18.152 - Introduction to PDEs, Fall 2004

Profs. Gigliola Staffilani and Andras Vasy

Partial solutions to problem set 9

Problems from Strauss, Walter A. Partial Differential Equations: An Introduction. New York, NY:

Wiley, March 3, 1992. ISBN: 9780471548683.

Problem 107.2 (and Problem 107.5 at the same time!) Let () =22, 0 <2 <1=1.

a) Fourier sine series:
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b) Fourier cosine series:
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Thus, the two Fourier series for 22, z € [0,1) are
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Notice that the coefficients of the Fourier cosine series decay faster as n — oo since they represent
a continuous function on the whole real line:
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while the Fourier sine series represents a discontinuous one:
The coefficients can also be obtained by direct integration (cf. 107.5).

Thus, the Fourier sine series for ¢(x) = x on (0, 1) is from the book, Ex. 3,
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as before. (Note that this gives > > % = %, as in 5b!) Similarly, integrating the Fourier
cosine series for ¢(z) = x on (0,1), i.e.
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The second part agrees with the part of the Fourier sine series for 22 we had before that involves
% terms. The % part, on the other hand, is just the Fourier sine series for ¢(z) = x, in perfect
agreement with our latest result!

Problem 107.8: Solve
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To get homogenous boundary conditions we find U = U(x) such that
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So U is simply a steady-state solution of (1) (without the initial conditions). Then let

u(z,t) = v(z,t) — U(z),
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First we solve (2):

U'"=0 = U= Ax+ B,
U(0)=0 = B=0,
Ul)=1 = A=1,
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Thus, (3) becomes
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(3) u(0,t) = wu(1,t)=0
u(z, 0) —cﬁ(x)—{ %x f0r0<x<%
’ 3—3z—U(x) for%<:c<1.

So now the situation is simple: we find the Fourier sine series for ¢ (Dirichlet BC’s).
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Problem 113.7: ¢ = ¢(z) is a function on (—[,1). Let 2/ = Tz, and let ¢(2') = ¢(x), ie.
p(a') = (7).

(Note that as ' moves in (—7, ), 2 moves in (—[,1), so ¢ is indeed defined in (—7, 7).) The Fourier
series for ¢ is

A o
o(z') = 70 + Y (A, cosnz’ + By, sinnx’)
n=1
1 " ~ / / /
Ay = = P(2) cos na'dx
™ —T
1 N - / . / /
B, = — o(2") sinna’dx’.
™ —Tr



Thus dz’ = Fdx, so we get (p(z') = p(x)').
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By changing the variables in the integral, and then
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just as expected!
Problem 113.1: ¢(x) = |sinz| on (—m,7) is even, since
o(—z) = |sin(—x)| = | — sinz| = |sinz| = p(z).

So all coefficients of sines in the Fourier series must be 0; ¢ is given by its Fourier cosine series.



