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1 From microdynamics to macrodynamics 

Throughout the course we will suggest that simple idealized microdynamics, 
suitably averaged in space and/or time, suffices as a representation of complex 
macroscopic continuum behavior. 

In this lecture we provide two examples in which such a connection can be 
shown explicity: 

Random walks diffusion.• → 

• Lattice gas → fluid flow (as in the previous lecture). 

Applications of these ideas will be given in later lectures. For now, we just 
consider these problems as “toy models” of instrinsic interest themselves. 

As we shall see, their intrinsic interest derives from their statistical dynamics. 

1.1 Random walks 

1.1.1 One-dimension, discrete time and space 

Consider a (drunkard’s) random walk along a line (figure): 

• Start at time t = 0 and position x = 0. 

• Every τ seconds, take a random step s to the left or right. 

• Assume equiprobable steps of equal size δ: 

P (s = δ) = P (s = −δ) = 1/2. 
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• No memory (statistically independent jumps). 

We think of this as a caricature of real diffusion (e.g., Brownian motion). 

Now consider an ensemble of N independent random walks (i.e., many such 
drunkards, each acting with no awareness of the others). 

Let xi(n) be the position of the ith walker after n steps. Then 

xi(n) = xi(n − 1) + s. 

The mean position of a large ensemble of walkers after n steps is 

N
1 �� � 

�x(n)� = lim xi(n − 1) + s 
N→∞ N 

i=1 

= �x(n − 1)� + �s� 
= �x(n − 1)�. 

Here we have used the angle brackets �·� to denote the ensemble average. 
The result shows that the mean position is independent of n, thus retaining 
permanent memory of the initial condition: 

�x(n)� = 0. 

Intuitively we understand that there should nevertheless be a wide spread in 
the probability P (x) that increases with time (figure). 

We characterize this spread by the root-mean-square displacement �x2(n)�1/2 . 
To calculate it, first write � �2 

xi 
2(n) = xi(n − 1) + s 

= xi 
2(n − 1) + 2sxi(n − 1) + s 2 . 

The ensemble mean is 

�x 2(n)� = � x 2(n − 1)� + 2�s��x(n − 1)� + �s 2� 
= x 2(n − 1) + δ2 

where we have replaced the average of a product with the product of averages 
because of our assumption of no memory (ie, s is uncorrelated to x). 
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Note that our result is in the form of a recursion, which is readily put in the 
simpler form 

�x 2(n)� = nδ2 

Since t = nτ , we have 
2�x � = δ2t/τ = 2Dt, 

where we have defined the diffusion coefficient 

δ2 

D = . 
2τ 

Thus the mean-squared displacement increases linearly with time, like 2Dt. 
Consequently the root-mean-square displacement increases like the square-
root of time: 

2�x �1/2 = (2Dt)1/2 . 

Intuitively we understand that the width of some bell-shaped distribution 
P (x, t) increases like 

√
2Dt. (figure) 

For a small molecule in water, D � 10−5 cm2/s. So imagine you’re a bac­
terium (size ∼ 10−4 cm), and you want to know how how long some molecular 
nutrient will take to diffuse a distance � away from you. Identifying � with 

2�x �, the diffusion time τd is 

τd ∼ �2/2D. 

Then 

� (cm) τd (s) 
10−4 5 × 10−4 s 

1 5 × 104 s 

In other words, the molecule would stay within a length commensurate to a 
bug’s size for only about a millisecond. But it would stay within 1 cm for 
about 14 hours! 

This huge change is a consequence τ ∝ �2, a hallmark of diffusive processes. 
(Contrast with flow, or advection, in which τ ∝ �.) 
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1.1.2 Higher dimensions 

Before moving on, we first argue that our little toy problem is equally valid 
in higher dimensions. 

In, say, two dimensions, the random walker is on a plane. In our discrete 
approximation, this corresponds to a lattice with a “Manhattan metric,” with 
the drunkard originating at his corner bar and moving ±δ in each dimension 
at each time step. 

Because the drunk’s motion in x is independent of his motion in y, 
2 2�x � = �y � = 2Dt 

Since the mean-square distance from the origin is 
2 2 2 r = x + y , 

we have 
�r 2� = 4Dt. 

The generalization to higher dimensions is obvious. The point is that we 
retain the diffusive scaling �2 ∝ t. 

1.1.3 The binomial distribution and the large n (Gaussian) limit 

We return now to one dimension, and seek the probability P (x, n) that a 
random walker is at position x after n steps. 

In doing so, we generalize the toy problem so that 

P (s = δ) = p 

P (s = −δ) = q = 1 − p, 

i.e., the random walk takes positive steps of size δ with probability p and 
negative steps with probability q = 1 − p. 

The displacement after k positive steps is 

x(n) = [k − (n − k)]δ 

= (2k − n)δ 
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The probability of arriving at this point by a specific sequence of k positive 
steps and n − k negative steps is 

p k q n−k . 

Since there are two choices per step, there are 2n possible sequences of steps. 
The number of possible sequences in which k of the n steps are positive is 

n n! 
. 

k 
≡ 

k!(n − k)! 

The probability of having exactly k positive steps in n attempts is the bino­
mial distribution 

n! 
P (k, n) = p k q n−k . 

k!(n − k)!

For large n (long times) the binomial distribution approaches the Gaussian 
distribution 

P (k, n)dk = 
(2πσ

1 
2)1/2 

e(k−µ)2/2σ2 
dk 

where P (k)dk is the probability that k is between k and k + dk, and 

µ = �k� = np, 

σ2 = �k2� − �k�2 = npq. 

We can write this in a simpler form by substituting x = (2k − n)δ. The 
resulting distribution then corresponds to an unbiased random walk about 
x = 0 with p = q = 1/2. 

Substituting also 

dx = 2δdk, t = nτ, D = δ2/2τ, 

we obtain 
1 

P (x, t)dx = 
(4πDt)1/2 

e−x2/4Dtdx, 

i.e., a Gaussian with mean �x� = 0 and variance �x2� = 2Dt. 

1.1.4 Central-limit theorem 

The previous result is in fact more general. No matter what distribution P (s) 
the step size is drawn from, the long-time limit of P (x) is still Gaussian. 
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To show this, we shall use the Fourier-transform pair


φ(k) =

∞ 

ikxP (x)dxe 
−∞
1 ∞ 

P (x) = 
2π −∞ 

e−ikxφ(k)dk. 

The first relation also defines the average (or characteristic function) 

φ(k) = �e ikx�. 

Note that the jth derivative evaluated at zero has the simple form 

djφ(k) 
dkj 

= ij j�x �, 
k=0 

where �xj� is the jth moment of P (x). 

We express φ(k) as a Taylor series of the moments: 

φ(k) = 1 + ik�x� − 
k

2 

2 

�x 2� + O(k3) 

Now return to our random walk. The distribution P (x) derives from the sum 
of random steps si, i = 1, . . . , n. 

We allow si to derive from any probability distribution with finite mean and 
finite variance. For convenience we assume that all si are drawn from the 
same distribution with zero mean (but it doesn’t matter). 

Assuming the walk starts at the origin, the location of the walk after n steps 
is given by the sum 

n

x(n) = si. 
i=1 

The mean-square distance is 

n
2 2�x � = �sisj� = n�s � = nσ2 , 

i,j=1

where σ2 ≡ �s2� is the variance of s. 
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Since �x2� grows with n, we consider the reduced sum 

w(n) = x(n)/n1/2 , 

whose variance �w2� is constant. 

We seek the probability density P (w). To do so, we write its characteristic 
function 

φw(k) = �e ikw(n)� �� �� 
n

ik � 
= exp 1/2 

sj
n

j=1 

n
iksj /n1/2 

= e 
j=1 

n

= iksj /n1/2 �e � 
j=1

��eiks/n1/2 n = 

= φs(k/
√
�
n) 
�n 

Expanding φs(k/
√

n) in powers of the moments, we have 

φs(k/
√

n) = 1 − 
k2σ2 

+ O 

� 
k
3

3 

/2 

� 

,
2n n

where the first-order term vanished from the assumption that �s� = 0. 

For large n, the third-order term is small. Substitution of the remaining 
expansion into the expression for φw(k) then yields � 

k2σ2 �n 

φw(k) = lim 1 −
n→∞ 2n 

= e−k2σ2/2 

The final step is the inverse Fourier transform to obtain P (w): 

P (w) = 
1 ∞ 

e−ikwφw(k)dk. 
2π −∞ 

=
1 

e−w2/2σ2 
,√

2πσ2 
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i.e., a Gaussian distribution with mean zero and variance σ2 . 

This is the central limit theorem: for large n, the sum of random numbers 
drawn from any distribution with finite variance asymptotically approaches 
the Gaussian distribution. 

Our rescaling by 1/
√

n hides the growing variance but does not change the 
result: the distribution P (x) of the random walk is Gaussian, no matter how 
the steps are made. 

This is an elementary statement of universality: in the long-time limit, the 
details of the “microdynamics”—i.e., the step-size distribution—do not mat­
ter. The long-time limit of the Gaussian requires only that the probability 
of extremely large events be extremely small. 

This result underlies the ubiquity of the Gaussian distribution: any process 
that results from “sums” of random variables is likely to yield Gaussian fluc­
tuations. 

1.1.5 Macrodynamics: the diffusion equation 

We now proceed to derive the diffusion equation from our random walk. 

Suppose we have a long tube of cross-section A in which particles undergo 
random walks. We are interested in N(x), the number of particles at x (i.e., 
between x − δ/2 and x + δ/2), along with the particle flux Jx. 

How many particles move through across a unit area in unit time, from x to 
x + δ? And in the other direction? 

In other words, what is the net flux Jx? 

We imagine an imaginary boundary between x and x + δ. During one time 
step τ , half the particles at x cross over to the right, and half the particles 
at x + δ cross over to left. 
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� � 
The net flux (number particles per unit area per unit time) is


N(x) N(x + δ) 1 
=Jx 

2 
− 

2 Aτ 

where the factor of 1/2 comes from the fact that half the particles at each 
location move away from the boundary rather than towards it. 

Rearranging and multiplying by δ2/δ2 , 

δ2 1 
� 

N(x + δ) N(x) 
� 

Jx = −
2τ δ Aδ 

− 
Aδ 

Defining the number density or concentration C = N/Aδ and recalling D = 
δ2/2τ , we have 

Jx .= −D
C(x + δ

δ 
) − C(x) 

Letting δ 0, we obtain → 
∂C 

Jx = −D . 
∂x 

This is Fick’s (first) law: the concentration flux goes down the concentration 
gradient, at a rate given by the diffusivity D. 

Fick’s law is an example of a “linear-response relation.” Others include Ohm’s 
law, Hooke’s law, Darcy’s law, etc. The linearity is essentially an assumption, 
which follows in our case from assuming that the two sides of the boundary 
through which particles flow act independent of one another. 

Now consider particles flowing into and out of a box with cross-sectional area 
A and width δ perpendicular to to the x-axis. (figure) 

The concentration C(t) inside the box changes with the net flux into it. 

In τ units of time the concentration changes as � �Aτ 
C(t + τ) − C(t) = Jx(x) − Jx(x + δ) 

Aδ 

The factor of Aτ converts the concentration flux to the number of particles

flowing through the face, and the factor of 1/Aδ converts that number to a


9




concentration. Simplifying, we obtain 

1� � 1� � 
τ

C(t + τ) − C(t) = −
δ

Jx(x + δ) − Jx(x) . 

Letting τ 0 and δ 0, we obtain → → 

∂C ∂Jx 

∂t 
= − 

∂x 

Substituting Fick’s first law for Jx then yields 

∂C ∂2C 
= D 

∂t ∂2x 

commonly called the diffusion equation (and sometimes Fick’s second law). 

Note that in higher dimensions, Fick’s first law is 

J� = −D�C 

and mass conservation yields 

∂C 
J. 

∂t 
= −� · �

Combining the two, we have 

∂C 
= D�2C. 

∂t 

Conclusion: The simplest possible random walks are solutions to the diffusion 
equation. Consequently: 

•	 We can think about diffusive processes as random walks. 

•	 We can equally think about random walks as diffusive. 

•	 Should we wish to numerically solve the diffusion equation, we can sim­
ulate random walks instead. 
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1.2 The lattice gas 

We now return to the lattice gas of Lecture 1 and sketch its relation to the 
equations of fluid dynamics. 

In some sense, the continuum limit of the lattice gas follows similar arguments 
to that for the diffusion equation. 

However there two additional issues: symmetry and scale separation. We 
comment briefly on the first and in some detail on the second. 

1.2.1 Microdynamical equations 

Recall the model’s evolution: 

(c)

(a)

(b)
A S

A S

A S

Before After

The particle dynamics evolve as 

ni(x + ci, t + 1) = ni(x, t) + Δi[n(x, t)]. 

The quantities n = (n1, n2, . . . , n6) are Boolean variables that indicate the 
presence (ni = 1) or absence (ni = 0) of particles. 

Particles move from sites x to neighboring sites at x + ci. 
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Particles move with unit speed in the directions given by 

ci = (cos πi/3, sin πi/3), i = 1, 2, . . . , 6. 

Δi ∈ {−1, 0, 1} is the collision operator. Example: the three-body collision: 

(3)
Δi = ni+1ni+3ni+5n̄in̄i+2n̄i+4 − nini+2ni+4n̄i+1n̄i+3n̄i+5, 

where n̄i = 1 − ni and a subscript x is taken to imply “x mod 6”. 

(2)
There is a also a two-body collision Δi . Then 

(2) (3)
Δi = Δi + Δi . 

This is the entire dynamics, due to Frisch, Hasslacher, and Pomeau (1986). 

Note that Δi conserves mass, 

Δi(n) = 0, 
i 

and momentum, � 
ciΔi(n) = 0. 

i 

Using mass conservation, we sum the microdynamical equation over each 
direction i to obtain 

ni(x + ci, t + 1) = ni(x, t). 
i i 

Similarly � � 
cini(x + ci, t + 1) = cini(x, t). 

i i 

These are the microscopic mass-balance and momentum-balance equations 
of the lattice gas. 

1.2.2 Macrodynamical equations of the lattice gas 

Consider an area A of lattice sites enclosed by a perimeter S. 

12 



� � 

� 

� 

� � 

� � 

� 

� 

�	 � 

Mass conservation requires that 

[ni(x, t + 1) − ni(x, t)] = −(net mass flux out of S). 
x∈A i 

Now define the average particle occupancy �ni�. The averages �·� are con­
structed so that they vary slowly in space and time—more on this later, when 
we will refer to the macroscopic length scale as Lhydro. 

In terms of the averaged quantities, we have 

• i�ni�: slowly varying mass. 

• i�ni�ci: slowly varying mass flux. 

We identify left-hand side above be written as a time derivative of the mass 
and, the right-hand side as the divergence of the mass flux. Then 

∂t �ni� = −∂α �ni�ciα, 
i i 

where the α-component of the ith velocity vector ci is given by ciα, and�drepeated Greek indices are summed (i.e., XαYα = α=1 XαYα.) 

We describe the momentum flux similarly, i.e., 

[ni(x, t + 1) − ni(x, t)]ciα = −(net flux of α-momentum out of S). 
x∈A i 

Averaging allows identification of 

• i�ni�ciα: slowly varying α-component of momentum. 

•	 i�ni�ciαciβ: slowly varying α-momentum carried by �ni� in the β­
direction. 

The the LHS averages to the time derivative of α-momentum and the RHS 
is the divergence of the flux of α-momentum: 

∂t �ni�ciα = −∂β �ni�ciαciβ. 
i i 
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Now define the mass density 

ρ = �ni�, 
i 

and the momentum density 

ρuα = �ni�ciα. 
i 

Substitution above then yields the continuity equation, 

∂tρ = −∂α(ρuα), 

and the macroscopic momentum-balance equation, 

∂t(ρuα) = −∂βΠ
(0) 
αβ , 

where � 
Π

(0) 
= �ni�ciαciβαβ 

i 

inviscid momentum flux density tensor. 

1.2.3 Symmetry 

The arguments above provide the basic foundation of the continuum limit 
and its correspondence to real fluid dynamics. 

However one should ask whether the appearance of terms like ciαciβ in the 
momentum flux cause the fluid motion to be hexagonnally symmetric (rather 
than isotropic). 

Surprisingly, it turns out the six velocities suffice for isotropy! (This re­
sult follows from the symmetry properties of fourth-order tensors made from

i ciαciβciγciδ.) 

Note that a similar question could be asked for our random walk: Is a random 
walk on a lattice isotropic? 

It turns out that for diffusion, one needs only four-fold symmetry (i.e., a 
square lattice) for isotropy. 

Further information can be found in Ref. [1]. 
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1.2.4 Separation of scales 

A related question of more general importance concerns the separation of 
length scales between that of the lattice unit and that of the fluid continuum. 

Because real fluids are made of atoms or molecules, our remarks below are in 
that context, but they easily translate to our lattice model. 

Consider the following macroscopic length scales in a flow: 

3

U

l l
l

1 2

Of the length scales li we define 

Lhydro : the smallest characteristic length scale of macroscopic motions. 

We are also interested in the mean free path 

�mfp : the characteristic length scale between molecular collisions. 

Fluids may be regarded as continuous fields if 

Lhydro � �mpf . 

When this condition holds, the evolution of the macroscopic field may be 
described by continuum mechanics, i.e., partial differential equations. 

To make this idea clearer, consider a thought experiment in which we measure 
the density of a fluid over a length scale � using some particularly sensitive 
device. We then move the device in the x-direction over a distance of roughly 
10�. 

Suppose � ∼ L1 ∼ �mpf . Then we expect the density to vary greatly in space 
as in Figure (a) below: 
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(a) (b) (c)
hydrox/L x/L x/L1

de
ns

it
y

2

We expect that the fluctuations in (a) should decrease as � increases. (Statistics 

tells us that these fluctuations should decrease like 1/N1/2, where N ∝ �3 is the average number of 

molecules in a box of size �. ) 

On the other hand, if � ∼ Lhydro (see (c)), variations in density should reflect 
density changes due to macroscopic motions (e.g., a rising hot plume), not 
merely statistical fluctuations. 

Our assumption of a continuum implies that there is an intermediate scale, 
� ∼ L2, over which fluctuations are small. Thus the continuum hypothesis 
implies a separation of scales between the molecular scale, L1 ∼ �mfp, and the 
hydrodynamic scale, Lhydro. 

Both the lattice gas and real fluids provide the happy situation in which there 
is a genuine “scale-gap” between phenomena like (a) and (c). Such situations 
give confidence to the notion of a continuum and the partial differential equa­
tion that models it. 

However in many “complex” problems, especially non-physical (i.e., biologi­
cal) problems, the existence of such a separation is not obvious. For example: 

• Physical: flow through (fractal) fractures. 

• Biological: ecological interactions between organisms. 

In such cases it may be better to concentrate directly on connectivity and 
the way it varies with scale. 
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We next address an elementary physical example of connectivity: river net­
works. 
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