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1 River networks 

River networks are among the most beautiful of Nature’s large-scale scale-
invariant phenomena. 

To see what we mean by scale-invariant, we briefly return to random walks. 

1.1 Scale invariance of random walks 

Define the rms excursion r = �x2(t)�1/2 . We have previously shown that 

r ∝ t1/2 . 

Now rescale time t bt and note that → 

r(t) = b−1/2 r(bt). 

This simple manipulation yields a remarkable observation: the statistics of 
the random walk are unchanged by the simultaneous rescaling 

x b1/2 x, t bt.→ → 
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This means that the random walk is statistically equivalent at all scales, e.g.


Here b = 1/5 and the inset is “blown up” by stretching the horizontal axis 
by a factor of 5 and the vertical axis by 

√
5. 

[Another example: go to any financial website that provides graphs of market 
fluctuations at a time scale of your choosing (days, weeks, months, years). 
Note that aside from long-term trends, all graphs look alike!] 

Although we present the random walk as an example of scale-invariance, note 
that space and time do not scale in the same way. 

Later we will call such scaling self-affine, but for now it suffices to note the 
statistical equivalence at different scales. 

1.2 Allometric scaling 

River basins exhibit a similar phenomenon: they too have statistically similar 
shapes at all scales, but their dimensions scale differently. 

We refer to the two lengths as L and L� ⊥: 
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The area a is 
a ∝ L�L⊥. 

Measurements made from maps typically show 

L⊥ ∝ LH 
� , 1/2 � H � 1 

and therefore 
a ∝ L1+H 

The case H = 1 in (a) yields geometric similarity or self-similarity: no matter 
what the size of a, all basins “look alike.” 

The case H = 1 in (b) is called allometric scaling (as opposed to “isometric”): 
dimensions grow at different rates. 

Specifically, 
L � �H−1 ⊥ ∝ LH−1 1+H 1+H . 
L � ∝ a 

1 

= a−
1−H 

Since observed values of H fall within 0 < H < 1, 

1 − H
> 0. 

1 + H 

Therefore 

•	 large river basins tend to be long and thin; and


small river basins tend to be short and fat.
• 

Upon appropriate rescaling, however, they all look the same. 

1.3 Size distribution of river basins 

Suppose we stand at a point x0 chosen at random on a landscape. What is 
the size of the area a that drains into it? 

We could estimate a by walking uphill from x0, always following the steepest 
path. That brings us to a drainage divide, providing an estimate of L�. 
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Obtaining the full area a, however, requires more work. A particularly labor 
intensive method would be to create a grid of, say, 1 m, and to place a person 
at each grid site above x0. We then ask each person to follow his/her path of 
steepest descent from one grid site to the next. Then if N people eventually 
arrive at x0, the drainage basin has size N m2 . 

But what would a be a step to the right or left? 

More generally, what is the probability distribution Pa(a) of drainage areas? 

To answer this question we create a model of a landscape made of random 
bumps. The bumps are smooth on a small scale but otherwise independently 
chosen from some well-behaved distribution like a Gaussian. 

We then tilt the landscape so that all paths of steepest descent are always 
directed in the direction of the tilt. 

We then populate the landscape as before, and follow each path of steepest 
descent. Supposing that the square grid is oriented 45◦ to the tilt direction, 
each step down will also be a step to the left or right, and the coalescence of 
the various paths will look like this: 

If we then trace out any basin, we find that its left and right boundaries are

particular realizations of a random walk.


This is Scheidegger’s 1967 model of river networks [1].


Since for a random walk we have �x2�1/2 ∝ t1/2, we substitute


t L�, x L→ → ⊥ 
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and conclude

1/2 3/2

L⊥ ∝ L� ⇒ a ∝ L� . 

Since our random walks are always directed toward the bottom boundary, the 
length l of the longest stream in each basin scales like l ∝ L�, and therefore 

l ∝ a 2/3 

Real rivers exhibit a similar scaling law, called Hack’s Law [2]: 

l ∝ a h , 0.57 � h � 0.60. 

The correspondence between the two suggests that our model is reasonable. 

To find Pa(a), we write 

φl(y) = left basin boundary 

φr(y) = right basin boundary 

and assume that they both start at y = 0. Note that the difference 

φ(y) = φl(y) − φr(y) 

is itself a random walk that not only begins at y = 0 but also ends at y = 0. 

We ask a precise question: What is the probability that φ(y) returns to its 
initial position for the first time after n steps? 

This is the classic first-return or first-passage time of a random walk. The 
answer, for large n, is [3, 4] 

P (n) = 
2
√1 

π
n−3/2 . 
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Since our random walks are directed, the main steam length l ∝ n. Therefore


Pl(l) ∝ l−3/2 . 

To obtain the area distribution, we recall l ∝ a2/3 and write � � dl 
Pa(a) = Pl l(a) 

da 
∝ (a 2/3)−3/2 a−1/3 

= a−4/3 . 

Real rivers exhibit 

Pa(a) ∝ a−τ , τ = 1.43 ± 0.02, 

suggesting once again that our model is reasonable. 

1.4 Scaling relation 

Gathering our results, we have 

l a h∝ 

Pa(a) ∝ a−τ 

Pl(l) ∝ l−γ 

where, comparing Scheidegger’s random-walk model to real observations, we 
have 

Exponent Scheidegger Real world 
h 2/3 0.58 ± 0.02 
τ 4/3 1.43 ± 0.02 
γ 3/2 1.8 ± 0.1 

Since we are looking at areas and lengths, we expect that, whatever their real 
values, the exponents h, τ , and γ should be related to each other. We find 
this relation by writing � � dl 

Pa(a) = Pl l(a) 
da 

∝ (a h)−γ a h−1 

a−[1−h(1−γ)]= , 
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which yields


τ = 1 − h(1 − γ). 

This is an example of a scaling relation: an algebraic relationship that gives 
the explicit dependence between exponents. In this case, it says that we need 
only know two exponents to obtain the third. (Further work [5] shows that 
there is only one independent exponent.) 

Our scaling relation is readily verified by substituting the value for Scheideg­
ger’s model: � � 

4 2 3 
= 1 − 1 −

3 3 2 

As for the real world, we have 

1.43 � 1 − 0.58(1 − 1.8) = 1.46. 

Overall we see that the statistical geometry of river networks—the power-
law scaling, and the relations between the exponents—is well described by 
Scheidegger’s random walks. 

Note that we have said nothing about how real rivers form. 

Instead we note that their tendency to aggregate (i.e., connect) as they flow 
downhill is the main ingredient necessary to account for their principal geo­
metric features after they form. 

We suspect that this reflects the universal properties of random walks: i.e., 
that the mean square fluctuation in one dimension scales roughly like the 
mean fluctuation in the other. 

If this is true, it means that natural landscapes contain no particularly special 
features that suggest that the typical paths of steepest descent are unlike 
random walks. 

That the Scheidegger model does not capture the correct values of the expo­
nents τ , h, and γ suggests nevertheless that something important is missing. 

We proceed to consider what that might be. 
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1.5 Universality classes 

Let us consider our random-walk model as a member of a wider class of 
models based on the kind of path taken by flowing water: 

• (a) Non-convergent. 

• (b) Directed random walks (Scheidegger). 

• (c) Undirected random walks. 

Now consider Hack’s law l ∝ ah .


The trivial non-convergent case (a) yields h = 1.


Directed random walks (b) yield h = 2/3.


Undirected random walks (c) yield h = 5/8 [6].


Remaining exponents are obtained from our previous scaling relation, aug­

mented by the additional relation τ = 2 − h [5].


Each of these cases may be considered universality classes. These classes are

delineated by qualitative conditions: here, the way in which flowing water

can aggregate. These qualitative conditions then lead to specific quantitative

predictions of exponents.


Which universality class is “correct”? One could argue that undirected ran­

dom walks are the most realistic class, and that it is no surprise that their

Hack exponent, h = 5/8, is the closest to the observed h � 0.58.


Although such reasoning may possibly be valid, it misses the main lesson:

Aggregating random walks capture the main features of river network geome­
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try. 

All the rest comes down to getting the exponents “right.” But because it is 
not precisely clear what it would mean to be correct, it is both more inter­
esting and safer to simply learn our lesson and ask if it has any applicability 
elsewhere. 

1.6 Sandpiles and self-organized criticality 

Scheidegger’s model of rivers has been rediscovered in many different con­
texts. 

A particularly interesting example is the directed sandpile model. 

But we first discuss the “classical” undirected sandpile model of Bak, Tang, 
and Wiesenfeld [7]. 

On a grid of size L × L, assign a number 

Z(x, y) = number of sand grains at location x, y 

At each time step, choose a site randomly and add one grain of sand: 

Z(x, y) Z(x, y) + 1.→ 

Continue to repeat these random additions until a site is “unstable” and 
topples. 

The toppling rule: when Z(x, y) ≥ Zc, 

Z(x, y) Z(x, y) − 4→ 

and a grain of sand is added to each of the nearest neighboring sites: 

Z(x ± 1, y) Z(x ± 1, y) + 1 → 

Z(x, y ± 1) Z(x, y ± 1) + 1.→ 

When sand is transferred to neighboring sites, the neighboring sites them­
selves can also topple. As can their neighbors, etc. The toppling continues 
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until no more sites are unstable. If a boundary of the system is reached, 
particles fall off the edge. 

(An alternative formulation, due to Grassberger [7], considers a room full of 
bureaucrats. When their paper work piles up beyond a critical level, they 
pass off one unit of work to each of their neighboring bureaucrats. . .) 

1.6.1 Avalanches 

The interest in such a model is in the avalanches. Define the avalanche size 

s = number of sites that topple in a single event. 

Simulations show a power-law distribution of s: 

P (s) ∼ s−τ , τ � 1.1 

The importance of such a relation is that there is no characteristic avalanche 
size (i.e., the distribution’s mean and variance exist only if one assumes a 
finite system size L). 

One can find data for real avalanches, or perform experiments with laboratory 
sandpiles, that, at least in some cases, confirm this picture. 

However its importance derives not from its detailed correspondence to real 
sandpiles but instead the apparent ubiquity of such power-law phenomena in 
natural systems. 

1.6.2 Earthquakes 

Consider, for example, an earthquake fault. Model it on a grid, so that Z(x, y) 
represents stress supported by a local asperity (i.e., friction due to surface 
roughness). 

Regional stress can be modeled by successively adding one unit of stress and 
random sites. When stress exceeds a critical threshold, the asperity breaks 
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such that 4 units of stress are removed and one unit is distributed to each of 
the nearest neighbors. 

This model is of course merely a reinterpretation of the sandpile model. But 
the distribution of avalanches, reinterpreted as earthquakes, has a remark­
able correspondence to the Gutenberg-Richter scaling law: the number N of 
earthquakes of magnitude m (amount of energy released) scales like 

N(m) ∼ m−b , b � 1 

1.6.3 Self-organized criticality 

When the temperature of a liquid is lowered to it freezing point, density 
fluctuations occur at all scales. This scale-free behavior is characteristic of 
all equilibrium critical phenomena, and is independent of the particular type 
of phase transition. 

The lack of a characteristic fluctuation size is a general property of equilib­
rium critical phenomena, wherein long-range correlations exist at the critical 
temperature Tc. 

Bak’s sandpile model is interesting because it exhibits such critical behav­
ior without any “tuning” of the temperature. The system instead “self­
organizes” to the critical state. Consequently the phenomenon is known 
as self-organized criticality. 

1.6.4 Directed sandpiles 

We proceed to show how Scheidegger’s rivers relate to Bak’s avalanches. 

We make one key change to Bak’s sandpile: we assume that the “tilt” of the 
pile requires that sand flow only downhill [8, 9]. 

We tilt a square lattice diagonally, and add particles at random sites on the 
top row. We take Zc = 2, so that when Z(x, y) ≥ Zc, 

Z(x, y) Z(x, y) − 2→ 
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and we add “sand” to the neighboring sites in the nearest lower row: 

Z(x ± 1, y − 1) Z(x ± 1, y − 1) + 1 → 

If those sites are now unstable, the sand is transferred to the nearest neighbors 
below once again, and so on. 

The avalanching continues until all sites are once again stable such that Z ≤
Zc = 2 everywhere. 

The correspondence with the Scheidegger model follows from identifying the 
paths taken by unstable particles of sand with those of Scheidegger’s rain­
drops or random walkers. 

Specifically, we once again see that the avalanche “basin” is once again 
bounded by directed random walks, and we inherit not only the same first-
passage problem of Scheidegger but also the same exponents. 

In particular, we have the avalanche size distribution 

P (s) ∼ s−τ , τ = 4/3. 

Finally, we note that Takayasu’s model of random aggregation [10] is also 
equivalent to Scheidegger’s model. In this case particles move about ran­
domly on a 1D lattice, with constant reinjection of mass. In steady state, the 
distribution of mass is the same as the basin distribution or the avalanche 
distribution. 

1.7 The lesson learned 

The main lesson here is that the allometry imposed by random walks can 
account for a wide variety of apparently unrelated phenomena in which size 
distributions decay as power laws, suggesting that there is no characteristic 
size or fluctuation. 

But this does not in itself mean that rivers, sandpiles, etc. are truly the result 
of some mechanism that generates random walks. And at the same time it 
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also leads one to question whether the notion of “self-organized criticality” 
is necessary to understand each of these problems. 

What is clear, however, is that a useful first step in analyzing such problems 
is to create minimal models as we have here, to analyze their predictions, and 
then to ask whether both the assumptions of the model and its predictions 
correspond to reality. 

The qualitative correspondence of the predicted power laws with observations 
is a powerful indication that something about these models is correct. 

Yet important elements may also be missing: 

•	 the way in which the real problem generates the random-walk geometry; 
and 

•	 the possibility that the deviation of observed exponents from predicted 
exponents reflects some fundamental flaw. 
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