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1 Statistical topography 

1.1 Self-affine surfaces 

We now generalize our earlier discussion of random walks and consider self-
affine functions h(x) that satisfy 

h(x) = b−αh(bx) 

where α is called the roughness or Hurst exponent. 

This relation is taken to be statistical rather than exact. Recall for, example, 
the case of the simple random walk with rms fluctuation r = �h2(x)�1/2 . Then 

r(x) = b−1/2 r(bx) α = 1/2.⇒ 

Note that anomalous diffusion corresponds to α = 1/2. 

In what follows we shall typically consider h to represent the height of an 
interface or surface. 

We first develop spectral representations of such surfaces. 

1.1.1 Width and power spectra 

Define 
W (L) = rms fluctuation of height over length L. (1) 

The mean square width is then (assuming zero mean) � L 

W 2(L) = 
L 
1 

0 
|h(x)|2dx 
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For the simple random walk, we have 

W 2(L) ∝ L 

For self-affine surfaces with roughness exponent α, 

W 2(L) ∝ L2α . 

The mean square width W 2 can also be obtained from the power spectrum. 
To show this, we use the Fourier transform relations � L 

h(x)e−ikxdxĥ(k) = 
1 
L 0 

and � 
h(x) = ĥ(k)e ikx 

k 

where 
2πn 

k = , n = 0, ±1, . . . 
L 

Then � L 

W 2(L) = 
L 
1 

0 
dx|h(x)|2 

1 
� L � 

= dx 
L 0 k 

1 
� L � 

= dx 
L 0 k� L �1 

= dx 
L 0 � k 

= |ĥ(k)|2 

k 

which is called Parseval’s relation. 

Now define the power spectral density 

S(k) = 
|ĥ(k)|2 

Δk 

2 

ĥ(k)e ikx ĥ∗(k�)e−ik�x 

k� 

ĥ(k)ĥ∗(k�)e i(k−k�)x 

k� 

ĥ(k)ĥ∗(k) 

=
2

L

π 
|ĥ(k)|2 . 
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The scaling law W (L) ∝ Lα suggests that S(k) is also a power law. We write 

2πn −β 

S(k) ∝ k−β = (2) 
L 

and estimate β from 

W 2(L) ∝ L2α ∝ 
L 
1 � 

S(k) 
k �� �−β

1 2πn ∝ 
L L 

n 

∝ Lβ−1 

Thus 
β = 2α + 1, 

thereby relating the power-law decay of the power spectrum to the scaling of 
width with length. 

1.1.2 Wiener-Kintchine theorem and the autocorrelation function 

Define the autocorrelation function (for real h(x)) 

1 
Γ(x) = h(x�)h(x� + x)dx� 

L 

Substitute the Fourier transform for h(x): 

Γ(x) = 
1 � 

ĥ(k)e ikx� ĥ(k�)e ik
�(x�+x) dx� 

L � k,k� 

=
1 � 

ĥ(k)ĥ(k�) e i(k+k�)x� e ikxdx� 
L 

k,k� 

1 
� � 

= ĥ(k)ĥ(−k)e ikxdx� 
L � k 

= |ĥ(k)|2 e ikx 

k 

This is the Wiener-Kintchine theorem: the autocorrelation is the Fourier 
transform of the power spectrum, and vice-versa. 
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1.1.3 Examples 

Random walk. Consider random uncorrelated Gaussian jumps or steps η(x) 
with zero mean, as one gets in a random walk. The autocorrelation of the 
jumps is 

1 
Γ(x) = η(x�)η(x� + x)dx� 

L 
= Dδ(x) 

where D sets the scale of the noise η. 

Using the Wiener-Kintchine theorem, the power spectrum of the jumps is 

η̂(k) 2 =
1 
� L/2 

Dδ(x)e−ikxdx = 
D 

= const.,| |
L −L/2 L 

which says that the power spectrum of white noise is flat. 

We recognize these jumps as the derivative of the interface h(x) traced out 
by a random walk. Since 

dh � 
η(x) = 

dx 
= [ikĥ(k)]e ikx 

k 

we see by the brackets that the Fourier transform of dh/dx is ikĥ(k). Con­
sequently 

|η̂(k)|2 = k2|ĥ(k)|2 = 
D

L 
and therefore 

L ˆ 2 D 
S(k) = h(k) = 

2π 
| |

2πk2 
∝ k−2 

for a simple random walk, corresponding to β = 2 and α = 1/2. 

Such an interface is sometimes called a Brownian surface. 

Fractional Brownian surfaces. The case above can be generalized to 
0 ≤ α ≤ 1. These are called fractional Brownian surfaces. (figure.) 
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The case α = 1/2 is corresponds to pure diffusion. 

The case α > 1/2 is persistent or super-diffusive. 

The case α < 1/2 is anti-persistent or sub-diffusive. 

The extreme case of α = 1 is purely advective. 

The opposite extreme, α = 0, must be interpreted in context. If β = 1 (as 
predicted by the scaling relation), then 

1 � 1 �� 
2πn 

�−1 
1 � 1 

W 2(L) = S(k) ∝ = ,
L L L 2π n 

k n n 

a harmonic series, which diverges. 

To understand the divergence as a function of L, convert � L 
dn dk→ → 

2π 
n 

Assume an upper wavenumber cutoff kmax and a lower wavenumber cutoff 
2π/L, corresponding to the system size. Substituting n = kL/2π, � kmax 

W 2(L) ∝ k−1dk = const + log L. 
2π/L 

Thus α = 0, β = 1 corresponds to a slow logarithmic divergence of the 
mean-square width. 

Note, however, that any case in which 0 ≤ β < 1 gives an L-independent 
width (i.e., truly α = 0), since � kmax 

W 2(L) ∝ k−βdk ∼ const − k1−β|2π/L → const. 
2π/L 

as L → ∞. The situation is analogous to our previous study of diverging 
means and variances of long-tailed distributions. 

Constructing self-affine surfaces. Before discussing how such surfaces can 
arise in Nature, we present one way to construct a surface with a given α 
and β. 
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Our method is constructed in Fourier space: 

•	 Choose the desired spectral decay so that


S(k) = |ĥ(k)|2 ∼ k−β .


• Choose uncorrelated random phases 

φ(k) = tan−1	 Im{ĥ(k)} 

Re{ĥ(k)} 

• Compute the inverse Fourier transform. 

For real h(x) one has to honor the symmetries 

Re{ĥ(k)} = Re{ĥ(−k)}, Im{ĥ(k)} = −Im{ĥ(−k)} 

One way to generate these symmetries and the randomness of φ(k) automat­
ically is to Fourier transform white noise and scale the amplitudes by k−β 

while retaining the original phase angles φ. 

1.2 Discrete models of growing self-affine surface 

1.2.1 Random deposition 

We first consider a growing interface that is not self-affine: random deposition. 

For a one-dimensional substrate, the model is constructed as follows: 

• Deposit particles at random horizontal locations xi. 

• Particles “land” on top of the most recently dropped particle. 

There are no correlations, so for a lattice of length L, a unit increase in the 
height hi occurs, on average, every L time steps. 
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The mean height therefore grows linearly with time, like 

h̄(t) ∝ t 

The individual heights have a Poisson distribution. Thus 

¯Var h = h ∝ t 

and consequently the width W grows like 

W (t) ∝ t1/2 , independent of L. 

1.2.2 Random deposition with surface diffusion 

Now imagine that after each step of random deposition, particles diffuse 
around and stop at a site with a lower height. 

The simplest such model proceeds as follows: 

Choose a random column i.• 

•	 Let the particle that falls stick to the top of column i, i − 1, or i + 1, 
whichever is smallest. 

This diffusion process creates correlations and therefore a smoother surface. 

¯The average height h = h again increases linearly with time. 

However the width �	 �1/2L

W (L, h) = 
1 � 

(hi − h)2 

L 
i=1 

depends on both L and h. 

We expect two scaling regimes: 

•	 For h � L, the system sees an effective Leff < L, and we expect the 
width of the interface to grow with h. 
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• For h � L, the roughness saturates to a constant and depends only on 
L. 

This suggests the finite-size or dynamical scaling [1, 2] relation 

W (L, h) ∝ Lαf(h/Lz) 

The scaling function f(x) is defined such that 

f(x) ∝ 

� 
xβ , 
const., 

x � 1 
x � 1 

. 

Specifically, 

W (L, h) ∝ 

� 
hβ , 
Lα , 

h � Lz 

h � Lz . 

We can relate z to α and β by noting that if 

f(h/Lz) ∝ hβ/Lzβ , h � Lz 

then, the L-dependence vanishes at early times if � �β
h hβ 

Lz 
∝ 

Lα 

and therefore 
zβ = α β = α/z. ⇒ 

Summary: at early times t � h/Lz , 

W (h) ∝ hβ or W (t) ∝ tβ . 

At late times t � h/Lz , 

W (L) ∝ Lα , independent of h or t. 

For random deposition with surface diffusion in one dimension, one finds 
empirically that [1, 2] 

α = 1/2, z = 2, β = 1/4. 

Moreover, plots of 
W (t)/L1/2 vs. h/L2 

fall on the same scaling function f at all combinations of times t ∝ h and 
system sizes L. 
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1.2.3 Cluster aggregation 

A popular model of cluster growth is the Eden model: 

•	 Consider an aggregate of particles, on or off a lattice. 

•	 Randomly choose an empty site next to the aggregate, i.e. a perimeter 
site. Add it to the cluster 

•	 Repeat. 

The result is qualitatively similar to, e.g., coffee drops and lichens figures. 

To understand the growth process more clearly, consider a strip geometry of 
length L. 

Populate the bottom row of a lattice with particles and add perimeter sites 
randomly. 

Result: Simulations show that the growth again follows 

W (L, t) ∝ Lαf(h/Lz) 

but now 
α = 1/2, z = 3/2, β = 1/3. 

We see that the static or time-independent behavior is the same (i.e., the 
roughness exponent is again α = 1/2) but the dynamic or time-dependent 
roughening is different. 

1.3 Continuum models I: random deposition 

Each of the models above can be described by a continuum model that yields 
quantitative predictions. 

Consider first random deposition. Define uncorrelated Gaussian noise η(x, t) 
with zero mean and correlations 

�η(x, t)η(x�, t�)� = D δ(x − x�)δ(t − t�) 
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Growth by random deposition with average velocity v is then described by 

∂h 
= v + η(x, t)

∂t 

Averaging both sides, we obtain 

�h� = vt. 

To determine the roughness, we transform h to the comoving frame 

h� = h − vt 

and drop primes to obtain 
∂h 

= η(x, t)
∂t 

and note that �h� = 0 at all times. Integrate to obtain 

h(x, t) = η(x, t)dt 

The mean-square width evolves as � L 

W 2(L, t) = 
1 

h2(x, t)dx 
L 0� L � � 
1 

= dx dt dt� η(x, t)η(x, t�)
L 0� L � 
1 

= dx dtD 
L 0 

= Dt 

where in the third relation we have loosely set δ(0) = 1, yielding, as in Section 
1.2.1, the result 

W (L, t) ∝ t1/2 , independent of L. 

1.4 Continuum models II: noisy diffusion 

We next consider a continuum model of random deposition with surface dif­
fusion. 
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We remain in the comoving frame as above but now add diffusion with dif­
fusivity ν: 

∂h 
= ν�2h + η. 

∂t 
We call this the noisy diffusion equation [2]. It has been extensively studied 
by Edwards and Wilkinson [3] as a model of the surface formed by granular 
deposition. 

1.4.1 Fourier representation 

We begin by Fourier transformation. We transform h(x, t) ĥ(k, t) via → � L


ĥ(k, t) = 
1 

h(x)e−ikxdx

L 0 

and similarly transform η(x, t) η̂(k, t). Noting that


∂t 

→ 

∂2�h(x, t) 
∂x2 

= −k2ĥ(k, t) 

we obtain 
∂ 

ĥ(k, t) = −νk2ĥ(k, t) + η̂(k, t). 

Multiply both sides by eνk2t: 

∂ � � 
e νk2t ĥ(k, t) = −νk2ĥ(k, t) + η̂(k, t) e νk2t 

∂t 

and bring the first term on the RHS over to the LHS to obtain 

∂
ĥ(k, t)e νk2t = η̂(k, t)e νk2t . 

∂t 

Integrate both sides and divide by eνk2t: 

t 

ĥ(k, t) = e−νk2t dt�η̂(k, t�)e νk2t� . 
0 
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1.4.2 The width W (L, t) 

We seek the width W (L, t) via Parseval’s relation 

W 2(L, t) = |ĥ(k, t)|2 , 
k 

which yields � t t� 

W 2(L, t) = dt� dt�� η̂(k, t�)η̂∗(k, t��)e−νk2(2t−t�−t��). 
0 0k 

Note that 

η(k, t�)η̂∗(k, t��)� = |η̂(k) 2δ(t� − t��) = 
D

δ(t� − t��)�ˆ |
L 

where the second relation was found in Section 1.1.3. Inserting above, we 
obtain 

W 2(L, t) = 

= 

D 
L 

D 
L 

� 

k 

� t 

0 
dt�e−2νk2(t−t�) 

� 1 
2νk2 

� 
e 2νk2t − 1 

� 
e−2νk2t 

D 
k � 1 � 

t 
� 

1 − e−2νk2

= 
L 2νk2 

k 

Now substitute k = 2πn/L and perform the sum over n: 

D � 1 − e−2ν(2π/L)2t 
W 2(L, t) = 

L 2ν(2π/L)2n2 
n 

Rearrange: � �� � � 
W 2(L, t) = L

D 1
1 − e−8νπ2n2(t/L2) 

8νπ2 n2 
n 

Note that the sum converges (since n n
−2 = π2/6). Simplify by writing 

W (L, t) = Lαf(t/Lz), 
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where α = 1/2, z = 2, and
� �1/2 
2

f(x) = 
D 1

1 − e−8νπ2n x . 
8π2ν n2 

n 

By our previous reasoning, the L-dependence must vanish at short times so 
that 

W (L, t) ∝ tα/z = tβ , β = 1/4. 

At long times, we have the explicit result � �1/2
DL 

lim W (L, t) = 
t→∞ 48ν 

1.4.3 Evolution of the power spectrum 

It is also of interest to investigate the time-evolution of the power spectrum 

ˆ 2 D 
1 − e−2νk2tS(k, t) = L|h(k, t)| =

2νk2 

which we have obtained here by removing the k-summation from W 2(L, t). 

At long times 
S(k, t) ∼ 1/k2 , t →∞ 

At short times t such that νk2t is small, 

D � � 
S(k, t) ∼ 

2νk2 
2νk2t = Dt, νk2t � 1 

independent of the wavenumber k. 

Thus for wavenumbers k � (νt)−1/2 , the spectrum of height fluctuations 
appears to rise uniformly and linearly with time. 

On the other hand, S(k, t) saturates to 

S(k, t) ∼ 
D 

for k � (νt)−1/2 . 
2νk2 
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Define L to be the horizontal scale corresponding to the crossover wavenum­
ber: 

L� ∼
√

νt 

On the other hand, the vertical scale L⊥ of roughening corresponding to L� 

is 
L⊥ ∼ W (L�) ∼ Lα 

� = L� 
1/2 ∼ (νt)1/4 , 

consistent with our previous result β = 1/4. 

1.4.4 Two dimensions 

The above results correspond only to growth on a one-dimensional substrate. 

In two dimensions, the power spectrum 

S(k, t) S(�k, t), �k = [k1, k2].→ 

The isotropy of the growth process requires radial symmetry such that 

S(|�k|, t) = S(�k, t) 

The form of the power spectrum remains the same: 

S(|�k|) ∝ 
2ν

D

�k 2 
1 − e−2ν|�k|2t 

| |
Since 

�	 2 4π2(n1
2 + n2

2) 
=|k|

L2 

time is again scaled like 1/L2 and we retain the same dynamic exponent 
z = 2. 

However the roughness exponent changes. To see how, we estimate the width 
as we did previously as in Section 1.1.3: � kmax 

� kmax 
� kmax 1 

W 2(L) ∝ 
1/L 

d�k S(�k) ∝ 
1/L 

dk1
1/L 

dk2 
k1

2 + k2
2 

Converting to radial wavenumber kr = |�k|, we have � kmax 1 
W 2(L) ∝ kr dkr = const. + log L. 

k2
1/L r 
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Thus the mean square width grows only logarithmically with L, and the static 
roughness exponent α = 0. 

We conclude, therefore, that noisy diffusion cannot explain two-dimensional 
self-affine surfaces. 

1.5 Continuum models III: the KPZ equation 

We now consider interfaces that exhibit normal growth, i.e., they grow every­
where in a direction perpendicular to their local tangent, i.e., outward. 

Among our three discrete models, normal growth corresponds to cluster 
aggregation—growth everywhere along a perimeter with equal probability. 

We also include, as above, diffusive smoothing and noise. 

The resulting continuum model is 

∂h(x, t) λ 
∂t 

= ν�2h(x, t) + 
2 
|�h(x, t)|2 + η(x, t) 

1.5.1 Origin of the nonlinearity 

Let 

•	 vδt = displacement in growth direction

after short time δt.


•	 δh = displacement in h-direction. 

Consider δh to be the hypotenuse of a right 
triangle. Then 

One side is vδt.• 

• The other side is vδt tan φ = vδt|�h|


The identity tan φ = �h can be verified by splitting the present right triangle
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into two component right triangles and identifying φ within the lower triangle. 

From Pythagoras, 
(δh)2 = (vδt)2 + (vδt|�h|)2 

and therefore 

δh = vδt �� 1 + |�h|2
�1/2 � 

1 2� vδt 1 + 
2
|�h| + . . . 

In the limit δt 0,→ 

∂h v 2 
� 4� 

∂t 
= v +

2
|�h| + O |�h|

Transform to the comoving frame h� = h − vt, drop primes, and keep only 
the lowest-order nonlinear term. Then 

∂h λ 2 = 
∂t 2 

|�h|

where λ = v = average normal velocity. 

Assume also that bumps tend to diffuse with diffusivity ν and that there is 
“noise” equivalent to random deposition. Then 

∂h 
= ν�2h + 

λ 2 + η, 
∂t 2 

|�h|

known as the KPZ equation [4]. 

1.5.2 Qualitative behavior 

The nonlinear term approximates growth in which each bump expands spher­
ically outward, similar to the “Huygens secondary source” of geometrical 
optics. 

The growth of these bumps—and in particular the way the way in which 
the growing surface becomes progressively smoother—is analogous to shapes 
taken by a rough surface covered by snow. 
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Note that for true normal growth the curve of slopes would not be piecewise 
linear. However the parabolic approximation is particularly interesting. 

To see this, take the gradient of both sides of the noiseless growth equation: 

∂ 2 λ 2 

∂t
�h = ν� �h +

2 
�|�h|

Substitute u = −�h to obtain 

∂u 2 λ 2 ,
∂t 

= ν� u − 
2 
�u 

which is revealingly rewritten as 

∂u 2 u. 
∂t 

+ λu · �u = ν�

showing that slopes −u advect at velocity λu. 

The case λ = 1 is Burgers’ equation, a pressure-free Navier-Stokes equation, 
used to model gas dynamics and traffic. 

Note that, left undisturbed by noise, one parabola or shock eventually over­
takes all others and the surface becomes smooth and flat, just as with a heavy 
snowfall. 

Thus the role of noise, as in the noisy diffusion problem, is to provide a 
constant source of “roughness.” 

1.5.3 Roughness exponent α via the Fokker-Planck equation [2, 5] 

The nonlinearity of the KPZ equation makes calculation of the roughness 
exponent α considerably more difficult. 
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The simplest approach utilizes standard results in stochastic dynamics [6] 
that associate the evolution of a dynamical variable—say, h—to the evolution 
of its pdf P (h, t). 

First, consider the general case of a Langevin equation for the single variable 
h = h(t): 

∂h 
= G(h) + η(t), �η(t)η(t�)� = Dδ(t − t�)

∂t 
Integration of the Langevin dynamics provides the future value of h from its 
present value, via the fluctuating “force” η. By integrating over all possible 
paths taken by a particular h-trajectory, the Langevin dynamics may be 
associated with the Fokker-Planck equation [6, 7] 

∂P ∂ D ∂2P 
∂t 

= −
∂h

[G(h)P ] + 
2 ∂h2 

, 

where P = P (h, t) is the probability of obtaining h = h(t). 

Relation of Fokker-Planck equation to Langevin equation To better under­
stand the Fokker-Planck equation, write the continuity equation for the prob­
ability density P , 

∂P ∂J(h, t) 
∂t 

= − 
∂h 

where J(h, t) is the probability flux 

D ∂P 
J(h, t) = G(h)P − 

2 ∂h 

We interpret the first term as the advection or drift of probability, and the 
second as diffusion. 

The drift arises from the deterministic part of the Langevin equation. For a 
small time Δt, h changes by � Δt 

Δh = G(h)Δt + η(t�)dt� 

0 

yielding the drift 
�Δh� 

= G(h). 
Δt 
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The diffusive term comes from the noise. To see this, expand (Δh)2 to first 
order in Δt, � Δt � Δt � Δt� 

(Δh)2 � 2G(h)Δt η(t�)dt� + dt� dt��η(t�)η(t��). 
0 0 0 

Then 
�(Δh)2� 

= D 
Δt 

Thus the first and second terms in the flux J(h, t) of the probability P (h, t) 
derive from the first and second moments, respectively, of Δh as computed 
from the Langevin equation. 

The utility of the Fokker-Planck equation is that it allows computation of 
the long-term behavior of P (e.g., the steady state) from the short-term 
Markovian dynamics. 

Continuous form For interfaces h(x, t), we have the additional complication 
that h depends on x (as does η). Conceptually, we can discretize space in 
units of l so that 

ξi = ldh(xi). 

Then the Fokker-Planck equation describes the evolution of P (ξ), ξ = {ξi}: 

∂P � ∂ D � ∂2P 
∂t 

= − 
i 

∂ξi 
[Gi(ξ)P ] + 

2 
i 

∂ξi 
2 . 

To convert sums to integrals, we must define functional derivatives


δF (h) 1 ∂F (ξ)
= lim 

δh(xi) l→0 ld ∂ξi 

Writing the Fokker-Planck equation in the continuum limit l 0 then yields, →
for P (h), h = h(x), 

∂P 
� 

δ D 
� 

δ2P 
∂t 

= − dx
δh

[G(h)P ] + 
2 

dx
δh2 

. 

We now identify 

G(h) = ν�2h + 
λ 

(�h)2 . 
2 
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Inserting above, we obtain 

∂P 
� �� 

λ 
� 

δP 
� 

D 
� 

δ2P 
∂t 

= − dx ν�2h + 
2
(�h)2 

δh 
+

2 
dx 

δh2 
, 

where we have used expressions like 

δ 2h = �2 δh 
= 0. 

δh
�

δh 

Steady solution In one dimension, the steady solution, for which ∂P/∂t = 0, 
is � � � �2 

� 
ν dh 

P (h) = exp dx .−
D dx 

This can be verified by writing P = P (x, h, h�) and recalling the variational 
derivative 

δP ∂P d ∂P 
δh 

≡ 
∂h 

− 
dx ∂h� 

The first term (∂P/∂h) vanishes leaving 

δP 2ν d2h 
= P 

δh D dx2 

Inserting into the second term on the RHS of the Fokker-Planck equation, 
we obtain � �� � �2 

� � � 
∂P d2h λ dh δP d2h δP 
∂t 

= − dx ν 
dx2 

+
2 dx δh 

+ dx ν 
dx2 δh 

The two terms in h�� exactly cancel, leaving only 

∂P 
� 

νλ 
� 

dh 
�2 

d2h 
= P dx 

∂t 2D dx dx2 � � �3
νλ d dh 

= P dx 
2D dx dx 

= 0, 

where in the last relation we have taken the system size to be large and set 
the surface integral (i.e., an integral of a divergence) to zero. 
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A remarkable consequence of this calculation that the nonlinear (λ) term 
does not contribute to the steady distribution P (h). 

Thus in one dimension, the stationary states of the noisy diffusion and KPZ 
equations are identical, yielding the roughness exponent 

α = 1/2 (d = 1), 

which, of course, is consistent with the Gaussian solution P (h). 

In higher dimensions, however, the λ-term does not vanish. (Integration by 
parts reveals contributions that are not surface integrals.) 

Indeed, no solution is known in higher dimensions. Numerical simulations 
suggest, however, that α � 0.4 in d = 2. 

1.5.4 Scaling argument for time dependent roughening (β and z) [8] 

Recall the dynamical scaling relation 

W (L, t) ∝ Lαf(t/Lz) 

where � 

W (L, t) ∝ 
tβ , t � Lz 

, β = α/z. 
Lα , t � Lz 

Consider a typical bump or bulge on the surface, with lateral correlation 
length L� and vertical correlation length L⊥, equal to the width W . Then 

L for⊥ ∝ Lα 
� t � Lz 

� 

The typical width L� grows with time in such a way that Lz 
� ∼ t or 

L 1/z 
� ∼ t

Note that z = 2, as found for the noisy diffusion equation, corresponds to 
diffusive growth where 

L 1/2 .� ∼ t

Thus z � 2 corresponds to a kind of “superdiffusive” spreading. We expect 
this here because bumps always grow in the normal direction. 
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Consider such a bump and its growth:


The characteristic slope is 
|�h| ∼ L⊥/L�. 

As noted in Section 1.5.2, slopes advect horizontally at a velocity proportional 
to slope. Therefore the characteristic bump of size L widens like 

dL� �h
L⊥(L�) ∝ Lα−1 

dt 
∝ | | ∼ 

L�
� 

Separating variables, we have 

L1−αdL� ∼ dt ⇒ L2−α ∼ t 

and therefore 
1 

L� ∼ t2−α . 

But above we also found L� ∼ t1/z. Therefore z = 2 − α or 

α + z = 2. 

This result appears general: it depends only on normal growth, but not 
dimensionality. In d = 1 we therefore have 

α = 1/2, z = 3/2 (d = 1) 

Thus at early times, 

W (t) ∝ tβ = t1/3 , t � Lz = L3/2 

since β = α/z. We also have, using our earlier result, that 

L 1/z = t2/3 ,� ∼ t

which is faster than t1/2 and therefore superdiffusive. 
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1.5.5 Summary and applications 

Summary The continuum growth equation 

∂h 
= ν�2h + 

λ 2 + η(x, t)
∂t 2 

|�h|

contains within it three classes of surface growth: 

1.	 ν = λ = 0: random deposition, wherein 

W (L, t) ∼ t1/2 , independendent of L and d. 

2. ν > 0, λ = 0: noisy diffusion. The width W (L, t) = Lαf(t/Lz), where 

α = 1/2, z = 2 (d = 1) 
α = 0, z = 2 (d = 2) 

3.	 ν > 0, λ = 0: normal growth, yielding 

α = 1/2, z = 3/2 (d = 1) 
α � 0.4, z � 1.6 (d = 2) 

Applications Of the plentitude, we cite two of earth-science interest: 

•	 Earth’s topography [9,10]. Widespread observations of power-law scaling 
of width with length. Suggests applicability of KPZ model and variants 
to “normal erosion.” 

•	 Stromatolites and the early history of life [11]. 
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The power spectra of the layer “heights” scales like S(k) ∼ k−2 over 
nearly three orders of magnitude, implying α = 1/2. Suggests that 
these “trace” fossils of early microbial activity could be of purely physical 
origin. 

Note that nearly all natural surfaces occur in d = 2. Thus the lack of power-
law scaling in noisy diffusion suggests a dominant role for normal growth. 

1.6 Gaussian surfaces [12, 13] 

Faced with a particular measure of surfaces (e.g., a correlation between slope 
and drainage area), how can we know if it is a consequence of the dynamics 
of surface growth or the mere construction of a “typical” surface? 

To answer such a question, we consider a class of surfaces that includes self-
affine surfaces but is more general. 

1.6.1 Preliminaries 

We consider surfaces in d = 2, with the Fourier transform pair � L � L 
ˆ k � �h(�k) =	

1 
h(�r)e−i� ·rd�r, k =

2π 
(n1, n2), n1, n2 = 0, ±1, . . . 

L2
0 0 L 

and 
h(�r) = 

� 
ĥ(�k)e i

�k·�r . 
�k 

Now write 
ĥ(�k) = A(�k)e iφ(�k), 

where 

A(�k) = |ĥ(�k)| and φ(�k) = tan−1 

� 
Im{ĥ(�k)} 

Re{ĥ(�k)} 

� 

Recall that real h(�r) requires 

φ(−�k) = −φ(�k) 
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Consequently the inverse Fourier transform simplifies to a sum of cosines:


h(�r) = A(�k) e iφ(�k)e i
�k·�r 

�k 

= A(�k) cos(�k �r − φ(�k))· 
�k 

1.6.2 Random phases imply Gaussian heights 

Assumption. The φ(k) are uniformly distributed over the range −π to π and 
statistically independent (except for the symmetry relation above). 

To see a consequence of this assumption, consider the (arbitrary) point �r = 0. 
Substitute into the inverse Fourier transform above to obtain 

h(0) = A(�k) cos φ(�k) 
�k 

But this is just a sum of uncorrelated random numbers. Invoking the central 
limit theorem, P [h(0)] must be Gaussian. 

Now simplify notation so that 

An = A(�kn), θn = � �r − φ(�kn).kn · 

Then any height h is given by 

h = An cos θn 

n 

But θn is also an uncorrelated random phase because the φn’s are uncorrelated 
and distributed over the entire interval [−π, π]. 

Thus we again have a sum of independent random numbers, so that the pdf 
of any height h is also Gaussian. 

We can obtain the mean square height �h2� from �� �2� 

�h2� = An cos θn 

n 
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� � 

which we can rewrite as


�h2� = AnAn� cos θn cos θn� . 
n,n� 

The average is performed over the (uniform) distribution of the θn’s. Since the 
θn’s are uncorrelated, there are contributions to the sums only when n = n� 

or (because cosines are even) n = −n�. Therefore 

�h2� = 2 An
2 �cos 2 θn� = A2 

n 
n 

We recognize this as Parseval’s theorem, but note that it has been derived 
here merely from the assumption of random phases. 

Consequently we see that random phases not only predict a Gaussian distri­
bution of heights but also the mean-square width W 2 = �h2�. Therefore all 
heights are distributed according to the Gaussian pdf 

P (h) ∝ e−h2/2W 2 
. 

We see, therefore, that the assumption of random phases is equivalent to 
assuming that each height h(�r) results from the sum of a large number of 
independent contributions. 

Note that this requires no assumptions concerning the power spectrum |ĥ(k)|2 

nor the (associated) autocorrelation function. 

That is, heights h(�r) can be correlated even though phases φ(k) are not. 

Consequently random phases lead to a Gaussian surface that is completely 
defined by the power spectrum or the autocorrelation function, which set the 
variance and covariance of the heights. 
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1.6.3 Distribution of gradients 

Taking the gradient of our previous expression for h and setting �kn = (pn, qn), 
we have 

∂h � 
hx = = Anpn sin θk

∂x 
− 

n 

∂h � 
hy = 

∂y 
= − Anqn sin θk, 

n 

both obviously distributed as Gaussians (being sums of independent random 
numbers), with mean-square fluctuations �� �2� 

�h2 
x� = − Anpn sin θn = An

2 pn 
2 

n n 

and (similarly) � 
�h2 

y� = An
2 qn 

2 

n 

We also have �� �� �� 

�hxhy� = Anpn sin θn An� qn� sin θn� = A2 
npnqn 

n n� n 

Thus each component of slope is Gaussian, but the components of slope are 
correlated. (As they must be, to satisfy �×�h = 0.) 

1.6.4 Slopes are uncorrelated to heights 

We now seek the cross-correlation �� �� �� 

�hhx� = An cos θn − An� pn� sin θn� 

n n� 

Keeping only terms for which n = n�, 

�hhx� = − A2 pn �cos θn sin θn� = 0,n

n 
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where the sum vanishes because of the orthogonality of sines and cosines 
averaged over the uniform distribution of θn. 

A similar calculation results in 

�hhy� = 0. 

We thus obtain the remarkable result that heights and slopes are uncorrelated. 

These results are easily generalized to obtain 

∂n+mh ∂n�+m� 
h 

∂xn∂ym ∂xn� ∂ym� = 0 when (n + m) − (n� + m�) is odd. 

1.6.5 Slope-area relations [14, 15] 

The utility of Gaussian surfaces derives from their role as a “null model” for 
which specific predictions can be made. 

As an example, we consider the oft-cited geomorphological correlation be­
tween slope and drainage area. 

A good “proxy” for drainage area is the extent to which elevation contours 
curve: high curvature should correlate positively with large drainage area. 

First, recall the formula for the curvature of a one-dimensional function y(x): 

y
κ = 

[1 + (y�)2]3/2 

The curvature κ of a contour line has a somewhat similar form: 

h2 
yhxx − 2hxhyhxy + hx

2 hyy 
κ = � �3/2 

. 
h2 + h2 

x y 

Its relation to first and second height derivatives derives from its relation to

the topographic convergence p, the relative contraction of a contour segment
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per unit height:


p = 
|�t| − |�t�| 
|�t|δ 

Here δ makes p independent of the contour spacing. 

The convergence is related to the curvature by a factor of slope: 
κ 

p = 
|�h| 

Thus κ describes how contours curve, and the slope |�h| determines the 
available downhill-path-length per unit height. 

Now rewrite the curvature as 

(�h)t hyy −hxy 

hxy hxx 
�h 

κ = 
|�h|3 

Since first derivatives are independent of second derivatives, the second deriva­
tives are essentially a prefactor, yielding 

κ2 ∝ 
|�

1 
h|2 

⇒ |κ| ∝ 
|�

1 
h| 

. 

We thus have an explicit relationship between curvature and slope. 

Qualitatively this is easy to understand: consider a tilted U-shaped valley so 
that water flows (ultimately) down the valley’s center. 
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Curvature, convergence, and aggregation vary with the tilt: 

•	 No tilt. Elevation contours are merely parallel to the valley floor. 

Infinitesimal tilt. Elevation contours have infinite curvature at their • 
apex, thus convergence and areal aggregation are also maximal. 

•	 Steep (nearly vertical) tilt. Elevation contours are nearly perpendicular 
to the valley floor; curvature, convergence, and areal aggregation are 
minimal. 

The utility of the Gaussian hypothesis is that it quantifies this qualitative 
observation. 

In the specific case of the slope-area relation, we identify curvature or con­
vergence with area and realize immediately that there must be an inverse 
correlation between slope and drainage area. 

1.6.6 Quantitative null hypothesis 

In empirical studies in which mechanistic relations are unknown or poorly 
understood, it is common to seek relationships by searching for correlations. 

Typically one tabulates, say, two quantities X and Y , and asks whether the 
fluctuations X̃ and Ỹ from their means are correlated, i.e., if �X̃Ỹ � = 0. 

But this first requires defining what is meant by “correlated.” A quantifiable 
definition of correlated is the following: 

X is correlated to Y if we measure |�X̃Ỹ �| > q, where |�X̃Ỹ �| > q 
would occur only P % of the time if X and Y are uncorrelated 
random processes. 

The notion of “uncorrelated random processes” amounts to a null hypothesis 
which one seeks to falsify by finding a small value of P . 
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The assumption of random phases also amounts to kind of null hypothesis: 
it is what one might expect in the absence of any particular surface growth 
mechanism. 

Consequently we can identify “interesting” aspects of real surfaces by quan­
tifying characteristics that would be unexpected under the Gaussian assump­
tion. Such characteristics would presumably be associated with deterministic 
(i.e., physical) mechanisms rather than mere statistics. 

Example: Is a particular combination h = h∗, hx = hx
∗ , and hy = hy 

∗ “un­
usual”? 

To answer this question, note that our results 

�hhx� = �hhy� = 0 and �hxhy� = 0 �

yield the pdf 
p(h, hx, hy) = p(h)p(hx, hy) 

where 
p(h) = 

(2πW 
1

)1/2 
e−h2/2W 2 

and 

1 1 h2 h2 2ρhxhy
p(hx, hy) ∝ 

2πσhx σhy (1 − ρ2)1/2 
exp −

2(1 − ρ2) σ2 
x + 

σ2 
y − 

σhx σhy 

, 
hx hy 

and ρ is the correlation coefficient 

Cov(hx, hy)
ρ = . 

σhx σhy 

Then we say that h = h∗, hx = h∗ , and hy = h∗ 
y is unusual if x

∞ ∞ ∞ 

dh dhx dhy p(h, hx, hy) < P, 
h∗ hx

∗ hy
∗

where P � 1 is some suitably small number. 

Such procedure may be useful in analyzing ecological problems, such as the 
spatial distribution of the abundance of phytoplankton at the sea surface. 
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A pitfall, however, is that even on Gaussian surfaces, a fraction P of sites 
will be deemed unusual. 

Thus such a technique is best employed as a way of testing whether a par­
ticular set of observed features of a landscape is inconsistent with the simple 
Gaussian assumption—i.e., much more prevalent than one would expect from 
a random Gaussian fluctuation. 
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