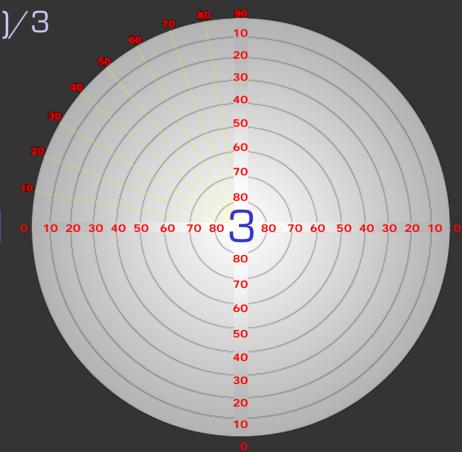

### Direct and diffuse components of daylight

| Skytypo                                    | Clear      | Milky-white | Partly cloudy | Whitish    | Light grey    | Dark grey      | Dark      |
|--------------------------------------------|------------|-------------|---------------|------------|---------------|----------------|-----------|
| Sky type                                   | Cical      | WIIKy-WIIIC |               | WIIIIISII  |               | Darkgrey       | Daik      |
| Sun                                        | Shiny      | Clear       | Partly veiled | Veiled     | Still visible | Barely visible | Invisible |
|                                            |            |             |               |            |               |                |           |
| Global<br>radiation<br>[W/m <sup>2</sup> ] | 800 to 900 | 600 to 800  | 300 to 700    | 250 to 400 | 200 to 300    | 100 to 200     | 20 to 100 |
|                                            |            |             |               |            |               |                |           |
| Diffuse<br>component                       | 10 to 20%  | 20 to 40%   | 20 to 50%     | 40 to 80%  | 50 to 100%    | 75 to 100%     | 100%      |

### Direct and diffuse components of daylight

#### Sky models for diffuse component



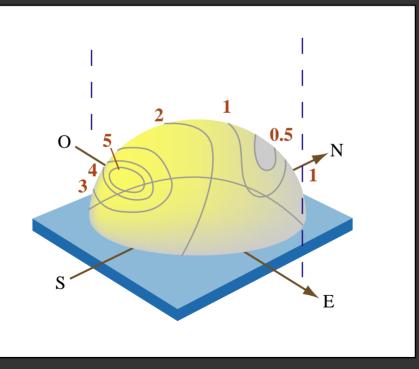

#### Overcast sky

- 7'000 (winter) to 20'000 (summer) lux on ground.
- uniform  $L(\theta)=L_z$

#### Overcast sky

- 7'000 (winter) to 20'000 (summer) lux on ground
- CIE overcast  $L(\theta) = L_z (1 + 2\sin\theta)/3$



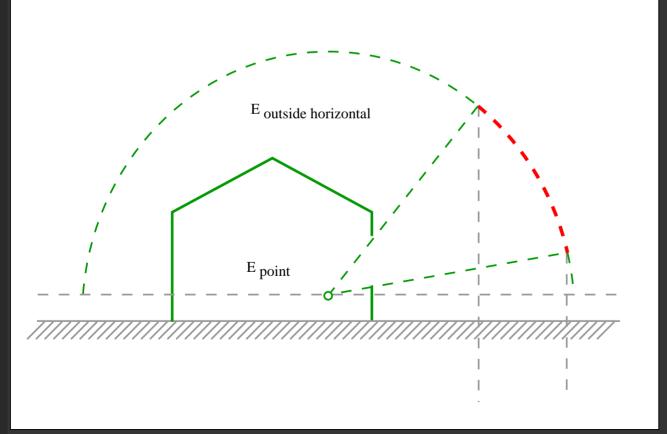

#### Clear sky

30'000 (winter) to 100'000 (summer) lux on ground



#### Clear sky

- CIE clear sky model
  - L = fction of zenith luminance and sun position




#### Clear sky

- CIE clear sky model
  - L = fction of zenith luminance and sun position
- Perez All Weather sky model (generalization of CIE clear sky)
  L = fction of date, time, direct and diffuse illuminances, and 5 coefficients
- → L fully defined if diffuse and direct irradiance are known

#### Static metrics

- Daylight Factor DF [%]
  - DF = ( $E_{point}/E_{outside horizontal}$ ) \* 100% (only defined for overcast skies!)



#### Static metrics

- Daylight Factor DF [%]
  - DF = ( $E_{point}/E_{outside horizontal}$ ) \* 100% (only for overcast skies!)
  - either measured or calculated

below  $1\% \rightarrow$  dark, only suitable for storage areas

1% to 2%  $\rightarrow$  low illumination, suitable for circulation areas

2% to 4%  $\rightarrow$  moderate, for living spaces

4% to  $7\% \rightarrow$  medium, for office work

7% to 12%  $\rightarrow$  high, for precision tasks

over  $12\% \rightarrow$  very high, for exceptional light requirements

### Average Daylight Factor calculation

Empirical formula

 $DF_{average} = \frac{\sum (W \cdot \tau \cdot \theta \cdot m)}{A(1 - R_2)}$ 

#### where



- $\mathcal{W}$  = Area of each window (m<sup>2</sup>),
- au = Transmittance of each glazing material
- $\theta$  = Vertical angle of sky as seen from centre of each window
- m = Maintenance factor based on angle of glazing and cleanliness (0.5 0.9),
- A = Total internal surface area of space, including walls, floors, ceilings & windows (m<sup>2</sup>)
- $R_2$  = Area weighted average reflectance of all surfaces making up A
- (use 0.1 as reflectance for glass).

### LEED Green Building Rating System

#### Daylighting credits

- § 8.1 = Daylight 75% of spaces with GF > 2% (1 credit)
- § 8.2 = View for 90% of occupied spaces (2 credits)

#### Estimation using formula

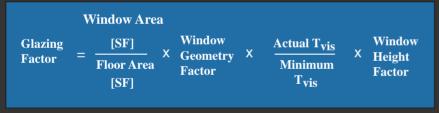
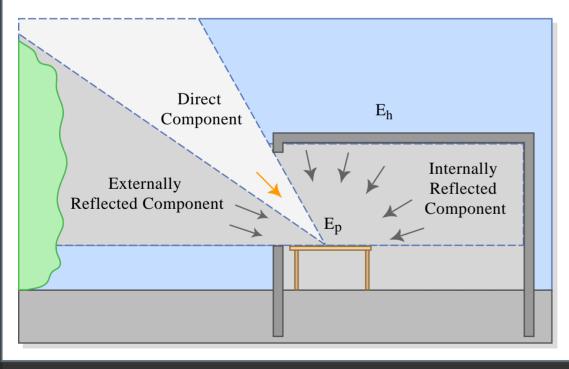



Figure by MIT OCW.

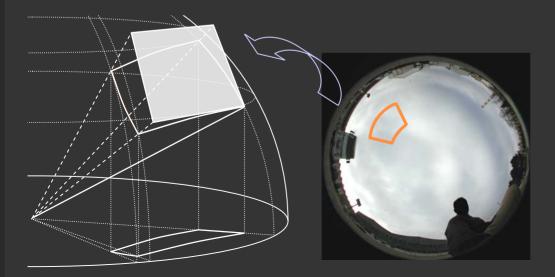

- Chart for
  - Geometry Factor
  - Min  $T_{vis}$
  - Height factor

No information about glare, overheating...

UK Building Research Establishment (BRE)

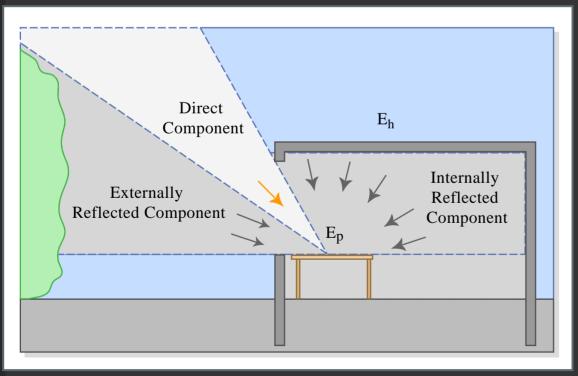
D [%] = E<sub>P</sub> / E<sub>h</sub> = sum of:
 Direct (sky) component: SC

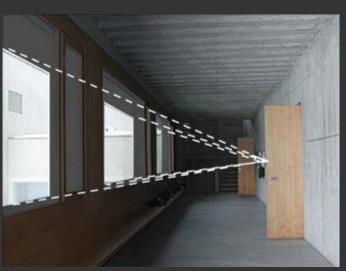





D [%] = E<sub>P</sub> / E<sub>h</sub> = sum of:
 Direct (sky) component: SC

 $E_P$  from visible sky portion

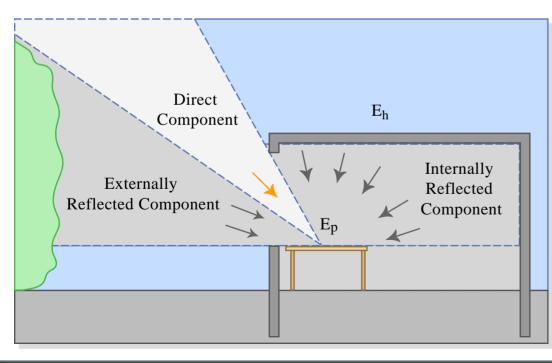

Illuminance ratio

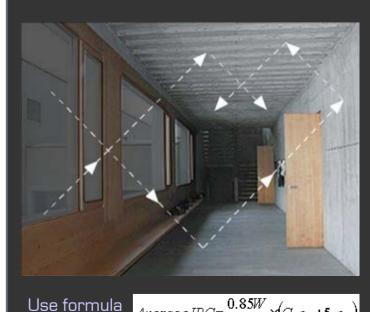

E<sub>h</sub> from whole sky



#### • D [%] = $E_P / E_h$ = sum of:

- Direct (sky) component: SC
- Externally reflected component: ERC




Consider as sky component with different luminance

#### • D [%] = $E_P / E_h$ = sum of:

- Direct (sky) component: SC
- Externally reflected component: ERC
- Internally reflected component: IRC





Use formula  $Average IRC = \frac{0.85W}{A(1-\rho)} \times (C \rho_{fw} + 5 \rho_{ew})$ Figure by MIT OCW.

#### Static metrics

Daylight Factor DF [%]: design implications
 ... but

DF optimized if building is fully glazed !

#### Static metrics

Daylight Factor DF [%]: design implications

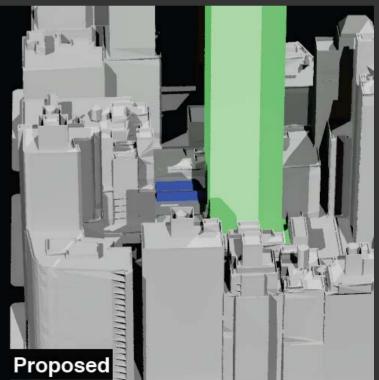
PROS

- simple
- informative on some important issues

#### CONS

- discards orientation, climate, location, time ightarrow important consequences




From F. Anselmo (ARUP), Radiance Workshop, Sept 2006

#### Static metrics

- Daylight Factor DF [%]
- Combination with avoidance of direct sunlight
  - Shading system, Blinds ...
  - ightarrow better from an energy standpoint (no overheating), glare but still limited

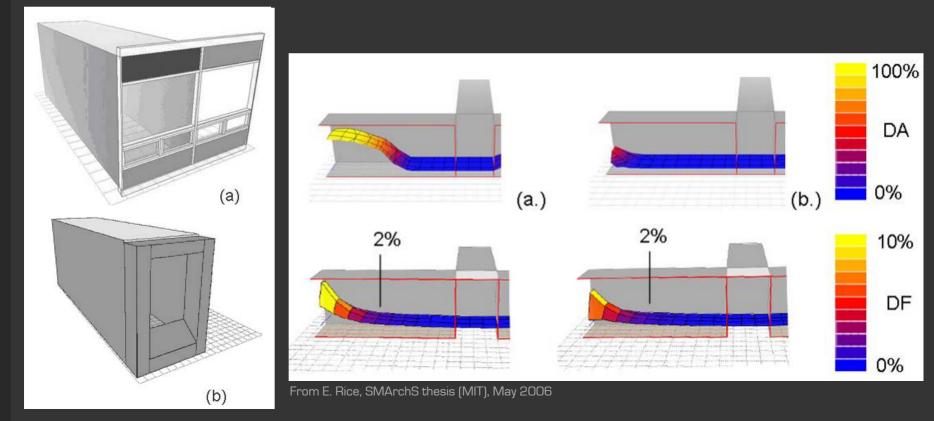
#### Static metrics

- Daylight Factor DF [%]
- Combination with avoidance of direct sunlight
  - Example illustrating limitations of this combination: tower project next to daylit building
    - skylights are North facing ightarrow almost no sun
    - daylit studios' character depends largely on variation of sky conditions



From J. Mardaljevic, Radiance Workshop, Sept 2006

#### Dynamic metrics


- Iocal climate data
  - annual simulations



From J. Mardaljevic, Radiance Workshop, Sept 2006

### Daylight Autonomy (DA)

percentage of working hours when a minimum work plane illuminance is maintained by daylight alone

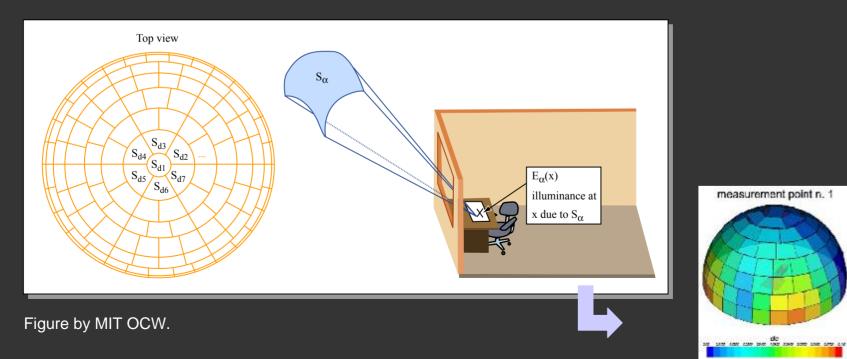


### Daylight Autonomy (DA)

percentage of working hours when a minimum work plane illuminance is maintained by daylight alone

### Useful Daylight Illuminance (UDI)

 divides working hours into either < 100 lux, 100 to 2000 lux (Useful Daylight Illuminance) or > 2000 lux


### CHPS criteria

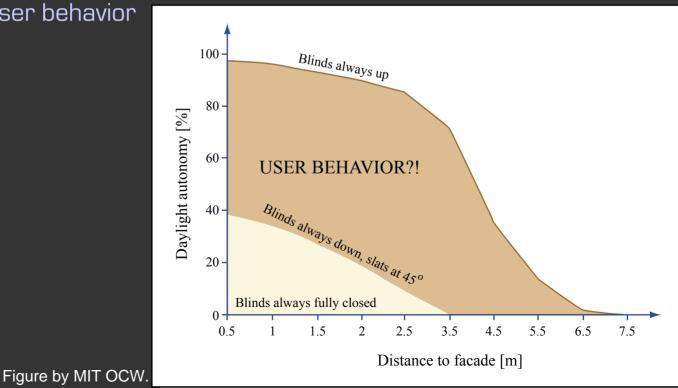
 continuous DA >40%, >60% and >80% (resp. 1, 2 and 3 credits) for 60% of work plane

### Annual light exposure

#### Points for discussion

- Annual simulations based on local climate data
  - based on local climate data
  - large amount of information ightarrow to reduce without reducing value for design
    - decrease calculation time with Daylight Coefficients




From F. Anselmo (ARUP), Radiance Workshop, Sept 2006

#### Points for discussion

- Annual simulations based on local climate data
- Time base (daylit hours vs. occupied hours)
  - unrelated to building use  $\rightarrow$  building form directly related to building site vs.
  - related to building use ightarrow pros and cons

#### Points for discussion

- Annual simulations based on local climate data
- Time base (daylit hours vs. occupied hours)
- Movable shading devices (venetian blinds)
  - account for user behavior

