18.152 - Introduction to PDEs, Fall 2004 Profs. Gigliola Staffilani and Andras Vasy
Partial solutions to problem set 7

Problems from Strauss, Walter A. Partial Differential Equations: An Introduction. New York, NY:
Wiley, March 3, 1992. ISBN: 9780471548683.

Problem 68.1 u; — kuy, = f(x,t),z,t >0
u(0,t) =0

u(z,0) = p(x)

Extend ¢ and f to be odd functions of x:

eoast)={ 020 pw ={ 0D 220
Let v be the solution of
v —kvee = foad(z,t) (x,1) € R x(0,00)
v(2,0) = @oaa()
Then v is an odd function of xz. (Indeed, w(z,t) = v(x,t) + v(—=z,t) solves wy — kwgzy = 0,

w(z,0) = 0, now use uniqueness.) Thus v(0,t) = 0 for t > 0, so u(x,t) = v(z,t),x > 0 solves our
Dirichlet problem. Explicitly,

u(z,t) = /OO S(x =y, t)podd(y)dy +/0 /OO Sz —y,t—s)f(y,s)dyds.

Divide up each integral with respect to y into two parts [7°( ) dy+ [ N « () dy. Change variables

y — —y in the second integral, and use ¢odd(y) = —¥odd(—Y), fodd(y;s) = —foad(—y,s) there.
Thus, we get

ule,t) = /0 1S — 1) — S+, O)]e(y)dy + /0 /O T[S -yt — 5)— Szt y,t — )|y, 5)dyds.

Problem 68.2

v — kvge = f(x,t)
v(0,t) = h(t)
v(z,0) = ()
Let V(x,t) = v(x,t) — h(t), so
Vi—kVie = f(:l:a t) - h/(t)
V(0,t) =0
V(v,0) = p(x)— h(0).

By problem 68.1,

Viet) = /Ooo[sw—y,t)—S<x+y,t>1<so<y>—h<o>>dy



v(z,t) = V(z,t) + h(t). Some simplification can be done.

/0 [S(z — y,t) — S(z +y, t)|h(0)dy = h(0) /0 [S(x —y,t) — S(z +y,t)|dy = h(0)Erf (\/47:15)

by example 1 on p. 57.

Similar simplifcation can be performed on the h/(s) part of the 2nd integeral, but that still doesn’t
make the result too transparent.

Problem 76.1

Uy = gy + Tt = f(x,t) = at
u(z,0) =0
ut(x,0) =0.

By theorem 1 on p. 69,

1 t z4c(t—s)
) = — dy | d
U(m7 ) 2c 0 /x—c(t—s) ey i

1 t y25 z+c(t—s)

- % 0 7 y:x—c(t—s)ds
I 9 9 S
= 5 ; [(z+c(t—s9)—(z—c(t—2s)) ]'ids
t 2 B\ it
= /0 z(t —s)sds =z <2 - 3) -
_ ot
= &
Problem 76.5 u(z,t) fo fft‘i;‘g y, 8)dyds.
Let w(zx,t,s) = f;tiicf f( s)dy.
Thus, u(x,t) fo a:tsds
In partlcular u(zx,0) 26 fo w(z,0,s)ds = 0.
Also, uy(z,t) fo wi(z,t, 8)ds + sw(z, t,t) and w(z, t,t) = [T f(y,t)dy =0, so

1 0
ut(x,0) = 20/0 we(z,0,s)ds =0,

so u satisfies the initial conditions. Moreover,

1 [t 1
ug(x,t) = 20/ wy(z,t, s)ds + Q—th(x,t,t).
0

Now,
wi(x,t,s) =cf(x+ct—cs,s) — (—c)f(x —ct+cs,s) =c(f(x+ct —cs,s))+ f(x —ct+cs, ).

So
wy(x,t,8) = A(f (x +ct —cs,8)) — f'(x — ct +cs,5))

and

wt(xatat) = C(f(l’,t) + f(:E,t)),



SO

ug(x,t) = ;C/t A(f (x4 ct —cs,s) — f'(x — ct +cs, s))ds + f(z,t).
0

On the other hand,

1 t
ug(z,t) = % wa(az,t,s)ds
t

= L [ (f@ et —cs,s)— flu—ct+cs,5))ds
26 0

1 t
e = - (f'(x+ct —cs,s) — f'(x —ct +cs,s))ds.
0

Combining these shows that
Ut = CQU:M: + f(ZL‘, t)

indeed.

Problem 76.10 Given f(z,t) for x > 0,t > 0, let foqq(z,t) be the odd extension of f in x (as in
problem 68.1). Let v be the solution of the wave equation vy = Vx4 foad, with 0 initial data.
Then v is odd (as in 68.1), so v(0,t) = 0, so u(z,t) = v(x,t),z,t > 0 solves the Dirichlet problem.

Explicitly,
1
t) = —
’U,(CU, ) 20/ Dlafodd

where D’ is the domain of dependence for the whole line, i.e. the triangle with vertices (x,t), (x +
ct,0) and (x — ct,0).

0,t—2) D
(x —ct,0) | (ct—x,0) (x + ct,0)

But foqq is odd in z so the integrals over the two small triangles with vertices (0, — ), (0,0), and
either (x —ct,0) or (¢t —x,0) (shaded in the picture) are the negatives of each other, so they cancel.

Hence
@t = [ [ fa= [ [ 1
u\x = — = — .
’ 2C D’ odd 2C D

When D is the domain of dependence for the half line. Explicitly,
z+ct—cs ct—cs—x x+ct—cs
[ttty = [ fuawedyt [ s
x—ct+cs T—ct+cs ct—cs—x
The first integral is on an interval which is symmetric around 0; since f,qq is odd, the integral

vanishes. The second term gives rise to the integral over D if integrated with respec to s as well.

Problem 76.14 One can do this directly, using even extensions. But it is easier to proceed as
in the Dirichlet problem. Just as there (see p. 76), u(xz,t) = 0 for 0 < ¢t < z (this is really just



uniqueness together with the fact that the solution depends only on initial data in the domain of
dependence).

Thus u(x,t) = j(x + ct) + g(xz — ct) and p, 9 = 0 give j(s) = g(s) =0 for s > 0. For 0 < & < ct we
thus have x + ¢t > 0, so j(x + ct) = 0, so u(x,t) = g(x — ct) there. Thus uz(x,t) = ¢'(x — ct), so
uz(0,t) = ¢'(—ct). Since u,(0,t) = k(t), we deduce that

g (—ct) = k(t),t>0;
Jd(is) = k (—Z) ,5 < 0.

Thus s s
o) = [ gorto = [ K-Tydo
0 0 c
Letting
—s/c
o) == [ ko)
we have

t—Z
u(x,t) = glx —ct) = —c/ k(p)dp,0 < z < ct.
0



