmission of UV light in the critical

wavelengths described previously. Fused quartz silica has better than 90% transmittance

for the 184.9nm and 253.7nm wavelengths. [24] Masks for UVO exposure were fabricated

by Advance Reproductions using 2.3mm thick fused quartz silica, with the desired pattern

printed in a layer of 110nm thick chrome. As UVO has the effect of removing the underlying
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fluorosilane, these UVO masks are positives, with mask features representitive of the final

desired features. The masks used for UVO patterning are presented in Figures 4-5 and 4-6.

........ .

(a) 260pm,0.5mm

(c).260pm,1.25mm .

(b) 260pm,0.75mm

(d) 260pm,1.5mm

Figure 4-5: Patterns A-D. Fused quartz with patterned chrome masks for spot patterning.

Dimensions presented in the form: spot diameter, pitch
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(a) 120Im,2mm (b) 90pm,200pm

(c) 120pm,0.75mm (d) 120pm,200ptm

Figure 4-6: Patterns E-H. Fused quartz with patterned chrome masks for spot patterning.
Dimensions presented in the form: spot diameter, pitch.

As illustrated in Figure 4-7 the mask rests on top of the heater substrate, such that the

chrome features are on the bottom of the mask are in direct contact with the heater surface.

The gap created by the raised chrome features permits the removal of fluorosilane from the
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unpatterned areas of the heater. During exposure, the mask is typically placed about 2mm

from the UV light source.

UV Ught

Quartz Mask

Chromium
-ITO-Sapphire Heater

Figure 4-7: UVO Mask and Heater Interface.

4.2.4 Electron Beam Physical Vapor Deposition

Electron Beam Physical Vapor Deposition (EB-PVD) is a deposition method, in which an

electron beam is used to vaporize a material, enabling it to coat a substrate surface. The

material to be deposited is held in a crucible in the bottom of a vacuum chamber. Through

the principle of thermionic emission of free electrons, a stream is generated through the

heating of a metal filament. This stream is subsequently accelerated and directed into a

beam in an electrostatic field. [52-54] Secondary electric and magnetic fields are used to

further focus and manipulate the beam. With the electron beam focused on the material

ingot in the crucible, the material evaporates into a vapor plume, filling the inside of the

chamber. [54] The substrate to be coated is held at the top of the chamber, with the side

of interest facing downwards at the vapor plume. The material vapor condenses on the

substrate surface (and all other surfaces within the chamber), thereby creating a thin film

coating. By adjusting the power of the electron beam, and thereby the rate of material

vaporization, deposition rate can be controlled. [55] The entire process is carried out under a

high vacuum on the order of 10- 5 torr. A Sloan 8kV Electron-Beam Evaporator in the MIT

Microsystems Technology Laboratory's Exploratory Materials Laboratory (EML) was used.
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Typical deposition rates ranged from 1A/s to 1.51/s.

Figure 4-8: Sloan 8kV Electron Beam Evaporator.

4.2.5 Photolithography

Post features - used to control roughness - are created on heater surfaces through a pho-

tomasking process using the light sensitive photoresist SU-8. Commercially available in

a variety of viscosities, SU-8 is epoxy based photoresist, well suited for high aspect ratio

features with near vertical sidewalls. [56] The viscosity grade SU-8 2015 was used in this

investigation. Different viscosity SU-8 will result in different layer thicknesses during spin-

ning and charts of film thickness as a function of spin speed and duration are available from

vendors.

First, the substrate is dehydrated by placing it on a hot plate at 150'C for a minimum

of ten minutes. Next, the substrate surface is coated with SU-8 via a spinning process.

During coating, SU-8 is deposited on the substrate with a pipette and care must be taken to

prevent bubble formation in the photoresist layer. Substrates are held on a vacuum chuck.

Spinning begins at 500RPM and ramps to at 3000RPM over ten seconds. It is then held at

3000RMP for thirty seconds. The soft start followed by a ramp to the target speed prevents

shearing of the photoresist layer, which can alter the layer thickness. The layer thickness

created during this initial coating will be the resulting height of the final post features.
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Next, the substrate is soft baked, typically at 95'C for four minutes, on a hot place. The

photoresist side is placed facing upwards and it is important that there is uniform contact

between the entire back surface of the substrate and the hot plate. This will ensure even

heat transfer through the substrate, curing the entire photoresist layer equally.

Following the soft bake phase, the substrate is masked and exposed. This step creates

the actual feature pattern on the heater surface. SU-8 is a negative photoresist, implying

that exposure to UV light in the 300nm to 400nm wavelength range will cause the the

photoresist to cure. Therefore, a negative mask is employed. A soda lime glass mask is

used and made nominally opaque by a chromium coating. The desired post locations are

transparent locations in the coating. A Karl Suss MA4 mask aligner in the EML is utilized

for the exposure process. The photomask is held in the machine via vacuum suction and

the substrate is placed directly below it, with the photoresist coated side facing upwards.

The machine is operated in hard contact mode, meaning that that substrate is forced into

contact with the mask via an air jet prior to exposure. This minimizes shadowing effects

during exposure. UV light exposure lasts for approximately thirty seconds, during which, a

strong acid is formed in the exposed photoresist regions. [56]

After exposure, the substrate is post baked on a hot plate at 95'C for four minutes. Post

exposure baking allows for acid-catalyzed thermal cross-linking of the photoresist regions

exposed during the previous step. The cross-linked epoxy regions are quite durable, perma-

nent features. [56] Again, it is critical for there to be uniform contact between the substrate

surface in the hot plate.

Finally, the unexposed photoresist must be stripped from the substrate surface. The

heater is placed back on a vacuum chuck and spun at low speeds (around 500RPM). A propy-

lene glycol monomethyl ether acetate (PM acetate) developer is sprayed onto the spinning

substrate, removing the unexposed SU-8. Additionally, intermittent sprays of isopropenyl

help to carry the photoresist off the surface.

In summary, the post fabrication process is as follows:

1. Dehydrate heater on hot plate at 1500 for at least ten minutes.

2. Deposit SU-8 2015 on center of heater surface using pipette.
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3. Spin starting at 500RPM and ramp up to 3000 RPM over ten seconds. Then maintain

3000RPM for thirty seconds.

4. Prebake at 950 on hot plate for three minutes.

5. Expose in mask aligner using a hard contact against the mask for thirty seconds at

2 00 2oomJ
CM2

6. Post-bake at 95' on hot plate for three minutes.

7. Develop using PM-Acetate and isopropenyl, while spinning at 500RPM (usually for

around forty to fifty seconds).

The remaining features have the height of the initial SU-8 layer thickness and the dimen-

sion and spacing of the mask pattern.

4.3 Feature Verification

Following fabrication, heater surfaces must be analyzed to confirm the desired surface char-

acteristics. Of specific interest is the characterization of the roughness, porosity, wettability,

and topography of any surface features. Additionally, different imaging techniques are useful

for gaining insight into the exact nature of heater surface. The characterization techniques

described are largely non-destructive and are typically employed prior to pool boiling testing.

In some instances, the heater surface is characterized after a period of boiling in order to

verify the integrity of the surface features through the pool boiling test regime.

4.3.1 High Resolution Scanning Electron Microscope

Surface features are inspected using a JEOL NeoScope JCM-5000 scanning electron micro-

scope (SEM) in the MIT MTL, which can be seen in Figure 4-9.

The SEM allows for visualization of surface features such as microposts and microspheres.

The unit is operated in low voltage (5kV) and low current modes. Because the substrates

and features being imaged are not conductive, a thin layer (~ 10nm - 20nm) of gold is de-

posited on the surface via a sputtering process. This layer is kept thin to ensure it conforms
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Figure 4-9: JEOL NeoScope JCM-5000 Scanning Electron Microscope used for feature iden-

tification.

to the underlying topography and does not fill in any pores. The upper gold layer is electri-

cally connected to the SEM with a thin strip of electrically conductive carbon tape. These

observation surfaces are not tested in the PBF, but rather are prepared only for imaging.

4.3.2 Contact Angle Measurement

Contact angle measurements are made using a KSV Instruments CAM 101, as seen in Figure

4-10. The sample is held in front of a light source and imaged with a CCD camera, which

is connected to a computer with an image analysis software. The static contact angle is

measured by depositing a single water droplet on a heater surface with syringe, during which

around 100 frames are captured at a rate of 48 frames per second. During video analysis, the

point at which the droplet first engages the surface is determined and video is subsequently

moved ahead 0.5 seconds. At this point, the software package is used to determine the angle

made between the surface and the bubble. Two measurements are made; one on for each

side of the bubble. These angles should be in good agreement and the average of the two is

reported. At least five static contact angle measurements are taken at different areas on the

surface.

The advancing contact angle is measured by inserting the syringe needing into a static
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Figure 4-10: KSV Instruments CAM 101 used for making contact angle measurements.

droplet already on the surface and adding water until the vapor/liquid/surface contact line

begins to move. The advancing contact angle is the angle made by the surface and the

bubble immediately before the contact line moves. The receding contact angle is measured

by also inserting a syringe needle into a static droplet already on the surface. However, in

this case, water is removed until the vapor/liquid/surface contact line moves inward. The

receding contact angle is measured immediately before the contact line begins to move.

4.3.3 Stylus Contact Profilometer

The Dektak 150 Surface Profiler is a stylus profilometer, which scans a stylus probe along

a surface to measure roughness and characterize surface features. The stylus is placed in

contact with the heater surface and then scanned in a straight line to capture surface char-

acteristics. Any surface topography will cause a vertical displacement of the stylus, which is

registered by the data acquisition software. The stylus tip is a hemisphere with a radius of

12.5pm and a vertical resolution of IA. [57] A typical scan length is 2mm. For each heater

at least five scans are recorded at different locations to accurately characterize the surface.

From these scans, the Dektak 150 calculates a variety of surface parameters, including

different roughness values. For each surface, the average feature height, Ra roughness and

R2 roughness are reported. R, roughness is calculated as specified by Deutsche Institut fuer
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Normung (German Institute for Standardization) standard DIN 4768/1. [57]

4.3.4 Spectroscopic Ellipsometer for Porosity Measurement

Spectroscopic ellipsometry is a method for measuring the polarization of many different

wavelengths of light after reflection off of a surface. From these measurements, it is possible to

determine the thickness and refractive index of a surface coating. Additionally, spectroscopic

ellipsometry can offer insight into the porosity of a surface. This is accomplished by filling

the pores with different mediums and comparing the refractive indices of the measurements

made with different mediums. [24, 42] For example, two often utilized mediums are air and

ethanol. A measurement is first made with the porous surface in the ambient environment.

Next, the pores are flooded with ethanol, and the measurement is repeated. Using the rule

of mixtures, the volume fraction of the pores can be calculated as [42],

fnsurface,ethanol - nsurface,air (4.1)

ne&hanol -- nair

Where, p is the porosity, nsurface,ethano, and nsurface,air are the refractive indices of the

surface in ethanol and air, and nethanol and nair are the refractive indices of pure ethanol

and air, respectively. Typically, when analyzing a porous surface, the optical properties at

620nm wavelength were used. Measurements are made on a J.A. Woolam Co. INC model

XLS-100, located in the MIT Institute for Soldier Technologies.

4.4 Heater Testing

4.4.1 Heater Preparation

Prior to mounting a heater in the Pool Boiling Facility (PBF), it must be prepared with

electric leads. To prevent corrosion of the electrodes, the ITO-Sapphire heater is mounted

in the PBF with the electrode pads facing downwards, thus isolated from the water bath.

As such, the active portion of the heater is the 1cm by 2cm region bounded by the silver

pads, on the bare sapphire side of the heater.
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First, the active heater region on the ITO side of the heater (non-boiling) is thoroughly

cleaned, with any deposited thin film removed. During testing, the submerged heater surface

is imaged through this backside surface. Therefore, cleanliness is important for optical clarity.

Cleaning is performed with deionized water and ethanol rinses and gentle scrubbing with

clean cotton swabs. The heater is dried in a stream of ultra-pure nitrogen. Additionally,

any thin film covering the silver pads is removed with a cotton swab. Later electric leads

are attached to the silver electrode pads with a conductive silver epoxy. Any film or debris

on the silver pads can inhibit the mechanical bond between the epoxy and the silver pad,

causing the leads to detach during testing.

Once the back side of the ITO-sapphire heater has been cleaned, the heater is mounted

on the end of a borosilicate square tube, with the non-ITO (patterned) side of the heater

facing into the tube. Prior to assembly, the square tubing is also cleansed with deionized

water. The borosilicate square tube (Vitrocom S-145) is a 45mm square tube with 2mm wall

thickness, and is cut to approximately 152mm(6in). While the borosilicate tube is held in a

custom made assembly jig, the heater is adhered to the end of the tube with silicone sealant,

forming a watertight joint. The purpose of the borosilicate tube is to create an isolation cell

for the deionized water test fluid, separating it form the surrounding isothermal bath. Thus,

the heater surface is protected from any contaminants which many be present within the

PBF.

Finally, 16 AWG wire electric leads are adhered to the silver electrode pads with a silver

filled epoxy. While the wire lead is held in place by the assembly jig, silver epoxy is precision

deposited with a syringe. It is important that epoxy not spill onto the active heater area,

as it can degrade the optical quality of the imaging during testing. The epoxy is allowed

to cure for twenty four hours before the test is initiated. Two heater leads epoxied to the

ITO-sapphire heater are presented in Figure 4-11 (note, this heater is not on the borosilicate

tube).

4.4.2 Pool Boiling Facility

Located in MIT's Reactor Thermal Hydraulics Laboratory, the PBF has been utilized by

prior investigations, benchmarking its performance. [24,58] A schematic detailing the system
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Figure 4-11: Electrical leads attached to ITO-sapphire heater.

layout can be see in Figure 4-12. The aluminum facility consists of an outer isothermal bath

and an inner bath. However, the water surrounding the actual heater surface is further

isolated from these two baths by the borosilicate tubing. In the center of the inner bath

bottom is a square through hole, directly above which the ITO-sapphire heater is mounted.

A custom cut square silicone gel gasket is placed on the heater, around the wire leads. The

entire heater unit (ITO-sapphire heater, wire leads, borosilicate tube, and silicone gasket) is

lowered into the PBF. The wire leads are routed out the bottom of the PBF, with the silicone

gasket forming a watertight seal between the ITO-sapphire heater and the PBF floor. The

inner most isolation cell is filled with deionized water. A thin sheet of Viton is placed on

top of the borosilicate tube to prevent water loss from splashing during boiling (though this

sheet is well vented to the ambient environment). A plastic bracket and two long bolts are

used to secure the borosilicate tube in place, gently compressing the silicon gasket on the

PBF floor.

The outer isothermal baths are filled with regular water (approximately 3 gallons) and

brought to saturation using a 1500W cartridge style heater. The electric leads from the

heater are connected to a power supply (Electronic Measurements Inc. TCR Power Supply).

A data acquisition system (Agilent Technologies 34980A) is also connected to the circuit to

monitor power input and thus calculate heat flux. Voltage is monitored directly and current
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Figure 4-12: PBF layout.
for clarity.

Note, some minor components (e.g. gaskets) have been omitted

Figure 4-13: PBF with IR camera setup.
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is measured with a shunt resistor, allowing power to be calculated. Knowledge of the active

heater's area further allows for the determination of heat flux.

S P V xI
q1 VX (4.2)

Aactiveheater Aactiveheater

Where q" is the heat flux, P is power, V is voltage, I is current, and Aactiveheater is the

area of the active heater. Additionally, the data acquisition system has thermocouple inputs

to monitor the bulk water temperature in the bath.

Located directly beneath the heater is a 450 gold mirror on a scissor stage. To the

side of the PBF is a FUR SC6000 infrared (IR) camera, which allows for the temperature

measurement over the entire active heater. The gold mirror allows the side mounted IR

camera to image the heater surface from beneath. The ITO film is not IR-transparent and

thus the surface temperature profile on the back side of the sapphire (non-water side) is

registered by the IR camera (assuming negligible temperature gradient through the thin

ITO layer). As such, the temperature on the heater surface in contact with the water is

calculated to account for the temperature gradient in the appreciably thick sapphire. While

the IR videos have some loss of clarity due to imaging through the ITO film, they adequately

register the behavior of any patterns on the surface and offer insight into their performance.

Typically, 2000 frames are captured at 1000hz in a given IR capture. A MATLAB script is

used to determine the average spatial and temporal temperature of the heater surface from

the video. IR data is collected at different heat fluxes and the combination of the power

supplied and the IR temperature data is used to to construct a boiling curve. The heat flux

is continuously increased in discrete steps until the achievement of CHF, at which point the

heater typically fails catastrophically. A characteristic heating scheme, demonstrating the

heat flux steps can be seen in Table 4.3. Each heater is only used for a single test.

Start->0-+0.5-2 1- 5-7.5-+ 10-> 12-> 15-+20--+25->30->40->50-+60->70-80--+90
1700--6000-500-4704-430<-400<--3704-330+-3004--2704-230<-2004-170+-130<-100

800-+900- 1000->1100-1150--1200--1250-1300--...CHF

Table 4.3: Characteristic heating steps. Note: heat flux steps reduce in size as anticipated

CHF is approached. All values in k2 .
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4.5 Data Reduction

4.5.1 IR Signal Calibration

During PBF testing, a K-type thermocouple is adhered to the bottom center (ITO side) of

the active heater area. Additionally, an area of the active heater, not covered by the thermo-

couple or adhesive tape is imaged with the IR camera. Starting while the surface and water

bath are heating up at around 950C, thermocouple and IR measurements are simultaneously

taken at discrete intervals. The thermocouple measures the surface temperature in degrees

Celsius, while the number of pixel counts in a selected region is registered by the IR camera

and its accompanying ExamineIR software. This is continued to a surface temperature of

around 115 C. From this series of measurements, it is possible to linearly relate the number

of pixel counts with surface temperature, with a conversion ratio, CR. This relationship

takes the form,

Towce, = CR x (Counts) + of fset (4.3)

The offset is simply the y-intercept for the this linear relationship. Once this calibration

is obtained, the thermocouple is removed from the surface, to allow IR imaging of the entire

active heater area. This calibration step is performed periodically to ensure accurate data

reduction.

4.5.2 IR Signal Analysis

Following the PBF testing, for each heater, there is an IR video at each discrete heat flux

measured. During a given test thirty to forty measurements are taken. The exact number

varies from surface to surface, depending on CHF. The videos are exported in the Flexible

Image Transport System (FITS) format. This file type allows the videos to pe loaded into

MATLAB, where they are analyzed.

Using a MATLAB routine, known as the FITS Analyzer and developed by Phillips 2011,

the average surface temperature can be determined at each heat flux step. The user selects

the bounds of the active heater area in the user interface of the FITS Analyzer. This area
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is clearly discernible from the surrounding heater based on the sharp temperature contrast.

Once the active heater area is selected, the program iterates through all the IR videos

collected for a given heater. In each instance, the program determines the average number

of counts, both spatially across the active heater area and temporally through the IR video.

The end result is an average count value for each heat flux.

A separate MATLAB routine is used calculate the surface temperature at each heat flux

level. First, the count values from the FITS Analyzer are converted to temperature values.

The slope of this linear relationship is already defined by the conversion ratio. The offset

of this equation is determined by evaluating this relationship at a heat flux of 0'. As no

power is flowing through the heater, the surface temperature is assumed to be equal to the

equilibrium temperature of the bath. The equilibrium temperature, Tequilibrium, is the bath

temperature achieved by the cartridge preheater. Here, the equilibrium temperature was

about 99.5'C. Therefore, the offset value is determined as,

off set Tequilibrium - CR x (CountSato k) (4.4)

With the offset determined, it is then possible to calculate the temperature of the bottom

ITO surface using Equation 4.3. It is then necessary to calculate the temperature of the

sapphire boiling surface by considering the heat conduction through the substrate.

Considering the sapphire as a thermal circuit, the temperature profile through the sub-

strate can be determined through a simple heat conduction consideration. Here, the thermal

resistance of the ITO layer is considered negligible because of its relatively small thick-

ness compared to the sapphire (for reference, the temperature drop across the ITO layer at

1 5 0 0 kW is just 0.012 0C). The thermal circuit of the sapphire heater is presented in Figure

4-14, where Rsapphire is thermal resistance of the sapphire, tsapphire is the thickness of the sap-

phire, Tiower is the temperature on the ITO side of the heater, and Tupper is the temperature

on the upper sapphire side of the heater.

The thermal resistance of the sapphire can be calculated using the sapphire thermal

conductivity, ksapphire, as
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TTu

Rsapphire

Figure 4-14: Thermal circuit accounting for conduction through sapphire substrate.

Rsapphire -- tsapphire (4.5)
ksapphire

Where tsapphire is the thickness of the sapphire heater and ksapphire is the sapphire thermal

conductivity. The upper and lower temperatures of the sapphire heater can be related using

the heat flux, q" and the thermal resistance as,

Tupper = Tiower - q" x R (4.6)

Therefore, the MATLAB program calculates the sapphire (wetted) side surface temper-

ature at a given heat flux as,

Tupper = CR x (Counts) + of f set - q sapphire4.7)
ksapphire

The resulting average upper surface temperatures are plotted against the heat flux values

to create boiling curves for each heater surface.

4.6 Uncertainty Analysis

As with any experimental apparatus, it is important to consider the uncertainty in the

system. Fortunately, the PBF has been utilized by numerous previous ingestions, which

have characterized the measurement uncertainty. Gerardi (2009) determined the heat flux

uncertainty for the facility to be less than 2%. [58] This calculation remains valid for this

investigation as the methodologies are similar. Additionally, Gerardi (2009) determined the

effect of radial conduction in the heater to be negligible. [58]

Phillips subsequently characterized the uncertainty associated with the temperature mea-
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surement. As described previously, the temperature is measured on the bottom of the sap-

phire heater, but boiling occurs at the top. The temperature profile is calculated through

the heater, where variance in heater thickness can affect results. The thermocouple mea-

surement uncertainty is 0.75%, as cited by the manufacturer. [59] The reported uncertainty

for the temperature measurement of the SC6000 IR camera is 2%. [60] Phillips (2011) char-

acterized the tolerance of the sapphire thickness and used the method of error propogation

for multiplication of uncorrelated variables to obtain an uncertainty value. He established

that at 1750C, the temperature error is approximately 2.8%. [24] Full derivations for the

uncertainty error of the PBF and data reduction can be found in. [24,58]
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Chapter 5

Separate Effect Investigation

Preparation, Testing, and Results

The Separate Effect investigation provides keen insight into the effect of surface character-

istics on CHF and HTC. The results allow comparisons to be drawn between heaters and

for the isolation of the effect of specific surface features. As a baseline reference, the results

of each heater surface can also be compared to the performance of an Uncoated Sapphire

heater.

Before considering the performance of each specific heater surface, it is useful to present

the overall CHF performance of all heater surfaces. This allows for a macro-understanding

of their relative performance. CHF values for all heaters tested are presented in Table 5.1.

For most heaters, CHF was determined to be the highest stable heat flux before catastrophic

heater burnout. However, in the case of the smooth and rough hydrophobic porous heaters,

the transition to film boiling occurred at extremely low heat flux. This allowed the heater to

continue to operate in the filn boiling regime for a substantial range of heat flux before heater

burnout. In these cases, CHF and heater burnout must be distinguished, as indicated in

Table 5.1. Additionally, measurements of the as fabricated surface parameters are presented

in Table 5.2.
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Pattern CHF () Average CHF (g) St. Dev

Uncoated Heater 1 873
Uncoated Heater 2 1032
Uncoated Heater 2 920
Uncoated Heater 3 986 920 8.3%
Uncoated Heater 4 799
Uncoated Heater 5 885
Uncoated Heater 6 947

Smooth Non-porous Hydrophilic 1 1013
Smooth Non-porous Hydrophilic 2 904 1009 10.3%
Smooth Non-porous Hydrophilic 3 1111

Smooth Non-porous Hydrophobic 1 1114
Smooth Non-porous Hydrophobic 2 791
Smooth Non-porous Hydrophobic 3 1086 968 17.8%
Smooth Non-porous Hydrophobic 4 1082
Smooth Non-porous Hydrophobic 5 769

Smooth Porous Hydrophilic 1 1800
Smooth Porous Hydrophilic 2 1605 1617 10.9%
Smooth Porous Hydrophilic 3 1446

Smooth Porous Hydrophobic 1 38 (38)
Smooth Porous Hydrophobic 2 30 (65) 34 11.8%
Smooth Porous Hydrophobic 3 35 (47)

Rough Non-porous Hydrophilic 1 1007
Rough Non-porous Hydrophilic 2 1123 1063 5.5%
Rough Non-porous Hydrophilic 3 1059

Rough Non-porous Hydrophilic 1049
(1.98mm post pitch) 1 1022 3.6%

Rough Non-porous Hydrophilic 996
(1.98mm post pitch) 2

Rough Non-porous Hydrophobic 1 1172
Rough Non-porous Hydrophobic 2 1150 1067 15.3%
Rough Non-porous Hydrophobic 3 879

Rough Porous Hydrophilic 1 1594
Rough Porous Hydrophilic 2 1700 1590 7.0%
Rough Porous Hydrophilic 3 1478

Rough Porous Hydrophobic 1 20-40 (815)
Rough Porous Hydrophobic 2 40-60 (700) -
Rough Porous Hydrophobic 3 20-40 (359)

Table 5.1: CHF values for Separate Effect investigation. Note, values in parenthesis indicate
heater burnout heat flux, if different from local CHF. For the Rough Porous Hydrophobic
heaters, determination of CHF was somewhat subjective and thus a range of suspected CHF
is presented.
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Pattern Roughness (pm) Porosity Contact Angle (degrees)
Ra R2 (vol%) Static Adv. Rec.

Uncoated Heater 0.0033 0.00954 0% 74.7 81.7 47.7
(reference)

Smooth Non-porous 0.00416 0.02506 0% < 5 - -
Hydrophilic

Smooth Non-porous 0.00596 0.03569 0% 111.6 130.9 81.3
Hydrophobic

Smooth Porous 0.07 0.91 49% < 5 - -
Hydrophihec

Smooth Porous 0.07 0.91 49% 137.5 160.3 97.5
Hydrophobic

Rough Non-porous 2.66 14.96 0% < 5 - -
Hydrophilic

Rough Non-porous 2.59 15.22 0% 112.6 132.3 85.8
Hydrophobic

Rough Porous 2.23 14.08 49% 5 - -
Hydrophilic

Rough Porous 1.96 13.25 49% 139.8 149.4 103.6
Hydrophobic

Table 5.2: Measured surface parameters on fabricated heaters.

5.1 Uncoated Sapphire Surface

5.1.1 Surface Analysis

As received, the ITO-sapphire heaters are nano-smooth, non-porous, and have a average

static contact angle of 74.7'. The uncoated heater was tested such that the active heater

area was on the bare sapphire side. This provides a good baseline reference case, against

which other heater surfaces can be compared. The advancing, receding, and static contact

angles of the uncoated heater were measured and are compiled in Table 5.3.

Roughness measurements were made with the Dektak stylus profilometer. The average

roughness was measured to be Ra = 0.00330pri and R, = 0.00954 and a list of profiloineter

measurements is presented in Table 5.4. From these results, it is clear that the as received

heaters are extremely smooth surfaces.
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Contact Angle Average Contact Angle Standard
Measurement (Degrees) (Degrees) Deviation

Static 1 83.7
Static 2 68.8
Static 3 66.6 74.7 8.55%
Static 4 75.1
Static 5 79.4

Advancing 1 78.5
Advancing 2 79.0
Advancing 3 74.9 81.7 6.66%
Advancing 4 88.1
Advancing 5 88.2
Receding 1 42.9
Receding 2 43.8
Receding 3 58.4 47.4 5.73%
Receding 4 44.3
Receding 5 47.8

Table 5.3: Contact angle measurements for Uncoated Sapphire heater.

Scan Ra(jpm) R2(pm)

Scan 1 0.00392 0.0084
Scan 2 0.00389 0.01275
Scan 3 0.0025 0.00849
Scan 4 0.00302 0.00816
Scan 5 0.00317 0.0099

Average 0.00330 0.00954
St. Dev 18.36% 20.12%

Table 5.4: Roughness measurements for Uncoated Sapphire heater.
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5.1.2 PBF Testing and Discussion

Pattern CHF ( ) Average CHF (g) St. Dev

Uncoated Heater 1 873
Uncoated Heater 2 1032
Uncoated Heater 3 920
Uncoated Heater 4 986 920 8.3%
Uncoated Heater 5 799
Uncoated Heater 6 885
Uncoated Heater 7 947

Table 5.5: CHF Values for Uncoated Sapphire heaters.
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Previously, Phillips (2011) tested the benchmark performance of five Uncoated Sapphire

heaters (Heaters 3-7). Here, two additional heaters (Heaters 1 and 2) were tested to en-

sure agreement with previously acquired data. The average CHF value for the Uncoated

Sapphire heaters was 920kw with a standard deviation of 8.3%. The boiling curves created

by the Uncoated Sapphire heaters provides a common reference against which to compare

the performance of the subsequent heater surfaces. The boiling behavior of the Uncoated

Sapphire heater can be visualized from Figure 5-1.

A few perspectives can be gained from the benchmark testing of the Uncoated Sapphire

heaters. First, the CHF and boiling curve results of this investigation are in agreement with
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those of Phillip's work. This confirms the ability to draw comparisons of tests completed

in the two projects (as should be true, given that procedures and experimental apparatus

utilized are similar). Additionally, the variability in the boiling curves and CHF values offers

insight into the natural variability of the PBF and test procedure. In any boiling process,

there will be a partly stochastic process. Testing multiple Uncoated Sapphire heaters offers

an understanding of this natural variability, which can be used as a reference when analyzing

the performance of patterned surfaces. However overall, the boiling curves were grouped

relatively tightly. Additionally, a standard deviation of 8.3% for the CHF values implies a

repeatable testing procedure.

5.2 Smooth Non-porous Hydrophilic Surface

5.2.1 Surface Fabrication

The only surface preparation required for the Smooth Non-porous Hydrophilic heaters was to

deposit a thin hydrophilic layer on the surface. Using the electron beam procedure described

in Section 4.2.4, a 20nm layer of intrinsically hydrophilic Si0 2 was deposited at an average

rate of 1.3AA/s. The Si0 2 layer deposited by this vapor deposition technique conforms to

the surface topology and induced no further roughness or porosity than that already present

on the underlying surface.

In summary, the fabrication process for the Smooth Non-porous Hydrophilic heaters was

a single step:

1. Deposit 20nm thick Si0 2 layer via electron beam.

5.2.2 Surface Analysis

The resulting hydrophilic surface was highly wetting, with a static contact angle of less

than 5' after 0.5s Because of the super hydrophilicity of this surface, it was not possible

to characterize the advancing and receding contact angles. The results of the static contact

angle measurements are presented in Table 5.6 and can be visualized in Figure 5-2.
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Measurement Contact Angle (Degrees)
Static 1 < 50

Static 2 < 5
Static 3 < 50
Static 4 < 5
Static 5 < 50

Table 5.6: Contact angle measurements for Smooth Non-porous Hydrophilic heater.

Figure 5-2: Static contact angle measurement for Smooth Non-porous Hydrophilic surface.

The surface roughness of these heaters was characterized with the Dektak Surface Profiler.

Five scans, each 2mm long, were made and the results of these measurements are presented in

Table 5.7. On average, Ra and R2 were found to be 0.00416pm and 0.02506pm, respectively.

Clearly, even after Si0 2 deposition, this surface is still extremely smooth. In comparison

to the rough surfaces later tested, the Ra and R2 values of this surface are three orders of

magnitude less.

Scan Ra (p-m) Rz(pm)

Scan 1 0.00383 0.02420
Scan 2 0.00405 0.03327
Scan 3 0.00413 0.02358
Scan 4 0.00429 0.02333
Scan 5 0.00449 0.02109

Average 0.00416 0.02509
St. Dev 5.98% 18.81%

Table 5.7: Roughness measurements for Smooth Non-porous Hydrophilic heater.
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5.2.3 PBF Testing and Discussion

Pattern CHF (-) Average CHF (kw) St. Dev
Smooth Non-porous Hydrophilic 1 1013
Smooth Non-porous Hydrophilic 2 904 1009 10.3%
Smooth Non-porous Hydrophilic 3 1111

Table 5.8: CHF values for Smooth Non-porous Hydrophilic heaters.
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While the Smooth Non-porous Hydrophilic surface had a significantly higher wettability

than an Uncoated Sapphire heater, this surface did not realize significant CHF or HTC

improvement. The average CHF value was 10993 with a standard deviation of 10.25%. The

boiling curves for this surface are presented in Figure 5-3. Initially, the lack of improvement

over an Uncoated Sapphire heater was suspicious. It was hypothesized that the hydrophilic

coating was being lost during pool boiling. However, static contact angle measurements

of heater surfaces after pool boiling were around 15' - 200. That the surface was still

hydrophilic confirmed that the Si0 2 layer was intact. Some loss of hydrophilicity is expected

during testing as the surface was inevitibly contaminated as compared to its state after

fabrication in a cleanroom. Additionally, a similar, thin Si0 2 layer was used by Troung

(2011) in boiling experiments, which provides further validation that this type of material
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layer can remain intact during testing.

Therefore, the hydrophilic coating had little effect on this smooth non-porous surface.

This is surprising, given the popularity of hydrophilicity as a CHF enhancing mechanism.

However, it seems that the extreme smoothness and lack of porosity dwarfed the potential

benefits of the hydrophilic coating. With an extremely smooth surface, there was a distinct

lack of nucleation sites on the heater surface. While the hydrophilic coating could help to

rewet the surface, it seems that the lack of nucleation sites inhibited CHF enhancement.

This is an important caveat to the traditional understanding of the effect of surface wetta-

bility on boiling performance. However, these test results should not lead one to conclude

that hydrophilicity does not enhance CHF. Rather, the important understanding from these

tests is that extremely smooth and non-porous surfaces are minimally affected by intrinsic

wettability in terms of CHF.

5.3 Smooth Non-Porous Hydrophobic Surface

5.3.1 Surface Fabrication

No surface features were patterned on these heaters. Rather, only the intrinsic wettability

was altered. A hydrophobic surface was created with a fluorosilane CVD process. However,

as fluorosilane does not adhere well to bare sapphire, a thin SiO 2 layer was deposited first.

The OH- groups of the SiO 2 layer provide binding sites for fluorosilane. Additionally, the

fluorosilane CVD exposure time was increased to eight hours for these heaters. While shorter

exposure times (on the order of thirty minutes) are adequate for fluorosilane deposition on

porous surfaces, longer times are required for smooth surfaces. The wettability of the surface

is highly sensitive to defects in the fluorosilane layer and long exposure ensures a uniform

deposition. For reference, the static contact angle of this surface after a thirty minute

fluorosilane exposure was only 97.10. After eight hours of exposure, the static contact angle

was increased to 111.60. This level of hydrophobicity approaches the limit capable for a

non-porous surface. Though others have been able to achieve contact angles as high as 1300

on a smooth non-porous surface, the exotic techniques employed were not applicable to use
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on the ITO-sapphire heaters. [61, 62] While this level of hydrophobicity is not at the level

of the Smooth Porous Hydrophobic Surface (static contact angle of 137.50), it still allows

for approximate comparison between the surfaces. Additionally, this level of hydrophobicity

provides a stark contrast to that of the Smooth Non-Porous Hydrophilic heater (static contact

angle of < 50).

In summary, the chronological fabrication steps for the Smooth Non-porous Hydrophobic

heaters were:

1. Deposit 20nm thick Si0 2 layer via EB-PVD at a deposition rate of approximately

1.3A/s.

2. Deposit fluorosilane layer via CVD at 140'C for eight hours.

Because of suspected non-uniformity issues with the fluorosilane deposition on a smooth

surface, additional heaters were fabricated and tested. A total of five Smooth Non-porous

Hydrophobic heaters were examined, with all surfaces characterized and inspected to ensure

that the surface characteristics met the specified standards.

5.3.2 Surface Analysis

The average static, advancing, and receding contact angles were measured to be 111.6',

130.90 , and 81.30, respectively. A summary of all contact angle measurements made on this

heater surface can be see in Table 5.9. Images of the water droplets during the different

contact angle measurements can be seen in Figure 5-4.

Surface roughness measurements were made with the Dektak Surface Profiler. The av-

erage Ra and R, values were determined to be 0.00596pm and .03569pm, respectively. The

results of the five surface profile scans made are presented in Table 5.10. While there is a

higher standard deviation for these values, the absolute roughness values are still on the or-

der of Angstroms and orders of magnitude below those of the rough series of heater surfaces.

The increased variability in the surface scans is likely a result of slight non-uniformities in

the fluorosilane coating.
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Measurement Contact Angle Average Contact Angle Standard
(Degrees) (Degrees) Deviation

Static 1 108.6
Static 2 111.6
Static 3 110.2 111.6 1.78%
Static 4 113.3
Static 5 114.1

Advancing 1 137.6
Advancing 2 131.1
Advancing 3 126.8 130.9 2.78%
Advancing 4 129.1
Advancing 5 129.8
Receding 1 76.1
Receding 2 80.1
Receding 3 85.4 81.3 4.10%
Receding 4 84.9
Receding 5 79.4

Table 5.9: Contact angle measurements for Smooth Non-porous Hydrophobic heater.

w

(a) Static Contact Angle (b) Advancing Contact Angle

(c) Receding Contact Angle

Figure 5-4: Contact angle measurements for Smooth Non-porous Hydrophobic surface.
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Scan Ra(A) R2(A)
Scan 1 0.00459 0.02119
Scan 2 0.00511 0.01434
Scan 3 0.00523 0.0287
Scan 4 0.00683 0.06029
Scan 5 0.00803 0.05393

Average 0.00596 0.03569
St. Dev 23.99% 56.96%

Table 5.10: Roughness measurements for Smooth Non-porous Hydrophobic heater.

5.3.3 PBF Testing and Discussion

Pattern CHF (7) Average CHF (-) St. Dev

Smooth Non-porous Hydrophobic 1 1114

Smooth Non-porous Hydrophobic 2 791
Smooth Non-porous Hydrophobic 3 1086 968 17.8%
Smooth Non-porous Hydrophobic 4 1082
Smooth Non-porous Hydrophobic 5 769

Table 5.11: CHF Values for Smooth Non-porous Hydrophobic heaters.

The Smooth Non-porous Hydrophobic heaters had CHF values also similar to the Un-

coated Sapphire surfaces. The average Smooth Non-porous Hydrophobic CHF value was

968 , with a standard deviation of 17.8%. It was suspected that the hydrophobic coating

would have detrimental CHF effects, as it inhibits liquid rewetting. As with the Smooth

Non-porous Hydrophilic surfaces, here it was feared that the surface coating was being lost

during pool boiling. However, contact angle measurements of heater surfaces after pool boing

were in the range of 900 - 1000. This confirms that hydrophoic fluorosilane coating was still

intact on the surface. Additionally, the fluorosilane coating has been utilized by numerous

other investigations with success in the past to create a hydrophobic surface. Five heaters

were created and tested for this surface, as there was some concern about repeatability of

the fluorosilane deposition on the smooth surface. However, as the boiling curves in Figure

5-5 illsutrate, all of the fabricated heaters performed in a relativley similar manner.

Again, the wettability transformation of the smooth, non-porous surface did not have

a significant effect on the heaters' performance. It seems that the extreme smoothness
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and non-porosity again override the wettability affects. As is shown with subsequent tests,

wettability does affect surfaces when porosity is present. Here, however, increasing the

intrinsic hydropobicity of the surface alone had little effect.

5.4 Smooth Porous Hydrophilic Surface

5.4.1 Surface Fabrication

Porosity and hydrophilicity were created through the LBL procedure outlined in Section

4.2.1. Si0 2 particles with a diameter of 50nm were used and fifty bilayers were deposited.

The porous hydrophilic surfaces are particularly susceptible to attracting surface contami-

nants from the ambient environment. Therefore, following the LBL deposition, the heaters

were plasma cleaned. After this process, the LBL heaters were kept in a sealed container

until mounted in the PBF for testing.

In summary, the chronological fabrication steps for the Smooth Porous Hydrophilic

heaters were:

1. LBL deposition with 50nm Si0 2 particles for fifty layers.

2. Plasma cleaning.
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5.4.2 Surface Analysis

The contact angle of the Smooth Porous Hydrophilic surface was measured twenty four

hours after plasma cleaning and immediately before PBF testing. Plasma cleaning will

temporarily transform any surface to hydrophilic, though this effect is short lasted. As

a result, it is important to delay contact angle measurement until all temporary surface

chemistry transformation has expired. This ensures that the contact angle measured is

actually representative of the intrinsic wettability of the surface. The average static contact

angle for this surface was measured to be < 5', implying a super hydrophilicity.

Measurement Contact Angle (Degrees)
Static 1 < 50
Static 2 < 50
Static 3 < 50
Static 4 < 50
Static 5 < 50

Table 5.12: Contact angle measurements for Smooth Porous Hydrophilic surface.

Figure 5-6: Static contact angle measurement for Smooth Porous Hydrophilic surface.

Phillips (2011) measured the thickness and porosity of an identical LBL surface using

the spectroscopic ellipsometry technique described in Section 4.3.4. His characterization is

presented in Table 5.13. [24]

The Smooth Porous Hydrophilic surfaces created in this investigation are identical to

those measured by Phillips and his measurements are applicable to the surfaces tested here.

The average porosity of the layer is 49%.

Similarly, Phillips (2011) used a confocal microscope to determine the roughness of this
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Attribute Value
Total Thickness (nm) 1360
Thickness of Each Multilayer (nm) 27
Thickness Standard Deviation 0.90%
Porosity 0.49
Porosity Standard Deviation 6%

Table 5.13: Phillips' porosity characterization of Smooth Porous Hydrophilic surface. [24].

type of heater surface. In these measurements, a full area of 128pimx128pm and a local

characteristic spot of 30pmx30pim were imaged. The results of this analysis is presented in

Table 5.14.

Attribute Value
Global SRa (pm) 0.07
Local SRa (im) 0.06
Global SRz (jim) 0.91
Local SRz (ptm) 0.65

Table 5.14: Phillips' roughness measurements of Smooth Porous Hydrophilic surface. [24].

While the roughness resulting from the Si0 2 nanoparticles is appreciable compared to

Uncoated Sapphire or any of the non-porous surfaces, it is still orders of magnitude less than

the roughness imparted by the post features. As such, these heaters are still considered to

be smooth in the terms of this investigation.

In addition to the roughness characterization by confocal microscope, this surface rough-

ness was also analyzed with a stylus profilometer. The profilometer tip has a radius of

12.5pm, which is larger than the anticipated pore size. Therefore, some aliasing occurred in

this measurement. However, the results still offer an adequate upper limit of roughness and

are in relatively good agreement with the confocal microscope measurements.

Finally, SEM images acquired by Phillips (2011) confirm the presence and packing of

the Si0 2 nanoparticles. As seen in Figure 5-7, a distinct porous structure is created by the

particles. [24]
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Scan Ra(ipm) R2(pm)
Scan 1 0.14877 0.97651
Scan 2 0.16392 0.92705
Scan 3 0.13006 0.65539
Scan 4 0.10605 0.66749
Scan 5 0.13073 0.68364

Average 0.13591 0.78202
St. Dev 16.05% 19.98%

Table 5.15: Profilometer roughness rneasurements for Smooth Porous Hydrophilic heater.

(a) 20,OOOX (b) 100,OOOX

Figure 5-7: SEM images of Smooth Porous Hydrophilic surface (acquired by Phillips (2011))
[24]

Pattern CHF (-i) Average CHF (-) St. Dev
Smooth Porous Hydrophilic 1 1800
Smooth Porous Hydrophilic 2 1605 1617 10.9%
Smooth Porous Hydrophilic 3 1446

Table 5.16: CHF values for Smooth Porous Hydrophilic heater.
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5.4.3 PBF Testing and Discussion

The Smooth Porous Hydrophilic heaters had the highest CHF values among all heater sur-
r- CW 1 i-7kW __41 A4 I-1 1 n n/ 1+Sem

faces tested. The average CHF was 16 17-; withi a stadUarU deviation of10.9%. It

that the combination of porosity and hydrophilicty is a very effective mechanism to enhance

CHF. Interestingly, the HTC was not significantly heightened and more direct HTC com-

parisions are presented in Section 5.11. Additionally, while the CHF values were grouped

as tightly as most other results in this investigation, the boiling curves for this surface are

somewhat spread out. The three heaters tested were all fabricated simultaneously under

identical conditions. This implies that there is a degree of variablility in the performance

of a porous hydrophilic surface. This may be a result of naturally varying levels of pore

interconnectedness on the surfaces. The pores and the pathways that connect them are cre-

ated naturally by spherical packing during the LBL process. The manner in which the Si0 2

spheres assemble cannot be controlled. While the overall level of porosity remains around

50% for these surfaces, it might be the case that certain heaters have more efficient or preva-

lent pathways conencting the pores. This could result in more enhanced boiling performance

and account for the variability in the Smooth Porous Hydrophilic boiling curves.

Regardless, this heater surface was particularly well performing and should be considered

for more in-depth investigation and application. Philips (2011) tested similar surfaces and
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also varied the pore size by using Si0 2 particles with different diameters (7nm - 100nm). [24]

A summary of these results is presented in Table 5.17.

Pattern CHF Average CHF (g) St. Dev

7nm SiO 2 Particles 3 1107
7nm SiO 2 Particles 4 1085 1096 1%

50nm SiO 2 Particles 1 1650
50nm SiO 2 Particles 2 1600 1583 5%
50nm SiO 2 Particles 3 1500

100nm SiO 2 Particles 2 1342
100nm SiO 2 Particles 4 1400 1382 6%
100nm SiO 2 Particles 5 1490
100nm Si0 2 Particles 6 1297

20/50nm SiO 2 Particles 1 1640
20/50nm SiO 2 Particles 2 1600 1587 4%
20/50nm SiO 2 Particles 3 1522

Table 5.17: Phillips' (2011) CHF results after varying the particle size of Smooth Porous
Hydrophilic Surfaces. The 20/50nm surface was comprised of a mixture of 20nm and 50nm

Si0 2 particles. [24]

He found that pore size did not significantly affect CHF; however the surfaces with 50nm

particles were slightly better performing than those with larger and smaller particles. The

next steps for investigating a porous hydrophilic boiling surface are to consider surfaces with

multiple layers of different pore sizes. Perhaps, small particles (nanoscale) could be used

near the substrate to create high capillary wicking action and larger particles (microscale)

could be deposited on top, to create nucleation sites on the same order of magnitude as

is typically found in nature. Additionally, it will be important to consider mechanisms by

which to make a more durable porous hydrophilic surface ready for deployment in industry.

5.5 Smooth Porous Hydrophobic Surface

5.5.1 Surface Fabrication

The fabrication of the Smooth Porous Hydrophobic heaters was similar to that of the Smooth

Porous Hydrophilic heaters, with an extra wettability altering step at the end of the process.

To induce porosity, the ITO-sapphire heaters were first prepared via an LBL process with
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fifty layers of 50nm Si0 2 particles. However, as indicated previously, this results in an

intrinsically hydrophilic surface. Therefore, the resulting surface was coated with a layer of

fluorosilane via the CVD process described in Section 4.2.2. Because the porous surface is

conducive to accepting the fluorosilane deposition, an exposure time of thirty minutes was

adequate for uniform surface coverage. The fluorosilane monolayer conforms tightly to the

surface, thus preserving the porosity of the LBL layer, while making the surface hydrophobic.

In summary, the chronological fabrication steps for the Smooth Porous Hydrophobic

heater were:

1. LBL deposition with 50nm Si0 2 particles for fifty layers.

2. CVD of fluorosilarie for thirty minutes.

5.5.2 Surface Analysis

Multiple static, advancing, and receding contact angle measurements were made on the

porous hydrophobic surface. The porous hydrophobic surface exhibited the highest contact

angle of the surfaces tested, with an average static contact angle of 137.50. Additionally,

the average advancing and receding contact angles were 160.30 and 97.5', respectively. The

results of these measurements are presented in Table 5.18, along with images of each type of

contact angle measurement in Figure 5-9. This increase in contact angle can be attributed

to the Cassie effect working in combination with the intrinsic hydrophobicity of the surface.

The fluorosilane deposited on the heater surface forms a near monolayer on the surface,

as established in [24,45]. This layer conforms to the underlying porosity created by the LBL

coating. As such, the porosity of the surface remains intact and near a value of around

50% by volume, as measured by Phillips (2011) for surfaces identical to the Smooth Porous

Hydrophilic heaters. Likewise, the roughnes is not affected by the conformal hydrophobic

coating.

To be certain, surface roughness was also characterized with the surface profilometer and

the results are presented in Table 5.19.

95



Measurement Contact Angle Average Contact Angle Standard
(Degrees) (Degrees) Deviation

Static 1 136.4
Static 2 141.9
Static 3 137.6 137.5 1.69%
Static 4 136.2
Static 5 135.3

Advancing 1 165.9
Advancing 2 149.6
Advancing 3 161.5 160.3 3.59%
Advancing 4 160.1
Advancing 5 164.6
Receding 1 98.2
Receding 2 87.3
Receding 3 108.0 97.5 8.31%
Receding 4 104.5
Receding 5 89.4

Table 5.18: Contact angle measurements for Smooth Porous Hydrophobic heater.

(a) Static Contact Angle (b) Advancing Contact Angle

(c) Receding Contact Angle

Figure 5-9: Contact angle measurements for Porous Hydrophobic heater.
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Scan Ra(pm) R,(pm)
Scan 1 0.119 0.7849
Scan 2 0.11103 0.65729
Scan 3 0.11601 0.64717
Scan 4 0.12214 0.88606
Scan 5 0.11673 0.65548

Average 0.11698 0.72618
St. Dev 3.50% 14.61%

Table 5.19: Roughness measurements for Smooth Porous Hydrophobic heater.

5.5.3 PBF Testing and Discussion

Pattern CHF (k) Burnout(') Average CHF St. Dev
(kW)

Smooth Porous Hydrophobic 38 38
1 34

Smooth Porous Hydrophobic 30 65 11.8%
2

Smooth Porous Hydrophobic
3 4 J

Table 5.20: CHF and Burnout values for Smooth Porous Hydrophobic heaters.

With the lowest CHF value by an order of magnitude compared to other surfaces, the

porous hydrophobic heater surface is interesting because of its inability to transfer heat. As

the heat flux was increased into these heaters, the traditional nucleate boiling regime was not

present. Low heat fluxes below around 5k resulted in the typical natural convection heat

transfer expected. However, at around 15kw, two to three large vapor bubbles began for

form on the surface. Substantially larger than a typical bubble departing from the surface,

these formations were approximately 4mm - 5mm in diameter. These large vapor cushions

merged and by 30k a single vapor cushion covered most of the heater surface, which can

essentially be considered film boiling. Large vapor bubbles were released from the top of

this cushion. Interestingly, the liquid-vapor interface on the heater surface did not move

during the ebullition cycle, which results in a lack of time dependent behavior visible in the

IR videos of the heater. Because of this unique boiling curve, the degassing procedure for
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Figure 5-10: Boiling Curve and Heat Transfer Coefficient for Smooth Porous Hydrophobic
heaters.

these heaters was amended to heating at 20k for thirty minutes prior to PBF testing. The

progression of the surface temperature profile and the formation of a vapor cushion can be

visualized in Figure 5-11. Because of the very limited time dependence in the IR signal, each

image is a good representation of the surface temperature profile for the corresponding heat

flux.

From the IR signal, it is clear that the boiling surfaces suffer from an inability to rewet,

which leads to the growth of the vapor formation on the heater surface. This lends support

to the hot spot CHF theory.

Because the transition to film boiling occurred at such a low heat flux, CHF for these

heaters did not result in catastrophic heater failure. As such, CHF was considered to be the

point at which film boiling dominated the entire heater surface. However, all heaters were

able to be driving significantly past CHF offering further insight into the performance of

the porous hydrophobic heater surface. In these tests, the surface temperature of the ITO-

sapphire increased to quite high levels around 400'C. In some instances the ITO-sapphire

heater eventually cracked, likely because of the thermal stress. While in other tests, the ITO

layer of the heater annealed under the high temperature, altering its IR (but not optical)

appearance, as can be seen in Figure 5-12. In these cases, the experiment was terminated.

Gerardi (2009) identified that ITO undergoes a restructuring around 2000C, which is likely
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Figure 5-11: Surface temperature progression of porous hydrophilic heater.
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annealing and the result of the IR property change. [58]

Figure 5-12: Annealed ITO. Note, color difference does not represent temperature profile in

this figure, but rather IR opacity. Entire surface is at 99'C.

Overall, the porous hydrophobic heater presents interesting insight into the separate

effects on boiling. While porosity further enhance CHF in the case of hydrophilic heaters, it

has the opposite effect for the hydrophobic heaters. As has been established, porosity helps

to further increase the contact angle of an already hydrophobic surface. Therefore, there is

clearly a large barrier to the rewetting of this heater surface during boiling. As such, there is

an extremely early transition to film boiling, with the nucleate boiling regime almost entirely

skipped. It is also possible that the porosity of the surface helps to promote and maintain the

vapor layer on the heater surface by provide pathways for vapor to move from one location to

another. While a surface with these characteristics is not well suited for typical applications

requiring high heat transfer and CHF, there may still be uses for a porous hydrophobic

coating. Because film boiling can be established with such a low heat flux, such a surface

could be used in an application where a vapor layer is desired, perhaps for either insulation

or drag reduction purposes. However, the further engineering and deployment of this surface

is beyond the scope of this investigation.

5.6 Rough Non-porous Hydrophilic Surface

5.6.1 Surface Fabrication

The first step for the creation of all rough heaters was the fabrication of the post features.

Posts with a diameter of 20pm, height of 15pm - 20pm and spaced on a hexagonal pitch of
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0.5 mm pitch were created with the photolithography procedure outlined in Section 4.2.5.

In order to ensure that all heaters with surface roughness were identical, these heater were

batch processed, with all posts created under the same operating conditions. While the

photolithography process results in post extrusions from the surface no porosity is induced

on the heater surface. Moreover, the regions not covered by the SU-8 posts remains smooth

bare sapphire. For the Rough Non-porous Hydrophilic surface, following post fabrication,

a 20nm thick layer of Si0 2 was deposited on the heater surface via EB-PVD. The Si0 2

vapor uniformly covered the heater surface, conforming to the topography of the posts and

transforming the surface to hydrophilic.

In summary, the chronological fabrication steps for the Rough Non-porous Hydrophilic

heaters were:

1. Fabricate surface posts via photolithography process.

2. Deposit SiO 2 via EB-PVD.

5.6.2 Surface Analysis

The static contact angle was measured after the standard 0.5s to be < 5', as seen in Figure

5-13. The advancing and receding contact angles were not measured, as the surface was

extremely well wetting, making such measurements not possible and of little utility. It

is important to note that the wettability of this Rough Non-porous Hydrophilic heater is

identical to that of the Smooth Non-porous Hydrophilic surface. This indicates that the post

structures fabricated on the heater are spaced such that they do not affect the interaction

between the water droplet and the heater surface, as expected.

Measurement Contact Angle (Degrees)
Static 1 < 50
Static 2 < 50
Static 3 < 50
Static 4 < 50
Static 5 < 50

Table 5.21: Contact angle measurements for Rough Non-porous Hydrophilic heater.
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Figure 5-13: Static contact angle measurements for Rough Non-porous Hydrophilic surface.

The surface roughness was characterized with five 2000pm scans with the stylus pro-

filometer. The tested surface was determined to have an average feature height of 15.53pm,

with posts spaced 0.5mm, apart, as designed. This resulted in average roughness values of

Ra = 2.66pm and R2 = 15.27pm. The results of all five scans are presented in Table 5.22.

Scan Ra(pm) R,(pm)

Scan 1 2.63251 14.5382
Scan 2 2.78835 14.39037
Scan 3 2.56666 14.29553
Scan 4 2.68372 14.7946

Scan 5 2.66471 16.80592
Average 2.66719 14.96492
St. Dev 3.04% 6.99%

Table 5.22: Roughness measurements for Rough Non-porous Hydrophilic heater.

The profile of the post features can be observed from the profilometer trace presented

in Figure 5-14. This trace corresponds to Scan 5 in Table 5.22. Here, the post height and

spacing can be readily understood.

SEM images were captured of the surface post features. The non-conductive post features

were coated with a thin gold layer to enhance imaging. The SEM was operated at low current

and low voltage (5kV) settings. Figures 5-15a and 5-15b help to characterize the geometry

of the posts. As can be seen from the images, the final diameter of the posts is slightly

larger (25pm) than the target diameter (20Im). However, the posts are spaced wide enough

that the experiment is insensitive to small diametrical fluctuations in the posts. The pitch

spacing of the posts was confirmed to be near the target of 0.5mm.
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Figure 5-14: Surface profile for Rough Non-porous Hydrophilic heater.

(a) Single Post (b) Post Array

Figure 5-15: SEM images of post features.
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5.6.3 PBF Testing and Discussion

Pattern CHEF ( ) Average CHF (kw) St. Dev

Rough Non-porous Hydrophilic 1 1007

Rough Non-porous Hydrophilic 2 1123 1063 5.5%
Rough Non-porous Hydrophilic 3 1059

Table 5.23: CHF values for Rough Non-porous Hydrophilic heaters.

1000

E 800

600

400

200

Figure 5-1
heaters

40

1-0 35

30

- 25-

20-0

CU 15-

10-

- 5 --

0
100 105 110 115 120 125 130 135 0 200 400 600 800 1000 1200

Surface Temoerature (C Heat Flux (kW/m
2

- Rough Non-porous Hydrophilic 1 -El- Rough Non-porous Hydrophilic 1
-e-- Rough Non-porous Hydrophilic 2 -e- Rough Non-porous Hydrophilic 2

- Rough Non-porous Hydrophilic 3 -- Rough Non-porous Hydrophilic 3

(a) Boiling Curve (b) Heat Transfer Coefficient

6: Boiling Curve and Heat Transfer Coefficient for Rough Non-porous Hydrophilic

The Rough Non-Porous Hydrophilic heaters had an average CHF of 1063k with a

standard deviation of 5.5%. The roughness induced by the post features did not have a

significant effect on CHF, as attested to by the fact that the CHF value for this heater was

nearly identical to that of its smooth counterpart (Smooth Non-Porous Hydrophilic heater,

average CHF = 1009k ). Additionally, the superposition of roughness and hydrophilicty did

not combine to create a significantly better performing surface (as was the case with porosity

and hydrophilicty). The boiling curves and CHF values for the heaters tested in this surface

series were tightly grouped, showing repeatability. These results shed interesting light on

the common perception of the importance of surface roughness on boiling performance. As

is clearly evident from these results, roughness had no appreciable affect on a non-porous

hydrophilic surface. More explicity comparisons of this heater surface's performance with
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others is made in Section 5.11.

5.7 Modified Rough Non-porous Hydrophilic Surface

5.7.1 Surface Fabrication

Posts with a diameter of 20pm, height of 15pTm - 20im and spaced on a hexagonal pitch

of 1.98 mm pitch were created with the photolithography procedure outlined in Section

4.2.5. Following post fabrication, a 20nm thick layer of SiO 2 was deposited on the heater

surface via EB-PVD. The SiO 2 vapor uniformly covered the heater surface, conforming to

the topography of the posts and transforming the surface to hydrophilic.

In summary, the chronological fabrication steps for the Rough Non-porous Hydrophilic

heaters were:

1. Fabricate surface posts via photolithography process.

2. Deposit SiO 2 via EB-PVD.

5.7.2 PBF Testing and Discussion

Pattern CHF (g) Average CHF (k) St. Dev

Rough Non-porous Hydrophilic 1049
(1.98mm post pitch) 1 1022 3.6%

Rough Non-porous Hydrophilic 996
(1.98mm post pitch) 2

Table 5.24: CHF values for Modified Rough Non-porous Hydrophilic heaters.

The Modified Rough Non-porous Hydrophilic heaters had an average CHF of 10222

with a standard deviation of 3.6%. The more widely spaced posts did not significantly

change the CHF values of the heaters. The results of these test were very similar to the

standard Rough Non-porous hydrophilic heaters, as was expected. These findings imply that

the roughness imparted in this experiment would similarly effect CHF at elevated presures

(5bar, as tested here).
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Figure 5-17: Boiling Curve and Heat Transfer Coefficient for Modified Rough Non-porous
Hydrophilic heaters (1.98mm post pitch).

5.8 Rough Non-porous Hydrophobic Surface

5.8.1 Surface Fabrication

The fabrication of the Rough Non-porous Hydrophobic surface was identical to the Rough

Non-porous Hydrophilic surface, with the inclusion of a hydrophobizing fluorosilane CVD at

the end of the process. First, posts with a diameter of 2 0 tm, height of 15pum - 20pm and

spaced on a hexagonal pitch of 0.5 mm pitch were fabricated. Next, a 20nm layer of SiO 2

was deposited. In this instance, this layer is not used for its hydrophilicity, but rather for its

OH- groups, which provide binding sites for hydrophobic fluorosilane. Finally, the heater was

exposed to fluorosilane for eight hours, allowing the surface to be coated and transformed to

hydrophobic. As with the Smooth Non-porous Hydrophobic surface, the longer fluorosilane

exposure was utilized to create a uniform coating in the lack of porosity. The fluorosilane

exposure temperature of 1400C is below the melting point of SU-8, allowing the post features

to remain intact.

In summary, the chronological fabrication steps for the Rough Non-porous Hydrophobic

heaters were:

1. Fabricate surface posts via photolithography process.
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2. Deposit Si0 2 via EB-PVD.

3. Deposit fluorosilane via CVD using long, eight hour exposure.

5.8.2 Surface Analysis

The average static, advancing and receding contact angles of the Rough Non-porous Hy-

drophobic heater were measured to be 112.6', 132.3', and 85.70, respectively. The complete

set of contact angle measurements made on this heater surface is presented in Table 5.25.

Measurement Contact Angle Average Contact Angle Standard
(Degrees) (Degrees) Deviation

Static 1 112.7
Static 2 113.0
Static 3 115.3 112.6 1.50%
Static 4 111.9
Static 5 110.1

Advancing 1 135.0
Advancing 2 135.1
Advancing 3 130.9 132.3 2.39%
Advancing 4 131.6
Advancing 5 129.0
Receding 1 84.9
Receding 2 92.0
Receding 3 82.6 85.8 3.82%
Receding 4 83.4
Receding 5 85.7

Table 5.25: Contact angle measurements for Rough Non-porous Hydrophobic heater.

After fluorosilane deposition, the surfaces were examined under an optical microscope

to confirm the integrity of the post features. These images are presented in Figures 5-19a

and 5-19b. The orange tint is a result of the fluorosilane coating. Additionally, multiple

contaminants on the surface can be seen in Figure 5-19b; these were deposited during the

CVD fluorosilane process. While steps are taken to clean all equipment used, a degree of

surface contamination is inevitable (the laboratory where CVD is carried out is not a "clean

room"). Surface contamination can be a leading inhibitor of achieving high contact angle

for hydrophobic surfaces.
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(a) Static Contact Angle (b) Advancing Contact Angle

(c) Receding Contact Angle

Figure 5-18: Contact angle measurements for Rough Non-porous Hydrophobic surface.

(a) Single Post (b) Array of Posts

Figure 5-19: Optical microscope images of posts on Rough Non-porous Hydrophobic heater

after CVD fluorosilane process.
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The average surface roughness values were measured to be Ra = 2.59im and R, -

15.22pim. The complete list of surface roughness measurements made with the surface profiler

is presented in Table 5.26.

Scan Ra(pim) R,(pm)

Scan Ra (um) Rz (um)
Scan 1 2.67481 16.82892
Scan 2 2.26723 13.31616
Scan 3 2.70959 15.37344
Scan 4 2.68637 16.56404
Scan 5 2.63484 14.05912

Average 2.59457 15.22834
St. Dev 7.13% 10.06%

Table 5.26: Roughness measurements of Rough Non-porous Hydrophobic surface.

5.8.3 PBF Testing and Discussion

Pattern CHF (2) Average CHF (2) St. Dev

Rough Non-porous Hydrophobic 1 1172

Rough Non-porous Hydrophobic 2 1150 1067 15.29%
Rough Non-porous Hydrophobic 3 879

Table 5.27: CHF values for Rough Non-porous Hydrophobic heaters.

The Rough Non-porous Hydrophobic surfaces had an average CHF of 1067k, with a

standard deviation of 15.29%. The boiling curves were not as tightly grouped as other

heaters tested; however a wider spread was more commonly observed wtih hydrophobic

surfaces. This may be an affect of non-uniformities in the hydrophobic coating on a non-

porous surface. It may also be a natural variance resulting from tendancy of the surface to

repel water during boiling. Interestingly, however, this surface performed very similarly to

the Smooth Non-Porous Hydrophobic surface, further implying that the post features have

no effect on boiling. Likewise, the combination of roughness and hydrophobicity did not

combine to have a significant effect on the boiling performance. This is again in contrast
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Figure 5-20: Boiling Curve and Heat Transfer Coefficient for Rough Non-porous Hydrophobic

heaters.

to the effect of combining porosity and hydrophobicity, which had markedly detrimental

consequences.
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5.9 Rough Porous Hydrophilic Surface

5.9.1 Surface Fabrication

First, posts with a diameter of 20prn, height of 15pm - 201 r and spaced on a hexagonal

pitch of 0.5 mm pitch were fabricated under the same conditions as in Section 5.7.1. Next,

the heaters were coated with fifty layers of 50nm Si0 2 particles using the LBL procedure.

Because the posts are significantly larger than the SiO 2 particles and spaced on a large pitch,

the LBL layers were able to conform to the surface topology. As in previous test cases, the

SiO 2 nanoparticles induced both porosity and hydrophilicity in the heater surface.

1. Fabricate surface posts via photolithography process.

2. LBL deposition with 50nm SiO 2 particles for fifty layers.

5.9.2 Surface Analysis

Immediately prior to PBF testing, the average static contact angle of the Rough Porous Hy-

drophilic heater was measured to be about 5'. This is similar to the wettability of the Smooth

Porous Hydrophilic heater, implying that the post features do not affect the wettability of

the surface.

Measurement Contact Angle (Degrees)
Static 1 50

Static 2 50

Static 3 50

Static 4 50

Static 5 5

Table 5.28: Contact angle measurements for Rough Porous Hydrophilic heater.

The surface roughness of the heater was characterized with the surface profilometer. On

average, for the Rough Porous Hydrophobic heater, Ra = 2.23pum and R, = 14.09pm. The

complete set of scans is presented in Table 5.29.

Additionally, SEM images of Si0 2 multilayers deposited on top of similar posts were

acquired by Truong (2011). Presented in Figure 5-22, this image demonstrates how the LBL
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Figure 5-21: Contact angle measurements for Rough Porous Hydrophilic surface.

Scan Ra(pim) Rr(pm)
Scan 1 2.05625 13.65465
Scan 2 2.42532 14.79211
Scan 3 2.0321 15.09634
Scan 4 2.37961 13.30169
Scan 5 2.26319 13.59711

Average 2.23129 14.08838
St. Dev 8.11% 5.68%

Table 5.29: Roughness measurements for Rough Porous Hydrophilic heater.

coating conforms to the post extrusion.

5.9.3 PBF Testing and Discussion

Pattern CHF (-) Average CHF (2) St. Dev
Rough Porous Hydrophilic 1 1594
Rough Porous Hydrophilic 2 1700 1590 7.0%
Rough Porous Hydrophilic 3 1478

Table 5.30: CHF values for Rough Porous Hydrophilic surface heaters.

The Rough Porous Hydrophilic heater was very well performing, with an average CHF

of 1590k and a standard deviation of 7.0%. This heater performed very similarly to the

Smooth Porous Hydrophilic heater, thereby again implying that the post features had little

effect on the boiling performance. In all likelyhood, the fact that the posts existed on

the surface was moot and the heater's performance was simply driven by the porosity and

hydrophilicty. These results continue to support the trend of roughness having little to
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Figure 5-22: SEM image
by Troung (2011)). [26]
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no effect on boiling performance, while the combination of porosity and hydrophilicity is

particularly enhancing.

5.10 Rough Porous Hydrophobic Surface

5.10.1 Surface Fabrication

First, posts with a diameter of 20pm, height of 15pm - 20pm and spaced on a hexagonal

pitch of 0.5 mm pitch were fabricated under the same conditions as in Section 5.7.1. Next, the

heaters were coated with fifty layers of 50nm SiO 2 particles using the LBL procedure. As with

the Rough Porous Hydrophilic surfaces, the LBL layers were able to conform to the surface

topology. Finally, the overall surface was converted to hydrophobic via the fluorosilane

deposition process. Here, the shorter fluorosilane CVD exposure of thirty minutes was

adequate for uniform coating.

1. Fabricate surface posts via photolithography process.

2. LBL deposition with 50nm SiO 2 particles for fifty layers.

3. Fluorosilane CVD with an exposure time of thirty minutes.

5.10.2 Surface Analysis

Contact Angle Measurement

The average static, advancing and receding contact angles were measured to be 139.80, 149.40

and 103.6'. These values are consistent the with contact angle measurements of the Smooth

Porous Hydrophobic heater. This confirms that the posts were spaced appropriately so as

not induce any capillary action.

The surface roughness was characterized to be on average, Ra = 1.96pm and R=

13.25pm.
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Measurement Contact Angle Average Contact Angle Standard
(Degrees) (Degrees) Deviation

Static 1 139.1
Static 2 142.6
Static 3 135.6 139.8 1.79%
Static 4 143.1
Static 5 139.9

Advancing 1 156.7
Advancing 2 163.9
Advancing 3 163.7 149.4 3.02%
Advancing 4 171.8
Advancing 5 167.4
Receding 1 97.65
Receding 2 98.2
Receding 3 107.7 103.6 4.56%
Receding 4 106.8
Receding 5 107.9

Table 5.31: Contact angle measurements for Porous Rough Hydrophobic heater.

U

A
(a) Static Contact Angle (b) Advancing Contact Angle

(c) Receding Contact Angle

Figure 5-24: Contact angle measurements for Rough Porous Hydrophobic surface.
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Scan R.(pm) R2(pm)
Scan 1 1.95594 12.30319
Scan 2 1.82255 14.69225
Scan 3 1.8312 12.32826
Scan 4 1.96296 12.6162
Scan 5 2.2625 14.31527

Average 1.96703 13.25103
St. Dev 9.05% 8.74%

Table 5.32: Roughness measurements for Rough Porous Hydrophobic heater.

Pattern CHF (k4) Burnout (k) Avg. CHF St. Dev
R g P s H(kW)

Rough Porous Hydrophobic 1 20-40 815

Rough Porous Hydrophobic 2 40-60 700--
Rough Porous Hydrophobic 3 20-40 359

Table 5.33: CHF and heater burnout values for Rough Porous Hydrophobic heaters.
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5.10.3 PBF Testing and Discussion

Overall, the Rough Porous Hydrophobic heaters were a poor surface for transferring heat,

as exemplified in Figure 5-25. However, these heaters provide an interesting contrast in per-

formance to the Smooth Porous Hydrophobic heaters. As seen in Section 5.5, the Smooth

Porous Hydrophobic heaters have a markedly low CHF value, with an almost instant transi-

tion from natural convection to film boiling. As CHF occurred without heater burnout, CHF

was called when the pixels on the IR signal saturated, indicating a region significantly hotter

than the surrounding area. Two to three large vapor formations were typically witnessed

at heat fluxes as low as 20O. Shortly thereafter, these separate vapor cushions coalesced

create a single large vapor layer, which covered most of the heater surface.

Distinct regions of the Rough Porous Hydrophobic heaters achieved CHF at similarly

low heat fluxes. However, unlike the Smooth Porous Hydrophobic heaters, these separate

vapor cushions did not rapidly coalesce. As such, the distinction between CHF and burnout

must be explicitly recognized. In most other tests, CHF and burnout - or heater destruction

- occurred simultaneously. Here, CHF was achieved at a similar heat flux as Smooth Porous

Hydrophobic heater. However, burnout typically occurred at a much higher heat flux. In

many instances, the individual vapor formations maintained their integrity up to relatively

moderate heat fluxes of between 400O and 700O. During this time, surface temperatures

in film boiling regions reached extremely high values, while the surface temperature in regions

that appeared to be in the nucleate boiling regime were more moderate. This behavior leads

one to believe that the roughness, induced by the surface posts, hindered lateral movement

of the vapor cushions on the surface. By essentially corralling these vapor regions and

preventing coalescence, the posts seem to have allowed the heater to be pushed to higher

heat fluxes than were achievable with the Smooth Porous Hydrophobic heater.

For example in Figure 5-26, six distinct vapor regions, identified by their significantly

higher temperatures, were present through the entire test. The upper two regions hit CHF

around 50 , which is approximately consistent with CHF for the Smooth Porous Hy-

drophobic heaters. However, as the heat flux was continually increased, the vapor regions

did not spread on the heater surface. Furthermore, the size of each vapor cushion did not
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vary significantly, with little transient movement of the vapor boundary visible on the IR

signal. It was not until around 815k4 that the upper left vapor formation slide downward,

coalesced with its neighbor and induced heater burnout shortly thereafter.

A similar behavior was witnessed in the second Rough Porous Hydrophobic heater. Here,

two distinct regions of film boiling were created and sustained until heater burn out at

approximately 700kW. Again, however, it appears that CHF was achieved locally at some

point between 44% and 61 kw. The behavior of the vapor cushions can be observed in Figure

5-27. Again, it is remarkable how the post structures were able to contain the spreading of

the film boiling region, even at relatively high heat fluxes. The size of the vapor cushion did

not grow substantially until 700k.

The growth of the center vapor cushion at the point of heater burnout was captured on

the IR signal. As can be seen in Figure 5-28, the larger center vapor formation expands and

coalesces with the smaller vapor region. Following this merger, the vapor cushion engulfed

the entire active heater area, leading to heater destruction.

Similar containment of localized film boiling was also observed in the third Rough Porous

Hydrophobic heater. Here, two distinct vapor bubbles formed at opposite corners of the ac-

tive heater. They maintained their isolation until a flux of around 350k , at which point the

lower formation expanded to coalesce with the other region. While heater burnout occurred

at a lower heat flux in this test case than with the previous two Rough Porous Hydrophobic

heaters, the isolated behavior of the vapor formations was consistent. Additionally, local

CHF seems to be achieved at a similarly low heat flux value as in previous tests.

The consistent localized film boiling on the three Rough Porous Hydrophobic heaters

was relatively unstable. With a slight disturbance, one film cushion could overcome the

pinning effect of the surface posts and move towards and adjacent filim formation. This

migration and subsequent coalescence almost always initiated a cascade effect on the heater

surface. The rapidly growing film cushion would engulf the majority of the heater surface

and burnout would occur shortly thereafter. That this surface is so unstable accounts for

the larger variability in burnout heat flux values. However, in all instances, the achievement

of CHF was around 40k to 70kw. The high level of hydrophobicity induced by both the

surface chemistry and porosity serve inhibit surface rewetting, which is consistent with the
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Figure 5-28: Vapor cushion growth on Rough Porous Hydrophobic 2 heater at 700k

Smooth Porous Hydrophobic surface.

The ability of the posts to contain CHF locally on the heater surface is inspiring. From

these tests, it is evident that within a small heater surface (just 2cm 2 ), drastically different

boiling regimes can co-exist simultaneously. Potentially, this phenomena could be exploited,

to create a heater surface which is actually divided up into multiple and independent cells.

If these sub-surfaces can be created such that adjacent bodies are insulated from each other

(perhaps through post like features), then local CHF may be tolerated briefly without global

burnout. This could provide a defense in depth type margin of safety for boiling systems.
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Figure 5-30: Vapor cushion growth on Rough Porous Hydrophobic 3 heater at 3 5 9 kM.

5.11 Surface Parameter Comparisons

In order to fully comprehend the separate effects of the different surface characteristics,

it is helpful to simultaneously consider different boiling curves. This helps to bring an

understanding of relative boiling performance between different surfaces.

5.11.1 Effect of Wettability

The effect of wettability can be considered by comparing four different sets of boiling sur-

faces. First are the Smooth Non-porous Hydrophilic and Smooth Non-porous Hydrophobic

surfaces. Both of these surfaces were exceptionally smooth and non-porous. However, their

static contact angles differed by about 105' (< 5' for hydrophilic surface and 110' for

hydrophobic surface). The average CHF values were 1009k' and 968k, for the hydrophilic

and hydrophobic surfaces respectively. As can be seen in Figure 5-31, the boiling curves for

the two surfaces are similar, though overall the Smooth Non-porous Hydrophobic boiling

curves are slightly to the left of the Smooth Non-porous Hydrophilic curves. This results in
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a marginally higher HTC for the Smooth Porous Hydrophobic heater at a given heat flux

as compared to the Smooth Porous Hydrophilic heater. This may be a result of the hy-

drophilic coating deactivating nucleation sites on that surface, thereby lowering the overall

HTC. However, the difference in boiling performance between these heater is not particularly

pronounced, leading to the conclusion that wettability effects may only be minor for surfaces

that lack distinct texture.
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Figure 5-31: Boiling Curve and Heat Transfer Coefficient for Wettability Comparison of
Smooth, Non-porous surfaces.

Similar conclusions can be drawn from the comparison between the Rough Non-porous

Hydrophilic and Rough Non-porous Hydrophobic surfaces, which had average CHF values

of 1 0 6 3 k± and 1067k, respectively. Again, the boiling curves for these surfaces reveal that

overall, the hydrophobic surface had enhanced HTC, especially at higher heat fluxes (while

there is some overlap on the boiling curves, the overall trend holds true). This further implies

that the hydrophobic surfaces were able to activate more nucleation sites than the hydrophilic

surfaces. However, the CHF values for these two surfaces were nearly identical. Therefore,

even when coupled with surface roughness, wettability seems not to have a significant effect

on a non-porous surface.

The comparison of the Smooth Porous Hydrophilic and Smooth Porous Hydrophobic

surfaces reveals a markedly different effect of wettability in the presence of porosity. The
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Figure 5-32: Boiling Curve and Heat Transfer Coefficient for Wettability Comparison of

Rough, Non-porous surfaces.

Smooth Porous Hydrophilic surface had the highest average CHF value in the investigation at

1617A. Conversely, the average CHF value of the Smooth Porous Hydrophobic surface was

one of the lowest, at only 34k. Porosity and wettability changes compound to dramatically

affect the performance of a boiling surface. This is evident from Figure 5-33, where the

boiling curves for the two surfaces exhibit completely different trends. Zoomed in views of

the boiling curves are also presented in Figure 5-33 to help fully illustrate the differences

between these two surfaces.

CHF is achieved extremely early for the Smooth Porous Hydrophobic heaters, leading

to the customary dramatic drop in HTC. At a heat flux of only about 75 k, the Smooth

Porous Hydrophobic HTC is nearly zero, while the Smooth Porous Hydrophilic HTC has

only just begun to grow towards its maximum. Additionally, because the Smooth Porous

Hydrophobic heaters reach CHF at such a low heat flux, burnout does not necessarily occur

at the same time. Rather, the surface remains in the film boiling regime for a range of

heat fluxes, with the heater surface reaching significant temperature values. Conversely, the

achievement of CHF for the Smooth Porous Hydrophilic heaters occurs at a substantially

higher heat flux and typically also results in instantaneous heater destruction.

The pronounced effect of wettability, when combined with porous surfaces is readily ev-

125



ident from these test results. This is an important contrast to the effect of wettability on

non-porous surfaces, where it is essentially negligible. On the hydrophilic surface, the poros-

ity provides a level of interconnectivity, allowing liquid to be transfered between nucleation

sites. All the while, the hydrophilicity of the surface promotes rewetting. Any deactiva-

tion of nucleation sites by the hydrophilic coating (as was suspected on the hydrophilic

non-porous surfaces) is likely countered by the abundance of nucleation sites created by the

porous structure. On the hydrophobic surface, the presence of porosity further increases the

contact angle. Additionally, the porous structure may help to store vapor, and thereby aid

the transition to film boiling.

Finally, a similar behavior was discovered in the comparison between the Rough Porous

Hydrophilic and Rough Porous Hydrophobic surfaces. Of these two, the hydrophilic surface

had an average CHF of 1590kw, while the hydrophobic surface had an average CHF of

2 0 kW - 4 0 kW. Again, in considering the CHF values and boiling curve trends in Figure

5-34, there is large distinction between the surfaces with different wettabilities. While the

Rough Porous Hydrophobic surfaces reached localized CHF very early, it seems that the

posts helped to inhibit global heater burnout. As a result, the majority of the points on the

Rough Porous Hyrdophobic boiling curves were obtained in the film boiling regime, which

partially accounts for their markedly low, and decreasing values. Overall, this comparison

again illustrates the effect of wettability on porous surfaces. The performance of these rough

heaters was very similar to the identical, but smooth heaters. This leads to the conclusion

that the post structures did not play a significant role in the performance of the heater.

However, the effect of surface roughness will be considered explicitly in Section 5.11.3.

As these four comparisons attest to, the degree to which wettability affects a surface is

largely dependent on surface porosity. In the absences of porosity, wettability did not signif-

icantly affect the performance of the heaters tested, including those with surface roughness.

In engineering surfaces for heat transfer, it is important to recognize this fact.

5.11.2 Effect of Porosity

A first insight into the effect of porosity can be gained from comparing the Smooth Non-

porous Hydrophilic and Smooth Porous Hydrophilic heaters. The boiling curves presented
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Figure 5-33: Boiling Curve and Heat Transfer Coefficient for Wettability Comparison of
Smooth, Porous surfaces.
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Figure 5-34: Boiling Curve and Heat Transfer Coefficient for Wettability Comparison of

Rough, Porous surfaces.

in Figure 5-35, demonstrate that the heaters with a porous structure have a slightly higher

average overall HTC (though there is some overlap between the curves). This is likely a

result of the porous structure providing nucleation sites. The larger contrast between these

two surfaces comes in their CHF values. The Smooth Non-porous Hydrophilic and Smooth

Porous Hydrophilic surfaces had an average CHF values of 1009% and 1617k, respectively.

Therefore, in the case of a smooth, hydrophilic surface, the addition of porosity lead to a

60.2% increase in CHF.

A similar effect was observed between the Rough Non-porous Hydrophilic and Rough

Porous Hydrophilic surfaces. As has been alluded to previously, the inclusion of surface

roughness seems not to have altered the heater performance. Therefore, the boiling curves

of these rough heaters, presented in Figure 5-36 exhibit very similar trends as their smooth

counterparts in Figure 5-35. The average CHF values for the Rough Non-porous Hydrophilic

and Rough Porous Hydrophilic heaters were 1063w and 1590O , respectively. As a result,

in the case of rough, hydrophilic surfaces, porosity increased CHF by 49.5%.

Porosity also had a significant effect on smooth, hydrophobic surfaces. The Smooth Non-

porous Hydrophobic and Smooth Porous Hydrophobic surfaces had average CHF values of

968k and 34m, respectively. Of these surfaces, the non-porous heaters performed very
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Figure 5-36: Boiling Curve and Heat Transfer Coefficient for Porosity Comparison of Rough,
Hydrophilic surfaces.
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similar to Uncoated Sapphire and even similar hydrophilic surfaces. However, the porous

surface achieved CHF at a remarkably low heat flux value. The suspected factors behind

this occurrence have already been discussed and will not be reiterated. Rather, it is simply

important to recognize the major effect porosity can have on smooth, hydrophobic surfaces.

The boiling curves for these two surfaces are presented in Figure 5-37, where zoomed in

views are also included for clarity.
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Figure 5-37: Boiling Curve and Heat Transfer Coefficient for Porosity Comparison of Smooth,
Hydrophobic surfaces.

Finally, the Rough Non-porous Hydrophobic and Rough Porous Hydrophobic surfaces

trended very similar to their smooth equals. The addition of porosity to the hydrophobic
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surface dramatically reduced CHF to 20O -- 60O for the Rough Porous Hydrophobic

surface, as coinpared to to 1067k for the Rough Non-porous Hydrophobic surface. Again,

it seems that the surface posts had a negligible effect on the performance.
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Figure 5-38: Boiling Curve and Heat Transfer Coefficient for Porosity Comparison of Rough,
Hydrophobic surfaces.

Form these results, it is important to recognize that porosity can significantly enhance

the performance of hydrophilic surface. This is likely due to the fact that the pores help

to pump liquid to the nucleation sites thus delaying the formation of hot/dry spots. Con-

versely, porosity can dramatically lower the CHF value of a hydrophobic surface. Of all the

surface characteristics investigated, the relative effect of porosity on surfaces with different

wettabilities is the most pronounced. An interesting next step would be to investigate the

effect of porosity at a variety of discrete surface wettabilities, not just hydrophobic and hy-

drophilic. Understanding exactly how porosity affects a surface as a function of wettability

could provide crucial knowledge for designing heat transfer surfaces. It would be particularly

interesting to determine the point on the wettability spectrum where porosity changes from

being beneficial to detrimental in terms of CHF.
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5.11.3 Effect of Roughness

Roughness had the least effect on boiling of the surface characteristics examined. Smooth

Non-porous Hydrophilic and Rough Non-porous Hydrophilic surfaces had very similar CHF

values, 1009k and 1063k, respectively. Additionally, as seen in Figure 5-39, the boil-

ing curves for these two surfaces are almost entirely overlapped. This implies very similar

performance regardless of surface roughness.
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Figure 5-39: Boiling Curve and Heat Transfer Coefficient for Roughness Comparison of
Non-porous, Hydrophilic surfaces.

The Smooth Non-porous Hydrophobic and Rough Non-porous Hydrophobic comparison

exhibited a similar trend, though there was more variation in the boiling curves. Overall,

the boiling curves for the rough and smooth surfaces are intertwined, implying similarity in

boiling performance. This can be observed in Figure 5-40. The larger grouping is likely a

function of non-uniformity in the hydrophobic coating. Finally, the respective average CHF

values for the smooth and rough heaters were 968k and 1067k.

Roughness did not induce any major difference between the Smooth Porous Hydrophilic

and Rough Porous Hydrophilic heaters. In Figure 5-41, the boiling curves for the two

surfaces are quite overlapped. Additionally, the respective average CHF values for the smooth

and rough surfaces were 1617w and 1590k, which are nearly identical. Unlike, porosity,

roughness does not appear to have a direct effect on CHF enhancement or boiling efficiency.
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The one instance in which roughness did play a role can be seen in the comparison between

the Smooth Porous Hydrophobic and Rough Porous Hydrophobic surfaces. However, here

roughness did not affect CHF. The average CHF for the Smooth Porous Hydrophobic surfaces

was 34k. The average CHF value for the Rough Porous Hydrophobic surfaces was between

20W - 40O . As such, surface roughness clearly did not affect the CHF values for porous

hydrophobic surfaces. However, after local CHF, the post features helped to prevent heater

burnout. This allowed the Rough Porous Hydrophobic heater to be driven to higher heat

fluxes before catastrophic failure, as previously discussed. While this is an effect of the posts,

it occurred after CHF.
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Figure 5-42: Boiling Curve and Heat Transfer Coefficient for Roughness Comparison of

Porous, Hydrophobic surfaces.

Overall, these results provide very clear evidence that surface roughness in the form of

micro posts does not affect CHF or boiling performance in a major manner. In every instance,

there was no significant difference between smooth and rough heater surfaces tested. This

is in stark contrast to the effects of the other surface characteristics, which had distinct

effects, especially in certain combinations. Surface roughness is commonly referred to as an

enhancer of CHF. However, it might be the case that what is being referred to as roughness,

is actually something different. Here, roughness was induced by widely spaced micro posts,

designed to create a surface texture, but not cause any capillary effects. In other instances,
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when roughness is being cited as performance enhancing, it might be that the surface texture

has topography such that capillary action is induced. If such were the case, while the surface

in question may or may not have distinct pores, the close proximity of surface features

might pull liquid downwards towards the surface. Additionally, in some instances a surface

texture might even form a quasi-porous structure, thus reaping the benefits of interconnected

nucleation sites. Therefore, it is crucial to make the distinction between surface roughness

and porosity in designing boiling surfaces.

5.12 Summary and Future Recommendations

The Separate Effect investigation characterized the effects of wettability, porosity, and rough-

ness on CHF and HTC. Some effects were constant, while other were dependent on - and

could even be completely reversed by - the presence of other surface properties. In summary:

1. Wettability had a limited effect on non-porous surfaces. However, it had prominent

effects when combined with a porous structure.

2. Porosity dramatically altered a surface's boiling performance. However, the manner in

which it affected a surface was largely dependent on the surface wettability. If a surface

was hydrophilic, the porous structure was beneficial. If the surface was hydrophobic,

the porous structure reduced CHF and harmed performance.

3. Surface roughness did not have an appreciable affect on CHF or boiling performance,

regardless of the wettability or porosity.

The results of this examination open new opportunities for future research. Continued

understanding of the mechanisms, which control boiling will help to accelerate the engineer-

ing of performance enhancing boiling surfaces. Opportunities for future work include, but

are obviously not limited to:

1. Create multi-tiered porous structures, with pore size varying in the vertical direction.

Fabricating surfaces with small particles on the bottom near the heater substrate could

facilitate capillary action, helping to move liquid around the surface. Upper levels,
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nearer the working fluid could be made of larger particles, creating pores nearer to

the size of natural nucleation sites. Additionally, any number of distinct patterns of

porosity levels could be imagined.

2. Create porous structures with items other than simple spherical particles. Deposition

of ellipsoids, rods and particles with other geometries could create a porous structure

that behaves differently.

3. Examine the effect of porosity over the spectrum of wettability from super hydrophilic

to super hydrophobic. Specifically, identify the point at which porosity transitions

from being beneficial to being detrimental to CHF.

4. Examine the exact nature of surface roughness structures reported by other researchers

and determine if porosity-type effects could be present.
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Chapter 6

Spot Patterning Heater Preparation,

Testing, and Results

While the Individual Parameter investigation is primarily concerned with understanding

the driving forces that control CHF and HTC the Spot Pattern investigation attempts to

harness this knowledge to engineer optimal heater surfaces. Heaters for the Spot Pattern in-

vestigation were all nominally porous hydrophilic, patterned with porous hydrophobic spots.

Previous research in MIT Reactor Hydraulics Laboratory had examined the effect of layer

thickness, particle size and hydrophobic vs. hydrophilic spots on the boiling performance

of similar patterned multilayer surfaces. [24] Here, the effect of varying pitch on which the

hydrophobic spots were patterned was investigated. Additionally, the effect of varying the

spot diameter and the ratio between the spot diameter and pitch was examined.

6.1 Surface Preparation

The nominally porous hydrophilic surface was prepared using the LBL procedure. In this

investigation, surfaces with fifty layers of 50nm SiO 2 particles were exclusively used. Follow-

ing LBL coating, a layer of fluorosilane was deposited per the procedure with an exposure

time of thirty minutes. Finally, the spot patterns were created using the UVO procedure.
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Multilayer Region Average Static Contact Angle (Degrees)
Porous Hydrophilic < 50
Porous Hydrophobic 137.50

Table 6.1: Contact angle measurements for hydrophilic and hydrophobic regions of the spot
patterned multilayer surface.

6.2 Surface Analysis

Prior to boiling tests, the patterned multilayer surfaces were characterized in an effort to

further quantify the test results. The contact angles for the porous hydrophilic and porous

hydrophobic regions are identical to those determined during the analysis of homogeneous

porous hydrophilic and porous hydrophobic surfaces in the Individual Parameter investiga-

tion. These contact angles are summarized in Table 6.1.

These surfaces had the same roughness and porosity characteristics as the Smooth Porous

Hydrophilic and Hydrophobic surfaces in the Individual Parameter Investigation. As detailed

in Section 5.4, these surface characteristics were examined by Phillips (2011). On average,

the surface roughness was determined to be, Ra = 0.07pm and R2 = 0.91pum. The surface

porosity was approximately 50% by volume.

6.3 PBF Test Results

For each pattern type, three individual heaters were prepared and tested. All tests were

to CHF, and thus destructive. The primary purpose of this investigation is to determine

the efficacy of the spot pattern on enhancing CHF and HTC. Therefore, it is important to

compare the results of each pattern to the performance of an uncoated heater, as well as a

heater coated with fifty layers of 50nm SiO 2 particles (but not patterned with hydrophobic

spots). As seen in the Individual Parameter investigation, a porous hydrophilic surface

coating is very effective at enhancing CHF. By benchmarking the patterned heaters against

this homogeneous, porous hydrophilic surface, the performance of the spots can be isolated.

The boiling curves and CHF results of these reference heaters are presented in Figure 6-1

and Table 6.2.
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Table 6.2: Uncoated sapphire heater and smooth porous hydrophilic reference CHF values.

In analyzing the performance of the spot pattern heaters, it is convenient to group the

surfaces into two groups. The first group, which includes Patterns A-D, offers insight into the

effect of varying the spot pitch. The second group, Patterns E-H, includes surfaces on which

the spot diameter is altered. Additionally, analysis of the heaters tested in this investigation

can be supplemented by the results of Phillips (2011) investigation on other spot patterns.

6.3.1 Effect of Varying Spot Pitch (Patterns A-D)

As identified in the Individual Parameter investigation, an underlying Porous Hydrophilic

surface is very well performing. In some instances, around 100% enhancement on CHF was

achieved with a Porous Hydrophilic surface. The inclusion of hydrophobic spots patterned

on these surfaces were intended to serve a distinct nucleation sites towards which the liquid

would be channeled by the hydrophilic porous substrate. In analyzing the performance of

Patterns A-D, CHF will be first considered and then HTC performance analyzed.

It was not expected that the hydrophobic spot patterns would enhance CHF and this hy-

pothesis was confirmed. Remarkably, the the average percent CHF enhancement of Patterns

A-D were all tightly grouped within a range of 5.87%. A complete list of CHF values for the

different patterns tested in this group is presented in Table 6.3. These results imply that

spot pitch has essentially no effect on CHF for these spot patterned heaters. The CHF im-

provement over an Uncoated Sapphire heater is likely a result of the underlying hydrophilic
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Pattern CHF Average CHF (g) St. Dev

Uncoated Heater 1 873
Uncoated Heater 2 1032
Uncoated Heater 2 920
Uncoated Heater 3 986 920 8.3%
Uncoated Heater 4 799
Uncoated Heater 5 885
Uncoated Heater 6 947

Smooth Porous Hydrophilic 1 1800
Smooth Porous Hydrophilic 2 1605 1617 10.9%
Smooth Porous Hydrophilic 3 1446



porosity of the heaters. This performance is similar to that of the Smooth Porous Hydrophilic

heater from the Individual Parameter investigation. The slightly decreased CHF values from

a homogeneous porous hydrophilic surface is likely a by-product of the hydrophobic spots.

While serving as nucleation sites, the hydrophobic regions would also prevent local rewet-

ting. It is difficult to determine from the IR signal if the hot spots that eventually brought

on CHF initiated on a hydrophobic spot. However, such a theory seems plausible.

Heater CHF kW Avg. CHF kw St. Dev k w Percent Avg. Percent
t CH Am 2  Enhancement Enhancement

A 1  1589 72.71%
A 2  1758 1660 88 91.09% 80.7%
A 3  1634 77.61 %

B1  1666 1663 81.09% 79.24%
B 2  1661 4 80.54%
Bd 1620 76.09%

C1 1571 70.81%

C2 1869 1643 200 103.15% 78.56%

03 1488 61.71%

D1 1696 84.38%
D2 1440 1612 149 56.55% 75.24%
D3 1700 84.78 %

Table 6.3: CHF Values for Patterns A-D.

While the hydrophobic spots were intended to enhance the overall HTC, such improve-

ment was not realized during testing. In examining the boiling curves of Patterns A-D,

it is evident that the HTC was not significantly enhanced on a consistent basis. In most

instances, the HTC versus Heat Flux curve for each heater pattern tracked closely with both

the Uncoated Sapphire and Si0 2 heater surface curves. Certain heaters from patterns B

and C exhibit enhanced HTC over the reference curves. However, this improvement is not

consistent and not illustrated by sister patterns. It seems that these quasi-outliers are either

a result of variability in the fluorosilane spot patterning or - more likely - simply a product

of the stochastic nature of the boiling phenomenon. Only translation of the boiling curves

for all heaters in a series definitively to the left would indicate true HTC improvement.

The ability of a surface to transfer heat is a function of the bubble departure diameter

(how much heat vapor and thus latent is removed per nucleation), the bubble departure
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frequency (how quickly each unit nucleation occurs), and the nucleation site density (rep-

resenting the total number of nucleation sites per unit area on the surface). In order to

understand the HTC results of the spot patterning investigation, each specific factor must

be considered. Bubble departure diameter is primarily a function of the boiling environment

(specifically, pressure and contact angle) and thus is not assumed to vary with spot pitch.

Theoretically, the nucleation site density should have varied between with heaters, if one

were to assume that the hydrophobic spots were the only bubble departure sites. The theo-

retical nucleation site density can be determined by calculating the number of hydrophobic

spots present on the active heater for each pitch. These values are presented in Table 6.4.

Pitch (mm) Theoretical Number of Sites Theoretical Nucleation Site Density (")
0.2 12,500 6250
0.5 2000 1000
0.75 888 444
1.25 320 160
1.5 222 111
2 125 62

Table 6.4: Theoretical number of nucleation sites for various pitches employed.

From the IR signals of the heater surfaces (Figure 6-2), it is evident that the spot pattern

succeeded in dictating the exact bubble nucleation sites on the heater surface. From the

distinctive spot patterns on the IR signal, it is confirmed that nucleation was in fact occurring

at the hydrophobic spots. The clearly ordered, dark spots represent cooler regions on the

heater surface, which are indicative of point at which heat is being removed through bubble

nucleation. However, this ordered pattern of nucleation typically did not fully develop until

moderate heat fluxes in the range of 800k to 1000k. Prior to this threshold, nucleation

occurred at largely random locations across the heater surface. Once the spot pattern of

nucleation was established, it maintained most of its integrity through CHF. Even as hot

spots of local dryout became present near CHF, the underlying hexagonal pitch pattern

of nucleation spots was clearly discernible. The presence of this distinct pattern right up

until heater burnout at CHF implies that the fluorosilane spot pattern layer maintained its

integrity through the PBF testing. Figure 6-2 offers a visualization of the spot pattern in
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the IR. signal.

(a) Zoom of area bound by red box

(b) 1554kW/m 2

Figure 6-2: Spot pattern visible at 1554kW/m 2 . Nucleation sites are marked in zoomed

image of area bound by red box. The bright white areas to the right of the image are hot

spots present near CHF. Note, many more nucleation sites exist than those marked.

The spot patterns with tighter pitches (0.5mm and 0.75mm) were harder to recognize,

and consistent spot patterns could not be consistently discerned. The difficulty in identifying

these patterns may have been a result of local bubble coalesce during nucleation. This

would have laterally distributed the vapor bubble during formation, thereby pulling heat

from a wider region of the surface. If such bubble coalescence was occurring, it did not

consistently enhance HTC, as attested to by the boiling curves in Figure 6-3. However,

while most of the heater groups had highly repeatable boiling curves, the traces for Pattern

A (260tm spot, 0.5mm pitch) were more spread out. The variance in these boiling curves

seems slightly beyond the natural stochastic behavior of boiling and implies that perhaps

a degree of coalescence on the surface was leading to unrepeatable boiling behavior. There
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is much room for further investigation of the effects of bubble coalescence on spot pattern

performance. Specifically, imaging with a high speed camera could help determine the exact

behavior of the bubbles on the surface.

However, when considered as a whole, the boiling curves for all heaters tested in this

first set of heaters are tightly grouped together. Figures 6-3 through 6-7 demonstrate the

small variance in HTC for heaters in Patterns A-D. This is somewhat counterintuitive as

nucleation site density should vary with pitch. If bubble departure diameter is assumed to

be unchanged, then either nucleation site density did not vary between patterns, bubble

frequency was pitch dependent, or nucleation site density and bubble departure frequency

varied in a manner such that their cumulative effect was relatively small.
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Figure 6-3: Boiling Curve and Heat Transfer Coefficient for Patterns A-D

In considering bubble departure frequency, is it appropriate to start with Calka and

Judd's (1985) analysis of the effect of adjacent nucleation sites on bubble frequency, as

described in Section 2.1.4. Recall that the researchers analyzed the relationship between

bubble departure diameter, dd, and intersite spacing, a, establishing three categories of site

interaction [12]:

1. For a < 1, the interaction between sites is attractive.
ddeparture

2. For 1 < a < 3, the interaction between sites is repulsive.
departure
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3. For 3 < a ,the sites are independent.
departure

While this analysis was validated by the researchers for a test surface with only two sites,

it serves as starting point for considering the performance of the patterned spot surfaces.

As the hydrophobic spots are spaced uniformly, the basic spacing analysis can be applied.

The bubble departure diameter is assumed to be ddeparture 1mm and the bubble size to

intersite spacing ratios for each pattern is presented in Table 6.5.

Pattern ' [dimensionless] Regime

A 0.5 Attractive

B 0.75 Attractive

C 1.25 Repulsive
D 1.5 Repulsive

Table 6.5: Bubble departure diameter to intersite spacing ratios for Patterns A-D.

As such, it seems that the spacing of Patterns A and B would enhance bubble departure

frequency as the coalescence resulting from a given site would help to seed other OItes wIth

vapor. Conversely, per this reasoning, the bubble departure frequency of Patterns C and

D should have suffered. The bubble departure frequency was measured at low heat fluxes

(around 100k) was measured using Fast Fourier Transform (FFT) analysis of the IR signal.

While this analysis did not show any appreciable difference in bubble departure frequency,

this heat flux was substantially below the threshold at which ordered nucleation from the

spot patterns truly developed. A lack of clarity in the IR signal at higher heat fluxes

near CHF prevented similar FFT analysis once the spot pattern was present. Measuring

bubble departure accurately would most likely be accomplished with side imaging the boiling

surface with a high speed video camera, an apparatus outside the scope of this investigation.

Therefore, the nature of the bubble departure frequency must be hypothesized based on

knowledge of intersite behavior. Overall, it is possible that the intersite spacing caused

there to be a difference in bubble departure frequency, though it is unclear if the change in

frequency was appreciable.

It is also important to consider the relationship between nucleation site density and spot

pitch. While nucleation clearly occurred at the hydrophobic spots, it seems likely that these
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were sites of encouraged, not exclusive nucleation. It is hypothesized that nucleation still

occurred over the entire active heater in the standard stochastic nature of pool boiling.

However, nucleation at the hydrophobic spots occurred more frequently than at other areas,

significantly cooling the surrounding surface and allowing it to be visible on the IR signal.

Because all of the HTC curves for the different patterns were tightly grouped, it seems likely

that nucleation site density did not in fact vary by surface as much as pattern pitch would

suggest. More likely, nucleation also occurred at points other than the hydrophobic spots,

but simply to a lesser extent.

Interestingly, these observations of HTC performance contrast those of other researchers

also examining hydrophobic spots patterned on a hydrophilic surface. As described in Section

2.4.3, Betz (2010) found such similar spot patterns to enhance CHF and HTC by by 65%

and 100%, respectively over a nominally hydrophilic surface. [37] As hypothesized in this

investigation, Betz and her colleagues intended the hydrophobic spots to increase nucleation

site density, which appears to have occurred. However, a critical difference between the

Betz investigation and this one is porosity. The surfaces fabricated by Betz (2010) had a

roughness below 5nm and were not porous. Therefore, it is very unfavorable for nucleation

to occur at a non-hydrophobic site. Here, the spot patterned surfaces were uniformly porous,

as fabricated by the LBL process with 50nm SiO 2 particles. While the hydrophobic spots

certainly promoted nucleation at those points, it seems that the porosity of the entire surface

could also have promoted nucleation in hydrophilic regions. It is established that porosity

can aid nucleation by providing interconnected voids. As such, nucleation site density of a

given surface would have tended towards the natural optimum rather than the theoretical

number of hydrophobic spots. This would account for the small variance in HTC between

the spot patterned surfaces and the homogenous porous hydrophilic heater.

As this investigation focused on the overall performance of the heaters, it is difficult to in-

fer an understanding of the local bubble dynamics. However, it seems reasonable to conclude

that across different patterns: bubble departure diameter was constant, bubble frequency

may have varied slightly, but not significantly, and nucleation site density adjusted itself

naturally, with nucleation not exclusively occurring at the hydrophobic spots. Cumulatively,

these effects served to maintain HTC within a close band across different spot patterns.
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The results of testing Patterns A-D raised a few questions. First, it was hypothesized

that the growing bubble may become temporarily pinned at the hydrophobic/hydrophilic

interface of the spot. This could result in a decrease of the bubble departure frequency

(for all Patterns A-D, as all had spots of 260pm). The interface could present a barrier to

bubble growth. Moreover, this perimeter might be encountered later in the bubble cycle,

when growth is less energetic. As such, it was decided to create heaters with comparably

pitches as previously tested, but with smaller spot diameters. Ideally, the growing bubble

would encounter the hydrophobic/hydrophilic interface earlier, in the more energetic (faster)

period of bubble growth. Additionally, the ratio between spot size and pitch was significantly

higher in Betz's (2010) test matrix than in this investigation. Therefore, a spot pattern with

dimensions more similar to those used by Betz (2010) was also fabricated. This pattern

would help to isolate whether the difference in results in fact stemmed from the porosity of

the surface.

6.3.2 Effect of Varying Spot Size and Dimension Ratio (Patterns

E-H)

Again, CHF and the overall HTC of each spot pattern must be considered to characterize its

performance. As with the first spot pattern text matrix, Patterns E-H offered CHF enhance-

ment over an Uncoated Sapphire heater, but less improvement than simply a homogeneous

porous hydrophilic surface. The variance of average CHF values between different spot pat-

terns was relatively small, with the range spanned being only 12.85%. A complete list of

CHF values for Patterns E-H is presented in Table 6.6.

In considering the boiling curves of these spot patterns, it is again evident that the HTC

curves tracked very closely to the references. The three iterations of Pattern E tracked almost

exactly with the homogeneous porous hydrophilic heater (except for slight improvement at

high heat fluxes). This implies that the 90pm hydrophobic spots had little to no effect on

the performance of the surface, other than to decrease CHF. Moreover, this pattern is similar

to one tested by Betz (2010), which saw HTC improvement. Because no improvement was

seen here, it seems likely that the porosity of the surfaces - both Pattern E and the reference
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Heater CHF kw' Avg. CHF kw St. Dev kw Percent Avg. Percent
e C AM 2  Enhancement Enhancement

E1  1472 60.01%
E 2  1461 1503 62 58.82% 63.32%
E 3  1574 71.13%

F1  1428 55.18%
F 2  1424 1509 143 54.76% 63.97%
F 3  1674 81.97%

Gi 1454 196 58.01% 76.84%
G2 1177 71.42%
G 3  1177 101.09%
H1  1597 73.59%
H 2  1501 1462 158 63.15% 58.91%
H 3  1288 39.99%

Table 6.6: CHF Values for Patterns E-H.

porous hydrophilic heater - overshadow the hydrophobic spots in capability to seed nucleation

sites. Additionally, it was not possible to identify this spot pattern on the IR signal. It seems

that the spots were simply too small and tightly spaced for individual recognition.

Patterns F-H on the whole realized similar and in most cases slightly decreased HTC

performance than the reference surfaces. While on heater tested with Pattern G performed

recognizably higher than its peers and references, this behavior was not repeatable. That

these surfaces did not perform better than their counterparts with larger spot diameters

disproves the hypothesis that the bubbles were being pinned at the hydrophobic/hydrophilic

interface. Reducing the spot diameter had negligible effect of the HTC of the surface. As

with Pattern E, it was very difficult to identify these spot patterns on the IR signal. At higher

heat fluxes and with close examination it was possible to begin to make out the pattern.

However, the contrast between the spots and the surrounding area was not nearly as sharp

as witnessed with Patterns A-D. This does not imply that nucleation did not occur at these

sites, rather the phenomena occurred at a scale smaller than unaided visual recognition.
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Figure 6-8: Boiling Curve and Heat Transfer Coefficient for Patterns E-H.
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Figure 6-11: Individual Boiling and Heat Transfer Coefficient Curves for Pattern G (120pm

diameter, 2mm pitch).
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Figure 6-12: Individual Boiling and Heat Transfer Coefficient Curves for Pattern H (120pLm

diameter, 0.2mm pitch).

6.4 Summary and Future Recommendations

Overall, it does not appear that networks of porous hydrophobic spots on a porous hy-

drophilic surface offer improvement over a homogeneous porous hydrophilic surface. Any

CHF improvement over an uncoated heater is a function of the porous hydrophilicity and

is only decreased by the inclusion of the hydrophobic spots. The IR, signals confirmed that

nucleation did in fact occur at the hydrophobic spots, at least with enough propensity to

reduce the temperature of the spot as compared to the surrounding region. However, as the

HTC of the different surface did not vary significantly, it seems that the nucleation site den-

sities of the surfaces were also similar. This contrasts the theoretical variance in nucleation

site densities as predicted by the spot pitches. Therefore, it seems that nucleation likely also

occurred outside the hydrophobic spots, just with less frequency and in a more stochastic

nature than at the engineered sites. As such, the nucleation site density of all surfaces would

have tended towards a naturally selected optimum, thereby equalizing the HTC curves for

all of the heaters. Because of the ability of a porous surface to seed nucleation sites seems to

overshadow that of engineered hydrophobic spots. As a result, engineered nucleation sites

may have more impact if patterned on surfaces that are non-porous.

This investigation continued previous spot patterning work by Phillips (2011) and there
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is still room for continued research. The following suggestions offer some insight into the

potential direction of future work:

1. Investigate the effect of spot patterns on non-porous surfaces. Without a porous struc-

ture to seed nucleation, spot patterns may have more of an effect on HTC.

2. Only circle spots were examined here and by Phillips (2011). The use of non-circular

shapes might have more of an effect on HTC (e.g squares, starts, lines).

3. Apply the spot patterning techniques to applications were distinct regions of boiling

are required, such as in microfluidic devices. While the spots have had limited effect on

CHF and HTC, they are capable of providing precisely located and distinct nucleation

sites. This could be beneficial in complex, small scale boiling systems.

4. Examine the manufacturability of the spot patterns.
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Chapter 7

Conclusion

Two distinct investigations into boiling performance were carried out: a Separate Effect

investigation and a Spot Patterning effort. The Separate Effect investigation characterized

the separate effects that surface wettability, porosity, and roughness have on CHF and boiling

performance. The effect of wettability on the surface was dependent on the presence of

porosity. For non-porous surfaces, wettability appeared to have no appreciable effect on

either CHF or HTC. Porous hydrophilic surfaces tended to enhance CHF, while porous

hydrophobic surfaces were extremely poor performing. Porosity had powerful effects on

the boiling surface and was beneficial for hydrophilic surfaces and quite detrimental for

hydrophobic surfaces. Surface roughness did not play an appreciable role in dictating the

performance of the boiling surface, even when combined with other surface parameters. In

summary, contrary to common beliefs, intrinsic wettability and surface roughness per se have

very little effect on CHF and HTC, while the combination of porosity and wettability can

determine CHF changes by an order of magnitude.

In the Spot Patterning portion of the project, different arrays of hydrophobic spots were

patterned on a nominally porous hydrophilic surface in an attempt to engineer nucleation

sites. While nucleation was achieved at the prescribed sites, the patterns tested did not

significantly enhance CHF or HTC over a nominally porous hydrophilic surface. Therefore,

while patterning techniques are effective at locally directing boiling phenomena, they did not

enhance overall performance. However, the patterning techniques employed could be bene-

ficial in an application where specific boiling areas are required (for example, in microfluidic
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boiling devices).

The results of this investigation can be used as tools to engineer more effective and better

performing heat transfer surfaces. Understanding the exact nature of how different surface

features can work in unison to promote boiling can be important for a design engineer. The

Separate Effect investigation also lays the foundation for further characterization of surface

parameter CHF effects. Additionally, the various micro and nanoengineering techniques em-

ployed offer starting points for the fabrication of such boiling surfaces. Engineering of boiling

surfaces is a long lived field of science and the advent of nanoscale engineering capability only

further extends this discipline. Moving forward, it will be important to continue strength-

ening the understanding of how surface parameters effect boiling, but also to begin reducing

this knowledge for practical application in industry. This includes selecting the optimal

set of parameters for an application, modifying surface coatings to ensure their long-lasting

durability, and finally creating manufacturing processes for large scale production.
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