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Abstract

N-body simulations have revealed a wealth of information about dark matter halos
but their results are largely empirical. Here we attempt to shed light on simulation
results by using a combination of analytic and numerical methods. First we gener-
alize an analytic model of halo formation, known as Secondary Infall, to include the
effects of tidal torque. Given this model we compare its predictions for halo profiles
to simulation results and infer that angular momentum plays an important role in
setting the structure of dark matter profiles at small radii. Next, we focus on explain-
ing the origin of universality in halos. We find evidence that diffusion — which can
potentially lead to universality — occurs during halo evolution and is partially sourced
by external torques from large scale structure. This is surprising given that the halo
is nonlinear and typically thought to be unaffected by neighboring structures. Last,
we describe promising ways to analytically describe the evolution of nonlinear halos
using a Fokker-Planck formalism.
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Chapter 1

Introduction

The energy content of the universe, through Einstein’s theory of General Relativ-
ity, influences the universe’s geometry and evolution. Therefore — assuming General
Relativity is correct — we can constrain the universe’s components by measuring the
geometry of the universe at different times. To measure the geometry of the universe,
cosmologists use what is known as standard candles and standard rulers. These are as-
tronomical objects for which we know their intrinsic brightness or size, respectively.
Knowing the intrinsic brightness or size of an object, and measuring the object’s
apparent brightness or apparent size, constrains the distance to that object. This
distance, when coupled with General Relativity, then allows us to infer the contents

of the universe.

One common standard candle is a Supernovae Type TA explosion, which is believed
to occur when a White Dwarf accretes enough matter from a neighboring star to
become unstable, and then detonates. These extremely luminous explosions are ob-
servable very far away. Interestingly, they appear dimmer than cosmologists would
have initially expected, leading the community to believe that the universe is currently
undergoing an epoch of cosmological acceleration (Riess et al., 1998; Perlmutter et al.,
1999). This is very unintuitive. Given an initial Big Bang, one would expect gravity
acting on matter to pull back and decelerate the expansion of the universe. However,

this observation implies that the universe is composed of a material that forces gravity
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to push out and accelerate the expansion. The material that sources this expansion is
called dark energy; the scientists who made the observations leading to dark energy’s

discovery have recently been awarded the Nobel Prize.

Supernovae explosions test our understanding of the universe on large scales and re-
veal that dark energy is a major component of our universe. It is also possible to
test our understanding of the universe on smaller scales — like that of a galaxy — by
calculating the mass of galaxies using two independent methods and then comparing
both mass estimates. One method is dynamical in nature. Astronomers estimate the
mass — assuming Newtonian Gravity is valid on these scales — based on the speed of
orbiting objects. The other method is photometric in nature. Astronomers observe a
total amount of light coming from the galaxy. They assume the galaxy is composed
of stars. Given the mass and luminosity of an individual star, they then convert some
total observed luminosity of the galaxy to an estimate of the total mass. With these
two independent estimates of the mass, astronomers found that the dynamical mass
estimate is much larger than the photometric estimate (Rubin & Ford, 1970). This,
assuming Newton correctly described gravity on these scales, implies that there is a
significant amount of mass in a galaxy that is not visible. This invisible component
is known as Dark Matter; its existence was postulated by Zwicky in the 1930s based

on observations of the Coma Cluster.

Observations like those described above — on both cosmological and galaxy scales
— coupled with General Relativity, constrain our universe today to be composed of
roughly 73% dark energy, 23% dark matter and 4% baryons (Komatsu et al., 2010).
While baryons are directly observable and well understood, dark energy and dark

matter are complete mysteries.

The simplest models for dark energy assume that it does not cluster. In other words,
gravity does not produce dark energy clumps. Dark matter, on the other hand, can

cluster. Therefore, as the universe evolves, dark energy stays smooth throughout,
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while the dark matter gets more and more concentrated as gravity pulls matter onto
initial over-densities. These large concentrations of dark matter are where galaxies

eventually form.

Galaxy formation is a complicated nonlinear process. Our current understanding is
that gravity makes dark matter clumps that grow with time. Initially, the baryons
and dark matter are evenly mixed. Over time, however, since baryons can lose energy
through more pathways than dark matter, most baryons settle into the center of the
clumps. While at early times only gravity is relevant, other forces become important

later on as baryons start to radiatively and mechanically couple to their environment.

Galaxy formation is of great interest to the community. Comparing theoretically
predicted galaxies to observed ones not only tests our cosmological model on large
scales, it also tests our theoretical understanding of astrophysical processes within
galaxies. In other words, galaxies are systems which allow us to test our under-
standing of physics over a wide range of scales. Given the complex nature of galaxy
formation — with many competing processes — it is best to first focus on the most
massive component of a galaxy, known as the dark matter halo. Doing so simplifies
the problem. Then — given a fundamental understanding of halo formation — one
can later add complications in order to take into account the influence of baryons
and develop a model which matches observations of galaxies. This thesis, as a result,

focuses exclusively on dark matter halo formation.

A dark matter halo is composed of many gravitationally interacting dark matter par-
ticles. If a system contains more than two gravitationally interacting particles, it
becomes difficult to understand completely with pen and paper. As a result, most
studies of halo formation use purely numerical methods and run large computer pro-
grams known as N-body simulations. While numerical methods are useful, in order
to really understand how halos form, it is necessary to develop analytic models that

explain and bring intuition to the numerical results.
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There is currently a large community of theoretical cosmologists that work on N-
body simulations. Initially, the particles are given positions and velocities that are
consistent with linear perturbation theory. These initial conditions are only valid at
very early times before the dark matter starts to clump significantly. Then particles
are evolved forward in time only subject to gravitational forces. Today, simulated
universes shows distinct groups of particles — dark matter halos — of varying size
ranging from roughly 10°M, to 10'4M,. The lower limit depends on the mass of the
smallest particle in the simulation while the upper limit depends on the size of the

cosmological box simulated.

Many interesting trends have been discovered with these simulations. First, the den-
sity profiles of all halos can roughly be fit by an empirical formula, known as the
NFW profile, that only depends on two parameters (Navarro et al., 1996, 1997). In
addition, the pseudo-phase space density, which depends on the velocity of particles
in the halo, also seems to follow a single functional form — the same power law —
in different halos (Taylor & Navarro, 2001; Ludlow et al., 2010). Naively one would
expect these quantities to depend on initial conditions, environment, and mass of
the halo. However, N-body simulations find that — aside from scalings — the density
and pseudo-phase space density profiles of halos are universal. This universality is
extremely surprising and immediately brings forth many interesting theoretical ques-
tions. What is the origin of the NFW profile? Are dynamical processes responsible
for the universality of these profiles? Why are certain halo properties universal while

others are not?

While all of these dark matter halo properties are informative, they are all empirical.
In order to gain better intuition for halo formation — and eventually galaxy forma-
tion — and understand the origin of these empirical relationships, this thesis explores

different ways to analytically model halo formation.
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Understanding halos analytically is straightforward at early times. Halos are initially
linear in the quantity 6 = (p — p)/p, where p is the density and p is the mean matter
density in the universe. For § < 1, the dark matter fluid equations of motion can
be linearized and it is found that the over-density grows with time — in the matter
dominated era — according to § oc t*/% where t is the age of the universe. At one point,
as the universe evolves, the over-density becomes § ~ 1 and the fluid equations are
no longer valid. Hence it is necessary to explore other analytic techniques in order to
track a halo’s evolution into the nonlinear regime where we typically observe halos

with 0 > 200 today.

An analytic formalism that can track a halo from the linear through the nonlinear
regime is known as the Self-Similar Secondary Infall model (Gunn & Gott, 1972;
Gott, 1975; Gunn, 1977). Secondary Infall describes the continuous accretion of mass
shells onto an initial over-density. Self-similarity constrains the system to look iden-
tical when scaled in time and amplitude. Moreover, imposing self-similarity makes
the system analytically tractable. In this thesis we generalize the model to take into
account tidal torques acting on particles within the halo. In Chapters 2 and 3, we
use our generalized model to gain intuition about the density and velocity profiles of
dark matter halos. Both chapters are heavily based on published papers (Zukin &
Bertschinger, 2010a,b).

In Chapter 4, we explore the origin of the ‘observed’” universality. Universality implies
that information in the system has been lost, since the result does not depend on initial
conditions, mass, or environment. One way to lose information is through dynamical
processes, like diffusion. Another way occurs when analyzing the data, where for
instance all angular informative is averaged over when calculating a radial density
profile. In Chapter 4 we analyze the roles each of these mechanisms play in causing

universality by using a combination of numerical and analytic methods.
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Chapter 2

Self-Similar Spherical Collapse
with Tidal Torque !

Abstract

N-body simulations have revealed a wealth of information about dark matter halos
however their results are largely empirical. Using analytic means, we attempt to shed
light on simulation results by generalizing the self-similar secondary infall model to
include tidal torque. In this chapter, we describe our halo formation model and com-
pare our results to empirical mass profiles inspired by N-body simulations. Each halo
is determined by four parameters. One parameter sets the mass scale and the other
three define how particles within a mass shell are torqued throughout evolution. We
choose torque parameters motivated by tidal torque theory and N-body simulations
and analytically calculate the structure of the halo in different radial regimes. We find
that angular momentum plays an important role in determining the density profile
at small radii. For cosmological initial conditions, the density profile on small scales
is set by the time rate of change of the angular momentum of particles as well as the
halo mass. On intermediate scales, however, p oc 7~2, while p oc 772 close to the virial
radius.

2.1 Introduction

The structure of dark matter halos affects our understanding of galaxy formation
and evolution and has implications for dark matter detection. Progress in our un-

derstanding of dark matter halos has been made both numerically and analytically.

! This chapter is based on the published paper Zukin & Bertschinger 2010a
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Analytic treatments began with work by Gunn and Gott; they analyzed how bound
mass shells that accrete onto an initially collapsed object can explain the morphology
of the Coma cluster (Gunn & Gott, 1972; Gott, 1975) and elliptical galaxies (Gunn,

1977). This continuous accretion process is known as secondary infall.

Secondary infall introduces a characteristic length scale: the shell’s turnaround
radius 7. This is the radius at which a particular mass shell first turns around. Since
the average density is a decreasing function of distance from the collapsed object, mass
shells initially farther away will turnaround later. This characteristic scale should be
expected since the radius of a mass shell, like the radius of a shock wave in the Sedov
Taylor solution, can only depend on the initial energy of the shell, the background
density, and time (Bertschinger, 1985). By imposing that the structure of the halo
is self-similar — all quantities describing the halo only depend on the background
density, ¢, (the current turnaround radius), and lengths scaled to r, — Bertschinger
(1985), and Fillmore & Goldreich (1984), (hereafter referred to as FG) were able to
relate the asymptotic slope of the nonlinear density profile to the initial linear density

perturbation.

Assuming purely radial orbits, FG analytically showed that the slope v of the
halo density distribution p o r= falls in the range 2 < v < 2.25 for r/ry, < 1.
This deviates strongly from N-body simulations which find » < 1 (Navarro et al.,
2010; Graham et al., 2006) or v ~ 1.2 (Diemand et al., 2004) at their innermost
resolved radius and observations of Low Surface Brightness and spiral galaxies which
suggest v ~ .2 (de Blok, 2003) and the presence of cores (Gentile et al., 2004; Salucci
et al., 2007; Donato et al., 2009). Though the treatment in FG assumes radial orbits
while orbits in simulations and observed galaxies contain tangential components, it
is analytically tractable and does not suffer from resolution limits. Numerical dark
matter simulations, on the other hand, do not make any simplifying assumptions
and have finite dynamic range. Moreover, it is difficult to draw understanding from
their analysis and computational resources limit the smallest resolvable radius, since
smaller scales require more particles and smaller time steps. It seems natural, then,

to generalize the work done by FG in order to explain the features predicted in
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simulations and observed in galaxies. This chapter, in particular, investigates how

non-radial motion affects the structure of dark matter halos.

Numerous authors have investigated how angular momentum affects the asymp-
totic density profile. Ryden & Gunn (1987) analyzed the effects of non-radial motion
caused by substructure while others have examined how an angular momentum, or a
distribution of angular momenta, assigned to each mass shell at turnaround, affects
the structure of the halo (Nusser, 2001; Hiotelis, 2002; Williams et al., 2004; Sikivie
et al., 1997; Del Popolo, 2009; White & Zaritsky, 1992; Le Delliou & Henriksen,
2003; Ascasibar et al., 2004). Note that many of these authors do not impose self-
similarity. Those that do assume that a shell’s angular momentum remains constant

after turnaround.

This chapter extends previous work by Nusser (2001). Assuming self-similarity,
he analytically calculated the structure of the halo in different radial regimes for
shells with constant angular momentum after turnaround. He found that the inclu-
sion of angular momentum allows 0 < v < 2.25. According to Hoffman & Shaham
(1985), v depends on the effective primordial power spectral index (dln P/dInk),
which varies for different mass halos. For galactic size halos, Nusser’s analytic work
predicts v ~ 1.3, in disagreement with simulation results (Navarro et al., 2010; Die-
mand et al., 2004). In order to address this discrepancy, we extend Nusser’s work
by including torque. We consistently keep track of a particle’s angular momentum,
allowing it to build up before turnaround because of tidal interactions with neighbor-
ing protogalaxies (Hoyle, 1951) and to evolve after turnaround because of nonlinear
effects within the halo. Moreover, we compare the predictions of our halo model to

simulation results.

Self-similar secondary infall requires €2,, = 1 since a nonvanishing €2, introduces
an additional scale. Applying self-similarity to halo formation in the ACDM model
therefore requires approximations and a mapping to halos in an Einstein de-Sitter
universe. We assume that the linear power spectrum and background matter density
pm today are equal in both universes so that the statistics, masses, and length scales of

halos found in the two models are equivalent. Since the scale factor evolves differently

23



in both universes, the halo assembly histories will differ.

In section 2.2, we define our self-similar system and torqueing parameters. In

section 2.3, we set initial conditions and evolve the mass shells before turnaround. In

section 2.4, we describe evolution after turnaround and then analyze the asymptotic

behavior of the density profile at different scales in section 2.5. In section 2.6, we give

numerical results, discuss the overall structure of the halo, and compare to N-body

simulations. We conclude in section 2.7.

This chapter requires the use of many equations and symbols. As a guide to the

reader, in Table 2.1 we summarize the key symbols and the equations where they are

defined or first used.

Table 2.1: Symbols Used in this Chapter

Symbol

Meaning

Reference Equation

<
*

— ngﬁﬂgmiﬁxyaq bu%stb%hg?ﬁ

Turnaround radius of an individual shell

Turnaround time of an individual shell

Current turnaround radius

Angular momentum per unit mass

Initial density perturbation

Exponent characterizing r,

Exponent characterizing o

Exponent characterizing correction to ¢ caused by L
Amplitude of L at turnaround

Exponent characterizing evolution of L (¢ < t,)
Exponent characterizing evolution of L (¢ > t,)
Radius scaled to current turnaround radius

Angular momentum normalized by self-similar scaling
Density normalized by self-similar scaling

Internal mass normalized by self-similar scaling

Time variable: In(t/t;,)

Apocenter distance of an individual shell

Pericenter distance of an individual shell

Ratio of pericenter to apocenter distance
Proportional to first pericenter at turnaround (r,/r,)
Exponent characterizing slope of nonlinear internal mass
Exponent characterizing evolution of apocenter distance
Exponent characterizing evolution of y

(2.8), (2.12)
(2.9)
(2.10)

(2.41)
(2.37)
(2.39)
(2.44)
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2.2 Self-Similar Definitions

Here we explicitly define our self-similar system and derive constraints on the func-
tional form of the mass distribution within a halo and the angular momentum of

particles in a particular shell.

If the infall process is self-similar, then the halo’s appearance does not change once
all lengths are scaled to the current turnaround radius. For our analysis, we define the
current turnaround radius as ry,(t) = Ct® where both C and 3 are positive constants.

The exponent (3, as we will find, depends on the initial perturbation spectrum.

The evolution of a particular mass shell must depend on time t and the shell’s
turnaround time t,. More explicitly, assuming spherical symmetry, we have r =
R(t,t,). We define a self-similar system as one in which every trajectory obeys the

following scaling;:

R(At,At,) = A°R(t,t,) (2.1)

where A is a constant. The above implies that the trajectory of one mass shell
with turnaround time t; can be mapped to the trajectory of another mass shell with

turnaround time ¢, = At;. The exponent 3 follows since R(t1,t1)/R(to, t2) = (t1/t2)".

Each shell of a self-similar system must also follow the same equation of motion.
From Newton’s law, the radial equation of motion for a mass shell with angular

momentum is given by:

Bt 1) — _GM(R(t,t*),t) 72 (R(t,t*),t,t*>

Rt Bt (2:2)

where dots denote derivatives with respect to the first argument, M is the mass of
the halo interior to r and L is the angular momentum per unit mass of a particle in
the shell. Note that we enforce the mass to not depend explicitly on t,, while the
angular momentum can. As we will show below, this is physically motivated. From

eq. (2.1), we find:
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R(At,At,) = NP2R(t,t,) (2.3)

Plugging in egs. (2.1) and (2.3) into eq. (2.2) and simplifying, we find:

GM (A—BR(At, At,), t) L? (A—BR(At, At,), t, t*>
R(At,At,) = — A2 + A#5-2

R2(AL, At,) R3(AL, AL)

(2.4)

Changing variables from R(t,t.) to R(t,t.)/Ct? for the mass and angular momentum
and rewriting eq. (2.4), we find:

GM (R(At, At)/C (AP, t) e L2 (R(At, AL)/C (AP, ¢, t*>

At At,) = —A*F2
R(AL, At R2(At, At,) R3(At, At.)

(2.5)

Relabeling coordinates and enforcing consistency with eq. (2.2), we find the following

constraints on the functional forms of the mass and angular momentum.

M(R(t,t*)/Ctﬁ,t> - A3ﬁ‘2M(R(t,t*)/Ctﬁ,t/A> (2.6)
L(R(t,t*),t,t*> = A2ﬁ—1L<R(t,t*)/Ctﬁ,t/A,t*/A) (2.7)

With the above in mind, we define the angular momentum per unit mass L of a

particle in a shell at r, and the density p and mass M of the halo as follows.

Lirt) = B@m,t/t*) (2.8)
o) = ps(D(Y (29
Mrt) = oM (210)

where A = r/r,(t) is the radius scaled to the current turnaround radius and pp =
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1/67Gt? is the background density for an Einstein de-Sitter (flat 2, = 1) universe.

Using eq. (2.1), it is straightforward to show:

At AL) = At/A, 1) (2.11)

Eq. (2.11) implies that if one can compute A(t,t,) for a particular mass shell ¢, at all
times, then one also knows the position of all other mass shells, labeled by At, with
varying A, at a particular time. This interpretation is very powerful and will be used
later in order to calculate the mass profile after turnaround.

If the mass profile M(\) also depended explicitly on t,, then the mass would not
have to grow like the background mass enclosed in the current turnaround radius.
This is clearly not physical. Hence we suppressed the explicit dependence on t,. On
the other hand, we’ve kept the dependence on ¢, in the angular momentum in order to
have this extra freedom. Inspired by tidal torque theory and numerical simulations,

in eq. (2.8) we take f to be:

AT if t <t,,
fONt/t) = (2.12)
(t/t)=F1=28 ift > ¢t,.
The constant B sets the amplitude of the angular momentum at turnaround while
(w) controls how quickly the angular momentum increases before (after) turnaround.
Constraints on B, v, and w will be discussed in later sections.

We'’ve assumed that the halo is spherically symmetric. While simulated halos are
triaxial (Hayashi et al., 2007), the description above is meant to represent an average
halo. Since there are no preferred directions in the universe, it should be expected
that a statistically averaged halo is spherically symmetric.

In the above, L represents the angular momentum per unit mass of all particles
in the shell. We impose that all particles in the shell have orbital planes that are
randomly distributed. This implies that the total vector angular momentum of the
mass shell, and hence the total angular momentum of the halo J, vanishes. Hence,

while individual particles on a mass shell gain angular momentum in random direc-
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tions throughout evolution, on average the mass shell remains spherical. Therefore,
like we’ve assumed above, only one radial equation of motion is necessary to describe
the evolution of the shell.

Since our statistically averaged halo has a vanishing total angular momentum, this
model cannot address the nonzero spin parameters observed in individually simulated
halos (Barnes & Efstathiou, 1987; Boylan-Kolchin et al., 2010). Nor can it reproduce
the nonzero value of (J?) expected from cosmological perturbation theory (Peebles,
1969; White, 1984; Doroshkevich, 1970). However, [ L2dm where dm is the mass of
a shell, does not vanish for this model. We will use this quantity, which is a measure

of the tangential dispersion in the halo, to constrain our torque parameters.

2.3 Before Turnaround

The trajectory of the mass shell after turnaround determines the halo mass profile.
In order to start integrating at turnaround, however, the enclosed mass of the halo
must be known. For the case of purely radial orbits, the enclosed mass at turnaround
can be analytically calculated (Bertschinger, 1985; Fillmore & Goldreich, 1984). For
the case of orbits that have a time varying angular momentum, we must numerically
evolve both the trajectory and M(A) before turnaround in order to determine the
enclosed mass at turnaround.
The trajectory of a mass shell follows from Newton’s law. We have:

d*r GM(rt) N L3(r,t)

a2 r2 r3

(2.13)

Rewriting eq. (2.13) in terms of A and & = log(t/t;), where ¢; is the initial time, and
plugging in eqs. (2.8), (2.10) and (2.12), we find:
d*\ X
—+(28-1)— — A==+ BT 2.14
T+ =D+ BB + (214)
The angular momentum before turnaround was chosen so that eq. (2.14) does not

explicitly depend on £. This allows for a cleaner perturbative analysis. Since r is
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an approximate power law in t at early times, we still have the freedom to choose a
particular torque model inspired by tidal torque theory. This will be discussed at the
end of this section.

In order to numerically solve the above equation, one must know M ()), a function
we do not have a priori. Before turnaround, however, the enclosed mass of a particular
shell remains constant throughout evolution since no shells cross. Taking advantage

of this, we relate dr/dt to M by taking a total derivative of eq. (2.10). We find:

dr r M

) =B-—(33=2)Ct* 1 2.15
In the above, a prime represents a derivative taken with respect to A\. Taking another
derivative of the above with respect to time, plugging into eq. (2.13) and simplifying,

we find an evolution equation for M:

2 12
TR M S

B(B—-1DA+ (38 —-2)(B-1) (M3 9 \2

(2.16)

Given eqns. (2.14) and (2.16), we must now specify initial conditions when A > 1.
We assume the following perturbative solutions for D(\) and A(§) valid at early times.

M(X) follows from eq. (2.10).

DA = 148X " +0 P+ (2.17)
301 .. 30,

A = M1 AT AP 4 2.1

M(N) ( +3_n +3_p + ) (2.18)

ME) = Ne®PPE1 4 A e + Npe™ 4 ) (2.19)

In the above, n characterizes the first order correction to the background density. It
is related to the FG parameter € through n = 3e. It is also related to the effective
power spectral index neg = dIn P/dInk through n = n.gs + 3 (Hoffman & Shaham,

1985). Since neg depends on scale and hence halo mass (Appendix A.1), we have
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Figure 2-1: The variation of model parameter n with halo mass. Larger mass halos
map to steeper initial density profiles.

a relationship between n and halo mass. As Figure 2-1 shows, larger mass halos
have larger n. This is expected since larger smoothing lengths imply steeper initial
density profiles. As in FG, we restrict 0 < n < 3 so that the density decreases with
radius while the mass increases. We examine this whole range for completeness even
though n > 1.4 corresponds to objects larger than galaxy clusters. The exponent p
characterizes the next order correction to the background density caused by angular
momentum. Consistency with our perturbative expansion (eqgs. 2.17 through 2.19)
demands that we take n < p < 2n. However, it is straightforward to generalize to
other cases (Section 2.3.1). As we show below, the constants {d2, A1, Ao, a1, i} are set
by the equations of motion. The constants {d;, Ao} are set by boundary conditions.
Plugging eq. (2.18) into eq. (2.16) and enforcing equality between terms proportional

to A= we find two possible solutions.
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B = % (1 + %) (2.20)

B = % (1 - %) (2.21)

These represent the two solutions to the second order differential equation (eq. 2.16).
For the first case, the turnaround radius grows faster than the Hubble flow while for
the second it grows slower. Hence, the first solution represents the growing mode
of the perturbation while the second is the decaying mode. Since we are interested
in the growth of halos, we will only consider the growing mode from now on. Next,
imposing p = 27 + 4 and enforcing equality between terms proportional to A'7? in

eq. (2.16), we find:

I’ B2(p — 3)

02 = 2(p — n)(3n + 2p)

(2.22)

Comparing egs. (2.18) and (2.22), we see that the correction to the initial mass caused
by angular momentum is negative since p > n. This is expected since the angular
momentum acts against gravity.

Next, we find constraints for the parameters in eq. (2.19). Plugging in eq. (2.19)

into eq. (2.14) and setting terms linear in dy, do, A1, and Ay equal to each other, we

find:

2
= 2 (2.23)
o,
A = n—3)\0 (2.24)
2
ay = p(ﬁ—g) (2.25)
N = 2w (2.26)
2 p—370 .

Eqns. (2.17) through (2.26) set the initial conditions for eqs (2.14) and (2.16). We
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evolve A and M and choose {)\g, 1} such that turnaround occurs (d\/d§ = —\f)
when A = 1. The free parameters for evolution before turnaround are {n, B, p}. For
the zero angular momentum case analyzed in FG, the enclosed mass is the same
regardless of n; M(1) = (37/4)?. Including torque, however, we find that the en-
closed mass depends on the parameters B and p. Figure 2-2 shows a contour plot of
16M(1)/972 for n = 1. As expected, the enclosed mass at turnaround must be larger
than the no-torque case in order to overcome the additional angular momentum bar-
rier. B sets the amplitude of the angular momentum while p controls how the angular
momentum grows in comparison to the mass perturbation. Larger B and smaller p
correspond to stronger torques on the mass shell. Contour plots with different values
of n give the same features.

The above perturbative scheme ensures that the inclusion of angular momentum
preserves cosmological initial conditions. Analyzing eq. (2.19) for £ — —o0, and using
egs. (2.23) and (2.25), we see that since p > n, the angular momentum correction
is subdominant to the density perturbation correction. More importantly, at early
times, the shell moves with the Hubble flow. Last, in order to be consistent with
cosmological initial conditions, the angular momentum of particles within a mass
shell must vanish at early times. Imposing r o< t¥/3, and plugging into eq. (2.8), we
find that L oc t1+2/7)/3  Hence, for all values of p we consider, the angular momentum
vanishes at early times and has a value of Br2/t, at turnaround. Note that shells

which turn around later have larger angular momentum.

2.3.1 Tidal Torque Theory

According to Hoyle’s tidal torque mechanism, mass shells before turnaround gain
angular momentum through their interactions with the tidal fields of neighboring
protogalaxies (Hoyle, 1951). Peebles (1969) claimed that the angular momentum
of protogalaxies in an Einstein de-Sitter universe grows as t°/3 while Doroshkevich
(1970) showed that for non-spherical regions, the angular momentum grows as t.
White (1984) confirmed Doroshkevich’s analysis with N-body simulations. Since the

net angular momentum of our model’s halo vanishes, we will instead use 62, defined
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Figure 2-2: Contour plot of 16 M(1)/97% for n = 1 as a function of torquing parame-
ters B and p. Smaller p and larger B result in larger torques on the mass shell. These
larger torques require bigger enclosed masses at turnaround, in order to counteract
the stronger angular momentum barrier.

below, to constrain p and B.

o / dm|(r — o) x (v —vp)[? (2.27)
VL

In the above, we integrate over the Lagrangian volume V7, of the halo, r and v are the
physical radius and velocity of particles within the halo, 7 is the center of mass of the
halo and vy = v(7). As described earlier in this section, A > 1 corresponds to early
times when the halo is linear. Therefore, since our model represents a statistically

averaged halo, we can calculate (G%) using cosmological linear perturbation theory
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and compare to expectations from our model.
Using the Zel’dovich approximation (Zel’dovich, 1970), assuming a spherical La-

grangian volume with radius R, and working to first order, we find:

(6%),, = 6a*D*Ma2, A*(R) (2.28)

where M is the mass of the halo, a is the scale factor, D is the linear growth factor,
dots denote derivatives with respect to proper time, x,., is the lagrangian radius of
the volume, R is the spherical top hat radius for a halo of mass M and A(R) is a time
independent function defined in Appendix A.2 which has units of length. Note that
the scale factor @ and D are the only quantities which vary with time. For a matter
dominated universe, ((5%),,)"/? o t, just as in the White analysis. This is expected
since the Lagrangian mass is time independent.

Next we calculate eq. (2.27) from the perspective of our model. Using eqns. (2.8),
(2.10), and (2.12) and assuming first order corrections to M are negligible, we find:

or 3—2y 12

o max min

Tmax 4 2 7
~2 :/ BZ%)\—?yaM(Tv t) dr i B PB(t)Tm(t) [)\3—27@) N )\3—2w(t)]

Tmin

(2.29)
The lower limit of integration sets an effective smoothing length which we choose to
be A > 1 so that we only count shells that are still described by linear theory. The
upper limit of integration is required since all the mass in the universe does not go
into the halo. Since p =27+ 4 and n < p < 2n, then for the range of n we consider,
27y < 3 and the angular momentum of the protogalaxy is dominated by shells close
t0 Tmax. Equating egs. (2.28) and (2.29) and assuming the first order corrections to

Tmax D €q. (2.19) are negligible, we find p = 2n and:

B= 2\/2(7 — 2n)/\/l(1)("_1)/3$ (2.30)

Egs. (2.28) and (2.30) are derived in Appendix A.2. Note that the perturbative
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analysis, presented above, which is used to calculate M(1) is not valid for p = 2n.

Redoing the analysis for this special case, we find:

ay = % (2.31)
9 (Tn—17)(2n — 3)
b = ;B2 —3)+ g (2.32)
9 2 , 2 o
= )\ (p2_Z 2.
A T ( 3 (n —3)?2 (2:33)

For the remainder of this chapter we impose p = 2n, so that angular momentum
grows in accordance with cosmological perturbation theory, and set n according to
the halo mass. Unfortunately, when comparing to N-body simulations (Section 2.6.1),
eq. (2.30) overestimates the angular momentum of particles at turnaround by a factor
of 1.5 to 2.3. We discuss possible reasons for this discrepancy in Appendix A.2. For
convenience, By 5 (Bg3) denotes B calculated using eq. (2.30) with the right hand
side divided by 1.5 (2.3). As described above, M(1) in eq. (2.30) depends on B.
Therefore, in order to find B, we calculate B and M(1) iteratively until eq. (2.30) is
satisfied.

The relationship between n and n.g as well as tidal torque theory implies that
{n,p, B} are all set by the halo mass. Figure 2-3 shows the variation of B with halo
mass. A(R) increases with halo mass since more power at large scales is included; R
also increases with halo mass. These two competing effects cause a slight variation

in B over seven orders of magnitude in halo mass.

2.4 After Turnaround

Given the enclosed mass found at turnaround, we now solve for the trajectory and
mass profile after turnaround. For convenience, we redefine the time variable to be
¢ = In(t/t,), where t, is the current turnaround time. The trajectory’s evolution

equation after turnaround, with the appropriate torque model (eq. 2.12), is shown
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Figure 2-3: The variation of model parameter B with halo mass. B sets the angular
momentum of particles at turnaround.

below.

d*\ dA
d—§2+(2ﬁ_ 1)d—§+5(5— DA =

The torque model after turnaround was chosen to not explicitly depend on r, since

2M(N) | B? 4 1-28)¢
5 e Tl

(2.34)
r begins to oscillate on a much faster timescale than the growth of the halo. Nusser
(2001) and Sikivie et al. (1997) focused on the case w = 0. However, as was discussed
before, this results in density profiles steeper than what is predicted by numerical
simulations.

There are a number of dynamical processes that can cause a particle’s angular
momentum to evolve after turnaround. Dynamical friction (Chandrasekhar, 1943)
transfers the angular momentum of massive bound objects — like black holes, globular
clusters and merging satellite galaxies — to the background halo. A massive black
hole at the center of the halo that dominates the potential at small scales tends to
make the velocity dispersion isotropic (Gerhard & Binney, 1985; Merritt & Quinlan,
1998; Cruz et al., 2007). Bars (Kalnajs, 1991; Dehnen, 2000) and supermassive black
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hole binaries (Milosavljevi¢ & Merritt, 2003; Sesana et al., 2007) are also expected
to perturb the dark matter velocity distribution. While the torque model proposed
after turnaround is clearly very simplistic and may not accurately describe some of
the above phenomena, it still allows us to get intuition for how torques acting on
mass shells change the structure of the halo.

Analytically calculating w is difficult since the halo after turnaround is nonlinear.
In Appendix A.3, we show in a simplistic manner how w is sourced by substructure
and argue that dark matter dominated substructure should cause steeper density
profiles than baryon dominated substructure. In order to properly constrain w, N-
body simulations are required. This is beyond the scope of this work.

The initial conditions for eq. (2.34), enforced in the above section, are A(§ = 0) = 1
and d\/d§(§ = 0) = —fp. As discussed before, self-similarity implies that all mass
shells follow the same trajectory A(£). Hence, A(§) can either be interpreted as
labeling the location of a particular mass shell at different times, or labeling the
location of all mass shells at a particular time. We take advantage of the second
interpretation in order to calculate the mass profile.

After turnaround, shells cross since dark matter is collisionless. Therefore, the
mass interior to a particular shell does not stay constant. However, since A(§) specifies
the location of all mass shells at a particular time, the mass interior to a given scale
is simply the sum of all mass shells interior to it. The mass profile is then given by

(Bertschinger, 1985; Fillmore & Goldreich, 1984):

MO = Z20(1) [ d expl—(2/n)e HIA - M)
= M) Y () expl- (/)] (2.35)

where M(1) is the normalization constant found in the prior section, H[u] is the
Heaviside function, and ¢; is the ith root that satisfies A(() = A. The above is
straightforward to interpret. The roots &; label shell crossings at a particular scale

and the exponential factor accounts for the mass difference between shells that turn
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around at different times.

Since the trajectory and the mass profile depend on each other, it is necessary to
first assume a mass profile, then calculate the trajectory from eq. (2.34) and resulting
mass profile from eq. (2.35) and repeat until convergence is reached.

The density profile D(\) is straightforward to derive using eqs. 2.9, 2.10 and 2.35.
We find (Bertschinger, 1985; Fillmore & Goldreich, 1984):

D) = 3t = ZA S el () 2

i (2

2.5 Asymptotic Behavior

Unlike N-body experiments, self-similar systems are not limited by resolution. One
can analytically infer the asymptotic slope of the mass profile close to the origin.
FG did this by taking advantage of adiabatic invariance, self-consistently calculating
the mass profile, and analyzing the limit of the mass profile as A — 0. Below, we
generalize their analysis to the case of particles with changing angular momentum.
Unlike Nusser (Nusser, 2001), we do not restrict our analysis to the case w = 0.
Just as in FG, we start by parameterizing the halo mass and the variation of the

apocenter distance r,.

M(r,t) = k(t)r® (2.37)
T t\?
U 2.
L (t) (2.38)
In the above r, is the turnaround radius of a mass shell which turns around at ¢.. It

is possible to relate ¢ and « to n by taking advantage of adiabatic invariance. The

equation of motion for the mass shell is:

d27’ a—2 L2(t>

At late times, the orbital period is much smaller than the time scale for the mass
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and angular momentum to grow. Taking x(¢) and L(t) to stay roughly constant over

an orbit and integrating the above equation, we find the energy equation:

a

(@) = 2Gx(?) (ro7t — oy — L2(8)(r 2 — 1 ?) (2.40)

The above relationship tells us how the pericenters r, evolve with time. Note that
we only consider torquing models (eq. 2.12) which give rise to bound orbits. This
restriction on @ will be discussed below. Defining y = r,/r, and evaluating the above

at r = rp, we find:

1— ya—l
y? -1

A(y) o (Oé - 1)L2(t>

= 2GR (241)

For w > (<) 0, the angular momentum of particles in the mass shell increases (de-
creases). This gives rise to pericenters that increase (decrease). Hence at late times,
the orbit of a mass shell with increasing angular momentum will circularize and have
y ~ 1, while the orbit of a mass shell with decreasing angular momentum will become
more radial, with y < 1. With this in mind, we can now calculate the radial action

in order to find how ¢ relates to n and «. The radial action is given by:

Ta dr
= 2 dr | —
s ()

= 2 (M) v plot1)/2 / Y [(1—u = A2 = 1)]" (242)
a—1 y(0)

In the above we've assumed o > 1. Generalizing to the case av < 1 is straight-
forward. The special case o = 1 will be addressed later. For y(t) < 1, the above
integral is dominated by the region in which y(t) < u < 1. Over this region, the
integrand is time independent and hence the same for all orbits. Therefore adiabatic
invariance implies x(¢)re*™! = const. For y(t) ~ 1, the orbit is circular, which implies
the radial action vanishes and L%(t) = Gx(t)re™. Using eq. (2.38), and noting that
K(t) oc t* where s = 38 — 2 — a3, we find at late times:
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L 0w+ Za(l+n)-3]} ifw>0
q= atl 3n (2.43)

sntarm (1 +n) = 3] if w<0
For the specific case, w < 0, taking advantage of y < 1, the adiabatic invariance
arguments above, and eqs. (2.8) and (2.12), we can rewrite eqn. (2.41) in the form

y(t,t.) = yo(t/t.)', where:

w if a > 1,
| = (2.44)

2w /(0 +1) ifa< 1.
and yor, is the pericenter of a mass shell at turnaround. Constant angular momentum
after turnaround corresponds to w = 0. This case was addressed analytically in
(Nusser, 2001) and numerically in (Sikivie et al., 1997).
We next take advantage of the functional form of the mass profile. Following FG,
we define P(r/r,,y) to be the fraction of time a particle with apocenter distance r,

and pericenter yr,, at a particular time ¢, spends inside 7.

I(v,y)

P = <v <1

(v,9) Ty (y<v<)
Pv,y) = 1 (v>1) (2.45)

where

v du .

Hoy) = {0 @y e (2.46)
N o if @ < 1.

Y ((ue—1=1)+A(y)(u—2-1))"/?
We see that the presence of pericenters causes the new case v < y, which did not

exist in the FG analysis. Self consistency demands that

r\*  M(rt) Mia q M, r
) == P t, 1, 24
<Tta) M(rtaat) 0 Mta (ra(t>t*)’y( 7 )) ( 7)

40




where M, is the mass internal to a shell that turns around at t, and M,, is the current
turnaround mass. The integral assigns a weight to each shell depending on how often

that shell is below the scale r. Noting from eq. (2.10) that

£\ 382
M, = M, <?) , (2.48)

using eq. (2.38) and transforming integration variables, we find:

(2) =k [ bt (2.49)

Tta /Tta

where

6

k= TT 23D (2.50)

As u increases, the above integral sums over shells with smaller £,. Since the pericenter
of a shell evolves with time, the second argument of P depends on u. The dependence,
as we showed, varies with torque model (sign of @); hence we’ve kept the dependence
on u implicit. Next we analyze the above for certain regimes of r/r,, and certain

torquing models, in order to constrain the relationship between o and k.

2.5.1 Inner Solution; Negative Torque

For @w < 0, particles lose angular momentum over time. When probing scales r /1, <

Yo, mass shells with ¢, < t,, only contribute. As a result, y(t,t,) < 1. Using eq.

(2.44), we then find:
N s\’
t,t.) = — ] = 2.51
y(t,t) = yo (t) Yo (una) (2.51)

where 0 = [/(q — ). For bound mass shells, ¢ — § < 0. Therefore, since § > 0, the

first argument of P in eq. (2.49) increases while the second decreases as we sum over
shells that have turned around at earlier and earlier times (u — o0). For r/ry, < yo,
mass shells which most recently turned around do not contribute to the mass inside

/74 since we are probing scales below their pericenters. Mass shells only begin to
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contribute when the two argument of P are roughly equal to each other. This occurs
around:

1/(146)

u=1y = (yo(r/rta)‘s) (2.52)

Hence, we can replace the lower limit of integration in eq. (2.49) with y;. We next
want to calculate the behavior of eq. (2.49) close to y; in order to determine whether
the integrand is dominated by mass shells around y; or mass shells that have turned
around at much earlier times. The first step is to calculate the behavior of P(u,y)

for u ~ y. We find:

y'/? if a > 1,
P(u,y) oc ut?(1 — y/u)/? x (2.53)

Yy ifa < 1.

Given the above, we evaluate the indefinite integral in eq. (2.49), noting that y is a

function of u (eq. 2.51). For u ~ y;, we find:

1-k

du T 0 U1 lf a > 17
—— P —1)%? 2.54
| <uy () ) LR 254)
1

if o < 1.

Now comes the heart of the argument. Following the logic in FG, if we keep u/y;
fixed and the integrand blows up as r/ry, — 0, then the left hand side of eq. (2.49)
must diverge in the same way as the right hand side shown in eq. (2.54). Therefore,

using eq. (2.52):

L Jsa=miasy ifa>1, 255

5(3/2—k —a/2)(1+06) ifa<Ll

Otherwise, if the right hand side converges, then the integrand will not depend on
7 /T as 1/ry — 0. Therefore, the left hand side cannot depend on r/ry, either,

which implies & = k. Solving the above system of equations for « given eqgs. (2.43)
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and (2.50) and making sure the solution is consistent, (ie: using eq. (2.55) only if the

integrand diverges), we find:

Forn < 2:
14+ n—+/(1+n)?+9Inw(nw —2)
“ = Inw
L L+n+3nw—/(1+n)?+ 9nw(nw — 2)
nw(4 + n)
1+ n-3nw— /(14 n)? + 9Inw(nw — 2)
7= an
Forn > 2:
a = kzlin’ qg=0 (2.56)

The above solutions are continuous at n = 2. Moreover, taking the no-torque limit
(w — 0) for n < 2 gives the same solutions as n > 2, which is consistent with
analytic and numeric results from (Nusser, 2001; Sikivie et al., 1997). Taking the
limit, w — —oo reproduces the FG solution, as expected, since the shell loses its
angular momentum instantly. The solution for n > 2 is independent of w. This is
because the mass is dominated by shells with turnaround time ¢, < t;, which have
effectively no angular momentum. In other words, for w < 0, the solution should
only depend on torquing parameters when the mass is dominated by shells that have

turned around recently.

2.5.2 Inner Solution; Positive Torque

For @w > 0, the angular momentum of particles increase with time. As mentioned
above, when probing scales r/ry, < o, mass shells with t, < t;, only contribute.
As a result, y(¢,t.) ~ 1. In other words, the orbits are roughly circular. We can
therefore replace the lower limit of integration in eq. (2.49) with 1 since mass shells
will only start contributing to the sum when u ~ y ~ 1. Hence, the right hand side

of eq. (2.49) does not depend on 7/7,, which implies o = k. Using eq. (2.43) and
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(2.50), we find:

3
v = k = 2w for0<n<3 2.57
14+n—3nw’ 1 ’ orv=n= ( )

The no torque case, w = 0, is consistent with the analysis in the prior subsection.
The singularity @ = (1 4+ n)/3n implies ¢ = . This physically corresponds to the
orbital radius of mass shells increasing at the same rate as the turnaround radius and
results in orbits that are not bound and a cored profile where there are no particles
internal to a particular radius. This breaks the assumption of a power law mass
profile (eq. 2.37); hence we only consider w < (1 4+ n)/3n.

Unlike the Nusser solution, certain parameters give o > 3, which corresponds to
a density profile which converges as » — 0. Since the angular momentum acts like a

heat source dp/dr > 0 is dynamically stable and physical.

2.5.3 Outer Solution

In this regime, we are probing scales larger than the pericenters of the most recently
turned around mass shells. As a result, P(u,y) is dominated by the contribution from

the integrand when u > y. Therefore:

U if o > 1,
P(u,y) (2.58)

uB=2 if o < 1.

Hence the integral in eq. (2.49) becomes:

du ul=k if > 1,

/ Py (1,1.)) o (2.59)

ud/27k—a/2 if o < 1.

Following the logic in the prior section, if the integral diverges as r/ry, — 0, then
we set the exponents on the left hand side and right hand side equal to each other

so that both sides diverge in the same way. If the integral converges, then the left
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hand side cannot depend on 7 /7,, which implies o = k. Given these arguments, and
imposing consistency with the above inequalities on « to find the appropriate ranges

for n, we find:

f <2
el orn <

, q=0, for n > 2 (2.60)

The above is exactly the FG solution. We expect to recover these solutions since
we are probing scales larger than the pericenters of the most massive shells, where
the angular momentum does not affect the dynamics.

This section assumed « # 1 and yet, for certain parts of parameters space, egs.
(2.56), (2.57) and (2.60) give o« = 1. However, since the solutions are continuous as

a — 1 from the left and right, then the results hold for a =1 as well.

2.6 Structure of the Halo

In this section, we discuss the radial structure of galactic size halos and compare
directly to numerical N-body simulations. Note however, that the mass of a halo is
not well defined when our model is applied to cosmological structure formation since
it is unclear how the spherical top hat mass which characterizes the halo when it is
linear relates to the virial mass which characterizes the halo when it is nonlinear. For
halos today with galactic size virial masses, we assume the model parameter n which
characterizes the initial density field, is set by a spherical top hat mass of 10'2M,. As
described in prior sections, specifying the top hat mass also sets model parameters
B and p. Before comparing directly to N-body simulations, we first describe how w
influences the halo.

Figure 2-4 shows the mass M () and density profiles D(\) for galactic size halos
{n =0.77,p = 2n, By 5 = 0.39} with varying w. The spikes in the density profile are

caustics which form at the shell’s turning points. They form because of unphysical
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initial conditions; we assume each shell has zero radial velocity dispersion. The
structure of the halos naturally break down into three different regions. The dividing
points between these regions are roughly the virial radius (r,) and yor,, the pericenter

of the mass shell which most recently turned around.

As in dark matter N-body simulations, we associate the virial radius with 750,
the radius at which M (rey) = 800mppray,/3 is satisfied. Numerically, we find that
the virial radius occurs near the first caustic (A ~ .18). For r > r,, the mass profile
flattens and then starts to increase. The flattening is equivalent to what is seen on

large scales in N-body simulations where p oc r73.

The mass profile then starts to
increase again because at large radii, where A > 1, the density is roughly constant,
which implies M o< A3. For r ~ r,, it is difficult to make analytic predictions for
the mass profile because adiabatic invariance breaks down. In other words, the mass

of the halo and angular momentum of a shell change on the same time scale as the

shell’s orbital period.

As discussed in the prior section, for yory, < r < 7,, we can take advantage
of adiabatic invariance to infer the logarithmic slope of the mass profile. Since this
regime probes a scale much larger than the pericenters of the mass shells, the angular
momentum does not affect the dynamics and we recover the FG solution. For our
particular choice of n = 0.77, this gives an isothermal profile with p o< r=2. However,
since n < 2 for all collapsed objects today (Figure 2-1) and based on the results of

FG, our model predict that all halos are isothermal in this regime.

Last, for r/ry, < 4o, angular momentum begins to play a role and the halo starts
to exhibit different features than the FG solution. The behavior is very intuitive. The
mass of a particular shell does not contribute to the internal mass when probing radii
less than the pericenter of that mass shell. Therefore, as one probes radii smaller than
the pericenter of the most recently turned around mass shell, one expects a steeper fall
off than the FG solution, since less mass is enclosed interior to that radius. Moreover,
varying w varies the pericenter of mass shells over time. Increasing (decreasing)
angular momentum, w > (<) 0, causes the pericenters to increase (decrease) over

time. This results in profiles which are steeper (shallower) than the no-torque case.
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Figure 2-4: The mass and density profiles for galactic size halos {n = 0.77,p =
2n, B15 = 0.39} with varying w. The value of w changes how pericenters evolve
with time and thereby affects how many shells at a particular scale contribute to the
internal mass. The above numerically computed profiles match analytic predictions.
The virial radius (r,) and first pericenter passage (yory,) are labeled for clarity.
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Figure 2-5: The radius of a mass shell, normalized to its turnaround radius, for a
galactic size halo {n = 0.77,p = 2n, By5 = 0.39}, plotted vs time. The top panel
shows a shell with particles that have decreasing angular momentum (w = —0.2).
The middle panel shown a shell with particles that have constant angular momentum
(w = 0). The bottom panel shows a shell with particles that have increasing angular
momentum (w = 0.2).
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Figure 2-6: A phase space diagram of a galactic size halo {n = 0.77,p = 2n, By 5 =
0.39} at the current turnaround time. Velocities are normalized to the turnaround
time and radius of each shell. The top panel shows a halo with o = —0.2. The middle
panel shows a halo with @ = 0. The bottom panel shows a halo with @ = 0.2.
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It is informative to find how the transition radius yy depends on model parameters.
Since the mass and angular momentum grow significantly before the first pericenter,
we can only approximately determine this relationship. We assume that the profile is
isothermal on large scales and the halo mass and shell angular momentum are fixed
to their turnaround values. For yy < 1, the transitional radius g, solves the transcen-
dental equation y2 In(yy) = —9B?/4M(1). As expected, B — 0 reproduces yo — 0.
As shown in Figure 2-2, M(1) varies with {B, p}. However, for reasonable parameter
values, the mass normalization is changed at most by a factor of 2. Therefore, 39 most
strongly depends on B, and p has a negligible effect on the structure of the halo. As
seen in figure 2-4, 1y, should also depends on w. The above approximation neglects
this dependence since we assumed the angular momentum is set to the turnaround

value.

Figure 2-5 shows the radius of a mass shell, normalized to its turnaround radius
Ty, for a galactic size halo {n = 0.77,p = 2n, By 5 = 0.39}, as a function of time. In
the top panel, particles in the shell lose angular momentum (o = —0.2), in the middle
panel the angular momentum remains constant (co = 0), while in the bottom panel
particles in the shell gains angular momentum (ww = 0.2). As expected, the pericenters
in the top panel decrease with time while the pericenters grow in the bottom panel.
Hence, the orbits of particles with decreasing angular momentum become more radial

while those with increasing angular momentum become more circular.

Notice that the period of oscillation also varies for different w. The period of
oscillation is set by the shell’s apocenter r, and the mass internal to r,. Using the
adiabatic invariance relations we found in Section 2.5 and assuming Kepler’s third
law, we find that the period of the orbit P o< r? for shells with decreasing angular
momentum and P o r, for shells with increasing angular momentum. Moreover,
from eqs. (2.56) and (2.60), r, decreases (increases) with time for w < (>) 0. Though
Kepler’s third law doesn’t hold for this system, it still gives intuition for the above

results.

Figure 2-6 shows the phase space diagram for a galactic size halo {n = 0.77,p =

2n, By 5 = 0.39}. In the top panel, the particles in the shell lose angular momentum
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(w = —0.2), in the middle panel the angular momentum remains constant (cw = 0),
while in the bottom panel the particles in the shell gain angular momentum (w = 0.2).
The diagram labels the phase space point of every shell at the current turnaround
time. All radial velocities are normalized to the shell’s turnaround time ¢, and radius
r4. Unlike FG, the presence of angular momentum results in caustics associated with
pericenters as well, which can be seen in the lower panel of Figure 2-4. In addition,
since an increasing angular momentum results in increasing pericenters, the pericenter
caustics are more closely spaced in the lower panel than in the upper panel. Moreover,
the amplitude of the radial velocity is smaller in the lower panel because orbits are
circularizing. The phase space curve appears to intersect itself because we did not
plot the tangential velocity component. In full generality, the distribution in the
phase space (r,v,,v; = L/r) for our model is a non-self-intersecting one-dimensional

curve.

2.6.1 Comparing with N-body Simulations

In this subsection, we compare the density profile of our model’s halo to empirical
fits inspired by N-body simulations. We first numerically calculate the density profile
for a galactic size halo with @ = 0.12. This value of @ was chosen so that p oc r~*
on small scales. We then compute the spherically averaged density in 50 spherical
shells equally spaced in log,,r over the range 1.5 x 10™* < r/r, < 3, and take
ry = Tooo (defined above). This is the same procedure followed with the recent
Aquarius simulation (Navarro et al., 2010). Next, we calculate r_o, the radius where
r?p reaches a maximum. For our halo, as discussed above, the profile is isothermal
over a range of r. Moreover, the maximum peaks associated with the caustics are
unphysical. So, we choose a value of r_5 in the isothermal regime that gives good
agreement with the empirical fits. Changing r_s does not change our interpretation
of the results.

In Figure 2-7 we compare our spherically averaged density profile to NFW and
Einasto profiles. We plot 72p in order to highlight differences. The NFW profile is

given by (Navarro et al., 1996):
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Figure 2-7: Spherically averaged density profile for the secondary infall model com-
pared with NFW and Einasto profiles. The secondary infall model is calculated for
a galactic size halo {n = 0.77,p = 2n} with @w = .1167. In the top panel we chose
By 5 = 0.39 while in the bottom panel we chose By 3 = 0.26.
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4p_s
r/r_o)(1+1r/r_)?

p(r) = ( (2.61)

while the Einasto profile is given by:

I [p(r)/p2| = (=2/ap)l(r/r2)F = 1] (2.62)

where p_ is the density of our halo at r_5 and ag, known as the shape parameter,
sets the width of the r%p peak. In the top panel, we use B;s = .39 while in the
bottom panel, we use By 3 = .26. We choose ar = 0.159 since this value was used in
Figure 3 of Navarro et al. (2010).

We see that the secondary infall model works surprisingly well. The peaks are
a result of the caustics that arise because of cold radial initial conditions. The first
spike on the right comes from the first apocenter passage while the second comes from
the first pericenter passage. The location of pericenter is most strongly influenced
by the model parameter B. Hence, the isothermal region is smaller in the top panel
than in the bottom panel since particles have less angular momentum at turnaround
in the lower panel than in the upper panel. The parameter B then plays the same role
as ag; it sets the width of the isothermal region. If we assume N-body simulations
faithfully represent dark matter halos, then Figure 2-7 implies that our estimate of B
in eq. (2.30) overestimates the actual value by 1.5 to 2.3. We discuss possible reasons

for this in Appendix A.2.

2.7 Discussion

N-body simulations reveal a wealth of information about dark matter halos. Older
simulations predict density profiles that are well approximated by an NFW profile
(Navarro et al., 1996), while more recent simulations find density profiles that fit bet-
ter with a modified NFW profile (Moore et al., 1999) or the Einasto profile (Navarro
et al., 2010). In an attempt to gain intuition for these empirical profiles, we’ve gen-

eralized the self-similar secondary infall model to include torque. This model doesn’t
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suffer from resolution limits and is much less computationally expensive than a full
N-body simulation. Moreover, it is analytically tractable. Using this model, we were
able to analytically calculate the density profile for r/ry, < yo and yo < /7 < 1.
Note that the self-similar framework we’ve extended predicts power law mass profiles

on small scales. Hence, it is inconsistent with an Einasto profile.

It is clear from our analysis that angular momentum plays an essential role in
determining the structure of the halo in two important ways. First, the amount
of angular momentum at turnaround (B) sets the width of the isothermal region.
Second, the presence of pericenters softens the inner density slope relative to the
FG solution because less mass shells contribute to the enclosed mass. Moreover, the
interior density profile is sensitive to the way in which particles are torqued after

turnaround (w).

If we assume that w is constant for all halos, then this secondary infall model
predicts steeper interior density profiles for larger mass halos. More specifically, if we
use the value of @ = 0.12 which gave p o< r~! for galactic size halos, then p oc r=%:¢ for
a 108 M, halo and p o< r=142 for a 10 M, halo. This trend towards steeper interior
slopes for larger mass halos, and hence non-universality, has been noticed in recent
numerical simulations (Ricotti et al., 2007; Cen et al., 2004) as well as more general
secondary infall models (Del Popolo, 2010). On the other hand, if we assume that all

Las r — 0, then @ must vary with halo mass. More specifically,

halos have p o< r~
halos with mass M < 10°M must have particles which lose angular momentum
over time (ww < 0) while halos with mass M > 10°M, must have particles which
gain angular momentum over time (@ > 0). In other words, in order for our self-
similar framework to predict universal density profiles, @ must conspire to erase any

dependence on initial conditions. A more thorough treatment requires the use of
N-body simulations, which is beyond the scope of this chapter.

It is also possible to predict a dark matter halo’s density distribution if one assumes
a mapping between a mass shell’s initial radius, when the structure is linear, to its final
average radius, which is some fraction of its turnaround radius. From this scheme,

one can also infer a velocity dispersion, using the virial theorem. Unfortunately, this
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scheme does not give any information about the halo’s velocity anisotropy. Our self-
similar prescription discussed above, on the other hand, contains all of the velocity
information. Hence, one can reconstruct the velocity anisotropy profile given the
trajectory of a mass shell. The velocity anisotropy is significant since it describes to
what degree orbits are radial. Moreover, it can break degeneracies between n and w
in our halo model. We will discuss the velocity structure of our halo model, including
the pseudo-phase-space density profile, in more detail in Paper 2 of this series. There
we will once again compare our halo predictions to the recent Aquarius simulation
results (Navarro et al., 2010).

While the above self-similar prescription has its clear advantages, it’s also un-
physical since mass shells at turnaround are radially cold. The same tidal torque
mechanisms which cause a tangential velocity dispersion (Hoyle, 1951), should also
give rise to a radial velocity dispersion. For a more physical model, one would need
to impose self-similarity to a phase space description of the halo and include sources
of torque as diffusion terms in the Boltzmann equation. This will be the subject of
Paper 3 of this series.

As we’ve shown, the way in which particles are torqued after turnaround (w) in-
fluences the interior power law of the density profile. One way to source this change in
angular momentum is through substructure that is aspherically distributed through-
out the halo. It is reasonable to assume that substructure dominated by baryons
torque halo particles more strongly than substructure dominated by dark matter since
baryons can achieve higher densities and hence are not tidally disrupted as easily. If
this is the case, then torques sourced by baryons would result in a larger value of @
than torques sourced by dark matter. According to the predictions of this secondary
infall model, this would lead to less cuspy profiles (See Appendix A.3 for a more
detailed discussion). Therefore a more thorough understanding of w coupled with
this simplified model of halo formation could potentially shed light on the Cusp Core

problem and thereby possibly bridge the gap between simulations and observations.
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Chapter 3

Velocity Structure of Self-Similar
Spherically Collapsed Halos!

Abstract

Using a generalized self-similar secondary infall model, which accounts for tidal
torques acting on the halo, we analyze the velocity profiles of halos in order to
gain intuition for N-body simulation results. We analytically calculate the asymp-
totic behavior of the internal radial and tangential kinetic energy profiles in different
radial regimes. We then numerically compute the velocity anisotropy and pseudo-
phase-space density profiles and compare them to recent N-body simulations. For
cosmological initial conditions, we find both numerically and analytically that the
anisotropy profile asymptotes at small radii to a constant set by model parameters.
It rises on intermediate scales as the velocity dispersion becomes more radially domi-
nated and then drops off at radii larger than the virial radius where the radial velocity
dispersion vanishes in our model. The pseudo-phase-space density is universal on in-
termediate and large scales. However, its asymptotic slope on small scales depends
on the halo mass and on how mass shells are torqued after turnaround. The results
largely confirm N-body simulations but show some differences that are likely due to
our assumption of a one-dimensional phase space manifold.

3.1 Introduction

Recent N-body simulations have revealed a wealth of information about the velocity

structure of halos (Navarro et al., 2010; Ludlow et al., 2010; Vogelsberger et al.,

IThis chapter is based on the published paper Zukin & Bertschinger 2010b
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2010). However, simulations have finite dynamic range. Moreover, it is difficult
to draw understanding from their analysis, and computational resources limit the
smallest resolvable radius, since probing smaller scales require using more particles
and smaller time steps. Hence, it seems natural to use analytic techniques, which do

not suffer from resolution limits, to analyze the velocity distributions of halos.

Numerous authors have analytically investigated the density profiles of halos.
Work began with Gunn and Gott where they analyzed the continuous accretion of
mass shells onto an initial overdensity (Gunn & Gott, 1972; Gott, 1975; Gunn, 1977).
This process is known as secondary infall. By imposing that the mass accretion is self-
similar, Fillmore & Goldreich (1984) and Bertschinger (1985), assuming purely radial
orbits, were able to analytically calculate the asymptotic slope of the density profile.
Since then, there have been numerous extensions, some which do not assume self-
similarity, that take into account non-radial motions (Ryden & Gunn, 1987; Nusser,
2001; Hiotelis, 2002; Williams et al., 2004; Sikivie et al., 1997; Del Popolo, 2009;
White & Zaritsky, 1992; Le Delliou & Henriksen, 2003; Ascasibar et al., 2004). Those
works that do not impose self-similarity can only infer information about the veloc-
ity dispersion using the virial theorem. Hence they cannot predict a halo’s velocity
anisotropy. Those works that do impose self-similarity focus only on the asymptotic

slopes of density profiles.

In this Chapter, we analytically and numerically analyze the velocity structure of
halos using an extended self-similar secondary infall model (Zukin & Bertschinger,
2010a). The work which introduced this extended infall model was discussed in detail
in Chapter 1. We then compare the predictions of our halo model to simulation
results, focusing on the velocity anisotropy (Binney & Tremaine, 2008) and pseudo-
phase-space density profiles (Taylor & Navarro, 2001; Navarro et al., 2010; Ludlow
et al., 2010).

Density profiles do not uniquely determine a self gravitating system. In order
to more fully characterize dark matter halos, one needs to probe their phase space
distributions. The velocity anisotropy and pseudo-phase-space density profiles are

thereby useful since they complement density profiles by revealing additional infor-
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mation about the phase space structure of the halo.

In Section 3.2 we summarize our generalized secondary infall model and discuss
how to numerically calculate the radial and tangential velocity dispersions in the
halo. In Section 3.3 we analytically calculate the asymptotic behavior of the radial
and tangential kinetic energy profiles on small and intermediate scales. In Section 3.4
we compare our numerically calculated anisotropy and pseudo-phase-space density

profiles to recent N-body results and conclude in Section 3.5.

3.2 Self-Similar Model

Here we first summarize the self-similar halo formation model developed in Chapter
I. The model is characterized by four parameters {n,p, B,w} which are described
below.

In this model, the universe is initially composed of a linear spherically symmetric
density perturbation with mass shells that move approximately with the hubble flow.
Because of the central overdensity, mass shells eventually stop their radially outward
motion and turn around. The radius at which a mass shell first turns around, or
its first apocenter, is known as the turnaround radius. Since the average density is
a decreasing function from the central overdensity, mass shells initially farther away
will turnaround later. The halo grows by continuously accreting mass shells. Mass
shells are labeled by their turnaround time ¢, or their turnaround radius r,.

Model parameter n characterizes how quickly the initial linear density field falls
off with radius (§ o r~™). It is related to the effective primordial power spectral
index neg (dln P/dInk) through n = neg + 3 (Hoffman & Shaham, 1985). Since ng
depends on scale, n is set by the halo mass. As in Chapter I, we restrict our attention
to 0 < m < 3 so that the initial density field decreases with radius while the excess
mass increases with radius. Note however that n > 1.4 corresponds to objects larger
than galaxy clusters today. Model parameter n also sets the growth of the current
turnaround radius: ry, o< ¥ where 8 = 2(1 + n)/3n (Zukin & Bertschinger, 2010a).

Self-similarity imposes that at time ¢, the angular momentum per unit mass L of
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a particle in a shell at r, and the density p and mass M of the halo have the following
functional forms (Zukin & Bertschinger, 2010a).

L(rt) = B@m,t/t*) (3.1)
pr1) = pu()DON (32
Mrt) = T pp(r (MO (33

where A\ = 7/rw.(t) is the radius scaled to the current turnaround radius, pp =
1/6mGt? is the background density for an Einstein de-Sitter (flat €2,, = 1) universe,
and B is a constant. Inspired by tidal-torque theory and numerical simulations, we

take f to be:

A(4-p)/2 ift <t,,
fNt/) = (3.4)
(t/t,)=H=2 ift > ¢,.

Model parameter p, defined above, sets how quickly angular momentum builds up
before turnaround while B sets the amplitude of angular momentum at turnaround.
In Chapter I, using cosmological linear perturbation theory, we constrained p and
B so that the angular momentum of particles before turnaround evolves as tidal
torque theory predicts (Hoyle, 1951; Peebles, 1969; White, 1984; Doroshkevich, 1970).
Conveniently both p and B are set by the halo mass. However, after comparing to
density profiles from N-body simulations, we found that our expression for B derived
from linear theory overestimates the actual value. Hence, for the rest of this chapter,
the notation By 5 (Bay3) signifies using a value of B divided by 1.5 (2.3).

Model parameter w, defined above, sets how quickly the angular momentum of
particles grows after turnaround. This parameter is difficult to constrain analytically
since the halo is nonlinear after turnaround. However, in Chapter I we showed that a
nonzero w can be sourced by substructure. Moreover, w influences the density profile
at small scales since it controls how the pericenters of shells evolve over time.

The trajectory of a shell after turnaround contains all of the velocity information
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in the halo. The trajectory’s evolution equation, which follows from Newton’s law, is
given by:

% R N RV D oer-ang
where £ = In(t/t,,) and t,, is the current turnaround time. The initial conditions for
eq. (3.5) are A(¢ =0) =1 and d\/d&(€ = 0) = — 3. Calculating M(1) requires evolv-
ing both the shell’s trajectory and M () before turnaround (Zukin & Bertschinger,

(3.5)

2010a). Because of self-similarity, the trajectory A(§) can either be interpreted as
labeling the location of a particular mass shell at different times, or labeling the
location of all mass shells at a particular time. We take advantage of the second
interpretation in order to numerically calculate the velocity profiles.

Inside the shell that is currently at its second apocenter, multiple shells exist at all
radii. This can be seen from Figure 5 of (Bertschinger, 1985), which plots the location
of all shells at a particular time. Therefore the expectation value of a quantity h, for
example the radial velocity, at radius r and time ¢ is the value of h for each shell at

r weighted by each shell’s mass. We find:

St by (1 1,5 (X — A(€))

Ji S0P (A= A©)

(h(r,t)) = (3.6)

where My, is the current turnaround mass, h(t,t,) represents the value of h for the
shell with turnaround time t,, dM, is the mass of the shell with turnaround time ¢,,
and 7 is the dirac delta function which picks out all shells at .

In order to numerically calculate h, we must relate h(t, t.) to A(§), the computed

trajectory of the shell which turns around at t,,. Using self-similarity, we find:

Tta - 1
v(t,t,) = B%e(” 28)¢x e (3.7)
u(tt) = Tﬂe—ﬁﬁ*i[e%(g]\_ (3.8)
T ) Uk t d€ f—g*

where &, = t/t, and v, (v,) is the tangential (radial) velocity. Using egs. (3.6)-(3.8),
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and taking advantage of the delta function, the tangential (¢2) and radial (o) velocity

dispersions become:

4=Tp+2w)&i ) N
oi(r,t) = (vi(rt)) = tha 2 Zi o(2-38)€; |d)\/‘22ﬁ‘d£‘
o2(r,t) = (vi(r,t)) — (ve(r, t))?

1, S0 a0 e el

12 >, e@ 308 AN /dgl

"2 (Z e@=10)% [d(ePEN) /dg] . |dN/dE|; )
2 S, e300 |dX/dg] T

(3.9)

(3.10)

where &; is the ith root that satisfies A = A\(£). In the above, we’ve imposed (v;(r,t)) =
0 since our model assumes that the orbital planes of particles in a given shell are
oriented in random directions. Note that inside the shell that is currently at its
second apocenter, interference between multiple shells forces (v,.(r,t)) to quickly go

to zero.

3.3 Asymptotic Behavior

Here, using techniques developed in (Fillmore & Goldreich, 1984), we analytically
calculate the logarithmic slope of the tangential and radial kinetic energy in two dif-
ferent radial regimes. We accomplish this by taking advantage of adiabatic invariance

and self consistently calculating the total radial and tangential kinetic energy profiles

of the halo.

We start by parametrizing the halo mass, radial kinetic energy K,, tangential

kinetic energy K; and the variation of the apocenter distance r,,.
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M(r,t) = &(t)r® (3.11)
K.(r;t) = gk (t)re (3.12)
Ki(r,t) = Rr(t)r™ (3.13)

:—Z - (ti) (3.14)

In the above 7, is the turnaround radius of a mass shell that turns around at t,. As
was shown in Chapter I, adiabatic invariance allows us to relate ¢ and « to n. At
late times, the orbital period is much smaller than the time scale for the mass and
angular momentum to grow. Integrating Newton’s equation and assuming k() and

L(t) change little over an orbit, we find:

a

(@) = 2O pat ety p2( (0 - ), (3.15)

The above relationship tell us how the pericenters r, evolve with time. Defining
y =1,/r, and evaluating the above at r = r,, we find:

1 -y (0 — 1)L2(t)

~ 2GR reti(t) (3.16)

In Chapter I, by analyzing the radial action, we found that when y < 1, s (#)r2*1(¢)
const. Therefore, for w < 0, eq. (3.16) implies that y will decrease over time. How-
ever, for w > 0, x(t)re™(t) = const and eq. (3.16) imply that y will increase over
time and will at one point violate y < 1. Since we only consider bound orbits, the
constraint y < 1 holds. At late times, as the angular momentum continues to increase
for w > 0, y ~ 1, orbits become approximately circular, the radial action vanishes,
and L?(t) ~ r(t)roT(t). Hence halos with @ < 0 will have orbits that become more
radial over time (y < 1) while halos with c > 0 will have orbits that become more

circular over time (y ~ 1). The above insight leads to the following constraint.
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L 0w+ Z[a(l+n)—-3]} ifw>0
q= a+1 3n[ ] (317)

sntarm (1 +n) = 3] if w<0

For the specific case, w < 0, taking advantage of y < 1, the adiabatic invariance
arguments above, and egs. (3.1) and (3.4), we can rewrite eqn. (3.16) in the form

y(t,t.) = yo(t/t.)', where:

w if a > 1,
| = (3.18)
2w/(a+1) ifa<l

and yor, is the pericenter of a mass shell at turnaround. The special case a = 1 will

be addressed later.

We next calculate the kinetic energy profiles. After a few orbits, shells oscillate
at a much higher frequency than the growth rate of the halo. When calculating the
internal mass profile, this allows us to weight each mass shell based on how much
time it spends interior to a certain scale (Fillmore & Goldreich, 1984). Likewise,
when calculating the total internal kinetic energy profile, we can weight each mass
shell by both a time-averaged v? (or v?) and a factor that accounts for how often the

shell lies interior to a certain scale. For a derivation, please see the Appendix.

Using egs. (3.15) and (3.16), the kinetic energy weighting P;(r/r,,y) at time ¢ for

a mass shell with apocenter distance r,, pericenter yr,, below r, is:

Pi(u,y) = 0 (u<y)
Ry = 508 w<usy
Pilu,y) = II((11§)) (u>1) (3.19)

where
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@ [wim o
f(v,y)dv (3.21)

I(u,y) = /u dv (3.22)

and

1— o) — Ay (w2 —1NY? ifa>1,
Fog) = (( ) — Ay)( ))12 > (3.23)
(2= 1)+ Aly)(v2 —1)* ifa<l

The index i = {r,t} is used for shorthand to represent either the radial or tangential
direction and the dependence of 7, and r, on t, is implicit. Eq. (3.21) is not an
equality since Gr(t) oc ri ®/t2. Moreover, the proportionality constant varies for

different radial regimes in the halo.

Similar to the treatment in Chapter I, self consistency demands that:

r\" K;(r,t) Mea gpg, 2 r
_ A S — P, | ———, y(t, t, 3.24
(Tta) Ki('rtaa t) = 0 Mta tha Ta(tv t*) y( ) ( )

where dM, is the mass of a shell that turned around at ¢, and M,, is the current
turnaround mass. The above is not an equality, even for the tangential kinetic energy,
because of a proportionality constant, similar to M(1), that is not included. See the
Appendix for details. Its numerically computed value does not affect the asymptotic

slopes ;. Noting from eq. (3.3) that

dM,
dInt,

— (38— 2)M,, (5)35_2 , (3.25)

*

using eq. (3.14) and transforming integration variables to u = r/r,, we find:
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(—) x o) . Wﬂ(u,y(t,t*)) (3.26)
where k = (38 —2)/(8 — q). As u increases, the above integral sums over shells with
smaller t,. Since the pericenter of a shell evolves with time, the second argument of
P; depends on u. The dependence varies with torque model (sign of @); hence we’ve
kept the dependence on u implicit. Next we analyze the above for certain regimes of

/T, and certain torquing models, in order to constrain the relationship between «;

and k.

3.3.1 Inner Solution; Negative Torque

For w < 0, particles lose angular momentum over time. When probing scales r /1, <

Yo, mass shells with ¢, < t;, only contribute. As a result, y(¢,t,) < 1. Using eq.

(3.18), we then find:
! O\’
y(t,t) = yo (t—) = Yo (Wt ) (3.27)

where 6 =1/(¢— ) and u = r/r,. For bound mass shells, ¢ — 5 < 0. Therefore, since

d > 0, the first argument of P; in eq. (3.26) increases while the second decreases as
we sum over shells that have turned around at earlier and earlier times (v — o). For
/T4 < Yo, mass shells which most recently turned around do not contribute to the
kinetic energy inside 7 /7, since we are probing scales below their pericenters. Mass
shells only begin to contribute when the two argument of P; are roughly equal to each
other. This occurs around:

1/(1+6)

=1y = (yo(r/rta)é) (3.28)

Hence, we can replace the lower limit of integration in eq. (3.26) with y;. We next
want to calculate the behavior of eq. (3.26) close to y; in order to determine whether
the integrand is dominated by mass shells around y; or mass shells that have turned

around at much earlier times. The first step is to calculate the behavior of P;(u,y)
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for u ~ y. We find:

2 le y~3/? if o > 1,
Pluy) o« ' ( ’ ) W21 = )Y (3.29)
Yy~ T2 if o < 1

2/ .\ y 2 ifa>1,
P.(u,y) o< -2 ( ) (1 — y/u)*? x (3.30)
y~ T2 if o < 1.

where [; = 2(1+w —q— f)/(q — ) and [, = a — 1. Given the above, we evaluate
the indefinite integral in eq. (3.26), noting that y is a function of u (eq. 3.27). For

u ~ yp, we find:

4

—1—k—1ly .
t2 du r\° r\ " Y if > 1,
— | —PF, | u, x (u —1)%2 [ — X
Tz%a / u1+k ! ( Yo <urta> ) ( /yl ) T'ta —1/2—k—li—a/2

i if a < 1.
(3.31)
(
t2 du r\° r A\ gLk if o > 1,
T—Q/WR« <Uay0 (ur ) ) < (u/yr —1)°? (7‘_) X o
ta e ta \yi/% el g < 1.
(3.32)

Following the logic in Chapter I, if we keep u/y; fixed and the integrand blows up
as y; — 0, then the left hand side of eq. (3.26) must diverge in the same way as the
right hand side shown in egs. (3.31) and (3.32). Therefore, using eq. (3.28):
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—0(1+k+1)/(1+9) ifa>1,
Oét—]f—lt =
—5(1/24k+1+a/2)(1+6) ifa<l.
(3.33)
§(1—k—1,)/(1+0) if o> 1,
a— k-1, =
(1/2—k—=1l+a/2)(1+9) ifa<l
(3.34)

Otherwise, if the integrand converges, then the right hand side is proportional to
(r/ra)t. Therefore, the left hand side must also have the same scaling, which implies
a; = k+1;. Solving the above system of equations for «; simplifies dramatically since
we have already solved for {«, k, ¢} in Chapter I. Rewritten below for convenience,

we found:

Forn < 2:
14+n—+/(1+n)?+9nw(hw —2)
“ = Inw
Lo 14+ n+3nw— /(1 +n)? + Inw(nw — 2)
nw(4+n)
14+ n=3nw— /(1 +n)?+9Inw(nw — 2)

= an
Forn > 2:

a = kzlin’ q=0. (3.35)

Using eq. (3.35) to solve for o; and making sure the solution is consistent, (ie: using

egs. (3.33) and (3.34) only if the integrand diverges as y; — 0), we find:
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Forn < 2:
0 — = 12— 9nw — 24/(1 + n)? + Inw(nw — 2)
' 1+n+ /1 +n)?+ Inw(nw — 2)
Forn > 2:
N (44 n)(3nw + 2n — 10)
! 2(1+n)(3nw —n — 4)
d5—n
& = o (3.36)

The above solutions are continuous at n = 2. Taking the no-torque limit (@ — 0),
we find o = a,, = (5 —n)/(1 + n) for all n. Assuming virial equilibrium, one would
predict a; = 2o —1 = (5—n)/(1 4+ n). Hence, in the no-torque limit, both the radial
and tangential kinetic energy are virialized. However, when w < 0, only the radial
kinetic energy for n > 2 is virialized. All other profiles are out of virial equilibrium
because they are dominated by shells which recently turned around and hence have
not had time to virialize. Since all collapsed objects today have n < 2, this model

predicts unvirialized halos when particles lose angular momentum after turnaround.

3.3.2 Inner Solution; Positive Torque

For @w > 0, the angular momentum of particles increase with time. As mentioned
above, when probing scales r/ry, < 1o, mass shells with ¢, < t;, only contribute.
As a result, y(t,t.) ~ 1. In other words, the orbits are roughly circular. We can
therefore replace the lower limit of integration in eq. (3.26) with 1 since mass shells
will only start contributing to the sum when u ~ y ~ 1. Hence, the right hand side
of eq. (3.26) is proportional to (r/ry)"%, which implies o; = k + [;. Using the results

from Paper 1, reproduced below for convenience,

3

= = <n< .
R — g=2w, for 0<n<3, (3.37)

a=k

we find:
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5—n+ 3nw

= @@ f <n<3. .
R w— or 0<n<3 (3.38)

ap = O

The no-torque case, w = 0, is consistent with the analysis in the prior subsection.
The singularity @ = (14 n)/3n, as discussed in Chapter I, corresponds to orbits that
are not bound. Hence we only consider @ < (1 +n)/3n. Eq. (3.38) shows that the
halo, for ww > 0, is in virial equilibrium (o; = 2ac — 1). This is expected since the

velocity profiles are dominated by mass shells that have turned around at t < t,,.

3.3.3 Outer Solution

In this regime, we are probing scales larger than the pericenters of the most recently
turned around mass shells. As a result, P;(u,y) is dominated by the contribution

from the integrand when u > y. Therefore:

r2 ro\ " y! if o > 1,
Py(u,y) ﬁ( ) X
UTtq ky—(a+1)/2 ifa<1.
(3.39)
)
2 lr u if a > 1,
P (u,y) %( . ) X
7 \ura W2 i o < 1.
\
(3.40)

Plugging in the above into eq. (3.26), using the results of Chapter I shown below for

convenience,

forn <2

3n '

, q=20, forn > 2

(3.41)
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and utilizing the same divergence and convergence arguments above, we find:

Forn < 2:
a = 0, a, =1
Forn > 2:
0 if w < 53)_—”",
oy =
5—n—3nw :f 5—n 14+n
1tn if o <w <Gt
5—n
r = . 3.42
a T n (3.42)

The above solutions are continuous at n = 2. The upper limit (1 + n)/3n on w
enforces that orbits are bound (w < (/2). For n < 2, @w > (5 —n)/3n results in
unbound orbits and hence is not considered. The radial kinetic energy follows the
same profile expected from virial equilibrium (o, = 2« — 1), even though recently
turned around mass shells dominate the kinetic energy for n < 2. We believe this is a
result of angular momentum not playing a dynamical role at these scales. Using this
logic, and as eq. (3.42) reveals, this is consistent with the the tangential kinetic energy
not being virialized (oy # 2a — 1). Taking the limit of eq. (3.36) as w — —o0, we
recover the same expressions as eq. (3.42) for a,.. This is expected since in this limit,
particles lose their angular momentum instantly, resulting in purely radial orbits.
We do not expect to recover the same expressions for «; since the tangential kinetic

energy vanishes in this limit.

Egs. (3.35), (3.37) and (3.41) determine how quickly the mass inside a fixed radius
grows as a function of time (k(¢) defined in eq. 3.11). When ¢ = 0, apocenters of
mass shells settle down to a constant fraction of their turnaround radii, leading to a
constant mass inside a fixed radius. For cosmologically relevant structures (n < 1.4),
this occurs on small scales for w = 0. When ¢ < 0, inward migration leads to an
increasing mass inside a fixed radius. When ¢ > 0, outward migration leads to a

decreasing mass inside a fixed radius.
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This section assumed a # 1 and yet, for certain parts of parameter space, eqs.
(3.35), (3.37) and (3.41) give o = 1. However, since the solutions are continuous as

a — 1 from the left and right, then the results hold for o = 1 as well.

3.4 Comparison with N-body Simulations

In this section, using the analytic results derived above to gain intuition, we first
analyze how w influences the anisotropy and pseudo-phase-space density profiles and
then compare our numerically computed profiles to recent N-body simulations of
galactic size halos (Navarro et al., 2010).

As described in Chapter I, the mass of a halo is not well defined when our model
is applied to cosmological structure formation since it is unclear how the spherical
top hat mass which characterizes the halo when it is linear relates to the virial mass
which characterizes the halo when it is nonlinear. For halos today with galactic
size virial masses, we assume the model parameter n which characterizes the initial
density field, is set by a spherical top hat mass of 102M. Specifying the top hat
mass also sets model parameters B and p. For explicit expressions used to calculate
model parameters n, p, and B, please see Chapter I.

When analyzing the influence of w, we use model parameters: n = 0.77, p = 2n,
and B 5 = 0.39. When comparing to N-body simulations, we use model parameters
n=0.77, p = 2n, w = 0.12, and By 5 (Bs3) = 0.39 (0.26). This value of @ ensures

1

p o r~' on small scales and, as shown in Chapter I, this range in B gives good

agreement with the Einasto and NFW profiles (Navarro et al., 1996).

For the N-body comparisons, we average p, o2, and o2 in 50 spherical shells
equally spaced in log;, 7 over the range 1.5 x 107* < r/r, < 3, where r, satisfies
M(r,,t) = 8007ripp(t)/3. This is the same procedure followed with the recent
Aquarius simulation (Navarro et al., 2010). We also calculate r_o, the radius where
r2p reaches a maximum. This radius, as well as the virial radius r,, are commonly

referred to in simulation papers. As discussed in Chapter I, the density profile is

isothermal for our halo over a range of r. Moreover, the maximum peaks associated
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with the caustics are unphysical. So, we choose a value of r_5 in the isothermal
regime that gives good agreement with empirical density profiles. Changing r_, does
not change our interpretation of the results. We find r_5/r;, = 0.07 (0.05) for By 5
(Bs.3). For reference, we find the dimensionless radius of first pericenter passage (yo)
to be 0.042 (0.026) for By 5 (Bas).

As mentioned previously, N-body simulations have finite dynamic range. The
innermost radius where the simulation results can be trusted is set by the total number
of particles (Power et al., 2003). The recent Aquarius simulations characterize their
innermost radius based on the convergence of the circular velocity, at a particular
radius, for the same halo simulated at different resolutions (Navarro et al., 2010).
The notation rish (rEZLV) corresponds to the smallest radius such that the circular
velocity has converged to 10% (2.5%) or better at larger radii. When these radii are
showed in the figures, we use the values quoted in Table 2 of (Navarro et al., 2010)

for halo Aq-A-2 (r((xl)zw /r—2 = 0.022 and i /r—o = 0.052) since all six halos were

simulated at this resolution.

3.4.1 Anisotropy Profile

Here we analyze the velocity anisotropy 8, = 1 —0?2/202 for galactic size halos, where
the tangential and radial velocity dispersions are defined in egs. (3.9) and (3.10)
respectively. Based on the analysis in Section 3.3, we expect [, to asymptote to a

constant for r/ry, < yo since o2 x o2 and 3, to increase for yy < 7/ria <K Ty/Tta

1

since 02/0? oc 7~ Moreover, for radii larger than the first shell crossing (r ~ r,),

02 = ( since only one shell contributes to the dispersion. Hence, in this radial range,
B, = —o0.

In the top panel of Figure 3-1 we plot the velocity anisotropy for galactic size
halos with varying w. In the bottom panel, we plot the smoothed velocity anisotropy
for model parameters that give good agreement with density profiles from simulated
galactic size halos. The downward spikes in both panels are caustics which exist
because of unphysical radially cold initial conditions. In both panels, as analytically

predicted, the velocity anisotropy asymptotes at small radii, increases at intermediate
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Figure 3-1: The top panel shows the velocity anisotropy profile for a self-similar halo
with model parameters n = 0.77, p = 2n, B;5 = 0.39, and varying w. Smaller w
leads to halos with more radial orbits at a particular radius. The bottom panel shows
the smoothed velocity anisotropy profile for a self-similar halo with model parameters
n=0.77p=2n,w=0.12 and By 5 (Bs3) = 0.39 (0.26). Smaller B leads to a larger
peak width and more radial orbits. The profile is qualitatively similar to results from
N-body simulations. The dimensionless radius of first pericenter passage (yo) and the
virial radius (r,) are labeled for clarity. The convergence radii for the Aquarius halo
Ag-A-2 (Navarro et al., 2010) are labeled for reference.
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radii, and then drops off near the virial radius.

The top panel shows that w affects the radius of first pericenter passage (yo),
the amplitude of (3, close to the virial radius, as well as the asymptotic value of
B, at small radii. This behavior is intuitive since smaller values of w give rise to
halos populated with less circularized orbits at a given radius. Note however that
the envelope of the anisotropy profile begins to increase and become more radially
dominated for r/r;, < yo, contradicting our analytic analysis. More specifically, for
w = —0.1, B, ~ 0.2 for r/r,, < 0.001, and starts to increase at r/ry, ~ 0.001 when
it should start increasing at /1y, ~ Yo, according to Section 3.3. This is a result of
assumptions used to calculate «, breaking down. This is more apparent for w > 0
since the orbital period is longer. However, as r — 0, the assumptions become more

valid.

In the bottom panel, we show how model parameter B affects the velocity anisotropy.
As discussed in Chapter I, smaller B leads to orbits that take longer to circularize
and density profiles with a larger isothermal region (smaller yq). The bottom panel
should be compared to Figures 9 and 10 of (Navarro et al., 2010). Though our model
cannot address structure outside r,, the graphs are qualitatively very similar. The
width of the peak predicted in our model agrees with results from N-body simula-
tions. This should be expected since the parameter B was chosen so that the width of
the isothermal region in the density profiles agree. However, our model over predicts
the velocity anisotropy close to r, and under predicts the velocity anisotropy at small
radii. In other words, at large scales the halo is populated with too many radial orbits

while on small scales the halo is populated with too many circular orbits.

This trend is most clearly seen in Figure 3-2. There we plot the local velocity
anisotropy versus the logarithmic slope of the density profile for a galactic size halo
with By 3 = 0.26 as well as a universal relationship relating these two quantities that
was derived by Hansen & Moore (2006). The open circles correspond to 1.5x107% r,, <
r < r_g while the filled circles correspond to r_o < r < r,. This figure should be
compared to Figure 11 of (Navarro et al., 2010). In the Aquarius simulation paper,

the Hansen & Moore prediction agrees well with N-body results for » < r_5. However,
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Figure 3-2: The local logarithmic slope of the density profile plotted against the
velocity anisotropy. The relationship relating these two quantities that was proposed
by Hansen & Moore (2006) is also showed. Open circles correspond to 1.5 x 107 7, <
r < r_o while closed circles correspond to r_o < r < r999. Unlike N-body simulations,
our self-similar model does not fit the trend proposed by Hansen & Moore for r < r_s.
This reveals a shortcoming of the model.
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in our Figure 3-2, while there is a clear trend between the local velocity anisotropy
and the logarithmic slope of the density profile, that trend does not match the derived
relationship. Note though that our model, just as the Aquarius simulation claimed,
does show deviations from the Hansen & Moore trend for r_, < r < r,. In our model,
this deviation is caused by a vanishing radial velocity dispersion. For simulated halos,
other effects like non-sphericity or non-self-similarity may also play a role.

The self-similar model’s inability to match the amplitude of the velocity anisotropy
seen in N-body simulations reveals a weakness in the model. Clearly, it is unphysical
for all particles in a particular shell to have the same amplitude of angular momentum
and the same radial velocity. In reality, a given shell should have a radial velocity
dispersion and should have a distribution of angular momentum that evolves with

time. This possibility will be discussed again in Section 3.5.

3.4.2 Pseudo-Phase-Space Density Profile

Here we analyze the pseudo-phase-space density profiles p/o® and p/o? for galactic
size halos, where 02 = 02 + ¢?. Taylor and Navarro claimed that the pseudo-phase-
space density roughly follows the power law r~187 for all halos (Taylor & Navarro,
2001). Surprisingly, this power law matches predictions made by Bertschinger (1985)
for purely radial self-similar collapse onto a spherical top hat perturbation. Taylor
and Navarro’s claim has been verified numerically (Navarro et al., 2010; Rasia et al.,
2004; Dehnen, 2000; Faltenbacher et al., 2007; Vass et al., 2009; Wang & White, 2009),
however recently the highest resolution simulations have seen evidence for departures
from this power law near their innermost resolved radii (Ludlow et al., 2010).

Based on the analysis in Section 3.3, we expect the power law exponent to depend
on {n,w} for r/ry, < yo. With model parameters {n,w} which give p oc r! for
galactic size halos, the extended secondary infall model predicts p/o® oc p/o? o r75/2.
This is expected for a virialized halo (w > 0) with p oc 71, For yo < /1 < /70,
the model predicts p/o? oc 2 if the radial velocity dispersion dominates and p/o® o

r~1/2 if the tangential velocity dispersion dominates.

In the left panels of Figure 3-3, we plot p/o® and p/o? for galactic size halos with
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Figure 3-3: The left panels show p/o® and p/c?, for a self-similar halo with model

parameters n = .77, p = 2n, By 5 = 0.39, and varying w. The numerically calculated
slopes match analytic predictions. First pericenter passage (yo) for w = 0 and the
virial radius (r,) are labeled for clarity. The right panels shows the smoothed pseudo-
phase-space density profiles, with the radius scaled to r_s, for model parameters that
give good agreement to density profiles from galactic size simulated halos. We also
plot the radial top hat prediction. The self-similar model predicts that simulations
should see deviations from the radial top hat power law at r/r_y ~ 3 x 1072 for p/o?
and deviations at r/r_y ~ 107! for p/o3. The convergence radii for the Aquarius halo
Aqg-A-2 (Navarro et al., 2010) are labeled for reference.

varying w. In the right panels, we plot the smoothed pseudo-phase-space densities,
with the radius scaled by r_s, for model parameters that give good agreement with
density profiles from simulated galactic size halos. In addition, we overlay the radial
top hat solution. Scaling the radius to r_o causes the first pericenter (yo) of both
models to roughly overlap, leading to less difference in the amplitude of the pseudo-

phase-space density at small radii.

The left panels show that the asymptotic slopes vary with . The numerically
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computed slopes match analytic predictions. The panels for p/o? blow up at radii
close to the virial radius since o, vanishes. The right panels should be compared to
Figure 13 of (Navarro et al., 2010). The extended secondary infall model predicts
that simulations of galactic size halos should see significant deviations from Taylor
and Navarro’s claim at r/r_y ~ 3x 1072 when analyzing p/c® and r/r_5 ~ 107! when
analyzing p/o3. Looking at the residuals in Figure 13 of (Navarro et al., 2010), this
prediction seems plausible. If higher resolution simulations do not show deviations
from Taylor and Navarro’s claim, then this secondary infall model would be proven
incorrect since the model cannot consistently reproduce both the density and velocity
profiles of simulated halos.

As shown in Section 3.3, for cosmological initial conditions (n < 2), p, o2 and o2
have power laws that are independent of initial conditions and torqueing parameters
in the regime yo < r/ry, < 1, /r4,. This implies that the pseudo-phase-space density
is universal on these scales. This universality on intermediate scales may have played
a role in Taylor and Navarro’s initial claim.

Figure 3-4 shows the difference of the pseudo-phase-space density power law ex-
ponent from the radial top hat solution, on small scales, as a function of model
parameters n and w. The range in n corresponds to 10° < M/M, < 10'. The
range in w ensures that all orbits are bound. According to the extended secondary

1 on small

infall model, positive w is necessary for n > .5 in order to have p o r~
scales (Zukin & Bertschinger, 2010a). If all halos have p oc 7~! on small scales, then
halos with M > 10°M,, will have p/o® oc r=/2 while halos with M < 10°M, will
have pseudo-phase-space density exponents that vary with halo mass. If on the other

hand, @ is constant for all halos, then as Figure 3-4 shows, the power law will vary

with mass.

3.5 Discussion

N-body simulations have revealed a wealth of information about the velocity pro-

files of dark matter halos. In an attempt to gain intuition for their results, we’ve
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Figure 3-4: A contour plot of dIn(p/c®)/dInr + 1.875, which shows the deviation in
the pseudo-phase-space density power law exponent, at small scales, from the radial
top hat solution.

used a generalized self-similar secondary infall model which takes into accounts tidal
torques. The model assumes that halos self-similarly accrete radially cold mass shells.
Moreover, each shell is composed of particles with the same amplitude of angular mo-
mentum. While the model is simplistic, it does not suffer from resolution limits and
is much less computationally expensive than a full N-body simulation. Moreover, it
is analytically tractable. Using this model we were able to analytically calculate the
radial and tangential kinetic energy profiles for r/ry, < yo and yo < /110 <K /70,
where ) is the dimensionless radius of first pericenter passage, r, is the virial radius,

and 74, is the current turnaround radius.

It is clear from our analysis that angular momentum plays a fundamental role in
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determining the velocity structure of the halo. The amplitude of angular momentum
at turnaround sets the transition scale (yo) between different power law behaviors
in the tangential and radial kinetic energy profiles. Also, for collapsed objects today
(n < 2), w, the parameter that quantifies how particles are torqued after turnaround,
influences the slopes of both the radial and kinetic velocity dispersions at small radii.
Moreover, both the amplitude of angular momentum at turnaround and w affect the

asymptotic value of the velocity anisotropy profile at small radii.

For @w < 0, the self-similar halo is not virialized on small scales since the radial
and tangential kinetic energy is dominated by mass shells which have not had time to
virialize. On the other hand, for @ > 0, the halo is virialized since the dominant mass
shell have had time to virialize. As shown in Chapter I, p oc r~! requires @ > 0 for
M /Mg > 10°. Hence, positive w is favored in order to reproduce N-body simulation
density profiles. Quantifying w requires analyzing N-body simulations and is beyond
the scope of this work. However constraining w with simulations will provide a test

for this extended secondary infall model.

Our model predicts that the pseudo-phase-space density profile is universal on
intermediate and large scales. This could potentially play a role behind the claimed
universality of the pseudo-phase-space density (Taylor & Navarro, 2001). Since we do
not understand how w depends on halo mass, it is impossible to rule out universality
on small scales, since w can potentially conspire to erase initial conditions. However,
if galactic size halos have p oc r 1, then regardless of universality, the model predicts
p/c® oc r=5/2. While hints of deviations from the radial top hat solution have been
seen in recent simulations (Ludlow et al., 2010), higher resolution simulations are

needed to better test the model.

While our self-similar model has its clear advantages, it is also unphysical. First,
all particles in a given mass shell have the same radial velocity. This leads to caus-
tics. The same tidal torque mechanisms which cause a tangential velocity dispersion
(Hoyle, 1951), should give rise to a radial velocity dispersion. Second, while qualita-
tively similar, the comparison of the model’s predicted velocity anisotropy to N-body

simulation results reveals that our treatment of angular momentum is too simplistic.
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The model predicts too many radial orbits at large radii and too many circular orbits
at small radii. In reality, each shell is composed of a distribution of angular momen-
tum that evolves with time. In order to properly take these two effects into account,
one would need a statistical phase space description of the halo that includes sources
of torque. Ma & Bertschinger (2004) provided such an analysis in the quasilinear
regime. Therefore, a natural extension of this secondary infall model, which could
potentially reproduce both position and velocity space information of N-body simu-
lations, would be to generalize Ma & Bertschinger’s analysis to the nonlinear regime

and impose self-similarity.
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Chapter 4

Universality in Dark Matter Halos

4.1 Introduction and Background

N-body simulations have revealed that the density (p) (Navarro et al., 1997, 1996) and
pseudo-phase space density (p/c3) profiles (Navarro et al., 2010; Ludlow et al., 2010)
of pure dark matter halos are approximately universal. Universality, in this context,
means that aside from scalings in amplitude and size, these profiles follow the same
shape regardless of halo mass, initial conditions, merger history and environment.
This empirical finding implies that information is lost. One way for the system to
lose information is through dynamical processes like diffusion. Another way occurs
while post-processing the halos where for instance calculating a halo’s density profile
involves averaging over all angular information. In this Chapter we will analyze the
origin of this universality by trying to understand the role that dynamical processes
and phase-space averaging plays. We use numerical and analytic techniques. While
this Chapter does not give the complete answer, it gives new perspectives and pro-

vides promising ways to further explore the question of universality.

Diffusion takes place in systems where the mean free path is much smaller than the
size of the system of interest. For example, in the sun, the mean free path for a
photon is approximately 1 cm while the radius of the sun ~ 7 x 10'° cm. A canonical

example to describe diffusion, that will be informative for later parts of this Chapter,
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is Brownian motion. We’ll restrict ourself to motion in one dimension for convenience.
Generalizing to three dimensions is straightforward. A particle suspended in a heat

bath has the following equation of motion:

% = —yv + I['(t) (4.1)

where v is the velocity of the particle, v is the drag coefficient that characterizes the
friction acting on the particle when it moves fast relative to the particles in the heat
bath, and I' is a stochastic force associated with random kicks from the heat bath.

We further characterize I by the following properties:

(I'(t))=0 (COT(t)) =2Do(t —t') , (4.2)

where angle brackets denote time averages and 0 is a Dirac delta function. The first
equality is expected since stochastic kicks from the heat bath are equally likely in any
direction. The second equality states that the stochastic forces acting at two different
times are uncorrelated. This is expected since the particles in the heat bath randomize
themselves on timescales much smaller than times at which we observe the random-

walking particle. The proportionality constant D is known as the diffusion coefficient.

Eq. 4.1 is a Langevin equation and tracks individual particle trajectories. Another
description of Brownian motion, which is Eulerian in nature, analyzes evolution at a
fixed velocity. The Klimontovich density fx, defined below, connects the Lagrangian

and Eulerian descriptions. We have:

fr(v,t) = Z S(v —v(t)) (4.3)

where v; is the velocity of the ith particle in the system. Taking an ensemble average
of the Klimontovich density’s evolution equation, it can be shown that the ensemble

phase space density f = (fx) follows a Fokker-Planck equation:
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0 0 0
a—J; =% (vvf + Da—ij) (4.4)

where v and D were previously defined. The above derivation requires that I'(¢) is a
gaussian random process and that higher moments, such as (I'(t1)I'(t2)['(¢3)) are neg-
ligible compared to the second moment defined in eq. (4.2). Assuming an equilibrium
solution for the phase space density, we find D = vkT /m, where T is the temperature
of the heat bath and m is the mass of the particle. This relationship between the drag
and diffusive term is expected from the fluctuation dissipation theorem. Assuming

f(t=10)=d(v—1y), the Green’s function solution to eq. (4.4) is

o) = — L (L@
108 = G () )
where:

2 _ 2 o e—2'yt

(1) = (1= (4.6)

and the centroid satisfies 99 = —yvy. Eq. (4.5) is only valid for constant D. It rep-
resents a gaussian whose centroid follows the trajectory expected without stochastic
forces. Initially, the standard deviation o oc t'/2, which is expected in the diffusive
regime and characteristic of random walks. When ¢ = 1/, however, the drag term
becomes important; this causes the width to asymptotically approach the equilibrium

temperature of the heat bath, 02 = kT/m = D/~.

Given this description of Brownian motion, where the dynamics forces particles to
lose memory of their initial conditions, we now apply the above formalism to dark
matter halos. More specifically, we can test the Green’s function solution by calcu-
lating the standard deviation of different phase space bins as a function of time and
comparing with eq. (4.6). Moreover, given the assumptions made in order to derive
a Fokker-Planck equation for particles interacting with a heat bath, we can analyze

whether those same assumptions apply for the phase space evolution of nonlinear
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halos.

In Section 4.2, motivated by the phase space evolution of particles interacting with a
heat bath, we calculate the evolution of phase space bins in N-body simulations. In
order to understand the results in Section 4.2, we run similar phase space evolution
experiments on artificially constructed halos. In Section 4.3 we introduce the Fractal
Halo Model — an important component to building artificially constructed halos —
that gives a prescription for populating halos with subhalos. We then show the
evolution of phase space bins for the artificial halos in Section 4.4. In Section 4.5 we
discuss analytic approaches to understanding nonlinear halo evolution and conclude

in Section 4.6.

4.2 N-Body Experiments

As described in Section 4.1, the Green’s Function solution of the Fokker-Planck equa-
tion implies that the standard deviation of a localized phase space bin will evolve
as o o t'/? for ty <« 1. This is equivalent to claiming that particles which interact
with a heat bath initially lose information diffusively. Hence, one way to conclude if
particles in dark matter halos lose information diffusively is to measure the evolution

of localized phase space bins using cosmological N-body simulations.

4.2.1 Background

Ideally, we would track the evolution of bins in the full six dimensional phase space
{x,v}. However, the bins need to have enough particles > 100 so that Poisson errors
are less that 10% and the bins must be localized since we’re probing the diffusion co-
efficient at a phase space point. The localization is also necessary since non-diffusive
effects can dominate the evolution of a bin. For instance, if we were to bin in coordi-
nate space and the radial extent of a bin is large, then the difference in force between
the edges of the bin based only on the smooth gravitational field will dominate over

any stochastic forces. As a result, it is best to bin particles using phase space coordi-
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nates that are approximately conserved since diffusive terms will then dominate the

bin’s evolution.

Dark matter halos at late times are approximately spherically symmetric and have
roughly time-independent potentials. Therefore we bin particles only according to
their magnitude of angular momentum L and energy E and neglect all other phase
space variables. Without wanting to resort to simulations with billions of particles,
we can increase the number of particles in each bin by ensemble averaging over halos.
In practice this means choosing all halos within a certain mass range, calculating
every particle’s energy and angular momentum relative to the center of each particle’s
respective halo, and binning this set of {E, L}. Note that ensemble averaging over
halos makes the assumption of constant L more valid. More specifically, an ensemble
averaged halo will be spherically symmetric since there are no preferred directions in

the universe.

4.2.2 Simulation and Analysis Details

To perform the N-body simulations, we generate uniform resolution initial conditions
with GRAFIC2 (Bertschinger, 2001) at a redshift of z = 127, evolve the particles to
z = 0 using an unreleased version of GADGET (Springel, 2005), and identify halos us-
ing SUBFIND (Springel et al., 2001). Since particles in N-body simulations — even for
the highest resolution cosmological simulations — have masses of ~ 10*M,,, particles
will undergo artificial numerical relaxation. The convergence study by Power et al.
(2003) showed that the mass profile of individual halos converge at radii r > reony-
The convergence radius 7., is found by equating the two-body relaxation time
trel/tory = (N/In N) with the Hubble time, where t., is the orbital time at 7oy
and N is the number of particles internal to r..,,. Note that this study only looked

at the convergence properties of the internal mass profile.

For the purposes of phase-space evolution, artificial two-body relaxation is particu-

larly important because it leads to diffusive-like behavior of phase space bins. In order
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to make sure that artificial numerical effects are not responsible for the trends we mea-
sure with N-body simulations, we performed six different cosmological simulations of
varying resolution. Three of the simulations were the same realization of a periodic
50 Mpc box, with {1283, 2563, 5123} particles respectively. The last three simulations
were different realizations of {25, 75,100} Mpc periodic boxes all with 5123 particles.
To have good timing resolution, we output ~ 90 snapshots from z ~ 0.2 to today.
Each snapshot contains every particle’s position, velocity, potential, a unique ID, as
well as the force acting on that particle. The unique ID allows particles to be tracked

through time.

Given the simulation snapshots as well as the group catalog, it is then straightfor-
ward to track the evolution of phase space bins. First we pick out all particles in
halos of mass 10?My/h < M < 10 M, /h from the group catalog. We then trace
these particles back to z ~ 0.2 and sort particles according to their energy E and

angular momentum L into equal mass bins. Since we analyze halos of different size,

2

< o and each particle’s angular momentum

we normalize each particle’s energy by v
bY TmaxUmax, Where vy is the maximum circular velocity of each halo (at z = 0) and
Tmax 18 the radius at which this occurs. These values are calculated by SUBFIND and
stored in the group catalog. In addition, we choose z ~ 0.2 since most halos only
grow through minor mergers afterward (Fakhouri et al., 2010). Major mergers and
violent relaxation, which will be mentioned in Section 4.5, complicate the analytic
framework significantly. We associate each binned particle at z ~ 0.2 with a binID.

Then for later snapshots, after identifying each particle and their bin, we compute

each bin’s mean and standard deviation of E and L.

Before showing results, it is important to briefly mention a technical aside. In order
to calculate a given particle’s energy and angular momentum relative to the halo it
is necessary to know the halo’s center as well as central potential. Both of these
quantities are calculated using a Shrinking Spheres approach, which is typical in the

simulation community. First the center of mass of all the particles in a given halo is
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calculated. Then we calculate a new center of mass based on all particles within the
virial radius of the first center of mass. We then iterate this procedure, shrinking the
radius each time by 10% and using the previously calculated center. We stop once the
number of particles counted ~ 10% the total number of particles in the halo. We did
this for each of our snapshots. We then take the central potential to be the average
potential of all of these innermost particles. The above routine reproduced the centers
of all halos calculated using SUBFIND to within 3 softening lengths. Since halos are
not spherically symmetric, this method is meant to identify the center of the halo

with the most concentrated region.

4.2.3 Results

In Figures 4-1 and 4-2, the evolution of the mean (left column) and standard devi-
ation (right column) of E (upper row) and L (lower row) for a random set of phase
space bins is shown with thin lines. In the figures, ¢; is the time corresponding to
the first analyzed snapshot (z ~ 0.2) where the phase space is binned, and Hy is
the hubble parameter. All standard deviations have been normalized to the same
value at z = 0 in order to better see the trends. The thick lines in the right column
of both figures correspond to eq. (4.6) — the Fokker Planck expectation of the evo-
lution of a phase space bin’s standard deviation — with v chosen to give the ‘best’
fit by eye. Figure 4-1 shows the evolution of phase space bins for a low resolution
simulation of a 50 Mpc box with 1283 total particles while Figure 4-2 is calculated
using a higher resolution simulation of a 50 Mpc box with 5123 total particles. We've
decomposed phase space into the same number of bins for both simulations and have

set up initial conditions so that both simulations are realizations of the same universe.

The evolution of the average E and L is a proxy for drag terms. This is equivalent to
measuring the frictional damping (vyv in eq. 4.4) in Brownian motion. In both sim-
ulations, most bins maintain a constant L. This implies that an ensemble averaged
halo is approximately spherically symmetric. The high L bins lose angular momen-

tum, while the very low L bins gain. The high L bins correspond to particles in the
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Figure 4-1: Evolution of the mean (left column) and standard deviation (right column)
of F and L for a random set of phase space bins (shown with thin lines). The standard
deviations have all been normalized to the same value today. The thick line in the
right column figures corresponds to o oc (1 — e~2*)1/2) which is expected for Fokker
Planck behavior. The parameter v was chosen to give the ‘best’ fit by eye. The above
was calculated using a low resolution cosmological simulation of a 50 Mpc box with
1283 particles.

outskirts of the halos. Their tidal forces play a large role and particles can either be
disassociated from the halo or fall deeper into the halos. Since the particles examined
are all part of the halo, then we are selectively choosing the particles that remain

bound. Hence, they have either lost or maintained their same angular momentum,
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Figure 4-2: Evolution of the mean (left column) and standard deviation (right column)
of F and L for a random set of phase space bins (shown with thin lines). The standard
deviations have all been normalized to the same value today. The thick line in the
right column figures corresponds to o oc (1 — e=2*)1/2) which is expected for Fokker
Planck behavior. The parameter v was chosen to give the ‘best’ fit by eye. The above
was calculated using a high resolution cosmological simulation of a 50 Mpc box with
5123 particles.

leading to the observed decrease. For the very low L bins, particles can only gain

angular momentum, hence the observed increase.
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Both simulations show that the average E of all bins slightly increases with time.
Since we only bin particles associated with the smooth component of the z = 0 halos,
this slight increase may be a result of substructures kicking the smooth component

to higher energies as they fall deeper into the potential well.

The evolution of ¢, looks approximately the same for both simulations. The higher
resolution figure has smoother bin evolution, as expected, since each bin contains
more particles. In addition, both simulations show evidence for diffusive-like behavior
initially, followed by a plateauing where — analogous to the Brownian motion case — the
bin reaches the system’s ‘angular momentum temperature.” The evolution of oz looks
different in both simulations, however. While there is diffusive-like behavior initially,
followed by a plateau in both cases, the plateau occurs more quickly in the simulation
with more particles. The simulation with more particles has a smaller softening length
and more power on small scales in the initial conditions, which implies particles feel
larger forces. Hence this discrepancy is a result of the larger forces, which causes the
higher resolution particles to reach the ‘equilibrium temperature’ more quickly. More
importantly, this implies that close interactions play a large role in the evolution of
a particle’s energy. This may not be surprising given that the Coulomb logarithm of
momentum-transfer cross sections implies that interactions are important at all scales
smaller than the system size. It would be informative to see how the best fit D and

~ for evolution in L and F depend on softening length and number of particles.

4.2.4 Summary

The above results imply that N-body simulations lose information diffusively when
ensemble and phase-space averaged. This is not expected. For the Brownian motion
example discussed previously, the stochastic force has a correlation time that is small
compared to the time in between observations. For a globular cluster, the local
potential in the neighborhood of each star fluctuates on time scales much smaller
than an orbital time. For particles in a halo, the force is dominated by the smooth

halo, substructure and external tides. These sources do not fluctuate on short time
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scales, making the above results surprising. In the remaining sections of this Chapter,

we’ll discuss different approaches to understanding this counter intuitive behavior.

4.3 Fractal Halo Model

As described above, diffusion takes place in simulated dark matter halos. However,
understanding the source of this diffusion is difficult since a given N-body simulation
takes into account all interactions and different competing effects cannot be inde-
pendently adusted. One way to gain intuition for the physical mechanisms causing
diffusion is to evolve particles in artificially constructed halos, where the different
potential sources of diffusion can be controlled. From a simplistic point of view, there
are three potential sources of diffusion. The shape of the halo, as well as external
tidal fields, can cause diffusion in angular momentum and substructure can cause
diffusion in both energy and angular momentum. One of the ingredients necessary to
construct these artificial halos is the spatial distribution of substructure. The Fractal
Halo Model which was developed by Ed Bertschinger and will be discussed below,
gives a prescription for calculating the spatial distribution of substructure. Parts of

the description below were heavily borrowed from a set of notes by Ed.

4.3.1 Background and Formalism

The Fractal Halo Model assumes that a given halo can be decomposed into a smooth
component and subhalos. We impose that each subhalo is a scaled version of the
parent halo and can therefore be similarly decomposed into a smooth component and
subhalos with the decomposition continuing ad infinitum, as in a fractal. Figure 4-3

shows a schematic representation.

More formally, we can represent the density p of an nth level halo (p,), where n = 0

(4) is the top (bottom) of the pyramid depicted in Figure 4-3, recursively as:
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Figure 4-3: A schematic representation of the Fractal Halo Model.

(@) = @) + A &= (17)

In the above p, is the density for the diffuse component, A < 1 and b < 1 are con-
stants that scale the amplitude of the density and size of the subhalos, and x; ,, labels
the center of the ith subhalo for level n. Note that eq. (4.7) enforces that all subhalos
for the level n halo have identical mass and size. This is not physical since parent
halos have been shown to have subhalos with a distribution of masses (Springel et al.,
2008). However it is a good starting point and can be generalized in the future. For
example, A and b could be random variables drawn from some specified distributions,

and this may still be analytically tractable.

The fractal halo’s density depends on the diffuse density distribution pg; and the
random locations of subhalos @; ,,. In order to determine the probabilistic distribution

that governs the location of subhalos, we’ll assume that at each level, an ensemble
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average over subhalos gives a universal profile p. More formally:

{(pn(x)) = p(x) for all n (4.8)

Next we impose that subhalos occupy their parent halo as a Poisson point process
with spatial density p(x) chosen so that eq. (4.32) is satisfied. For a Poisson process,
the probability to find a subhalo centered in d*>z about @« is p(x)d3z. In addition, for
a Poisson process (Scherrer & Bertschinger, 1991), the single sum appearing in eq.

(4.7) when ensemble averaged becomes:

) = / s mp(@im)- (4.9)

%

The spatial probability density p has the following normalization:

N = / & pl) (4.10)

where N is the average number of subhalos at each level. Taking an ensemble average

of eq. (4.7) and using eqs. (4.8-4.9), we find:

/

pla) = pula) + A [ daln(al)p ("” I~ ) | (4.11)

Since eq. (4.11) involves the convolution of the spatial probability density p(x), it
is easiest to solve for p(x) in Fourier space algebraically, take the inverse Fourier
transform, and use eq. (4.10) as a consistency check. Using the following Fourier

convention:

pa) = [ ke g = [Eop@) et

and taking the Fourier transform of eq. (4.11), we find:

AbPp(k) = % . (4.13)

Taking the limit as & — 0, and assuming the total mass of the halo M is finite, we
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find:

M = e = NAK (4.14)

1—¢
where M, is the mass of the diffuse component of the halo and € is the mass fraction

of the halo in substructure. In order to solve for p(k) in eq. (4.13), the last ingredient

is to specify pq(k). As a starting point, we’ll assume:

pa(x) = (1 —€)p(x) . (4.15)

As we discuss further in Section 4.3.4, eq. (4.15) is not physical, since tidal destruction
will leave little substructure intact close to the center of a parent halo. However, it is a
good starting point and generalizations will be discussed in Section 4.3.5. Combining

eqs. (4.13-4.15), we find:

p(k) (4.16)

~ p(bk)
Eq. (4.16) fully specifies the spatial substructure distribution. In Section 4.3.3, we
discuss numerically calculating the substructure distribution as well as its analytic
behavior. We then compare to results from N-body simulations in Section 4.3.4 and

discuss possible generalization in Section 4.3.5.

4.3.2 Relevance of Model

With the above model in mind, it is worthwhile to ask whether describing halos as
fractals is realistic. Springel et al. (2008) used a suite of cosmological ‘Zoom-In’ simu-
lations to analyze subhalo density distributions and sub-subhalo distributions. With
their high resolution Zoom-In halo, they were able to identify multiple generations of
subhalos within subhalos. For one subhalo in particular, they found four generations
of substructure, which is equivalent to the n = 4 level described in the Fractal Halo
Model. The number of generations identified is limited by the resolution of the sim-

ulation.
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Subhalo density profiles, according to their paper, were well described by both Einasto
and NF'W profiles. This is consistent with the Fractal Halo Model which claims that
subhalo density distributions are a scaled down version of their parent halos (eq. 4.8).
In order to make the Fractal Halo Model more realistic, however, subhalos should
have a distribution of scaling parameters b so that subhalos do not all have the same

mass.

The mass function of sub-subhalos follows the same functional form as the mass func-
tion for subhalos. However it is smaller in amplitude — by a factor of 2 to 3 — relative
to the predicted value based on scaling arguments using the parent halo. In the con-
text of the Fractal Halo Model, this would mean that the N,,y; = N,,/2, where N, is

the average number of subhalos at level n.

Another probe analyzed by Springel et. al. was the mass fraction of sub-subhalos
in subhalos. They compared this value to the mass fraction of subhalos in the main
halo internal to the radius where the main halo’s density equals the subhalo’s density.
They found that the mass fraction of sub-subhalos in subhalos was once again con-
sistently smaller than the mass fraction of subhalos in the main halo. Note that they
did not analyze the spatial distribution of sub-subhalos because of what I'm assuming

is low number statistics.

The reason for these trends, according to Springel et. al., is that sub-subhalo abun-
dances are decreased relative to the main halo because of tidal effects. In addition
sub-subhalos are not replenished by the infall of new sub-subhalos, like in the case
of the parent halo. As a result, the Fractal Halo Model, needs to be generalized in
order to better reflect the nature of dark matter halos. Note however that the model

is useful since it provides an upper limit on the influence of sub-subhalos.
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4.3.3 Implementation and Analytic Behavior

In order to calculate p(k), given eq. (4.16), we need to specify the scaling parameter b
that sets how spatially large substructure is relative to the parent halo, the universal
density profile p, and the average number of subhalos N for each level. We'll choose
an NFW profile (Navarro et al., 1997) with a exponential cutoff beyond the virial

radius so that the total mass is finite and p(k = 0) does not diverge. We have:

) = —Lexp |- | | .
)= 51557 [ 1

In the above, y = r/r,, y = |y|, rs is the scale radius where the NFW profile becomes
isothermal, py is four times the density at the scale radius, and ¢ = r,/r,, where r, is
the virial radius of the halo. In Figure 4-4, we plot the Fourier transform of p in blue,
for ¢ = 10. This concentration value is motivated by values measured from N-body
simulations (Navarro et al., 2010). The behavior of the density’s Fourier transform is
straightforward to understand. Since the density is spherically symmetric, the three
dimensional Fourier transform can be reduced to a one dimensional integral. More

specifically:

2 2

I R
o Y

1+y)? yz 2(3c)?
w/z 2 2
~ dmpa® — YV exp |- |4 4.18
P Ts/o y(1+y)? eXp[ 2(30)2] Y (4.18)

where z = kry. In going from the first to second line, we approximate sin(yz)/yz as
a filter which cuts off all contributions to the integral for yz > w. The integral in
eq. (4.18) is proportional to the internal mass below a radius 7/z. Therefore for an
NFW profile, we expect p(z) oc 1/2z for 2 ~ 1 and p(z) o< 1/2? for z > 1. This is
explicitly show in Figure 4-4 with the dashed red and dotted yellow lines, respectively.

Moreover, the constant behavior for z < 1 reflects the finite mass of the halo.

Since p(k) oc 1/k? for kr, > 1, we expect (based on eq. 4.16) that p(kr,) = Nb? for
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Figure 4-4: The Fourier transform of our cutoff NF'W profile p is shown in solid blue.
The red dashed line shows the o< 1/k behavior near kry ~ 1, while the dotted yellow
line shows the oc 1/k? behavior for kry > 1. For the above calculation, we’ve chosen
c = 10.

bkr, > 1. This leads to a singularity at the origin for the spatial probability density.
However, this contribution of power at infinitely large wavenumbers is unphysical
since N-body simulations cut off power at wavenumbers larger than the simulation’s
Nyquist frequency, which is defined by the box size and the number of particles. To

mimic this effect, and avoid singularities, we redefine p(k) to be:

exp[—k?s® /2] (4.19)

where s is the simulation’s softening length. In Figure 4-5, for b = 0.1 and s = 1073 r,,
we plot p(k) in blue. Given the analytic structure of p(k) discussed above, it is
straightforward to understand the behavior of p(k). However, the scalings in differ-
ent wavenumber regimes will depend on b. Without the high wavenumber cutoff, for
b= 1, p(k) = N over all wavenumbers. For b < 1, p(k) will transition through the
following power laws {k°, k=1 k=2 k=1 k°} as k increase, with p(k) = {N, Nb*} for

kr.{<,>}1. As b increases, the range over which p(k) oc k=2 disappears, followed by
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the range over which p(k) o< k=1, For b = 0.1, which is analyzed in Figure 4-5, the k=2
behavior is not present, but the constant trends at both low and high wavenumber
are present (b shown by the dotted yellow line), as well as the 1/k behavior (red
dashed line).
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Figure 4-5: The Fourier transform of the spatial substructure probability density p
is shown in solid blue. The red dashed line shows the ~ 1/k behavior that spans a
range in wavenumber that depends on the scaling parameter b. The Fourier transform
asymptotes to b? (dotted yellow line) before the exponential cutoff. For the above
calculation, we've chosen ¢ = 10, b = 0.1, and s = 10737,

Next we take the Fourier transform of p(k) and show the spatial probability density
for substructure in Figure 4-6, for ¢ = 10, b = 0.1, and s = 1073r,, in solid blue.
Since we’ve imposed spherical symmetry, we can once again understand the behavior
of this curve analytically by reducing the three dimensional inverse Fourier transform
into a one dimensional integral over an approximate filter. We have:

1 1 >,  sin(yz) 11 [

. ~ 2
= 2—71-27“_? ; z p(z) " dz ~ 2—71'2’/“_? . z p(Z)dZ (420)

p(y)
where once again y = r/r; and z = krs. As expected, since p(z) o< 1/z over a large
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part of the domain for this particular choice of b, we should expect p(y) o< 1/y%. This
is depicted explicitly in Figure 4-6 with the dashed red line. For y ~ 10, the behavior
transitions to 1/y? since p(z) is approximately constant at z ~ 0.1. The behavior for
y < 1 is caused by the gaussian cutoff introduced in Fourier space. Multiplying a
function in Fourier space by a gaussian will cause a convolution of a gaussian with
the inverse Fourier transform of the function. Hence, we see the gaussian behavior
at small scales. The sharp cutoff at large scales is caused by the gaussian cutoff we

imposed in real space that enforced the halo to have finite mass.

It is interesting to mention that the derived 1/y? scaling gives rise to the same amount
of mass in substructure for all radial bins of the same width. Since there is less volume
in radial shells at smaller radii, there will be more overlap of substructure at smaller
radii. Note though that this scaling does not hold for all b, as mentioned above. For
b < 1 there will be a region where p(y) < 1/y.

Last, in Figure 4-7 we show how varying a subhalo’s size relative to the parent halo
(b) affects the spatial probability density. The area under each curve is equal to the
probability of finding a single subhalo in a given radial range. Most of the subhalos will
occupy the outer parts of the halo. However, there is a fairly significant probability
of substructure existing in the interior of the halo when x < r,. This is not physical
however, since the model doesn’t take into account tidal affects. Moreover, the bump
at small radii is associated with the gaussian cutoff in Fourier space. Since the same
cutoff is used for every b, the bumps occupy the same radial range. Note that because
of artificial two body relaxation in N-body simulations, scales below z/r; ~ 0.01
(for the highest resolution simulations) are not trusted because quantities like the
circular velocity have not converged. The red, blue and yellow curves correspond to
b ={0.5,0.1,0.05} respectively. As expected, models with larger b will give a larger
contribution at small radii since their p(k) did not drop off as significantly with larger
wavenumber. In addition, models with larger b flatten out more quickly on large scales

since their p(k) transition away from a constant value at a longer wavenumber.
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Figure 4-6: The spatial probability density p(x) for the location of substructures is
shown in solid blue. The red dashed line shows the ~ 1/k? behavior. The structure
at small scales is caused by the high wavenumber gaussian cutoff we introduced. The
structure at large scales is caused by the gaussian filter we applied to the original
density distribution so that the halo has finite mass. For the above calculation, we've
chosen ¢ = 10, b = 0.1, and s = 10737,

4.3.4 Comparison with N-body Simulations

Given the above predictions for the subhalo spatial distribution, it would be infor-
mative to compare to results from N-body simulations. In 2008, a suite of zoom-in
high resolution simulations, known as the Aquarius Project, were performed that
simulated a cosmological box with varying resolution. Internal to the Lagrangian vol-
ume of a galactic size halo, the simulation had high resolution, using particle masses
~ 10*My/h. External to the Lagrangian volume, the simulation had poorer resolu-
tion, using larger particle masses the further away the particles were from the high

resolution halo.

With this set of simulations, as well as a subhalo finder, Volker Springel and his col-

laborators calculated the spatial distribution of substructure (Springel et al., 2008).
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Figure 4-7: The variation of the spatial probability density for different size subhalos.
The red, blue and yellow curves correspond to b = {0.5,0.1,0.05} respectively. The
area under each curve is equal to the probability of finding a single substructure in
a given radial range. While most subhalos will occupy the outskirts of the halo, the
excess in probability on small scales is unphysical and related to the model not taking
into account tidal disruption. The peak at small radii is sourced by the gaussian cutoff
imposed in Fourier space.

They found that the substructure number density profiles — equivalent to the quantity
p(z) discussed above — for subhalos in different mass bins follows an Einasto profile,
shown by the dashed green line in Figure 4-8. The plot is normalized to the aver-
age number of substructures within 75y of the simulation. The fractal halo model’s
prediction for b = {0.5,0.1,0.05} is shown in solid red, blue and yellow, respectively.
While the distributions resemble each other in the outskirts of the halo, the fractal
halo model overestimates the probability for substructure to lie in the interior of the
halo because the model does not take into account tidal disruption. In addition, for
the scales of interest shown in Figure 4-8, different values of b will give power laws at
least as steep as 1/r. Since the empirical Einasto profile however already asymptotes

to shallower logarithmic slopes at ~ 100 kpc, we expect the Fractal Halo model to
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generically over predict the amount of substructure for all values of b.
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Figure 4-8: The substructure number density profile, normalized to the mean number
of substructures within r5y for the Fractal Halo model, shown in red, blue and yellow
for b = {0.5,0.1,0.05} respectively. The analogous quantity, shown in dashed green,
calculated using a suite of high resolution N-body simulations. While the distributions
resemble each other in the outskirts of the halo, the fractal halo model overestimates
the probability for substructure to lie in the interior of the halo because the model
does not take into account tidal disruption.

4.3.5 Possible Generalization

Since the Fractal Halo Model overestimates the probability for substructure to lie in
the interior of the halo, as we see with Figure 4-8, it would be informative to add
new physics to the model in order to understand trends seen in N-body simulations.
The key assumption that leads to this overestimate is shown in eq. (4.15). There we
imposed that the density of the diffuse component was proportional to the density
of the universal profile for all radii. Since the assumed universal density profile is
not constant with radius, subhalos will be tidally disrupted by different amounts

depending on their location. More specifically, subhalos close to the center will be
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disrupted more than subhalos in the outskirts. One way to take this into account is

to generalize eq. (4.15) in the following way:

pa(@) = [1 - e(@)]p(@) (4.21)

where now € is a function of position. Physically we’d expect ¢ — 0 as z — 0.
Moreover, since we reproduced the spatial distribution seen in N-body simulations in
the outskirts of the halo, we should maintain that ¢ = const for > r,. Note that
this would not decrease N at successive levels. It would simply change the spatial

distribution of substructure.

A natural way to calculate €(x) is to first start with our initial solution € = const
and break up the halo into spherical bins. For each bin, tabulate and store the mass
in the smooth component and the mass in substructure. Then, assuming a single
subhalo occupies the center of a given bin, calculate what fraction of the subhalo’s
mass is tidally lost because of the smooth potential, take that fraction away from the
mass in substructure and add it to the mass in the diffuse halo. Then, given the new
tabulated mass in the diffuse and subhalo components for each spherical bin, it is
straightforward to convert this to a local density and infer (). I plan to pursue this

generalization, as well as allow for N to vary with n, in the future.

4.4 Simple Numerical Experiments

Here we discuss the simple numerical experiments we perform using artificially con-
structed halos. These experiments attempt to give intuition about the diffusion, in
N-body simulations, discussed in Section 4.2. For these artificially constructed halos,
we control the shape, substructure distribution, as well as the ensemble averaging.
Hence we can independently vary different potential sources of diffusion in order to

gauge each source’s importance.
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4.4.1 Background and Implementation

Our artificial halos, as described in Section 4.3, are composed of a diffuse density
component p; and substructure ps. Both the diffuse component and the substructure
are described by NFW profiles. While the substructure is a scaled version of the
NFW profile, in both size and amplitude, we allow the diffuse component to be
triaxial. Note that we do not place subhalos within subhalos. In other words, we
truncate the model at n = 1. Including sub-subhalos will be pursued in the future.

The NFW profile is reproduced below for convenience:

R R N ,
) = e |~ 2

where y = r/r,, rg is the scale radius of the NFW profile, ps is proportional to
the density at the scale radius and we’ve introduced an exponential cutoff past the
virial radius r, = cry so that the halo has finite mass. Given the above profile,
and imposing a total mass fraction € in substructure, the density distribution for an

individual subhalo centered at x; = y;r,, according to the Fractal Halo Model, is:

ps(y) = Nebg p <y - yi) (4.23)

where /V is the number of subhalos and b is the scaling parameter described in the prior

section. For a triaxial diffuse component, we impose axis ratios a;. Then defining:
2 2 y;
m*(y,7) =a — 4.24
(y> ) 1 i T4 a? ) ( )

where 7 is introduced for later convenience, we describe the diffuse component by:

pa(y) = (1 —¢) p[m(y,0)] . (4.25)

To construct an artificial halo, we choose specific axis ratios, sample the spatial den-
sity distribution for subhalos (calculated in the previous section) N times and set the
other phase space variables for the center of each subhalo. The {6, ¢} coordinates are

randomly chosen to uniformly sample 47 steradians. The velocity in each direction
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is sampled from a gaussian distribution with standard deviation equal to the circular
velocity — for a particle orbiting only a spherical diffuse component — at that radius.
We will generalize this isotropic velocity distribution to allow for anisotropy in the
future. If we want an ensemble of halos, we repeat this process multiple times. The
subhalo centers evolve as if they were point particles orbiting only the diffuse com-
ponent. Taking into account interactions between subhalos does not influence the

results. In addition, tidal affects, as mentioned in the prior section, are ignored.

Given an ensemble of artificially constructed halos, we now mimic the analysis in
Section 4.2 and construct bins in {E, L} space. We first choose the phase space in-
formation for ~ 107 test particles. This number is approximately the same number of
particles analyzed in the high resolution N-body simulations, hence we expect similar
statistics for each bin. The radius of each particle is sampled from a distribution
set by the NFW profile. The {6, ¢} coordinates uniformly sample 47 steradians and
the velocity in each direction is sampled from a gaussian distribution with standard
deviation equal to the circular velocity — at the particle’s radius — for an NFW profile.

In addition, each particle is randomly assigned to a halo of the ensemble.

Given the full phase space information of every particle, and the halo to which ev-

ery particle is assigned, it is straightforward then to calculate each particle’s £ and

2

S ax AN ThaxUmax Te€-

L relative to the halo’s center. We normalize F and L by v
spectively, with these values taken from a simulated high resolution halo (Navarro
et al., 2010). The gravitational potential is calculated for the artificially constructed
halo with substructure, not the ensemble averaged smooth halo. This {E, L} phase
space is then binned and each particle is tagged with a bin ID. Then all particles are
evolved forward, with forces sourced by the diffuse component and subhalos, and the
bin statistics — just as in the N-body analysis — are tracked as a function of time. Note
that we do not use the same GADGET code to calculate potentials and evolve parti-

cles since our forces are derived from smooth halos and subhalos, while the GADGET

code’s forces are derived from discrete particles.
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For completeness, the acceleration A and potential ® (relative to the center) of a par-
ticle at position y caused by the diffuse triaxial halo is given by (Binney & Tremaine,

2008; Chandrasekhar, 1987):

o 1_€)p[ (ya )} Yi
Ai(y) = —27TG7“5a10,2a3 \/ BT Tl > sdr (4.26)
- 2a2a3 [m(y, )] -
2y) = ner / V( T—|—CL1 (T4 a2) (7 + a3) I (4.27)
where:
wim) = [ dm(1 = p(m) (4.28)

The integrand sums the contribution of all shells internal to the outermost surface
at 7 = 0. Similar to the spherical case, a Birkhoff-type theorem applies for triaxial
systems in Newtonian gravity and only mass surfaces interior to m(y,0) contribute

to the force.

4.4.2 Results

With the above framework, in an attempt to mimic the N-body simulation behavior
described in Section 4.2, we vary the structure of these artificially constructed halos
and keep track of the evolution of a random set of phase space bins. Figures 4-9
through 4-11 each show a grid of four plots. On the left column of each figure we
show the evolution of the average F and L for different phase space bins, where t;
is the time at which the particles are initially binned. On the right column of each
figure, we show the evolution of the standard deviation in £ and L for different bins.
Each bin’s standard deviation is normalized to its value at the final time. The thick
red line is what is expected for Fokker Planck behavior: o oc (1 —e~27)1/2, We chose
7 (for both the spread in L and E) to give the ‘best’ fit by eye. We ensemble average

by assigning particles to one of a possible 400 different halo realizations.
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Figure 4-9: The evolution of statistics describing a random set of phase space bins for
an artificial halo with 10 subhalos and a spherical diffuse component. The different
thin lines represent different bins. The left column shows the evolution of the average
E and L of each bin. The right column shows the evolution of the standard deviation
in £ and L of each bin. The standard deviations are normalized to their value at the
final time. The thick red line denotes the expected Fokker Planck behavior.
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Figure 4-10: The evolution of statistics describing a random set of phase space bins
for an artificial halo with 10 subhalos and a triaxial diffuse component. The different
thin lines represent different bins. The left column shows the evolution of the average
E and L of each bin. The right column shows the evolution of the standard deviation
in £ and L of each bin. The standard deviations are normalized to their value at the
final time. The thick red line denotes the expected Fokker Planck behavior.
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Figure 4-11: The evolution of statistics describing a random set of phase space bins
for an artificial halo with 100 subhalos and a triaxial diffuse component. The different
thin lines represent different bins. The left column shows the evolution of the average
E and L of each bin. The right column shows the evolution of the standard deviation
in £ and L of each bin. The standard deviations are normalized to their value at the
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Figures 4-9 and 4-10 show the evolution of phase space bins in artificial halos made
of 10 subhalos, with a spherical and triaxial diffuse component, respectively. The
triaxial component has axis ratios (1 : 0.85 : 0.7). As expected, in both figures, the
average ' and L do not vary significantly. This is an indication that we have ensemble
averaged over enough halos. It is interesting to point out that the average E and L
of bins in the artificially constructed halos is larger than those of the simulated halos
in Figures 4-1 and 4-2. It is likely that assuming a gaussian isotropic distribution

overestimates the energy and angular momentum.

In Figures 4-9 and 4-10 we see similar behavior for ox. The bins all diffuse initially
and then reach the temperature of the halo and cannot diffuse anymore. This is
just as eq. (4.6) predicts. For o, however, bins do not diffuse. It is surprising how
little subhalos perturb a particle’s angular momentum. Moreover, triaxiality, while it
gives rise to more bins that diffuse, does not source enough torque to reproduce the

behavior in N-body simulations.

Figure 4-11 shows the evolution of phase space bins in artificial halos made of 100
subhalos, with a triaxial diffuse component. We do not show the case for artificial
halos with 100 subhalos and a spherical diffuse component because it does not reveal
any new information. Once again, the triaxial component has axis ratios (1 : 0.85 :
0.7). We see similar features to those for the halos with 10 subhalos. Now, however,
the diffusion in o takes place for a longer period of time. This is expected. With the
same mass fraction in substructure for all halos, the artificial halos with 100 subhalos
will give smaller kicks to the particles than the halos with 10 subhalos. Hence, it
takes longer for the bins to reach the temperature of the halo. Also note that with
more smaller mass subhalos, the angular momentum diffuses less since the system is

more spherically symmetric.
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4.4.3 Implications and Future Directions

The above analysis implies that triaxiality and substructure do not provide enough
torque to account for the angular momentum diffusion measured in simulations. An-
other possible source of torque is the tidal field from external halos. We can verify this
claim using N-body simulations. SUBFIND outputs a group catalog for the N-body
simulation at z = 0 (Springel et al., 2001). This catalog finds all particles in a given
group, where a group is defined using the friends of friends algorithm. Then within
each group, all bound structures are identified. The largest bound structure is equiv-
alent to the diffuse component in the Fractal Halo Model while the smaller structures
are associated with our subhalos. Therefore, using the group catalog, as well as the
snapshot with every particle’s full phase space information, it is straightforward to
measure the importance of different sources of torque. We simply separately calculate
the amplitude of torque in a particular halo at varying radii sourced by the diffuse

component 7y, the subhalos 7y,,, and particles outside the group 7..

In Figure 4-12, we plot 7;/7cx in the left column and 7y,,/7ex as a function of radius
for three different randomly chosen halos (different rows) from one of our high reso-
lution N-body simulations. The first, second and third rows correspond to halos with
mass {3.5,1.8,1.0} x 102M, /h respectively. The vertical dashed line shows 7y for
each halo. For all halos, the external torques are more significant than the torque
from subhalos. Moreover, the external torque is non-negligible (~ 10%) relative to
the torque from the diffuse component on scales as small as 7909/10, where most of

the particles reside for a galactic size halo.

This importance of external torques in the nonlinear regime is not stressed in the
literature. Normally the total angular momentum of halos is assumed constant in the
nonlinear regime since the halo approximately decouples itself from the background
(Doroshkevich, 1970; Peebles, 1969). Numerical experiments, in addition, have ap-
proximately verified this claim (White, 1984; Book et al., 2011). However, Figure 4-12
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Figure 4-12: In the left column, we plot the ratio of the amplitude of torque from
the diffuse component to the torque from particles outside of the halo (r > 7990).
In the right column, we plot the ratio of torque caused by substructure to torque
from particles outside the halo. These figures are calculated using one of our high
resolution N-body simulations. The different rows correspond to halos of different
mass: {3.5,1.8,1.0} x 10'2M,/h, from top to bottom. The dashed line in each figure
labels 7499 for each halo.
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suggests that the total angular momentum should fluctuate at about the 10% level
today. It is reasonable then to expect the halo’s angular momentum to fluctuate at
higher levels at earlier times, when it is not as relaxed. A more detailed investigation
will be pursued in the future but it should be stressed that large scale external tides
need to be included in N-body simulations. In other words, small simulated boxes do

not represent the dynamics accurately.

The above numerical experiments requires a number of extensions. First, particles
need to be sampled from a more accurate phase space distribution. It is possible
that particles aren’t diffusing because they are moving too fast to couple strongly
with the substructure and diffuse components. One way to make sure the particles
and subhalos have equilibrated is to only bin phase space and start tracking bin
statistics after the particles and subhalos have undergone a few orbits. Another
extension necessary is that subhalos need to be sampled from a more accurate spatial
distribution. The Fractal Halo Model predicts too many subhalos at small radii
because tidal interactions are not taken into account. Subhalos at small radii do
not significantly affect the angular momentum of particles at large radii because
they orbit on a faster timescale and can be approximated as a spherically symmetric
perturbation. The Fractal Halo model also needs to be generalized to allow for a
distribution of subhalo masses. This increases the asymmetry in the system and
should lead to larger torques. Last, given the importance of external torques, it

would be natural to include a model for the large scale tidal field.

4.5 Analytic Modeling

Section 4.2 of this chapter revealed that when projecting the full phase space coor-
dinates of particles in an ensemble-averaged halo onto their energy F and angular
momentum L, phase space bins evolve as if the particles were random walking in
{E, L} space. In Section 4.4, we recreated some aspects of this behavior using more

controlled numerical experiments involving artificially constructed halos. This subsec-
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tion focuses on building up an analytic framework that describes these trends. First
we will give background on the analytic formalism, showing how collisional terms
that may give rise to diffusion arise in the evolution of a halo’s phase space density.
Then we will estimate the amplitude of collisional terms relative to other terms that
determine the evolution of the halo’s phase space density. Last, we will discuss dif-
ferent approaches to understanding the emergence of random walk behavior in halo

evolution.

4.5.1 Background

This section largely follows Section 2 of (Ma & Bertschinger, 2004). We first start
with the Klimontovich density fx, which represents the phase space density for an

individual halo.

fx(r,v,t) = mZ Splr —i(t)]0p[v — vi(t)] (4.29)

In the above m is the mass of each particle and r; and v; are the radius and velocity of
particle ¢ respectively. As is expected, the Klimontovich density satisfies the Vlasov
equation.

Ofi | Ofx Ofx

St S g =0 (4.30)

where

r—r7r

4.31

r—r
rt)=-Gm> —— =—-G [ dW fx(w',t
gxlr) = ~Gm 3 [0 =<6 [ duituly
and we’ve introduced w = {r, v} for convenience. Equation (4.30) is exact, conserves
phase space volume, and keeps track of all phase space information in the halo. In
other words, given fx at a particular instance of time, we have enough information to
solve for fx at another time. Doing so would be equivalent to performing an N-body

simulation. In order to make progress analytically, one approach is to perform an

averaging procedure in the hope that the evolution of the averaged quantities will

116



depend on less information. This averaging approach is commonly applied when sys-

tems have many (~ Avogadro’s number) degrees of freedom.

For instance, consider a gas of thermalized identical particles interacting at room tem-
perature. Understanding the velocity of an individual gas particle requires knowing
the particle’s initial position and velocity as well as the position and velocity of every
other particle that collided with it. On the other hand, the velocity distribution of

an ensemble of gas particles requires only knowledge of the temperature of the gas.

With this statistical approach in mind, we define the following ensemble average:

flw,t) = (fx(w, 1)) . (4.32)

An ensemble average can either be thought of as averaging over different instances of
a given halo, or averaging over different halos in a large cosmological volume. Since
eq. (4.30) is not linear in fx, because of the gravitational field’s dependence on the
phase space density, we also define the ensemble average of a product of Klimontovich

densities. We have:

<fK(w1, t)fK(’LUQ, t)) = 5D(w1 — 'w2)f('w1, t) -+ fg(’l.Ul, wa, t) (433)

where:

fg(wl, Wy, t) = f('wl, t)f(wg, t) + fgc(wl, wa, t) . (434)

In eq. (4.33), the Dirac delta function corresponds to the case where two points lie
on top of one particle. Distinct particles give rise to fo, which can be rewritten to
be of the form shown in eq. (4.34). The two-point correlation function fs., defined in
eq. (4.34), represents the additional probability that the two particle’s phase space
coordinates influence each other. Given eqgs. (4.32-4.34) and taking an ensemble

average of eq. (4.30), we find:
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where

r—r
g(r,t) —G/d6wf w'’ t)| e (4.36)
and the correlated force density F is:

In the above, we've assumed that all forces are relative to the center. In other words,
the halo is always centered at » = 0. Notice that the ensemble-averaged phase space
density f no longer satisfies the Vlasov equation. More specifically, because of the
collisional term F', evolution no longer conserves the phase space volume. This should
be expected. Before averaging, fx describes a Hamiltonian system where every par-
ticle in the halo evolves according to the same potential. After ensemble averaging
though, every particle that samples f comes from a different halo and hence evolves
according to a different potential. Therefore, the system is no longer Hamiltonian

and phase space conservation should not be expected.

Eq. (4.35) is the first equation in the BBGKY hierarchy. In order to solve for f,
F(w,t) is required. Knowledge of F' requires evolving the second equation in the hi-
erarchy, which in turn depends on the next hierarchical equation. One way to proceed
is to close the hierarchy at the nth level by assuming the (n+1)st correlation func-
tion vanishes. However, for gravitational systems this is not justified in the nonlinear
regime because of gravity’s tendency to strongly cluster particles. Another possibil-
ity is to explicitly solve for F'(w,t) from first principles in the quasi-linear regime.
This was done in (Ma & Bertschinger, 2004). There they found that a Fokker-Planck
equation governed the evolution of f. This is fairly significant and a little surpris-
ing. In the quasi-linear regime, each particle deterministically evolves according to a

fixed potential. After ensemble averaging, however, deterministic trajectories became
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stochastic in nature.

Here we pursue understanding phase space evolution with a different approach. In
order to get intuition for the importance of the collisional term (F') in eq. (4.35), we
calculate it assuming the Fractal Halo Model that was described in detail in Section
4.3. Note that this is not self consistent because the phase space density f and the
correlated force density F' derived from the Fractal Halo Model will not simultaneosly

satisfy eq. (4.35). However, it provides a way to gain better understanding.

4.5.2 Calculating the Correlated Force Density

Reproduced here for convenience, the Fractal Halo Model assumes the density profile

for a level n halo can be represented by the following:

pula) = puta) + A Y s (25522 (4.39)
{in}

For definitions and more background, please refer to Section 4.3. If we impose that
the ensemble average of all halos, at each level n, gives rise to a universal profile p
and that the location of each subhalo satisfies a Poisson point process, then as pre-
viously shown, we can numerically calculate the spatial probability density p(x) of

substructure.

For a spatial Poisson process, ensemble averages over sums like that shown above are

given by:

(X) = / i p(@im) (4.39)
< Z Z> — / &P p(@im) / &5 p(2sm) + NOyi 6 / &P im p(@im)

(4.40)
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where

N = /dgx p(x) (4.41)

is the average number of subhalos at each level. Given the above definitions, it is
now straightforward to calculate the two-point correlation function. For now, we will

neglect velocity space information. We find:

<pn(:r:1)pn($2)> = <[pd(a:1) +Aan+1 (%) } [pd(rm) + AZPnH (M) ]>

i,n j?n

= pa(®1)pa(®2) + Apa(x2) /d%’ p(x')p (wl ; m’)
+ Apd(:vl)/d%/ p(x')p ("’2;m’)

/d3x’d3x”p(w')p(w”)p <"”1 ;33/) 5 <m2 ; a:”)
e

= sloe st [y (B o (455)

+ A?

Therefore, given eqs. (4.33) and (4.34), the two-point density correlation function pa.

is given by:

oo (=T _ [y —
pzc(wl,wz)ZNA2/d3xp(w ),0( 1b )p< 2b ) : (4.43)

The above form is expected since the amplitude of ps. depends on how significantly
substructures overlap. Since, we impose a gaussian cutoff past the virial radius of
p in order to ensure a finite mass, eq. (4.43) will only be non-negligible when the

substructures are close together. Approximately, we find:

120

(4.42)



, | p(@) [ &Pz p? (%) if @) — x| < brg,

p2c(T1, o) =~ NA (4.44)

B Mp (25220 [plan) + p(@s)] if |oy — o] > br,

where M is the mass of the halo and r; is the scale radius of the NFW profile. The
above approximation assumes that the spatial probability density p(x) does not vary
significantly over the subhalos, which is true for b < 1. Eq. (4.44), together with the
analysis of the spatial substructure probability density in Section 4.3 fully character-

izes pae.

Given the above we can now move on to calculating the correlated force density F
defined in eq. (4.37). We'd like to compare F' to gf for different radii in order to
determine the importance of collisional terms sourced by substructure. Assuming the

following form for the phase space density f:

vr

)= et = (i) = (i) <2274§15)>) |

implies that comparing F' to gf, after integrating over velocity information, is equiv-

alent to comparing F* = [ Fd®v to gp where:

/

F?(r,t)

3,./ /
_G/d rpgc(r,r,t)m

_ 2 3 1 3 1 " = r—r"\ _[(r —7r" r—7r
B GNA/dr/drp(r)p< b )p< b )|'r—fr’|3'

Transforming coordinates to ' = r + x and " = r + y, we have:

Fo(r 1) = GNA2/d3x/d3y p(r+y) p (%) 7 (y , w) r (4.47)

13
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First consider the interior integral. As discussed above, the integral over the product
of densities will only be non-negligible when the separation between halo centers

x < bry. In this regime, we can put an upper limit of the integral over v. We have:

(YN _(Y—X _
/d3y p(r+y)p (g) p < ; ) <p(r—=z/2) /d‘"’y p*(y/b) = Bb’p(r —x/2) .
(4.48)
I've chosen to evaluate the spatial probability density at » — x/2 since this is where
the two densities overlap the most. Given the above, we can now calculate an upper

limit to F'*. We find:

Fr(r,t) < GABe / &z p(r — :13/2)%
1ldp . x

~ 3 —_— . —_—
~ GABe/d x [p(r) 5" a:] p

TGABeb*r? dp .
= ——— & Cp

3 dr

7GBe*r? dp

= S 5, 4.4
b dr (4.49)

In the above, we've assumed x < r, which is valid for b < 1, and limited the integra-
tion volume to a radius of bry, since subhalos separated by more than this distance
will have a negligible ps.. In addition, we've used the previously defined € = N Ab3,
the mass fraction of substructure in the halo, and we’ve defined p = p/N so that
[ &z p(x) = 1. Note that the zeroth order contribution vanishes because of isotropy.
This comes about since test particles will be equally likely to be kicked in any direc-

tion.

Eq. (4.49) implies that for a fixed mass fraction in substructure ¢, the amplitude of
this collisional term can be increased arbitrarily by decreasing b and keeping Nb
constant. In other words, collisions are more important if you split up the substruc-

ture into more smaller mass subhalos, because there are more locations where overlap
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0.070
0.050

Figure 4-13: The above shows F?/gp for b = 0.1, ¢ = 10 and € = 0.1. In this radial
regime, the spatial probability density dp/dx oc 1/23 while gp transitions from oc 1/2?
behavior to oc Inx/2° with increasing radius. While the above shows that the colli-
sional term is not important for this set of Fractal Halo model parameters, splitting
up the substructure into more smaller mass subhalos will increase the amplitude of
F? relative to gp.
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occurs. Note though that the scalings of F* will vary with b. It is surprising that eq.
(4.49) is purely set by the spatial probability density.

In Figure 4-13, we show the ratio of F*/gp for b=0.1, ¢ = 10 and € = 0.1. We limit
the plot to this domain since the approximations used to calculate F” break down
when x ~ br,. Moreover, as discussed previously, the spatial probability density is
not representative of actual halos for x < r,. In this radial regime, the spatial prob-
ability density dp/dx oc 1/2® while gp transitions from oc 1/2? behavior to oc Inx/z°
with increasing radius, which causes the dip around x ~ r,. More intuitively, since
p o< 1/2?% there is the same mass in substructure in different equally spaced radial
bins. Therefore, subhalos overlap more at smaller radii, — since there is less volume
— and we should expect the correlated force to increase. At large radii, we get an
increase again because of the strong decrease in p. The increase in the correlated
force implies that subhalos source strong time dependent potential fluctuations at
small radii. These could potentially be just as effective at disrupting subhalos as the

tidal field from the parent halo.

4.5.3 Approaches to Understanding the Emergence of Fokker-

Planck Behavior

As mentioned previously, averaging plays a large role in statistical approaches to
physics. For the Brownian motion example, deriving the Fokker-Planck equation
required time averaging. Diffusion came about because the correlation time of the
stochastic force field from the heat bath was assumed negligible compared to obser-
vational time steps. As a result, for Brownian motion, time averages and ensemble
averages are interchangeable. Hence, the system is ergodic, leading to a simplified

analysis.

For a dark matter halo, dynamics takes place on many timescales, ranging from the
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orbital time of particles in dense substructure all the way to the Hubble time — the
timescale on which the external tidal field evolves. Moreover, the phase space is higher
dimensional than in the Brownian motion case, leading to more information per par-
ticle. Analogous to the Brownian motion case, in order to simplify the dynamics and
develop an analytic framework for understanding nonlinear halo evolution, we will
need to take advantage of time and phase-space averaging. The first step, then, is to
understand the ergodicity of a nonlinear halo. For simplicity, we’ll once again use the

Fractal Halo Model, which was described in detail in Section 4.3, to develop intuition.

The force acting on a test particle in a halo at r and time ¢ is:

g(r,t) = —sz % (4.50)

where m is the mass of each particle, and 7;(¢) tracks the position of each particle.

We can rewrite this force trivially in the following way:

g(r,t) = go(r,t) + Ag(r,t) (4.51)

where

go(r.t) = —GM(r, t)r—z (4.52)

and eq. (4.51) defines Ag. In the above, gy is the force sourced by the smooth spheri-
cally symmetric halo, where M(r,t) is the internal mass of the smooth halo at radius
r and time t. Moreover, Ag is the force sourced by the perturbation on top of this
smooth component. The ergodicity of the system can then be tested by creating his-
tograms of Ag with the different elements of the histogram sampled using different

averaging procedures.

To construct these histograms, we use the Fractal Halo Model to populate a halo with

N subhalos. Then we calculate Ag by taking the difference between the actual force
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Figure 4-14: Normalized histograms of different components of Ag evaluated at a
fixed phase space point, with r = r,, for different realizations of subhalo positions.
The above histograms give statistics associated with ensemble averaging. They were
generated from 10% samples. The dotted curves corresponds to halos with N = 101
subhalos while the dashed curves correspond to halos with N = 501 subhalos. In
both cases, the halos contained 10% mass in substructure.

acting at r — sourced by substructure and the diffuse component p; — and the force

at r assuming the smooth ensemble density p.

Figure 4-14 shows the normalized histograms associated with ensemble averaging.
Different histograms correspond to different components of Ag, with the tangential
component labeled by Ag;. Each element of the histograms (10° samples) is evalu-
ated at a fixed phase space point, with r = r,, but for different realizations of subhalo
positions. The dotted curves correspond to halos with N = 101 subhalos while the
dashed curves correspond to halos with N = 501 subhalos. In both cases, the halos
contained 10% mass in substructure. The distributions for Ag,, Agy and Ag, are

all nearly gaussian while a Rayleigh distribution describes Ag;. This is expected.
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Different ensembles are independent and not correlated. Hence these distribution
should describe a random variable Ag, which is the sum of kicks that depend on the
random locations of substructures. From the Central Limit Theorem, since the posi-

tion of each subhalo is independent, we’d expect, for large IV, to reproduce a Gaussian.

Moreover, the variance of the above gaussian distributions o2 oc 1/N. This can be
understood from random walk arguments. The random variable Ag is equivalent
to a random walk of N steps, where each step is associated with the force from a
single subhalo. For N subhalos, in halos of a fixed subhalo mass fraction, each step
I < 1/N. Therefore the standard deviation after N steps is [v/N o 1/v/N, recovering
the observed trend. Physically this makes sense. Not only are the kicks smaller,
with larger N, but more subhalos lead to halos that are more spherically symmetric

causing smaller deviations from gq.

Figure 4-15 shows the equivalent of Figure 4-14 but for phase space averaging. In
this case, the different components of Ag are evaluated at r = r,, with randomly
chosen {6, ¢} in a single realization of a halo. All other properties of the figures are
the same. It is immediately clear that these distributions are not gaussian. This
implies that the different elements in each histogram are not statistically indepen-
dent. In other words, there are non-negligible correlations between the forces acting
in a halo at the same radius but different {0, ¢}. Hence, phase space averaging and
ensemble averaging are not equivalent. It should be stressed that the system does
become more uncorrelated for larger N. This is expected since more kicking sources
will decrease the correlation ‘phase’. In other words, imagine choosing a particular
location and find the closest subhalo. Now calculate the smallest angle the particle
needs to traverse until the force is dominated by a new subhalo. The average value
of this smallest angle, which I believe is a measure of a correlation ‘phase’, will be
smaller if there are more subhalos. Note that, we've verified that phase space and

ensemble averaging concurrently results in gaussian distributions.
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Figure 4-15: Normalized histograms of different components of Ag evaluated at r =
s, with randomly chosen {6, ¢} in a single realization of a halo. The above histograms
give statistics associated with phase space averaging over angles. They were generated
from 10® samples. The dotted curves corresponds to a halo with N = 101 subhalos
while the dashed curves corresponds to a halo with N = 501 subhalos. In both cases,

the halos contained 10% mass in substructure.
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Figure 4-16: Normalized histograms of different components of Ag evaluated at a
fixed phase space point, with » = r,, in a single realization of a halo, but at different
times. The subhalos evolved in the smooth diffuse component of the halo for ~ 50%,,y,
where t., is the orbital period at r, for a particle on a circular orbit. The above
histograms give statistics associated with time averaging. They were generated from
10% samples evenly spaced in time. The dotted curves corresponds to a halo with
N = 101 subhalos while the dashed curves corresponds to a halo with N = 501
subhalos. In both cases, the halos contained 10% mass in substructure.
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Figure 4-16 shows the equivalent of Figure 4-14 but for time averaging. In this case,
the different components of Ag are evaluated at a fixed phase space point, with
r = r,, and evenly spaced times as the subhalos orbit in the halo. The subhalos
evolve in the smooth diffuse component for a time ~ 50 ., where ¢, is the orbital
period at r, for a particle on a circular orbit. All other properties of the figures are
the same. While the correlation time is clearly not negligible, it is interesting to note
that the distributions are more gaussian then the phase space averaging case shown
in Figure 4-15. The degree to which the above distributions are gaussian depends on
the time steps of observations. Similar to the phase space averaging, the correlation
time is roughly equivalent to the time it takes a new subhalo to dominate the force.

This will be smaller for a larger number of subhalos.

Based on the above analysis, it seems that analytically it is necessary to ensemble
average since the dynamics simplifies the most in that case. Moreover, in order for
diffusion to take place, the forces in the halo need to be separated between those that
occur on timescales much smaller than some prescribed time step and those that are
larger. The dynamics occurring on smaller timescales will lead to diffusive behavior
while the dynamics on longer timescales will need to be accounted for deterministi-
cally. Note however, that small correlation times are not a necessary condition for

diffusive behavior. This will be discussed briefly in the Discussion section below.

4.6 Discussion

In this Chapter, we tried to understand why the density and pseudo-phase-space den-
sity profiles of dark matter halos are approximately universal. Our starting point was
the evolution of a dark matter halo’s phase space density. Motivated by Brownian
motion, we showed that — when ensemble and phase space averaged — N-body simula-
tions show evidence that their phase space densities diffuse. This is significant since
this diffusion provides a mechanism for halos profiles to lose information and become

universal.
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In order to understand the source of this diffusion we performed numerical experi-
ments on artificially constructed halos, for which we could control the halo’s shape
and substructure distribution. We found that substructure sources approximately
the same amount of energy diffusion as seen in N-body simulations. However, sub-
structure and the shape of the halo could not source enough diffusion in angular
momentum. This implies that the external tides sourced by large scale structure is

important for particle evolution even in a nonlinear halo.

Last, with the above results and framework we began to probe how best to describe
this diffusive process analytically. In deriving a diffusion equation, averaging pro-
cedures are extremely important. For the case of Brownian motion, the system is
ergodic since time averages are equivalent to ensemble averages. For a dark matter
halo, we explored three different averaging procedures. We showed that ensemble
averages are not equivalent to phase space averaging over the {0, ¢} coordinates. In
addition, we showed that the extent to which time averages and ensemble averages are
equivalent depends on the time step between observations as well as the substructure

distribution.

The above work needs to be generalized so that the artificially constructed halos are
better representations of simulated halos. However, given this generalization, one
potential approach to making a coherent picture will be to explicitly calculate the
correlation time in halos. Understanding how this time depends on position in the

halo and substructure distribution will then reveal in what limit diffusion is relevant.

Note though, that while each particle random walking would give rise to Fokker-
Planck like behavior, that is not a required condition. More specifically, determinis-
tic trajectories, when suitably averaged over can lead to diffusive dynamics, as was
shown in the quasi-linear regime by Ma & Bertschinger (2004). The source of this

diffusion is a correlation between the gravity and velocity fields. Therefore, another
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potential way to understand universality is to model this correlation. This requires
analyzing the statistics of the gravity and velocity fields and how they vary over dif-
ferent averaging procedures, as was explored partially in Section 4.5.3. Using both
these approaches may provide an improved analytic description and shed light on the

origin of universality.
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Chapter 5

Conclusion

In this thesis we used a combination of analytic and numerical tools to gain intuition
about different empirical results seen in N-body simulations. First, using a general-
ized model of halo formation known as Secondary Infall we analyzed the structure of
halos, focusing on their density, anisotropy and pseudo-phase-space density profiles.
We analytically showed that — within the context of our model — the inner slope of the
density and pseudo-phase-space density profiles depends on how particles are torqued
throughout evolution. In other words, angular momentum plays an important role in
setting the structure of the halo at small radii. In addition, we found evidence for uni-
versality on intermediate scales since the structure of the halo, in this radial regime,
does not depend on initial conditions or evolution history. Last, our predictions for
the velocity anisotropy profile qualitatively matched expectations from N-body sim-
ulations. Differences between predictions of our model and simulated halos can be
attributed to our assuming that all shells are radially cold and all particles in a shell

have the same amplitude of angular momentum.

Because of restrictive assumptions inherent to the Secondary Infall model, and hop-
ing to understand the origin of a halo’s universality, we next focused on modeling a
nonlinear halo’s phase-space evolution. We first showed that — after ensemble and
phase-space averaging — halos from N-body simulations undergo diffusion. This im-

plies that a Fokker-Planck equation should describe a nonlinear halo’s phase space
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evolution. Analytically calculating the diffusion coefficients in the Fokker-Planck
equation requires understanding the source of the diffusion. So, we tried to reproduce
the diffusion observed in the N-body simulations by evolving particles in artificially
constructed halos, where we controlled the halo shape and substructure distribu-
tion. We found that large scale tidal fields play a non-negligible role for the diffusion
in angular momentum. Last, averaging and ergodicity are important in deriving a
Fokker-Planck equation. So, we tested the ergodicity of dark matter halos by making
histograms under different averaging schemes. We found that the extent to which
time averages can be replaced with ensemble averages depends on the time steps in
between samples. In other words, if the time step is larger than the correlation time,

then the system is ergodic.

We believe the above provides the starting ingredients necessary to formalize an an-
alytic description of nonlinear halo formation. The next steps include understanding
what sets the correlation time in a halo and modeling the correlation between the
gravity and velocity fields. With these advances, we’ll have a description of halo
evolution that is different in approach than most other studies. Moreover, with the
diffusion coefficients in hand, we can directly calculate a time scale associated with
when the system relaxes. Hence, we’ll be able to conclusively say whether or not we

expect universality in dark matter halos.

In summary, over the past 20 years, computer simulations have revealed many in-
teresting properties of dark matter halos. Analytic modeling of these systems have,
however, fallen behind. As a result, a gap exists in our understanding of halo for-
mation since simulation results cannot be understood from a completely analytic

framework. This thesis, we believe, has made steps to help bridge this gap.
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Appendix A

Supplement to Chapter 2

A.1 Calculating n.g

The effective primordial power spectral index, n.g, relates our model parameter n to

the halo mass M. The effective index is defined by:

o dlIlO'R
ne = —2° 20 =3 (A.1)
where
P
2 2
ol = / P BWAD (A2)
and

. sin(kR) — (kR) cos(kR)
Wg(k) =3 5E

(A.3)

The scale R is set by the top hat mass of the halo (M = 4mp,,0R3/3), where pmno
is the dark matter background density today. The power spectrum today, P(k), is
given by (Takada et al., 2006):

P(k) = (550#%) Pr(k)T2(k)D%(a = 1) (A4)

where
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k3 P (k)

272

=A%@w(%)%4, (A5)

D is the linear growth factor normalized so that D/a — 1 as a — 0, a is the scale
factor, T'(k) is the transfer function and we choose cosmological parameters derived
from WMAPT: A% (ko) = 2.441 x 107, h = 0.704, Q,, = 0.272, n, = 0.963, with
ko = 0.002 Mpc™' (Komatsu et al., 2010). We calculate T'(k) using CMBFAST
(Seljak & Zaldarriaga, 1996).

A.2 Tidal Torque Theory

We first derive eq. (2.28) using cosmological linear perturbation theory. Starting with

the Zel’dovich approximation (Zel’dovich, 1970), we have:

r(a.t) = a(t) (¢~ D()Ve(0)) (A.6)

where r is the physical radius, q is a Lagrangian coordinate, and ¢, which is time

independent, is related to the Newtonian potential ® through the following:

1

S S
¢ A7 G ppm Da?

(A7)

where p,, is the dark matter background density. The velocity, Or/dt, then is given
by:

v(q,t) = H(t)r(g.t) — a(t) D(t) Vo(q) (A.8)

where H = dIna/dt and dots denote derivatives with respect to time. Therefore, to

first order in ¢:

(r—mry) X (v—1y) = —azD(q —qo) X (Vo — V)
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where Vg = Vp(qo). Plugging this expression into eq. (2.27), taking an expectation
value, defining * = q — qq, rewriting in terms of the velocity perturbation variable

¥ = — DV ¢ and using index notation, we find:

(62) = %lzijkeﬂm /V dgxpma?’:zj:zl<<\lfk(0) — \Ifk(ar;)) (\Ifm(O) — \Ifm(a:)> >C (A.10)

where ¢;;, is the Levi-Civita tensor and Vy, is the Lagrangian volume of the halo.
We assume Vj, is spherical with radius z,,... Note that to linear order in ¢, the
Lagrangian coordinate « is equivalent to a comoving coordinate. The subscript C'
denotes an expectation value taken over constrained gaussian fields since we want to

average only over peaks in the density field.

Using the formalism developed in (Bardeen et al., 1986), we choose, for simplicity,
to use the zeroth and first order derivatives of the smoothed density field to constrain
the velocity perturbation. Our treatment and conventions are identical to that used
in Appendix A of Ma & Bertschinger (2004). For more details, please refer to this

reference. We find:

(A11)
(Wi (@);(0)); = (7;3) - "(0;’1;(“"))5@ + (dzif) Vf) - 9”;(%0) dz(;)) b, (A12)
wow e = (-T2, (A1)
where:
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(A.14)
(A.15)
(A.16)
(A.17)
(A.18)

(A.19)

Wg(k) and P(k) are defined in eq. (A.3) and (A.4) respectively and the spherical

Bessel functions are jo(z) = 27!

corrects an error in equation (A15) of Ma & Bertschinger (2004).

sinz and ji(z) = 7 %(sinz — zcosx). Eq. (A.12)

Notice from eqgs. (A.11) through (A.13) that the expressions separate into terms

proportional to d;; and terms proportional to #;Z,;. The terms proportional to &;Z;

vanish in eq. (A.10) because of the antisymmetry of the Levi-Civita tensors. Eq.

(A.10) then reduces to:

B a*D?
(0%),, =2 T2 /v dPrpna’rs® f(r, R)
L

where

Last, defining u = /%y, we find:
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412 1 )
(%), = 6 Ma2,,, / Ul f(umax, R)du = 6a'D?Ma?  A*(R)  (A.22)
0

In the above A has units of Mpc and x,,x = R since the scale of the galaxy today
is equivalent to its lagrangian size to linear order in perturbation theory. Note that

f/D? is time independent.

Now, we derive eq. (2.30). Consistency with the secondary infall model demands
that we assume €, = 1. Equating the time dependence of eq. (2.28) and eq. (2.29)
for an Einstein de-Sitter universe (D = a) at early times (ryay o< t/3), we find p = 2n
where p = 2y + 4. Given this relationship, we now equate eq. (2.28) to eq. (2.29) and
solve for B. We find:

B=2,207-2n)d (Tma")n_l AR) (A.23)

where we've used eqgs. (3.3) and (2.18) evaluated at early times to cancel the mass
as well as the relationship . = aZmax. Now we evaluate eq. (A.23) at early times
since tidal torque theory only applies when the halo is linear. To relate 7., at some

initial time (¢;) to ry, today (¢y), we use the conservation of mass.

T ()1t = 1 M(1)ps(to)r (o) (A.24)

Evaluating eq. (A.23) at t; with the use of eq. (A.24) and noting that r, o< t#, we
find:

B = 2\/2(7 — 2n)M(1)<"—1>/3@ (A.25)

Tta(t(])

As expected, the time dependence of B vanishes. Last, assuming r,(tg) = R, we

reproduce eq. (2.30). The quantities n, R, A(R) are calculated in an 2, = 1 universe
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with the same background matter density and power spectrum of ACDM today. This
ensures that the statistics, mass, and size of halos in both universes are equivalent

today.

As mentioned previously, eq. (2.30) overestimates the angular momentum of parti-
cles at turnaround by a factor of 1.5 to 2.3. One potential source of error is to assume
the lagrangian volume is spherical. Assuming an ellipsoidal lagrangian volume with
axis ratios 1 : a : b, we find that B is at most reduced by 8% when 0.5 < a,b < 1.
The discrepancy may be caused by not including higher order constraints on the
smoothed density field. However, comparing B when calculated using zeroth and
first order derivative constraints with B when calculated without using constraints
results in only percent level differences; so it seems unlikely that constraints would

have a significant effect.

N-body simulations use friends-of-friends group finders in order to identify halos
and subhalos (Davis et al., 1985; Springel et al., 2008). This algorithm, however,
removes particles that are grouped to neighboring halos and hence neglects a contri-
bution to 2. Trying to mimick this selection effect, we replaced eq. (A.20) with

a4D2 00 PR,
<6’2>M =2 oz / dPxe= /21 pm@ 2 f(z, R) (A.26)
0

where R = (2/97)Y/%R ensures that the mass enclosed within the lagrangian volume
is equal to the mass of the halo calculated by the simulation. However, calculating B
in this manner leads to overestimating the angular momentum at turnaround by ~ 4,
as opposed to ~ 2 beforehand. Since f(z, R) is an increasing function of z (f ~ x'34
near R for 1012M, halos), most of the contribution to A(R) comes from close to R.
Therefore, while the gaussian cutoff decreases the contribution to B around R, it
includes contributions beyond R, leading to a worse estimate. This highlights that B

significantly depends on the outer parts of the halo. Hence, overestimating B by ~ 2

is reasonable.

Last, note that the parameter B is set during the linear regime. Assuming that the

shell is dominated by substructure at turnaround, nonlinear interactions like dynam-
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ical friction and tidal stripping play an important role from the time of turnaround
to the first pericenter passage (Gan et al., 2010; Zentner et al., 2005). As time goes
on, these effects become less important since substructure in the shell becomes sub-
dominant. Including these extra interactions should lead to smaller estimates of B at
first pericenter passage and hence potentially explain our overestimate, but is beyond

the scope of this work.

A.3 Evolution After Turnaround

In this Appendix, we use dimensional analysis in order to gain intuition about w,
a parameter that describes tidal torque after turnaround. First, consider the time
derivative of L?, where L is the angular momentum per unit mass of a particle with
radius r at time t.

dL?

— = 2<r2(v ca)—(r-a)(r- ’U)) (A.27)

In the above, a (v) is the acceleration (velocity) of the particle. We now decompose
the acceleration vector into a radial (#) and tangential (£) component and use this

basis to rewrite the velocity vector.

a = a7 +at (A.28)

v = urtouttop (A.29)

The direction p is orthogonal to both 7 and ¢. Note that all basis vectors depend on

position. Plugging in the above decomposed vectors into eq. (A.27), we find:

dL?
W = 27°2vtat. (A?)O)

As expected, changes in L? are sourced by deviations from spherical symmetry

that create nonzero a;. Now, imagine a spherically symmetric halo, roughly described
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by our self-similar infall model with @ > 0, with a clump of mass m in the shell at
radius ro. We assume that m is small enough so that it does not influence the radial
equation of motion of the shell at r. We focus on w > 0 since this is required in
order for the density profile of a 10'2M, halo to be consistent with the NFW profile
(Section 2.6.1).

Next, consider averaging dL?/dt over an orbital period and over a spherical shell of
radius 7, in order to compare the change in angular momentum sourced by the clump
at ro to our model’s prescription for angular momentum evolution. For @ > 0, orbits
are roughly circular at late times. Hence, we assume averaging over an orbital period
is equivalent to evaluating the right hand side of eq. (A.30) at roughly the apocenter
radius of the shell. As described in Section 2.2, the orbital planes of all particles in
a shell at r are randomly aligned. Therefore we expect v; averaged over a sphere
to vanish. However, if there exists an excess mass m, then all the particles will be
pulled slightly in that direction, leading to a nonzero average. We therefore assume
v x Pa; where P, the orbital period of the particle, is taken to be a dynamical time

(P o< p(r)~1/?). Last assuming r < ry, we find:

dL? r2m?
In order for the secondary infall halo model to be consistent, the right hand and
left hand side must have the same time scaling. Assuming m o t*, associating r and

ry with their respective apocenters, and noting from eq. (3.37) that r o< £2%, 7y o< 2,

and p o< t7%, we find:

w = %(1 +2p) (A.32)

The same scaling relationship holds for » > r,. Hence one could imagine sub-
structure in the shell at » sourcing a change in L? of the shell at 7, and substructure
in the shell at ry sourcing a change in L? of the shell at r. Therefore, a hierarchy
of substructure non-spherically distributed, which is subdominant to the monopole

contribution of the halo, would result in a halo roughly consistent with our described
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secondary infall model.

Eq. (A.32), which is only valid for ;1 > —1/2 since we assumed w > 0, together
with eq. (3.37) relates the steepness of the inner density profile to the mass loss rate
of substructure. If the clump does not lose mass (1 = 0), then @w = 1/3 implies
p oc % If the clump loses mass (1 < 0), eq. (3.37) predicts steeper density profiles.
Substructure dominated by baryons will lose less mass than substructure dominated
by dark matter, since baryons clump more easily and hence have higher densities.
Therefore, according to the above analysis, pure dark matter simulations should have
steeper density profiles than galaxies which include baryons. This is expected since
baryons stir particles around more efficiently, causing larger pericenters and less dense
interiors. A more thorough treatment that involves constraining w with simulations

is beyond the scope of this paper.
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Appendix B

Supplement to Chapter 3

B.1 Deriving the Consistency Relationship

In this Appendix, we derive eq. (3.24). Self-similarity imposes that the total radial

(or tangential) kinetic energy at time ¢ contained within radius r is given by:

Ki(r,t) = Mm(t)%lci()\) (B.1)

where i = {r,t} is used for shorthand to denote the radial or tangential direction.

The kinetic energy also obeys the following relationship.

Ki(rt) = % /0 N ML) H [ — B2 (B.2)

where dM,, v;(t,t,), R(t,t,) is the mass, velocity, and radius of a shell at time ¢ which
turned around at ¢, and H is the heaviside function. Since, after a short time,
shells begin to oscillate on a timescale much shorter than the growth of the halo, we

2

can replace v} with a time averaged version (v;

7) and the heaviside function with a

weighting that takes into account how often the shell is below r. More specifically,

considering a shell with turnaround time ¢, such that r,(¢,t.) < r < r.(t,t.), we have:
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p

Hir — R(t,t.)] — (/ dt) / (/ dt) (B.4)

(Vi(t, 1)) — (/:ﬁdt)/(/:dt) (B.3)

p

where we've left the dependence on t, implicit. Eq. (B.3) only averages over scales
below r since that is where the shell contributes to the kinetic energy. Eq. (B.4) is
identical to what is done in Fillmore and Goldreich, in order to analytically calculate
the mass profile at small scales (Fillmore & Goldreich, 1984).

Using egs. (B.3) and (B.4), generalizing to the case where r < r, and r > r,,
plugging into eq. (B.2), dividing by K;(r4,,t) and assuming a power law for the kinetic
energy profiles in the form of egs. (3.12) and (3.13), we reproduce the consistency
equation. The equation has a proportionality constant not only because of eq. (3.21)
but also because we do not include /C;(1). This overall constant does not affect the

asymptotic slopes.
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